Computing the tame kernel of $\mathbb{Q}\left(\zeta_{8}\right)$

XUEJUN GUO ${ }^{1}$ HOURONG QIN ${ }^{1}$ GUANGTIAN SONG 2
${ }^{1}$ Department of Mathematics, Nanjing University
Nanjing, 210093, The People's Republic of China
Email: guoxj@nju.edu.cn, hrqin@nju.edu.cn
${ }^{2}$ Department of Mathematics, University of Science and Technology of China
Hefei, 230026, The People's Republic of China

Abstract: In this paper, it is proved that the tame kernel of $\mathbb{Q}\left(\zeta_{8}\right)$ is trivial.
Keywords: Tame kernel, K_{2} group.
1991 MR Subject Classification: 19C99, 19F27

1. Introduction

Let F be a number field and $K_{2} \mathcal{O}_{F}$ the tame kernel of F. Although we know many properties about $K_{2} \mathcal{O}_{F}$, it is still a difficult problem to determine its structure, even for a quadratic field F. Let $F=\mathbb{Q}(\sqrt{d})$ be an imaginary quadratic field, we know that
$K_{2} \mathcal{O}_{F}$ is trivial for $d=-1,-2,-3,-5,-6,-11,-19$ (see [5], [7], [8], [9]) and $K_{2} \mathcal{O}_{F} \simeq \mathbb{Z} / 2 \mathbb{Z}$ for $d=-7,-15,-35$ (see [5], [8]). The latest computation of $K_{2} \mathcal{O}_{F}$ on imaginary quadratic fields can be found in [2], [3] and [4]. In this paper, we prove that $K_{2} \mathcal{O}_{F}$ is trivial for $F=\mathbb{Q}\left(\zeta_{8}\right)$, where ζ_{8} is a primitive 8 th root of unity. This F is totally imaginary with degree 4 .

2. Preliminaries

Let F be a number field with \mathcal{O}_{F} the ring of integers of F and let S_{∞} denote the set of archimedean places of F. If S is a set of places containing S_{∞}, we put $\mathcal{O}_{S}=\{a \in F \mid v(a) \geq 0$, for all $v \notin S\}$, which is the ring of S-integers. Assume that \mathcal{P} is the maximal ideal corresponding to $v \notin S$ and let $k(v)=\mathcal{O}_{S} / \mathcal{P}$. Put $N(v)=|k(v)|$.

We shall write $K_{2}^{S} F$ for the subgroup of $K_{2} F$ generated by $\{x, y\}$, where $x, y \in \mathcal{O}_{S}^{*}=U$. We can list the finite places of $F, v_{1}, v_{2}, \ldots, v_{n}, \ldots$, so that $N\left(v_{i}\right) \leq N\left(v_{i+1}\right)$ for all i. Put $S_{m}=S_{\infty} \cup\left\{v_{1}, \ldots, v_{m}\right\}$. Let $S=S_{m}, v=v_{m+1} \notin$ $S, S^{\prime}=S_{m+1}=S \cup\{v\}$ and $U=\mathcal{O}_{S}^{*}$, let \mathcal{P} be the maximal ideal corresponding to v, let $k=k(v)=\mathcal{O}_{S} / \mathcal{P}$ and let k^{*} denote the multiplicative group of k. Let

[^0]∂_{v} be the tame map corresponding to v. In [1], Bass and Tate show that for a sufficiently large m, the induced homomorphism
$$
\partial_{v}: \quad K_{2}^{S^{\prime}} F / K_{2}^{S} F \longrightarrow k^{*}
$$
is an isomorphism, which implies that
$$
K_{2} \mathcal{O}_{F}=\operatorname{ker}\left(\partial: \quad K_{2}^{S_{m}} F \longrightarrow \coprod_{v \in S_{m} \backslash S_{\infty}} k^{*}(v)\right) .
$$

So if we can make m relatively small and get sufficiently many relations satisfied by elements of $K_{2}^{S_{m}} F$, then we can determine the tame kernel of F.

Suppose \mathcal{P} is generated by π. Let U_{1} be the subgroup of U generated by $(1+\pi U) \cap U$ and β be the natural quotient map from U to k^{*}. In [5], Tate proved the following lemma which is very useful to prove the surjectivity of ∂_{v}.

Lemma 2.1. Suppose that W, C, G are subsets of U such that
(1) $W \subset C U_{1}$ and W generates U,
(2) $C G \subset C U_{1}$ and $\beta(G)$ generates k^{*},
(3) $1 \in C \cap \operatorname{ker} \beta \subset U_{1}$.

Then ∂_{v} is bijective.

