
Computing the tame kernel of Q(ζ8)

XUEJUN GUO1 HOURONG QIN1 GUANGTIAN SONG2

1Department of Mathematics, Nanjing University
Nanjing, 210093, The People’s Republic of China

Email: guoxj@nju.edu.cn, hrqin@nju.edu.cn
2Department of Mathematics, University of Science and Technology of China

Hefei, 230026, The People’s Republic of China

Abstract: In this paper, it is proved that the tame kernel of Q(ζ8) is trivial.
Keywords: Tame kernel, K2 group.
1991 MR Subject Classification: 19C99, 19F27

1. Introduction

Let F be a number field and K2OF the tame kernel of F . Although we know
many properties about K2OF , it is still a difficult problem to determine its struc-
ture, even for a quadratic field F . Let F = Q(

√
d) be an imaginary quadratic

field, we know that
K2OF is trivial for d = −1, −2, −3, −5, −6, −11, −19 (see [5], [7], [8], [9])

and K2OF ' Z/2Z for d = −7,−15,−35 (see [5], [8]). The latest computation
of K2OF on imaginary quadratic fields can be found in [2], [3] and [4]. In this
paper, we prove that K2OF is trivial for F = Q(ζ8), where ζ8 is a primitive 8th
root of unity. This F is totally imaginary with degree 4.

2. Preliminaries

Let F be a number field with OF the ring of integers of F and let S∞ denote
the set of archimedean places of F . If S is a set of places containing S∞, we put
OS = {a ∈ F | v(a) ≥ 0, for all v /∈ S}, which is the ring of S-integers. Assume
that P is the maximal ideal corresponding to v /∈ S and let k(v) = OS/P . Put
N(v) = |k(v)|.

We shall write KS
2 F for the subgroup of K2F generated by {x, y}, where

x, y ∈ O∗
S = U . We can list the finite places of F , v1, v2, ..., vn, ..., so that

N(vi) ≤ N(vi+1) for all i. Put Sm = S∞ ∪{v1, ..., vm}. Let S = Sm, v = vm+1 /∈
S, S

′
= Sm+1 = S ∪ {v} and U = O∗

S, let P be the maximal ideal corresponding
to v, let k = k(v) = OS/P and let k∗ denote the multiplicative group of k. Let
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∂v be the tame map corresponding to v. In [1], Bass and Tate show that for a
sufficiently large m, the induced homomorphism

∂v : KS
′

2 F/KS
2 F −→ k∗

is an isomorphism, which implies that

K2OF = ker
(
∂ : KSm

2 F −→
∐

v∈Sm\S∞
k∗(v)

)
.

So if we can make m relatively small and get sufficiently many relations satisfied
by elements of KSm

2 F , then we can determine the tame kernel of F .
Suppose P is generated by π. Let U1 be the subgroup of U generated by

(1+πU)∩U and β be the natural quotient map from U to k∗. In [5], Tate proved
the following lemma which is very useful to prove the surjectivity of ∂v.

Lemma 2.1. Suppose that W, C, G are subsets of U such that
(1) W ⊂ CU1 and W generates U,
(2) CG ⊂ CU1 and β(G) generates k∗,
(3) 1 ∈ C ∩ ker β ⊂ U1.

Then ∂v is bijective.

3. Computation of K2Z[ζ8]

In this section, we will abbreviate ζ8 to ζ. Let F = Q(ζ). Then {1, ζ, ζ2, ζ3}
is an integral basis of OF . We have that h(F ) = 1 and D(F ) = 256. There are
four embeddings of F into C: identity and its conjugation ζ 7→ ζ σ : ζ 7→ ζ3 and
its conjugation σ : ζ 7→ ζ5. It is obvious that for every x = a + bζ + cζ2 + dζ3,

N(x) = (a2 + c2)2 + (b2 + d2)2 + 4bd(a2 − c2) + 4ac(d2 − b2).

Let ε = 1 + ζ + ζ2. Then the unit group U of OF is generated by ζ and ε.
We know that 2 is totally ramified and for an arbitrary odd prime p ∈ Z, p

splits completely if 8|(p− 1), otherwise, (p) = P1P2 with N(P1) = N(P2) = p2.

