Higher Class Groups of Locally Triangular Orders over Number Fields*
Xuejun Guo
Department of Mathematics, Nanjing University, Nanjing 210093, China
Department of Mathematics, University College Dublin, Ireland
E-mail: guoxj@nju.edu.cn
Aderemi Kuku
Department of Mathematics, Miami University 501 East High Street, Oxford, Ohio 45056, USA
E-mail: kuku@math.ohio-state.edu

Received 8 May 2006
Revised 24 February 2007
Communicated by Nanqing Ding

Abstract

In this paper, we study the K-theory of triangular rings. As an application, we show that for a locally triangular order Λ, the p-torsion in the higher class group $C l_{2 n}(\Lambda)$ can only occur for primes p which lie under the prime ideals \wp of \mathcal{O}_{F}, at which Λ is not maximal.

2000 Mathematics Subject Classification: 19D50, 19F27
Keywords: higher class group, locally triangular order, semi-simple algebra

1 Introduction

Let R be a ring and I a two-sided projective ideal of R. In [4], Keating studied the K-theory of a "triangular tiled" ring, i.e., a ring of the $n \times n$ matrix form

$$
M=\left(\begin{array}{cccc}
R & R & \cdots & R \\
I & R & \cdots & R \\
\vdots & \ddots & \ddots & \vdots \\
I & \cdots & I & R
\end{array}\right)
$$

and proved that $K_{*}(M) \simeq K_{*}(R) \oplus(n-1) K_{*}(R / I)$.
It is interesting to study the K-theory of rings like

$$
S=\left(\begin{array}{cccc}
R & R & \cdots & R \\
I^{s_{21}} & R & \cdots & R \\
\vdots & \ddots & \ddots & \vdots \\
I^{s_{n 1}} & \cdots & I^{s_{n n-1}} & R
\end{array}\right),
$$

[^0]where each $s_{i j}$ is a positive integer. For any abelian group G and a rational integer s, let $G(1 / s)$ be the group $G \bigotimes_{\mathbb{Z}} \mathbb{Z}[1 / s]$. In this paper, we prove that if R is a \mathbb{Z}_{p}-algebra, then
$$
K_{*}(S)(1 / s)=K_{*}(R)(1 / s) \oplus(n-1) K_{*}(R / I)(1 / s)
$$
where s is a rational integer such that $p \mid s$ (Proposition 2.3).
In Section 3, we give an application of this result. Let F be a number field and \mathcal{O}_{F} the ring of integers in F. Let A be a semi-simple algebra over F and Λ an order in A. For any maximal ideal \wp of \mathcal{O}_{F}, let $F_{\wp}, \mathcal{O}_{F_{\wp}}, A_{\wp}, \Lambda_{\wp}$ be the \wp-completions of $F, \mathcal{O}_{F}, A, \Lambda$, respectively. Let
$S=\left\{p \in \mathbb{Z} \mid\right.$ for some maximal ideal \wp of \mathcal{O}_{F} such that $\wp \mid p, \Lambda_{\wp}$ is not maximal $\}$.
Recall that for any integer $n \geq 1$, the higher class group of Λ is defined as $C l_{n}(\Lambda)=\operatorname{ker}\left(S K_{n}(\Lambda) \rightarrow \bigoplus S K_{n}\left(\Lambda_{\wp}\right)\right)$, where \wp runs through all maximal ideals of \mathcal{O}_{F} and $S K_{n}(\Lambda):=\operatorname{ker}\left(K_{n}(\Lambda) \rightarrow K_{n}(A)\right)$. By Theorems 1 and 2 in [3], $C l_{n}(\Lambda)$ is trivial for maximal orders. Later, Kuku proved in [6] that $C l_{n}(\Lambda)$ is finite for arbitrary orders. In [5], it is proved that the only p-torsion possible in $C l_{2 n+1}(\Lambda)$ is for those rational primes p which lie under the prime ideals of \mathcal{O}_{F}, at which Λ is not maximal. In [2], we prove that if the order is a generalized Eichler order, then the only p-torsion possible in $C l_{2 n+1}(\Lambda)$ is for those rational primes p which lie under the prime ideals of \mathcal{O}_{F}, at which Λ is not maximal. Locally, a generalized Eichler order has the same form with M in the beginning of this section.

In this paper, we consider locally triangular orders which are locally isomorphic to S as above. So locally triangular orders are a generalization of generalized Eichler orders. We prove in Theorem 3.3 that if Λ is a locally triangular order in a semisimple algebra A over F, then the q-primary part of $C l_{2 n}(\Lambda)$ is trivial for $q \notin S$.

