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A square matrix is congruent to its transpose
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Abstract

For any matrixX let X′ denote its transpose. We show that ifA is ann by n matrix over
a fieldK , thenA andA′ are congruent overK , i.e.,P ′AP = A′ for someP ∈ GLn(K).
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

For any matrixX let X′ denote its transpose. Let us start by recalling the
following known fact (see, e.g., [2, Theorem 4, p. 205] or [3, Theorem 11]): if
A is a complexn by n matrix, thenA andA′ are congruent, i.e.,P ′AP = A′ for
some invertible complex matrixP . Our main objective is to prove that the same
assertion is valid for matrices over an arbitrary fieldK. In spite of its elementary
character, the proof of this result is quite involved.
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Theorem 1.1. If A is ann by n matrix over a fieldK, thenP ′AP = A′ for some
P ∈ GLn(K).

The following result is an immediate consequence.

Corollary 1.2. For A ∈ GLn(K), the matricesA andA−1 are congruent overK.

Proof. Indeed, ifP ∈ GLn(K) is such thatP ′AP = A′, thenQ′AQ = A−1 for
Q = P A−1. ✷

The proof of Theorem 1.1 is based on the paper of Riehm [3] and an addendum
to it by Gabriel [1]. This paper solves the equivalence problem for bilinear forms
on finite-dimensional vector spaces over a field. For technical reasons we prefer
to use the subsequent paper of Riehm and Shrader-Frechette [4], which gives
a solution of the equivalence problem for sesquilinear forms on finitely generated
modules over semisimple (Artinian) rings. We need only apply this general theory
to bilinear forms overK. Let us reformulate the above theorem in the language of
bilinear forms.

If f : V ×V → K is a bilinear form on a finite-dimensionalK-vector spaceV ,
we shall say that(V ,f ) is abilinear space.The definition of equivalence of two
bilinear forms is the usual one.

Definition 1.3. Two bilinear formsf : V × V → K and g : W × W → K are
equivalent if there exists a vector space isomorphismϕ : V → W such that
g(ϕ(x),ϕ(y)) = f (x, y), ∀x, y ∈ V . In that case, assuming thatV and W are
finite-dimensional, we also say that the bilinear spaces(V ,f ) and (W,g) are
isometric and thatϕ is an isometry.

Let us define the transpose of a bilinear form.

Definition 1.4. The transpose of a bilinear formf : V × V → K is the bilinear
form g : V ×V → K such thatg(x, y) = f (y, x) for all x, y ∈ V . We shall denote
the transpose off by f ′.

Let f and g be as in Definition 1.3 and assume that dim(V ) = dim(W) =
n < ∞. We fix a basis{v1, v2, . . . , vn} of V . Then then by n matrix A = (aij )

whereaij = f (vi , vj ) is the matrix of f with respect to this basis. The matrix
of f ′, with respect to the same basis, isA′. Similarly, letB = (bij ) be the matrix
of g with respect to a fixed basis{w1,w2, . . . ,wn} of W . To say thatf andg are
equivalent is the same as to say thatP ′AP = B for someP ∈ GLn(K).

Theorem 1.5. Let V be a finite-dimensionalK-vector space,f : V × V → K

a bilinear form onV , andf ′ its transposed form. Thenf andf ′ are equivalent.
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The orthogonality of subspaces of a bilinear space is defined as follows.

Definition 1.6. Let (V ,f ) be a bilinear space. We say that the subspacesU andW

of V are orthogonal to each other iff (U,W) = 0 andf (W,U) = 0.

Answering the question of a referee, we point out that Theorem 1.1 does not
generalize to “hermitian conjugacy,” i.e., ifσ ∈ Aut(K) with σ 2 = 1 and we
set A∗ = (A′)σ , then A and A∗ in general are not∗-congruent. (Twon by n

matricesA and B over K are said to be∗-congruent ifB = P ∗AP for some
P ∈ GLn(K).) A simple counter example is provided by(K,σ) = (the complex
field, the complex conjugation) and the 1 by 1 matrixA = [i], wherei is the
imaginary unit.

2. Kronecker modules

In this section we recall some facts about the Kronecker modules which are
special cases of the general Kronecker modules discussed in [4]. The reader
should consult this reference and [1] for more details.

We define aKronecker moduleas a four-tuple(X, u, v, Y ) whereX and Y

are finite-dimensionalK-vector spaces andu,v : X → Y are linear maps. To
a bilinear space(Z,h) we assign the Kronecker moduleK(Z,h) = K(Z) =
(Z,hl, hr ,Z∗), whereZ∗ is the dual space ofZ andhl, hr : Z → Z∗ are defined
by

hl(x)(y) = h(x, y), hr (x)(y) = h(y, x), ∀x, y ∈ Z.