3. Computation of $K_{2} \mathbb{Z}\left[\zeta_{8}\right]$

In this section, we will abbreviate ζ_{8} to ζ. Let $F=\mathbb{Q}(\zeta)$. Then $\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\}$ is an integral basis of \mathcal{O}_{F}. We have that $h(F)=1$ and $D(F)=256$. There are four embeddings of F into \mathbb{C} : identity and its conjugation $\zeta \mapsto \bar{\zeta} \sigma: \zeta \mapsto \zeta^{3}$ and its conjugation $\bar{\sigma}: \zeta \mapsto \zeta^{5}$. It is obvious that for every $x=a+b \zeta+c \zeta^{2}+d \zeta^{3}$,

$$
N(x)=\left(a^{2}+c^{2}\right)^{2}+\left(b^{2}+d^{2}\right)^{2}+4 b d\left(a^{2}-c^{2}\right)+4 a c\left(d^{2}-b^{2}\right) .
$$

Let $\varepsilon=1+\zeta+\zeta^{2}$. Then the unit group U of \mathcal{O}_{F} is generated by ζ and ε.
We know that 2 is totally ramified and for an arbitrary odd prime $p \in \mathbb{Z}, p$ splits completely if $8 \mid(p-1)$, otherwise, $(p)=\mathcal{P}_{1} \mathcal{P}_{2}$ with $N\left(\mathcal{P}_{1}\right)=N\left(\mathcal{P}_{2}\right)=p^{2}$.

Lemma 3.1. For any $\alpha \neq 0, x \in \mathcal{O}_{F}$, there exists $y \in \mathcal{O}_{F}$ such that $N(x-y \alpha) \leq$ $\frac{9 N(\alpha)}{16}, \left.|x-y \alpha| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot \alpha \right\rvert\,$, and $|\sigma(x)-\sigma(y) \sigma(\alpha)| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\sigma(\alpha)|$.

Proof. Let $x / \alpha=k_{1}+k_{2} \zeta+k_{3} \zeta^{2}+k_{4} \zeta^{3}$, where $k_{i} \in \mathbb{Q}$. For a real number t, denote by $[t]$ the nearest integer to t, and let $\{t\}=t-[t]$. Clearly $-\frac{1}{2}<\{t\} \leq \frac{1}{2}$.
We shall prove that $y:=\sum_{i=1}^{4}\left[k_{i}\right] \zeta^{i-1}$ satisfies the lemma.

Let $z=x-y \alpha=\sum_{i=1}^{4}\left\{k_{i}\right\} \alpha \zeta^{i-1}=\sum_{i=1}^{4} z_{i} \alpha \zeta^{i-1}$, where $z_{i}=\left\{k_{i}\right\}$. Then

$$
\begin{aligned}
N(z) & =N(\alpha) N\left(\sum_{i=1}^{4} z_{i} \zeta^{i-1}\right) \\
& =N(\alpha)\left(\left(z_{1}^{2}+z_{3}^{2}\right)^{2}+\left(z_{2}^{2}+z_{4}^{2}\right)^{2}+4 z_{2} z_{4}\left(z_{1}^{2}-z_{3}^{2}\right)+4 z_{1} z_{3}\left(z_{4}^{2}-z_{2}^{2}\right)\right) \\
& \leq N(\alpha)\left(\left(z_{1}^{2}+z_{3}^{2}\right)^{2}+\left(z_{2}^{2}+z_{4}^{2}\right)^{2}+4\left|z_{2}\right|\left|z_{4}\right|\left|z_{1}^{2}-z_{3}^{2}\right|+4\left|z_{1}\right|\left|z_{3}\right|\left|z_{4}^{2}-z_{2}^{2}\right|\right) .
\end{aligned}
$$

Suppose that $z_{3}^{2} \geq z_{1}^{2}$ and $z_{4}^{2} \geq z_{2}^{2}$, then

$$
N(z) \leq N(\alpha)\left(\left(z_{1}^{2}+\frac{1}{4}\right)^{2}+\left(z_{2}^{2}+\frac{1}{4}\right)^{2}+2\left|z_{2}\right|\left(\frac{1}{4}-z_{1}^{2}\right)+2\left|z_{1}\right|\left(\frac{1}{4}-z_{2}^{2}\right)\right)
$$

Now we look for the maximal value of

$$
f:=\left(z_{1}^{2}+\frac{1}{4}\right)^{2}+\left(z_{2}^{2}+\frac{1}{4}\right)^{2}+2\left|z_{2}\right|\left(\frac{1}{4}-z_{1}^{2}\right)+2\left|z_{1}\right|\left(\frac{1}{4}-z_{2}^{2}\right)
$$

in the region $\left\{\left(z_{1}, z_{2}\right) \left\lvert\, 0 \leq z_{i} \leq \frac{1}{2}\right., i=1,2\right\}$.
Since

$$
\begin{aligned}
& \frac{\partial f}{\partial z_{1}}=4 z_{1}^{3}+z_{1}-4 z_{1} z_{2}-2 z_{2}^{2}+\frac{1}{2} \\
& \frac{\partial f}{\partial z_{2}}=4 z_{2}^{3}+z_{2}-4 z_{1} z_{2}-2 z_{1}^{2}+\frac{1}{2}
\end{aligned}
$$

we have $\frac{\partial f}{\partial z_{1}}=\frac{\partial f}{\partial z_{2}}=0$ if and only if $z_{1}=z_{2}=\frac{1}{2}$. So f meets its maximal value on the boundary. By computation, we can show $f \leq \frac{9}{16}$. So $N(x-y \alpha)=N(z) \leq$ $\frac{9 N(\alpha)}{16}$.

