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Abstract Let F be a number field, and let OF denote the ring of integers in F . Let A be
a finite-dimensional central simple F-algebra, and let � be an OF -order in A. In this paper
it is shown that the p-torsion of the even dimensional higher class group Cl2n(�) can only
occur for primes p, which lie under prime ideals p, at which �p is not maximal, or which
divide the dimension of A.
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1 Introduction

Let F be a number field and OF the ring of integers in F . Let A be a semi-simple algebra
over F and � an OF -order in A, [A : F] the dimension of A over F . The higher class groups
of � are defined as

Cln(�) = ker

⎛
⎝SKn(�) −→

⊕
p

SKn(�p)

⎞
⎠,

where p runs through all prime ideals of OF and

SKn(�) := ker (Kn(�) −→ Kn(A)),

Supported by NSFC 10401014, and partially funded by Irish Research Council for Science, Engineering and
Technology Basic Research Grant SC/02/265.

X. Guo (B)
Department of Mathematics, Nanjing University, Nanjing, China
e-mail: guoxj@nju.edu.cn

X. Guo
Department of Mathematics, University College Dublin, Dublin, Ireland

123



618 X. Guo

for all integers n ≥ 1. Kuku proved in [6,7] that the groups Cln(�) are finite for arbitrary
orders. Moreover, they vanish if � is maximal (cf [4, Theorems 1, 2]).

In [5], it is proved that the only p-torsion possible in Cl2n+1(�) is for those rational primes
p which lie under the prime ideals of OF at which � is not maximal. In [3] the analogous
result for even-dimensional higher class groups is proved for Eichler orders.

In this paper it is shown that p-torsion in the even-dimensional higher class group Cl2n(�)

can only occur if p | [A : F] or p lies under some prime ideal of OF at which � is not
maximal. It turns out that Cl2n(�) can have non-trivial p-torsion for p | [A : F] even if �p

is maximal for all prime ideals p | p (see Sect. 4).

2 K-theory of local orders

Lemma 2.1 Let k be a finite field, Mm(k) the ring of all m × m matrices over k. Let i be the
natural inclusion i : k −→ Mm(k), a �→ aIm, where Im is the identity matrix in Mm(k).
Then the composition of homomorphisms

f : Kn(k)
Kn(i)−→ Kn(Mm(k))

∼−→ Kn(k)

maps x to xm for any n ≥1,where Kn(i) is induced by i and the isomorphism Kn(Mm(k))
∼−→

Kn(k) is induced by Morita equivalence between the categories of finitely generated projec-
tive Mm(k)-modules and finitely generated projective k-modules.

Proof Let P(k), P(M2(k)) be the categories of finitely generated projective k-, M2(k)-
modules respectively. Then f is induced by the composition of functors

P(k) −→ P(M2(k)) −→P(k)

P −→ Mm(k) ⊗k P −→Pm = P ⊕ P ⊕ · · · ⊕ P.

Hence f (x) = xm . ��
Let K be a p-adic local field, OK the ring of integers in K , k the residue field of OK . Let

D be a finite dimensional central division algebra over K , D the unique maximal OK -order
in D, d the residue field of D. Then d is a finite extension of k.

In [4] Keating proved that the natural homomorphisms

gn : Kn(D) −→ Kn(d)

are surjective and constructed transfer maps

τ2n+1 : K2n+1(d) −→ K2n+1(D)

in the following way. At first, choose a generator γ of the cyclic group K2n+1(d) and an
element σγ in K2n+1(D) which maps onto γ . Let � be a uniformizer of D such that �t

is a uniformizer π of K for some t , and c the automorphism of K2n+1(D) induced by the
conjugation by �. The transfer map τ2n+1 is defined to be

τ2n+1(γ
j ) = (σγ ) j (cσγ )− j .

Compare Sect. 2 of [4] for details, and for a proof of the following result:

Lemma 2.2 [4, Sect. 2] The composition

g2n+1τ2n+1 : K2n+1(d) −→ K2n+1(D) −→ K2n+1(d)

is 1 − F∗, where F∗ is induced by the Frobenius automorphism F of d/k.
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Even dimensional higher class groups of orders 619

Proposition 2.3 Let f be the natural inclusion of rings k −→ Mm(d). Let

f2n+1 : K2n+1(k)
K2n+1( f )−→ K2n+1(Mm(d))

∼−→ K2n+1(d)

be the homomorphism induced by f and the Morita equivalence between K2n+1(Mm(d))

and K2n+1(d). Let t = [d : k] be the degree of the finite fields extension d/k, q the number
of elements in k, and (mt, qn+1 − 1) the greatest common divisor of mt and qn+1 − 1.
Then the subgroup of K2n+1(d) generated by the images of f2n+1 and g2n+1τ2n+1 has index
dividing (mt, qn+1 − 1), where g2n+1τ2n+1 is the same as in the above lemma.

