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1. Introduction

The Grothendieck rings of finite dimensional semisimple or cosemisimple Hopf algebras have been
studied by Nichols and Richmond [11], Nikshych [12], Kashina [5], Chen, Yang and Wang [2, 17],
etc. For a finite dimensional semisimple Hopf algebra H, the category Rep(H) of finite dimensional
representations of H is a fusion category and the Grothendieck ring G (H) of H can be used to study the
fusion category Rep(H). For instance, the knowledge of the structure of the Grothendieck ring Go(H)
allows to determine all fusion subcategories of Rep(H), which correspond to the so-called based subrings
of Go(H). Also, the Grothendieck ring Go(H) reveals the decompositions of the tensor products of
irreducible representations into a direct sum of irreducible representations.

For a semisimple Hopf algebra H with antipode S over a field k, it is known that $? is an inner
automorphism of H (see [7]). Here an inner automorphism is understood to be the conjugation by an
invertible element of H. If the ground field k has positive characteristic p, whether or not S? can be
given by conjugation with a group-like element is not completely solved (this problem is closely related
to the Kaplansky’s fifth conjecture). However, such a Hopf algebra H can be embedded into another finite
dimensional Hopf algebra H#kG, namely, the smash product of H and a group algebra kG, in which the
square of the antipode is the conjugation with a group-like element. We refer to [6, 8, 15] for such Hopf
algebras and related researches.

If H is a semisimple involutory Hopf algebra, namely, a semisimple Hopf algebra with $? = id, the
smash product Hopf algebra H#kG considered here is nothing but the usual tensor product Hopf algebra
H ® kG. In this case, the representations of H @ kG can be stemmed directly from the representations
of H and those of kG. Also, the Grothendieck algebra of H ® kG is the usual tensor product of
the Grothendieck algebra of H and that of kG. However, if H is not necessarily involutory (although
the Kaplansky’s fifth conjecture states that a semisimple Hopf algebra is necessarily involutory), the
relationship between the Grothendieck algebra of H#kG and that of H is not clear.
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The purpose of this paper is to study representations of the smash product semisimple Hopf algebra
H#kG and to establish a relationship between the Grothendieck algebra of H#kG and that of H,
where H is a semisimple Hopf algebra over an algebraically closed field k of positive characteristic
p > dimy (H)'/? with p { 2 dimy, (H) and G is a cyclic group of order 2 dimy (H). It is worthy mentioning
that such a Hopfalgebra H is not known to be involutory unless the characteristic p is larger than a certain
number (see [3, 15]).

The paper is organized as follows: In Section 2, we give some basic results on semisimple Hopf
algebras. In Section 3, we describe some properties of certain elements u and v, where the two are
the same up to a central element. In Section 4, using the element v we determine all non-isomorphic
irreducible representations of H#kG by virtue of those irreducible representations of H and those of
kG. We also describe the dual of these irreducible representations of H#kG. In Section 5, to investigate
the Grothendieck algebra of H#kG, we endow the Grothendieck algebra Gy (H) of H with a new
multiplication  so as to obtain a new algebra (Gy (H), ). This algebra (G (H), x) is nothing but the
usual Grothendieck algebra (G (H), ) if H is involutory. We show that the Grothendieck algebra
(G (H#kG), *) of H#KkG has the direct sum decomposition

(Gr(H#KG), %) = (Gi(H), »)®} @D (Gx(H),»®3,

where n = 2 dimy (H). This reveals a relationship between the Grothendieck algebra of H#kG and that
of H. Moreover, we find a fusion subcategory C of Rep(H#kG) with its Grothendieck algebra (G (C), *)
being

(Gi(C), %) = (Gk(H), %) ED(Gi(H), %).

In view of this, the Grothendieck algebra (G (H#kG), %) is isomorphic to the direct sum (G (C), *)@%.

2. Preliminaries

Throughout this paper, H is a finite dimensional semisimple Hopf algebra over an algebraically closed
field k of positive characteristic p, with counit €, comultiplication A and antipode S. We will use the
Sweedler notation A(a) = aq) ® a(y) for a € H. We denote by A and A the left and right integrals of H
and H* respectively so that A(A) = 1. Since the semisimple Hopf algebra H is unimodular, the left and
right integrals of H are the same. We refer to [9] for basic theory of Hopf algebras.

