Computing the tame kernel of $\mathbb{Q}(\zeta_8)$

XUEJUN GUO¹ HOURONG QIN¹ GUANGTIAN SONG²

¹Department of Mathematics, Nanjing University Nanjing, 210093, The People's Republic of China Email: guoxj@nju.edu.cn, hrqin@nju.edu.cn
²Department of Mathematics, University of Science and Technology of China Hefei, 230026, The People's Republic of China

Abstract: In this paper, it is proved that the tame kernel of $\mathbb{Q}(\zeta_8)$ is trivial. Keywords: Tame kernel, K_2 group. 1991 MR Subject Classification: 19C99, 19F27

1. Introduction

Let F be a number field and $K_2\mathcal{O}_F$ the tame kernel of F. Although we know many properties about $K_2\mathcal{O}_F$, it is still a difficult problem to determine its structure, even for a quadratic field F. Let $F = \mathbb{Q}(\sqrt{d})$ be an imaginary quadratic field, we know that

 $K_2\mathcal{O}_F$ is trivial for d = -1, -2, -3, -5, -6, -11, -19 (see [5], [7], [8], [9]) and $K_2\mathcal{O}_F \simeq \mathbb{Z}/2\mathbb{Z}$ for d = -7, -15, -35 (see [5], [8]). The latest computation of $K_2\mathcal{O}_F$ on imaginary quadratic fields can be found in [2], [3] and [4]. In this paper, we prove that $K_2\mathcal{O}_F$ is trivial for $F = \mathbb{Q}(\zeta_8)$, where ζ_8 is a primitive 8th root of unity. This F is totally imaginary with degree 4.

2. Preliminaries

Let F be a number field with \mathcal{O}_F the ring of integers of F and let S_{∞} denote the set of archimedean places of F. If S is a set of places containing S_{∞} , we put $\mathcal{O}_S = \{a \in F | v(a) \geq 0, \text{ for all } v \notin S\}$, which is the ring of S-integers. Assume that \mathcal{P} is the maximal ideal corresponding to $v \notin S$ and let $k(v) = \mathcal{O}_S/\mathcal{P}$. Put N(v) = |k(v)|.

We shall write $K_2^S F$ for the subgroup of $K_2 F$ generated by $\{x, y\}$, where $x, y \in \mathcal{O}_S^* = U$. We can list the finite places of $F, v_1, v_2, ..., v_n, ...,$ so that $N(v_i) \leq N(v_{i+1})$ for all *i*. Put $S_m = S_\infty \cup \{v_1, ..., v_m\}$. Let $S = S_m, v = v_{m+1} \notin S$, $S' = S_{m+1} = S \cup \{v\}$ and $U = \mathcal{O}_S^*$, let \mathcal{P} be the maximal ideal corresponding to v, let $k = k(v) = \mathcal{O}_S/\mathcal{P}$ and let k^* denote the multiplicative group of k. Let

Supported by the NSFC Grant and the National Distinguished Young Science Foundation of China Grant.

 ∂_v be the tame map corresponding to v. In [1], Bass and Tate show that for a sufficiently large m, the induced homomorphism

$$\partial_v: \quad K_2^{S'}F/K_2^SF \longrightarrow k^*$$

is an isomorphism, which implies that

$$K_2\mathcal{O}_F = \ker\left(\partial: K_2^{S_m}F \longrightarrow \coprod_{v \in S_m \setminus S_\infty} k^*(v)\right).$$

So if we can make m relatively small and get sufficiently many relations satisfied by elements of $K_2^{S_m}F$, then we can determine the tame kernel of F.

Suppose \mathcal{P} is generated by π . Let U_1 be the subgroup of U generated by $(1+\pi U)\cap U$ and β be the natural quotient map from U to k^* . In [5], Tate proved the following lemma which is very useful to prove the surjectivity of ∂_v .

Lemma 2.1. Suppose that W, C, G are subsets of U such that

(1) $W \subset CU_1$ and W generates U,

(2) $CG \subset CU_1$ and $\beta(G)$ generates k^* ,

(3) $1 \in C \cap \ker \beta \subset U_1.$

Then ∂_v is bijective.

