A remark on computing the tame kernel of quadratic imaginary fields

GUO XUEJUN SONG GUANGTIAN
Department of Mathematics
University of Science and Technology of China
Hefei, Anhui 230026, P.R.China

Abstract

In this paper, we discuss a method to compute the tame kernel of number field. Confining to imaginary quadratic field, we prove that ∂_{v} : $K_{2}^{S^{\prime}} F / K_{2}^{S} F \longrightarrow k^{*}$ is bijective when $N v>8 \delta_{D}^{6}$. Keywords: Tame kernel, quadratic imaginary fields, GTT Theorem 1991 MR Subject Classification: 19C20

1. Introduction and Notations

Let F be a number field, \mathcal{O}_{F} be its integers ring and S_{∞} denote the set of archimedean places of F. If S is a non empty set of places containing S_{∞}. we put $\mathcal{O}_{S}=\{a \in F \mid v(a) \geq 0$, for all $v \notin S\}$ be the ring of S-integers. Assume that \mathcal{P} is the maximal ideal corresponding to $v \in S$, let $k(v)=\mathcal{O}_{S} / P$, then the norm $N(v)=|k(v)|$.

We shall put $K_{2}^{S} F$ the subgroup of $K_{2} F$ generated by $\{x, y\}$, where $x, y \in$ $\mathcal{O}_{S}^{*}=U$. We can list the the finite places of $F, v_{1}, v_{2}, \ldots, v_{n}, \ldots$ so that $N\left(v_{i}\right) \leq N\left(v_{i+1}\right)$ for all i. Put $S_{m}=S_{\infty} \cup\left\{v_{1}, \ldots, v_{m}\right\}$. Let $S=S_{m}, v=$ $v_{m+1} \notin S, S^{\prime}=S_{m+1}=S \cup\{v\}, U=\mathcal{O}_{S}^{*}, k=k(v)=\mathcal{O}_{S} / P$ and k^{*} denotes the multiplicative group of k. Let ∂_{v} be the tame map corresponding to v, in [5] Bass and Tate show that for sufficiently large m, the induced homomorphism

$$
\partial_{v}: \quad K_{2}^{S^{\prime}} F / K_{2}^{S} F \longrightarrow k^{*}
$$

is an isomorphism. This result implies that

$$
K_{2} \mathcal{O}_{F}=\operatorname{Ker}\left(\partial_{v}: \quad K_{2}^{S_{m}} F \longrightarrow \coprod_{v \in S_{m} \backslash S_{\infty}} k^{*}(v)\right) .
$$

If we can make m relatively small and get sufficiently many relations among $K_{2}^{S_{m}} F$, then we can determine the tame kernel of F. Theorem 2.6 of part 2 will give a relatively small m, so the computation of tame kernel will be simplified. Our estimation on the lower bound of m (or equivalently, $N v$), is smaller than that given in [1], [2], [3], [4].
let \mathcal{P} be the maximal ideal generated by π, we denote by U_{1} the group generated by $(1+\pi U) \cap U$. Moreover, by [5], there is a commutative diagram

where α maps $u \in U$ to $\{u, \pi\}\left(\bmod K_{2}^{S} F\right)$ and β is the natural quotient map.

2. Main Results

The following Lemma is based on Lemma 3.2 and Lemma 3.4 of [5].
Lemma 2.1. $\partial_{v}: K_{2}^{S^{\prime}} F / K_{2}^{S} F \longrightarrow k^{*}$ is bijective if there exist subsets $W, E \subset$ $\mathcal{O}_{F} \cap U$ satisfying:
(a) the prime ideal of \mathcal{O}_{S} corresponding to v is principal,
(b) W generates U and $1 \in W$.
(c) the map $E \times E \times E \longrightarrow k^{*} \times k^{*}$ sending (a, b, c) to $(\bar{b} / \bar{a}, \bar{c} / \bar{a})$ is surjective
(d) for any $e_{1}, e_{2}, e_{3}, e_{4} \in E, N\left(e_{1} e_{2}-e_{3} e_{4}\right)<(N v)^{2}$
(e) for any $w \in W$, there exist $e_{1}, e_{2} \in E$ and $u_{1} \in U_{1}$ such that $e_{1} w=$ $e_{2} u_{1}$.