Next, let $g\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=|z|^{2}=\left(z_{1}+\frac{z_{2}-z_{4}}{\sqrt{2}}\right)^{2}+\left(z_{3}+\frac{z_{2}+z_{4}}{\sqrt{2}}\right)^{2}, t_{1}=\frac{z_{2}-z_{4}}{\sqrt{2}}$ and $t_{2}=\frac{z_{2}+z_{4}}{\sqrt{2}}$. Then

$$
\begin{aligned}
g\left(z_{1}, z_{2}, z_{3}, z_{4}\right) & =\left(z_{1}+t_{1}\right)^{2}+\left(z_{3}+t_{2}\right)^{2} \\
& \leq\left(\left|z_{1}\right|+\left|t_{1}\right|\right)^{2}+\left(\left|z_{3}\right|+\left|t_{2}\right|\right)^{2}
\end{aligned}
$$

Since $\left|t_{1}\right|+\left|t_{2}\right|=\frac{\left|z_{2}-z_{4}\right|+\left|z_{2}+z_{4}\right|}{\sqrt{2}} \leq$ frac $1 \sqrt{2}$, we have

$$
\begin{aligned}
g & \leq\left(\left|z_{1}\right|+\left|t_{1}\right|\right)^{2}+\left(\left|z_{3}\right|+\frac{1}{\sqrt{2}}-\left|t_{1}\right|\right)^{2} \\
& \leq\left(\frac{1}{2}+\left|t_{1}\right|\right)^{2}+\left(\frac{1}{2}+\frac{1}{\sqrt{2}}-\left|t_{1}\right|\right)^{2} \\
& =2\left|t_{1}\right|^{2}-\sqrt{2}\left|t_{1}\right|+1+\frac{\sqrt{2}}{2} \\
& \leq 1+\frac{1}{\sqrt{2}}
\end{aligned}
$$

So $|z| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\alpha|$. Similarly $|\sigma(z)| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot \operatorname{sigma}(|\alpha|)$, i.e.,

$$
\begin{gathered}
|x-y \alpha| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\alpha| \\
\text { and } \quad|\sigma(x)-\sigma(y) \sigma(\alpha)| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\sigma(\alpha)| .
\end{gathered}
$$

Lemma 3.2. For any prime ideal \mathcal{P}, there is an element α such that $\mathcal{P}=(\alpha)$, and $(\sqrt{2}-1)|\alpha| \leq|\sigma(\alpha)| \leq|\alpha|(1+\sqrt{2})$.

Proof. Suppose that \mathcal{P} is a prime ideal with generator y. Recall that $\varepsilon=1+\zeta+\zeta^{2}$ is invertible in \mathcal{O}_{F} and $|\varepsilon|=\sqrt{2}+1,|\sigma(\varepsilon)|=\sqrt{2}-1$. If $|\sigma(y)|>(1+\sqrt{2})|y|$, then there exists some $k \geq 0$ such that $|\sigma(y)||\sigma(\varepsilon)|^{k-1}>(1+\sqrt{2})|y||\varepsilon|^{k-1}$, while $|\sigma(y) \| \sigma(\varepsilon)|^{k} \leq(1+\sqrt{2})|y||\varepsilon|^{k}$. Let $\alpha=y \varepsilon^{k}$. Then $(\sqrt{2}-1)|\alpha| \leq|\sigma(\alpha)| \leq$ $|\alpha|(1+\sqrt{2})$.

