Communications in Algebra
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lagb20

The K_1 Group of Tiled Orders
Yuzhen Peng a & Xuejun Guo a

a Department of Mathematics, Nanjing University, Nanjing, China
Published online: 26 Jul 2013.

To cite this article: Yuzhen Peng & Xuejun Guo (2013) The K_1, Group of Tiled Orders, Communications in Algebra, 41:10, 3739-3744, DOI: 10.1080/00927872.2012.676117
To link to this article: http://dx.doi.org/10.1080/00927872.2012.676117
THE K_1 GROUP OF TILED ORDERS

Yuzhen Peng and Xuejun Guo
Department of Mathematics, Nanjing University, Nanjing, China

In this article, we study the K_1 of tiled rings over local rings. Our results generalize some existing ones obtained by Keating and Xi.

Key Words: Algebraic K-theory; Semiperfect ring; Tiled order.

2010 Mathematics Subject Classification: 19B28.

1. INTRODUCTION

Let R be a discrete valuation ring with quotient field F and maximal ideal P. An R-order A in $M_n(F)$, the full $n \times n$ matrix algebra over F with $n \geq 2$, is called tiled if it has the matrix form $A = (P^{\lambda_{ij}})_{n \times n}$, where the λ_{ij}s are nonnegative integers satisfying $\lambda_{ii} = 0$ for all $1 \leq i \leq n$ and $\lambda_{ik} + \lambda_{kj} \geq \lambda_{ij}$ for all $1 \leq i, j, k \leq n$. Note further that the tiled order A is semiperfect and thus Morita equivalent to a basic one. So we can always assume $\lambda_{ij} + \lambda_{ji} > 0$ for any $i \neq j$.

There have been a number of articles devoted to the study of the global dimension of tiled orders, among which we mention [2, 3, 6, 9]. On the other hand, the investigation of the algebraic K-theory of tiled orders remains quite limited in the literature. As far as we know, Keating [4] proved that the G-theory of a tiled R-order A is related to the K-theories of the ground ring R as well as the residue class field, and in particular if A is regular then there is an isomorphism of algebraic K-theories

$$K_i(A) \simeq K_i(R) \oplus (n - 1)K_i(R/P), \quad i \geq 0.$$

For the general case, Keating [4] determined the K_1 of a special type of triangular orders, that is, $A = (P^{\lambda_{ij}})_{n \times n}$ with $\lambda_{ij} = 0$ for $i \geq j$ and $\lambda_{ij} = \mu > 0$ for $i < j$, in terms of the following isomorphism

$$K_1(A) \simeq K_1(R) \oplus (n - 1)K_1(R/P^\mu).$$

The above isomorphism was extended in Keating [5] to the K-theory of triangular matrix rings over an arbitrary ring, provided that the two-sided ideal involved is
projective. Recently, Xi [10] has generalized Keating’s result to a more general case of triangular matrix rings (see Theorem 2.1 below).

In this article, we give a description of the K_1 of an arbitrary tiled order (Proposition 2.9), removing the restriction of being triangular. As a consequence, we obtain a direct generalization of Keating’s result about the K_1 of triangular tiled orders:

Proposition 1.1. Let R be a discrete valuation ring with maximal ideal P, and let $A = (P^{\ast i})_{n \times n}$ be a tiled R-order. If $\lambda_{ij} = k$ for any $i > j$ and $\lambda_{ij} = l$ for any $i < j$, then there is an isomorphism

$$K_1(A) \cong K_1(R) \oplus (n - 1)K_1(R/P^{k+1}).$$

Throughout, all rings are associative with identity. For a ring R we denote by $U(R)$ its unit group and $\text{rad}(R)$ its Jacobson radical. For any group G, we mean by G^n the direct product of n copies of G.

2. MAIN RESULTS

Let R be any ring and denote by $M_n(R)$ the full $n \times n$ matrix ring with entries in R. We consider the following subset of $M_n(R)$:

$$A = (I_{ij})_{n \times n} := \{ (a_{ij})_{n \times n} | a_{ij} \in I_{ij} \text{ for all } 1 \leq i, j \leq n \} ,$$

where the I_{ij}s are ideals of R satisfying

(i) $I_{11} = I_{22} = \cdots = I_{nn} = R$, and
(ii) $I_{ik}I_{kj} \subseteq I_{ij}$, for every $i \neq j$ and $1 \leq k \leq n$.

