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Abstract

For any matrixX let X’ denote its transpose. We show thatifs ann by n matrix over
afieldK, thenA andA’ are congruent oveX , i.e., P’AP = A’ for someP € GL, (K).
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1. Introduction

For any matrixX let X’ denote its transpose. Let us start by recalling the
following known fact (see, e.g., [2, Theorem 4, p. 205] or [3, Theorem 11]): if
A is a complex: by n matrix, thenA and A’ are congruent, i.eP’AP = A’ for
some invertible complex matriR. Our main objective is to prove that the same
assertion is valid for matrices over an arbitrary fi&dIn spite of its elementary
character, the proof of this result is quite involved.
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Theorem 1.1. If A is ann byn matrix over a fieldK, thenP’AP = A’ for some
P eGL,(K).

The following result is an immediate consequence.
Corollary 1.2. For A € GL,(K), the matricesA and A~ are congruent ovek .

Proof. Indeed, if P € GL,(K) is such thatP’ AP = A’, thenQ’AQ = A~ 1 for
0=PA" L O

The proof of Theorem 1.1 is based on the paper of Riehm [3] and an addendum
to it by Gabriel [1]. This paper solves the equivalence problem for bilinear forms
on finite-dimensional vector spaces over a field. For technical reasons we prefer
to use the subsequent paper of Riehm and Shrader-Frechette [4], which gives
a solution of the equivalence problem for sesquilinear forms on finitely generated
modules over semisimple (Artinian) rings. We need only apply this general theory
to bilinear forms oveK . Let us reformulate the above theorem in the language of
bilinear forms.

If f:V xV — K is abilinear form on a finite-dimension&l-vector spacé’,
we shall say thatV, f) is abilinear spaceThe definition of equivalence of two
bilinear forms is the usual one.

Definition 1.3. Two bilinear formsf:V xV — K andg: W x W — K are
equivalent if there exists a vector space isomorphisn¥ — W such that
glo(x), () = f(x,y), Vx,y € V. In that case, assuming th&tand W are
finite-dimensional, we also say that the bilinear spa@ésf) and (W, g) are
isometric and thap is an isometry.

Let us define the transpose of a bilinear form.

Definition 1.4. The transpose of a bilinear forti: V x V — K is the bilinear
formg:V xV — K suchthag(x, y) = f(y,x) forall x, y € V. We shall denote
the transpose of by f'.

Let f andg be as in Definition 1.3 and assume that ditm = dim(W) =
n < oo. We fix a basigvy, vz, ..., v,} of V. Then then by n matrix A = (a;;)
wherea;; = f(v;, vj) is the matrix of f with respect to this basis. The matrix
of f/, with respect to the same basisAS Similarly, let B = (b;;) be the matrix
of g with respect to a fixed bas{sv1, wo, ..., w,} of W. To say thatf andg are
equivalent is the same as to say t*4a P = B for someP € GL,,(K).

Theorem 1.5. Let V be a finite-dimensionak -vector space,f:V x V — K
a bilinear form onV, and f” its transposed form. Thefiand f’ are equivalent.
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The orthogonality of subspaces of a bilinear space is defined as follows.

Definition 1.6. Let (V, f) be a bilinear space. We say that the subsp&casdW
of V are orthogonal to each otherffU, W) =0andf (W, U) = 0.

Answering the question of a referee, we point out that Theorem 1.1 does not
generalize to “hermitian conjugacy,” i.e., & € Aut(K) with 62 =1 and we
set A* = (A’)?, then A and A* in general are nok-congruent. (Twon by n
matricesA and B over K are said to be«-congruent ifB = P*AP for some
P € GL,(K).) A simple counter example is provided bk, o) = (the complex
field, the complex conjugation) and the 1 by 1 matdx= [i], wherei is the
imaginary unit.

2. Kronecker modules

In this section we recall some facts about the Kronecker modules which are
special cases of the general Kronecker modules discussed in [4]. The reader
should consult this reference and [1] for more details.