By virtue of Lemma 2.1, we will construct W, C, G concretely for each S_{m}. For each $\mathcal{P}_{i} \in S_{m}$, choose α_{i} to be a generator of \mathcal{P}_{i} such that $(\sqrt{2}-1)\left|\alpha_{i}\right| \leq$ $\left|\sigma\left(\alpha_{i}\right)\right| \leq\left|\alpha_{i}\right|(1+\sqrt{2})$. Let W be the set consisting exactly of all these α_{i} 's and all the units of \mathcal{O}_{F}. Assume $\mathcal{P}=\mathcal{P}_{m+1}=(\alpha)$, where α satisfies $(\sqrt{2}-1)|\alpha| \leq$ $|\sigma(\alpha)| \leq|\alpha|(1+\sqrt{2})$. Then $(\sqrt{2}-1)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} \leq|\sigma(\alpha)| l e q(\sqrt{2}+1)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}$. Let
$C^{\prime}=\left\{\left.c \in \mathcal{O}_{F}\left|N(c) \leq \frac{9 N(\mathcal{P})}{16}, \quad\right| c\left|\leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot\right| \alpha\left|,|\sigma(c)| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot\right| \sigma(\alpha) \right\rvert\,\right\}$,
where $D=D(F)=256$. By Lemma 3.1, any integer must be congruent to some element in C^{\prime} modulo \mathcal{P}. Let C be a subset of C^{\prime} such that $1 \in C, 0 \notin C$ and $c_{1}-c_{2} \notin P$ for any two different elements $c_{1}, c_{2} \in C$. So (3) of Lemma 2.1 is always satisfied. Let

$$
G=\left\{\left.a \in \mathcal{O}_{F}| | a\left|\leq\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \cdot\right| D\right|^{\frac{1}{8}} \cdot N(\mathcal{P})^{\frac{1}{8}},|\sigma(a)| \leq\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \cdot|D|^{\frac{1}{8}} \cdot(\mathcal{P})^{\frac{1}{8}}\right\}
$$

Then by the GTT Theorem of [9], $\beta(G)$ generates k when $N(\mathcal{P}) \geq\left(\frac{4}{\pi^{2}}\right)^{2} \cdot|D| \doteq$ 42.05. Let $\delta=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \cdot|D|^{\frac{1}{8}}$. Then for any $g \in G$, we have $N(g) \leq \delta^{4} \cdot N(\mathcal{P})^{\frac{1}{2}}$.

Lemma 3.3. Assume that $\mathcal{P}=(\alpha)$ with α satisfying $(\sqrt{2}-1)|\alpha| \leq|\sigma(\alpha)| \leq$ $|\alpha|(1+\sqrt{2})$. Choosing W, C, G as above, we have $W \subset C U_{1}$ if $N(\mathcal{P})>9$.

Proof. By Lemma 1 of [5], $W \subset C U_{1}$ if $N(w-c)<N(\mathcal{P})^{2}$, i.e., $\mid w-c \| \sigma(w)-$ $\sigma(c) \mid<N(\mathcal{P})$ holds for any $w \in W, c \in C$. This can be deduced from the inequality $(|w|+|c|)(|\sigma(w)|+|\sigma(c)|)<N(\mathcal{P})$, i.e., $N(w)^{\frac{1}{2}}+|c| \cdot|\sigma(w)|+|w|$. $|\sigma(c)|+N(c)^{\frac{1}{2}}<N(\mathcal{P})$.

Given any $c \in C$, by the construction of C, we have

$$
|c| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\alpha| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot(1+\sqrt{2})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} .
$$

on the other hand, $|c|=\frac{N(c)^{\frac{1}{2}}}{|\sigma(c)|} \geq \frac{N(c)^{\frac{1}{2}}}{\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\sigma(\alpha)|} \geq \frac{N(c)^{\frac{1}{2}}}{\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot(1+\sqrt{2})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}}$, $\operatorname{and}(\sqrt{2}-$

$$
\frac{(\sqrt{2}-1)^{\frac{1}{2}} \cdot N(c)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{4}}}{\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot(1+\sqrt{2})^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}}
$$

$1)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{4}} \leq|\sigma(w)|<N(w)^{\frac{1}{4} \cdot} \cdot(\sqrt{2}+1)^{\frac{1}{2}} \cdot S o \leq|c| \cdot|\sigma(w)|$
Since $(-\mathrm{c}-\cdot \mid \sigma(w)$

$$
\leq(\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} \cdot N(w)^{\frac{1}{4}}
$$

$|\sigma(c)|)=N(c)^{\frac{1}{2}} N(w)^{\frac{1}{2}} \leq N(\mathcal{P})$, and the function $x+\frac{a}{x}\left(x \in\left[c_{1}, c_{2}\right], c_{1}>0\right)$ meets its maximal value on the boundary,

$$
\begin{aligned}
& |c| \cdot|\sigma(w)|+|w| \cdot|\sigma(c)| \\
= & |c| \cdot|\sigma(w)|+\frac{N(c)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{2}}}{|c| \cdot|\sigma(w)|} \\
\leq & (\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}} \cdot N(w)^{\frac{1}{4}}+\frac{N(c)^{\frac{1}{2}} \cdot N(w)^{\frac{1}{4}}}{(\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{4}}} \\
\leq & (\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot N(\mathcal{P})^{\frac{1}{2}}+\frac{\frac{3}{4} N(\mathcal{P})^{\frac{1}{2}}}{(\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}} \\
= & N(\mathcal{P})^{\frac{1}{2}} \cdot\left((\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}+\frac{\frac{3}{4}}{(\sqrt{2}+1) \cdot\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}}\right) \\
= & N(\mathcal{P})^{\frac{1}{2}} \cdot(3.392) .
\end{aligned}
$$

Thus $W \subset C U_{1}$ if $N(\mathcal{P})^{\frac{1}{2}}+N(\mathcal{P})^{\frac{1}{2}}(3.392)+\frac{3 N(\mathcal{P})^{\frac{1}{2}}}{4}<N(\mathcal{P})$. Since $N(\mathcal{P}) \in \mathbb{Z}$, we get the inequality if $N(\mathcal{P})>26$.