3. Computation of $K_2\mathbb{Z}[\zeta_8]$

In this section, we will abbreviate ζ_8 to ζ . Let $F = \mathbb{Q}(\zeta)$. Then $\{1, \zeta, \zeta^2, \zeta^3\}$ is an integral basis of \mathcal{O}_F . We have that h(F) = 1 and D(F) = 256. There are four embeddings of F into \mathbb{C} : identity and its conjugation $\zeta \mapsto \overline{\zeta} \sigma : \zeta \mapsto \zeta^3$ and its conjugation $\overline{\sigma} : \zeta \mapsto \zeta^5$. It is obvious that for every $x = a + b\zeta + c\zeta^2 + d\zeta^3$,

$$N(x) = (a^{2} + c^{2})^{2} + (b^{2} + d^{2})^{2} + 4bd(a^{2} - c^{2}) + 4ac(d^{2} - b^{2}).$$

Let $\varepsilon = 1 + \zeta + \zeta^2$. Then the unit group U of \mathcal{O}_F is generated by ζ and ε .

We know that 2 is totally ramified and for an arbitrary odd prime $p \in \mathbb{Z}$, p splits completely if 8|(p-1), otherwise, $(p) = \mathcal{P}_1\mathcal{P}_2$ with $N(\mathcal{P}_1) = N(\mathcal{P}_2) = p^2$.

Lemma 3.1. For any $\alpha \neq 0$, $x \in \mathcal{O}_F$, there exists $y \in \mathcal{O}_F$ such that $N(x-y\alpha) \leq \frac{9N(\alpha)}{16}$, $|x-y\alpha| \leq (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot \alpha|$, and $|\sigma(x) - \sigma(y)\sigma(\alpha)| \leq (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\sigma(\alpha)|$.

Proof. Let $x/\alpha = k_1 + k_2\zeta + k_3\zeta^2 + k_4\zeta^3$, where $k_i \in \mathbb{Q}$. For a real number t, denote by [t] the nearest integer to t, and let $\{t\} = t - [t]$. Clearly $-\frac{1}{2} < \{t\} \le \frac{1}{2}$.

We shall prove that $y := \sum_{i=1}^{4} [k_i] \zeta^{i-1}$ satisfies the lemma.

Let
$$z = x - y\alpha = \sum_{i=1}^{4} \{k_i\} \alpha \zeta^{i-1} = \sum_{i=1}^{4} z_i \alpha \zeta^{i-1}$$
, where $z_i = \{k_i\}$. Then

$$N(z) = N(\alpha) N(\sum_{i=1}^{4} z_i \zeta^{i-1})$$

$$= N(\alpha) ((z_1^2 + z_3^2)^2 + (z_2^2 + z_4^2)^2 + 4z_2 z_4 (z_1^2 - z_3^2) + 4z_1 z_3 (z_4^2 - z_2^2))$$

$$\leq N(\alpha) ((z_1^2 + z_3^2)^2 + (z_2^2 + z_4^2)^2 + 4|z_2||z_4||z_1^2 - z_3^2| + 4|z_1||z_3||z_4^2 - z_2^2|)$$

Suppose that $z_3^2 \ge z_1^2$ and $z_4^2 \ge z_2^2$, then

$$N(z) \le N(\alpha)((z_1^2 + \frac{1}{4})^2 + (z_2^2 + \frac{1}{4})^2 + 2|z_2|(\frac{1}{4} - z_1^2) + 2|z_1|(\frac{1}{4} - z_2^2)).$$

Now we look for the maximal value of

$$f := (z_1^2 + \frac{1}{4})^2 + (z_2^2 + \frac{1}{4})^2 + 2|z_2|(\frac{1}{4} - z_1^2) + 2|z_1|(\frac{1}{4} - z_2^2)$$

in the region $\{(z_1, z_2) | 0 \le z_i \le \frac{1}{2}, i = 1, 2\}.$

Since

$$\frac{\partial f}{\partial z_1} = 4z_1^3 + z_1 - 4z_1z_2 - 2z_2^2 + \frac{1}{2},$$

$$\frac{\partial f}{\partial z_2} = 4z_2^3 + z_2 - 4z_1z_2 - 2z_1^2 + \frac{1}{2},$$

we have $\frac{\partial f}{\partial z_1} = \frac{\partial f}{\partial z_2} = 0$ if and only if $z_1 = z_2 = \frac{1}{2}$. So f meets its maximal value on the boundary. By computation, we can show $f \leq \frac{9}{16}$. So $N(x - y\alpha) = N(z) \leq ON(z)$