$2 \boldsymbol{K}$-Theory of Triangular Rings

In this section, R is a \mathbb{Z}_{p}-algebra and I is a two-sided projective ideal of R. Assume that R / I^{n} is a finite ring for any positive integer n. Let s be an integer such that $p \mid s$. Let a, b, c be positive integers such that $a+b \geq c \geq b \geq a$. The last inequality is to assure that

$$
A=\left(\begin{array}{ccc}
R & R & R \\
I^{a} & R & R \\
I^{c} & I^{b} & R
\end{array}\right)
$$

is a ring.
Proposition 2.1. Let A be the triangular ring as above. Then

$$
K_{*}(A)(1 / s) \simeq K_{*}(R)(1 / s) \oplus K_{*}(R / I)(1 / s) \oplus K_{*}(R / I)(1 / s)
$$

Proof. Let

$$
B_{1}=\left(\begin{array}{ccc}
R / I^{b} & R / I^{b} & R / I^{b} \\
I^{a} / I^{b} & R / I^{b} & R / I^{b} \\
I^{b} / I^{c} & 0 & R / I^{b}
\end{array}\right) \quad \text { and } \quad I_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
I^{b} / I^{c} & 0 & 0
\end{array}\right)
$$

Note that since $2 b \geq c, I^{b} / I^{c}$ is an R / I^{b}-module. Hence, for any element $a \in I^{b} / I^{c}$ and $b \in R / I^{b}$, the product $a b \in I^{b} / I^{c}$ is well defined. So B_{1} is a ring, and I_{1} is a two-sided ideal of B_{1}. Let

$$
A_{1}=B_{1} / I=\left(\begin{array}{ccc}
R / I^{b} & R / I^{b} & R / I^{b} \\
I^{a} / I^{b} & R / I^{b} & R / I^{b} \\
0 & 0 & R / I^{b}
\end{array}\right)
$$

Then by Consequence 1.4 of [8], $K_{*}\left(B_{1}, I_{1}\right)$ is a $\mathbb{Z}[1 / q]$-module for any prime $q \neq p$. So $K_{*}\left(B_{1}\right)(1 / s) \xrightarrow{\sim} K_{*}\left(A_{1}\right)(1 / s)$ for any integer s such that $p \mid s$. Note that the composition

$$
A_{1} \xrightarrow{\text { inclusion }} B_{1} \xrightarrow{\text { quotient }} A_{1}
$$

is an identity map of A_{1}. So the homomorphism $K_{*}\left(A_{1}\right)(1 / s) \xrightarrow{\sim} K_{*}\left(B_{1}\right)(1 / s)$ induced by inclusion is an isomorphism.

Let

$$
A_{2}=\left(\begin{array}{ccc}
R / I^{c} & R / I^{c} & R / I^{c} \\
I^{a} / I^{c} & R / I^{c} & R / I^{c} \\
0 & I^{b} / I^{c} & R / I^{c}
\end{array}\right), \quad B_{2}=\left(\begin{array}{cll}
R / I^{c} & R / I^{c} & R / I^{c} \\
I^{a} / I^{c} & R / I^{c} & R / I^{c} \\
I^{b} / I^{c} & I^{b} / I^{c} & R / I^{c}
\end{array}\right)
$$

and

$$
I_{2}=\left(\begin{array}{ccc}
I^{b} / I^{c} & I^{b} / I^{c} & I^{b} / I^{c} \\
I^{b} / I^{c} & I^{b} / I^{c} & I^{b} / I^{c} \\
0 & I^{b} / I^{c} & I^{b} / I^{c}
\end{array}\right)
$$

Then $B_{1}=B_{2} / I_{2}$ and $A_{1}=A_{2} / I_{2}$. Hence, we have the following commutative diagram:

This diagram is a pull back square. So by [7] or [1], this square has an associated $K_{*}(1 / s)$ Mayer-Vietoris sequence

$$
\cdots \rightarrow K_{*}\left(A_{2}\right)(1 / s) \rightarrow K_{*}\left(B_{2}\right)(1 / s) \oplus K_{*}\left(A_{1}\right)(1 / s) \rightarrow K_{*}\left(B_{1}\right)(1 / s) \rightarrow \cdots
$$

Since we have proved that $K_{*}\left(A_{1}\right)(1 / s) \rightarrow K_{*}\left(B_{1}\right)(1 / s)$ is an isomorphism, $K_{*}\left(A_{2}\right)(1 / s) \rightarrow K_{*}\left(B_{2}\right)(1 / s)$ must be an isomorphism too. Let

$$
B=\left(\begin{array}{ccc}
R & R & R \\
I^{a} & R & R \\
I^{b} & I^{b} & R
\end{array}\right) \quad \text { and } \quad I_{3}=\left(\begin{array}{lll}
I^{c} & I^{c} & I^{c} \\
I^{c} & I^{c} & I^{c} \\
I^{c} & I^{c} & I^{c}
\end{array}\right)
$$

