Algebra Colloquium 16:1 (2009) 79-84

Algebra Colloquium © 2009 AMSS CAS & SUZHOU UNIV

Higher Class Groups of Locally Triangular Orders over Number Fields^{*}

Xuejun Guo

Department of Mathematics, Nanjing University, Nanjing 210093, China Department of Mathematics, University College Dublin, Ireland E-mail: guoxj@nju.edu.cn

Aderemi Kuku

Department of Mathematics, Miami University 501 East High Street, Oxford, Ohio 45056, USA E-mail: kuku@math.ohio-state.edu

> Received 8 May 2006 Revised 24 February 2007 Communicated by Nanqing Ding

Abstract. In this paper, we study the K-theory of triangular rings. As an application, we show that for a locally triangular order Λ , the p-torsion in the higher class group $Cl_{2n}(\Lambda)$ can only occur for primes p which lie under the prime ideals \wp of \mathcal{O}_F , at which Λ is not maximal.

2000 Mathematics Subject Classification: 19D50, 19F27

Keywords: higher class group, locally triangular order, semi-simple algebra

1 Introduction

Let R be a ring and I a two-sided projective ideal of R. In [4], Keating studied the K-theory of a "triangular tiled" ring, i.e., a ring of the $n \times n$ matrix form

$$M = \begin{pmatrix} R & R & \cdots & R \\ I & R & \cdots & R \\ \vdots & \ddots & \ddots & \vdots \\ I & \cdots & I & R \end{pmatrix},$$

and proved that $K_*(M) \simeq K_*(R) \oplus (n-1)K_*(R/I)$.

It is interesting to study the K-theory of rings like

$$S = \begin{pmatrix} R & R & \cdots & R \\ I^{s_{21}} & R & \cdots & R \\ \vdots & \ddots & \ddots & \vdots \\ I^{s_{n1}} & \cdots & I^{s_{n\,n-1}} & R \end{pmatrix},$$

*Supported by the NSFC of China (10401014).

where each s_{ij} is a positive integer. For any abelian group G and a rational integer s, let G(1/s) be the group $G \bigotimes_{\mathbb{Z}} \mathbb{Z}[1/s]$. In this paper, we prove that if R is a \mathbb{Z}_p -algebra, then

$$K_*(S)(1/s) = K_*(R)(1/s) \oplus (n-1)K_*(R/I)(1/s),$$

where s is a rational integer such that $p \mid s$ (Proposition 2.3).

In Section 3, we give an application of this result. Let F be a number field and \mathcal{O}_F the ring of integers in F. Let A be a semi-simple algebra over F and Λ an order in A. For any maximal ideal \wp of \mathcal{O}_F , let F_{\wp} , $\mathcal{O}_{F_{\wp}}$, A_{\wp} , Λ_{\wp} be the \wp -completions of F, \mathcal{O}_F , A, Λ , respectively. Let

 $S = \{p \in \mathbb{Z} \mid \text{for some maximal ideal } \wp \text{ of } \mathcal{O}_F \text{ such that } \wp | p, \Lambda_{\wp} \text{ is not maximal} \}.$

Recall that for any integer $n \geq 1$, the higher class group of Λ is defined as $Cl_n(\Lambda) = \ker \left(SK_n(\Lambda) \to \bigoplus_{\wp} SK_n(\Lambda_{\wp})\right)$, where \wp runs through all maximal ideals of \mathcal{O}_F and $SK_n(\Lambda) := \ker(K_n(\Lambda) \to K_n(A))$. By Theorems 1 and 2 in [3], $Cl_n(\Lambda)$ is trivial for maximal orders. Later, Kuku proved in [6] that $Cl_n(\Lambda)$ is finite for arbitrary orders. In [5], it is proved that the only *p*-torsion possible in $Cl_{2n+1}(\Lambda)$ is for those rational primes *p* which lie under the prime ideals of \mathcal{O}_F , at which Λ is not maximal. In [2], we prove that if the order is a generalized Eichler order, then the only *p*-torsion possible in $Cl_{2n+1}(\Lambda)$ is for those rational primes *p* which lie under the same form with Λ is not maximal. Locally, a generalized Eichler order has the same form with M in the beginning of this section.

