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THE K1 GROUP OF TILED ORDERS
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In this article, we study the K1 of tiled rings over local rings. Our results generalize
some existing ones obtained by Keating and Xi.
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1. INTRODUCTION

Let R be a discrete valuation ring with quotient field F and maximal ideal
P. An R-order A in �n�F�, the full n× n matrix algebra over F with n � 2, is
called tiled if it has the matrix form A = �P�ij �n×n, where the �ijs are nonnegative
integers satisfying �ii = 0 for all 1 � i � n and �ik + �kj � �ij for all 1 � i� j� k � n.
Note further that the tiled order A is semiperfect and thus Morita equivalent to a
basic one. So we can always assume �ij + �ji > 0 for any i �= j.

There have been a number of articles devoted to the study of the global
dimension of tiled orders, among which we mention [2, 3, 6, 9]. On the other hand,
the investigation of the algebraic K-theory of tiled orders remains quite limited in
the literature. As far as we know, Keating [4] proved that the G-theory of a tiled
R-order A is related to the K-theories of the ground ring R as well as the residue
class field, and in particular if A is regular then there is an isomorphism of algebraic
K-theories

Ki�A� � Ki�R�⊕ �n− 1�Ki�R/P�� i � 0�

For the general case, Keating [4] determined the K1 of a special type of triangular
orders, that is, A = �P�ij �n×n with �ij = 0 for i � j and �ij = � > 0 for i < j, in terms
of the following isomorphism

K1�A� � K1�R�⊕ �n− 1�K1�R/P
���

The above isomorphism was extended in Keating [5] to the K-theory of triangular
matrix rings over an arbitrary ring, provided that the two-sided ideal involved is
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3740 PENG AND GUO

projective. Recently, Xi [10] has generalized Keating’s result to a more general case
of triangular matrix rings (see Theorem 2.1 below).

In this article, we give a description of the K1 of an arbitrary tiled order
(Proposition 2.9), removing the restriction of being triangular. As a consequence,
we obtain a direct generalization of Keating’s result about the K1 of triangular tiled
orders:

Proposition 1.1. Let R be a discrete valuation ring with maximal ideal P, and let
A = �P�ij �n×n be a tiled R-order. If �ij = k for any i > j and �ij = l for any i < j, then
there is an isomorphism

K1�A� � K1�R�⊕ �n− 1�K1�R/P
k+l��

Throughout, all rings are associative with identity. For a ring R we denote by
U�R� its unit group and rad�R� its Jacobson radical. For any group G, we mean by
Gn the direct product of n copies of G.

2. MAIN RESULTS

Let R be any ring and denote by �n�R� the full n× n matrix ring with entries
in R. We consider the following subset of �n�R�:

A = �Iij�n×n �= � �aij�n×n � aij ∈ Iij for all 1 � i� j � n 	�

where the Iijs are ideals of R satisfying

(i) I11 = I22 = · · · = Inn = R, and
(ii) IikIkj ⊆ Iij , for every i �= j and 1 � k � n.

The two conditions make A a subring of �n�R�, and we call A a tiled ring over
R. Obviously tiled orders over a discrete valuation ring are a particular example of
tiled rings. The result below is due to Xi (see Theorem 1.2.(1) of [10]):

Theorem 2.1. Let A be a tiled ring as above. If the ideals Iij of R satisfy the following
additional conditions

(1) Iij = R for any i > j,
(2) Iik ⊆ Iij ∩ Ijk for any i < j < k, then there is an isomorphism of algebraic K-theory

Ki�A� � Ki�R�⊕
(

n−1⊕
i=1

Ki�R/Ii�i+1�

)
� i � 0�

We remark that there has not yet been a precise formula about the K-theory
of A in the general case (without the restrictions (1) and (2) in the statement of
Theorem 2.1).

