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Abstract: In this paper, it is proved that if F is a global field, then for any integer
n > 3, there is an extension field E over F of degree n such that K2E is not generated
by the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ E∗. However if F is a number field
and D is a finite dimensional central division F -algebra with square free index, then
K2D is always generated by the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ D∗. Finally
the tame kernels of central division algebras over F are expressed explicitly.
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1. Introduction

Let E/F be a field extension of degree n. If n ≤ 3, it is well known that K2E is
generated by symbols {a, b} with a ∈ F ∗, b ∈ E∗. The proof is elementary and can be
found in [7] and [13]. A very explicit version of this proposition can be found in [20]
(Lemma 12.1). If n > 3, then in general K2E is not generated by symbols {a, b} with
a ∈ F ∗, b ∈ E∗. A counterexample can be found in Proposition 3.1 of [2].

Let F be a global field. In section 2, we give a very simple counterexample. In fact,
we prove (Proposition 2.3) that for any integer n > 3 and any global field F , there is an
extension field E over F of degree n such that K2E is not generated by the Steinberg
symbols {a, b} with a ∈ F ∗, b ∈ E∗.

Although K2E is not generated by the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ E∗

in general, these symbols generate a subgroup of finite index (Proposition 2.4).
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In section 3, we consider the noncommutative version of this problem in case F is a
number field or a local field. Let D be a finite dimensional central division F -algebra.
If F is a number field and the index of D is square free, then K2D is generated by
symbols of the form {a, b} with a ∈ F ∗, b ∈ D∗ (Theorem 3.1). If F is a local field
and the characteristic of F is prime to the index of D or the index of D is square free,
then K2D is generated by symbols of the form {a, b} with a ∈ F ∗, b ∈ D∗ (Theorem
3.1). The proofs depend on Merkurjev and Suslin’s results on injectivity of reduced
norm for K2.

Next, we study the tame kernels of central division algebras over number fields. Let
D be a central division algebra over a number field F and Λ a maximal R-order in D,
where R is the ring of integers of F . It is proved (Theorem 3.4) that

K2Λ ' K+
2 R = ker(K2R −→

⊕

real ramified ℘

{±1} ).

Lenstra proved in [5] that every element of K2F is simply a symbol if F is a global
field. At the end of this paper, we prove that every element of K2D is a symbol of form
{a, b} with a ∈ F ∗, b ∈ D∗ if F is a number field and the index of D is square free.

2. Examples of K2E not generated by {F ∗, E∗}.
Proposition 2.1. Let F = Q, E = Q(

√−1,
√−3). Then K2E can not be generated

by the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ E∗.

Proof. Let OE be the ring of integers of E. Since 3 is ramified in Q(
√−3) and inert

in Q(
√−1), we know that 3OE = P2, where P is a prime ideal of OE satisfying

[OE/P : Z/3Z] = 2. Considering the tame mapping at P

∂P : K2E −→ (OE/P)∗, ∂P({a, b}) = (−1)v(a)v(b) a
v(b)

bv(a)
( mod P),

obviously ∂P is surjective. Hence the images of the elements {a, b} with a ∈ F ∗, b ∈ E∗

would generate (OE/P)∗ if K2E can be generated by symbols {a, b} with a ∈ F ∗, b ∈
E∗. Suppose (OE/P)∗ is generated by g. Let EP be the P-adic completion of E. For
any a ∈ F ∗, assume that a = uaπ

vP (a), where π is the uniformizer of EP . Then the
image ua of ua in (OE/P)∗ belongs to (Z/3Z)∗ ⊂ (OE/P)∗. But (Z/3Z)∗ is generated
by g4, so a is a square in (OE/P)∗. Since e(P/3) = f(P/3) = 2, we have 2|vP(a) for
all a ∈ F ∗. So (−1)v(a)v(b)av(b)/bv(a) is always a square in (OE/P)∗. So K2E can not
be generated by the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ E∗. ¤

Proposition 2.2. Let F be a local field with odd residue characteristic, E be a field
extension of F of finite degree. Let P be the maximal ideal of the integers ring of E.
Suppose that the residue class field index and the ramification index are all even. Then
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the images of the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ E∗ can not generate k(E)∗

under the tame mapping ∂P , where k(E) is the residue class field of E. So K2E can
not be generated by the Steinberg symbols {a, b} with a ∈ F ∗, b ∈ E∗.

