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Abstract

In this paper, we prove the existence of governing fields of the 4-rank of K2OQ(
√

dp)
as p varies. For some special d, we prove that the governing field of the 8-rank of
K2OQ(

√
dp) also exists.
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1 Introduction

Let n be a rational integer, F = Q(
√

n), Cl(F ) (or Cl(n)) the class group of F ,
h(n) the cardinality of Cl(F ), Cl2(n) (or Cl2(F )) the 2-Sylow subgroup of Cl(n)
(or Cl(F )). The following theorem is well known.

Theorem 1.1. ([4], (1.1)-(1.6)) If p is a prime number, then
(1) 2|h(−p) if and only if p splits completely in Q(i);
(2) 4|h(−p) if and only if p splits completely in Q(ζ8);
(3) 8|h(−p) if and only if p splits completely in Q(ζ8,

√
1 +

√
2).

One can see [4] for the history of this theorem. Later Stevenhagen gave
another example in his Ph. D. thesis [21].

Theorem 1.2. (Stevenhagen, [21]) Let p be a prime congruent to 3 modulo 4.

Then the 4-rank of Cl(−21p) equals 1 unless p = 7 or
(p

3

)
= −

(p

7

)
= 1, when it

is 0. And the 8-rank of Cl(−21p) is 1 if and only if p splits completely in one of
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the following fields :

M1 = Q(
√−3,

√
7,

√
2 −√−3),

M2 = Q(
√

3,
√

7,

√
2(7 +

√
21)),

M3 = Q(
√−3,

√−7,
√
−3 + 2

√−3).

These interesting examples suggest that the following conjecture raised by
Cohn and Lagarias is true.

Conjecture Cj(d): Given an integer d �≡ 2 (mod 4), there exists a normal
extension K = Kj(d) of Q having the following property Pj(d).

Property Pj(d): If p1and p2 are primes such that [(K/Q)/(p1)] = [(K/Q)/
(p2)] then Cl(dp1) and Cl(dp2) have the same 2k-rank for 1 ≤ k ≤ j, where
[(K/Q)/(pi)] is the Artin symbol in Gal(K/Q), 1 ≤ i ≤ 2.

Cohn and Lagarias proved in [4] that if there is a field with Property Pj(d),
then there exists a unique field Ωj(d) of smallest degree with this property. Such
a field Ωj(d) is called a governing field.

The Conjecture C3(d) is finally proved by Stevenhagen in his thesis.
Let K2(dp) = K2OQ(

√
dp). Inspired by the Conjecture Cj(d), we raise the

following K2-analogue.
Conjecture K2(j, d): Given an integer d �≡ 2 (mod 4), there exists a normal

extension L = Lj(d) of Q having the following property P̃j(d).

Property P̃j(d): If p1and p2 are primes such that [(L/Q)/(p1)] = [(L/Q)/
(p2)] then K2(dp1) and K2(dp2) have the same 2k-rank for 1 ≤ k ≤ j, where
[(L/Q)/(pi)] is the Artin symbol in Gal(L/Q), 1 ≤ i ≤ 2.

One can see a similar idea in Kimura’s talk [10].
For any finite abelian group G and positive integer k, let rk2k(G) be the

2k-rank of G. Let F be a number field, r1 the number of real embeddings of F ,
g2(F ) the number of distinct prime ideals of OF above 2, C2(F ) the subgroup of
Cl generated by the prime ideals of OF above 2. Then by Theorem 6.2 of [22],

rk2(K2(OF )) = rk2(Cl(F )/C2(F )) + g2(F ) + r1 − 1.

One can also see [2] and [3] for more details. Hence Conjecture K2(1, d) is true.
In 1991, Qin gave a method to determine the 4-rank of K2OF in his Ph. D.

thesis. By Qin’s method, the 4-rank of K2OF can be obtained by considering the
local Hilbert symbols. In [9], J.Hurrelbrink and M.Kolster introduced a kind of
signs matrix to compute rk4(K2OF ), which is via the local Hilbert symbols. One
can also see [5] for a similar signs matrix to compute rk4(K2OF ).