Every Kronecker module is a direct sum of indecomposable ones which are
unique up to ordering and isomorphism. There are five types of indecomposable
Kronecker modules(X, u, v, Y ):

I. Bothu andv are isomorphisms andu−1v is indecomposable (i.e., it has only
one elementary divisor).

II. The spacesX andY have the same dimension and the pencilλu + µv, with
respect to suitable bases ofX andY , has the matrix

λ

µ λ

µ
. . .

. . . λ

µ λ

 .
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II ∗. Similar to II with the matrix
µ λ

µ λ

µ
. . .

. . . λ

µ

 .

III. In this case dim(Y ) = dim(X) + 1 and the pencilλu + µv has the matrix
λ

µ λ

µ
. . .

. . . λ

µ

 .

III ∗. In this case dim(X) = dim(Y ) + 1 and the matrix is
µ λ

µ
.. .

. . . λ

µ λ

 .

The following theorem is an immediate consequence of the theory of
Kronecker modules (also known as the theory of matrix pencils).

Theorem 2.1. If (V ,f ) is a bilinear space, then the Kronecker modulesK(V,f )

andK(V,f ′) are isomorphic.

In terms of matrices, this can be restated as follows.

Theorem 2.2. If A is an n by n matrix over a fieldK, then the matrix pencils
λA + µA′ andλA′ + µA are equivalent.

If (Z,h) is a bilinear space andZ = Z1 + Z2 is a direct decomposition
of Z such thath(Z1,Z2) = 0 andh(Z2,Z1) = 0, then we say that this space
is the orthogonal direct sum of the bilinear spaces(Z1, h1) and(Z2, h2), where
h1 andh2 are the corresponding restrictions ofh. The following theorem is a very
special case of the general result stated in [4, Section 9].

Theorem 2.3. Every bilinear space(Z,h) can be decomposed into an orthogonal
direct sum

Z = ZI + ZII + ZIII
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such that all indecomposable direct summands ofK(ZI) are of typeI, those
of K(ZII ) are of typeII or II ∗, and those ofK(ZIII ) are of typeIII or III ∗. If
hI is the restriction ofh to ZI × ZI , etc., the bilinear spaces(ZI, hI), (ZII , hII ),
(ZIII , hIII ) are uniquely determined by(Z,h) up to isometry.

Moreover, ifZ = ZII or Z = ZIII , thenK(Z) determines(Z,h) up to isometry.

3. Reduction to the nondegenerate case

We now begin the proof of Theorem 1.5. We warn the reader that the notation
and the definitions of the invariants of bilinear spaces in [3] and [4] do not agree.
The second paper is more general and we shall exclusively use the definitions
given there.

By Theorem 2.3, there is an orthogonal direct decompositionV = VI +
VII + VIII where the summandsVI , VII , andVIII have the properties stated there.

Let fI be the restriction off to VI × VI , etc., andf ′
I the restriction off ′ to

VI × VI , etc. Clearlyf ′
I is the transpose offI , etc. We claim that the bilinear

spaces(VII , fII ) and(VII , f ′
II ) are isometric, and so are(VIII , fIII ) and(VIII , f ′

III ).
The Kronecker moduleK(VII , fII ) is a direct sum of indecomposable summands
of type II or II∗. By Theorem 2.2,K(VII , fII ) ∼= K(VII , f ′

II ) and the last assertion
of Theorem 2.3 implies that(VII , fII ) and (VII , f ′

II ) are isometric. The same
argument shows that also(VIII , fIII ) and(VIII , f ′

III ) are isometric, and so our claim
is true.

It remains to show that the bilinear spaces(VI, fI) and(VI, f ′
I ) are isometric.

As fI is nondegenerate, the proof of our theorem has been reduced to the
nondegenerate case, i.e., the case whereA is a nonsingular matrix.

4. Reduction to the primary case

We assume in this section thatf is nondegenerate. We shall use a number of
results of [4] without explicit reference and the reader should consult this paper
for the claims made but not proved here.

We recall from [4] that theasymmetryof f is the invertible linear operator
α : V → V such thatf (x, y) = f (α(y), x), ∀x, y ∈ V . Its matrix, with respect to
our fixed basis ofV , is (A′)−1A. The asymmetry off ′ is α′ = α−1 and its matrix
is A−1A′. As any matrix is similar to its transpose, the asymmetriesα andα′ are
similar operators.

Let p ∈ K[X] be a monic irreducible polynomial and assume thatp �= X.
For suchp we define the monic irreducible polynomialp∗ ∈ K[X] by p∗(X) =
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p(0)−1Xdp(X−1), whered is the degree ofp. Let us decomposeV into primary
components with respect toα

V =
⊕

p

Vp,

where the sum is over the monic irreducible polynomialsp ∈ K[X], p �= X. The
subspacesVp andVq are orthogonal ifq �= p∗. If p∗ �= p then the assertion of our
theorem is true for the restriction off to Vp +Vp∗ by [4, Theorem 16, Corollary].
It remains to deal with the casep∗ = p.

