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ABSTRACT
Let H be a semisimple Hopf algebra over an algebraically closed field k of
positive characteristic p. Under the conditions that p > dimk(H)1/2 and
p � 2 dimk(H), we determine all non-isomorphic irreducible representations of
the smash product semisimple Hopf algebra H#kG, where G is a cyclic group
of order n := 2 dimk(H). We endow the Grothendieck algebra (Gk(H), ∗)
of H with a new multiplication � and show that the Grothendieck algebra
(Gk(H#kG), ∗) of H#kG is isomorphic to (Gk(H), ∗)⊕ n

2
⊕

(Gk(H), �)⊕ n
2 as alge-

bras. This reveals a relationship between the Grothendieck algebra of H#kG
and that of H.
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1. Introduction

The Grothendieck rings of finite dimensional semisimple or cosemisimple Hopf algebras have been
studied by Nichols and Richmond [11], Nikshych [12], Kashina [5], Chen, Yang and Wang [2, 17],
etc. For a finite dimensional semisimple Hopf algebra H, the category Rep(H) of finite dimensional
representations of H is a fusion category and the Grothendieck ring G0(H) of H can be used to study the
fusion category Rep(H). For instance, the knowledge of the structure of the Grothendieck ring G0(H)

allows to determine all fusion subcategories of Rep(H), which correspond to the so-called based subrings
of G0(H). Also, the Grothendieck ring G0(H) reveals the decompositions of the tensor products of
irreducible representations into a direct sum of irreducible representations.

For a semisimple Hopf algebra H with antipode S over a field k, it is known that S2 is an inner
automorphism of H (see [7]). Here an inner automorphism is understood to be the conjugation by an
invertible element of H. If the ground field k has positive characteristic p, whether or not S2 can be
given by conjugation with a group-like element is not completely solved (this problem is closely related
to the Kaplansky’s fifth conjecture). However, such a Hopf algebra H can be embedded into another finite
dimensional Hopf algebra H#kG, namely, the smash product of H and a group algebra kG, in which the
square of the antipode is the conjugation with a group-like element. We refer to [6, 8, 15] for such Hopf
algebras and related researches.

If H is a semisimple involutory Hopf algebra, namely, a semisimple Hopf algebra with S2 = id, the
smash product Hopf algebra H#kG considered here is nothing but the usual tensor product Hopf algebra
H ⊗ kG. In this case, the representations of H ⊗ kG can be stemmed directly from the representations
of H and those of kG. Also, the Grothendieck algebra of H ⊗ kG is the usual tensor product of
the Grothendieck algebra of H and that of kG. However, if H is not necessarily involutory (although
the Kaplansky’s fifth conjecture states that a semisimple Hopf algebra is necessarily involutory), the
relationship between the Grothendieck algebra of H#kG and that of H is not clear.

CONTACT Zhihua Wang mailzhihua@126.com Department of Mathematics, Taizhou University, Taizhou 225300, China.
© 2025 Taylor & Francis Group, LLC

https://doi.org/10.1080/00927872.2025.2466684
https://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2025.2466684&domain=pdf&date_stamp=2025-05-28
mailto:mailzhihua@126.com


3708 Z. WANG ET AL.

The purpose of this paper is to study representations of the smash product semisimple Hopf algebra
H#kG and to establish a relationship between the Grothendieck algebra of H#kG and that of H,
where H is a semisimple Hopf algebra over an algebraically closed field k of positive characteristic
p > dimk(H)1/2 with p � 2 dimk(H) and G is a cyclic group of order 2 dimk(H). It is worthy mentioning
that such a Hopf algebra H is not known to be involutory unless the characteristic p is larger than a certain
number (see [3, 15]).