Theorem 1.3. (Qin, 15–17, [20]) Let F = Q(
√

d), d ∈ Z square-free. Suppose
that m | d (m > 0 if d > 0) and write d = u2 − 2w2 with u, w ∈ Z ( we take u > 0
if d > 0) if 2 ∈ NF . Let S(d) = {±1, ±2} if d > 0, and {1, 2} if d < 0. Then
{−1, m} ∈ K2OF

2 if and only if one can find an ε ∈ S(d) such that for any odd
prime p | d,
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(−d, m

p

)
=

(
ε

p

)
,

and {−1, m(u +
√

d)} ∈ K2OF
2 if and only if one can find a δ ∈ S(d) such that for

any odd prime p | d, (−d, m

p

)
=

(
δ(u + w)

p

)
.

In [15–17], Qin gave tables of the 4-rank of tame kernels of K2OF , where the
number of odd prime factors of d is less than or equal to 3. In [19, 20, 23, 24], Qin,
Yin and Zhu also determine the 4-rank of K2OF for arbitrary quadratic number
fields F .

By Qin’s theorem, one can easily get the relation between the 4-rank of K2OF

and the 4-rank of the class group of OF . One can see [1] and [25] for such relations.
Since the density of 4-rank of class group of OF is already known, we can get the
density of the 4-rank of K2OF by Qin’s method (one can see [7] for details).

In this paper, we will show that the conjecture K2(2, d) is true. In general
cases, in order to know the 8-rank of tame kernels K2OF , one need to know the
16-rank of class groups by Qin’s theorems in [18] and [20]. Hence we raise the
following conjecture.

Conjecture. Cj+1(d) implies K2(j, d).

Both of Cj+1(d) and K2(j, d) are very difficult. Hence we will be satisfied if
the above conjecture can be proved.

This paper is organized as follows. In Section 2, we prove that K2(j, d) is
true for j ≤ 2. In Section 3, we prove that for some special d, the governing field
of the 8-rank of K2OQ(

√
dp) exists.

2 The governing field of the 4-rank of K2OF

Let F = Q(
√

D), where D is the discriminant of F . Let D′ be the square free part
of D, Cl+(D) be the narrow class group of F .

It is well known that 2 ∈ NormF/Q(F×) if and only if all odd prime divisors
of D are congruent to ±1 modulo 8, i.e., the local Hilbert symbol

(2, D)p = 1

for any prime numbers. We know that 2 ∈ NormF/Q(F×) if and only if

D ∈ NormQ(
√

2)/Q(Q(
√

2)×).

If this is the case, we assume that

D′ = u2 − 2w2, u, w ∈ Q.



44 Xuejun Guo, Hourong Qin

Since Z[
√

2] is a principal ideal domain, we can assume further that u, w ∈ N. Let

v =

{
u + w, if 2 ∈ NormF/Q(F×),
2, otherwise.

Let Sf be the finite set of rational primes consisting of prime 2 and all finite primes
that ramify in F , |Sf | the cardinality of Sf . Let A be a matrix whose entries are
local Hilbert symbols. Following Kolster’s notation of [11], we can view A as a
matrix ϕ(A) over F2 if we replace 1 by 0 and −1 by 1. The rank of A is understood
as the F2-rank of ϕ(A). J. Hurrelbrink and M. Kolster proved in [9] the following
theorem.

Theorem 2.1. Let F be a quadratic number field with discriminant D and p1, · · · ,
pt the odd primes dividing D. Then

rk4(K2OF ) =

{
|Sf | − rk(MD), if D > 0
|Sf | + 1 − rk(M̃D), if D < 0,

where rk(·) means the rank of a matrix,

MD =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(−D, p1)2 (−D, p1)p1 · · · (−D, p1)pt

(−D, p2)2 (−D, p2)p1 · · · (−D, p2)pt

...
...