Proof. By the same arguments as in the above proposition, it can be proved that
∂P({a, b}) is always a square in k(E)∗. Since ∂P : K2E −→ k(E)∗ is surjective and
k(E)∗2 6= k(E)∗, we know K2E is not generated by the Steinberg symbols {a, b} with
a ∈ F ∗, b ∈ E∗. ¤

Proposition 2.3. Let F be a global field. Then for any integer n > 3, there is an
extension field E over F of degree n such that K2E is not generated by the Steinberg
symbols {a, b} with a ∈ F ∗, b ∈ E∗.

Proof. By the above proposition and the fact that the tame mapping in Quillen’s lo-
calization sequence is surjective, it suffices to find a field E with [E : F ] = n such that
the residue class field index and the ramification index are all even at some prime ideal
P of OE . Let ℘ = P ∩OF . Finding such a field E is equivalent to finding an irreducible
polynomial h(x) ∈ F [x] of degree n such that h(x) = h1(x) · · ·hr(x), where irreducible
polynomial hi(x) ∈ F℘[x] and the residue class field index and the ramification index of
F℘[x]/h1(x) over F℘ are both even, where we have used h1(x) without loss of generality.

First, we can find a polynomial f(x) = f1(x) · · · fr(x) of degree n without multiple
roots, where the irreducible polynomial fi(x) ∈ F℘[x] for all 1 ≤ i ≤ r, such that the
residue class field index and the ramification index of F℘[x]/f1(x) over F℘ are all even.

Second, we can find a global polynomial g(x) ∈ F [x] of degree n which is very close to
f(x) ∈ F℘[x] in the ℘-adic topology. This is due to the Weak Approximation Theorem.
Since g(x) is very close to f(x), we know that every root of g(x) is very close to some
root of f(x). By Krasner’s Lemma, f(x) and g(x) must have the same decomposition
form in F℘[x]. So we get a global polynomial g(x) such that

F℘[x]/f(x) ' F℘[x]/g(x).

Note that f(x) may not be irreducible. So we need to find another global polynomial
h(x) such that h(x) is irreducible and h(x) is very close to f(x) in F℘[x]. By the Density
Theorem, we can find a global prime element q such that the norm of q is sufficiently
large and q is close enough to 1 in F℘. Assume

g(x) = xn + an−1x
n−1 + · · ·+ a1x + a0.

Let
h(x) = xn + qan−1x

n−1 + · · ·+ qa1x + qa0.

Then h(x) is an Eisenstein polynomial. So h(x) is irreducible and h(x) is very close
to g(x) in F℘[x]. In F℘[x], h(x) = h1(x) · · ·hr(x), hi(x) ∈ F℘[x] and the residue
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class field index and the ramification index of F℘[x]/h1(x) over F℘ are all even. Let
E = F [x]/h(x), then K2E is not generated by the Steinberg symbols {a, b} with
a ∈ F ∗, b ∈ E∗. ¤

Proposition 2.4. Let F be a global field. Then for any extension field E over F

of degree n, the subgroup H of K2E generated by the Steinberg symbols {a, b} with
a ∈ F ∗, b ∈ E∗ is of finite index.