Then $A / I_{3}=A_{2}$ and $B / I_{3}=B_{2}$. Hence, we have a pull back square

By the same arguments as above, the homomorphism $K_{*}(A)(1 / s) \rightarrow K_{*}(B)(1 / s)$ is an isomorphism. Let

$$
C=\left(\begin{array}{ccc}
R & R & R \\
I^{a} & R & R \\
I^{a} & I^{a} & R
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{ccc}
I^{b} & I^{b} & I^{b} \\
I^{b} & I^{b} & I^{b} \\
I^{b} & I^{b} & I^{b}
\end{array}\right)
$$

Then

$$
B / J=\left(\begin{array}{ccc}
R / I^{b} & R / I^{b} & R / I^{b} \\
I^{a} / I^{b} & R / I^{b} & R / I^{b} \\
0 & 0 & R / I^{b}
\end{array}\right) \quad \text { and } \quad C / J=\left(\begin{array}{ccc}
R / I^{b} & R / I^{b} & R / I^{b} \\
I^{a} / I^{b} & R / I^{b} & R / I^{b} \\
I^{a} / I^{b} & I^{a} / I^{b} & R / I^{b}
\end{array}\right)
$$

We have a pull back square

By the associated $K_{*}(1 / s)$ Mayer-Vietoris sequence, $K_{*}(B)(1 / s) \rightarrow K_{*}(C)(1 / s)$ is an isomorphism if $K_{*}(B / J)(1 / s) \rightarrow K_{*}(C / J)(1 / s)$ is an isomorphism. Let

$$
D=\left(\begin{array}{ccc}
R / I & 0 & 0 \\
0 & R / I & 0 \\
0 & 0 & R / I
\end{array}\right)
$$

We have the following commutative diagram:

where f is the inclusion, g and h are the obvious quotient homomorphisms. By Theorem A of [4] and Consequence 1.4 of [8], the induced maps $g_{*}: K_{*}(B / J) \rightarrow$ $K_{*}(D)$ and $g_{*}: K_{*}(C / J) \rightarrow K_{*}(D)$ are isomorphisms. Thus, $f_{*}: K_{*}(B / J) \rightarrow$ $K_{*}(C / J)$. Hence, $K_{*}(B)(1 / s) \simeq K_{*}(C)(1 / s)$. We have already proved

$$
K_{*}(A)(1 / s) \simeq K_{*}(B)(1 / s)
$$

So

$$
\begin{aligned}
& K_{*}(A)(1 / s) \simeq K_{*}(C)(1 / s) \\
\simeq & K_{*}(R)(1 / s) \oplus K_{*}\left(R / I^{a}\right)(1 / s) \oplus K_{*}\left(R / I^{a}\right)(1 / s) \\
\simeq & K_{*}(R)(1 / s) \oplus K_{*}(R / I)(1 / s) \oplus K_{*}(R / I)(1 / s),
\end{aligned}
$$

which completes the proof.
Corollary 2.2. Let $E=M_{3}(R)$ be the ring of all 3×3 matrices over R and $f: A \rightarrow E$ the natural inclusion. The induced homomorphism $f_{*}: K_{*}(A)(1 / s) \rightarrow$ $K_{*}(E)(1 / s)$ is surjective.

Proof. By the proof of Proposition 2.1, $K_{*}(A)(1 / s) \rightarrow K_{*}(C)(1 / s)$ is surjective. By [4], $K_{*}(C)(1 / s) \rightarrow K_{*}(E)(1 / s)$ is surjective. Hence, the induced homomorphism $f_{*}: K_{*}(A)(1 / s) \rightarrow K_{*}(E)(1 / s)$ is surjective.

By the same arguments as in the proof of Proposition 2.1, we can prove the following proposition.

Proposition 2.3. Let p be a rational prime number and R a \mathbb{Z}_{p}-algebra. Let

$$
S=\left(\begin{array}{cccc}
R & R & \cdots & R \\
I^{s_{21}} & R & \cdots & R \\
\vdots & \ddots & \ddots & \vdots \\
I^{s_{n 1}} & \cdots & I^{s_{n n-1}} & R
\end{array}\right)
$$

be a ring, where I is a two-sided projective ideal of R and each $s_{i j}$ is a positive integer. Then

$$
K_{*}(S)(1 / s)=K_{*}(R)(1 / s) \oplus(n-1) K_{*}(R / I)(1 / s)
$$

and the homomorphism $K_{*}(S) \rightarrow K_{*}\left(M_{n}(R)\right)$ is surjective.