Suppose that $\mathcal{P}_{1}, \ldots, \mathcal{P}_{8}=(2-i), \mathcal{P}_{9}=(2+i)$ are the first nine prime ideals. If $\mathcal{P}=\mathcal{P}_{8}$, we see that for any $c \in C, N(c) \leq \frac{9 \cdot 25}{16}$, which implies $N(c) \leq 9$ for every $t \in\{14,13,12,11,10\}$ is not a norm from F / \mathbb{Q}. So the inequality also holds. If $\mathcal{P}=\mathcal{P}_{9}$, since $2-i=4\left(1-\frac{1}{4} \cdot(2+i)\right)$, we have $2-i \in C U_{1}$. For $N(c) \leq 9$, the inequality holds. So we have $W \subset C U_{1}$ if $N(\mathcal{P})=25$.

We know that 17 is splitted completely. Let $\mathcal{P}=\mathcal{P}_{4}=(1+2 \zeta), W=\{\zeta, \varepsilon, 1+$ $\left.\zeta, 1-\zeta-\zeta^{2}, \overline{1-\zeta-\zeta^{2}}\right\}, C=\left\{\zeta^{i}\left(1-\zeta-\zeta^{2}\right)^{j}, i=0,1, \ldots, 7, j=0,1\right\}$. Then we have

$$
\begin{gathered}
N(w)^{\frac{1}{2}}+|c| \cdot|\sigma(w)|+|w| \cdot|\sigma(c)|+N(c)^{\frac{1}{2}} \\
<3+2(1+\sqrt{2}) \sqrt{3}+3<17 . \\
5
\end{gathered}
$$

If $\mathcal{P}=\mathcal{P}_{5}=\left(1+2 \zeta^{3}\right)$, then let $W=\left\{\zeta, \varepsilon, 1+\zeta, 1-\zeta-\zeta^{2}, \overline{1-\zeta-\zeta^{2}}, 1+2 \zeta\right\}$, $C=\left\{\zeta^{i}\left(1-\zeta-\zeta^{2}\right)^{j}, i=0,1, \ldots, 7, j=0,1\right\}$. We have

$$
\begin{gathered}
N(w)^{\frac{1}{2}}+|c| \cdot|\sigma(w)|+|w| \cdot|\sigma(c)|+N(c)^{\frac{1}{2}} \\
<\sqrt{17}+\sqrt{3}(\sqrt{5+2 \sqrt{2}}+\sqrt{5-2 \sqrt{2}})+3<17 .
\end{gathered}
$$

If $\mathcal{P}=\mathcal{P}_{6}$ or \mathcal{P}_{7}, the proof is the same as above.
So $W \subset C U_{1}$ if $N(\mathcal{P})>9$.

Lemma 3.4. If $N(\mathcal{P})>9$, then $C G \subset C U_{1}$.
Proof. By Lemma 1 in [5], $C G \subset C U_{1}$ if $N\left(c_{1} g-c_{2}\right)<N(\mathcal{P})^{2}$ holds for any $c_{1}, c_{2} \in C, g \in G$. This can be deduced from

$$
\left(\left|c_{1}\right| \cdot|g|+\left|c_{2}\right|\right) \cdot\left(\left|\sigma\left(c_{1}\right)\right| \cdot|\sigma(g)|+\left|\sigma\left(c_{2}\right)\right|\right)<N(\mathcal{P})
$$

i.e.,

$$
\begin{equation*}
N\left(c_{1}\right)^{\frac{1}{2}} \cdot N(g)^{\frac{1}{2}}+\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right| \cdot|\sigma(g)|+\left|\sigma\left(c_{2}\right)\right| \cdot\left|c_{1}\right| \cdot|g|+N\left(c_{2}\right)^{\frac{1}{2}}<N(\mathcal{P}) \tag{1}
\end{equation*}
$$

