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IMAGINARY QUADRATIC FIELDS WITH ONO NUMBER 3

Xuejun Guo and Hourong Qin
Department of Mathematics, Nanjing University, China

In this article, we prove that an imaginary quadratic field F has the ideal class
group isomorphic to �/2�⊕ �/2� if and only if the Ono number of F is 3 and
F has exactly 3 ramified primes under the Extended Riemann Hypothesis (ERH).
In addition, we give the list of all imaginary quadratic fields with Ono number 3.
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1. INTRODUCTION

Let F be an imaginary quadratic field with discriminant D, and

fD�x� =




x2 + x + 1−D

4
� if D ≡ 1 mod 4

x2 − D

4
� if D ≡ 0 mod 4�

The Ono number pD of F is defined as pD = max���fD�i��� i ∈ � ∩ �0� −D
4 − 1�	,

where ��fD�i�� is the number of prime factors (counting multiplicity) of fD�i�.
One can see [7] for details. Let hD be the class number of ��

√
D�. Then by the

Frobenius–Rabinowitch Theorem [3, 8], hD = 1 if and only if pD = 1. Sasaki proved
in [12] that hD ≥ pD and hD = 2 if and only if pD = 2. Sairaiji and Shimizu proved
some very useful inequalities between class numbers and Ono numbers in [9, 10].
Cohen and Sonn conjectured in [2] that hD = 3 if and only if pD = 3 and �D� is
a prime. Their conjecture is proved to be true in [4] under Extended Riemann
Hypothesis (ERH).

We will show in this article that the Ono number is not only related to the class
number, but also related to the structure of the ideal class group. Let �D be the
ideal class group of F , tD the number of ramified primes in F . We will prove that
�D � �/2�⊕ �/2� if and only if pD = 3 and tD = 3. In addition, we give the list
of all imaginary quadratic fields with Ono number 3.
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2. MAIN RESULTS

We use the same notations as in Section 1. Let qD be the smallest prime
number which splits completely in ��

√
D�. By genus theory of Gauss, if �D �

�/2�⊕ �/2�, then tD = 3. By Theorem 2.2 of [11] (or cf. [6]), pD = tD if the
exponent of �D is less than or equal to 2. Thus we have pD = 3. Next we will prove
that if tD = 3 and pD = 3, then �D � �/2�⊕ �/2�.

Theorem 2.1 (ERH). If pD = 3, then �D� ≤ 9�662× 1010.

Proof. Assume that pD = 3. By Theorem 2.1 of [10] (cf. [5] p. 111) or
Lemma 17 and Theorem 18 of [2], pD > logqD��D�/4− 1�� Thus we have �D/4� < q3

D.
By Theorem 3.3 of [10],

pD ≥ log log 163
log 163

log�D�
loglog�D� �

Hence we have �D� ≤ 1015. One can find an upper bound of qD by Theorem 5.1 of [1].
The upper bound in Theorem 5.1 of [1] is made to work for all Galois extensions.
When the extension is ��

√
D�/�, that bound is improved in the Table 3 of [1].

By the Table 3 of [1], qD ≤ �1�881 · log �D� + 6�18�2 if 25 ≤ log �D� ≤ 100. So we have
�D/4� < �1�881 · log �D� + 6�18�6 which implies that �D� ≤ 9�662× 1010. �

By GP/PARI, one can prove that if �D� ≤ 9�662× 1010, then qD ≤ 167. In fact,
there are only two imaginary quadratic fields satisfying �D� ≤ 9�662× 1010 and
qD > 157. They are q−30942935860 = 167� q−18936628027 = 163.

Theorem 2.2 (ERH). If pD = 3, then �D� < 18629852.

Proof. Since qD ≤ 167 and �D/4� < q3
D (Theorem 2.1 of [10]), we have �D� < 4 ·

1673 = 18629852. �

We can determine all imaginary quadratic fields with Ono number 3 with a
help of computer. We give the complete list on next page. By that table, we have
the following theorem.

Theorem 2.3 (ERH). The ideal class group �D � �/2�⊕ �/2� if and only if
tD = 3 and pD = 3.

If the ideal class group �D � �/4�, then tD = 2 by genus theory. By Sasaki’s
inequality [12] hD ≥ pD, we have pD = 3 or 4. However, the inverse direction is not
correct, i.e., tD = 2 and pD = 3 or 4 do not imply that �D � �/4�. The last case of
the table is a counterexample. In that case, t−3763 = 2 and p−3763 = 3, while �−3763 �
�/2�⊕ �/3�.

In the following table, �2��2� means �/2�⊕ �/2�, (4) means �/4�, �3� means
�/3�, and �2��3� means �/2�⊕ �/3�. Note that the following list also proves,
the result of [4], namely, hD = 3 if and only if pD = 3 and tD = 1.
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Table 1 Table of imaginary quadratic fields with Ono number 3 (ordered by the square free part of D)

No. −D tD pD �D No. −D tD pD �D

1 84 = 22 · 3 · 7 3 3 �2��2� 27 1012 = 22 · 11 · 23 3 3 �2��2�
2 23 1 3 �3� 28 283 1 3 �3�
3 120 = 23 · 3 · 5 3 3 �2��2� 29 307 1 3 �3�
4 31 1 3 �3� 30 331 1 3 �3�
5 132 = 22 · 3 · 11 3 3 �2��2� 31 355 = 5 · 71 2 3 �4�
6 168 = 23 · 3 · 7 3 3 �2��2� 32 379 1 3 �3�
7 184 = 23 · 23 2 3 �4� 33 435 = 3 · 5 · 29 3 3 �2��2�
8 228 = 22 · 3 · 19 3 3 �2��2� 34 483 = 3 · 7 · 23 3 3 �2��2�
9 59 1 3 �3� 35 499 1 3 �3�
10 280 = 23 · 5 · 7 3 3 �2��2� 36 547 1 3 �3�
11 292 = 22 · 73 2 3 �4� 37 555 = 3 · 5 · 37 3 3 �2��2�
12 312 = 23 · 3 · 13 3 3 �2��2� 38 595 = 5 · 7 · 17 3 3 �2��2�
13 328 = 23 · 41 2 3 �4� 39 627 = 3 · 11 · 19 3 3 �2��2�
14 83 1 3 �3� 40 643 1 3 �3�
15 340 = 22 · 5 · 17 3 3 �2��2� 41 715 = 5 · 11 · 13 3 3 �2��2�
16 372 = 22 · 3 · 31 3 3 �2��2� 42 723 = 3 · 241 2 3 �4�
17 408 = 23 · 3 · 17 3 3 �2��2� 43 763 = 7 · 109 2 3 �4�
18 107 1 3 �3� 44 795 = 3 · 5 · 53 3 3 �2��2�
19 520 = 23 · 5 · 13 3 3 �2��2� 45 883 1 3 �3�
20 532 = 22 · 7 · 19 3 3 �2��2� 46 907 1 3 �3�
21 139 1 3 �3� 47 1003 = 17 · 59 2 3 �4�
22 708 = 22 · 3 · 59 3 3 �2��2� 48 1243 = 11 · 113 2 3 �4�
23 760 = 23 · 5 · 19 3 3 �2��2� 49 1387 = 19 · 73 2 3 �4�
24 772 = 22 · 193 2 3 �4� 50 1435 = 5 · 7 · 41 3 3 �2��2�
25 195 = 3 · 5 · 13 3 3 �2��2� 51 1555 = 5 · 311 2 3 �4�
26 211 1 3 �3� 52 3763 = 53 · 71 2 3 �2��3�
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