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Abstract

Let R be an arbitrary ring. In this paper, the following statements are proved: (a)

Each idempotent matrix over R can be diagonalized if and only if each idempotent

matrix over R has a characteristic vector. (b) An idempotent matrix over R can be

diagonalized under a similarity transformation if and only if it is equivalent to a di-

agonal matrix. (a) and (b) generalize Foster's and Steger's theorems to arbitrary rings.

We give some new results about 0-similarity of idempotent matrices over R. Ó 1999
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1. Introduction

In 1945, Foster examined the following questions: for a commutative ring R,
when can we ®nd an invertible matrix P over R such that PAPÿ1 �
diagfe1; . . . ; eng for a given idempotent matrix A over R? The problem con-
cerns not only matrix theory but also module theory and algebraic K-theory.
He proved the following theorem (cf. [1, Theorem 10]).
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Foster's theorem. The following are equivalent for a commutative ring R with
identity:

(a) Each idempotent matrix over R is diagonalizable under a similarity
transformation.

(b) Each idempotent matrix over R has a characteristic vector.

In 1966, Steger in [2] (or, see [3, IV.52 Theorem]) utilized Foster's theorem
to prove the following theorem.

Steger's theorem. Let R be a commutative ring with identity and A be an n� n
idempotent matrix over R. If there exist invertible matrices P and Q such that
PAQ is a diagonal matrix, then there is an invertible matrix U over R such that
UAUÿ1 is a diagonal matrix.

In this paper, we will demonstrate that Foster's theorem and Steger's the-
orem can be generalized to an arbitrary ring with identity.

Let R be a ring with identity, a and b 2 R, we say that a is equivalent to
b, denoted by a ' b, if there exist invertible elements u and v 2 R such that
uav � b; a is called similar to b, denoted by a � b, if there exists an inv-
ertible element u 2 R such that uauÿ1 � b. Let A 2 Rm�n, B 2 Rs�t, we say
that A is 0-equivalent to B, denoted by A '0 B, if there exist su�ciently large
integers p P maxfm; ng and q P maxfn; tg, P 2 GL�p;R� and Q 2GL(q,R)
such that

P
A 0
0 0

� �
Q � B 0

0 0

� �
p�q

:

We say that A is 0-similar to B, denoted by A �0 B, if there exist su�ciently large
integers p P maxfm; n; s; tg and P 2 GL�p;R� such that

P
A 0
0 0

� �
Pÿ1 � B 0

0 0

� �
p�p

:

By [4, Lemma 1.2.1], A �0 B if and only if the corresponding ®nitely generated
projective R-modules are isomorphic. One can ®nd also the de®nition of 0-
similarity in [3]. It is obvious that ``similar �) 0-similar'' and ``equivalent �)
0-equivalent''. Theorems 10 and 11 give two equivalent conditions for two
matrices to be 0-similar.

2. Main results

Lemma 1. Let R be a ring, a; b 2 R with a2 � a and aba � a, then a � ab � ba.
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Proof. Since �aÿ ab�2 � aÿ abÿ aba� abab � 0, let t � 1ÿ a� ab, then t is
invertible and tÿ1 � 1� aÿ ab. So tabtÿ1 � �1ÿ a� ab�ab�1� aÿ ab� � a,
hence a � ab. Similarly, it can be proved that a � ba: �

Theorem 2. Let R be a ring, a; b 2 R with a2 � a and b2 � b, then a � b if and
only if a ' b .

Proof. It is only needed to prove that ``a ' b �) a � b''. Suppose that there
exist invertible elements p and q 2 R such that paq � b. Let s � qÿ1pÿ1, then
papÿ1 � paqqÿ1pÿ1 � bs, so a � bs and bsb � b. By Lemma 1, bs � b, so
a � bs � b: �

Proposition 3. Let R be a ring and a, b be idempotents of R. If �aÿ b�2 � 0, then
a � ab � ba � b.

Proof. Since �aÿ b�2 � a2 ÿ abÿ ba� b2 � 0, so we have a� b � ab� ba and
a�a� b� � a2b� aba, i.e., a� ab � ab� aba which implies a � aba. Similarly,
we have b � bab. So by Lemma 1, a � ab � ba � b: �

Theorem 4. Let A be an idempotent matrix over a ring R. If A is equivalent to a
block diagonal matrix B � diagfB1;B2; . . . ;Bmg, then for any 16 i6m, there
exist matrices Sii such that A � D � diagfB1S11;B2S22; . . . ;BmSmmg. Moreover,
1. Bi 6� 0() BiSii 6� 0; i � 1; 2; . . . ;m.
2. If B2

i � Bi, Sii can be chosen to be the identity matrix.