Lemma 3.1. For any α 6= 0, x ∈ OF , there exists y ∈ OF such that N(x−yα) ≤
9N(α)

16
, |x− yα| ≤ (1 + 1√

2
)

1
2 · α|, and |σ(x)− σ(y)σ(α)| ≤ (1 + 1√

2
)

1
2 · |σ(α)|.

Proof. Let x/α = k1 + k2ζ + k3ζ
2 + k4ζ

3, where ki ∈ Q. For a real number t,
denote by [t] the nearest integer to t, and let {t} = t− [t]. Clearly −1

2
< {t} ≤ 1

2
.

We shall prove that y :=
∑4

i=1[ki]ζ
i−1 satisfies the lemma.
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Let z = x− yα =
4∑

i=1

{ki}αζ i−1 =
4∑

i=1

ziαζ i−1, where zi = {ki}. Then

N(z) =N(α)N(
4∑

i=1

ziζ
i−1)

=N(α)((z2
1 + z2

3)
2 + (z2

2 + z2
4)

2 + 4z2z4(z
2
1 − z2

3) + 4z1z3(z
2
4 − z2

2))

≤N(α)((z2
1 + z2

3)
2 + (z2

2 + z2
4)

2 + 4|z2||z4||z2
1 − z2

3 |+ 4|z1||z3||z2
4 − z2

2 |).
Suppose that z2

3 ≥ z2
1 and z2

4 ≥ z2
2 , then

N(z) ≤ N(α)((z2
1 +

1

4
)2 + (z2

2 +
1

4
)2 + 2|z2|(1

4
− z2

1) + 2|z1|(1
4
− z2

2)).

Now we look for the maximal value of

f := (z2
1 +

1

4
)2 + (z2

2 +
1

4
)2 + 2|z2|(1

4
− z2

1) + 2|z1|(1
4
− z2

2)

in the region {(z1, z2)|0 ≤ zi ≤ 1
2
, i = 1, 2}.

Since
∂f

∂z1

= 4z3
1 + z1 − 4z1z2 − 2z2

2 +
1

2
,

∂f

∂z2

= 4z3
2 + z2 − 4z1z2 − 2z2

1 +
1

2
,

we have ∂f
∂z1

= ∂f
∂z2

= 0 if and only if z1 = z2 = 1
2
. So f meets its maximal value

on the boundary. By computation, we can show f ≤ 9
16

. So N(x−yα) = N(z) ≤
9N(α)

16
.

Next, let g(z1, z2, z3, z4) = |z|2 = (z1 + z2−z4√
2

)2 + (z3 + z2+z4√
2

)2, t1 = z2−z4√
2

and

t2 = z2+z4√
2

. Then

g(z1, z2, z3, z4) = (z1 + t1)
2 + (z3 + t2)

2

≤ (|z1|+ |t1|)2 + (|z3|+ |t2|)2.

Since |t1|+ |t2| = |z2−z4|+|z2+z4|√
2

≤ frac1
√

2, we have

g ≤ (|z1|+ |t1|)2 + (|z3|+ 1√
2
− |t1|)2

≤ (
1

2
+ |t1|)2 + (

1

2
+

1√
2
− |t1|)2

= 2|t1|2 −
√

2|t1|+ 1 +

√
2

2

≤ 1 +
1√
2
.
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So |z| ≤ (1 + 1√
2
)

1
2 · |α|. Similarly |σ(z)| ≤ (1 + 1√

2
)

1
2 · sigma(|α|), i.e.,

|x− yα| ≤ (1 +
1√
2
)

1
2 · |α|

and |σ(x)− σ(y)σ(α)| ≤ (1 +
1√
2
)

1
2 · |σ(α)|.

¤
Lemma 3.2. For any prime ideal P, there is an element α such that P = (α),
and (

√
2− 1)|α| ≤ |σ(α)| ≤ |α|(1 +

√
2).