Hence the proof of Theorem 1.4 has been reduced to the primary case: The
minimal polynomial ofα is a power ofp, where p = p∗ is an irreducible
polynomial inK[X].

5. Reduction to the homogeneous primary case

In this section we consider the primary case as just described above. By
[4, Proposition 25], there exists an orthogonal direct decomposition

V =
⊕
s�1

Vs

such thatVs ⊆ ker(p(α)s) and the induced map

Vs/p(α)(Vs) → ker
(
p(α)s

)/(
ker
(
p(α)s−1)+ p(α) ker

(
p(α)s+1))

is an isomorphism for eachs. Hence, without any loss of generality, we may
assume thatV = Vs for somes. In other words, we may assume thatα has only
one elementary divisor with arbitrary multiplicity. We refer to this case as the
homogeneous primary case.

6. The homogeneous primary case

The minimal polynomial ofα is a power ofp, sayps , wherep is as in the
previous section, and all elementary divisors ofα are equal tops . Let r be
the number of these elementary divisors. In order to prove thatf and f ′ are
equivalent, it suffices to check that they have the same invariants attached to them
by [4, Theorems 27 and 31]. That is exactly what we are going to show.

Assume first thatp = X − 1. Setπ = 1 − α−1 andπ ′ = 1 − (α′)−1 = 1 − α.
DefineṼ = V /π(V ) and note thatπ ′(V ) = π(V ). If s is even, then the bilinear
invariant attached tof (see [4, p. 517]) is a nondegenerate skew-symmetric form
on ther-dimensionalK-vector spacẽV . (Hence ifs is even thenr must be even.)
Therefore this invariant is unique up to equivalence.
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We now assume thats is odd, in which case the bilinear invariant is the
nondegenerate symmetric form̃f on Ṽ defined by

f̃ (x̃, ỹ) = f
(
πs−1(x), y

)
, ∀x, y ∈ V,

wherex̃ denotes the canonical image ofx in Ṽ . The analogous invariant̃f ′ of the
bilinear formf ′ is defined similarly (usingπ ′ instead ofπ ). Sinceπs−1(V ) is the
eigenspace ofα for the eigenvalue 1 andπ ′ = −απ , we obtain that

f̃ ′(x̃, ỹ) = f ′((π ′)s−1(x), y
)= f ′((απ)s−1x, y

)= f
(
y, (απ)s−1x

)
= f

(
α(απ)s−1x, y

)= f
(
αsπs−1x, y

)= f
(
πs−1x, y

)= f̃ (x̃, ỹ)

for all x, y ∈ V . Hencef̃ = f̃ ′.
If the characteristic ofK is 2 then there are additional invariants: The quadratic

forms Fi , i � 0. It is immediate from the definition of these forms (see [4,
Section 8]) that these invariants are the same forf andf ′.

In the casep = X + 1 (we may assume that the characteristic ofK is not 2)
the proof is similar.

It remains to consider the case wherep has degreed > 1. Asp = p∗, it follows
thatd is even (see [3]) andp(0)2 = 1. We setπ = α−dp(α), π ′ = αdp(α−1) and
Ṽ = V /π(V ) = V /π ′(V ). The algebraK[α], which is isomorphic to the quotient
ring K[X]/(ps), has an involutionJ such thatαJ = α−1. The corresponding
involution, also denoted byJ , of K[X]/(ps) sends the elementζ = X + (ps) to
its inverse.

The algebraK[X]/(p) is a finite field extension ofK. It also has an involu-
tion, J , which sends the elementξ = X + (p) to its inverse. The spaceV is nat-
urally a module over the algebraK[X]/(ps) with ζ acting asα. Similarly, Ṽ is
naturally a module over the algebraK[ξ ] = K[X]/(p) in two different ways: First
we letξ act asα̃ (the linear transformation induced byα), and second we letξ act
asα̃′ = (α̃)−1. We shall distinguish these two actions by writingξ ◦ x̃ = α̃(x̃) for
the former andξ ∗ x̃ = (α̃)−1(x̃) for the latter.

Recall that aJ -sesquilinearform h on aK[ξ ]-vector spaceM is aK-bilinear
maph : M ×M → K[ξ ] such thath(ax, by) = aJ bh(x, y) for all a, b ∈ K[ξ ] and
x, y ∈ M. Let µ ∈ K[ξ ] satisfyµµJ = 1. A J -sesquilinear formh onM is called
µ-hermitian if h(y, x) = µh(x, y)J for all vectorsx, y ∈ M. A J -sesquilinear
form h on M is calledhermitianif it is µ-Hermitian forµ = 1.