The two conditions make A a subring of $M_n(R)$, and we call A a tiled ring over R. Obviously tiled orders over a discrete valuation ring are a particular example of tiled rings. The result below is due to Xi (see Theorem 1.2.(1) of [10]):

Theorem 2.1. Let A be a tiled ring as above. If the ideals I_{ij} of R satisfy the following additional conditions

(1) $I_{ij} = R$ for any $i > j$,
(2) $I_{ik} \subseteq I_{ij} \cap I_{jk}$ for any $i < j < k$, then there is an isomorphism of algebraic K-theory

$$K_i(A) \cong K_i(R) \oplus \bigoplus_{i=1}^{n-1} K_i(R/I_{i+1}), \quad i \geq 0.$$

We remark that there has not yet been a precise formula about the K-theory of A in the general case (without the restrictions (1) and (2) in the statement of Theorem 2.1).

Recall that a ring R is called semiperfect if $R/\text{rad}(R)$ is a semisimple artinian ring with its idempotents lifted to R. For a semiperfect ring R there is a complete set
of pairwise orthogonal primitive idempotents e_1, e_2, \ldots, e_t in R such that R can be represented as the formal matrix ring $(R_{ij})_{i \times t}$, where $R_{ij} = e_i^* R e_j$ for $1 \leq i, j \leq t$. In particular, if R satisfies the condition $R_{ij}^* R_{ji} = 0$ for any $1 \leq i \neq j \leq t$, then $K_1(R)$ is isomorphic to the direct sum of the K_1 of the diagonal components R_{11}, \ldots, R_{nn} (see [8]). For the general case, it is proved in [1] that.

Theorem 2.2. Let R be a semiperfect ring represented as $(R_{ij})_{i \times t}$. Then,

$$K_1(R) \cong \left(\prod_{i=1}^t U(R_{ii}) \right) / (HC) \cong \left(\bigoplus_{i=1}^t K_1(R_{ii}) \right) / (HC/C),$$

where C is the subgroup of $\prod_{i=1}^t U(R_{ii})$ generated by elements of the form

$$(1 + r_{ii}s_{ii})(1 + s_{ii}r_{ii})^{-1},$$

with $r_{ii}, s_{ii} \in R_{ii}$ satisfying $e_i + r_{ii}^* s_{ii} \in U(R_{ii})$ for $1 \leq i \leq t$, and H the subgroup of $\prod_{i=1}^t U(R_{ii})$ generated by elements of the form

$$(1 + r_{ij}r_{ji})(1 + r_{ji}r_{ij})^{-1},$$

with $r_{ij} \in R_{ij}$ satisfying $1 + r_{ij}r_{ji} \in U(R)$ for $1 \leq i \neq j \leq t$.

Now let I_{ij} ($1 \leq i, j \leq n$) be ideals of R such that $A = (I_{ij})_{n \times n}$ forms a tiled ring. As a subring of $\mathbb{M}_n(R)$, A has an important feature, that is, A contains all the diagonal matrix units e_{11}, \ldots, e_{nn} in $\mathbb{M}_n(R)$. This observation leads to

Lemma 2.3. Let R be a local ring. Then the tiled ring $A = (I_{ij})_{n \times n}$ is a semiperfect ring.

Proof. A direct consequence of Theorem 23.6 in [7].