 $\frac{9N(\alpha)}{16}.$ Next, let $g(z_1, z_2, z_3, z_4) = |z|^2 = (z_1 + \frac{z_2 - z_4}{\sqrt{2}})^2 + (z_3 + \frac{z_2 + z_4}{\sqrt{2}})^2, t_1 = \frac{z_2 - z_4}{\sqrt{2}}$ and

$$g(z_1, z_2, z_3, z_4) = (z_1 + t_1)^2 + (z_3 + t_2)^2$$

$$\leq (|z_1| + |t_1|)^2 + (|z_3| + |t_2|)^2.$$

Since $|t_1| + |t_2| = \frac{|z_2 - z_4| + |z_2 + z_4|}{\sqrt{2}} \le frac \sqrt{2}$, we have

$$g \leq (|z_1| + |t_1|)^2 + (|z_3| + \frac{1}{\sqrt{2}} - |t_1|)^2$$

$$\leq (\frac{1}{2} + |t_1|)^2 + (\frac{1}{2} + \frac{1}{\sqrt{2}} - |t_1|)^2$$

$$= 2|t_1|^2 - \sqrt{2}|t_1| + 1 + \frac{\sqrt{2}}{2}$$

$$\leq 1 + \frac{1}{\sqrt{2}}.$$

So $|z| \leq (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\alpha|$. Similarly $|\sigma(z)| \leq (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot sigma(|\alpha|)$, i.e.,

$$|x - y\alpha| \le (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\alpha|$$

and
$$|\sigma(x) - \sigma(y)\sigma(\alpha)| \le (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\sigma(\alpha)|.$$

Lemma 3.2. For any prime ideal \mathcal{P} , there is an element α such that $\mathcal{P} = (\alpha)$, and $(\sqrt{2}-1)|\alpha| \leq |\sigma(\alpha)| \leq |\alpha|(1+\sqrt{2})$.

Proof. Suppose that \mathcal{P} is a prime ideal with generator y. Recall that $\varepsilon = 1 + \zeta + \zeta^2$ is invertible in \mathcal{O}_F and $|\varepsilon| = \sqrt{2} + 1$, $|\sigma(\varepsilon)| = \sqrt{2} - 1$. If $|\sigma(y)| > (1 + \sqrt{2})|y|$, then there exists some $k \ge 0$ such that $|\sigma(y)||\sigma(\varepsilon)|^{k-1} > (1 + \sqrt{2})|y||\varepsilon|^{k-1}$, while $|\sigma(y)||\sigma(\varepsilon)|^k \le (1 + \sqrt{2})|y||\varepsilon|^k$. Let $\alpha = y\varepsilon^k$. Then $(\sqrt{2} - 1)|\alpha| \le |\sigma(\alpha)| \le |\alpha|(1 + \sqrt{2})$.

By virtue of Lemma 2.1, we will construct W, C, G concretely for each S_m . For each $\mathcal{P}_i \in S_m$, choose α_i to be a generator of \mathcal{P}_i such that $(\sqrt{2}-1)|\alpha_i| \leq |\sigma(\alpha_i)| \leq |\alpha_i|(1+\sqrt{2})$. Let W be the set consisting exactly of all these α_i 's and all the units of \mathcal{O}_F . Assume $\mathcal{P} = \mathcal{P}_{m+1} = (\alpha)$, where α satisfies $(\sqrt{2}-1)|\alpha| \leq |\sigma(\alpha)| \leq |\alpha|(1+\sqrt{2})$. Then $(\sqrt{2}-1)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} \leq |\sigma(\alpha)| leq(\sqrt{2}+1)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}$. Let

$$C' = \{ c \in \mathcal{O}_F | N(c) \le \frac{9N(\mathcal{P})}{16}, |c| \le (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\alpha|, |\sigma(c)| \le (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\sigma(\alpha)| \},$$

where D = D(F) = 256. By Lemma 3.1, any integer must be congruent to some element in C' modulo \mathcal{P} . Let C be a subset of C' such that $1 \in C$, $0 \notin C$ and $c_1 - c_2 \notin P$ for any two different elements $c_1, c_2 \in C$. So (3) of Lemma 2.1 is always satisfied. Let

$$G = \{ a \in \mathcal{O}_F | \ |a| \le (\frac{2}{\pi})^{\frac{1}{2}} \cdot |D|^{\frac{1}{8}} \cdot N(\mathcal{P})^{\frac{1}{8}}, \ |\sigma(a)| \le (\frac{2}{\pi})^{\frac{1}{2}} \cdot |D|^{\frac{1}{8}} \cdot (\mathcal{P})^{\frac{1}{8}} \}.$$