Proof. Suppose that P is a prime ideal with generator y. Recall that ε = 1+ζ+ζ2

is invertible in OF and |ε| =
√

2 + 1, |σ(ε)| =
√

2 − 1. If |σ(y)| > (1 +
√

2)|y|,
then there exists some k ≥ 0 such that |σ(y)||σ(ε)|k−1 > (1 +

√
2)|y||ε|k−1, while

|σ(y)||σ(ε)|k ≤ (1 +
√

2)|y||ε|k. Let α = yεk. Then (
√

2 − 1)|α| ≤ |σ(α)| ≤
|α|(1 +

√
2). ¤

By virtue of Lemma 2.1, we will construct W, C, G concretely for each Sm.
For each Pi ∈ Sm, choose αi to be a generator of Pi such that (

√
2 − 1)|αi| ≤

|σ(αi)| ≤ |αi|(1 +
√

2). Let W be the set consisting exactly of all these αi’s and
all the units of OF . Assume P = Pm+1 = (α), where α satisfies (

√
2 − 1)|α| ≤

|σ(α)| ≤ |α|(1 +
√

2). Then (
√

2 − 1)
1
2 · N(P)

1
4 ≤ |σ(α)|leq(√2 + 1)

1
2 · N(P)

1
4 .

Let

C
′
= {c ∈ OF |N(c) ≤ 9N(P)

16
, |c| ≤ (1+

1√
2
)

1
2 ·|α|, |σ(c)| ≤ (1+

1√
2
)

1
2 ·|σ(α)| },

where D = D(F ) = 256. By Lemma 3.1, any integer must be congruent to some
element in C

′
modulo P . Let C be a subset of C

′
such that 1 ∈ C, 0 /∈ C and

c1 − c2 /∈ P for any two different elements c1, c2 ∈ C. So (3) of Lemma 2.1 is
always satisfied. Let

G = {a ∈ OF | |a| ≤ (
2

π
)

1
2 · |D| 18 ·N(P)

1
8 , |σ(a)| ≤ (

2

π
)

1
2 · |D| 18 · (P)

1
8}.

Then by the GTT Theorem of [9], β(G) generates k· when N(P) ≥ ( 4
π2 )

2 · |D| .
=

42.05. Let δ = ( 2
π
)

1
2 · |D| 18 . Then for any g ∈ G, we have N(g) ≤ δ4 ·N(P)

1
2 .

Lemma 3.3. Assume that P = (α) with α satisfying (
√

2 − 1)|α| ≤ |σ(α)| ≤
|α|(1 +

√
2). Choosing W, C, G as above, we have W ⊂ CU1 if N(P) > 9.

Proof. By Lemma 1 of [5], W ⊂ CU1 if N(w − c) < N(P)2, i.e., |w − c||σ(w) −
σ(c)| < N(P) holds for any w ∈ W, c ∈ C. This can be deduced from the

inequality (|w| + |c|)(|σ(w)| + |σ(c)|) < N(P), i.e., N(w)
1
2 + |c| · |σ(w)| + |w| ·

|σ(c)|+ N(c)
1
2 < N(P).
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Given any c ∈ C, by the construction of C, we have

|c| ≤ (1 +
1√
2
)

1
2 · |α| ≤ (1 +

1√
2
)

1
2 · (1 +

√
2)

1
2 ·N(P)

1
4 .

on the other hand, |c| = N(c)
1
2

|σ(c)| ≥ N(c)
1
2

(1+ 1√
2
)
1
2 ·|σ(α)|

≥ N(c)
1
2

(1+ 1√
2
)
1
2 ·(1+√2)

1
2 ·N(P)

1
4

,and(
√

2−

1)
1
2 ·N(w)

1
4 ≤ |σ(w)| < N(w)

1
4 ·(√2+1)

1
2 .So

(
√

2− 1)
1
2 ·N(c)

1
2 ·N(w)

1
4

(1 + 1√
2
)

1
2 · (1 +

√
2)

1
2 ·N(P)

1
4

≤|c| · |σ(w)|
≤(
√

2 + 1) · (1 +
1√
2
)

1
2 ·N(P)

1
4 ·N(w)

1
4 .