We define aKronecker modulas a four-tuple(X, u, v, Y) whereX andY
are finite-dimensionak -vector spaces and,v:X — Y are linear maps. To
a bilinear spac€Z, h) we assign the Kronecker moduk(Z,h) = K(Z) =
(Z, hy, hy, Z*), whereZ* is the dual space df andhy, h,: Z — Z* are defined

by
h(x)(»)=h(x,y),  h(xX)(y)=h(y,x), Vx,yeZ.

Every Kronecker module is a direct sum of indecomposable ones which are
unique up to ordering and isomorphism. There are five types of indecomposable
Kronecker module$X, u, v, Y):

|. Bothu andv are isomorphisms and-1v is indecomposable (i.e., it has only
one elementary divisor).

Il. The spacest andY have the same dimension and the pehgil- pv, with
respect to suitable basesX¥fandY, has the matrix

A
JTAS

m
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I1*. Similar to Il with the matrix

cu A
mwoA
"
A
L 2
lll. In this case dinfY) = dim(X) + 1 and the pencilu + pwv has the matrix
A
moA
"
A
L 2
I11*. In this case diriX) = dim(Y) + 1 and the matrix is
Y
"
. A
L wooA

The following theorem is an immediate consequence of the theory of
Kronecker modules (also known as the theory of matrix pencils).

Theorem 2.1. If (V, f) is a bilinear space, then the Kronecker moduleg’, 1)
andK (V, f’) are isomorphic.

In terms of matrices, this can be restated as follows.

Theorem 2.2. If A is ann by n matrix over a fieldK, then the matrix pencils
AA + A" andrA’ + A are equivalent.

If (Z,h) is a bilinear space an@ = Z; + Z» is a direct decomposition
of Z such thath(Z1, Z2) = 0 andh(Z2, Z1) = 0, then we say that this space
is the orthogonal direct sum of the bilinear spac¢gs, h1) and (Z», h2), where
h1 andhy are the corresponding restrictionsgofThe following theorem is a very
special case of the general result stated in [4, Section 9].

Theorem 2.3. Every bilinear spac€Z, k) can be decomposed into an orthogonal
direct sum

Z=7Zi+Zi+ Zu
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such that all indecomposable direct summandska@Z;) are of typel, those
of K(Zy) are of typell or II*, and those ok (Z);) are of typelll or Il *. If
h is the restriction ofz to Z, x Z|, etc., the bilinear space&Z|, k), (Zy1, hy),
(Zn, hyr) are uniquely determined bz, #) up to isometry.

Moreover, ifZ = Z) or Z = Zy;, thenK (Z) determinesZ, i) up to isometry.

3. Reduction to the nondegener ate case

We now begin the proof of Theorem 1.5. We warn the reader that the notation
and the definitions of the invariants of bilinear spaces in [3] and [4] do not agree.
The second paper is more general and we shall exclusively use the definitions
given there.

By Theorem 2.3, there is an orthogonal direct decompositioa- V| +
Vil + Vin where the summandg, Vj;, andVj; have the properties stated there.

Let fi be the restriction off to Vj x Vj, etc., andf{ the restriction off’ to
Vi x Vi, etc. Clearly f{ is the transpose ofj, etc. We claim that the bilinear
spaces Vi, fi) and(Vj, f;;) are isometric, and so at&j, fin) and(Vin, f};)-

The Kronecker modul& (Vy, fi1) is a direct sum of indecomposable summands
of type Il or II*. By Theorem 2.2K (Wi, fi) = K(Vi, f;;) and the last assertion
of Theorem 2.3 implies thatVy, fii) and (Vi f;) are isometric. The same
argument shows that al§®j, fin) and(Vyy, f},) are isometric, and so our claim
is true.

It remains to show that the bilinear spacés, fi) and(V;, f/') are isometric.

As fi is nondegenerate, the proof of our theorem has been reduced to the
nondegenerate case, i.e., the case whegea nonsingular matrix.

4. Reduction tothe primary case

We assume in this section thgtis nondegenerate. We shall use a number of
results of [4] without explicit reference and the reader should consult this paper
for the claims made but not proved here.

