Diagonability of idempotent matrices over noncommutative rings

Guangtian Song *, Xuejun Guo
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Received 14 July 1998; accepted 7 March 1999
Submitted by R. Guralnick

Abstract

Let R be an arbitrary ring. In this paper, the following statements are proved: (a) Each idempotent matrix over R can be diagonalized if and only if each idempotent matrix over R has a characteristic vector. (b) An idempotent matrix over R can be diagonalized under a similarity transformation if and only if it is equivalent to a diagonal matrix. (a) and (b) generalize Foster's and Steger's theorems to arbitrary rings. We give some new results about 0 -similarity of idempotent matrices over R. © 1999 Elsevier Science Inc. All rights reserved.

AMS classification: 15A18; 16D40
Keywords: Idempotent matrices over rings

1. Introduction

In 1945, Foster examined the following questions: for a commutative ring R, when can we find an invertible matrix P over R such that $P A P^{-1}=$ $\operatorname{diag}\left\{e_{1}, \ldots, e_{n}\right\}$ for a given idempotent matrix A over R ? The problem concerns not only matrix theory but also module theory and algebraic K-theory. He proved the following theorem (cf. [1, Theorem 10]).

[^0]Foster's theorem. The following are equivalent for a commutative ring R with identity:
(a) Each idempotent matrix over R is diagonalizable under a similarity transformation.
(b) Each idempotent matrix over R has a characteristic vector.

In 1966, Steger in [2] (or, see [3, IV. 52 Theorem]) utilized Foster's theorem to prove the following theorem.

Steger's theorem. Let R be a commutative ring with identity and A be an $n \times n$ idempotent matrix over R. If there exist invertible matrices P and Q such that $P A Q$ is a diagonal matrix, then there is an invertible matrix U over R such that $U A U^{-1}$ is a diagonal matrix.

In this paper, we will demonstrate that Foster's theorem and Steger's theorem can be generalized to an arbitrary ring with identity.

Let R be a ring with identity, a and $b \in R$, we say that a is equivalent to b, denoted by $a \simeq b$, if there exist invertible elements u and $v \in R$ such that uav $=b ; a$ is called similar to b, denoted by $a \sim b$, if there exists an invertible element $u \in R$ such that $u a u^{-1}=b_{0}$. Let $A \in R^{m \times n}, B \in R^{s \times t}$, we say that A is 0 -equivalent to B, denoted by $A \stackrel{0}{\simeq} B$, if there exist sufficiently large integers $p \geqslant \max \{m, n\}$ and $q \geqslant \max \{n, t\}, P \in G L(p, R)$ and $Q \in G L(q, R)$ such that

$$
P\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) Q=\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right)_{p \times q}
$$

We say that A is 0 -similar to B, denoted by $A \stackrel{0}{\sim} B$, if there exist sufficiently large integers $p \geqslant \max \{m, n, s, t\}$ and $P \in G L(p, R)$ such that

$$
P\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right) P^{-1}=\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right)_{p \times p}
$$

By [4, Lemma 1.2.1], $A \stackrel{0}{\sim} B$ if and only if the corresponding finitely generated projective R-modules are isomorphic. One can find also the definition of 0 similarity in [3]. It is obvious that "similar $\Longrightarrow 0$-similar" and "equivalent \Longrightarrow 0 -equivalent". Theorems 10 and 11 give two equivalent conditions for two matrices to be 0 -similar.

2. Main results

Lemma 1. Let R be a ring, $a, b \in R$ with $a^{2}=a$ and $a b a=a$, then $a \sim a b \sim b a$.

Proof. Since $(a-a b)^{2}=a-a b-a b a+a b a b=0$, let $t=1-a+a b$, then t is invertible and $t^{-1}=1+a-a b$. So $t a b t^{-1}=(1-a+a b) a b(1+a-a b)=a$, hence $a \sim a b$. Similarly, it can be proved that $a \sim b a$.

Theorem 2. Let R be a ring, $a, b \in R$ with $a^{2}=a$ and $b^{2}=b$, then $a \sim b$ if and only if $a \simeq b$.

Proof. It is only needed to prove that " $a \simeq b \Longrightarrow a \sim b$ ". Suppose that there exist invertible elements p and $q \in R$ such that $p a q=b$. Let $s=q^{-1} p^{-1}$, then $p a p^{-1}=p a q q^{-1} p^{-1}=b s$, so $a \sim b s$ and $b s b=b$. By Lemma 1 , $b s \sim b$, so $a \sim b s \sim b$.

Proposition 3. Let R be a ring and a, b be idempotents of R. If $(a-b)^{2}=0$, then $a \sim a b \sim b a \sim b$.