The paper is organized as follows: In Section 2, we give some basic results on semisimple Hopf
algebras. In Section 3, we describe some properties of certain elements u and v, where the two are
the same up to a central element. In Section 4, using the element v we determine all non-isomorphic
irreducible representations of H#kG by virtue of those irreducible representations of H and those of
kG. We also describe the dual of these irreducible representations of H#kG. In Section 5, to investigate
the Grothendieck algebra of H#kG, we endow the Grothendieck algebra Gk(H) of H with a new
multiplication � so as to obtain a new algebra (Gk(H), �). This algebra (Gk(H), �) is nothing but the
usual Grothendieck algebra (Gk(H), ∗) if H is involutory. We show that the Grothendieck algebra
(Gk(H#kG), ∗) of H#kG has the direct sum decomposition

(Gk(H#kG), ∗) ∼= (Gk(H), ∗)⊕
n
2
⊕

(Gk(H), �)⊕
n
2 ,

where n = 2 dimk(H). This reveals a relationship between the Grothendieck algebra of H#kG and that
of H. Moreover, we find a fusion subcategory C of Rep(H#kG) with its Grothendieck algebra (Gk(C), ∗)

being

(Gk(C), ∗) ∼= (Gk(H), ∗)
⊕

(Gk(H), �).

In view of this, the Grothendieck algebra (Gk(H#kG), ∗) is isomorphic to the direct sum (Gk(C), ∗)⊕ n
2 .

2. Preliminaries

Throughout this paper, H is a finite dimensional semisimple Hopf algebra over an algebraically closed
field k of positive characteristic p, with counit ε, comultiplication � and antipode S. We will use the
Sweedler notation �(a) = a(1) ⊗ a(2) for a ∈ H. We denote by � and λ the left and right integrals of H
and H∗ respectively so that λ(�) = 1. Since the semisimple Hopf algebra H is unimodular, the left and
right integrals of H are the same. We refer to [9] for basic theory of Hopf algebras.

We denote {Vi | 0 ≤ i ≤ m − 1} the set of all simple left H-modules up to isomorphism and
{ei | 0 ≤ i ≤ m − 1} the set of all central primitive idempotents of H. Note that V0 is the trivial H-
module k and e0 is the idempotent �/ε(�). The character of any simple H-module Vi is denoted by
χi for 0 ≤ i ≤ m − 1 and the character of the left regular module H is denoted by χH . Obviously,
χH = ∑m−1

i=0 dimk(Vi)χi.
Recall that S2(a) = uau−1 for a ∈ H and a certain unit u ∈ H. For any simple H-module Vi and any

ϕ ∈ Endk(Vi), we define the map I(ϕ) ∈ Endk(Vi) by
I(ϕ)(v) = �(1)ϕ(u−1S(�(2))v) for v ∈ Vi.

Since I(ϕ) lies in EndH(Vi) ∼= k, there exists a unique element ci ∈ k such that
I(ϕ) = citr(ϕ)idVi for all ϕ ∈ Endk(Vi).

Such an element ci, depending only on the isomorphism class of Vi, is called the Schur element associated
to Vi (see [4, Theorem 7.2.1]). Since H is semisimple, it follows from [4, Theorem 7.2.6] that the Schur
element ci �= 0 in k.

We denote u := S(�(2))�(1). The relationship between u and the unit u can be found in [16,
Proposition 3.1]:

u = u
m−1∑
i=0

dimk(Vi)ciei. (2.1)
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For any map ϕ ∈ Endk(H), the trace of ϕ is tr(ϕ) = λ(ϕ(S(�(2)))�(1)) (see [13, Theorem 2]). Taking
into account that ϕ = La, where La is the left multiplication operator of H by a, we have

χH(a) = tr(La) = λ(aS(�(2))�(1)) = λ(au) = (u ⇀ λ)(a).

Note that the right integral λ of H∗ satisfies λ(ab) = λ(S2(b)a) for all a, b ∈ H (see [13, Theorem 3(a)])
and S2(u) = u. Then

χH(a) = λ(au) = λ(S2(u)a) = λ(ua) = (λ ↼ u)(a).

Thus, we have

χH = u ⇀ λ = λ ↼ u. (2.2)

3. Some properties of the elements u and v

In this section we will describe some properties of the element u = S(�(2))�(1) and a certain element v,
where the element v will be used in the forthcoming section to study representations of a certain smash
product Hopf algebra. The following proposition gives some equivalent conditions for u being invertible:

Proposition 3.1. Let H be a finite dimensional semisimple Hopf algebra over the field k of positive
characteristic p. The following statements are equivalent:

(1) The element u is invertible.
(2) For any simple H-module Vi, p � dimk(Vi).
(3) The regular character χH of H is non-degenerate in the sense that if χH(ab) = 0 for all a ∈ H, then

b = 0.

