Computing the tame kernel of Q((s)
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1. Introduction

Let F' be a number field and K>Op the tame kernel of F'. Although we know
many properties about K,Op, it is still a difficult problem to determine its struc-
ture, even for a quadratic field F. Let F = Q(v/d) be an imaginary quadratic
field, we know that

KyOp is trivial for d = —1, —2, =3, =5, —6, —11, —19 (see [5], [7], [8], [9])
and KyOp ~ 7Z,/27 for d = —7,—15,—35 (see [5], [8]). The latest computation
of KyOp on imaginary quadratic fields can be found in [2], [3] and [4]. In this
paper, we prove that KoOp is trivial for F = Q((g), where (g is a primitive 8th
root of unity. This F' is totally imaginary with degree 4.

2. Preliminaries

Let F' be a number field with Op the ring of integers of F' and let S, denote
the set of archimedean places of F. If S is a set of places containing S, we put
Ogs ={a € F|v(a) >0, for all v ¢ S}, which is the ring of S-integers. Assume
that P is the maximal ideal corresponding to v ¢ S and let k(v) = Og/P. Put
N(v) = [k(v)].

We shall write K5F for the subgroup of K,F generated by {z, y}, where
xz, y € O = U. We can list the finite places of F, vy, va, ..., Uy, ..., so that
N(v;) < N(viyq) for all i. Put Sy, = Soo U{w1, ...y v} Let S =S, v =01 €
S, S =81 =SU{v}and U = O, let P be the maximal ideal corresponding
to v, let k = k(v) = Og/P and let k* denote the multiplicative group of k. Let
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0, be the tame map corresponding to v. In [1], Bass and Tate show that for a
sufficiently large m, the induced homomorphism

0,: K F/KSF — k"
is an isomorphism, which implies that

Ky0p = ker (6: KimF — H k*(v))
VESM \ S

So if we can make m relatively small and get sufficiently many relations satisfied
by elements of K5 F, then we can determine the tame kernel of F.

Suppose P is generated by m. Let U; be the subgroup of U generated by
(1+7U)NU and (3 be the natural quotient map from U to k*. In [5], Tate proved
the following lemma which is very useful to prove the surjectivity of 0,,.

Lemma 2.1. Suppose that W, C, G are subsets of U such that
(1) W C CU, and W generates U,
(2) CG C CU, and B(G) generates k*,
(3) 1leCnkerpcCU.

Then 0, is bijective.

3. Computation of K,Z|[(s]

In this section, we will abbreviate (g to (. Let F' = Q(¢). Then {1, ¢, ¢%, 3}
is an integral basis of Op. We have that h(F) = 1 and D(F') = 256. There are
four embeddings of F into C: identity and its conjugation ¢ — ¢ o : ¢ — (> and
its conjugation @ : ¢ — (. It is obvious that for every = a + b( + ¢¢? + d(3,

N(z) = (a* + ) + (0* + d*)* + 4bd(a® — ) + dac(d® — bv?).

Let e = 1 + ¢ + ¢2 Then the unit group U of O is generated by ¢ and e.
We know that 2 is totally ramified and for an arbitrary odd prime p € Z, p
splits completely if 8|(p — 1), otherwise, (p) = PPy with N(P;) = N(Py) = p*.

Lemma 3.1. For any a # 0, € Op, there exists y € Op such that N(x—ya) <

N(a 1 1
T |z —yal < (14 25)% - al, and o(z) — o(y)a(a)] < (1+ F5)2 - |o(a)].

Proof. Let x/a = ki + kol + k3C? + ka3, where k; € Q. For a real number ¢,
denote by [t] the nearest integer to ¢, and let {t} =t — [t]. Clearly —% <A{t} < %

We shall prove that y := S5 [k;]¢~! satisfies the lemma.
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Let 2 =2 — ya = Z{k ra¢t! Z z;al™1 where z; = {k;}. Then

4

N(z) =N(@)N(Y_ =)

=1
N(a)((27 +23)° + (25 + 21)* +dz2(2f — 23) + dz1z3(2] — 23))
N(a)((= +23) + (2 + 2)° + 4|2l |2l |2] — 25| + 4z []z8]]2] — 231).