Proof. Sketch of Proof In the above commutative diagram of part1, to prove ∂_{v} is bijective, suffices to show that: α and β are surjective and $\operatorname{Ker}(\beta) \subset \operatorname{Ker}(\alpha)$.

From (a) and (c), the surjectivity of α and β can be proved easily. So we need only to prove $\operatorname{Ker}(\beta) \subset \operatorname{Ker}(\alpha)$. Since $U_{1} \subset \operatorname{Ker}(\alpha)$, it suffices to prove $\operatorname{Ker}(\beta) \subset U_{1}$. For any $x \in \operatorname{ker} \beta \subset U$, by (e), we can find $w_{i}, e_{i} / e_{i}^{\prime}, u_{i}, 1 \leq i \leq t$ such that $\bar{w}_{i} \bar{e}_{i}^{\prime}=\bar{e}_{i} \bar{u}_{i}$ and $x=w_{1} \cdots w_{t}$, where $w_{i} \in W$ and $e_{i}, e_{i}^{\prime} \in E, 1 \leq i \leq t$. So

$$
x=\frac{e_{1} \cdots e_{t}}{e_{1}^{\prime} \cdots e_{t}^{\prime}} \cdot \frac{e_{1}^{\prime} w_{1}}{e_{1}} \cdots \cdots \frac{e_{t}^{\prime} w_{t}}{e_{t}}
$$

By condition (e), we see that $e_{i}^{\prime} w_{i} / e_{i}=u_{1} \in U_{1}$. So it suffices to show that $e_{1} \cdots e_{t} / e_{1}^{\prime} \cdots e_{t}^{\prime} \in U_{1}$. Using the condition (c), Tate's proof of Lemma 3.4 of [5] on page 410 can be applied.

So to make ∂_{v} bijective, one needs to choose suitable S, W and E such that the conditions in Lemma 2.1 is satisfied. Before doing this, an analogue of the GTT Theorem of [4] is needed(Theorem 2.3).

Let F be a number field with discriminant D and $(F: \mathbb{Q})=n=s+2 t$. Let $\sigma_{1}, \ldots, \sigma_{s}, \sigma_{s+1}, \bar{\sigma}_{s+1}, \ldots, \sigma_{s+t}, \bar{\sigma}_{s+t}$ be embedding of the field F into \mathbb{C}, where σ_{1}, \ldots, σ_{s} are real embedding and $\sigma_{s+1}, \bar{\sigma}_{s+1}, \ldots, \sigma_{s+t}, \bar{\sigma}_{s+t}$ are complex embedding. For any element $x \in \mathcal{O}_{F}$, let

$$
M(x):=\max \left\{\left|\sigma_{1}\right|, \ldots,\left|\sigma_{s}\right|,\left|\sigma_{s+1}\right|, \ldots,\left|\sigma_{s+t}\right|\right\}
$$

Let $V^{s, t}:=\mathbb{R}^{s} \times \mathbb{C}^{t}$. We have a map

$$
\sigma: F \longrightarrow V^{s, t}, \sigma(\alpha)=\left(\sigma_{1}(\alpha), \ldots, \sigma_{s}(\alpha), \sigma_{s+1}(\alpha), \ldots, \sigma_{s+t}(\alpha)\right) .
$$

For any integral ideal I of $\mathcal{O}_{F}, \sigma(I)$ is a lattice in $V^{s, t}$. For any prime ideal \mathcal{P} of \mathcal{O}_{F} and $a, b \in \mathcal{O}_{F}$, we can define $f_{a, b}: V^{s, t} \times V^{s, t} \times V^{s, t} \longrightarrow V^{s, t} \times V^{s, t}$ by $f_{a, b}(x, y, z)=(y-x \sigma(a), z-x \sigma(b))$. Let $L_{a, b}^{\mathcal{P}}:=f_{a, b}^{-1}(\sigma(\mathcal{P}) \times \sigma(\mathcal{P})) \cap\left(\sigma\left(\mathcal{O}_{F}\right) \times\right.$ $\left.\sigma\left(\mathcal{O}_{F}\right) \times \sigma\left(\mathcal{O}_{F}\right)\right)$.

Lemma 2.2. vol $L_{a, b}^{\mathcal{P}}=8^{-t} \cdot|D|^{3 / 2} \cdot N(\mathcal{P})^{2}$.