From now on we setµ = p(0)s−1ξ(s−1)d+1. As in [4, p. 512], letν be 1 if
the characteristic ofK is 0, and otherwise letν be the greatest power of the
characteristic such thatp is a polynomial inX1 = Xν . Then{1, ξ, . . . , ξν−1} is
a basis ofK[ξ ] as a vector space over its subfiledK[ξ1], whereξ1 = ξν . Define
theK[ξ1]-linear functionalτ1 : K[ξ ] → K[ξ1] by

τ1

(
ν−1∑
i=0

aiξ
i

)
= a0, ai ∈ K[ξ1].
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We now define theK-linear mapτ : K[ξ ] → K by τ = Tr ◦ τ1 where Tr is the
trace mapK[ξ1] → K of the separable field extensionK[ξ1] of K.

Apart from the asymmetryα, the bilinear formf has only one invariant
(see [4]): The unique nondegenerateµ-Hermitian form f̃ on theK[ξ ]-vector
space(Ṽ ,◦) such that

τ f̃ (x̃, ỹ) = f
(
πs−1(x), y

)
, ∀x, y ∈ V.

Similarly, the analogous invariant of the bilinear formf ′ is the unique nondegen-
erateµ-Hermitian formf̃ ′ on theK[ξ ]-vector space(Ṽ ,∗) such that

τ f̃ ′(x̃, ỹ) = f ′((π ′)s−1(x), y
)
, ∀x, y ∈ V.

In order to complete the proof of the theorem, it suffices to show that the
µ-Hermitian formsf̃ andf̃ ′ are equivalent, i.e., that there exists an isomorphism
ϕ : (Ṽ ,◦) → (Ṽ ,∗) of K[ξ ]-vector spaces such thatf̃ ′(ϕ(x̃), ϕ(ỹ)) = f̃ (x̃, ỹ) for
all x, y ∈ V .

Recall thatp(0)2 = 1. It is easy to check thatτ (aJ ) = τ (a) for all a ∈ K[ξ ].
Sinceπ ′ = p(0)αdπ andf (x, y) = f (α(y), x) for arbitraryx, y ∈ V , we obtain
that

τ f̃ ′(x̃, ỹ) = f ′((π ′)s−1(x), y
)= f ′((p(0)αdπ

)s−1
(x), y

)
= f

(
y,
(
p(0)αdπ

)s−1
(x)
)= f

(
p(0)s−1α1+d(s−1)πs−1(x), y

)
= τ f̃

(
p(0)s−1ξ1+d(s−1) ◦ x̃, ỹ

)= τ
(
p(0)s−1ξd(1−s)−1f̃ (x̃, ỹ)

)
= τ

(
p(0)2(s−1)f̃ (ỹ, x̃)J

)= τ f̃ (ỹ, x̃).

As both(x̃, ỹ) → f̃ ′(x̃, ỹ) and(x̃, ỹ) → f̃ (ỹ, x̃) areµ-Hermitian forms on the
K[ξ ]-vector space(Ṽ ,∗), the above equality and [4, Theorem 22] imply that

f̃ ′(x̃, ỹ) = f̃ (ỹ, x̃), ∀x, y ∈ X. (6.1)

One should keep in mind that this identity is possible only becausef̃ andf̃ ′ are
µ-Hermitian forms for two differentK[ξ ]-vector space structures on theK-vector
spacẽV . The identity map from(Ṽ ,◦) to (Ṽ ,∗) is aJ -linear isomorphism (not
K[ξ ]-linear).

We remark that every basis of(Ṽ ,◦) is also a basis of(Ṽ ,∗). By [5,
Theorem 6.3, p. 259], we can choose vectorsx1, . . . , xr ∈ V such that{x̃1, . . . , x̃r}
is an orthogonal basis of(Ṽ ,◦) with respect to the formf̃ . By (6.1), this basis
is also an orthogonal basis of(Ṽ ,∗) with respect to the formf̃ ′. Moreover,
(6.1) entails that theµ-Hermitian formsf̃ and f̃ ′ have the same matrix with
respect to the above basis. Hence these two forms are equivalent and the proof of
Theorem 1.4 is completed.
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7. An application to real orthogonal groups

Let O(p, q), p + q = n, be the subgroup of GLn(R) consisting of all
matricesA such thatA′Jp,qA = Jp,q , whereJp,q = diag(1, . . . ,1,−1, . . . ,−1)

with the firstp (respectively lastq) diagonal entries equal+1 (respectively−1).
Consider the action of O(p, q) on the spaceKn of all n by n skew-symmetric
matrices given byX → AXA′, X ∈ Kn, A ∈ O(p, q). Then the following result
is valid.

Proposition 7.1. For any X ∈ Kn, the matricesX and −X belong to the same
orbit of O(p, q).

Proof. Apply Theorem 1.1 to the matrixJp,q + X whose transpose isJp,q − X.✷
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