Therefore, if R is a local ring then $K_0(A)$ is isomorphic to the free abelian group of rank n. For K_1, evidently the unit group of A has a diagonal subgroup as an internal direct product of n copies of $U(R)$; moreover, if we denote by $V(R)$ the subgroup of $U(R)$ generated by all elements of the form $(1 + ab)(1 + ba)^{-1}$ with $a, b \in R$ satisfying $1 + ab \in U(R)$, and by H the subgroup of $U(R)^n$ generated by all elements of the form

$$(1, \ldots, 1 + r_{ij}r_{ji}, 1, \ldots, 1, (1 + r_{ji}r_{ij})^{-1}, 1, \ldots, 1)$$

with $r_{ij} \in I_{ij}$ satisfying $1 + r_{ij}r_{ji} \in U(R)$ for $1 \leq i \neq j \leq n$, where $1 + r_{ij}r_{ji}$ occurs in the i-th spot and $(1 + r_{ji}r_{ij})^{-1}$ in the j-th spot, then we have by Theorem 2.2:

Proposition 2.4. Let R be a local ring and $A = (I_{ij})_{n \times n}$ be a tiled ring over R. Then $K_1(A)$ is isomorphic to the quotient of $U(R)^n$ modulo the product of the subgroups H and $V(R)^n$.

Note that if R is also commutative then the group $V(R)$ vanishes. Hence, we can expect a simpler description of $K_1(A)$ by calculating the group H. For convenience, we introduce the following notations:

Let G be an abelian group and N a subgroups of G. For $1 \leq i \neq j \leq n$, put

$$D_{ij}(N) := \{ (1, \ldots, 1, a, 1, \ldots, 1, a^{-1}, 1, \ldots, 1) \in G^n \mid a \in N \},$$

where a occurs on the i-th spot and a^{-1} on the j-th spot. It is clear that $D_{ij}(N)$ is a subgroup of G^n and $D_{ij}(N) = D_{ji}(N)$ for every pair $i \neq j$. We call $D_{ij}(N)$ the (i, j)-diagonal subgroup of G^n with respect to N.

Let R now be a commutative local ring and $A = (I_{ij})_{n \times n}$ a tiled ring over R. Set $G = U(R)$ and $N_{ij} = 1 + I_{ij}I_{ji}$ for any $i \neq j$. If A is basic, then for each pair $i \neq j$, either I_{ij} or I_{ji} is proper, thus $I_{ij}I_{ji}$ is contained in $\text{rad}(R)$, and hence all these N_{ij} are subgroups of G. Furthermore, it is clear that

$$\prod_{1 \leq i < j \leq n} D_{ij}(N_{ij}) = \prod_{1 \leq i < j \leq n} D_{ij}(N_{ij}),$$

since $N_{ij} = N_{ji}$ for any $i \neq j$. We claim that

Proposition 2.5. Let R be a commutative local ring and $A = (I_{ij})_{n \times n}$ a basic tiled ring over R. Then $K_1(A)$ is isomorphic to the quotient of $U(R)^n$ modulo the product of its diagonal subgroups $\prod_{1 \leq i < j \leq n} D_{ij}(N_{ij})$, where $N_{ij} = 1 + I_{ij}I_{ji}$.

Proof. It suffices to show that the subgroup H defined in Theorem 2.2 is precisely the subgroup $\prod_{1 \leq i < j \leq n} D_{ij}(N_{ij})$ when R is a commutative local ring. Obviously H is contained in the product $\prod_{1 \leq i < j \leq n} D_{ij}(N_{ij})$, since every generator of H falls in some $D_{ij}(N_{ij})$. The reverse containment follows from the fact that N_{ij} can be generated by elements of the form $1 + r_{ij}r_{ji}$ with $r_{ij} \in I_{ij}$ and $r_{ji} \in I_{ji}$. □

Lemma 2.6. Let G be an abelian group and N_1, \ldots, N_{n-1} be subgroups of G, where $n \geq 2$. Then there is a group isomorphism

$$\frac{G^n}{D_{12}(N_1) \cdots D_{n-1,n}(N_{n-1})} \cong \frac{G}{N_1} \times \cdots \times \frac{G}{N_{n-1}} \times G.$$