Suppose that 22 and 2?7 > 22, then
2, 1o 2, 1o 1 2 1 2
N(z) < N(a)(3 +1> FE+ 2l — D) + 2l - )
Now we look for the maximal value of
1 1 1
fo=(d+ ;1)2 + (25 + 1)2 + 2\22’(1 —21) + 2’Zl|(1 - 23)
in the region {(z1, 29)[0 < z; < %, i=1, 2}
Since
af 1
8_,21 = 42% 4+ 21 — 42129 — 223 + >
af 1
8_22 = 423 + 29 — 42129 — sz + >
we have g—i = gj = 0 if and only if 2y = 2, = % So f meets its maximal value

on the boundary. By computation, we can show f < 1%. So N(x—ya) = N(z) <
9N (a)

T

NeXt? let 9(21722723724) = |Z‘2 = (21 + 22\;54>2 + (’23 + M)27 b1 = 222 and

ty = 242 Then v v
2 ﬂ .

g(21, 22, 23, 24) = (21 + 1) + (23 + tp)?
< (lza| + [t2])? + (l2s] + [t2])*.

Since [t1] + |t2] = % < fracly/2, we have

1
9 < (lal +[t])* + (28] + —= = [0a])?

V2
< (% + |t ])? + (% + % — |t4])?
V2

=20t,* — V2, | + 1+ 5

1
<1+ —.

V2



So |2 < (14 Z5)% - [a]. Similarly |o(2)] < (1 + Z5)% - sigma(al), i.c.

v =yal < 1+ )% ol
wdJo(a) = o(4)a(0)| < (1+ ) -o(a)

OJ

Lemma 3.2. For any prime ideal P, there is an element « such that P = (a),

and (v2 - 1)]a] < |o(a)] < al(1 + V2).

Proof. Suppose that P is a prime ideal with generator y. Recall that ¢ = 1+(+4¢?
is invertible in Op and |¢| = V2 + 1, |o(e)| = V2 — 1. If |o(y)| > (1 + V2)]y],
then there exists some k > 0 such that |o(y)||o(e)|** > (1 + V2)|y||e|*", while
le()llo(e) < (1 + v2)lyllel’. Let a = ye*. Then (V2 - 1)la| < |o(a)] <
la] (1 +v/2). O

By virtue of Lemma 2.1, we will construct W, C, G concretely for each S,,.
For each P; € S,,, choose a; to be a generator of P; such that (v/2 — Day] <
lo(a)| < Jai|(1 ++/2). Let W be the set consisting exactly of all these a;’s and
all the units of Op. Assume P = P,,;; = (), where «a satisfies (v/2 — 1)]a| <
0(@)] < Jal(1 + v2). Then (vZ — 1)} - N(P)} < |o(a)lle(v/Z + 1)% - N(P)} .
Let

IN(P) 1 . 1 1
, el < (1+—=)2:a, |o(c)] £ (1+—=)2:|o(a)] |,
16 Il(ﬁ)ll\()!(ﬁ)l()!}
where D = D(F') = 256. By Lemma 3.1, any integer must be congruent to some
element in C" modulo P. Let C be a subset of C" such that 1 € C, 0 ¢ C and
¢ — co & P for any two different elements ¢;, ¢ € C. So (3) of Lemma 2.1 is
always satisfied. Let

C'={ceOp| N(c) <

2
™
Then by the GTT Theorem of 9], 5(G) generates k' when N(P) > (5)*-|D| =
42.05. Let 6 = (2)7 - |D|5. Then for any g € G, we have N(g) < 6*- N(P)>.

G ={a €Ol la] < (C)F - DI - NP2, [o(a)] < (2)} - DIt - (P)F).

N —

Lemma 3.3. Assume that P = (a) with o satisfying (v2 — 1)|a| < |o(a)| <
la|(1 + V/2). Choosing W, C, G as above, we have W C CU, if N(P) > 9.

Proof. By Lemma 1 of [5], W C CU, if N(w —¢) < N(P)?, i.e., lw— c|lo(w) —
o(c)] < N(P) holds for any w € W, ¢ € C. This can be deduced from the
inequality (Jw| + |e])(jo(w)] + [o(c)]) < N(P), ie, N(w)? + || - |o(w)] + |w] -
|o(c)] + N(c)z < N(P).
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Given any ¢ € C, by the construction of C', we have

1 1 1 1 1
o] < (1+E)2'|Oé| < (1+—2)2'(1+\/§)2 - N(P)x.