Assume M_{1}, M_{2} are positive numbers such that $N\left(c_{1}\right) \leq M_{1}, N\left(c_{2}\right) \leq M_{1}$, $|g| \leq M_{2}$ and $|\sigma(g)| \leq M_{2}$. The above inequality holds if

$$
M_{1}^{\frac{1}{2}} \cdot\left(N(g)^{\frac{1}{2}}+1\right)+M_{2}\left(\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right|+\left|c_{1}\right| \cdot\left|\sigma\left(c_{2}\right)\right|\right)<N(\mathcal{P})
$$

i.e.,

$$
M_{1}^{\frac{1}{2}}\left(N(g)^{\frac{1}{2}}+1\right)+M_{2}\left(\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right|+\frac{N\left(c_{1}\right)^{\frac{1}{2}} \cdot N\left(c_{2}\right)^{\frac{1}{2}}}{\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right|}\right)<N(\mathcal{P}) .
$$

In the proof of Lemma 3.3, we see that

$$
\frac{N\left(c_{2}\right)^{1 / 2}}{\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\sigma(\alpha)|} \leq\left|c_{2}\right| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\alpha|,
$$

and

$$
\frac{N\left(c_{1}\right)^{1 / 2}}{\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\alpha|} \leq\left|\sigma\left(c_{1}\right)\right| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot|\sigma(\alpha)| .
$$

So

$$
\begin{aligned}
& \left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right|+\frac{N\left(c_{1}\right)^{\frac{1}{2}} \cdot N\left(c_{2}\right)^{\frac{1}{2}}}{\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right|} \\
\leq & \left(1+\frac{1}{\sqrt{2}}\right) \cdot N(\mathcal{P})^{\frac{1}{2}}+\frac{\frac{9}{16} N(\mathcal{P})^{\frac{1}{2}}}{1+\frac{1}{\sqrt{2}}} \\
= & 2.0366 N(\mathcal{P})^{\frac{1}{2}} .
\end{aligned}
$$

Hence (1) holds if

$$
\begin{equation*}
M_{1}^{\frac{1}{2}}\left(M_{2}^{2}+1\right)+\underset{6}{2.0366 M_{2}} \cdot N(\mathcal{P})^{\frac{1}{2}}<N(\mathcal{P}) . \tag{2}
\end{equation*}
$$

Let $M_{1}=\frac{9}{16} \cdot N(\mathcal{P})$ and $M_{2}=\delta \cdot N(p)^{\frac{1}{8}}$. We get

$$
\frac{3}{4} \cdot N(\mathcal{P})^{\frac{1}{2}} \cdot\left(\delta^{2} N(\mathcal{P})^{\frac{1}{4}}+1\right)+2.0366 \delta \cdot N(\mathcal{P})^{\frac{5}{8}}<N(\mathcal{P})
$$

Let $y=N(\mathcal{P})^{\frac{1}{8}}$. Then

$$
y^{4}-\frac{3}{4} \delta^{2} y^{2}-2.0366 \delta y-\frac{3}{4}>0 .
$$

It can be easily verified that if $y>1.945$, i.e., $N(\mathcal{P})>204$, the inequality holds.
Now suppose $N(\mathcal{P})=193$. Since $M_{1} \leq \frac{9}{16} N(\mathcal{P})$, the maximal possible value of M_{1} is 100 . Let $M_{1}=100$ and $M_{2}=\delta N(\mathcal{P})^{\frac{1}{8}}$, it can be easily verified that the inequality (2) holds.

For the prime ideals \mathcal{P} whose norm satisfy $9<N(\mathcal{P})<193$, let $(p)=\mathcal{P} \cap \mathbb{Z}$, then $p \in\{137,113,97,89,73,41,13,11,7,5,17,3,2\}$.

If $p \in\{137,113,89\}$, then p splits completely and 3 generates $(\mathbb{Z} / p \mathbb{Z})^{*}$ which implies 3 generates $(\mathcal{O} / \mathcal{P})^{*}$. We let $3=(\sqrt{2}+i)(\sqrt{2}-i)$, let $G=\{\sqrt{2}+i, \sqrt{2}-i\}$ and $M_{2}=\sqrt{3}, M_{1}=\frac{9}{16} N(\mathcal{P})$. We see that (2) is satisfied if $N(\mathcal{P})>33$. Hence for $p \in\{137,113,89\}, C G \subset C U_{1}$.

If $p \in\{97,73\}$, then $5=(2+i)(2-i)$ generates $(\mathcal{O} / \mathcal{P})^{*}$. Let $G=\{2+i, 2-i\}$, $M_{2}=\sqrt{5}$ and $M_{1}=\frac{9}{16} N(\mathcal{P})$. Then (2) is satisfied if $N(\mathcal{P})>62$. So for $p \in\{97,73\}, C G \subset C U_{1}$.