We denote {V; | 0 < i < m — 1} the set of all simple left H-modules up to isomorphism and
{e; | 0 < i < m — 1} the set of all central primitive idempotents of H. Note that Vj is the trivial H-
module k and ey is the idempotent A /e(A). The character of any simple H-module V; is denoted by
xi for 0 < i < m — 1 and the character of the left regular module H is denoted by xy. Obviously,
Xu = Y iy dimp (V).

Recall that $*(a) = uau™! for a € H and a certain unit u € H. For any simple H-module V; and any
¢ € Endy (V;), we define the map Z(¢) € Endy(V;) by

Z(@)(v) = Aqyp(u 'S(A@))v) for v e V.
Since Z(¢) lies in Endy (V;) = k, there exists a unique element ¢; € k such that
Z(p) = citr(p)idy, for all ¢ € Endy (V7).

Such an element ¢;, depending only on the isomorphism class of V;, is called the Schur element associated
to V; (see [4, Theorem 7.2.1]). Since H is semisimple, it follows from [4, Theorem 7.2.6] that the Schur
element ¢; # 0in k.
We denote u := S(A(2))A(1). The relationship between u and the unit u can be found in [16,
Proposition 3.1]:
m—1
u=u Z dimy (V;)cie;. (2.1)
i=0
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For any map ¢ € Endy (H), the trace of ¢ is tr(¢) = A(@(S(A2)))Aq)) (see [13, Theorem 2]). Taking
into account that ¢ = L,, where L, is the left multiplication operator of H by a, we have

xu(a) = tr(La) = A(aS(A@2)Aq) = Aau) = (u — A)(a).

Note that the right integral A of H* satisfies L(ab) = 1(S%(b)a) for all a,b € H (see [13, Theorem 3(a)])
and $%(u) = u. Then

xu(@) = A(au) = A(S*(w)a) = A(ua) = (A < u)(a).
Thus, we have

XH:u—\)L=)L/—u. (2-2)

3. Some properties of the elements uand v

In this section we will describe some properties of the element u = S(A(2)) A1) and a certain element v,
where the element v will be used in the forthcoming section to study representations of a certain smash
product Hopf algebra. The following proposition gives some equivalent conditions for u being invertible:

Proposition 3.1. Let H be a finite dimensional semisimple Hopf algebra over the field k of positive
characteristic p. The following statements are equivalent:

(1) The element u is invertible.

(2) For any simple H-module V;, p t dimy (V).

(3) The regular character xy of H is non-degenerate in the sense that if xy(ab) = 0 for all a € H, then
b=o.

Proof. (1) < (2). It follows from (2.1) that Part (1) and Part (2) are equivalent.

(1) = (3). Since A is non-degenerate and u is invertible, it follows from (2.2) that xy is non-
degenerate.

(3) = (2). It follows from yy = Z:":?)l dimy (V;) x; that the non-degeneracy of g implies that
p 1 dimy (V) for any simple H-module V;. O

Remark 3.2. (1) Recall that the (left) annihilator of w in H is the set ann(u) := {b € H | bu = 0}. Using
the non-degeneracy of A we may see from (2.2) that the set ann(u) coincides with the radical of xy
defined by Xﬁ :={be H| xy(ab) =0foralla € H}.

(2) If $? = id, then

u=SAwe)Aa) = S(Ae)S*(Ag) = SS(A1)A@R) = &(A) # 0.

Namely, u is a nonzero scalar. Conversely, if u is a nonzero scalar, then u is central by (2.1). It follows
from $%(a) = uau~! that $? = id.
(3) If uis invertible, then u and u are the same up to the central invertible element Z?:ol dimy (Vi)cie;
by (2.1). Hence, $*(a) = uau! implies that $>(a) = uau~! for alla € H.
(4) If the characteristic p > dimy (H)/?2, it follows that
m—1
p* > dimy (H) = Z dimy (Vy)? > dimy (V;)%.
i=0

Hence p 1 dim (V;) for 0 < i < m — 1. In this case, u is invertible by Proposition 3.1.
Next, we assume that the field k has positive characteristic p > dimy (H)'/?
o $2(a) =uau!foralla € H;

o dimyg(V;) #0inkfor0 <i<m—1.

.By Remark 3.2, we have



3710 (&) Z WANGETAL.

The following result can be found in [16, Proposition 3.3], so we omit the proof.

