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Abstract. In this paper, by calculating the commutator subgroup of the unit
group of finite path algebra k∆ and the unit group abelianized, we explicitly

characterize the K1 group of finite dimensional path algebra over an arbitrary

field.
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1. Introduction

Given a connected quiver ∆ = (∆0, ∆1), where ∆0 is the set of all vertices
and ∆1 is the set of all arrows. Let k be a field, we will denote by k∆ the path
algebra of ∆. In k∆, we will denote by k∆+ the ideal generated by all arrows
and so (k∆+)n is the ideal generated by all paths of length ≥ n (cf [1] for more
details). For any path α ∈ k∆, we will denote by s(α) the start point of α and
e(α) the end point of α.

We know that k∆ can be seen as a graded algebra, i.e., k∆ = ⊕∞i=0Ai,
where Ai is the k-submodule generated by paths whose length are i. If k∆
is finite dimensional, then there exists a minimum l such that k∆ = ⊕l

i=0Ai.
Throughout this paper, k∆ will be assumed to be finite dimensional, i.e., ∆ is
a finite quiver ( This means that ∆0 and ∆1 are both finite sets and ∆ contains
no oriented cycles).
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It is well known that path algebra of quiver plays an important role in repre-
sentation theory. How to describe the K-group of path algebra is an interesting
problem. The K0 group of k∆ is Zn, where n is the number of isomorphism
classes of simple k∆-modules. The image of a module M in K0(k∆) is its di-
mension vector. One can see the definition of dimension vector and more details
in Chapter 2.4 of [1].

Let R be an arbitrary ring. We will denote by GLn(R) the set of all n × n
invertible matrices and En(R) the set of all elementary n× n matrices. There
is a natural way embedding GLn(R) into GLn+1(R) and embedding En(R)
in to En+1(R). Recall that the stable general linear group GL(R) and the
stable elementary linear group E(R) are the direct limits of GLn(R) and En(R)
respectively, i.e., GL(R) = lim

−→
GLn(R) and E(R) = lim

−→
En(R). The K1 group

of R is defined to be GL(R)/E(R) (cf [2], [3], [4] for more details).
Calculating the K1 group of a given ring is generally difficult. In this note, we

will characterize the K1 group of finite dimensional path algebra k∆ explicitly.
First, in part 2, we give the structure of the commutator subgroup of unit
group of finite dimensional path algebra (Proposition 2.1 and 2.2). By these
two propositions, we can get the unit group abelianized (Proposition 3.1 and
3.3). In part 4, we give the K1 group for any finite dimensional path algebra
(Theorem 4.3).

2. The Commutator Subgroup of the unit group of k∆

Let R be a ring, we denote by U(R) its group of units. If G is a group,
we denote by G

′
its commutator subgroup. For any finite dimensional path

algebra k∆, the Jacobson radical k∆+ is nilpotent. So the unit group of k∆ is
consisting of the elements which have the form u+α, where u ∈ A0 is invertible
and α ∈ k∆+. Let ∆0 = {e1, ..., en}, notice that u ∈ A0 is invertible if
and only if u has the form u =

∑n
i=1 ciei, where each ci ∈ k×, k× denote the

multiplicative group of field k.

Proposition 2.1. If k 6= {0, 1}, then for finite dimensional path algebra k∆,
p ∈ U(k∆)

′
if and only if p = 1 + γ for some γ ∈ k∆+.

Proof. If p ∈ U(k∆)
′
, there exist invertible elements u, v ∈ A0, α, β ∈ k∆+

such that p = (u+α)(v +β)(u+α)−1(v +β)−1 = p1p2p
−1
1 p−1

2 . Considering the
image of p, p1, p2 in k∆/k∆+, we denote them by p, p1, p2, respectively. Since
k∆/k∆+ ' kn is commutative, p1p2 = p2p1. So p = p1p2p

−1
1 p−1

2 = 1 which
implies that p = 1 + γ for some γ ∈ k∆+.

Conversely, if p = 1 + γ, γ ∈ k∆+. We will show by induction that p can be
expressed as a product of some commutators.

Step 1 Let p = 1 + cα, where 0 6= c ∈ k and α is an arrow from ei to ej . We
will show that we can choose suitable u =

∑n
s=1 dses ∈ U(k∆) and c1 ∈ k such
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that p = (1 + c1α)(u + c1α)(1 + c1α)−1(u + c1α)−1. We know that

(1 + c1α)(u + c1α)(1 + c1α)−1(u + c1α)−1

=(1 + c1α)(u + c1α)(1− c1α)(u−1 − u−1c1αu−1)

=1 + c1α− uc1αu−1 ( note that there is no cycle in k∆)

=1 + c1α− c1(
n∑

s=1

dses)α(
n∑

s=1

dses)

=1 + c1α− c1(diei + djej)α(d−1
i ei + d−1

j ej)

=1 + c1(1− did
−1
j )α.