Proof By Theorem 8 of [8], K2n+1(k) 
 Z/(qn+1 − 1) and K2n+1(d) 
 Z/(qt (n+1) − 1).
We assume K2n+1(d) = Z/(qt (n+1) − 1). Then K2n+1(k) can be seen as the subgroup of
K2n+1(d) generated by (qt (n+1) − 1)/(qn+1 − 1).

By Lemma 2.1, the image of f2n+1 is the subgroup of K2n+1(d) generated by
m(qt (n+1) − 1)/(qn+1 − 1). By [4], the image of g2n+1τ2n+1 is isomorphic to Z/((qt (n+1) −
1)/(qn+1 − 1)). Hence the image of g2n+1τ2n+1 in K2n+1(d) is generated by qn+1 − 1. So
the subgroup of K2n+1(d) generated by the images of f2n+1 and g2n+1τ2n+1 is generated by
the greatest common divisor (m(qt (n+1) − 1)/(qn+1 − 1), qn+1 − 1)).

Since

qt (n+1) − 1

qn+1 − 1
= (qn+1 − 1 + 1)t − 1

qn+1 − 1

=
t∑

k=1

(
t

k

)
(qn+1 − 1)k−1

=
t∑

k=2

(
t

k

)
(qn+1 − 1)k−1 + t,

it follows that the greatest common divisor (qn+1 − 1, (qt (n+1) − 1)/(qn+1 − 1)) divides t .
Hence (m(qt (n+1) − 1)/(qn+1 − 1), qn+1 − 1) divides (mt, qn+1 − 1). ��

Let A be a finite dimensional central simple algebra over a p-adic field K , � an OK -order
in A, � a maximal order containing �.

For any abelian group G and positive rational integer s, let G( 1
s ) be the group G

⊗
Z

Z[ 1
s ].

For any ring homomorphism f : A −→ B, we shall write f (s)∗ for the induced homomor-
phism

Kn(A)

(
1

s

)
−→ Kn(B)

(
1

s

)
.

Theorem 2.4 The cokernel of the natural homomorphism

h(p)
1∗ : K2n+1(�)

(
1

p

)
−→ K2n+1(A)

(
1

p

)

is annihilated by the greatest common divisor ([A : K ], qn+1 −1), where h1 is the inclusion
� −→ A.
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620 X. Guo

Proof Since � and � are two orders, there is some positive rational integer m such that
pm� ⊂ �. The square

�/pm� �/pm��
g2

� ��f1

�

f2

�

g1

has an associated K∗
(

1
p

)
Mayer-Vietoris sequence

· · · −→ K2n+1(�)

(
1

p

)
( f1

(p)∗ , f2
(p)∗ )−→ K2n+1(�)

(
1

p

) ⊕
K2n+1(�/pm�)

(
1

p

)

(g1
(p)∗ , g2

(p)∗ )−→ K2n+1(�/pm�)

(
1

p

)
−→ · · ·

by [2] or [11].
Since A is a central simple algebra, it is isomorphic to Mm′ (D) for some division algebra

D and m
′
. Similarly, since � is a maximal order, it is isomorphic to Mm′ (D) for the maximal

order D in D. Without loss of generality, we can assume A = Mm′ (D), � = Mm′ (D) for the
maximal order D in D. Let d be the residue field of D. By Proposition 1 of [4], the homo-
morphism Ki (�) −→ Ki (Mm′ (d)) is surjective. This homomorphism can be decomposed
into

Ki (�) −→ Ki (�/pm�) −→ Ki (Mm′ (d)).

By Corollary 5.4 of [11], the homomorphism Ki (�/pm�)( 1
p ) −→ Ki (Mm′ (d))( 1

p ) is an

isomorphism. So the homomorphism Ki (�)( 1
p ) −→ Ki (�/pm�)( 1

p ) is surjective. The

homomorphism g(p)
1∗ induces an isomorphism

g(p)
1∗ : coker f (p)

1∗ =
K2n+1(�)

(
1
p

)

f (p)
1∗

(
K2n+1(�)

(
1
p

))

−→
K2n+1(�/pm�)

(
1
p

)

g(p)
2∗

(
K2n+1(�/pm�)

(
1
p

)) = cokerg(p)
2∗ .