Proof. Considering the map $f: V^{s, t} \times V^{s, t} \times V^{s, t} \longrightarrow V^{s, t} \times V^{s, t} \times V^{s, t}, f(x, y, z):=$ $(x, y-x \sigma(a), z-x \sigma(b))$, we have $f\left(L_{a, b}^{\mathcal{P}}\right)=L_{0,0}^{\mathcal{P}} . f$ is a linear transformation and can be seen as a matrix

$$
M:=\left(\begin{array}{ccc}
I & * & * \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right)
$$

where I is an identity matrix. Since $\operatorname{det}(M)=1, \operatorname{vol} L_{a, b}^{\mathcal{P}}=\operatorname{vol} L_{0,0}^{\mathcal{P}}=\operatorname{vol}$ $\left(\sigma(\mathcal{P}) \sigma(\mathcal{P}) \sigma\left(\mathcal{O}_{F}\right)\right)=\operatorname{vol}(\sigma(\mathcal{P}))^{2} \cdot \operatorname{vol} \sigma\left(\mathcal{O}_{F}\right)=2^{-3 t} \cdot|D|^{3 / 2} \cdot N(\mathcal{P})^{2}$.

Theorem 2.3. If \mathcal{P} is a prime ideal of the ring \mathcal{O}_{F} with $N(\mathcal{P})>(2 / \pi)^{3 t}|D|^{3 / 2}$ and $h_{1}, h_{2}, h_{3}>0$ satisfying conditions
(1) $h_{1} h_{2} h_{3}=(2 / \pi)^{3 t / n}|D|^{3 / 2 n} N(\mathcal{P})^{2 / n}$,
(2) $h_{i}^{n}<N(\mathcal{P})$,
then for any $\bar{a}, \bar{b} \in\left(\mathcal{O}_{F} / \mathcal{P}\right)^{*}$ there exist $e_{1}, e_{2}, e_{3} \in \mathcal{O}_{F}-\mathcal{P}$ such that
(a) $M\left(e_{i}\right) \leq h_{i}, i=1,2,3$,
(b) $\bar{a}=\bar{e}_{2} / \bar{e}_{1}, \bar{b}=\bar{e}_{3} / \bar{e}_{1}$, where "bar" means the image in $\left(\mathcal{O}_{F} / \mathcal{P}\right)^{*}$.

Proof. For arbitrary $h=\left(h_{1}, h_{2}, h_{3}\right)>0$, where $h_{i}>0, i=1,2,3$. Let $S_{h}:=\left\{(x, y, z) \in V^{s, t} \times V^{s, t} \times V^{s, t}| | x_{i}\left|\leq h_{1},\left|y_{i}\right| \leq h_{2},\left|z_{i}\right| \leq h_{3}, i=1, \ldots, s+t\right\}\right.$. We know that

$$
\text { vol } S_{h}=\left(2^{s} \pi^{t}\right)^{3} h_{1}^{n} h_{2}^{n} h_{3}^{n}=2^{3(n-t)}|D|^{3 / 2} N(\mathcal{P})^{2}=2^{3 n} \cdot \text { vol } L_{a, b}^{\mathcal{P}}
$$

By Minkowski theorem, there exist a nonzero vector in $L_{a, b}^{\mathcal{P}} \cap S_{h}$, i.e., for any $a, b \in$ $\mathcal{O}_{F}-\mathcal{P}$, we can find $x_{a, b}^{(i)} \in \mathcal{O}_{F}(i=1,2,3)$ such that $\left(\sigma\left(x_{a, b}^{(1)}\right), \sigma\left(x_{a, b}^{(2)}\right), \sigma\left(x_{a, b}^{(3)}\right)\right) \in$ $L_{a, b}^{\mathcal{P}} \cap S_{h}$. Since $N\left(x_{a, b}^{(i)}\right) \leq h_{i}^{n}<N(\mathcal{P})$, we know $x_{a, b}^{(i)} \in \mathcal{O}_{F}-\mathcal{P}$. Let $e_{i}=x_{a, b}^{(i)}$, where $i=1,2$, 3, we have $e_{2} \equiv e_{1} a(\bmod \mathcal{P}), e_{3} \equiv e_{1} b(\bmod \mathcal{P})$. Since e_{i} is not contained in $\mathcal{P}, i=1,2,3$, we have $\bar{a}=\bar{e}_{2} / \bar{e}_{1}, \bar{b}=\bar{e}_{3} / \bar{e}_{1}$.