Proof. (1) ⇔ (2). It follows from (2.1) that Part (1) and Part (2) are equivalent.
(1) ⇒ (3). Since λ is non-degenerate and u is invertible, it follows from (2.2) that χH is non-

degenerate.
(3) ⇒ (2). It follows from χH = ∑m−1

i=0 dimk(Vi)χi that the non-degeneracy of χH implies that
p � dimk(Vi) for any simple H-module Vi.

Remark 3.2. (1) Recall that the (left) annihilator of u in H is the set ann(u) := {b ∈ H | bu = 0}. Using
the non-degeneracy of λ we may see from (2.2) that the set ann(u) coincides with the radical of χH
defined by χ⊥

H := {b ∈ H | χH(ab) = 0 for all a ∈ H}.
(2) If S2 = id, then

u = S(�(2))�(1) = S(�(2))S2(�(1)) = S(S(�(1))�(2)) = ε(�) �= 0.

Namely, u is a nonzero scalar. Conversely, if u is a nonzero scalar, then u is central by (2.1). It follows
from S2(a) = uau−1 that S2 = id.

(3) If u is invertible, then u and u are the same up to the central invertible element
∑m−1

i=0 dimk(Vi)ciei
by (2.1). Hence, S2(a) = uau−1 implies that S2(a) = uau−1 for all a ∈ H.

(4) If the characteristic p > dimk(H)1/2, it follows that

p2 > dimk(H) =
m−1∑
i=0

dimk(Vi)
2 ≥ dimk(Vi)

2.

Hence p � dimk(Vi) for 0 ≤ i ≤ m − 1. In this case, u is invertible by Proposition 3.1.

Next, we assume that the fieldk has positive characteristic p > dimk(H)1/2. By Remark 3.2, we have
• S2(a) = uau−1 for all a ∈ H;
• dimk(Vi) �= 0 in k for 0 ≤ i ≤ m − 1.
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The following result can be found in [16, Proposition 3.3], so we omit the proof.

Proposition 3.3. The element u satisfies the following properties:

(1) u = χH(�(1))S(�(2)).
(2) �(1)u−1S(�(2)) = 1.
(3) λ(ei) = dimk(Vi)χi(u−1) �= 0.
(4) uS(u) = S(u)u = ε(�)

∑m−1
i=0

dimk(Vi)2

λ(ei)
ei.

(5) S(u−1)u = uS(u−1), which is the distinguished group-like element g0 of H.

Recall that the dual module V∗
i is also a simple H-module for 0 ≤ i ≤ m − 1. This induces a

permutation ∗ on the index set {0, 1, · · · , m − 1} defined by i∗ = j if V∗
i

∼= Vj. The permutation ∗
satisfies that i∗∗ = i, S(ei) = ei∗ , dimk(Vi∗) = dimk(Vi) and by [16, Corollary 3.4] that λ(ei∗) = λ(ei)
for 0 ≤ i ≤ m − 1.

We denote ηi to be a square root of λ(ei)/ε(�) for 0 ≤ i ≤ m − 1. Note that 1/ε(�)2 = λ(e0)/ε(�)

and η2
i∗ = λ(ei∗)/ε(�) = λ(ei)/ε(�) = η2

i . In view of this, we further assume that
• η0 = 1/ε(�) and
• ηi = ηi∗ for 0 ≤ i ≤ m − 1.

We denote

v := u
m−1∑
i=0

ηi
dimk(Vi)

ei. (3.1)

As we shall see, the element v plays a key role in the representation theory of a certain smash product
Hopf algebra. For the element v, we have the following result:

Proposition 3.4. The element v satisfies the following properties:

(1) ε(v) = 1.
(2) S2(a) = vav−1 for a ∈ H.
(3) v2 = uS(u−1), which is the distinguished group-like element g0 of H.
(4) vn = 1, where n = 2 dimk(H).
(5) v−1 = S(v).

Proof. (1) Note that η0 = 1/ε(�). Applying ε to both sides of the equality (3.1), we obtain that ε(v) = 1.
(2) Since S2(a) = uau−1 and the elements u and v are the same up to the central unit

∑m−1
i=0

ηi
dimk(Vi)

ei,
it follows that S2(a) = vav−1 for a ∈ H.