By Corollary 5.4 of [11], we know that K2n+2(�/pm�) is a p-group. Hence f1
(p)∗ is

injective. So we have the following commutative diagram:

1 K2n+1(A)( 1
p )�

1 K2n+1(�)( 1
p )�

�
K2n+1(A)( 1

p )�
identity

K2n+1(�)( 1
p )�f (p)

1∗

�

h(p)
1∗

�

h(p)
2∗

1�

coker f (p)
1∗��

�

123



Even dimensional higher class groups of orders 621

Hence by the Snake Lemma,

cokerh1
(p)∗ 
 coker

(
kerh2

(p)∗ −→ coker f1
(p)∗

)



K2n+1(�)

(
1
p

)

f (p)
1∗

(
K2n+1(�)

(
1
p

))
kerh2

(p)∗



K2n+1 (�/pm�)

(
1
p

)

(img(p)
2∗ )g(p)

1∗ (kerh2
(p)∗ )

.

By Theorem 1 of [4], we know that kerh(p)
2∗ is the image of

τ2n+1 : K2n+1(Mm′ (d)) −→ K2n+1(�).

So the cokernel of h1
(p)∗ is isomorphic to the quotient group of K2n+1(�/pm�)( 1

p ) modulo

the subgroup generated by the image of g(p)
2∗ and the image of

ϕ : K2n+1(Mm′ (d))

(
1

p

)
−→ K2n+1(�)

(
1

p

)
−→ K2n+1(Mm′ (d))

(
1

p

)


 K2n+1(�/pm�)

(
1

p

)
.

Note that �/pm� may not be k, however

K2n+1(�/pm�)

(
1

p

)

 K2n+1(Mr1(k1) ⊕ · · · ⊕ Mrl (kl))

(
1

p

)

for suitable finite fields k1,…, kl which are extensions of k, and subfields of d . Hence by
Proposition 2.3, the cardinality of

K2n+1(�/pm�)
(

1
p

)

(img(p)
2∗ )(imϕ)

divides the greatest common divisor (m
′
t, qn+1−1). Hence the cokernel of h(p)

1∗ is annihilated
by ([A : K ], qn+1 − 1). ��
Remark If p � [D : K ], then the reduced norm Nrd : Ki (D) −→ Ki (K ) is an isomorphism
by Theorem 3 of [9]. We know that the reduced norm is multiplication by [D : K ] on
Ki (OK ). So the cokernel of Ki (OK ) −→ Ki (D) is annihilated by [D : K ]. By Lemma 2.1,
the cokernel of Ki (OK ) −→ Ki (A) is annihilated by [A : K ]. Hence the cokernel of h(p)

1∗ is
annihilated by [A : K ]. So we have a very simple proof of Theorem 2.4 in this special case.
Using the same argument, it may be possible to give a proof of the general case by working
with the K -groups up to p-torsion.

3 Even dimensional higher class groups of global orders

If R is a ring, we will denote the quotient of Km(R) by its divisible subgroup by K c
m(R). Let

S be a finite set of prime ideals at which �p is not maximal. As in [5], we define Clm(�, S)

to be the cokernel of the map
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622 X. Guo

K c
m+1(A) −→

⊕
p∈S

K c
m+1(Ap) ⊕

⊕
p/∈S

K c
m+1(Ap)/im(K c

m+1(�p)),

where � is a maximal order containing �.
Note that Theorem 2.4 is for Kn not K c

n . However since the maximal divisible subgroup
of an abelian group is a direct summand, the proof works also for K c

n .
Let A be a semi-simple algebra over a number field F . Let OF be the ring of integers in

F and let � be an OF -order in A. Let � be a maximal order containing �. Let S be the set
of primes p at which �p is not a local maximal order. By Lemma 1.2 in [5],

Cl2n(�) 
 coker

⎛
⎝⊕

p∈S

K c
2n+1(�p) −→ Cl2n(�, S)

⎞
⎠.

By Theorem 1 in [4],
⊕
p/∈S

K c
2n+1(Ap)/im(K c

2n+1(�p)) = 0.

So

Cl2n(�, S) = coker

⎛
⎝K c

2n+1(A) −→
⊕
p∈S

K c
2n+1(Ap)

⎞
⎠.

Hence Cl2n(�) is the cokernel of

K2n+1(A) −→ coker

⎛
⎝⊕

p∈S

K c
2n+1(�p) −→

⊕
p∈S

K c
2n+1(Ap)

⎞
⎠.