Since k 6= {0, 1}, we can choose suitable di, dj such that 1 − did
−1
j 6= 0. Let

c1 = c−1(1− did
−1
j )−1, we have p = (1 + c1α)(u + c1α)(1 + c1α)−1(u + c1α)−1

to be a simple commutator.
Step 2 Let p = 1 + cαβ, where α, β are paths and αβ 6= 0, c ∈ k. Since

there is no cycle in ∆, we have βα = 0. So p = (1+ cα)(1+β)(1− cα)(1−β) =
(1 + cα)(1 + β)(1 + cα)−1(1 + β)−1 which is a simple commutator.

Now we can assume that any p = 1 + r1β1 + · · ·+ rt−1βt−1 ∈ U(k∆)
′
, where

each βi is a path and ri ∈ k, 1 ≤ i ≤ t− 1.
Step 3 Suppose p = 1+c1α1+· · ·+ctαt, where αi is path and ci ∈ k, 1 ≤ i ≤

t. Since there is no oriented cycle in k∆, we can always choose some suitable i
such that s(αi) /∈ {e(αj) : 1 ≤ j ≤ t, j 6= i}. So αjαi = 0 for any 1 ≤ j ≤ t,
j 6= i. We have p = (1+ c1α1 + · · ·+ ci−1αi−1 + ci+1αi+1 + · · ·+ ctαt)(1+ ciαi).

By induction hypothesis, we have 1+ c1α1 + · · ·+ ci−1αi−1 + ci+1αi+1 + · · ·+
ckαk and (1 + ciαi) belong to U(k∆)

′
. So one see p = 1 + γ ∈ U(k∆)

′
. ¤

Now let us consider the case k = {0, 1}. In this case, an element p ∈ k∆ is
invertible if and only if p = 1 + α, where α ∈ J .

Proposition 2.2. if k = {0, 1}, then for finite dimensional path algebra k∆,
p ∈ U(k∆)

′
if and only if p = 1 + γ for some γ ∈ k∆+2.

Proof. If p ∈ U(k∆)
′
, there exist α, β ∈ k∆+ such that p = (1 + α)(1 + β)(1 +

α)−1(1+β)−1. Since α, β are nilpotent, there exist l such that αl = βl = 0. So
p = (1 + α)(1 + β)(1 +

∑l−1
i=1 αl−1)(1 +

∑l−1
i=1 βl−1) = 1 + γ, where γ ∈ (k∆+)2.

Conversely, if p = 1 + γ, γ ∈ (k∆+)2. We will show by induction that p
can be expressed as a product of some commutators. First, let p = 1 + αβ,
where α, β are paths and αβ 6= 0. Since there is no cycle in ∆, we have
βα = 0. So p = (1 + α)(1 + β)(1 + α)−1(1 + β)−1. Next, we assume that
if p = 1 + α

′
1β

′
1 + · · · + α

′
t−1β

′
t−1, where α

′
i, β

′
i are paths, 1 ≤ i ≤ t1, then

p ∈ U(k∆)
′
.
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Now suppose p = 1 + α1β1 + · · · + αtβt, where αi, βi are paths, 1 ≤ i ≤ t.
Since k∆ is finite dimensional, we can choose some suitable i such that s(αiβi) /∈
{e(αjβj) : 1 ≤ j ≤ t, j 6= i}. So αjβjαiβi = 0 for any 1 ≤ j ≤ t, j 6= i. We
have p = (1 + α1β1 + · · · + αi−1βi−1 + αi+1βi+1 + · · · + αtβt)(1 + αiβi). Note
that p is a product of elements which are sum of 1 and no more than t−1 paths
of length more than one. So by induction, we prove that p = 1 + γ ∈ U(k∆)

′
.

¤

3. Computation of U(k∆)ab

We denote by U(k∆)ab the unit group U(k∆) abelianized. In this part, we
will compute U(k∆)ab for finite dimensional path algebra k∆.