...
(−D, pt−1)2 (−D, pt−1)p1 · · · (−D, pt−1)pt

(−D, v)2 (−D, v)p1 · · · (−D, v)pt

(D, −1)2 (D, −1)p1 · · · (D, −1)pt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

M̃D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(−D, p1)2 (−D, p1)p1 · · · (−D, p1)pt

(−D, p2)2 (−D, p2)p1 · · · (−D, p2)pt

...
...

...
(−D, pt−1)2 (−D, pt−1)p1 · · · (−D, pt−1)pt

(−D, v)2 (−D, v)p1 · · · (−D, v)pt

(−D, −1)2 (−D, −1)p1 · · · (−D, −1)pt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

At first, we study the tame kernel of imaginary quadratic number fields.
Let d = −2ap1 · · · pt be the discriminant of some quadratic number field, where
pi (1 ≤ i ≤ t−1) is odd positive prime number and a = 0, 2, or 3. Let p be an odd
prime different from any pi (1 ≤ i ≤ t − 1) such that D = dp is the discriminant
of F = Q(

√
D). Let E = Q(

√−D). By the reciprocity law, there is an abelian
number field L such that the first t−1 rows and the last row of Mdp depends only
on the Artin symbol [(L/Q)/(p)]. Hence the problem now is reduced to if the row

((−D, v)2, (−D, v)p1 , · · · , (−D, v)pt)

can be linearly expressed by the other rows, where pt = p. If v = 2, there is
nothing to do. So from now on in this section we will always assume that v �= 2,
i.e., 2 ∈ NormF/Q(F×).
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Recall that D′ is the square free part of D. If 2 is ramified in E, by Corollary
2.3 of [11], the dyadic prime ideal [J ] is a square in the narrow class group of E.
In fact this holds even if 2 is not ramified. Since D′ = u2 − 2w2,

2(u + w)2 = (u + 2w +
√−D′)(u + 2w −√−D′).

Note that there is no inert prime q dividing u + 2w +
√−D′. Otherwise this inert

prime q divides also u+ 2w−√−D′ which implies that q divides 2
√−D′ which is

impossible. Hence the principal ideal (u+2w+
√−D′) ⊂ OE has a decomposition

u + 2w +
√−D′ = JI2,

where J is a dyadic prime ideal, I is a split ideal with norm u + w and both of
u+w and u+2w+

√−D′ are totally positive. Hence [J ] is a square in the narrow
class group of E. In fact, Kolster’s argument also works for the fourth power,
which means that we have the following proposition.

Proposition 2.2. (Kolster [11]) With notations as above. The dyadic ideal class
[J ] is a fourth power in the narrow class group of E if and only if there is a positive
divisor m of D such that m(u + w) ∈ NormE/Q(E×).

Recall that in [11], an integral ideal I is primitive if I has the form

I = I ′ · [m]

with m a square free positive divisor of D and I ′ an integral ideal, such that I ′ is
prime to I ′, where I ′ is the congugacy ideal of I ′.

Theorem 2.3. With notations as above. Let F = Q(
√

D), where D is the dis-
criminant of F , E = Q(

√−D). We assume that 2 ∈ NormF/Q(F×). In the matrix
M̃D, the row vector

α = ((−D, v)2, (−D, v)p1 , · · · , (−D, v)pt)

can be linearly expressed by the other rows if and only if the dyadic ideal class [J ]
is a fourth power in the narrow class group of E.

Proof. If the ideal class [J ] is a fourth power in the narrow class group of E, then
α can be linearly expressed by the other rows by the above Proposition.

Conversely, if α can be linearly expressed by the other rows, we know that
there is an integer m|p1 · · · pt−1 such that vm ∈ NormE/Q(E×) or −vm ∈
NormE/Q(E×). If vm ∈ NormE/Q(E×), by the above Proposition, ideal class
[J ] is a fourth power in the narrow class group of E.