Proof. Let S∞ denote the set of archimedean places of E. If S is a non empty set
of places containing S∞. we put OS = {a ∈ E| v(a) ≥ 0, for all v /∈ S} be the
ring of S-integers. We shall put KS

2 E the subgroup of K2E generated by {x, y},
where x, y ∈ O∗S . We can list the the finite places of E, v1, v2, ..., vn, ... so that
N(vi) ≤ N(vi+1) for all i. Put Sm = S∞ ∪ {v1, ..., vm}. Let S = Sm, v = vm+1 /∈ S,
S
′
= Sm+1 = S∪{v}, U = O∗S . We can find an integer N0 such that for all v satisfying

N(v) > N0, the following conditions hold(cf [19] Proposition 1)
(1) v is unramified,
(2) the natural quotient homomorphism U −→ k∗v is surjective,
(3) ∂v : KS

′
2 E/KS

2 E −→ k∗v is an isomorphism.
For such places, we have

∂v : H ∩KS
′

2 E/H ∩KS
2 E −→ k∗v , {a, b} 7→ (−1)v(a)v(b) a

v(b)

bv(a)
mod v

is an isomorphism. So

(∂v) : H/H ∩KS
2 E −→

⊕

N(v)>N0

k∗v

is an isomorphism which implies HKS
2 E = K2E. Since KS

2 E is a finite group, we know
H is a subgroup of K2E of finite index. ¤

3. K2D is generated by symbols of form {a, b} with a ∈ F ∗, b ∈ D∗

Let D be a finite dimensional central division algebra over F . We have proved in
this section that K2D is generated by the Steinberg symbols {a, b} with a ∈ F ∗ and
b ∈ D∗.

At first, let us recall the definition of reduced norm. A reduced norm homomorphism

Nrd2 : K2D −→ K2F
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is a homomorphism such that the following diagram commutes for any subfield L in D

containing F such that [L : F ] is equal to the index of D.

K2L K2D-i

K2F

NL/F

@
@

@
@R

Nrd2

¡
¡

¡
¡ª

The existence of Nrd2 can be deduced from the Brown-Gersten-Quillen Spectral Se-
quence(cf [6] for details).

We now recall some basic properties of the K2 group of central division algebras over
global field F . Let R be a Dedekind domain whose field of quotients is F . For each
prime ℘ of R, let k(℘) be the residue class field. Let D be a central division algebra
over F and let O be an maximal R-order in D. Each prime of R extends to a unique
prime ideal of O and the corresponding residue ring is a full matrix ring over a finite
extension d(℘) of k(℘)([12], IV, Theorem 5.9). By Quillen’s localization sequence, we
have the following exact sequence:

1 −→ K2(Λ) −→ K2(D) ∂D−→
⊕

finite ℘

K1(d(℘)) −→ K1(Λ) −→ K1(D)

It is well known that K2D is generated by the Steinberg symbols {α, β} with α, β ∈
D∗ (cf Theorem 9.11 and Theorem 9.12 of [10] or Theorem 138 of [15]).

Theorem 3.1. Let D be a division algebra over a field F . Then K2D is generated by
the Steinberg symbols {a, d} with a ∈ F ∗ and d ∈ D∗ in the following cases;

(1) F is a number field and the index of D is square free;
(2) F is a non-archimedean local field and the index of D is square free;
(3) F is a non-archimedean local field and the character of the residue field is prime

to the index of D;

Proof. In these four cases, the reduced norm Nrd2 : K2D −→ K2F is injective (cf
Proposition 26.6, Theorem 26.7 of [16]; [9] and [17]; Theorem 3 of [18]; [8] and [14]).

First let F be a global field. Let K+
2 F be the subgroup of K2F generated by the

Steinberg symbols {a, b} with a ∈ F ∗ and b ∈ F+ = {b ∈ F |v(b) > 0} for all real places
v such that D is ramified at v}. Since every element of F+ is a norm of some element
of D∗, K+

2 F is generated by the Steinberg symbols {a, n(d)} with a ∈ F ∗ and d ∈ D∗.
By Theorem 1 of [1] and the Theorem 2.2 of [3], the image of the reduced norm Nrd2

is K+
2 F which is generated by {a, b} with a ∈ F ∗ and b ∈ F+.