Using Lemma 2.1 and Theorem 2.3, we can do some computation on the tame kernel of an imaginary quadratic field. In the following context, F denotes an imaginary quadratic field with discriminant D. Let $\delta_{D}=(2 / \pi)^{1 / 2}|D|^{1 / 4}$ and $E=\left\{x: x \in \mathcal{O}_{F}, 0<|x| \leq \delta_{D} N(\mathcal{P})^{1 / 3}\right\}$. Confining Theorem 2.3 to an imaginary quadratic field F, we have the following lemma.

Lemma 2.4. Let F be an imaginary quadratic field with discriminant D. If \mathcal{P} is a prime ideal of the ring \mathcal{O}_{F} with $N(\mathcal{P})>\delta_{D}^{6}$, then for any $\bar{a}, \bar{b} \in\left(\mathcal{O}_{F} / \mathcal{P}\right)^{*}$ there exist $e_{1}, e_{2}, e_{3} \in \mathcal{O}_{F}-\mathcal{P}$ such that
(1) $\left|e_{i}\right| \leq \delta N(\mathcal{P})^{1 / 3}, i=1,2,3$.
(2) $\bar{a}=\bar{e}_{2} / \bar{e}_{1}, \bar{b}=\bar{e}_{3} / \bar{e}_{1}$, where "bar" means the image in $\left(\mathcal{O}_{F} / \mathcal{P}\right)^{*}$.

Remark Using Lemma 2.4, it can be easily seen that the condition (c) of Lemma 2.1 is satisfied when $N(\mathcal{P})>\delta_{D}^{6}$.

Next we need a set $W \subset \mathcal{O}_{F} \cap U$ such that W generates U and satisfy condition (e) of Lemma 2.1. Let q_{F} be the least number such that in every class of ideals of \mathcal{O}_{F} there is an ideal of norm $\leq q_{F}$. In [1], Browkin proved the following Lemma.

Lemma 2.5. (Browkin) There is a set $W \subset U$ such that for any $w \in W$, its norm $N w \leq q_{F} N v$, if
(i) $\quad h_{F} \leq 2$, and $q_{F} \leq N(\mathcal{P}),(i i) \quad h_{F}>2$ and $q_{F}^{2} \leq N(\mathcal{P})$.

One can find the detailed message about W in part 3.2 of [1].
Theorem 2.6. If $N v>8 \delta_{D}^{6}, \partial_{v}: K_{2}^{S^{\prime}} F / K_{2}^{S} F \longrightarrow k^{*}$ is bijective.

Proof. Since F is an imaginary quadratic field, we have

$$
q_{F} \leq \sqrt{|D| / 3}<\frac{2 \sqrt{3}}{\pi} q_{F}<\frac{2}{\pi} \sqrt{|d|}<\delta_{D}^{2}
$$

So the condition of Lemma 2.5 is satisfied. We can choose a generating set W of U such that $N w \leq q_{F} N v$. By the remark below Lemma 2.4, the condition (c) of Lemma 2.1 is satisfied. So we need to show that the set W and E defined as above satisfy the conditions (d) and (e) of Lemma 2.1.

For any $e_{1}, e_{2}, e_{3}, e_{4} \in E, N\left(e_{1} e_{2}-e_{3} e_{4}\right)=\left|e_{1} e_{2}-e_{3} e_{4}\right| \leq\left(\left|e_{1} e_{2}\right|+\left|e_{3} e_{4}\right|\right)^{2} \leq$ $4 \delta_{D}^{4} N(\mathcal{P})^{4 / 3} \leq N(\mathcal{P})^{2}$. So the condition (d) of Lemma 2.1 is satisfied. We define $E_{1}=\left\{x: x \in \mathcal{O}_{F}, 0<|x| \leq \delta_{D} N(\mathcal{P})^{1 / 4}\right\} \subset E$. By the virtue of the GTT Theorem of [4], for any $w \in W$, there exist $e_{1}, e_{2} \in E_{1}$ such that $e_{1} w-e_{2} \in \mathcal{P}$. We need only to show that $\frac{e_{1} w}{e_{2}} \in U_{1}$. Let $h=N(\mathcal{P})^{\frac{1}{2}} / \sqrt{2}, h^{\prime}=\sqrt{2} \delta_{D}^{2}$. By Theorem 2 of [1], there exist $a, b \in \mathcal{O}_{F}$ such that $|a| \leq h,|b| \leq h^{\prime}, \bar{a} / \bar{b}=\bar{e}_{2} / \bar{e}_{1}$. So $\frac{e_{1} w}{e_{2}}=\frac{e_{1} a}{e_{2} b} \cdot \frac{w b}{a}$, where $\frac{e_{1} a}{e_{2} b} \in \operatorname{ker} \beta$ and $\frac{w b}{a} \in \operatorname{ker} \beta$.