If $p=41$, then $6=2 \cdot 3=(1+\zeta)\left(1+\zeta^{3}\right)\left(1+\zeta^{5}\right)\left(1+\zeta^{7}\right)\left(1-\zeta-\zeta^{2}\right) \overline{\left(1-\zeta-\zeta^{2}\right)}$ generates $(\mathcal{O} / \mathcal{P})^{*}$. Let $G=\left\{1+\zeta, 1+\zeta^{3}, 1+\zeta^{5}, 1+\zeta^{7}, 1-\zeta-\zeta^{2}, \overline{1-\zeta-\zeta^{2}}\right\}$ and $M_{2}=\sqrt{2+\sqrt{2}}, M_{1}=\frac{9}{16} N(\mathcal{P})$. Then (2) is satisfied if $N(\mathcal{P})>32$. So for $p=41, C G \subset C U_{1}$.

If $p=13$, then $N(\mathcal{P})=169$ and $1+\zeta$ generates $(\mathcal{O} / \mathcal{P})^{*}$. Let $G=1+\zeta$, $M_{1}=\frac{9}{16} N(\mathcal{P}), M_{2}=\sqrt{2+\sqrt{2}}$. Then (2) is satisfied if $N(\mathcal{P})>81$. So for $p=13, C G \subset C U_{1}$.

If $p=11$, then $N(\mathcal{P})=121$. Let $G=\left\{1 \pm \zeta, \zeta, 1 \pm \zeta^{3}\right\}$. Then G generates $(\mathcal{O} / \mathcal{P})^{*}$. Let $M_{1}=\frac{9}{16} N(\mathcal{P}), M_{2}=\sqrt{2+\sqrt{2}}$. Then (2) is satisfied if $N(\mathcal{P})>81$. So for $p=11, C G \subset C U_{1}$.

If $p=7$, then $N(\mathcal{P})=49$. Without lost of generality, we assume $\mathcal{P}=(2+\zeta+$ $\left.2 \zeta^{2}\right)$. Let $G=\{1+\zeta\}$. Then G generates $(\mathcal{O} / \mathcal{P})^{*}$. Let $M_{2}=\sqrt{2+\sqrt{2}}$. Since $N(c) \leq \frac{9}{16} N(\mathcal{P})$, we have $N(c) \leq 27$. But neither 27 nor 26 is a norm from F / \mathbb{Q}. If $N(c)=25$, we can replace c by an element of norm 2. For example, if $c=2+i$, we can replace c by $-\left(\zeta+\zeta^{2}\right)$ which also satisfies the conditions in Lemma 3.1. For any $t \in\{24,23,22,21,20,19\}, t$ is not a norm from F / \mathbb{Q}. Let $M_{1}=18$. We see that (2) is satisfied. Hence for $p=7, C G \subset C U_{1}$.

If $p=5$, then $N(\mathcal{P})=25$. Without lost of generality, assume $\mathcal{P}=(2+i)$. Let $G=\{1+\zeta\}$. Then G generates $(\mathcal{O} / \mathcal{P})^{*}$. Since $N(c) \leq \frac{9}{16} \cdot 25$, we have $N(c) \leq 14$. Again, for any $t \in\{14,13,12,11,10\}, t$ can not be a norm from
F / \mathbb{Q}. So $N(c) \leq 9$. Therefore the inequality (1) holds if

$$
\begin{equation*}
3 \cdot \sqrt{2}+\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right| \cdot(\sqrt{2+\sqrt{2}})+\left|\sigma\left(c_{2}\right)\right| \cdot\left|c_{1}\right| \cdot(\sqrt{2-\sqrt{2}})+3<25 \tag{3}
\end{equation*}
$$

Note that $\left(\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right| \cdot(\sqrt{2+\sqrt{2}})\right)\left(\left|\sigma\left(c_{2}\right)\right| \cdot\left|c_{1}\right| \cdot(\sqrt{2-\sqrt{2}})\right) \leq 9 \sqrt{2}$ and $\left|c_{i}\right| \leq$ $\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot \sqrt{5},\left|\sigma\left(c_{i}\right)\right| \leq\left(1+\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \cdot \sqrt{5}$. Then the left side of (3) is less than

$$
3(\sqrt{2}+1)+\left((\sqrt{2+\sqrt{2}})\left(1+\frac{1}{\sqrt{2}}\right) \cdot 5+\frac{9 \sqrt{2}}{5(\sqrt{2+\sqrt{2}})\left(1+\frac{1}{\sqrt{2}}\right)} \leq 25\right.
$$