Then by the GTT Theorem of [9], $\beta(G)$ generates k^{\cdot} when $N(\mathcal{P}) \geq (\frac{4}{\pi^2})^2 \cdot |D| \doteq 42.05$. Let $\delta = (\frac{2}{\pi})^{\frac{1}{2}} \cdot |D|^{\frac{1}{8}}$. Then for any $g \in G$, we have $N(g) \leq \delta^4 \cdot N(\mathcal{P})^{\frac{1}{2}}$.

Lemma 3.3. Assume that $\mathcal{P} = (\alpha)$ with α satisfying $(\sqrt{2} - 1)|\alpha| \leq |\sigma(\alpha)| \leq |\alpha|(1 + \sqrt{2})$. Choosing W, C, G as above, we have $W \subset CU_1$ if $N(\mathcal{P}) > 9$.

Proof. By Lemma 1 of [5], $W \subset CU_1$ if $N(w-c) < N(\mathcal{P})^2$, i.e., $|w-c||\sigma(w) - \sigma(c)| < N(\mathcal{P})$ holds for any $w \in W$, $c \in C$. This can be deduced from the inequality $(|w| + |c|)(|\sigma(w)| + |\sigma(c)|) < N(\mathcal{P})$, i.e., $N(w)^{\frac{1}{2}} + |c| \cdot |\sigma(w)| + |w| \cdot |\sigma(c)| + N(c)^{\frac{1}{2}} < N(\mathcal{P})$.

Given any $c \in C$, by the construction of C, we have

$$|c| \le (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\alpha| \le (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot (1 + \sqrt{2})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}.$$

on the other hand, $|c| = \frac{N(c)^{\frac{1}{2}}}{|\sigma(c)|} \ge \frac{N(c)^{\frac{1}{2}}}{(1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\sigma(\alpha)|} \ge \frac{N(c)^{\frac{1}{2}}}{(1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot (1+\sqrt{2})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}}, and(\sqrt{2} - \frac{(\sqrt{2}-1)^{\frac{1}{2}} \cdot N(c)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{4}}}{(1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot (1+\sqrt{2})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}}$ $1)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{4}} \le |\sigma(w)| < N(w)^{\frac{1}{4}} \cdot (\sqrt{2}+1)^{\frac{1}{2}} \cdot So \le |c| \cdot |\sigma(w)|$ $\le (\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} \cdot N(w)^{\frac{1}{4}}.$

 $|\sigma(c)|) = N(c)^{\frac{1}{2}}N(w)^{\frac{1}{2}} \leq N(\mathcal{P})$, and the function $x + \frac{a}{x}$ $(x \in [c_1, c_2], c_1 > 0)$ meets its maximal value on the boundary,

$$\begin{split} |c| \cdot |\sigma(w)| + |w| \cdot |\sigma(c)| \\ = |c| \cdot |\sigma(w)| + \frac{N(c)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{2}}}{|c| \cdot |\sigma(w)|} \\ \leq (\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} \cdot N(w)^{\frac{1}{4}} + \frac{N(c)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{4}}}{(\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}} \\ \leq (\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{2}} + \frac{\frac{3}{4}N(\mathcal{P})^{\frac{1}{2}}}{(\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}}} \\ = N(\mathcal{P})^{\frac{1}{2}} \cdot ((\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} + \frac{\frac{3}{4}}{(\sqrt{2}+1) \cdot (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}}}) \\ \doteq N(\mathcal{P})^{\frac{1}{2}} \cdot (3.392) . \end{split}$$

Thus $W \subset CU_1$ if $N(\mathcal{P})^{\frac{1}{2}} + N(\mathcal{P})^{\frac{1}{2}}(3.392) + \frac{3N(\mathcal{P})^{\frac{1}{2}}}{4} < N(\mathcal{P})$. Since $N(\mathcal{P}) \in \mathbb{Z}$, we get the inequality if $N(\mathcal{P}) > 26$.