Proof. Since $(a-b)^{2}=a^{2}-a b-b a+b^{2}=0$, so we have $a+b=a b+b a$ and $a(a+b)=a^{2} b+a b a$, i.e., $a+a b=a b+a b a$ which implies $a=a b a$. Similarly, we have $b=b a b$. So by Lemma 1, $a \sim a b \sim b a \sim b$.

Theorem 4. Let A be an idempotent matrix over a ring R. If A is equivalent to a block diagonal matrix $B=\operatorname{diag}\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$, then for any $1 \leqslant i \leqslant m$, there exist matrices $S_{i i}$ such that $A \sim D=\operatorname{diag}\left\{B_{1} S_{11}, B_{2} S_{22}, \ldots, B_{m} S_{m m}\right\}$. Moreover, 1. $B_{i} \neq 0 \Longleftrightarrow B_{i} S_{i i} \neq 0, \quad i=1,2, \ldots, m$.
2. If $B_{i}^{2}=B_{i}, S_{i i}$ can be chosen to be the identity matrix.

Proof. Assume that there exist $P, Q \in G L(n, R)$ such that $P A Q=B$. Let $S=Q^{-1} P^{-1} \in G L(n, R)$, then $P^{-1} A P=P A Q Q^{-1} P^{-1}=B S$. Let $S=\left(s_{i j}\right)_{m \times m}$ be the block matrix with the same block type of B, then $A \sim B S$ and $(B S)^{2}=B S$, $B S B=B$. So we have $B_{i} S_{i i} B_{i}=B_{i}, \quad B_{i} S_{i j} B_{j}=0, \quad 1 \leqslant i \neq j \leqslant n$. Let $D=\operatorname{diag}\left\{B_{1} S_{11}, \ldots, B_{m} S_{m m}\right\}$, then $D^{2}=D$ and $D B=B, B S D=D$. Since $(D-B S)^{2}=D^{2}-D B S-B S D+(B S)^{2}=0, \quad(I-(D-B S))^{-1}=I+(D-B S)$. So let $T=I-(D-B S)$, then $T B S T^{-1}=(I-(D-B S)) B S(I+(D-B S))=D$ which implies $A \sim B S \sim D$.

Observe that $B_{i} S_{i i} B_{i}=B_{i}$, so $B_{i} \neq 0 \Longleftrightarrow B_{i} S_{i} \neq 0$. To show (2), since $B_{i}^{2}=B_{i}$, by Lemma 1, $B_{i} \sim B_{i} S_{i i}$. So $S_{i i}$ can be changed as an identity matrix.

The following corollary is a generalization of Steger's theorem.

Corollary 5. Let A be an $n \times n$ idempotent matrix over a ring R. If A is equivalent to a diagonal matrix, then A is similar to a diagonal matrix.

Using Theorem 4, we obtain the following corollaries about the diagonability of idempotent matrices.

Corollary 6. Let A be an $n \times n$ idempotent matrix over a ring R. If A has an invertible $k \times k$ submatrix, $1 \leqslant k \leqslant n$, then $A \sim \operatorname{diag}\left\{I_{k}, B\right\}$.

Proof. By elementary transformations, the invertible $k \times k$ submatrix can be put at the left-up corner of A, so A is equivalent to $\operatorname{diag}\left\{I_{k}, B\right\}$. By Theorem 4, A is similar to $\operatorname{diag}\left\{I_{k}, B_{1}\right\}$.

Corollary 7. Let R be a ring, and

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

be a block idempotent matrix over R with $A_{11}^{2}=A_{11}$, then $A \simeq \operatorname{diag}\left\{A_{11}, A_{22}^{2}\right\}$ moreover $A \sim\left\{A_{11}, B_{22}\right\}$, where B_{22} is an idempotent matrix.

Proof. Since $A^{2}=A$, so $A_{12} A_{21}=0, A_{22}^{2}-A_{12}-A_{21} A_{12}=0$. We have

$$
\left(\begin{array}{cc}
I & 0 \\
-A_{21} & I
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-A_{21} & I
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}-A_{21} A_{12}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
I & -A_{12} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}-A_{21} A_{12}
\end{array}\right)\left(\begin{array}{cc}
I & -A_{12} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}-A_{21} A_{12}
\end{array}\right)
$$

so $A \simeq \operatorname{diag}\left\{A_{11}, A_{22}^{2}\right\}$ then, by Theorem 4, the second part follows.
Corollary 8. Let A be an idempotent matrix over a ring R, and let

$$
A \sim\left(\begin{array}{cc}
B_{11} & 0 \\
B_{21} & B_{22}
\end{array}\right)
$$

Then

$$
A \sim\left(\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}
\end{array}\right)
$$

Proof. Since $A^{2}=A, B_{11}^{2}=B_{11}$ and $B_{22}^{2}=B_{22}$. By Corollary 7, $B \simeq$ $\operatorname{diag}\left\{B_{11}, B_{22}^{2}\right\}=\operatorname{diag}\left\{B_{11}, B_{22}\right\}$, then, by Theorem 4, $A \sim \operatorname{diag}\left\{B_{11}, B_{22}\right\}$.