We recall from [4] that theasymmetryof f is the invertible linear operator
a:V — V such thatf (x, y) = f(x(y), x), Vx, y € V. Its matrix, with respect to
our fixed basis oV, is (A")~1A. The asymmetry of’ is «’ = « ! and its matrix
is A~1A’. As any matrix is similar to its transpose, the asymmetriesida’ are
similar operators.

Let p € K[X] be a monic irreducible polynomial and assume that X.

For suchp we define the monic irreducible polynomigf € K[X] by p*(X) =
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p(0)~1x9p(x~1), whered is the degree op. Let us decompos¥ into primary
components with respect to

v:@v,
P

where the sum is over the monic irreducible polynomjats K[X], p # X. The
subspace¥, andV, are orthogonal if # p*. If p* # p then the assertion of our
theorem is true for the restriction gfto V,, 4+ V,« by [4, Theorem 16, Corollary].
It remains to deal with the cage = p.

Hence the proof of Theorem 1.4 has been reduced to the primary case: The
minimal polynomial of« is a power of p, where p = p* is an irreducible
polynomial inK[X].

5. Reduction to the homogeneous primary case

In this section we consider the primary case as just described above. By
[4, Proposition 25], there exists an orthogonal direct decomposition

V:@Vs

s>1

such thatV; C ker(p(«)*) and the induced map

Vs/ p@)(Ve) — ker(p(@)*) / (ker(p(@)* ™) + p(a) ker(p(@)**))

is an isomorphism for each. Hence, without any loss of generality, we may
assume thaV = V, for somes. In other words, we may assume tlhahas only
one elementary divisor with arbitrary multiplicity. We refer to this case as the
homogeneous primary case

6. The homogeneousprimary case

The minimal polynomial ofx is a power ofp, say p*, wherep is as in the
previous section, and all elementary divisorseofare equal top®. Let r be
the number of these elementary divisors. In order to prove thand f’ are
equivalent, it suffices to check that they have the same invariants attached to them
by [4, Theorems 27 and 31]. That is exactly what we are going to show.

Assume firstthap=X —1.Settr =1—o landr’' =1—- (&) 1=1—-a.
DefineV = V /7 (V) and note thatr’ (V) = = (V). If s is even, then the bilinear
invariant attached tg (see [4, p. 517]) is a nondegenerate skew-symmetric form
on ther-dimensionalk -vector spac&. (Hence ifs is even themr must be even.)
Therefore this invariant is unique up to equivalence.
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We now assume that is ogd, ig which case the bilinear invariant is the
nondegenerate symmetric forfmon V defined by

fGE = f(n's*l(x), y), Vx,yev,

wherex denotes the canonical imagexoin V.The analogous invariant’ of the
bilinear form 7’ is defined similarly (using’ instead ofr). Sincex*~1(V) is the
eigenspace af for the eigenvalue 1 and’ = —ax, we obtain that

&5 = (@Y7, y) = f((en) e, y) = £, (@r) x)
= fatan) x,y) = f@'n"x,y) = £(7* " Ix, y) = FE, )

forallx,y € V. Hencef = f'.

If the characteristic oK is 2 then there are additional invariants: The quadratic
forms F;, i > 0. It is immediate from the definition of these forms (see [4,
Section 8]) that these invariants are the sameffand 1.

In the casep = X + 1 (we may assume that the characteristid&ofs not 2)
the proofis similar.

It remains to consider the case wherbas degreé > 1. Asp = p*, it follows
thatd is even (see [3]) angh(0)2 = 1. We setr = o~ p(x), 7’ = a?p(«~1) and
V= V/m(V)=V/x'(V). The algebr& [«], which is isomorphic to the quotient
ring K[X1/(p*), has an involution/ such thate’ = «~1. The corresponding
involution, also denoted by, of K[X]/(p®) sends the elemegt= X + (p*) to
its inverse.

The algebrak[X]/(p) is a finite field extension oK. It also has an involu-
tion, J, which sends the elemeft= X + (p) to its inverse. The spacé is nat-
urally a module over the algeb#[X]/(p*) with ¢ acting ase. Similarly, Vis
naturally a module over the algebkdé] = K[X]/(p) in two different ways: First
we leté act asx (the linear transformation induced by, and second we létact
as@’ = (@)~ L. We shall distinguish these two actions by writing ¥ = &(x) for
the former and ¥ = (&) ~1(%) for the latter.