Suppose that \mathcal{P}_1 , ..., $\mathcal{P}_8 = (2-i)$, $\mathcal{P}_9 = (2+i)$ are the first nine prime ideals. If $\mathcal{P} = \mathcal{P}_8$, we see that for any $c \in C$, $N(c) \leq \frac{9 \cdot 25}{16}$, which implies $N(c) \leq 9$ for every $t \in \{14, 13, 12, 11, 10\}$ is not a norm from F/\mathbb{Q} . So the inequality also holds. If $\mathcal{P} = \mathcal{P}_9$, since $2 - i = 4(1 - \frac{1}{4} \cdot (2+i))$, we have $2 - i \in CU_1$. For $N(c) \leq 9$, the inequality holds. So we have $W \subset CU_1$ if $N(\mathcal{P}) = 25$.

We know that 17 is splitted completely. Let $\mathcal{P} = \mathcal{P}_4 = (1+2\zeta), W = \{\zeta, \varepsilon, 1+\zeta, 1-\zeta-\zeta^2, \overline{1-\zeta-\zeta^2}\}, C = \{\zeta^i(1-\zeta-\zeta^2)^j, i=0, 1, ..., 7, j=0, 1\}$. Then we have

$$N(w)^{\frac{1}{2}} + |c| \cdot |\sigma(w)| + |w| \cdot |\sigma(c)| + N(c)^{\frac{1}{2}}$$

<3 + 2(1 + \sqrt{2})\sqrt{3} + 3 < 17.

If $\mathcal{P} = \mathcal{P}_5 = (1+2\zeta^3)$, then let $W = \{\zeta, \varepsilon, 1+\zeta, 1-\zeta-\zeta^2, \overline{1-\zeta-\zeta^2}, 1+2\zeta\}$, $C = \{\zeta^i(1-\zeta-\zeta^2)^j, i=0, 1, ..., 7, j=0, 1\}$. We have $N(w)^{\frac{1}{2}} + |c| \cdot |\sigma(w)| + |w| \cdot |\sigma(c)| + N(c)^{\frac{1}{2}}$ $<\sqrt{17} + \sqrt{3}(\sqrt{5+2\sqrt{2}} + \sqrt{5-2\sqrt{2}}) + 3 < 17$.

If $\mathcal{P} = \mathcal{P}_6$ or \mathcal{P}_7 , the proof is the same as above. So $W \subset CU_1$ if $N(\mathcal{P}) > 9$.

Lemma 3.4. If $N(\mathcal{P}) > 9$, then $CG \subset CU_1$.

Proof. By Lemma 1 in [5], $CG \subset CU_1$ if $N(c_1g - c_2) < N(\mathcal{P})^2$ holds for any $c_1, c_2 \in C, g \in G$. This can be deduced from

$$(|c_1| \cdot |g| + |c_2|) \cdot (|\sigma(c_1)| \cdot |\sigma(g)| + |\sigma(c_2)|) < N(\mathcal{P}),$$

i.e.,

$$N(c_1)^{\frac{1}{2}} \cdot N(g)^{\frac{1}{2}} + |c_2| \cdot |\sigma(c_1)| \cdot |\sigma(g)| + |\sigma(c_2)| \cdot |c_1| \cdot |g| + N(c_2)^{\frac{1}{2}} < N(\mathcal{P}).$$
(1)
Assume M_1 , M_2 are positive numbers such that $N(c_1) \leq M_1$, $N(c_2) \leq M_1$,
 $|g| \leq M_2$ and $|\sigma(g)| \leq M_2$. The above inequality holds if

$$M_1^{\frac{1}{2}} \cdot (N(g)^{\frac{1}{2}} + 1) + M_2(|c_2| \cdot |\sigma(c_1)| + |c_1| \cdot |\sigma(c_2)|) < N(\mathcal{P}),$$

i.e.,

$$M_1^{\frac{1}{2}}(N(g)^{\frac{1}{2}} + 1) + M_2(|c_2| \cdot |\sigma(c_1)| + \frac{N(c_1)^{\frac{1}{2}} \cdot N(c_2)^{\frac{1}{2}}}{|c_2| \cdot |\sigma(c_1)|}) < N(\mathcal{P}).$$