In this paper, we consider locally triangular orders which are locally isomorphic to S as above. So locally triangular orders are a generalization of generalized Eichler orders. We prove in Theorem 3.3 that if Λ is a locally triangular order in a semisimple algebra A over F, then the q-primary part of $Cl_{2n}(\Lambda)$ is trivial for $q \notin S$.

2 K-Theory of Triangular Rings

In this section, R is a \mathbb{Z}_p -algebra and I is a two-sided projective ideal of R. Assume that R/I^n is a finite ring for any positive integer n. Let s be an integer such that p|s. Let a, b, c be positive integers such that $a + b \ge c \ge b \ge a$. The last inequality is to assure that

$$A = \begin{pmatrix} R & R & R \\ I^a & R & R \\ I^c & I^b & R \end{pmatrix}$$

is a ring.

Proposition 2.1. Let A be the triangular ring as above. Then

$$K_*(A)(1/s) \simeq K_*(R)(1/s) \oplus K_*(R/I)(1/s) \oplus K_*(R/I)(1/s)$$
.

Proof. Let

$$B_1 = \begin{pmatrix} R/I^b & R/I^b & R/I^b \\ I^a/I^b & R/I^b & R/I^b \\ I^b/I^c & 0 & R/I^b \end{pmatrix} \quad \text{and} \quad I_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ I^b/I^c & 0 & 0 \end{pmatrix}.$$

Note that since $2b \ge c$, I^b/I^c is an R/I^b -module. Hence, for any element $a \in I^b/I^c$ and $b \in R/I^b$, the product $ab \in I^b/I^c$ is well defined. So B_1 is a ring, and I_1 is a two-sided ideal of B_1 . Let

$$A_1 = B_1/I = \begin{pmatrix} R/I^b & R/I^b & R/I^b \\ I^a/I^b & R/I^b & R/I^b \\ 0 & 0 & R/I^b \end{pmatrix}.$$

Then by Consequence 1.4 of [8], $K_*(B_1, I_1)$ is a $\mathbb{Z}[1/q]$ -module for any prime $q \neq p$. So $K_*(B_1)(1/s) \xrightarrow{\sim} K_*(A_1)(1/s)$ for any integer s such that $p \mid s$. Note that the composition

$$A_1 \stackrel{\text{inclusion}}{\longrightarrow} B_1 \stackrel{\text{quotient}}{\longrightarrow} A_1$$

is an identity map of A_1 . So the homomorphism $K_*(A_1)(1/s) \xrightarrow{\sim} K_*(B_1)(1/s)$ induced by inclusion is an isomorphism.

Let

$$A_{2} = \begin{pmatrix} R/I^{c} & R/I^{c} & R/I^{c} \\ I^{a}/I^{c} & R/I^{c} & R/I^{c} \\ 0 & I^{b}/I^{c} & R/I^{c} \end{pmatrix}, \quad B_{2} = \begin{pmatrix} R/I^{c} & R/I^{c} & R/I^{c} \\ I^{a}/I^{c} & R/I^{c} & R/I^{c} \\ I^{b}/I^{c} & I^{b}/I^{c} & R/I^{c} \end{pmatrix}$$

and

$$I_{2} = \begin{pmatrix} I^{b}/I^{c} & I^{b}/I^{c} & I^{b}/I^{c} \\ I^{b}/I^{c} & I^{b}/I^{c} & I^{b}/I^{c} \\ 0 & I^{b}/I^{c} & I^{b}/I^{c} \end{pmatrix}.$$

Then $B_1 = B_2/I_2$ and $A_1 = A_2/I_2$. Hence, we have the following commutative diagram:

This diagram is a pull back square. So by [7] or [1], this square has an associated $K_*(1/s)$ Mayer–Vietoris sequence

$$\cdots \to K_*(A_2)(1/s) \to K_*(B_2)(1/s) \oplus K_*(A_1)(1/s) \to K_*(B_1)(1/s) \to \cdots$$

Since we have proved that $K_*(A_1)(1/s) \to K_*(B_1)(1/s)$ is an isomorphism, $K_*(A_2)(1/s) \to K_*(B_2)(1/s)$ must be an isomorphism too. Let

$$B = \begin{pmatrix} R & R & R \\ I^a & R & R \\ I^b & I^b & R \end{pmatrix} \quad \text{and} \quad I_3 = \begin{pmatrix} I^c & I^c & I^c \\ I^c & I^c & I^c \\ I^c & I^c & I^c \end{pmatrix}.$$