Theorem 3.1 Let A be a finite-dimensional central simple algebra over a number field F.
Let OF be the ring of integers in F and let � be an OF -order in F. Let s denote the product
of those rational primes p, for which �p is not maximal for some prime ideal p dividing p.
Then p-torsion of Cl2n(�) can only occur for p|s or p|[A : F].
Proof This is obvious by Theorem 2.4 and the discussion above this proposition. ��

4 Example

Let l be a prime dividing the dimension [A : F]. Next we will give an example to show that
Cl2n(�) can have nontrivial l-torsion although �p is maximal for all prime ideals p above l.

Let p be a rational prime such that l|(p − 1). By the density theorem, there are infinitely
many such p. For any prime ideal p|p, p ⊂ OF , let Ap = Ml(Fp). Let �p = Ml(OFp) and

�p ⊂ �p the order so that �p/π�p 
 kp, where π is a uniformizer of Fp.

Lemma 4.1 For any n ≥ 1 the cokernel of the natural homomorphism

f1
(p)
∗ : K2n+1(�p)

(
1

p

)
−→ K2n+1(�p)

(
1

p

)

has a non-trivial l-part.
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Even dimensional higher class groups of orders 623

Proof The square

�p/p�p �p/p�p�
g2

�p �p�f1

�

f2

�

g1

has an associated K∗( 1
p ) Mayer-Vietoris sequence

· · · −→ K2n+1(�p)

(
1

p

)
( f1

(p)
∗ , f2

(p)
∗ )−→ K2n+1(�p)

(
1

p

) ⊕
K2n+1(�p/p�p)

(
1

p

)

(g1
(p)
∗ , g2

(p)
∗ )−→ K2n+1(�p/p�p)

(
1

p

)
−→ · · ·

by [2] or [11].
Let z ∈ K2n+1(�p/p�p)( 1

p ) be a generator of the p-Sylow subgroup of K2n+1(�p/p�p)

( 1
p ) and g

(p)

1∗
−1

(z) an inverse image of z. Since K2n+1(�p/p�p) 
 K2n+1(Ml(kp)) and

K2n+1(�p/p�p) 
 K2n+1(kp), z is not in the image of g(p)
2∗ by Lemma 2.1. Hence

g(p)
1∗

−1
(z) is not in the image of f (p)

1∗ . However (g(p)
1∗

−1
(z))l is in the image of f1∗ for

zl ∈ (K2n+1(�p/p�p))
l( 1

p ) while the last term is just the image of g(p)
2∗ . So the cokernel of

f (p)
1∗ has a non-trivial l-part. ��

Note that if we can construct a division algebra Ap, a non-maximal order �p such that

the cokernel of g(p)
2∗ has a no-trivial l-part, then Lemma 3.2 also holds. Such examples

can be found in quaternion algebras. One can see the details of the explicit construction in
Proposition 5.6 (b) of [1].

Lemma 4.2 The cokernel of

K2n+1(�p)

(
1

p

)
−→ K2n+1(Ap)

(
1

p

)

has a non-trivial l-part.

Proof Since �p is a maximal order in a split local algebra Ap, the residue field of �p
is the ring of l × l matrices over kp. By Theorem 1 of [4], the natural homomorphism
K2n+1(�p) −→ K2n+1(Ap) is an isomorphism. So the result follows from Theorem 2.4.

��
Let A be a division algebra over F with [A : F] = l2. By [7], K2n+1(A) is finitely

generated. Let � be a maximal order in A. Let m be a natural number which is greater than
the number of generators of K2n+1(A). By the Density Theorem and the fact that Ap is split
for almost all p, we can find m different primes p1, . . . , pm such that l|(pi − 1) for any
1 ≤ i ≤ m, and A is completely split at pi for any pi |pi . Let S = {p1, . . . , pm}. Let �p be
the order such that �p/π�p 
 kp if p is equal to some pi , 1 ≤ i ≤ m. Otherwise, let �p
be the completion of � at p. So for any prime p, we have a local order �p and for almost
all p, �p is maximal. Hence by Proposition 5.1 in Chap. 5 of [10], there is a global order �

such that the completion of � at p is �p .
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624 X. Guo

Proposition 4.3 Let � be an order defined as later. Then the even dimensional higher class
group Cl2n(�) has a non-trivial l-part, although the localization �p is maximal for any p|l.
Proof Recall that Cl2n(�) is the cokernel of

K2n+1(A) −→ coker

⎛
⎝⊕

p∈S

K c
2n+1(�p) −→

⊕
p∈S

K c
2n+1(Ap)

⎞
⎠ .

By assumption, K2n+1(A) is generated by less than m elements. Since the l-part of(
coker

(⊕
p∈S K c

2n+1(�p) −→ ⊕
p∈S K c

2n+1(Ap)
))

can not be generated by less than m

generators, Cl2n(�) must have a non-trivial l-part. ��
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