(3) Note that u−1S(u−1) = 1
ε(�)

∑m−1
i=0

λ(ei)
dimk(Vi)2 ei by Proposition 3.3 (4). It follows that

uS(u−1) = u2

ε(�)

m−1∑
i=0

λ(ei)

dimk(Vi)2 ei = v2,

which is the distinguished group-like element g0 of H by Proposition 3.3 (5).
(4) It can be seen from Part (3) that v2 is the distinguished group-like element g0 of H, while the order

of g0 divides dimk(H). This implies that vn = (v2)dimk(H) = 1.
(5) Note that S(ei) = ei∗ , dimk(Vi∗) = dimk(Vi) and ηi = ηi∗ for 0 ≤ i ≤ m − 1. We have

vS(v) = u
( m−1∑

i=0

ηi
dimk(Vi)

ei

)
S(u)

( m−1∑
i=0

ηi
dimk(Vi)

ei∗
)

= uS(u)

( m−1∑
i=0

ηi
dimk(Vi)

ei

)( m−1∑
i=0

ηi∗

dimk(Vi∗)
ei∗

)
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= uS(u)

( m−1∑
i=0

ηi
dimk(Vi)

ei

)2

= uS(u)

(
1

ε(�)

m−1∑
i=0

λ(ei)

dimk(Vi)2 ei

)

= 1,

where the last equality follows from Proposition 3.3 (4). We obtain that v−1 = S(v). The proof is
completed.

4. Representations of smash product Hopf algebras

In this section, we will describe all non-isomorphic irreducible representations of a certain smash
product Hopf algebra. We denote n := 2 dimk(H) and assume that the field k has positive characteristic
p > dimk(H)1/2 and p � n.

Let G be a cyclic group of order n generated by g. The character group Ĝ of G is also a cyclic group of
order n. Let ψ be a generator of Ĝ. Then Ĝ = {ψ j | 0 ≤ j ≤ n − 1}, which is the complete set of distinct
irreducible characters of simple kG-modules. The simple kG-module with respect to the character ψ j

is denoted by Wj for 0 ≤ j ≤ n − 1.
Since the antipode S of H satisfies S2n = id by Radford’s formula of S4 [14], the Hopf algebra H is a

left kG-module algebra whose action is given by

gi → h = S2i(h) for gi ∈ G and h ∈ H.

This reduces to a Hopf algebra H#kG mentioned in [15]. More precisely, the Hopf algebra H#kG is the
smash product of H and kG. The multiplication of H#kG is given by

(a#gi)(b#gj) = a(gi → b)#gi+j = aS2i(b)#gi+j for a, b ∈ H,

the identity of H#kG is 1H#1kG. The comultiplication of H#kG is given by

�H#kG(h#gi) = (h(1)#gi) ⊗ (h(2)#gi).

The counit of H#kG is εH#kG = εH#εkG and the antipode of H#kG is

SH#kG(h#gi) = (1H#g−i)(S(h)#1kG) = S1−2i(h)#g−i.

Moreover, 1H#g is a group-like element of H#kG that satisfies

S2
H#kG(h#gi) = (1H#g)(h#gi)(1H#g)−1. (4.1)

The Hopf algebra H can be considered as a sub-Hopf algebra of H#kG under the injective map H →
H#kG, h �→ h#1kG.

Since � is an integral of H with ε(�) �= 0 and p � n, �# 1
n

∑n−1
i=0 gi is an integral of H#kG with

εH#kG(�# 1
n

∑n−1
i=0 gi) = ε(�) �= 0. Thus, H#kG is a semisimple Hopf algebra over k.

The representation theory of crossed product of an algebra with a group algebra has been studied in
[10]. However, we do not take advantage of those notations and methods in [10] to describe H#kG-
modules. Instead, since the Hopf algebra H#kG is semisimple, we will determine all simple H#kG-
modules by the study of the character of the regular representation of H#kG.

Lemma 4.1. If V is a finite dimensional H-module and W is a finite dimensional kG-module, then the
vector space V ⊗ W is a finite dimensional H#kG-module, where the H#kG-module structure on V ⊗ W
is given by

(h#gk) · (v ⊗ w) = (hvk · v) ⊗ (gk · w) for v ∈ V , w ∈ W. (4.2)
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Proof. By Proposition 3.4 (4), we have vn = 1. It follows that

(h#gn) · (v ⊗ w) = (hvn · v) ⊗ (gn · w) = (h · v) ⊗ w = (h#1kG) · (v ⊗ w).