Then $A/I_3 = A_2$ and $B/I_3 = B_2$. Hence, we have a pull back square

$$\begin{array}{c} A \longrightarrow B \\ \downarrow & \downarrow \\ A_2 \longrightarrow B_2 \end{array}$$

By the same arguments as above, the homomorphism $K_*(A)(1/s) \to K_*(B)(1/s)$ is an isomorphism. Let

$$C = \begin{pmatrix} R & R & R \\ I^a & R & R \\ I^a & I^a & R \end{pmatrix} \quad \text{and} \quad J = \begin{pmatrix} I^b & I^b & I^b \\ I^b & I^b & I^b \\ I^b & I^b & I^b \end{pmatrix}.$$

Then

$$B/J = \begin{pmatrix} R/I^b & R/I^b & R/I^b \\ I^a/I^b & R/I^b & R/I^b \\ 0 & 0 & R/I^b \end{pmatrix} \quad \text{and} \quad C/J = \begin{pmatrix} R/I^b & R/I^b & R/I^b \\ I^a/I^b & R/I^b & R/I^b \\ I^a/I^b & I^a/I^b & R/I^b \end{pmatrix}$$

We have a pull back square

By the associated $K_*(1/s)$ Mayer–Vietoris sequence, $K_*(B)(1/s) \to K_*(C)(1/s)$ is an isomorphism if $K_*(B/J)(1/s) \to K_*(C/J)(1/s)$ is an isomorphism. Let

$$D = \begin{pmatrix} R/I & 0 & 0\\ 0 & R/I & 0\\ 0 & 0 & R/I \end{pmatrix}.$$

We have the following commutative diagram:

where f is the inclusion, g and h are the obvious quotient homomorphisms. By Theorem A of [4] and Consequence 1.4 of [8], the induced maps $g_* : K_*(B/J) \to K_*(D)$ and $g_* : K_*(C/J) \to K_*(D)$ are isomorphisms. Thus, $f_* : K_*(B/J) \to K_*(C/J)$. Hence, $K_*(B)(1/s) \simeq K_*(C)(1/s)$. We have already proved

$$K_*(A)(1/s) \simeq K_*(B)(1/s).$$

 So

$$K_*(A)(1/s) \simeq K_*(C)(1/s)$$

$$\simeq K_*(R)(1/s) \oplus K_*(R/I^a)(1/s) \oplus K_*(R/I^a)(1/s)$$

$$\simeq K_*(R)(1/s) \oplus K_*(R/I)(1/s) \oplus K_*(R/I)(1/s),$$

which completes the proof.

Corollary 2.2. Let $E = M_3(R)$ be the ring of all 3×3 matrices over R and $f: A \to E$ the natural inclusion. The induced homomorphism $f_*: K_*(A)(1/s) \to K_*(E)(1/s)$ is surjective.

82

Proof. By the proof of Proposition 2.1, $K_*(A)(1/s) \to K_*(C)(1/s)$ is surjective. By [4], $K_*(C)(1/s) \to K_*(E)(1/s)$ is surjective. Hence, the induced homomorphism $f_*: K_*(A)(1/s) \to K_*(E)(1/s)$ is surjective.

By the same arguments as in the proof of Proposition 2.1, we can prove the following proposition.

Proposition 2.3. Let p be a rational prime number and R a \mathbb{Z}_p -algebra. Let

$$S = \begin{pmatrix} R & R & \cdots & R \\ I^{s_{21}} & R & \cdots & R \\ \vdots & \ddots & \ddots & \vdots \\ I^{s_{n1}} & \cdots & I^{s_{n\,n-1}} & R \end{pmatrix}$$

be a ring, where I is a two-sided projective ideal of R and each s_{ij} is a positive integer. Then

$$K_*(S)(1/s) = K_*(R)(1/s) \oplus (n-1)K_*(R/I)(1/s),$$

and the homomorphism $K_*(S) \to K_*(M_n(R))$ is surjective.