Since the reduced norm Nrd2 is injective, we have K2D is generated by the Steinberg
symbols {a, d)} with a ∈ F ∗ and d ∈ D∗.
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If F is a non archimedean local field, then D contains a maximal subfield which is
unramified over F (Proposition 17.7 of [11]). So the norm homomorphism from D to F

is surjective. Obviously K2D is generated by the Steinberg symbols {a, d} with a ∈ F ∗

and d ∈ D∗ by the injectivity of reduced norm.
¤

Keating had proved in [4] that

Image(K2(D) ∂D−→
⊕

finite ℘

d(℘)∗) =
⊕

finite ℘

k(℘)∗,

where ∂D is the tame mapping in Quillen’s localization sequence.

Lemma 3.2. Let D be a finite dimensional central division algebra over a number field
F . If the index of D is square free, then the following diagram commutes,

K2F
⊕

finite ℘

(k(℘))∗-
∂F

∂D

@
@

@
@

@
@@R

K2D

?

Nrd2

where Nrd2 is the reduced norm of K2 groups.

Proof. Since K2D is generated by the Steiberg symbols {a, b} with a ∈ F ∗, b ∈ D∗. It
suffices to prove that for any x = {a, b} with a ∈ F ∗, b ∈ D∗,

∂D(x) = ∂F ·Nrd2(x).

Let L be the maximal subfield of D such that b ∈ L. Then we have the following
commutative diagram([4], § 4)

K2D ⊕K1(d(℘))-
∂D

K2L ⊕ (l(P))∗-∂L

?
i

?
ψ

where i is induced by the ring inclusion L −→ D,

ψ =
⊕

P,℘

φ(P, ℘)

and
φ(P, ℘) : (l(P))∗ −→ K1(d(℘))

is given by
φ(P, ℘)(u) = Norm(u)
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for u ∈ l(P)∗, where the Norm is the natural norm mapping l(P)∗ −→ k(℘)∗, the
image of ψ is

⊕
finite ℘

(k(℘))∗. So

∂D(x) = ∂D · i({a, b}) = ψ · ∂L({a, b}).
By the following commutative diagram

K2F ⊕ (k(℘))∗-
∂F

K2L ⊕ (l(P))∗-∂L

?
Norm

?
ψ

,

We have
ψ · ∂L({a, b}) = ∂F ·Norm({a, b}).

So it is sufficient to prove that

∂F ·Nrd2(x) = ∂F ·Norm({a, b}).
Note that

Nrd2(x) = Nrd2 · i({a, b}).
So we need only to prove

Nrd2 · i({a, b}) = Norm({a, b}).
By the definition of the reduced norm Nrd2, this equality obviously holds. ¤

Theorem 3.3. Let F be a number field and R the ring of integers in F . Let D be a
finite dimensional central division F -algebra with square free index and Λ a maximal
R-order of D. Then

K2Λ ' K+
2 R = ker(K2R −→

⊕

real ramified ℘

{±1} ).

Proof. Due to Lemma 3.2, we have the following commutative diagram

1 K2R-

1 K2(Λ)-

?

f

K2F-

K2(D)-

? ?

Nrd2

⊕
finite ℘

k(℘)∗-
∂F

⊕
finite ℘

k(℘)∗-∂D

?

identity

1-

1-

where f is induced by the reduced norm Nrd2. By Theorem 1 of [1], the image of Nrd2

is equal to
ker(K2F −→

⊕

real ramified ℘

{±1} )).
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So f : K2Λ −→ K+
2 R is surjective which implies K2Λ ' K+

2 R. ¤

Proposition 3.4. Let F be a number field and D a central division algebra over F

with square free index. then K2D = {{a, b}|a ∈ F ∗, b ∈ D∗}, i.e., every element of
K2D is a symbol of form {a, b} for a ∈ F ∗, b ∈ D∗.

Proof. By the proof of the Theorem of [5], every element of K2F is of form {a, b} where
a is a totally negative element, i.e., a is negative at all real places. So for any element
x ∈ K2D, its image Nrd2(x) in K2F is of the form {a, b} for some totally negative a

. Since the image of K2D under the reduced norm is K+
2 F , b must be totally real. By

Eichler’s Norm Theorem, b is a norm of some h ∈ D∗. So Nrd2(x) = Nrd2({a, h}). By
Theorem 3.4, Nrd2 is injective, so x = {a, h}. ¤
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