In the proof of Lemma 3.3, we see that

$$\frac{N(c_2)^{1/2}}{(1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\sigma(\alpha)|} \le |c_2| \le (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\alpha|,$$

and

$$\frac{N(c_1)^{1/2}}{(1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\alpha|} \le |\sigma(c_1)| \le (1+\frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot |\sigma(\alpha)|.$$

 So

$$|c_{2}| \cdot |\sigma(c_{1})| + \frac{N(c_{1})^{\frac{1}{2}} \cdot N(c_{2})^{\frac{1}{2}}}{|c_{2}| \cdot |\sigma(c_{1})|}$$

$$\leq (1 + \frac{1}{\sqrt{2}}) \cdot N(\mathcal{P})^{\frac{1}{2}} + \frac{\frac{9}{16}N(\mathcal{P})^{\frac{1}{2}}}{1 + \frac{1}{\sqrt{2}}}$$

$$= 2.0366N(\mathcal{P})^{\frac{1}{2}}.$$

Hence (1) holds if

$$M_1^{\frac{1}{2}}(M_2^2 + 1) + 2.0366M_2 \cdot N(\mathcal{P})^{\frac{1}{2}} < N(\mathcal{P}).$$
⁽²⁾
⁽²⁾

Let $M_1 = \frac{9}{16} \cdot N(\mathcal{P})$ and $M_2 = \delta \cdot N(p)^{\frac{1}{8}}$. We get

$$\frac{3}{4} \cdot N(\mathcal{P})^{\frac{1}{2}} \cdot (\delta^2 N(\mathcal{P})^{\frac{1}{4}} + 1) + 2.0366\delta \cdot N(\mathcal{P})^{\frac{5}{8}} < N(\mathcal{P}).$$

Let $y = N(\mathcal{P})^{\frac{1}{8}}$. Then

$$y^4 - \frac{3}{4}\delta^2 y^2 - 2.0366\delta y - \frac{3}{4} > 0.$$

It can be easily verified that if y > 1.945, i.e., $N(\mathcal{P}) > 204$, the inequality holds.

Now suppose $N(\mathcal{P}) = 193$. Since $M_1 \leq \frac{9}{16}N(\mathcal{P})$, the maximal possible value of M_1 is 100. Let $M_1 = 100$ and $M_2 = \delta N(\mathcal{P})^{\frac{1}{8}}$, it can be easily verified that the inequality (2) holds.

For the prime ideals \mathcal{P} whose norm satisfy $9 < N(\mathcal{P}) < 193$, let $(p) = \mathcal{P} \cap \mathbb{Z}$, then $p \in \{137, 113, 97, 89, 73, 41, 13, 11, 7, 5, 17, 3, 2\}$.

If $p \in \{137, 113, 89\}$, then p splits completely and 3 generates $(\mathbb{Z}/p\mathbb{Z})^*$ which implies 3 generates $(\mathcal{O}/\mathcal{P})^*$. We let $3 = (\sqrt{2}+i)(\sqrt{2}-i)$, let $G = \{\sqrt{2}+i, \sqrt{2}-i\}$ and $M_2 = \sqrt{3}$, $M_1 = \frac{9}{16}N(\mathcal{P})$. We see that (2) is satisfied if $N(\mathcal{P}) > 33$. Hence for $p \in \{137, 113, 89\}$, $CG \subset CU_1$.

If $p \in \{97, 73\}$, then 5 = (2+i)(2-i) generates $(\mathcal{O}/\mathcal{P})^*$. Let $G = \{2+i, 2-i\}$, $M_2 = \sqrt{5}$ and $M_1 = \frac{9}{16}N(\mathcal{P})$. Then (2) is satisfied if $N(\mathcal{P}) > 62$. So for $p \in \{97, 73\}, CG \subset CU_1$.

If p = 41, then $6 = 2 \cdot 3 = (1+\zeta)(1+\zeta^3)(1+\zeta^5)(1+\zeta^7)(1-\zeta-\zeta^2)\overline{(1-\zeta-\zeta^2)}$ generates $(\mathcal{O}/\mathcal{P})^*$. Let $G = \{1+\zeta, 1+\zeta^3, 1+\zeta^5, 1+\zeta^7, 1-\zeta-\zeta^2, \overline{1-\zeta-\zeta^2}\}$ and $M_2 = \sqrt{2+\sqrt{2}}, M_1 = \frac{9}{16}N(\mathcal{P})$. Then (2) is satisfied if $N(\mathcal{P}) > 32$. So for $p = 41, CG \subset CU_1$.