1
on the other hand, |¢| = 22 > V(o) > . .
N = a4 22 T (14+d5)2-(14+v2) TN(P) T

- UV N
1)2-N(w)i < |o(w)] < N(w)i-(v/24+1)2.50 <le| - |o(w)| Since(—c—|o(w)
1 .1 1 1

SN@HyU+7?%N@VJWMa

lo(c)]) = N(¢)2N(w)2 < N(P), and the function 42 (z € [c1, 2], 1 > 0) meets
its maximal value on the boundary,

] - o (w)] + [w] - [o(c)]

o o N N

1
Thus W C CU, if N(P)2 + N(P)2(3.392) + NP2 < N(P) . Since N(P) € Z,
we get the inequality if N(P) > 26.

Suppose that Py, ..., Ps = (2—1), Pg = (2+1) are the first nine prime ideals.
If P = Pg, we see that for any ¢ € C, N(c¢) < %2, which implies N(c) < 9 for
every t € {14, 13, 12, 11, 10} is not a norm from F/Q. So the inequality also
holds. If P = Py, since 2 — i = 4(1 — 1 - (2 + 7)), we have 2 — i € CU;. For
N(c) <9, the inequality holds. So we have W C CU; if N(P) = 25.

We know that 17 is splitted completely. Let P =Py = (1+2(), W ={(, ¢,1+
(G 1=C—CC1-(¢=¢}LC={C(1-¢-¢*,i=0,1, .., 7, 7=0, 1}. Then
we have

N(w)? + el - lo(w)| + w] - |o(e)] + N(c)?

<3+2(1+V2)V3+3 <17,
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If P =Ps=(1+2¢%, thenlet W ={(, e,1+(, 1-¢—¢* 1—-¢— (2, 1+2¢},
C={C(1—-C¢=¢%,i=0,1, .., 7, j=0, 1}. We have

N(w)? + || - [o(w)] + [w] - |o(c)] + N(c)?
<V1—7+\/§<\/5+2ﬂ+ \/5—2¢§)+3< 17 .

If P ="Pg or Pz, the proof is the same as above.
So W C CUy if N(P) > 9.

Lemma 3.4. If N(P) > 9, then CG C CUj.
Proof. By Lemma 1 in [5], CG C CU; if N(cig — ¢3) < N(P)? holds for any
c1, co € C, g € G. This can be deduced from
(el - lgl + leal) - (lo(e)] - lo(g)] + |o(e2)]) < N(P),
ie.,
N(er)? - N(g)2 + leal - lolen)] - lo(9)] + lolea)] - [erl - gl + N(e2)* < N(P). (1)

Assume M;, M, are positive numbers such that N(c;) < M;, N(c2) < M,
lg| < My and |o(g)| < Ms. The above inequality holds if

M? - (N(9)? + 1) + My(lea| - |o(cr)| + |ea] - [o(ea)]) < N(P),

N

ie.,
3 1 N(c1)? - N(ca)?
Ml (N<g)2 + 1) + M2(’CQ| ’ |U<Cl)| + |C;’ . |U(Cl)2| < N<7D>
In the proof of Lemma 3.3, we see that
N C 1/2 1 1
D" i <a+1ytpal,
(1+55)2 - |o(e)| V2
and "
N C 1 1
T <o) < (14 —2) - Jo(a)]
(1+5)2 e V2
So
N(c1)? - N(cp)2
co| - loler)] +
) oten)
1 . IN(P):
<(1+—=) N(P)z + 16"~
<( \/5) (P) -
—=2.0366N (P)=.
Hence (1) holds if
1
M2 (M2 + 1) + 2.0366M, - N(P)2 < N(P). (2)
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Let My = 5 - N(P) and M, =4 - N(p)s. We get
3 1 L 5
1 NP2 (82N (P)7 + 1) +2.03660 - N(P)s < N(P).
Let y = N(P)s. Then
3 3
4 2,2
e ) ~ >0
Y 45 Yy 03660y 1 >0

It can be easily verified that if y > 1.945, i.e., N(P) > 204, the inequality holds.
Now suppose N(P) = 193. Since M; < %N(P), the maximal possible value

of M; is 100. Let M; = 100 and M, = 5N(P)%, it can be easily verified that the
inequality (2) holds.

For the prime ideals P whose norm satisfy 9 < N(P) < 193, let (p) = P N Z,
then p € {137, 113, 97, 89, 73, 41, 13, 11, 7, 5, 17, 3, 2}.

If p € {137, 113, 89}, then p splits completely and 3 generates (Z/pZ)* which
implies 3 generates (O/P)*. Welet 3 = (v/24i)(v2—1), let G = {v/2+i, v/2—i}
and M, = /3, M; = 2 N(P). We see that (2) is satisfied if N(P) > 33. Hence
for p € {137, 113, 89}, CG C CUj.

If p € {97, 73}, then 5 = (2+1i)(2—1) generates (O/P)*. Let G = {2+1, 2—1},
M, = /5 and M; = 2N(P). Then (2) is satisfied if N(P) > 62. So for
p € {97, 73}, CG C CUx.