So for $p=5, C G \subset C U_{1}$.
If $p=17$, then $N(\mathcal{P})=17$. Without lost of generality, assume $\mathcal{P}=(1+2 \zeta)$. Let $C=\left\{\zeta^{i}\left(1-\zeta-\zeta^{2}\right)^{j}, i=0,1, \ldots, 7, j=0,1\right\}, G=\left\{1-\zeta-\zeta^{2}, \overline{1-\zeta-\zeta^{2}}\right\}$. If $c_{1} g \equiv c_{2}(\bmod \mathcal{P})$, then $N\left(c_{1}\right) \neq N\left(c_{2}\right)$, for otherwise $g \equiv 1(\bmod \mathcal{P})$. So $N\left(c_{1}\right) N\left(c_{2}\right)=9$. In the equality (1),

$$
\begin{aligned}
& \quad N\left(c_{1}\right)^{\frac{1}{2}} \cdot N(g)^{\frac{1}{2}}+\left|c_{2}\right| \cdot\left|\sigma\left(c_{1}\right)\right| \cdot|\sigma(g)|+\left|\sigma\left(c_{2}\right)\right| \cdot\left|c_{1}\right| \cdot|g|+N\left(c_{2}\right)^{\frac{1}{2}} \\
& <3 \cdot 3+2 \sqrt{3} \cdot \sqrt{3}+1=16<17 .
\end{aligned}
$$

So for $p=17, C G \subset C U_{1}$.
The lemma is proved.
Combining Lemma 3.3 and Lemma 3.4, we know that (1), (2) of Lemma 2.1 are satisfied if $N(v)>9$. So ∂v is a bijective if $N(v)>9$.
If $p=3$, then $(p)=\mathcal{P} \overline{\mathcal{P}}$, where $\mathcal{P}=\left(1-\zeta-\zeta^{2}\right)$. Let $C=\left\{1, \zeta, \ldots, \zeta^{7}\right\}, G=$ $\{\zeta\}$ and $W=\{\zeta, \varepsilon, 1+\zeta\}$. For $\overline{\mathcal{P}}$ which is lying behind \mathcal{P}, we may add $1-\zeta-\zeta^{2}$ to W. If $p=2$, let $C=G=\{1\}$ and $W=\{1, \zeta, \varepsilon\}$. One can verify that (1), (2), (3) in Lemma 2.1 are satisfied. Hence ∂v is a bijective.

Hence $K_{2} \mathcal{O}_{F}$ can be generated by $\{x, y\}, x, y \in \mathcal{O}_{F}^{*}$. However, \mathcal{O}_{F}^{*} is generated by ζ and $\varepsilon=1+\zeta+\zeta^{2}$. So $K_{2} \mathcal{O}_{F}$ is generated by $\{\zeta, \zeta\},\{\zeta, \varepsilon\},\{\varepsilon, \varepsilon\}$.

Theorem 3.5. The tame kernel of $\mathbb{Q}\left(\zeta_{8}\right)$ is a trivial group.
Proof. Since $\zeta^{4}=-1$, we get

$$
\{\zeta, \zeta\}=\{\zeta,-1\}=\left\{\zeta, \zeta^{4}\right\}=\{\zeta, \zeta\}^{4}=\{\zeta,-1\}^{4}=1 .
$$

By $\varepsilon=1+\zeta+\zeta^{2}$ and $\zeta^{9}=\zeta$, we get

$$
\{\zeta, \varepsilon\}=\{\zeta,(1-\zeta) \varepsilon\}=\left\{\zeta, 1-\zeta^{3}\right\}=\left\{\zeta^{3}, 1-\zeta^{3}\right\}^{3}=1
$$

On the other hand, $\{\varepsilon, \varepsilon\}=\{\varepsilon,-1\}=\{\varepsilon, \zeta\}^{4}=1$. So $\mathbb{Q}\left(\zeta_{8}\right)$ is a trivial group.

Acknowledgement The authors wish to thank the referee for valuable suggestions.

References

[1] H. Bass, J. Tate, The Milnor ring of a global field, Springer L. N. M. 342 (1973), 349-428.
[2] J. Browkin, Computing the tame kernel of quadratic imaginary fields, Math. Comp. 69 (2000), no.232, 1667-1683.
[3] J. Browkin and H. Gangl, Tame and wild kernels of quadratic imaginary number fields, Math. Comp. 68 No. 225 (1999), 291-306.
[4] K. Belabas and H. Gangl, Generators and relations for $K_{2} \mathcal{O}_{F}, F$ imaginary quadratic, preprint.
[5] J. Tate, Appendix, Springer L. N. M. 342 (1973), 429-446.
[6] F. Keune, On the structure of K_{2} of the ring of integers in a number fields, K-theory 2 (1989), 625-645.
[7] Qin Hourong, Computation of $K_{2} \mathbb{Z}[\sqrt{-6}]$, J.Pure Appl.Algrbra 96 (1994), 133-146.
[8] Qin Hourong, Computation of $K_{2} \mathbb{Z}\left[\frac{1+\sqrt{-35}}{2}\right]$, Chin. Ann. of Math 17B (1996), 63-72.
[9] M. Skalba, Generalization of Thue's theorem and computation of the group $K_{2} \mathcal{O}_{F}$, J. Number Theory 46 (1994), 303-322.

[^0]: Supported by the NSFC Grant and the National Distinguished Young Science Foundation of China Grant.