Let R be an arbitrary ring. Recall that $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ is called a right unimodular vector if there exists $\left(b_{1}, \ldots, b_{n}\right) \in R^{n}$ such that $a_{1} b_{1}+\cdots+a_{n} b_{n}=1$. A right unimodular vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in R^{n} is
completable if it can be seen as the first row of some invertible matrix over R. Let A be an $n \times n$ matrix over R, recall that α is a characteristic vector of A if $\alpha \in R^{n}$ is a completable right unimodular vector and $\alpha A=\lambda \alpha$ for some λ in R (we call λ the characteristic value of α). The following theorem is a generalization of Foster's theorem.

Theorem 9. The following are equivalent for an arbitrary ring R with identity:

1. Each idempotent matrix over R is diagonalizable under a similarity transformation (i.e. R is a projectively trivial ring).
2. For each nonzero projective left R-module P, there exist nonzero idempotent $e_{1}, e_{2}, \ldots, e_{t}$ in R such that $P \simeq R e_{1} \oplus e_{2} \oplus \cdots \oplus R e_{t}$.
3. Each idempotent matrix over R has a characteristic vector.

Proof. By Lemma 1.2.1 of [4], " $(1) \Longrightarrow(2) "$ is easily got.
$(1) \Longrightarrow(3)$. Since there exists an invertible matrix P over R such that $P A=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} P$, the first row of P is a characteristic vector of A.
$(3) \Longrightarrow(1)$. Let A be an idempotent matrix over R with a characteristic vector α : $\alpha A=\lambda \alpha$, then α can be completed to $P \in G L(n, R)$, so

$$
P A=\left(\begin{array}{ll}
\lambda & 0 \\
* & *
\end{array}\right) P .
$$

Since A is idempotent, by Corollary $8, A \sim \operatorname{diag}\left\{\lambda, B_{2}\right\}$, then by induction, the theorem is proved.

Finally, let us discuss the 0 -similarity of idempotent matrices.
Theorem 10. Let $A \in M_{m}(R), B \in M_{n}(R)$ be idempotent matrices. Then $A \stackrel{0}{\sim} B$ if and only if there exist $m \times n$ matrix P and $n \times m$ matrix Q over R such that $P Q=A, Q P=B$.

Proof. If there exists $T \in G L(k, R), k \geqslant \max \{m, n\}$, such that

$$
T\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) T^{-1}=\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right)
$$

Decompose T and T^{-1} into blocks corresponding to $\operatorname{diag}\{A, 0\}$ as

$$
T=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right), \quad T^{-1}=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) .
$$

Then we have $Q_{11} A P_{11}=B, P_{11} B Q_{11}=A$. Let $P=A P_{11} B$ and $Q=B Q_{11} A$, then P is an $m \times n$ matrix, Q is an $n \times m$ matrix and $P Q=A, Q P=B$.

On the other hand, if there exist $m \times n$ matrix P and $n \times m$ matrix Q over R such that $P Q=A, Q P=B$. Let

$$
T=\left(\begin{array}{cc}
1-A & A P \\
B Q & 1-B
\end{array}\right)
$$

It is easy to verify that

$$
T^{2}=\left(\begin{array}{cc}
(1-A)^{2}+A P B Q & (1-A) A P+A P(1-B) \\
B Q(1-A)+(1-B) B Q & B Q A P+(1-B)^{2}
\end{array}\right)=\left(\begin{array}{cc}
I_{m} & 0 \\
0 & I_{n}
\end{array}\right) .
$$

Since $P Q P=A P$ and $P Q P=P B$, we have $A P=P B$. Similarly, we have $B Q=Q A=Q P Q$. So

$$
\begin{aligned}
T\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right) T^{-1} & =\left(\begin{array}{cc}
1-A & A P \\
B Q & 1-B
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1-A & A P \\
B Q & 1-B
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 0 \\
B Q A & 0
\end{array}\right)\left(\begin{array}{cc}
1-A & A P \\
B Q & 1-B
\end{array}\right) \\
& =\operatorname{diag}\{0, B Q A A P\}=\operatorname{diag}\{0, B\} .
\end{aligned}
$$

Hence $\operatorname{diag}\{A, 0\} \sim \operatorname{diag}\{0, B\} \sim \operatorname{diag}\{B, 0\}$.
Let R be a Dedekind infinite ring (i.e., there exist a and $b \in R$ such that $a b=1, b a=e \neq 1$), then by Theorem 10,1 is 0 -similar to e, but it is obvious that 1 is not similar to e.