We claim that $\frac{e_{1} a}{e_{2} b} \in U_{1}$ and $\frac{w b}{a} \in U_{1}$.

By Lemma 1 of [6], to prove $\frac{e_{1} a}{e_{2} b} \in U_{1}$, it is sufficient to prove that $\left|e_{1} a\right|+\left|e_{2} b\right|<$ $N(\mathcal{P})$. Since

$$
\begin{aligned}
\left|e_{1} a\right|+\left|e_{2} b\right| & <\delta_{D} N(\mathcal{P})^{\frac{1}{4}}\left(\frac{N(\mathcal{P})^{\frac{1}{2}}}{\sqrt{2}}+\sqrt{2} \delta_{D}^{2}\right)<\frac{N(\mathcal{P})^{\frac{5}{12}}}{\sqrt{2}} \cdot\left(\frac{N(\mathcal{P})^{\frac{1}{2}}}{\sqrt{2}}+\frac{N(\mathcal{P})^{\frac{1}{3}}}{\sqrt{2}}\right) \\
& =\frac{1}{2}\left(N(\mathcal{P})^{\frac{11}{12}}+N(\mathcal{P})^{\frac{3}{4}}\right)<N(\mathcal{P}),
\end{aligned}
$$

we have $\frac{e_{1} a}{e_{2} b} \in U_{1}$.
To prove $\frac{w b}{a} \in U_{1}$, by Lemma 7 of [1], it suffices to show that $\sqrt{N(\mathcal{P})}>$ $\max \left(2 \delta_{D}^{2}, \sqrt{2 q_{F}} \delta_{D}^{2}+\frac{1}{\sqrt{2}}\right)$. Since $\delta_{D}^{2}>q_{F}$, we can replace this condition as $\sqrt{N(\mathcal{P})}>\max \left(2 \delta_{D}^{2}, \sqrt{2} \delta_{D}^{3}+\frac{1}{\sqrt{2}}\right)$. Obviously, $\sqrt{N(\mathcal{P})}>\sqrt{8 \delta_{D}^{6}}>2 \delta_{D}^{2}$. So we need only to show that $2 \sqrt{2} \delta_{D}^{3}>\sqrt{2} \delta_{D}^{3}+1 / \sqrt{2}$, i.e., $\sqrt{2} \delta_{D}^{3}>1 / \sqrt{2}$. This inequation holds in all cases.

In the table below, we give the estimation of $N v$ for some cases. The first row is the discriminant of the quadratic imaginary field, the second row is the value of $8 \delta_{D}^{6}$,

$$
\begin{array}{cccccccc}
-19 & -20 & -24 & -35 & -43 & -83 & -131 & -151 \\
170.95 & 184.62 & 242.69 & 427.40 & 528.01 & 1560.80 & 3094.83 & 3829.97
\end{array}
$$

Acknowledgments The authors were grateful to thank Professor Jerzy Browkin for his valuable suggestions and helps.

References

[1] Browkin, J., Computing the tame kernel of quadratic imaginary fields, preprint.
[2] Qin, H., Computation of $K_{2} \mathbb{Z}[\sqrt{-6}]$, J. Pure Appl. Algebra, 96 (1994), 133-146.
[3] Qin, H., Computation of $K_{2} \mathbb{Z}\left[\frac{1+\sqrt{-35}}{2}\right]$, Chin. Ann. of Math., 17B (1996), no.1, 63-72.
[4] Skałba, M., Generalization of Thue's theorem and computation of the group $K_{2} \mathcal{O}_{F}, J$. Number Theory, 46 (1994), 303-322.
[5] Bass, H. and Tate, J., The Milnor ring of a global field, Lecture Notes in Math., Vol. 342, 349-428, Springer Verlag, New York, 1973.
[6] Tate, J., Appendix, Lecture Notes in Math., Vol. 342, 429-446, Springer Verlag, New York, 1973.