Proof. Define a map from G^n to $(G/N_1) \times \cdots \times (G/N_{n-1}) \times G$ by

$$(g_1, \ldots, g_n) \mapsto (g_1N_1, g_1g_2N_2, \ldots, g_1 \cdots g_{n-1}N_{n-1}, g_1 \cdots g_n),$$

then one checks that the map is a homomorphism of groups with its kernel exactly $D_{12}(N_1) \cdots D_{n-1,n}(N_{n-1})$. Moreover, the map is surjective, since for any $h_1, \ldots, h_n \in G$ we can set

$$g_1 = h_1, \quad g_2 = h_1^{-1}h_2, \quad g_3 = h_2^{-1}h_3, \ldots, g_n = h_{n-1}^{-1}h_n$$

and then (g_1, \ldots, g_n) is mapped to $(h_1N_1, \ldots, h_{n-1}N_{n-1}, h_n)$. □
We are now at the position to give a partial generalization of Theorem 2.1 in the case of R being a commutative local ring:

Theorem 2.7. Let R be a commutative local ring and $A = (I_{ij})_{n \times n}$ a basic tiled ring over R. If $I_{ik}I_{ki} \subseteq I_{ij}I_{ji} \cap I_{jk}I_{kj}$ for any $i < j < k$, then

$$K_1(A) \simeq U(R) \oplus \left(\bigoplus_{i=1}^{n-1} U(R/I_{i+1,i+1}) \right) \simeq K_1(R) \oplus \left(\bigoplus_{i=1}^{n-1} K_1(R/I_{i+1,i+1}) \right).$$

Proof. Let $N_{ij} = 1 + I_{ij}I_{ji}$, $1 \leq i \neq j \leq n$. The hypotheses yields that $N_{ik} \subseteq N_{ij}$ and $N_{ik} \subseteq N_{jk}$ for any $i < j < k$, thus for each $a \in N_{ik}$,

$$(\cdots, a, \cdots, 1, \ldots, a^{-1}, \cdots) = (\cdots, a, \cdots, a^{-1}, \cdots, 1) (\cdots, 1, \ldots, a, \ldots, a^{-1}, \cdots),$$

which implies that $D_{ik}(N_{ik}) \subseteq D_{ij}(N_{ij})D_{jk}(N_{jk})$. Consequently, the product $\prod_{1 \leq i < j \leq n} D_{ij}(N_{ij})$ reduces to $D_{12}(N_{12})D_{23}(N_{23}) \cdots D_{n-1,n}(N_{n-1,n})$. Then the conclusion follows by Proposition 2.5 and Lemma 2.6. □

We note that the formula stated in Theorem 2.7 remains valid when A is not necessarily basic, since every semiperfect ring is Morita equivalent to a basic one.

Corollary 2.8. Let R be a commutative local ring and I, J be two arbitrary ideals of R. Then for the following tiled subring in $M_n(R)$

$$A = \begin{pmatrix} R & I & \cdots & I \\ J & R & \ddots & \vdots \\ \vdots & \ddots & \ddots & I \\ J & \cdots & J & R \end{pmatrix},$$

we have

$$K_1(A) \simeq U(R) \oplus (n-1)U(R/ij) \simeq K_1(R) \oplus (n-1)K_1(R/IJ).$$

Specializing to tiled orders over a discrete valuation ring, we readily get

Proposition 2.9. Let R be a discrete valuation ring with maximal ideal P, and let $A = (P^{\lambda_{ij}})_{n \times n}$ be a basic tiled R-order. Then $K_1(A)$ is isomorphic to the quotient of $U(R)^n$ modulo the product of its diagonal subgroups

$$\prod_{1 \leq i < j \leq n} D_{ij}(1 + P^{\lambda_{ij} + \lambda_{ji}}).$$
In particular, if \(\lambda_{ij} = k \) for any \(i > j \) and \(\lambda_{ij} = l \) for any \(i < j \), then

\[
K_1(A) \cong K_1(R) \oplus (n - 1)K_1(R/P^{k+l}).
\]

Remark 2.10. Corollary 2.8 gives an affirmative answer in the \(K_1 \) part to the question posed at the end of [10] in case \(R \) being a commutative local ring, and Proposition 2.9 recaptures Keating’s result in [4] about the \(K_1 \) of triangular tiled orders over a discrete valuation ring.

ACKNOWLEDGMENTS

This work was supported by NSFC (Nos. 10971091 and 11171141), NSF of Jiangsu Province of China (No. BK2010007), and Program for New Century Excellent Talents in University.

REFERENCES