Proposition 3.3. The element u satisfies the following properties:

(1) u= xg(A@))S(A@)).

2) A(l)u_IS(A(z)) =1.

(3) Aei) = dimp (V) xi(u™') # 0.

(4) uS(u) = S(wyu = e(A) Yy, etV

(5) S(u™Yyu = uS(u™t), which is the distinguished group-like element gy of H.

Recall that the dual module V} is also a simple H-module for 0 < i < m — 1. This induces a
permutation * on the index set {0,1,---,m — 1} defined by i* = jif V' = V;. The permutation *
satisfies that i** = i, S(e;) = e, dimy (Vix) = dimy(V;) and by [16, Corollary 3.4] that A(e;<) = A(e;)
forO0<i<m-—1.

We denote 7; to be a square root of A(e;) /e (A) for 0 < i < m — 1. Note that 1/e(A)? = A(ep)/e(A)
and 771.2* = Aex)/e(A) = A(e) /e(A) = 77,'2- In view of this, we further assume that
e 19 =1/e(A) and
e Ni=nxfor0<i<m-—1.

We denote

m—1 )
1
vi=u ; dm (V) e;. (3.1)
As we shall see, the element v plays a key role in the representation theory of a certain smash product
Hopf algebra. For the element v, we have the following result:

Proposition 3.4. The element v satisfies the following properties:

(1) e(v) = 1.

(2) $*(a) =vav~! fora € H.

(3) v2 = uS(u™Y), which is the distinguished group-like element gy of H.
(4) v* = 1, where n = 2 dimy (H).

(5) v = Sv).

Proof. (1) Notethat g = 1/e(A). Applying ¢ to both sides of the equality (3.1), we obtain that e (v) =1
(2) Since $%(a) = uau~! and the elements u and v are the same up to the central unit Y 7"

i= 0 dlmk(v,) €
it follows that $?(a) = vav~! for a € H.
(3) Note that u'S(u™!) = E(A) Zl 0 dml}li(lv,ﬂ e; by Proposition 3.3 (4). It follows that
2 m—1
u Ae;
wsh = 3 M
e(A) & dimy (V)

which is the distinguished group-like element gy of H by Proposition 3.3 (5).

(4) Tt can be seen from Part (3) that v* is the distinguished group-like element g of H, while the order
of g divides dimy (H). This implies that v* = (v?)dimx(H) — 1,

(5) Note that S(e;) = ej*, dim (V) = dimy(V;) and n; = n;+ for 0 < i < m — 1. We have

m—1 m=1
v = u( ; dimy (V) el>8(u)< ; dimy (Vi) ) )

m—1 m—1

_ om _
- “S(“)< ; dimy (Vi) e‘) ( ; dimy (Vir) )

1
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m—1 2
_ _m
= uS(u)( Z: dim (V) e,)

m—1

_ us D)
= (u)(e(A) dlm]k(V)Z >

i=

=1,

where the last equality follows from Proposition 3.3 (4). We obtain that v-! = S(v). The proof is
completed. O

4. Representations of smash product Hopf algebras

In this section, we will describe all non-isomorphic irreducible representations of a certain smash
product Hopf algebra. We denote #n := 2 dimy, (H) and assume that the field k has positive characteristic
p > dimy (H)/? and p { n.

Let G be a cyclic group of order n generated by g. The character group GofGisalsoa cyclic group of
order n. Let ¢ be a generator of G.Then G = {¢// | 0 < j < n— 1}, which is the complete set of distinct
irreducible characters of simple kG-modules. The simple kG-module with respect to the character /
is denoted by W; for0<j<n-—1.

Since the antipode S of H satisfies S*" = id by Radford’s formula of S* [14], the Hopf algebra H is a
left kG-module algebra whose action is given by

g — h=_S8%"h)forg' e Gand h € H.

This reduces to a Hopf algebra H#kG mentioned in [15]. More precisely, the Hopf algebra H#KkG is the
smash product of H and kG. The multiplication of H#kG is given by

(a#gi)(b#gj) = a(gi — b)#g”'j = aSZi(b)#gi+j fora,b € H,
the identity of H#kG is 1y#11 . The comultiplication of H#kG is given by
Amsra(h#gh) = (hay#g) ® (h#g).
The counit of H#KkG is ey = en#ekg and the antipode of H#KG is
St (htg)) = (It~ (S #1xg) = ' (hy#g ™.
Moreover, 1#g is a group-like element of H#kG that satisfies
St (g = (Lutg) (h#g) (1r#g) ™. (4.1)

The Hopf algebra H can be considered as a sub-Hopf algebra of H#kG under the injective map H —
H#KG, h+— h#l)g.