If p = 13, then $N(\mathcal{P}) = 169$ and $1 + \zeta$ generates $(\mathcal{O}/\mathcal{P})^*$. Let $G = 1 + \zeta$, $M_1 = \frac{9}{16}N(\mathcal{P}), M_2 = \sqrt{2 + \sqrt{2}}$. Then (2) is satisfied if $N(\mathcal{P}) > 81$. So for $p = 13, CG \subset CU_1$.

If p = 11, then $N(\mathcal{P}) = 121$. Let $G = \{1 \pm \zeta, \zeta, 1 \pm \zeta^3\}$. Then G generates $(\mathcal{O}/\mathcal{P})^*$. Let $M_1 = \frac{9}{16}N(\mathcal{P}), M_2 = \sqrt{2 + \sqrt{2}}$. Then (2) is satisfied if $N(\mathcal{P}) > 81$. So for $p = 11, CG \subset CU_1$.

If p = 7, then $N(\mathcal{P}) = 49$. Without lost of generality, we assume $\mathcal{P} = (2 + \zeta + 2\zeta^2)$. Let $G = \{1 + \zeta\}$. Then G generates $(\mathcal{O}/\mathcal{P})^*$. Let $M_2 = \sqrt{2 + \sqrt{2}}$. Since $N(c) \leq \frac{9}{16}N(\mathcal{P})$, we have $N(c) \leq 27$. But neither 27 nor 26 is a norm from F/\mathbb{Q} . If N(c) = 25, we can replace c by an element of norm 2. For example, if c = 2 + i, we can replace c by $-(\zeta + \zeta^2)$ which also satisfies the conditions in Lemma 3.1. For any $t \in \{24, 23, 22, 21, 20, 19\}$, t is not a norm from F/\mathbb{Q} . Let $M_1 = 18$. We see that (2) is satisfied. Hence for p = 7, $CG \subset CU_1$.

If p = 5, then $N(\mathcal{P}) = 25$. Without lost of generality, assume $\mathcal{P} = (2 + i)$. Let $G = \{1 + \zeta\}$. Then G generates $(\mathcal{O}/\mathcal{P})^*$. Since $N(c) \leq \frac{9}{16} \cdot 25$, we have $N(c) \leq 14$. Again, for any $t \in \{14, 13, 12, 11, 10\}$, t can not be a norm from $\frac{7}{7}$ F/\mathbb{Q} . So $N(c) \leq 9$. Therefore the inequality (1) holds if

$$3 \cdot \sqrt{2} + |c_2| \cdot |\sigma(c_1)| \cdot (\sqrt{2 + \sqrt{2}}) + |\sigma(c_2)| \cdot |c_1| \cdot (\sqrt{2 - \sqrt{2}}) + 3 < 25$$
(3).

Note that $(|c_2| \cdot |\sigma(c_1)| \cdot (\sqrt{2 + \sqrt{2}}))(|\sigma(c_2)| \cdot |c_1| \cdot (\sqrt{2 - \sqrt{2}})) \leq 9\sqrt{2}$ and $|c_i| \leq (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot \sqrt{5}$, $|\sigma(c_i)| \leq (1 + \frac{1}{\sqrt{2}})^{\frac{1}{2}} \cdot \sqrt{5}$. Then the left side of (3) is less than

$$3(\sqrt{2}+1) + \left(\left(\sqrt{2+\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{2}}\right) \cdot 5 + \frac{9\sqrt{2}}{5(\sqrt{2+\sqrt{2}})\left(1+\frac{1}{\sqrt{2}}\right)} \le 25 \ .$$

So for p = 5, $CG \subset CU_1$.