Recall that a/-sesquilineaform 4 on aK [£]-vector spacé/ is a K -bilinear
maph : M x M — K[&] such thati(ax, by) =a’bh(x, y)foralla, b e K[£] and
x,y€M.Letu e K[&] satisfyuu’ = 1. A J-sesquilinear fornk on M is called
w-hermitianif 2(y,x) = uh(x,y)’ for all vectorsx,y € M. A J-sesquilinear
form h on M is calledhermitianif it is p-Hermitian foru = 1.

From now on we sett = p(0)*~1e¢—D4+1 Asin [4, p. 512], letv be 1 if
the characteristic oK is 0, and otherwise let be the greatest power of the
characteristic such that is a polynomial inX; = X". Then{1,&,...,£" 1} is
a basis ofK [&¢] as a vector space over its subfil&ds1], whereg, = £V. Define
the K [£1]-linear functionaky : K[§] — K[&1] by

v—1
Tl(ZaiSi) —ao, a4 €K[&l.
i=0
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We now define theK -linear mapt : K[§] — K by t = Tr o 71 where Tr is the
trace mapK [£1] — K of the separable field extensiaf£1] of K.

Apart from the asymmetry, the bilinear form f has only one invariant
(see [4]): The unique nondegenerateHermitian form f on the K [£]-vector
space(V, o) such that

Tf(%,§) = f(rrs_l(x), y), Vx,yevV.

Similarly, the analogous invariant of the bilinear fogfvhis the unique nondegen-
eratep-Hermitian form £ on theK [£]-vector spacéV, *) such that

tf' &) =f(@) ), y), VYxyeV.

In order to complete the proof of the theorem, it suffices to show that the
w-Hermitian formsf and f” are equivalent, i.e., that there exists an isomorphism
@:(V,0) = (V, %) of K[£]-vector spaces such that(p (%), (7)) = f (&, ¥) for
allx,yeV.

Recall thatp(0)2 = 1. It is easy to check that(a”) = t(a) for all a € K[£].
Sincenr’ = p(0)a?w and f (x, y) = f(a(y), x) for arbitraryx, y € V, we obtain
that

'G5 = (@Y .y) = £((pOaln) 0. y)
= f(y. (p@a?) ') = (PO LoD (), y)
= /(PO Vo %, 5) = (p(0) IR, §))
= 7(pO**VfF.H)=1/F, %)

As both (%, §) — f'(%.5) and (&, §) — f(3.%) areu-Hermitian forms on the
K [£]-vector spacéV, x), the above equality and [4, Theorem 22] imply that

f@»H=FGF.5. Vx,yeX. (6.1)

One should keep in mind that this identity is possible only becguard /” are
w-Hermitian forms for two differenk [&]-vector space structures on tkievector
spaceV. The identity map from(V, o) to (V, ) is a J-linear isomorphism (not
K[&]-linear).

We remark that every basis afV,o) is also a basis ofV,*). By [5,
Theorem 6.3, p. 259], we can choose veciats. ., x, € V suchthafxy, ..., x,}
is an orthogonal basis @, o) with respect to the forny. By (6.1), this basis
is also an orthogonal basis QV,*) with respect to the form/’. Moreover,
(6.1) entails that the:-Hermitian forms/ and /' have the same matrix with
respect to the above basis. Hence these two forms are equivalent and the proof of
Theorem 1.4 is completed.
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7. An application to real orthogonal groups

Let O(p,q), p + q = n, be the subgroup of GIR) consisting of all
matricesA such thatd'J, ;A = J, 4, whereJ, , =diagd,...,1,-1,...,-1)
with the firstp (respectively last) diagonal entries equatl (respectively-1).
Consider the action of @, ¢) on the spacéC, of all n by n skew-symmetric
matrices given byX — AXA’, X € K,, A € O(p, q). Then the following result
is valid.

Proposition 7.1. For any X € K,,, the matricesX and —X belong to the same
orbit of O(p, ¢).

Proof. Apply Theorem 1.1 to the matriX, , + X whose transpose i§, ; — X.
|
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