Since(—c—·|σ(w)|)(|w|·

|σ(c)|) = N(c)
1
2 N(w)

1
2 ≤ N(P), and the function x+ a

x
(x ∈ [c1, c2], c1 > 0) meets

its maximal value on the boundary,

|c| · |σ(w)|+ |w| · |σ(c)|

=|c| · |σ(w)|+ N(c)
1
2 ·N(w)

1
2

|c| · |σ(w)|

≤(
√

2 + 1) · (1 +
1√
2
)

1
2 ·N(P)

1
4 ·N(w)

1
4 +

N(c)
1
2 ·N(w)

1
4

(
√

2 + 1) · (1 + 1√
2
)

1
2 ·N(P)

1
4

≤(
√

2 + 1) · (1 +
1√
2
)

1
2 ·N(P)

1
2 +

3
4
N(P)

1
2

(
√

2 + 1) · (1 + 1√
2
)

1
2

=N(P)
1
2 · ((

√
2 + 1) · (1 +

1√
2
)

1
2 +

3
4

(
√

2 + 1) · (1 + 1√
2
)

1
2

)

.
=N(P)

1
2 · (3.392) .

Thus W ⊂ CU1 if N(P)
1
2 + N(P)

1
2 (3.392) + 3N(P)

1
2

4
< N(P) . Since N(P) ∈ Z,

we get the inequality if N(P) > 26.
Suppose that P1, ..., P8 = (2− i), P9 = (2 + i) are the first nine prime ideals.

If P = P8, we see that for any c ∈ C, N(c) ≤ 9·25
16

, which implies N(c) ≤ 9 for
every t ∈ {14, 13, 12, 11, 10} is not a norm from F/Q. So the inequality also
holds. If P = P9, since 2 − i = 4(1 − 1

4
· (2 + i)), we have 2 − i ∈ CU1. For

N(c) ≤ 9, the inequality holds. So we have W ⊂ CU1 if N(P) = 25.
We know that 17 is splitted completely. Let P = P4 = (1+2ζ), W = {ζ, ε, 1+

ζ, 1− ζ − ζ2, 1− ζ − ζ2}, C = {ζ i(1− ζ − ζ2)j, i = 0, 1, ..., 7, j = 0, 1}. Then
we have

N(w)
1
2 + |c| · |σ(w)|+ |w| · |σ(c)|+ N(c)

1
2

<3 + 2(1 +
√

2)
√

3 + 3 < 17 .
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If P = P5 = (1+2ζ3), then let W = {ζ, ε, 1+ ζ, 1− ζ − ζ2, 1− ζ − ζ2, 1+2ζ},
C = {ζ i(1− ζ − ζ2)j, i = 0, 1, ..., 7, j = 0, 1}. We have

N(w)
1
2 + |c| · |σ(w)|+ |w| · |σ(c)|+ N(c)

1
2

<
√

17 +
√

3(

√
5 + 2

√
2 +

√
5− 2

√
2) + 3 < 17 .

If P = P6 or P7, the proof is the same as above.
So W ⊂ CU1 if N(P) > 9.

¤
Lemma 3.4. If N(P) > 9, then CG ⊂ CU1.

Proof. By Lemma 1 in [5], CG ⊂ CU1 if N(c1g − c2) < N(P)2 holds for any
c1, c2 ∈ C, g ∈ G. This can be deduced from

(|c1| · |g|+ |c2|) · (|σ(c1)| · |σ(g)|+ |σ(c2)|) < N(P),

i.e.,

N(c1)
1
2 ·N(g)

1
2 + |c2| · |σ(c1)| · |σ(g)|+ |σ(c2)| · |c1| · |g|+ N(c2)

1
2 < N(P). (1)

Assume M1, M2 are positive numbers such that N(c1) ≤ M1, N(c2) ≤ M1,
|g| ≤ M2 and |σ(g)| ≤ M2. The above inequality holds if

M
1
2
1 · (N(g)

1
2 + 1) + M2(|c2| · |σ(c1)|+ |c1| · |σ(c2)|) < N(P),

i.e.,

M
1
2
1 (N(g)

1
2 + 1) + M2(|c2| · |σ(c1)|+ N(c1)

1
2 ·N(c2)

1
2

|c2| · |σ(c1)| ) < N(P).