Since A is an integral of H with e(A) # Oandp 1 #, A#1 Z”_l g' is an integral of H#kG with
EH#IkG(A# hy g ) = e(A) # 0. Thus, H#¥kGis a semls1mple Hopf algebra over k.

The representatlon theory of crossed product of an algebra with a group algebra has been studied in
[10]. However, we do not take advantage of those notations and methods in [10] to describe H#kG-
modules. Instead, since the Hopf algebra H#kG is semisimple, we will determine all simple H#kG-
modules by the study of the character of the regular representation of H#kG.

Lemma 4.1. If V is a finite dimensional H-module and W is a finite dimensional kG-module, then the
vector space V @ W is a finite dimensional H#kG-module, where the H#kG-module structure on VQ W
is given by

(h#g) - v@w) = (W) @ (g -w) forve Viwe W. (4.2)
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Proof. By Proposition 3.4 (4), we have v"* = 1. It follows that
(h#g") - (v@w) = (" - ) @ (@E"-w) = (h-v) @w = (h#lKg) - (v w).

Hence the H#kG-module structure defined on V ® W is compatible with the equality h#g" = h#1yg.
For a,b € H,by $*(h) = vhv~! for h € H, we may check that

((atg)) (b#g)) - (v @ w) = (a#g') - ((b#g)) - (v ® w)).

Indeed,
((a#g)) (b#gh) - (v ® w) = (aS* (b)#g"™) - (v @ w)
= (@S (byv' - v) ® (g7 - w),
while
(a#g') - (b#g)) - (v @ w)) = (a#g) - (b¥ - v) ® (¢ - w))
— (avi . (bv] . V)) ® (gi . (g] . W))
= (av'bvV - v) ® (7 - w)
= @S*(b)v' - v) ® (g - w).
The proof is completed. 0

Lemma 4.2. If V is a simple H-module and W is a simple kG-module, then V @ W is a simple H#kG-
module.

Proof. Note that H#kG is a semisimple Hopf algebra over an algebraically closed field k. It is sufficient
to show that Endys,g(V ® W) = k. Suppose that themap ¢ : V@ W — V ® W is an H#kG-module
morphism. Since W is one dimensional, we fix a basis w of W. The H#kG-module morphism ¢ induces
an H-module morphism ¢ : V — V as follows: ¢ (v ® w) = ¢o(v) ® w for any v € V. This shows that
¢ is the identity map of V. ® W up to a scalar, since V is simple and ¢y is the identity map of V up to a
scalar. O

Remark 4.3. For simple H-module V; and simple kG-module W, it can be seen from Lemma 4.2 that
Vi ® W; is a simple H#kG-module. Let x;; be the character associated to the simple H#kG-module
Vi ® W;. It follows from (4.2) that

Xij(h ®gk) = X,-(hvk)lpj(gk) for0<i<m-1,0<j<n-—1

Theorem 4.4. The set {V; ® Wil0<i<m-1,0<j<n-— 1} forms a complete set of non-isomorphic
simple H#kG-modules.

Proof. Note that A#1 i) g'is aleft integral of H#lG and A# ZJ’.:OI Y is a right integral of (H#kG)*
satisfying (A# 2}12_01 ij)(A#% Z;:ol g) = L. By (2.2), the characters of left regular representations of
H and H#KkG are respectively given by xg = A < uand xgsxg = (A# Z;’:_ol W) — apsng, where
u=S(A@))Aq) and

1 n—1 ) '
UG = Z Suskc(A)#g) (Aq)#g)
i=0
1 n—1 ) . '
== )t
i=0
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1 n—1 L .
=~ ST (Aa)#Ikg

i=0
1 n—1
=) S %m)#1
. ;O (W#lyg
= u#lg.
It follows that
n—1 ) n—1 ) n—1 )
Xnekg = O ) Y)) — (W) = O — wi Y ¥l = xu# y vl
j=0 j=0 j=0
Hence,
n—1
j n (h)> k=0
(Xatsxc) (h#g") = xr(h) ZO Vigh = { o e kenot.
]:
While
m—1n—1 m—1n—1 .
D0 dimp(Vi @ Wy i(h#gh) = Y Y dimy (Vi) xa(vF) v (g5)
i=0 j=0 i=0 j=0
n—1 )
= xu(hv") Y v (gH
=0
_ |} nxu(h), k=0;
— 1o, 1<k<n-—1
We obtain that
m—1n—1
XH#KG = Z Zdimﬂ((vi ® Wj) xij-
i=0 j=0