Hence the H#kG-module structure defined on V ⊗ W is compatible with the equality h#gn = h#1kG.
For a, b ∈ H, by S2(h) = vhv−1 for h ∈ H, we may check that

((a#gi)(b#gj)) · (v ⊗ w) = (a#gi) · ((b#gj) · (v ⊗ w)).

Indeed,

((a#gi)(b#gj)) · (v ⊗ w) = (aS2i(b)#gi+j) · (v ⊗ w)

= (aS2i(b)vi+j · v) ⊗ (gi+j · w),

while

(a#gi) · ((b#gj) · (v ⊗ w)) = (a#gi) · ((bvj · v) ⊗ (gj · w))

= (avi · (bvj · v)) ⊗ (gi · (gj · w))

= (avibvj · v) ⊗ (gi+j · w)

= (aS2i(b)vi+j · v) ⊗ (gi+j · w).

The proof is completed.

Lemma 4.2. If V is a simple H-module and W is a simple kG-module, then V ⊗ W is a simple H#kG-
module.

Proof. Note that H#kG is a semisimple Hopf algebra over an algebraically closed field k. It is sufficient
to show that EndH#kG(V ⊗ W) ∼= k. Suppose that the map φ : V ⊗ W → V ⊗ W is an H#kG-module
morphism. Since W is one dimensional, we fix a basis w of W. The H#kG-module morphism φ induces
an H-module morphism φ0 : V → V as follows: φ(v ⊗ w) = φ0(v) ⊗ w for any v ∈ V . This shows that
φ is the identity map of V ⊗ W up to a scalar, since V is simple and φ0 is the identity map of V up to a
scalar.

Remark 4.3. For simple H-module Vi and simple kG-module Wj, it can be seen from Lemma 4.2 that
Vi ⊗ Wj is a simple H#kG-module. Let χij be the character associated to the simple H#kG-module
Vi ⊗ Wj. It follows from (4.2) that

χij(h ⊗ gk) = χi(hvk)ψ j(gk) for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1.

Theorem 4.4. The set {Vi ⊗ Wj | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} forms a complete set of non-isomorphic
simple H#kG-modules.

Proof. Note that �# 1
n

∑n−1
i=0 gi is a left integral of H#kG and λ#

∑n−1
j=0 ψ j is a right integral of (H#kG)∗

satisfying (λ#
∑n−1

j=0 ψ j)(�# 1
n

∑n−1
i=0 gi) = 1. By (2.2), the characters of left regular representations of

H and H#kG are respectively given by χH = λ ↼ u and χH#kG = (λ#
∑n−1

j=0 ψ j) ↼ uH#kG, where
u = S(�(2))�(1) and

uH#kG = 1
n

n−1∑
i=0

SH#kG(�(2)#gi)(�(1)#gi)

= 1
n

n−1∑
i=0

(S1−2i(�(2))#g−i)(�(1)#gi)
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= 1
n

n−1∑
i=0

S1−2i(�(2))S−2i(�(1))#1kG

= 1
n

n−1∑
i=0

S−2i(u)#1kG

= u#1kG.
It follows that

χH#kG = (λ#
n−1∑
j=0

ψ j) ↼ (u#1kG) = (λ ↼ u)#
n−1∑
j=0

ψ j = χH#
n−1∑
j=0

ψ j.

Hence,

(χH#kG)(h#gk) = χH(h)

n−1∑
j=0

ψ j(gk) =
{

nχH(h), k = 0;
0, 1 ≤ k ≤ n − 1.

While
m−1∑
i=0

n−1∑
j=0

dimk(Vi ⊗ Wj)χij(h#gk) =
m−1∑
i=0

n−1∑
j=0

dimk(Vi)χi(hvk)ψ j(gk)

= χH(hvk)
n−1∑
j=0

ψ j(gk)

=
{

nχH(h), k = 0;
0, 1 ≤ k ≤ n − 1.

We obtain that

χH#kG =
m−1∑
i=0

n−1∑
j=0

dimk(Vi ⊗ Wj)χij.