Theorem 11. Let $A \in M_{m}(R), B_{1} \in M_{n_{1}}(R)$ and $B_{2} \in M_{n_{2}}(R)$ be idempotent matrices over a ring R. Then A is 0 -similar to $B=\operatorname{diag}\left\{B_{1}, B_{2}\right\}$ if and only if A can be decomposed into the sum of two order m orthogonal idempotent matrices A_{1}, A_{2}, i.e., $A=A_{1}+A_{2}$, moreover $A_{1} \stackrel{0}{\sim} B_{1}, A_{2} \stackrel{\sim}{\sim} B_{2}$.

Proof. If $A \stackrel{0}{\sim} B$, by Theorem 10, there exist matrices P and Q such that $P Q=A$ and $Q P=B$. Decompose P, Q into blocks as

$$
P=\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right), \quad Q=\binom{Q_{1}}{Q_{2}}
$$

then

$$
P Q=\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right)\binom{Q_{1}}{Q_{2}}=P_{1} Q_{1}+P_{2} Q_{2}=A
$$

and

$$
Q P=\binom{Q_{1}}{Q_{2}}\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right)=\left(\begin{array}{ll}
Q_{1} P_{1} & Q_{1} P_{2} \\
Q_{2} P_{1} & Q_{2} P_{2}
\end{array}\right)\left(\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right)
$$

So $Q_{1} P_{1}=B_{1}, Q_{1} P_{2}=0, Q_{2} P_{1}=0$ and $Q_{2} P_{2}=B_{2}$. From $A^{2}=A$, we have $P_{1} Q_{1}+P_{2} Q_{2}=\left(P_{1} Q_{1}\right)^{2}+\left(P_{2} Q_{2}\right)^{2}$. Times $P_{1} Q_{1}$ on the two sides of the equation, we have $\left(P_{1} Q_{1}\right)^{2}=\left(P_{1} Q_{1}\right)^{3}$, so $\left(P_{1} Q_{1}\right)^{2}=\left(P_{1} Q_{1}\right)^{4}$. Similarly we have $\left(P_{2} Q_{2}\right)^{2}=$ $\left(P_{2} Q_{2}\right)^{4}$. Let $A_{1}=\left(P_{1} Q_{1}\right)^{2}, A_{2}=\left(P_{2} Q_{2}\right)^{2}$. Then A_{1} and A_{2} are orthogonal idempotent matrices, $A=A_{1}+A_{2}$. Since $A_{1}=\left(P_{1} Q_{1} P_{1}\right) Q_{1}$ and $B_{1}=Q_{1}\left(P_{1} Q_{1} P_{1}\right)$, by Theorem 10, $A_{1} \stackrel{0}{\sim} B_{1}, A_{2} \stackrel{0}{\sim} B_{2}$.

Inversely, assume that $A=A_{1}+A_{2}$, where A_{1} and A_{2} are orthogonal idempotent matrices, moreover $A_{1} \stackrel{0}{\sim} B_{1}, A_{2} \stackrel{0}{\sim} B_{2}$. Let

$$
S=\left(\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right), \quad T=\binom{A_{1}}{A_{2}} .
$$

Then $S T=A_{1}+A_{2}=A$ and $T S=\operatorname{diag}\left\{A_{1}, A_{2}\right\}$. By Theorem 10,

$$
A \stackrel{0}{\sim} \operatorname{diag}\left\{A_{1}, A_{2}\right\} \stackrel{0}{\sim} B
$$

References

[1] A.L. Foster, Maximal idempotent sets in a ring with units, Duke J. Math. 13 (1946) 247-258.
[2] A. Steger, Diagonability of idempotent matrices, Pac. J. Math. 19 (3) (1966) 535-541.
[3] B.R. McDonald, Linear Algebra over Commutative Rings, Marcel Dekker, 1984.
[4] J. Rosenberg, Algebraic K-Theory and Its Applications, GTM 147, Springer, Berlin, 1995.

[^0]: * Corresponding author.

 E-mail address: songgt@ustc.edu.cn (G. Song)