Recall that a ring R is called semiperfect if R/rad�R� is a semisimple artinian
ring with its idempotents lifted to R. For a semiperfect ring R there is a complete set
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THE K1 GROUP OF TILED ORDERS 3741

of pairwise orthogonal primitive idempotents e1� e2� � � � � et in R such that R can be
represented as the formal matrix ring �Rij�t×t, where Rij = eiRej for 1 � i� j � t. In
particular, if R satisfies the condition RijRji = 0 for any 1 � i �= j � t, then K1�R� is
isomorphic to the direct sum of the K1 of the diagonal components R11� � � � � Rtt (see
[8]). For the general case, it is proved in [1] that.

Theorem 2.2. Let R be a semiperfect ring represented as �Rij�t×t. Then,

K1�R� �
(

t∏
i=1

U�Rii�

)/
�HC� �

(
t⊕

i=1

K1�Rii�

)/
�HC/C��

where C is the subgroup of
∏t

i=1 U�Rii� generated by elements of the form

�1+ riisii��1+ siirii�
−1�

with rii� sii ∈ Rii satisfying ei + riisii ∈ U�Rii� for 1 � i � t, and H the subgroup of∏t
i=1 U�Rii� generated by elements of the form

�1+ rijrji��1+ rjirij�
−1�

with rij ∈ Rij satisfying 1+ rijrji ∈ U�R� for 1 � i �= j � t.

Now let Iij �1 � i� j � n� be ideals of R such that A = �Iij�n×n forms a tiled
ring. As a subring of �n�R�, A has an important feature, that is, A contains all the
diagonal matrix units 
11� � � � � 
nn in �n�R�. This observation leads to

Lemma 2.3. Let R be a local ring. Then the tiled ring A = �Iij�n×n is a semiperfect
ring.

Proof. A direct consequence of Theorem 23.6 in [7]. �

Therefore, if R is a local ring then K0�A� is isomorphic to the free abelian
group of rank n. For K1, evidently the unit group of A has a diagonal subgroup
as an internal direct product of n copies of U�R�; moreover, if we denote by V�R�
the subgroup of U�R� generated by all elements of the form �1+ ab��1+ ba�−1 with
a� b ∈ R satisfying 1+ ab ∈ U�R�, and by H the subgroup of U�R�n generated by
all elements of the form

�1� � � � � 1� 1+ rijrji� 1� � � � � 1� �1+ rjirij�
−1� 1� � � � � 1�

with rij ∈ Iij satisfying 1+ rijrji ∈ U�R� for 1 � i �= j � n, where 1+ rijrji occurs in
the i-th spot and �1+ rjirij�

−1 in the j-th spot, then we have by Theorem 2.2:

Proposition 2.4. Let R be a local ring and A = �Iij�n×n be a tiled ring over R. Then
K1�A� is isomorphic to the quotient of U�R�n modulo the product of the subgroups H
and V�R�n.
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3742 PENG AND GUO

Note that if R is also commutative then the group V�R� vanishes. Hence,
we can expect a simpler description of K1�A� by calculating the group H . For
convenience, we introduce the following notations:

Let G be an abelian group and N a subgroups of G. For 1 � i �= j � n, put

Dij�N� �= � �1� � � � � 1� a� 1� � � � � 1� a−1� 1� � � � � 1� ∈ Gn � a ∈ N 	�

where a occurs on the i-th spot and a−1 on the j-th spot. It is clear that Dij�N�
is a subgroup of Gn and Dij�N� = Dji�N� for every pair i �= j. We call Dij�N� the
�i� j�-diagonal subgroup of Gn with respect to N .

Let R now be a commutative local ring and A = �Iij�n×n a tiled ring over R. Set
G = U�R� and Nij = 1+ IijIji for any i �= j. If A is basic, then for each pair i �= j,
either Iij or Iji is proper, thus IijIji is contained in rad�R�, and hence all these Nijs
are subgroups of G. Furthermore, it is clear that

∏
1�i �=j�n

Dij�Nij� =
∏

1�i<j�n

Dij�Nij��

since Nij = Nji for any i �= j. We claim that

Proposition 2.5. Let R be a commutative local ring and A = �Iij�n×n a basic tiled
ring over R. Then K1�A� is isomorphic to the quotient of U�R�n modulo the product of
its diagonal subgroups

∏
1�i<j�n Dij�Nij�, where Nij = 1+ IijIji.