Hence, all non-isomorphic simple H#kG-modules are V;® W; for0<i<m—land0<j<n—1. 0O

Remark 4.5. Note that o9 = egs1.g.- Hence Vy ® Wy is the trivial H#kG-module, where V) is the trivial
H-module and Wj, is the trivial kG-module.

For any simple H#lkG-module V; ® Wj, its dual module (V; ® W;)* can be described as follows:

Proposition 4.6. We have (V; ® Wj)* = Ve ® Wi for0 <i<m—1,0<j<n—1, where Vi is the
dual of Vi as an H-module and Wi« is the dual of W; as a kG-module.

Proof. We need to check that x;+j+ = xjjo Spsrg for0 <i <m—1,0 < j < n— 1. Note that S(v) = v~!
and S~2(h) = v_hv for h € H. On the one hand,
Xiejr (#g5) = xir (WYY (€5) = xi(SWFSM)Y (g™ = xivES) ¥ (g75).
On the other hand,
(Xij © Srsncc) (h#8") = xij(Smsnca (h#g5))

= %8 (hy#g ™)

= xi(vES(vFrg ™)

= xi(v S ().

We conclude that y;++ = xjjo Sysrgfor0 <i<m-—-1,0<j<n-—1 O
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5. The Grothendieck algebras of smash product Hopf algebras

In this section, we will investigate a relationship between the Grothendieck algebra of the smash product
Hopf algebra H#kG and that of H. We still assume that the field k has positive characteristic p >
dimy (H)'/? and p { n, where n = 2 dimy (H).

Recall that the Grothendieck algebra (G (H), *) of H is an associative algebra over the field k with
unity ey under the convolution *, where the convolution * on the basis {x; | 0 < i < m — 1} of Gk (H)
is defined by

(xi * x))(h) = (xi ® xj)(A(h)) forh € H.
We define a new multiplication operator » on G (H) by

O * x))(h) = (6 ® xj) (A(h)A(v_l)(v ®v)) for h € H.

Proposition 5.1. The pair (G (H), ) is an associative algebra over the field k with unity ey.

Proof. We first need to prove that x is a multiplication operator on Gy (H). That is, x; x x; € Gy (H) for
0 <1i,j < m— 1.Indeed, for a, b € H, using S*(h) = vhv~! for h € H, we have

(xi * x)(ab) = xi(aqbayv ' 1V xj(axbeyv "' @ v)
= xi(aqy(bv Dy xj(a@ (v Hyv)
= xi(a) (v 'S 1)y xi(ap v S (1) V)
= xilayv ' 1)S*(ba)V) xj(ax)v " 2)S*(ba))v)
= xilayv ' vba) xia@v ' 2)vb@)
= xi(bmamyv Wb ap v 2v)
= (xi * x;)(ba).

It follows from [7] that x; x x; € Gi(H) for 0 < i,j < m — 1. Since themap H — H® H, h
A(h) A(v~1)(v®v) is a coassociative comultiplication in H for which ey is still a counit (see [1, Eq.(12)]),
the operator * dual to the coassociative comultiplication is an associative multiplication on Gy (H) with
unity eg. The associativity and unity g of * on Gy (H) can also be checked directly. Indeed, for a € H,
we have

(i * x) * x0) (@) = ((Xi * %)) ® m)(A(a)A(v—l)(v@v))

= (xi * x)(ayv V) xe(av ' )v)
= Xi(a(l)V_l(I)V)Xj(a(Z)V_l(2)V)Xk(a(3)v_l(3)v)
= xilayv ' V(X * x)(aa v @v)
= (Xi *x (Xj * xx))(@).
Therefore, (xi * xj) * xx = xi* (xj * xx) for 0 < i,jk <m — 1.