In the proof of Lemma 3.3, we see that

N(c2)
1/2

(1 + 1√
2
)

1
2 · |σ(α)|

≤ |c2| ≤ (1 +
1√
2
)

1
2 · |α|,

and
N(c1)

1/2

(1 + 1√
2
)

1
2 · |α|

≤ |σ(c1)| ≤ (1 +
1√
2
)

1
2 · |σ(α)|.

So

|c2| · |σ(c1)|+ N(c1)
1
2 ·N(c2)

1
2

|c2| · |σ(c1)|

≤(1 +
1√
2
) ·N(P)

1
2 +

9
16

N(P)
1
2

1 + 1√
2

=2.0366N(P)
1
2 .

Hence (1) holds if

M
1
2
1 (M2

2 + 1) + 2.0366M2 ·N(P)
1
2 < N(P). (2)
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Let M1 = 9
16
·N(P) and M2 = δ ·N(p)

1
8 . We get

3

4
·N(P)

1
2 · (δ2N(P)

1
4 + 1) + 2.0366δ ·N(P)

5
8 < N(P).

Let y = N(P)
1
8 . Then

y4 − 3

4
δ2y2 − 2.0366δy − 3

4
> 0.

It can be easily verified that if y > 1.945, i.e., N(P) > 204, the inequality holds.
Now suppose N(P) = 193. Since M1 ≤ 9

16
N(P), the maximal possible value

of M1 is 100. Let M1 = 100 and M2 = δN(P)
1
8 , it can be easily verified that the

inequality (2) holds.
For the prime ideals P whose norm satisfy 9 < N(P) < 193, let (p) = P ∩ Z,

then p ∈ {137, 113, 97, 89, 73, 41, 13, 11, 7, 5, 17, 3, 2}.
If p ∈ {137, 113, 89}, then p splits completely and 3 generates (Z/pZ)∗ which

implies 3 generates (O/P)∗. We let 3 = (
√

2+i)(
√

2−i), let G = {√2+i,
√

2−i}
and M2 =

√
3, M1 = 9

16
N(P). We see that (2) is satisfied if N(P) > 33. Hence

for p ∈ {137, 113, 89}, CG ⊂ CU1.
If p ∈ {97, 73}, then 5 = (2+i)(2−i) generates (O/P)∗. Let G = {2+i, 2−i},

M2 =
√

5 and M1 = 9
16

N(P). Then (2) is satisfied if N(P) > 62. So for
p ∈ {97, 73}, CG ⊂ CU1.

If p = 41, then 6 = 2 ·3 = (1+ ζ)(1+ ζ3)(1+ ζ5)(1+ ζ7)(1− ζ− ζ2)(1− ζ − ζ2)

generates (O/P)∗. Let G = {1+ ζ, 1+ ζ3, 1+ ζ5, 1+ ζ7, 1− ζ− ζ2, 1− ζ − ζ2}
and M2 =

√
2 +

√
2, M1 = 9

16
N(P). Then (2) is satisfied if N(P) > 32. So for

p = 41, CG ⊂ CU1.
If p = 13, then N(P) = 169 and 1 + ζ generates (O/P)∗. Let G = 1 + ζ,

M1 = 9
16

N(P), M2 =
√

2 +
√

2. Then (2) is satisfied if N(P) > 81. So for
p = 13, CG ⊂ CU1.

If p = 11, then N(P) = 121. Let G = {1 ± ζ, ζ, 1 ± ζ3}. Then G generates

(O/P)∗. Let M1 = 9
16

N(P), M2 =
√

2 +
√

2. Then (2) is satisfied if N(P) > 81.
So for p = 11, CG ⊂ CU1.

If p = 7, then N(P) = 49. Without lost of generality, we assume P = (2 + ζ +

2ζ2). Let G = {1 + ζ}. Then G generates (O/P)∗. Let M2 =
√

2 +
√

2. Since
N(c) ≤ 9

16
N(P), we have N(c) ≤ 27. But neither 27 nor 26 is a norm from F/Q.

If N(c) = 25, we can replace c by an element of norm 2. For example, if c = 2+ i,
we can replace c by −(ζ + ζ2) which also satisfies the conditions in Lemma 3.1.
For any t ∈ {24, 23, 22, 21, 20, 19}, t is not a norm from F/Q. Let M1 = 18.
We see that (2) is satisfied. Hence for p = 7, CG ⊂ CU1.