Proof. It suffices to show that the subgroup H defined in Theorem 2.2 is precisely
the subgroup

∏
1�i<j�n Dij�Nij� when R is a commutative local ring. Obviously H is

contained in the product
∏

1�i �=j�n Dij�Nij�, since every generator of H falls in some
Dij�Nij�. The reverse containment follows from the fact that Nij can be generated by
elements of the form 1+ rijrji with rij ∈ Iij and rji ∈ Iji. �

Lemma 2.6. Let G be an abelian group and N1� � � � � Nn−1 be subgroups of G, where
n � 2. Then there is a group isomorphism

Gn

D12�N1� · · ·Dn−1�n�Nn−1�
� G

N1

× · · · × G

Nn−1

×G�

Proof. Define a map from Gn to �G/N1�× · · · × �G/Nn−1�×G by

�g1� � � � � gn� �→ �g1N1� g1g2N2� · · · � g1 · · · gn−1Nn−1� g1 · · · gn��

then one checks that the map is a homomorphism of groups with its kernel exactly
D12�N1� · · ·Dn−1�n�Nn−1�. Moreover, the map is surjective, since for any h1� � � � � hn ∈
G we can set

g1 = h1� g2 = h−1
1 h2� g3 = h−1

2 h3� � � � � gn = h−1
n−1hn

and then �g1� � � � � gn� is mapped to �h1N1� · · · � hn−1Nn−1� hn�. �
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THE K1 GROUP OF TILED ORDERS 3743

We are now at the position to give a partial generalization of Theorem 2.1 in
the case of R being a commutative local ring:

Theorem 2.7. Let R be a commutative local ring and A = �Iij�n×n a basic tiled ring
over R. If IikIki ⊆ IijIji ∩ IjkIkj for any i < j < k, then

K1�A� � U�R�⊕
(

n−1⊕
i=1

U�R/Ii�i+1Ii+1�i�

)

� K1�R�⊕
(

n−1⊕
i=1

K1�R/Ii�i+1Ii+1�i�

)
�

Proof. Let Nij = 1+ IijIji, 1 � i �= j � n. The hypotheses yields that Nik ⊆ Nij and
Nik ⊆ Njk for any i < j < k, thus for each a ∈ Nik,

�· · · � a� � � � � 1� � � � � a−1� · · · �
= �· · · � a� � � � � a−1� � � � � 1��· · · � 1� � � � � a� � � � � a−1� · · · ��

which implies that Dik�Nik� ⊆ Dij�Nij�Djk�Njk�. Consequently, the product∏
1�i<j�n Dij�Nij� reduces to D12�N12�D23�N23� · · ·Dn−1�n�Nn−1�n�. Then the conclusion

follows by Proposition 2.5 and Lemma 2.6. �

We note that the formula stated in Theorem 2.7 remains valid when A is not
necessarily basic, since every semiperfect ring is Morita equivalent to a basic one.

Corollary 2.8. Let R be a commutative local ring and I� J be two arbitrary ideals of
R. Then for the following tiled subring in �n�R�

A =



R I · · · I

J R
� � �

���
���

� � �
� � � I

J · · · J R


 �

we have

K1�A� � U�R�⊕ �n− 1�U�R/IJ�

� K1�R�⊕ �n− 1�K1�R/IJ��

Specializing to tiled orders over a discrete valuation ring, we readily get

Proposition 2.9. Let R be a discrete valuation ring with maximal ideal P, and let
A = �P�ij �n×n be a basic tiled R-order. Then K1�A� is isomorphic to the quotient of
U�R�n modulo the product of its diagonal subgroups

∏
1�i<j�n

Dij�1+ P�ij+�ji ��
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3744 PENG AND GUO

In particular, if �ij = k for any i > j and �ij = l for any i < j, then

K1�A� � K1�R�⊕ �n− 1�K1�R/P
k+l��

Remark 2.10. Corollary 2.8 gives an affirmative answer in the K1 part to the
question posed at the end of [10] in case R being a commutative local ring, and
Proposition 2.9 recaptures Keating’s result in [4] about the K1 of triangular tiled
orders over a discrete valuation ring.
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