Proof. Assume that there exist P ;Q 2 GL�n;R� such that PAQ � B. Let
S � Qÿ1Pÿ1 2 GL�n;R�, then Pÿ1AP � PAQQÿ1Pÿ1 � BS. Let S � �sij�m�m be

the block matrix with the same block type of B, then A � BS and �BS�2 � BS,
BSB � B. So we have BiSiiBi � Bi, BiSijBj � 0, 16 i 6� j6 n. Let
D � diagfB1S11; . . . ;BmSmmg, then D2 � D and DB � B, BSD � D. Since

�Dÿ BS�2 � D2 ÿ DBS ÿ BSD� �BS�2 � 0, �I ÿ �Dÿ BS��ÿ1 � I � �Dÿ BS�.
So let T � I ÿ �Dÿ BS�, then TBST ÿ1 � �I ÿ �Dÿ BS��BS�I � �Dÿ BS�� � D
which implies A � BS � D:

Observe that BiSiiBi � Bi, so Bi 6� 0() BiSi 6� 0. To show (2), since B2
i � Bi,

by Lemma 1, Bi � BiSii. So Sii can be changed as an identity matrix. �

The following corollary is a generalization of Steger's theorem.

Corollary 5. Let A be an n� n idempotent matrix over a ring R. If A is equiv-
alent to a diagonal matrix, then A is similar to a diagonal matrix.
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Using Theorem 4, we obtain the following corollaries about the diago-
nability of idempotent matrices.

Corollary 6. Let A be an n� n idempotent matrix over a ring R. If A has an
invertible k � k submatrix, 16 k6 n, then A � diagfIk;Bg:

Proof. By elementary transformations, the invertible k � k submatrix can be
put at the left-up corner of A, so A is equivalent to diagfIk;Bg. By Theorem 4,
A is similar to diagfIk;B1g: �

Corollary 7. Let R be a ring, and

A � A11 A12

A21 A22

� �
be a block idempotent matrix over R with A2

11 � A11, then A ' diagfA11;A2
22g

moreover A � fA11;B22g; where B22 is an idempotent matrix.

Proof. Since A2 � A, so A12A21 � 0, A2
22 ÿ A12 ÿ A21A12 � 0. We have

I 0
ÿA21 I

� �
A11 A12

A21 A22

� �
I 0
ÿA21 I

� �
� A11 A12

0 A22 ÿ A21A12

� �
and

I ÿ A12

0 I

� �
A11 A12

0 A22 ÿ A21A12

� �
I ÿ A12

0 I

� �
� A11 0

0 A22 ÿ A21A12

� �
;

so A ' diagfA11;A2
22g then, by Theorem 4, the second part follows. �

Corollary 8. Let A be an idempotent matrix over a ring R, and let

A � B11 0
B21 B22

� �
:

Then

A � B11 0
0 B22

� �

Proof. Since A2 � A, B2
11 � B11 and B2

22 � B22. By Corollary 7, B '
diagfB11;B2

22g � diagfB11;B22g, then, by Theorem 4, A � diagfB11;B22g: �

Let R be an arbitrary ring. Recall that a � �a1; . . . ; an� 2 Rn is called a right
unimodular vector if there exists �b1; . . . ; bn� 2 Rn such that
a1b1 � � � � � anbn � 1. A right unimodular vector �a1; a2; . . . ; an� in Rn is
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completable if it can be seen as the ®rst row of some invertible matrix over R.
Let A be an n� n matrix over R, recall that a is a characteristic vector of A if
a 2 Rn is a completable right unimodular vector and aA � ka for some k in R
(we call k the characteristic value of a). The following theorem is a general-
ization of Foster's theorem.

Theorem 9. The following are equivalent for an arbitrary ring R with identity:
1. Each idempotent matrix over R is diagonalizable under a similarity transfor-

mation (i.e. R is a projectively trivial ring).
2. For each nonzero projective left R-module P, there exist nonzero idempotent

e1; e2; . . . ; et in R such that P ' Re1 � Re2 � � � � � Ret:
3. Each idempotent matrix over R has a characteristic vector.