(er* xp)(@) = (e ® Xk)<A(a)A(V_1)(V®V)>

=en(aqyv ' yMxk@av ' o)v)
= xk(a).
Hence ey * xx = xx for 0 < k < m — 1. It is similar that y; xeg = yrfor0 <k <m — 1. O

Next, we will use the algebras (Gy(H),*) and (Gy(H),*) to describe the structure of the
Grothendieck algebra (G (H#kG), *) of H#kG. Note that {xo, x1, - » Xm—1} is a k-basis of Gy (H).
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Suppose in (G (H), *) that

n—1
Xi* Xj = Z N,‘I;‘Xk
k=0

and in (G (H), %) that
n—1
Xi* Xj = ZL;}Xk,
k=0

where Ni]; and Lg. are respectively the structure coeflicients of the two algebras with respect to the
basis {x0, X1, ** > Xm—1}. We stress that the coefficient Nf; is the multiplicity of Vi appeared in the
decomposition of tensor product V; ® V; as H-modules, so each Nik is indeed a nonnegative integer.
For the coefficient Lg, we shall see in Remark 5.3 that each LE- is an integer.

Proposition 5.2. We have the following equations in the Grothendieck algebra (G (H#kG), *):

(1) Xij = Xio * X0j = Xoj * Xio for0 <i<m—1,0<j<n-—1

(2) Xio * xjo = Ypmg SINE + L) xwo + X450 3N — L)y for0 <ij < m — 1.

(3) xis * Xjt = Yo SINE + L xistr + Xpmg SONE — L) xin o for 0 < ij < m — 1and
0<s,t<n-—1,wheres—+tand % + s + t are reduced modulo n.

Proof. (1) Itis direct to calculate that

(Xio * X0j)(h#gk) = Xio(h(l)#gk))(o]'(h(z)#gk)
= xi(hay V¥ € xo(ho) v ¥ (€5
= xi(hv")¥ (¢h
= xii(h#gb).
So we have xio * xoj = xij- It is similar that xo; * xi0 = xij-

(2) We show that the values that both sides of the desired equation taking on h#g' are the same. Note
that v? is the distinguished group-like element of H and W1 (g) = —1. For the case | = 2s, we have

m—1 m—1
1 1
> 5 NG+ Lo (h#g™) + D7~ (NG — L) xiy (hg™)
k=0 k=0
m—1 1 m—1 1
= D S WG+ L (™) + 3~ (N — L xe(v™) 9 (¢%)
k=0 k=0
m—1 1 m—1 1
=D SN+ LDX(v™) + )~ (NG — L) xi(hv™)
k=0 k=0
m—1
=Y Njxk(h™) = (i * 1)) (hv™)
k=0

= Xi(ha)vzs)x]‘(h(z)vzs) (since V2

= Xio(h)#g) xjo(h)#g™)
= (xio * xjo) (h#g™).

* is a group-like element)



3716 (&) Z WANGETAL.

For the case | = 2s + 1, we have
-1

S

1
> 5 NG+ L ko (g™ ) + Z (Nf — L) xen (g™ )
k=0
i 1
=D S NG+ L ey + Z S (NG = L x> Ty 2 ()
k=0 k=0
m—1 1 m—1 1
= D S NG+ L™ = 3~ (Nf = L ey
k=0 k=0
m—1
= D Lixk ) = (x>t
k=0
= X,-(h(l)vst) Xj(h<2)v25+1) (since v* is a group-like element)

= xio(hy#g> D xjo (hy #g™ )

= (Xio * xjo) (h#g™t1h).

We obtain the desired equation.
(3) Using Part (1) and Part (2) we may see that Part (3) holds. O

Remark 5.3. It follows from Proposition 5.2 (2) that the tensor product (V; ® Wp) ® (V; ® Wy) has the
following decomposition as H#kG-modules:

m— 1
(Vi ® Wo) ® (V; ® Wo) = EB L (NE+ L5 (Ve ® Wo) EBEB (Nj = L (Vi ® W),

Thus, these coefficients —(Nk + Lk ) and > (Nk ij) are both nonnegative integers. Since all Ng are

nonnegative integers, it follows that all LZ are integers and satisfy —Ni]; < Lg < le In view of this,

the multiplication operator  defined on the Grothendieck algebra Gy, (H) can be defined as well on the
Grothendieck ring Go(H).

