UNIVERSAL OBJECT OF A FUNCTOR

XUEJUN GUO

Department of Mathematics, Columbia University

Abstract: The definition and several examples are given. One can see the reference [1] for details.

1. The definition and examples

Definition 1.1. Let $F : \mathcal{C}^{opp} \longrightarrow (Sets)$ be a functor, i.e., a contravariant functor from \mathcal{C} to the category of sets. A universal object for F is a pair (X, ξ) consisting of an object X of C, and an element $\xi \in F(X)$ with the property that for each object U of \mathcal{C} and each $\sigma \in F(U)$, there is a unique arrow $f : U \longrightarrow X$ such that $F(f)(\xi) = \sigma \in F(U)$.

Example 1.2. Let F be a functor from $(Sets)^{opp} \longrightarrow (Sets)$ which maps each set A to the set of all subsets of A. If $A = \{a, b\}$, then $F(A) = \{\emptyset, \{a\}, \{b\}, A\}$.

The universal object of F is $(\{0, 1\}, \{1\})$.

Example 1.3. Let F be the functor $Sch^{opp} \longrightarrow (Sets)$ which maps each scheme to the set of isomorphism classes of triples (E, e_1, e_2) where E is an elliptic curve over S and e_1 , e_2 is a pair of sections of E over S which forms a \mathbb{Z}/N -basis of $_NE = \text{Ker}(N : E \longrightarrow E)$.

The universal object of F is $(Y(N), (E, e_1, e_2))$, where $Y(N) = (\Gamma(N) \setminus \mathcal{H}) \times (\mathbb{Z}/N\mathbb{Z})^{\times}$, this E is called the universal elliptic curve over Y(N). Note that we don't need the Weil pairing of (e_1, e_2) to be some fixed N-th root of unity. Hence $(\mathbb{Z}/N\mathbb{Z})^{\times}$ must be added. Y(N) is the modular curve over \mathbb{Q} of level N without cusps, which represents the functor F.

Example 1.4. Let F be the functor $Sch^{opp} \longrightarrow (Sets)$ which maps S to $\Gamma(S)^{\times}$. The universal object of F is (\mathbb{G}_m, x) , where $\mathbb{G}_m = \operatorname{Spec}(\mathbb{Z}[x, x^{-1}])$ and x is invertible in $\mathbb{Z}[x, x^{-1}]$.

References

[1] Fundamental Algebraic Geometry: Grothendieck's FGA Explained.