3 Application to Higher Class Groups of Locally Triangular Orders

Let F be a number field and \mathcal{O}_F the ring of integers in F. Let A be a semi-simple algebra over F and Λ an order in A. Let \wp be a maximal ideal of \mathcal{O}_F , and F_{\wp} , $\mathcal{O}_{F_{\wp}}$, A_{\wp} , Λ_{\wp} , S be as defined in Section 1. Let s be the product of prime numbers in S. If D is a division algebra, let $D_{(\wp)}$ be the division algebra such that $D_{\wp} \simeq M_k(D_{(\wp)})$.

If R is a ring, by $K_m^c(R)$ we denote the quotient of $K_m(R)$ by its divisible subgroup. Let S be the set of primes, at which Λ_{\wp} is not maximal.

Lemma 3.1. The higher class group $Cl_{2n}(\Lambda)$ is a homomorphic image of

$$\operatorname{coker} \Big(\bigoplus_{\wp \in \mathcal{S}} K_{2n+1}^c(\Lambda_{\wp}) \to K_{2n+1}^c(\Gamma_{\wp}) \Big),$$

where Γ is a maximal order containing Λ .

Proof. This lemma follows from the proof of Lemma 2.1 of [2].

Definition 3.2. Let $A \simeq M_n(D)$, where D is a finite dimensional division algebra. We call an order Λ in A a *locally triangular order* if each Λ_{\wp} has the form

$$\Lambda_{\wp} \simeq \begin{pmatrix} R & R & \cdots & R \\ I^{s_{21}} & R & \cdots & R \\ \vdots & \ddots & \ddots & \vdots \\ I^{s_{k1}} & \cdots & I^{s_{k\,k-1}} & R \end{pmatrix},$$

where $s_{ij} \geq 1$, R is the unique maximal order in $D_{(\wp)}$ and I is the unique maximal ideal of R. If $A \simeq \bigoplus_{i} M_{n_i}(D_i)$ is a semi-simple algebra, then an order Λ in A is

called a *locally triangular order* if $\Lambda \simeq \bigoplus_{i} \Lambda_{i}$, where Λ_{i} is a locally triangular order in $M_{n_{i}}(D_{i})$.

Recall that if Γ_\wp is a maximal order in the simple algebra $A_\wp,$ then Γ_\wp has the form

$$\Gamma_{\wp} \simeq \begin{pmatrix} R & R & \cdots & R \\ R & R & \cdots & R \\ \vdots & \ddots & \ddots & \vdots \\ R & \cdots & R & R \end{pmatrix}.$$

Theorem 3.3. Let Λ be a locally triangular order in a semi-simple algebra A over F. For all $n \geq 1$, the q-primary part of $Cl_{2n}(\Lambda)$ is trivial for $q \notin S$.

Proof. Since Λ can be expressed as a direct sum of locally triangular orders in the simple components of A, we may assume that A is simple. This theorem follows from Proposition 2.3 and Lemma 3.1.

References

- R.M. Charney, A note on excision in K-theory, in: Algebraic K-theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), Lecture Notes in Mathematics 1046, Springer, Berlin, 1984, pp. 47–54.
- [2] X. Guo, A.O. Kuku, Higher class groups of generalized Eichler orders, Comm. Algebra 33 (3) (2005) 709–718.
- [3] M.E. Keating, A transfer map in K-theory, J. London Math. Soc. (Ser. 2) 16 (1) (1977) 38–42.
- [4] M.E. Keating, The K-theory of triangular rings and orders, in: Algebraic K-Theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), Lecture Notes in Mathematics 1046, Springer, Berlin, 1984, pp. 178–192.
- [5] M. Kolster, R. Laubenbacher, On higher class groups of orders, Math. Z. 228 (2) (1998) 229-246.
- [6] A.O. Kuku, Some finiteness results in the higher K-theory of orders and group-rings, Topology Appl. 25 (2) (1987) 185–191.
- [7] C.A. Weibel, Mayer-Vietoris sequences and module structures on NK_{*}, in: Algebraic K-Theory (Evanston 1980), Lecture Notes in Mathematics 854, Springer, Berlin, 1981, pp. 466–493.
- [8] C.A. Weibel, Mayer-Vietoris sequences and mod p K-theory, in: Algebraic K-Theory (Oberwolfach, 1980), Part I, Lecture Notes in Mathematics 966, Springer, Berlin, 1982, pp. 390–407.