The Grothendieck algebra (G (H#kG), *) is an associative unity algebra with a k-basis {;; | 0 <
i<m—1,0<j<n—1}. Denote by
n—1

Zw(g) ltXOtfor0<l<n—l

Note that yo; = ¥! for 0 < t<n-1L Thus, {6; 1 0 < I < n— 1} is the set of all central primitive
idempotents of the algebra kG. Moreover, we have

Xoj % 0 = Y ()"0 and x5 % 01 = xio * Xoj * 01 = (g xio * 6. (5.1)
In particular, each 6 is a central idempotent of (G (H#kG), x). The structure of the Grothendieck
algebra (G (H#kG), *) now can be described as follows:

Theorem 5.4. We have the following algebra isomorphisms:

(1) Iflis even, then (G (H#kG), %) * 0) = (Gi(H), *).
(2) If lis odd, then (G (H#KkG), x) * 0) = (G (H), *).
(3) We have (Gi(H#kG), %) = (Gi.(H), %)®% (G (H), »)®?.

Proof. (1) For the case I being even, we consider the k-linear map
@1 : (G (H),*) = (G(H#KkG),*) % 0], xi+> xio* 0 for 0 <i<m— 1.
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It can be seen from (5.1) that ¢y is bijective, and moreover, Xin * 01 = xio * 6;. Now

m—1
G106 % 1) = (D Nxp) = Z Njsxko * 01
k=0 k=0
m— 11 m— 1
=D NG+ Lk 01+ Z (Nj — L) xro * 01
k=0 k=0
m— 11
= E(Nk'f‘Lk)Xko*@l‘l'Z (Nf — L) Xgz % 01

T
[=}

= (Xio * Xjo) * 0
= (Xio * 1) * (xjo * 6))
= d1(xi) * P1(xj)-

This shows that ¢; is an algebra isomorphism.
(2) For the case I being odd, we consider the k-linear map

¢1: (Gr(H), %) = (Gr(H#KG), %) % 0;, xi — xio* 6] for 0 <i<m— 1.

It can be seen from (5.1) that ¢y is bijective, and moreover, Xis * 0; = — xio * 6;. Now
m—1
$1xi* x) = 41 L]Xk) = Z L]Xko * 0
k=0 k=0
m—1 m— 1
1
=D S NG+ L) ko %61 - Z (N — L) Xko * 6]
k=0 k=0
m—1 1
=D S Nj+ L xeo * 01+ Z SN — L) xew * 61

~
Il
o

= (Xio * Xjo) * 0y
= (Xio * 01) * (xjo * 01
= d1(xi) * d1(xj)-

Thus, ¢; is an algebra isomorphism.

(3) Let (G (H), *)63% be the direct sum of 5-folds of (Gi(H), *) and (G]k(H),*)@g the direct sum
of 5-folds of (G (H),*). Since 6p + 61 + - - - + 6,1 = 1, where 1 is the unity xoo of (G (H#kG), *),
using Part (1) and Part (2) we obtain the following algebra isomorphism:

(Gu(H#KG), ) = (Gk(H), )®? (P (Gr(H), %) 2.

The proof is completed. O
Remark 5.5. If > = id, then u = &(A) and A(e;)/e(A) = (dimy(V;)/e(A))? by Proposition 3.3 (3).
Now n;, as a square root of A(e;)/e(A), may be chosen to be dimy (V;)/e(A). It follows that

m—1 )

1
v ; dimy (V)

In this case, The multiplication operator * considered above is nothing but the convolution * and the
algebra (G (H), %) is nothing but the Grothendieck algebra (G (H), *). Moreover,

(G(H#KG), %) = (Gi(H), »)®2 @D (Gi(H), %P7 = (Gi(H), »)®".
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Let C be the k-linear subcategory of Rep(H#kG) spanned by objects
{Vio Wo, Vi@ Wa |0 <i<m—1}.

Then C is closed under taking dual by Proposition 4.6. It follows from Proposition 5.2 that C is also
closed under the tensor product of objects. More explicitly,

Vieg W) @ (V;® Wi) = (Vi® Wo) ® (V; @ W)

E

E@%(Nﬁ;—i—Lk (Vk®Wo)@@ ( (Vk®W")

k=0

and

(Vi@ Wo) ® (V;®@ Wx) = (Vi®@ Wi) ® (V; ® W)

~

D1
SN

1
(N} + L) (W@W@@EB (N — L\ (Vi ® Wo).

