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1. INTRODUCTION AND NOTATIONS

Let F' be a number field, O be its integers ring and S,, denote the set of
archimedean places of F. If S is a non empty set of places containing S,,. we
put Og = {a € F| v(a) >0, for all v ¢ S} be the ring of S-integers. Assume
that P is the maximal ideal corresponding to v € S, let k(v) = Og/P, then the
norm N (v) = |k(v)].

We shall put K3 F the subgroup of KyF generated by {z, y}, where z, y €
O = U. We can list the the finite places of F', vy, vq, ..., v, ... so that
N(v;) < N(viyq) for all i. Put S, = Seo U {v1, ..., vm}. Let S = Sy, v =
Vi1 € S, S = Sy = SU{}, U= 0%, k =k(v) = Og/P and k* denotes
the multiplicative group of k. Let J, be the tame map corresponding to v, in [5]
Bass and Tate show that for sufficiently large m, the induced homomorphism

0,: KSF/KSF — k"
is an isomorphism. This result implies that
Ky0p = Ker(d,: Ki"F— [ k().
0ESm\Sao

If we can make m relatively small and get sufficiently many relations among
KJ™F, then we can determine the tame kernel of F. Theorem 2.6 of part 2 will
give a relatively small m, so the computation of tame kernel will be simplified.
Our estimation on the lower bound of m (or equivalently, Nv), is smaller than
that given in [1], [2], [3], [4].

let P be the maximal ideal generated by 7, we denote by U; the group generated
by (1 + 7U) N U. Moreover, by [5], there is a commutative diagram

U

a g

K5 F/KSF gk
where a maps u € U to {u,7}(mod K5F) and (3 is the natural quotient map.
2. MAIN RESULTS
The following Lemma is based on Lemma 3.2 and Lemma 3.4 of [5].

Lemma 2.1. 0, : K2S/F/K25F — k* is bijective if there exist subsets W, E C

Or NU satisfying:
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(a) the prime ideal of Og corresponding to v is principal,

(b) W generates U and 1 € W.

(c) the map E x E x E — k* x k* sending (a, b, c) to (b/a,c/a) is
surjective

(d) for any ey, eq, €3, €4 € E, N(ejea — e3e4) < (Nv)?

(e) for any w € W | there exist ey, es € E and uy € Uy such that e;w =

€U7.

Proof. Sketch of Proof In the above commutative diagram of partl, to prove 9,
is bijective, suffices to show that: a and g are surjective and Ker(3) C Ker(a).

From (a) and (c), the surjectivity of o and [ can be proved easily. So we
need only to prove Ker() C Ker(a). Since U; C Ker(a), it suffices to prove
Ker(B) C Uy. For any x € ker 8 C U, by (e), we can find w;, e;/e;, us, 1 <i <t
such that Eie_; =eu; and r = wy - - - wy, where w; € W and e;, e; ceFk 1<i<t.

So

e e eqw e, Wy
e e e e

By condition (e), we see that e;w;/e; = u; € U;. So it suffices to show that
e1---e/ey---e; € Uy. Using the condition (c), Tate’s proof of Lemma 3.4 of [5]
on page 410 can be applied. Il

So to make 0, bijective, one needs to choose suitable S, W and E such that
the conditions in Lemma 2.1 is satisfied. Before doing this, an analogue of the
GTT Theorem of [4] is needed(Theorem 2.3).

Let F' be a number field with discriminant D and (F : Q) = n = s+ 2t. Let
O1y oeey Og, Os11,0541, ---, Osit, Osry be embedding of the field F' into C, where oy,
..., 0g are real embedding and o4y1,05:1, ..., Os1¢, Osy¢ are complex embedding.
For any element = € Op, let

M (z) := maz{|o1|, ..., |os|, |osi1l, -y |osst|}-
Let V! := R x C'. We have a map
o: F— V> o(a) = (01(a), ..., 04(q), 041(), ..., osrs()).

For any integral ideal I of Op, o([) is a lattice in V*'. For any prime ideal P
of Op and a, b € Op, we can define f,;, : VS x V& x Vst — Vst x VSt by
fap(z, y, 2) = (y—z0o(a), z—x0(b)). Let LZZb = (;bl(a(P) x a(P))N(c(OF) x

O'(OF) X O'(OF))
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Lemma 2.2. vol LT, = 87" |D]*?. N(P)2.

Proof. Considering the map f : VSIxVSIxVSt — VSIXVSIxVSt f(x y, 2) =
(z, y —xo(a), z—xo(b)), we have f(L7,) = L. fis a linear transformation
and can be seen as a matrix

I * x
M=101 0],
00 [
where I is an identity matrix. Since det(M) = 1, vol LF, =vol L{, = vol
(0(P)o(P)a(OF)) = vol (a(P))? -vol o(Or) = 273 - |D>/? - N(P)>2. O

Theorem 2.3. If P is a prime ideal of the ring Op with N(P) > (2/m)3|D|*/?
and hy, hs, hs > 0 satisfying conditions
(1) hahahs = (2/m)*/ " DP/2 N (PY,
() W< N(P),
then for any @, b € (Op/P)* there exist ey, ey, es € Op — P such that
(a) M(e;) <hg,i=1,2, 3,

(b) a=r¢ey/er, b=e3/e, where “bar” means the image in (Op/P)*.