Hence, all non-isomorphic simple H#kG-modules are Vi ⊗Wj for 0 ≤ i ≤ m−1 and 0 ≤ j ≤ n−1.

Remark 4.5. Note that χ00 = εH#kG. Hence V0 ⊗W0 is the trivial H#kG-module, where V0 is the trivial
H-module and W0 is the trivial kG-module.

For any simple H#kG-module Vi ⊗ Wj, its dual module (Vi ⊗ Wj)∗ can be described as follows:

Proposition 4.6. We have (Vi ⊗ Wj)∗ ∼= Vi∗ ⊗ Wj∗ for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, where Vi∗ is the
dual of Vi as an H-module and Wj∗ is the dual of Wj as a kG-module.

Proof. We need to check that χi∗j∗ = χij ◦SH#kG for 0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1. Note that S(v) = v−1

and S−2(h) = v−1hv for h ∈ H. On the one hand,
χi∗j∗(h#gk) = χi∗(hvk)ψ j∗(gk) = χi(S(v)kS(h))ψ j(g−k) = χi(v−kS(h))ψ j(g−k).

On the other hand,
(χij ◦ SH#kG)(h#gk) = χij(SH#kG(h#gk))

= χij(S1−2k(h)#g−k)

= χij(v−kS(h)vk#g−k)

= χi(v−kS(h))ψ j(g−k).
We conclude that χi∗j∗ = χij ◦ SH#kG for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1.
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5. The Grothendieck algebras of smash product Hopf algebras

In this section, we will investigate a relationship between the Grothendieck algebra of the smash product
Hopf algebra H#kG and that of H. We still assume that the field k has positive characteristic p >

dimk(H)1/2 and p � n, where n = 2 dimk(H).
Recall that the Grothendieck algebra (Gk(H), ∗) of H is an associative algebra over the field k with

unity εH under the convolution ∗, where the convolution ∗ on the basis {χi | 0 ≤ i ≤ m − 1} of Gk(H)

is defined by
(χi ∗ χj)(h) = (χi ⊗ χj)(�(h)) for h ∈ H.

We define a new multiplication operator � on Gk(H) by

(χi � χj)(h) = (χi ⊗ χj)

(
�(h)�(v−1)(v ⊗ v)

)
for h ∈ H.

Proposition 5.1. The pair (Gk(H), �) is an associative algebra over the field k with unity εH.

Proof. We first need to prove that � is a multiplication operator on Gk(H). That is, χi � χj ∈ Gk(H) for
0 ≤ i, j ≤ m − 1. Indeed, for a, b ∈ H, using S2(h) = vhv−1 for h ∈ H, we have

(χi � χj)(ab) = χi(a(1)b(1)v−1
(1)v)χj(a(2)b(2)v−1

(2)v)

= χi(a(1)(bv−1)(1)v)χj(a(2)(bv−1)(2)v)

= χi(a(1)(v−1S2(b))(1)v)χj(a(2)(v−1S2(b))(2)v)

= χi(a(1)v−1
(1)S2(b(1))v)χj(a(2)v−1

(2)S2(b(2))v)

= χi(a(1)v−1
(1)vb(1))χj(a(2)v−1

(2)vb(2))

= χi(b(1)a(1)v−1
(1)v)χj(b(2)a(2)v−1

(2)v)

= (χi � χj)(ba).
It follows from [7] that χi � χj ∈ Gk(H) for 0 ≤ i, j ≤ m − 1. Since the map H → H ⊗ H, h �→
�(h)�(v−1)(v⊗v) is a coassociative comultiplication in H for which εH is still a counit (see [1, Eq.(12)]),
the operator � dual to the coassociative comultiplication is an associative multiplication on Gk(H) with
unity εH . The associativity and unity εH of � on Gk(H) can also be checked directly. Indeed, for a ∈ H,
we have

((χi � χj) � χk)(a) = ((χi � χj) ⊗ χk)

(
�(a)�(v−1)(v ⊗ v)

)
= (χi � χj)(a(1)v−1

(1)v)χk(a(2)v−1
(2)v)

= χi(a(1)v−1
(1)v)χj(a(2)v−1

(2)v)χk(a(3)v−1
(3)v)

= χi(a(1)v−1
(1)v)(χj � χk)(a(2)v−1

(2)v)

= (χi � (χj � χk))(a).
Therefore, (χi � χj) � χk = χi � (χj � χk) for 0 ≤ i, j, k ≤ m − 1.