0

Hence C is a fusion subcategory of Rep(H#kG). Let (G (C), *) be the Grothendieck algebra of C. Then

{xi0, Xi2 | 0 <i < m — 1} forms a k-basis of (G (C), *).

o~
Il

Proposition 5.6. We have the following algebra isomorphism:

(Gk(C), %) = (G (H), %) @(Gk(H),*)-
Proof. Wedenote6 = %(XOO +X0g)- Thenl1—0 = %(Xoo — Xog)) where 1 is the unity xoo of (G (C), *).
Note that § and 1 — 6 are both central idempotents of (G (C), *). In particular,
Xiz *0 = Xi0 * X0 *0 = ypo*x0for0<i<m-—1.
Consider the k-linear map
¢ : (Gr(H), %) = (G (C),*) 60, xit> xiox60 for 0 <i<m—1.

It is easy to see that ¢ is bijective and

m—1 m—1
¢ (i x x) = (Y Nixw) = ZN!;Xko %0
k=0
m— 11
=2 SN+ Lo 6 + Z S (N} — L) ko * 0
k=0
m—l1 — 1
= E(Ng}—i—Lg)Xko*@-i- Z E(N{;—Lg))(k% * 0
k=0 k=0

= (Xio * Xjo) * 0
= (xio * 6) * (xjo * 0)
= ¢ (x:) * ¢ (X))
This shows that ¢ is an algebra isomorphism. Consider the k-linear map

¢ (Gr(H), %) = (GK(©C), %) * (1 —0), xi+> xiox(1—0) for 0 <i<m—1.
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Then g is bijective. Using Xin * (1 —0) = —xio * (1 — 6) we may see that

m—1 m—1
oOti* 1) = () LExi) =Y Lixko * (1 —0)

k=0 k=0
m—1 1 m—1 1
=2 SN+ L Xk (1= 0) = 3 ~(Njj = Li xeo * (1= 0)
k=0 k=0
m—1 1 m—1 1
= > SN+ Lo * (1= 0) + D > (Nj = L xig * (1= 6)
k=0 k=0

= (Xio * xjo) * (L — 6)
= (Xio * (1 = 0)) * (xjo * (1 — 0))
= o(xi) * ¢(X))

Hence, ¢ is an algebra isomorphism. O

Note that0 =60y + 602+ 604+ ---+6,2and1 —0 =60, + 603 + 605 + - -- + 0,_1. By Theorem 5.4
and Proposition 5.6, we have the following corollary:

Corollary 5.7. We have algebra isomorphism:
(Gi(H#KG), ) = (Gi(0), 9?2

Finally, we give some remarks on the pivotal (spherical) structures of the fusion categories

Rep(H#kG) and C. Since S%J 41 is an inner automorphism of H#kG and
Sherc(h#g) = (ln#g) (kg (arg) ™,

where 1#g is a group-like element of H#kG, the category Rep(H#kG) is a pivotal fusion category, where
the pivotal structure T on Rep(H#KkG) is the isomorphism of monoidal functors tygw : V® W —
(V® W)** natural in V ® W. Here tygw (v ® w) is defined by

vew(V @ W)(f) = f(lu#g - v W) =f(V- vQ g - w)

forve V,we Wandf € (V® W)*
The quantum dimension of V ® W € Rep(H#kG) with respect to the pivotal structure t is denoted
by dim(V ® W), which is the following composition

CoeV(Ve W) Tvew Qi Vvew)*
_ —_—

VoW e Ve W L VR WYF R (Ve W)t e

where 1 is the trivial H#kG-module Vy ® Wy. From this composition, we have
dim(V @ W) = xv(v) xw(g)-
Especially,
dim(Vi ® W) = ximM¥/(g) = e(M)n:y(g)-
For the dual module (V; ® W))* = Vix ® Wj+, we have
dim(Vir @ Wy) = e(M)me /(€71 = e(Mmip/ (g7 1),

Therefore, dim(Vjx ® Wj+) = dim(V;® W)) ifand only if ¥//(g) = v/(g™"),ifand onlyifj =0 orj = %.
This means that with respect to the pivotal structure 7, the fusion category Rep(H#kG) is pivotal but
not spherical, while the fusion subcategory C of Rep(H#kG) spanned by objects {V; ® Wy, V; @ W1 |
0 < i < m — 1} is both pivotal and spherical.
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