Proof. For arbitrary h = (hy, ho,hg) > 0, where h; > 0, i« = 1, 2, 3. Let
Spi={(x,y,2) € VI X VXV || < hy, Jys| < he, 2] < hg, i =1,...,s+t}.
We know that

vol Sy = (2°7")*hihyhy = 29| DI*2N(P)? = 2% - wol LT,

By Minkowski theorem, there exist a nonzero vector in LzbﬁSh, ie., foranya, b €
Op —P, we can find :c((;% €Or (i=1, 2, 3)such th@t (a(xglg), a(x((jg), a(:cf’g))e
LF, NS, Since N(z®) < hr < N(P), we know z\') € Op — P. Let ¢; = 21

a, a, a,b’
where ¢ = 1, 2, 3, we have es = eja (mod P), e3 = e1b (mod P). Since e; is not

contained in P, i = 1, 2, 3, we have @ = & /€, b = €3/e,. O

Using Lemma 2.1 and Theorem 2.3, we can do some computation on the tame
kernel of an imaginary quadratic field. In the following context, F' denotes an
imaginary quadratic field with discriminant D. Let dp = (2/7)Y2|D|*/* and
E={r: 2 ¢€ Op0 < |z| < 6pN(P)/?}. Confining Theorem 2.3 to an

imaginary quadratic field F', we have the following lemma.
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Lemma 2.4. Let F' be an imaginary quadratic field with discriminant D. If P
is a prime ideal of the ring Op with N(P) > 6%, then for any @, b € (Op/P)*
there exist €1, ea, e3 € Op — P such that

(1) el KIN(P)V3 i=1, 2, 3.

(2) @==ey/e1, b=2e3/e, where “bar” means the image in (Op/P)*.

Remark  Using Lemma 2.4, it can be easily seen that the condition (c) of
Lemma 2.1 is satisfied when N(P) > §%.

Next we need a set W C OpNU such that W generates U and satisfy condition
(e) of Lemma 2.1. Let g be the least number such that in every class of ideals of
Op there is an ideal of norm < gp. In [1], Browkin proved the following Lemma.

Lemma 2.5. (Browkin) There is a set W C U such that for any w € W, its
norm Nw < qpNv, if
(7) hr <2, and qp < N(P), (i1) hr > 2 and ¢% < N(P).

One can find the detailed message about W in part 3.2 of [1].

Theorem 2.6. If Nv > 809, 9, : Kle/KfF — k* is bijective.

Proof. Since F' is an imaginary quadratic field, we have

2v/3 2
qr < v/ |D’/3 < TQF < ;\/ |d| < 52D

So the condition of Lemma 2.5 is satisfied. We can choose a generating set W of
U such that Nw < geNv. By the remark below Lemma 2.4, the condition (c)
of Lemma 2.1 is satisfied. So we need to show that the set W and E defined as
above satisfy the conditions (d) and (e) of Lemma 2.1.

For any ey, ey, e3, €4 € B, N(ejes — ezeq) = |eres — eseq] < (|eres] + |eseq|)? <
464 N(P)*3 < N(P)2. So the condition (d) of Lemma 2.1 is satisfied. We define
Ey={r: € Op 0<|z| < 6pN(P)/*} C E. By the virtue of the GTT
Theorem of [4], for any w € W, there exist e;, ey € F; such that e;w — ey € P.
We need only to show that % € U,. Let h = N(P)2/V2, K = \20%. By
Theorem 2 of [1], there exist a, b € Op such that |a| < h, |b| <K', @/b=¢,/e,.
So & = a8 b where &4 € ker3 and 2 € ker[3.

We claim that % € U; and %b e U,.
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By Lemma 1 of [6], to prove €% € Uy, it is sufficient to prove that [e1a|+]e2b| <
N(P). Since

=
=
3
=t
=
3
=
3

(P) 2
7 +V26%) < 7 - ( 7

1
— L+ Ny < NP,
we have % e U;.
To prove “2 € U, by Lemma 7 of [1], it suffices to show that /N(P) >
maz(26%,\/2qr03, + \/Lﬁ) Since 0%, > qp, we can replace this condition as
N(P) > max(26h, v26% + Z5). Obviously, /N(P) > /8% > 253. So
we need only to show that 2v/263 > v/26% 4+ 1/v/2, i.e., V263 > 1/v/2. This

inequation holds in all cases. O

leral + |esb| < pN(P)i(

B

In the table below, we give the estimation of Nv for some cases. The first row
is the discriminant of the quadratic imaginary field, the second row is the value
of 849,

—19 —20 —24 —35 —43 —83 —131 —151
170.95 184.62 242.69 427.40 528.01 1560.80 3094.83 3829.97
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