If p = 17, then $N(\mathcal{P}) = 17$. Without lost of generality, assume $\mathcal{P} = (1 + 2\zeta)$. Let $C = \{\zeta^i (1 - \zeta - \zeta^2)^j, i = 0, 1, ..., 7, j = 0, 1\}, G = \{1 - \zeta - \zeta^2, \overline{1 - \zeta - \zeta^2}\}$. If $c_1g \equiv c_2 \pmod{\mathcal{P}}$, then $N(c_1) \neq N(c_2)$, for otherwise $g \equiv 1 \pmod{\mathcal{P}}$. So $N(c_1)N(c_2) = 9$. In the equality (1),

$$N(c_1)^{\frac{1}{2}} \cdot N(g)^{\frac{1}{2}} + |c_2| \cdot |\sigma(c_1)| \cdot |\sigma(g)| + |\sigma(c_2)| \cdot |c_1| \cdot |g| + N(c_2)^{\frac{1}{2}}$$

<3 \cdot 3 + 2\sqrt{3} \cdot \sqrt{3} + 1 = 16 < 17 .

So for p = 17, $CG \subset CU_1$.

The lemma is proved.

Combining Lemma 3.3 and Lemma 3.4, we know that (1), (2) of Lemma 2.1 are satisfied if N(v) > 9. So ∂v is a bijective if N(v) > 9.

If p = 3, then $(p) = \mathcal{P}\overline{\mathcal{P}}$, where $\mathcal{P} = (1 - \zeta - \zeta^2)$. Let $C = \{1, \zeta, ..., \zeta^7\}$, $G = \{\zeta\}$ and $W = \{\zeta, \varepsilon, 1+\zeta\}$. For $\overline{\mathcal{P}}$ which is lying behind \mathcal{P} , we may add $1 - \zeta - \zeta^2$ to W. If p = 2, let $C = G = \{1\}$ and $W = \{1, \zeta, \varepsilon\}$. One can verify that (1), (2), (3) in Lemma 2.1 are satisfied. Hence ∂v is a bijective.

Hence $K_2\mathcal{O}_F$ can be generated by $\{x, y\}$, $x, y \in \mathcal{O}_F^*$. However, \mathcal{O}_F^* is generated by ζ and $\varepsilon = 1 + \zeta + \zeta^2$. So $K_2\mathcal{O}_F$ is generated by $\{\zeta, \zeta\}, \{\zeta, \varepsilon\}, \{\varepsilon, \varepsilon\}$.

Theorem 3.5. The tame kernel of $\mathbb{Q}(\zeta_8)$ is a trivial group.

Proof. Since $\zeta^4 = -1$, we get

$$\{\zeta,\zeta\} = \{\zeta,-1\} = \{\zeta,\zeta^4\} = \{\zeta,\zeta\}^4 = \{\zeta,-1\}^4 = 1.$$

By $\varepsilon = 1 + \zeta + \zeta^2$ and $\zeta^9 = \zeta$, we get

$$\{\zeta, \varepsilon\} = \{\zeta, (1-\zeta)\varepsilon\} = \{\zeta, 1-\zeta^3\} = \{\zeta^3, 1-\zeta^3\}^3 = 1.$$

On the other hand, $\{\varepsilon, \varepsilon\} = \{\varepsilon, -1\} = \{\varepsilon, \zeta\}^4 = 1$. So $\mathbb{Q}(\zeta_8)$ is a trivial group.

Acknowledgement The authors wish to thank the referee for valuable suggestions.

References

- [1] H. Bass, J. Tate, The Milnor ring of a global field, Springer L. N. M. 342 (1973), 349-428.
- [2] J. Browkin, Computing the tame kernel of quadratic imaginary fields, Math. Comp. 69 (2000), no.232, 1667–1683.
- [3] J. Browkin and H. Gangl, Tame and wild kernels of quadratic imaginary number fields, Math. Comp. 68 No. 225 (1999), 291-306.
- [4] K. Belabas and H. Gangl, Generators and relations for $K_2\mathcal{O}_F$, F imaginary quadratic, preprint.
- [5] J. Tate, Appendix, Springer L. N. M. 342 (1973), 429-446.
- [6] F. Keune, On the structure of K_2 of the ring of integers in a number fields, K-theory 2 (1989), 625-645.

- [7] Qin Hourong, Computation of K₂ℤ[√-6], J.Pure Appl.Algrbra 96 (1994), 133-146.
 [8] Qin Hourong, Computation of K₂ℤ[^{1+√-35}/₂], Chin. Ann. of Math 17B (1996), 63-72.
 [9] M. Skalba, Generalization of Thue's theorem and computation of the group K₂𝔅_F, J. Number Theory 46 (1994), 303–322.