(εH � χk)(a) = (εH ⊗ χk)

(
�(a)�(v−1)(v ⊗ v)

)
= εH(a(1)v−1

(1)v)χk(a(2)v−1
(2)v)

= χk(a).
Hence εH � χk = χk for 0 ≤ k ≤ m − 1. It is similar that χk � εH = χk for 0 ≤ k ≤ m − 1.

Next, we will use the algebras (Gk(H), ∗) and (Gk(H), �) to describe the structure of the
Grothendieck algebra (Gk(H#kG), ∗) of H#kG. Note that {χ0, χ1, · · · , χm−1} is a k-basis of Gk(H).
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Suppose in (Gk(H), ∗) that

χi ∗ χj =
n−1∑
k=0

Nk
ijχk

and in (Gk(H), �) that

χi � χj =
n−1∑
k=0

Lk
ijχk,

where Nk
ij and Lk

ij are respectively the structure coefficients of the two algebras with respect to the
basis {χ0, χ1, · · · , χm−1}. We stress that the coefficient Nk

ij is the multiplicity of Vk appeared in the
decomposition of tensor product Vi ⊗ Vj as H-modules, so each Nk

ij is indeed a nonnegative integer.
For the coefficient Lk

ij, we shall see in Remark 5.3 that each Lk
ij is an integer.

Proposition 5.2. We have the following equations in the Grothendieck algebra (Gk(H#kG), ∗):

(1) χij = χi0 ∗ χ0j = χ0j ∗ χi0 for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1.
(2) χi0 ∗ χj0 = ∑m−1

k=0
1
2 (Nk

ij + Lk
ij)χk0 + ∑m−1

k=0
1
2 (Nk

ij − Lk
ij)χk n

2
for 0 ≤ i, j ≤ m − 1.

(3) χis ∗ χjt = ∑m−1
k=0

1
2 (Nk

ij + Lk
ij)χk,s+t + ∑m−1

k=0
1
2 (Nk

ij − Lk
ij)χk, n

2 +s+t for 0 ≤ i, j ≤ m − 1 and
0 ≤ s, t ≤ n − 1, where s + t and n

2 + s + t are reduced modulo n.

Proof. (1) It is direct to calculate that

(χi0 ∗ χ0j)(h#gk) = χi0(h(1)#gk)χ0j(h(2)#gk)

= χi(h(1)vk)ψ0(gk)χ0(h(2)vk)ψ j(gk)

= χi(hvk)ψ j(gk)

= χij(h#gk).

So we have χi0 ∗ χ0j = χij. It is similar that χ0j ∗ χi0 = χij.
(2) We show that the values that both sides of the desired equation taking on h#gl are the same. Note

that v2 is the distinguished group-like element of H and ψ
n
2 (g) = −1. For the case l = 2s, we have

m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0(h#g2s) +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk n

2
(h#g2s)

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk(hv2s) +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk(hv2s)ψ

n
2 (g2s)

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk(hv2s) +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk(hv2s)

=
m−1∑
k=0

Nk
ijχk(hv2s) = (χi ∗ χj)(hv2s)

= χi(h(1)v2s)χj(h(2)v2s) (since v2s is a group-like element)
= χi0(h(1)#g2s)χj0(h(2)#g2s)

= (χi0 ∗ χj0)(h#g2s).
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For the case l = 2s + 1, we have
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0(h#g2s+1) +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk n

2
(h#g2s+1)

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk(hv2s+1) +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk(hv2s+1)ψ

n
2 (g2s+1)

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk(hv2s+1) −

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk(hv2s+1)

=
m−1∑
k=0

Lk
ijχk(hv2s+1) = (χi � χj)(hv2s+1)

= χi(h(1)v2s+1)χj(h(2)v2s+1) (since v2s is a group-like element)
= χi0(h(1)#g2s+1)χj0(h(2)#g2s+1)

= (χi0 ∗ χj0)(h#g2s+1).
We obtain the desired equation.

(3) Using Part (1) and Part (2) we may see that Part (3) holds.