Proof. By Lemma 1.2.1 of [4], ``(1) �) (2)'' is easily got.
�1� �) �3�. Since there exists an invertible matrix P over R such that

PA � diagfk1; . . . ; kngP , the ®rst row of P is a characteristic vector of A.
�3� �) �1�. Let A be an idempotent matrix over R with a characteristic

vector a: aA � ka, then a can be completed to P 2 GL�n;R�, so

PA � k 0
� �

� �
P :

Since A is idempotent, by Corollary 8, A � diagfk;B2g; then by induction, the
theorem is proved. �

Finally, let us discuss the 0-similarity of idempotent matrices.

Theorem 10. Let A 2 Mm�R�, B 2 Mn�R� be idempotent matrices. Then A �0 B if
and only if there exist m� n matrix P and n� m matrix Q over R such that
PQ � A, QP � B.

Proof. If there exists T 2 GL�k;R�, k P maxfm; ng, such that

T
A 0
0 0

� �
Tÿ1 � B 0

0 0

� �
:

Decompose T and Tÿ1 into blocks corresponding to diagfA; 0g as

T � P11 P12

P21 P22

� �
; Tÿ1 � Q11 Q12

Q21 Q22

� �
:

Then we have Q11AP11 � B, P11BQ11 � A. Let P � AP11B and Q � BQ11A, then P
is an m� n matrix, Q is an n� m matrix and PQ � A, QP � B.

On the other hand, if there exist m� n matrix P and n� m matrix Q over R
such that PQ � A, QP � B. Let
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T � 1ÿ A AP
BQ 1ÿ B

� �
:

It is easy to verify that

T 2 � �1ÿ A�2 � APBQ �1ÿ A�AP � AP �1ÿ B�
BQ�1ÿ A� � �1ÿ B�BQ BQAP � �1ÿ B�2

� �
� Im 0

0 In

� �
:

Since PQP � AP and PQP � PB, we have AP � PB. Similarly, we have
BQ � QA � QPQ. So

T
A 0

0 0

 !
Tÿ1 �

1ÿ A AP

BQ 1ÿ B

 !
A 0

0 0

 !
1ÿ A AP

BQ 1ÿ B

 !

�
0 0

BQA 0

 !
1ÿ A AP

BQ 1ÿ B

 !
� diagf0;BQAAPg � diagf0;Bg:

Hence diagfA; 0g � diagf0;Bg � diagfB; 0g: �

Let R be a Dedekind in®nite ring (i.e., there exist a and b 2 R such that
ab � 1, ba � e 6� 1), then by Theorem 10, 1 is 0-similar to e, but it is obvious
that 1 is not similar to e.

Theorem 11. Let A 2 Mm�R�, B1 2 Mn1
�R� and B2 2 Mn2

�R� be idempotent
matrices over a ring R. Then A is 0-similar to B � diagfB1;B2g if and only if A
can be decomposed into the sum of two order m orthogonal idempotent matrices
A1;A2, i.e., A � A1 � A2, moreover A1 �0 B1, A2 �0 B2.

Proof. If A �0 B, by Theorem 10, there exist matrices P and Q such that PQ � A
and QP � B. Decompose P ;Q into blocks as

P � P1 P2� �; Q � Q1

Q2

� �
then

PQ � P1 P2� � Q1

Q2

� �
� P1Q1 � P2Q2 � A;

and

QP � Q1

Q2

� �
P1 P2� � � Q1P1 Q1P2

Q2P1 Q2P2

� �
B1 0
0 B2

� �
:
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So Q1P1 � B1, Q1P2 � 0, Q2P1 � 0 and Q2P2 � B2. From A2 � A, we have
P1Q1 � P2Q2 � �P1Q1�2 � �P2Q2�2. Times P1Q1 on the two sides of the equation,
we have �P1Q1�2 � �P1Q1�3, so �P1Q1�2 � �P1Q1�4. Similarly we have �P2Q2�2 �
�P2Q2�4. Let A1 � �P1Q1�2, A2 � �P2Q2�2. Then A1 and A2 are orthogonal id-
empotent matrices, A � A1 � A2. Since A1 � �P1Q1P1�Q1 and B1 � Q1�P1Q1P1�,
by Theorem 10, A1 �0 B1, A2 �0 B2.

Inversely, assume that A � A1 � A2, where A1 and A2 are orthogonal idem-
potent matrices, moreover A1 �0 B1, A2 �0 B2. Let

S � A1 A2� �; T � A1

A2

� �
:

Then ST � A1 � A2 � A and TS � diagfA1;A2g. By Theorem 10,

A �0 diagfA1;A2g �0 B: �
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