Ifp=41, then 6 =2-3 = (1+)(1+¢)(1+)(1+¢)(1-¢=¢*) (1L = ¢ = )
generates (O/P)*. Let G ={1+¢, 1+¢3 1+, 14+¢", 1-¢C—¢* 1-( -}
and M, = /2 + 2, M; = ZN(P). Then (2) is satisfied if N(P) > 32. So for
p=41, CG C CU,.

If p = 13, then N(P) = 169 and 1 + ¢ generates (O/P)*. Let G = 1+ (,
M; = 2N(P), Mo = /2+ V2. Then (2) is satisfied if N(P) > 81. So for
p=13, CG C CU,.

If p=11, then N(P) = 121. Let G = {14+, ¢, 1 £¢*}. Then G generates
(O/P)*. Let My = 2N(P), My = v/2+ /2. Then (2) is satisfied if N(P) > 81.
So for p =11, CG C CU;.

If p=7, then N(P) = 49. Without lost of generality, we assume P = (2+( +

2¢%). Let G = {1+ (}. Then G generates (O/P)*. Let My = /24 /2. Since
N(c) < & N(P), we have N(c) < 27. But neither 27 nor 26 is a norm from F/Q.
If N(c) = 25, we can replace ¢ by an element of norm 2. For example, if ¢ = 2+,
we can replace ¢ by —(¢ + ¢?) which also satisfies the conditions in Lemma 3.1.
For any t € {24, 23, 22, 21, 20, 19}, ¢ is not a norm from F/Q. Let M; = 18.
We see that (2) is satisfied. Hence for p =7, CG C CUj.

If p =5, then N(P) = 25. Without lost of generality, assume P = (2 + ).
Let G = {1+ ¢}. Then G generates (O/P)*. Since N(c) < & - 25, we have
N(c) < 14. Again, for any ¢t € {14, 13, 12, 11, 10}, ¢ can not be a norm from
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F/Q. So N(c) <9. Therefore the inequality (1) holds if

3V2+ el ole)] - (V2 4+V2) +o(e)] - |ar] - (V2 —V2)+3<25  (3).

Note that ([es| - [o(c1)] - (V2 + \/_))(|0(02)| 1] - (V2 = v2)) £ 9v2 and |¢i| <
(1+ \%)5 V5, Jo(e)| < (14 % ) -v/5 . Then the left side of (3) is less than

3(\/§+1)+((\/2+\/§)(1+%)-5+5( 2+?/‘§(1+¢%) <25 .

[\.’J\H

So for p =5, CG C CU;.
If p = 17, then N(P) = 17. Without lost of generality, assume P = (1 + 2().

Let O ={C'(1-¢—=¢?V,i=0,1, ., 7, j =0, 1}, G ={1-¢(~ 1 - (-}
If c19 = ¢ (mod P), then N(cy) 75 N(Cg) for otherwise ¢ = 1 (mod P). So
N(c1)N(cg) =9. In the equality (1),

N(c1)z - N(g)2 +|ca| - |o(cr)| - |a(g) + |o(c2)| - |ca| - [g] + N(ca)?
<3:34+42V3-V3+1=16<17.

So for p =17, CG C CU;.
The lemma is proved. 0J

Combining Lemma 3.3 and Lemma 3.4, we know that (1), (2) of Lemma 2.1
are satisfied if N(v) > 9. So Jv is a bijective if N(v) > 9.

If p=3, then (p) = PP, where P = (1-¢—(?). Let C = {1, ¢, ..., ("}, G =
{¢}and W = {(, &, 1+(}. For P which is lying behind P, we may add 1 — ¢ — ¢2
toW. If p=2,1let C =G = {1} and W = {1, ¢, }. One can verify that (1),
(2), (3) in Lemma 2.1 are satisfied. Hence Ov is a bijective.

Hence KyOp can be generated by {z, y}, x, y € OF. However, O} is generated
by ¢ and e = 1+ ( + (. So K,Op is generated by {¢, ¢}, {¢, €}, {e, €}

Theorem 3.5. The tame kernel of Q((s) is a trivial group.

Proof. Since ¢* = —1, we get

{GO={(-1={M={¢}' ={¢-1}' =
Bye=1+4+(+¢?and = (, we get
{C75} = {Ca (1 - C){—j} = {Cv - €3} = {Cga - C3}3 = 1.
On the other hand, {e,e} = {e,—1} = {,(}* = 1. So Q(¢) is a trivial
group. 0
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