Next we assume that −vm ∈ NormE/Q(E×) but vm �∈ NormE/Q(E×). Since
−1 �∈ NormE/Q(E×), some of the odd prime factors of D must be congruent to 3
modulo 4. Hence by Lemma 10 of [6], we have

Cl(E) × Z/2Z = Cl+(E)
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which implies that Cl(E)2 = Cl+(E)2 and Cl(E)4 = Cl+(E)4. Hence in order to
prove [J ] ∈ Cl+(E)4, it is sufficient to prove [J ] ∈ Cl(E)4. Recall that [J ] = [I]2 ∈
Cl+(E)2 = Cl(E)2. Since −vm ∈ NormE/Q(E×), we can use the same argument
as in the proof of Theorem 2.6 of [11] to prove that there is an ideal I ′ such that

[I] = I ′2 ∈ Cl(E)2 = Cl+(E)2.

Hence the dyadic ideal class [J ] ∈ Cl(E)4 = Cl+(E)4.

Theorem 2.4. With notations as above. Assume that δ �≡ 2 (mod 4) is a non
zero integer and a ∈ {±1} satisfies δa ≡ 0, 1 (mod 4). Let E1 = Q(

√−δp1),
E2 = Q(

√−δp2). We suppose that Di = δpi is the discriminant of real quadratic
number field Fi = Q(

√
Di), where i = 1, 2. Then there is a field M such that

if p1 and p2 satisfy [(M/Q)/(p1)] = (M/Q)/(p2)], then the dyadic ideal class
[J ] ∈ Cl+(F1)4 if and only if [J ] ∈ Cl+(F2)4.

Proof. Let c be a number of factors 2 in δ. We follow Stevenhagen’s notation in
[21]. Let

E = Q(
√

q1, · · · ,
√

qk),

where q1, · · · , qk are the odd prime factors of δ. Let

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E, if c = 0,

E, if c = 2 and
−δ

4
≡ 1 (mod 4),

E(
√−1), if c = 2 and

−δ

4
≡ 1 (mod 4),

E(
√

2), if c = 3 and
−δ

8
≡ 1 (mod 4),

E(
√−2), if c = 3 and

−δ

8
≡ −1 (mod 4).

Let ∞ be the product of infinite primes. Let M be the maximal abelian extension
of K that

1. is of exponent dividing 2;
2. unramified outside δ∞;
3. can locally at primes over 2 be obtained by adjoining square roots of local

units in case D is odd.

Let Li be the maximal abelian extension of K that has exponent 2 and
conductor dividing pi∞. Then by the proof of Theorem 10.4 of Stevenhagen’s
thesis, if 2|δ and if p1, p2 satisfy [(M/Q)/(p1)] = [(M/Q)/(p2)], then we have

L1

⊗
Q

Q2 	 L2

⊗
Q

Q2.
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Let Hi be the subfield of the Hilbert class field of Fi corresponding to
Cl+(Fi)/Cl+(Fi)4. Then one can see that Hi ⊂ Li and

H1

⊗
Q

Q2 	 H2

⊗
Q

Q2.

By the class field theory [Ji] ∈ Cl+(Fi)4 if and only if [Ji] is completely split in
Hi. Hence if p1 and p2 satisfy [(M/Q)/(p1)] = (M/Q)/(p1)], then [J1] ∈ Cl+(F1)4

if and only if [J2] ∈ Cl+(F2)4.
In the case that 2 does not divide δ, the above arguments still work by

Theorem 8.1 of Stevenhagen’s thesis [21].
So the dyadic ideal class [J ] ∈ Cl+(F1)4 if and only if [J ] ∈ Cl+(F2)4.

Hence we get the following theorem.

Theorem 2.5. With notations as above. Assume that δ �≡ 2 (mod 4) is a non-
zero integer and a ∈ {±1} satisfies δa ≡ 0, 1 (mod 4). Let E1 = Q(

√−δp1),
E2 = Q(

√−δp2). We suppose that Di = δpi is the discriminant of real quadratic
number field Fi = Q(

√
Di), where i = 1, 2. Then there is a field M such that if

p1 and p2 satisfy [(M/Q)/(p1)] = [(M/Q)/(p2)], then

rk4(K2OE1) = rk4(K2OE2).