If k 6= {0, 1}, then for any p = u + c1α1 + · · ·+ ckαk ∈ U(k∆), where u ∈ A0

is invertible, α ∈ Ai, we have u−1p = 1 + u−1c1α1 + · · · + u−1ckαk. So by
Proposition 2.1, u−1p ∈ U(k∆)

′
, i.e., p ≡ u(mod U(k∆)

′
). We write this fact

as the following proposition.

Proposition 3.1. U(k∆)ab ' (k×)n, where n = |∆0| and k× denote the mul-
tiplicative group of k. ¤

In the case k = {0, 1}, U(k∆)ab is somewhat different to the corresponding
part of Proposition 3.1.

Lemma 3.2. If k = {0, 1}, then for any p = 1 + α1 + α2 + · · ·+ αl ∈ U(k∆),
p ≡ 1 + α1(mod U(k∆)

′
), where αi ∈ Ai.

Proof. Let γ1 = α2 + · · · + αl ∈ U(k∆) ⊂ (k∆+)2, then p = 1 + α1 + γ1.
Since α1 is nilpotent, we have (1 + α1)−1 = 1 − α1 + γ2, where γ2 ∈ (k∆+)2.
So p(1 + α1)−1 = 1 + β, where β ∈ (k∆+)2. By Proposition 2.2, we know
1 + β ∈ U(k∆)

′
. So p ≡ 1 + α1(mod U(k∆)

′
). ¤

Proposition 3.3. If k = {0, 1}, then U(k∆)ab ' Gm
2 , where G2 = {1, −1} is

the finite group of order 2, m = |∆1|.
Proof. Let α11, ..., α1m be the set of all arrows in k∆. For any p ∈ k∆, we
will denote by p the image of p in U(k∆)ab. Assume pi = 1 + α1i, then p2

i = 1.
For arbitrary p = 1 + α1 + α2 + · · · + αl ∈ U(k∆) ∈ k∆, where αi ∈ Ai, by

Lemma 3.2, p ≡ 1 + α1(mod U(k∆)
′
). Suppose that α1 = d1a11 + · · ·+ dma1m,

where di is 0 or 1. Since there is no oriented cycle in R, by the method used
in the proof of Proposition 2.2, we can choose some suitable δ(1) such that
1 + α1 = (1 +

∑j1
t=1, t 6=δ(1) dtα1t)(1 + α1δ(1)). Continuing these steps on, we get

δ(2), ..., δ(j1) such that 1 + α1 = (1 + α1δ(j1))(1 + α1δ(j−1)) · · · (1 + α1δ(1)).
By this equation, p can be expressed as a product of some pi, where pi is an
element of order 2 stated above. So U(k∆)ab ' Gm

2 . ¤
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4. Computation of K1(k∆)

Let R be a ring, we denote by V (R) the subgroup of unit group U(R) gener-
ated by {(1 + ab)(1 + ba)−1 : 1 + ab ∈ U(R)} (cf. [3], [5] for more details).

Lemma 4.1 ([3], Proposition 53). Let R be a semilocal ring, then K1(R) '
U(R)/V (R). ¤

Since k∆/k∆+ ' kn, we know that k∆ is a semilocal ring. So in order to
compute K1(k∆), we need only to compute U(R)/V (R).

Lemma 4.2. For any finite dimensional path algebra k∆, V (k∆) = U(k∆)
′

Proof. By Lemma 1.1 (i) of [5], (U(k∆))
′ ⊂ V (k∆). So we need only to prove

that V (k∆)/(U(k∆))
′
= 0. Let p ∈ V (k∆) and suppose that p = (1 + ab)(1 +

ba)−1, where a = u + α1 + · · · + αl, b = v + β1 + · · · + βl, αi, βi ∈ Ai,
1 ≤ i ≤ l. For any element x ∈ U(k∆), we denote by x the image of x in
U(k∆)/U(k∆)

′
. So p = (1 + ab)(1 + ba)−1 = (1 + ab)(1 + ba)−1. By Part 3,

we have 1 + ab = 1 + u(β1 + · · ·+ βl) + v(α1 + · · ·+ αl) = 1 + ba. So p = 1
and V (k∆) = U(k∆)

′
. ¤

Theorem 4.3. For any finite dimensional path algebra k∆,

K1(k∆) = U(k∆)ab =

{
(k×)n, if k 6= {0, 1}
Gm

2 , if k = {0, 1} ,

where n = |∆0|, m = |∆1|, k× is the multiplicative group of k and G2 is the
multiplicative group {1, −1}.
Proof. By Proposition 3.1, Proposition 3.2, Lemma 4.1 and Lemma 4.2, this
Theorem is got easily. ¤
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