3 Application to Higher Class Groups of Locally Triangular Orders

Let F be a number field and \mathcal{O}_{F} the ring of integers in F. Let A be a semi-simple algebra over F and Λ an order in A. Let \wp be a maximal ideal of \mathcal{O}_{F}, and $F_{\wp}, \mathcal{O}_{F_{\wp}}$, $A_{\wp}, \Lambda_{\wp}, S$ be as defined in Section 1. Let s be the product of prime numbers in S. If D is a division algebra, let $D_{(\wp)}$ be the division algebra such that $D_{\wp} \simeq M_{k}\left(D_{(\wp)}\right)$.

If R is a ring, by $K_{m}^{c}(R)$ we denote the quotient of $K_{m}(R)$ by its divisible subgroup. Let \mathcal{S} be the set of primes, at which Λ_{\wp} is not maximal.

Lemma 3.1. The higher class group $C l_{2 n}(\Lambda)$ is a homomorphic image of

$$
\operatorname{coker}\left(\bigoplus_{\wp \in \mathcal{S}} K_{2 n+1}^{c}\left(\Lambda_{\wp}\right) \rightarrow K_{2 n+1}^{c}\left(\Gamma_{\wp}\right)\right)
$$

where Γ is a maximal order containing Λ.
Proof. This lemma follows from the proof of Lemma 2.1 of [2].
Definition 3.2. Let $A \simeq M_{n}(D)$, where D is a finite dimensional division algebra. We call an order Λ in A a locally triangular order if each Λ_{\wp} has the form

$$
\Lambda_{\wp} \simeq\left(\begin{array}{cccc}
R & R & \cdots & R \\
I^{s_{21}} & R & \cdots & R \\
\vdots & \ddots & \ddots & \vdots \\
I^{s_{k 1}} & \cdots & I^{s_{k k-1}} & R
\end{array}\right)
$$

where $s_{i j} \geq 1, R$ is the unique maximal order in $D_{(\wp)}$ and I is the unique maximal ideal of R. If $A \simeq \bigoplus M_{n_{i}}\left(D_{i}\right)$ is a semi-simple algebra, then an order Λ in A is
called a locally triangular order if $\Lambda \simeq \bigoplus_{i} \Lambda_{i}$, where Λ_{i} is a locally triangular order in $M_{n_{i}}\left(D_{i}\right)$.

Recall that if Γ_{\wp} is a maximal order in the simple algebra A_{\wp}, then Γ_{\wp} has the form

$$
\Gamma_{\wp} \simeq\left(\begin{array}{cccc}
R & R & \cdots & R \\
R & R & \cdots & R \\
\vdots & \ddots & \ddots & \vdots \\
R & \cdots & R & R
\end{array}\right) .
$$

Theorem 3.3. Let Λ be a locally triangular order in a semi-simple algebra A over F. For all $n \geq 1$, the q-primary part of $C l_{2 n}(\Lambda)$ is trivial for $q \notin S$.
Proof. Since Λ can be expressed as a direct sum of locally triangular orders in the simple components of A, we may assume that A is simple. This theorem follows from Proposition 2.3 and Lemma 3.1.

References

[1] R.M. Charney, A note on excision in K-theory, in: Algebraic K-theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), Lecture Notes in Mathematics 1046, Springer, Berlin, 1984, pp. 47-54.
[2] X. Guo, A.O. Kuku, Higher class groups of generalized Eichler orders, Comm. Algebra 33 (3) (2005) 709-718.
[3] M.E. Keating, A transfer map in K-theory, J. London Math. Soc. (Ser. 2) 16 (1) (1977) 38-42.
[4] M.E. Keating, The K-theory of triangular rings and orders, in: Algebraic K-Theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), Lecture Notes in Mathematics 1046, Springer, Berlin, 1984, pp. 178-192.
[5] M. Kolster, R. Laubenbacher, On higher class groups of orders, Math. Z. 228 (2) (1998) 229-246.
[6] A.O. Kuku, Some finiteness results in the higher K-theory of orders and group-rings, Topology Appl. 25 (2) (1987) 185-191.
[7] C.A. Weibel, Mayer-Vietoris sequences and module structures on $N K_{*}$, in: Algebraic K-Theory (Evanston 1980), Lecture Notes in Mathematics 854, Springer, Berlin, 1981, pp. 466-493.
[8] C.A. Weibel, Mayer-Vietoris sequences and mod $p K$-theory, in: Algebraic K-Theory (Oberwolfach, 1980), Part I, Lecture Notes in Mathematics 966, Springer, Berlin, 1982, pp. 390-407.

[^0]: *Supported by the NSFC of China (10401014).