By the similar method, we can prove that the above theorem hold also for
real quadratic number fields.

3 The governing field of the 8-rank of K2OF

Although the existence of governing fields of the 8-rank of the narrow class groups
has already been proved by Stevenhagen, the existence of the governing fields of
the 8-rank of K2 is still open. While in some special cases, the existence of the
governing fields of the 8-rank of K2 can be deduced from Morton’s Theorems in
[12–14].

Let s ≤ r be three nonnegative integers. Then there exists r + 1 primes
p1, · · · , pr, pr+1 = q such that

(1) pi ≡ 1 (mod 8), for 1 ≤ i ≤ r;

(2)
(

pi

pj

)
= 1, for 1 ≤ i �= j ≤ r;

(3) q ≡ 5 (mod 8);

(4)
(

pi

q

)
=

{
1, if 1 ≤ i ≤ s,

−1, if s + 1 ≤ i ≤ r.

(3.1)

The existence can be proved easily. Let d = p1 · · · pr, F = Q(
√

dq). Let E =
Q(

√−dq).
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For any 1 ≤ i ≤ s, let Ki be the unique quartic cyclic extension of Q with
conductor pi. Note that Ki ⊃ Q(

√
pi). For any i, j such that 1 ≤ i �= j ≤ s, let

Lij be the unique quartic cyclic extension of Q(√pipj) which is unramified at finite
primes. Let M = p1 · · · ps. Let ΛM be the class field over Q(

√−M) corresponding
to the subgroup (Cl(Q(

√−M)))4 of fourth powers in Cl(Q(
√−M)). Let

KM =
∏

1≤i≤s

Ki,

ΛM =
∏

1≤i�=j≤s

Lij ,

ΣM = KMΛM ,

ΣM = ΣMΛM .

Theorem 3.1. (Guo and Qin [8]) With notation as above, we have

rk2(K2(OE)) = r,

rk4(K2(OE)) = s.

And rk8(K2(OE)) is completely determined by the Artin symbol [(ΣM/Q)/(q)].

Next we will consider the tame kernels of certain real quadratic fields. Let
s, r̃ be two nonnegative integers such that s ≤ r̃ and r̃ ≥ 2 + s. Let r = r̃ − 2.

Let d = p1 · · · pr, F = Q(
√

dq) and E = Q(
√−dq).

We choose primes p1, · · · , pr and q (q will vary to create infinitely many
real quadratic fields F ) such that

(1) pi ≡ 1 (mod 8), for 1 ≤ i ≤ r;

(2)
(

pi

pj

)
= 1, for 1 ≤ i �= j ≤ r;

(3)
(

pi

pj

)
4

(
pj

pi

)
4

= 1, for i �= j;

(4) q ≡ 3 (mod 8);

(5)
(

pi

q

)
=

{
1, if 1 ≤ i ≤ s,

−1, if s + 1 ≤ i ≤ r.

(3.2)

For any 1 ≤ i ≤ s, Let Ki be the unique quartic cyclic extension of Q with
conductor pi. Note that Ki ⊃ Q(

√
pi). For any i, j such that 1 ≤ i �= j ≤ s,

let Lij be the unique quartic cyclic extension of Q(√pipj) which is unramified at

finite primes. Let Σ =
( ∏

1≤i≤s

)( ∏
1≤i�=j≤s

Lij

)
.

Theorem 3.2. Let p1, · · · , pr, q be primes satisfying conditions (1)–(5) of (3.2).
Let d = p1 · · · prq, F = Q(

√
dq), E = Q(

√−dq). Then we have

rk2(K2OF ) = r + 2;
rk4(K2OF ) = s.
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And rk8(K2OF ) is completely determined by the Artin symbol [(Σ/Q)/(q)].
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