If p = 5, then N(P) = 25. Without lost of generality, assume P = (2 + i).
Let G = {1 + ζ}. Then G generates (O/P)∗. Since N(c) ≤ 9

16
· 25, we have

N(c) ≤ 14. Again, for any t ∈ {14, 13, 12, 11, 10}, t can not be a norm from
7



F/Q. So N(c) ≤ 9. Therefore the inequality (1) holds if

3 ·
√

2 + |c2| · |σ(c1)| · (
√

2 +
√

2) + |σ(c2)| · |c1| · (
√

2−
√

2) + 3 < 25 (3).

Note that (|c2| · |σ(c1)| · (
√

2 +
√

2))(|σ(c2)| · |c1| · (
√

2−√2)) ≤ 9
√

2 and |ci| ≤
(1 + 1√

2
)

1
2 · √5, |σ(ci)| ≤ (1 + 1√

2
)

1
2 · √5 . Then the left side of (3) is less than

3(
√

2 + 1) + ((

√
2 +

√
2)(1 +

1√
2
) · 5 +

9
√

2

5(
√

2 +
√

2)(1 + 1√
2
)
≤ 25 .

So for p = 5, CG ⊂ CU1.
If p = 17, then N(P) = 17. Without lost of generality, assume P = (1 + 2ζ).

Let C = {ζ i(1−ζ−ζ2)j, i = 0, 1, ..., 7, j = 0, 1}, G = {1−ζ−ζ2, 1− ζ − ζ2}.
If c1g ≡ c2 (mod P), then N(c1) 6= N(c2), for otherwise g ≡ 1 (mod P). So
N(c1)N(c2) = 9. In the equality (1),

N(c1)
1
2 ·N(g)

1
2 + |c2| · |σ(c1)| · |σ(g)|+ |σ(c2)| · |c1| · |g|+ N(c2)

1
2

<3 · 3 + 2
√

3 ·
√

3 + 1 = 16 < 17 .

So for p = 17, CG ⊂ CU1.
The lemma is proved. ¤

Combining Lemma 3.3 and Lemma 3.4, we know that (1), (2) of Lemma 2.1
are satisfied if N(v) > 9. So ∂v is a bijective if N(v) > 9.

If p = 3, then (p) = PP , where P = (1− ζ− ζ2). Let C = {1, ζ, ..., ζ7}, G =
{ζ} and W = {ζ, ε, 1+ζ}. For P which is lying behind P , we may add 1− ζ − ζ2

to W . If p = 2, let C = G = {1} and W = {1, ζ, ε}. One can verify that (1),
(2), (3) in Lemma 2.1 are satisfied. Hence ∂v is a bijective.

Hence K2OF can be generated by {x, y}, x, y ∈ O∗
F . However, O∗

F is generated
by ζ and ε = 1 + ζ + ζ2. So K2OF is generated by {ζ, ζ}, {ζ, ε}, {ε, ε}.
Theorem 3.5. The tame kernel of Q(ζ8) is a trivial group.

Proof. Since ζ4 = −1, we get

{ζ, ζ} = {ζ,−1} = {ζ, ζ4} = {ζ, ζ}4 = {ζ,−1}4 = 1.

By ε = 1 + ζ + ζ2 and ζ9 = ζ, we get

{ζ, ε} = {ζ, (1− ζ)ε} = {ζ, 1− ζ3} = {ζ3, 1− ζ3}3 = 1.

On the other hand, {ε, ε} = {ε,−1} = {ε, ζ}4 = 1. So Q(ζ8) is a trivial
group. ¤

Acknowledgement The authors wish to thank the referee for valuable sug-
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