Remark 5.3. It follows from Proposition 5.2 (2) that the tensor product (Vi ⊗ W0)⊗ (Vj ⊗ W0) has the
following decomposition as H#kG-modules:

(Vi ⊗ W0) ⊗ (Vj ⊗ W0) ∼=
m−1⊕
k=0

1
2
(Nk

ij + Lk
ij)(Vk ⊗ W0)

⊕ m−1⊕
k=0

1
2
(Nk

ij − Lk
ij)(Vk ⊗ W n

2
).

Thus, these coefficients 1
2 (Nk

ij + Lk
ij) and 1

2 (Nk
ij − Lk

ij) are both nonnegative integers. Since all Nk
ij are

nonnegative integers, it follows that all Lk
ij are integers and satisfy −Nk

ij ≤ Lk
ij ≤ Nk

ij . In view of this,
the multiplication operator � defined on the Grothendieck algebra Gk(H) can be defined as well on the
Grothendieck ring G0(H).

The Grothendieck algebra (Gk(H#kG), ∗) is an associative unity algebra with a k-basis {χij | 0 ≤
i ≤ m − 1, 0 ≤ j ≤ n − 1}. Denote by

θl = 1
n

n−1∑
t=0

ψ(g)−ltχ0t for 0 ≤ l ≤ n − 1.

Note that χ0t = ψ t for 0 ≤ t ≤ n − 1. Thus, {θl | 0 ≤ l ≤ n − 1} is the set of all central primitive
idempotents of the algebra kĜ. Moreover, we have

χ0j ∗ θl = ψ(g)jlθl and χij ∗ θl = χi0 ∗ χ0j ∗ θl = ψ(g)jlχi0 ∗ θl. (5.1)
In particular, each θl is a central idempotent of (Gk(H#kG), ∗). The structure of the Grothendieck
algebra (Gk(H#kG), ∗) now can be described as follows:

Theorem 5.4. We have the following algebra isomorphisms:

(1) If l is even, then (Gk(H#kG), ∗) ∗ θl ∼= (Gk(H), ∗).
(2) If l is odd, then (Gk(H#kG), ∗) ∗ θl ∼= (Gk(H), �).
(3) We have (Gk(H#kG), ∗) ∼= (Gk(H), ∗)⊕ n

2
⊕

(Gk(H), �)⊕ n
2 .

Proof. (1) For the case l being even, we consider the k-linear map
φl : (Gk(H), ∗) → (Gk(H#kG), ∗) ∗ θl, χi �→ χi0 ∗ θl for 0 ≤ i ≤ m − 1.
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It can be seen from (5.1) that φl is bijective, and moreover, χi n
2

∗ θl = χi0 ∗ θl. Now

φl(χi ∗ χj) = φl(
m−1∑
k=0

Nk
ijχk) =

m−1∑
k=0

Nk
ijχk0 ∗ θl

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ θl +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk0 ∗ θl

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ θl +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk n

2
∗ θl

= (χi0 ∗ χj0) ∗ θl

= (χi0 ∗ θl) ∗ (χj0 ∗ θl)

= φl(χi) ∗ φl(χj).

This shows that φl is an algebra isomorphism.
(2) For the case l being odd, we consider the k-linear map

φl : (Gk(H), �) → (Gk(H#kG), ∗) ∗ θl, χi �→ χi0 ∗ θl for 0 ≤ i ≤ m − 1.

It can be seen from (5.1) that φl is bijective, and moreover, χi n
2

∗ θl = −χi0 ∗ θl. Now

φl(χi � χj) = φl(
m−1∑
k=0

Lk
ijχk) =

m−1∑
k=0

Lk
ijχk0 ∗ θl

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ θl −

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk0 ∗ θl

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ θl +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk n

2
∗ θl

= (χi0 ∗ χj0) ∗ θl

= (χi0 ∗ θl) ∗ (χj0 ∗ θl)

= φl(χi) ∗ φl(χj).

Thus, φl is an algebra isomorphism.
(3) Let (Gk(H), ∗)⊕ n

2 be the direct sum of n
2 -folds of (Gk(H), ∗) and (Gk(H), �)⊕ n

2 the direct sum
of n

2 -folds of (Gk(H), �). Since θ0 + θ1 + · · · + θn−1 = 1, where 1 is the unity χ00 of (Gk(H#kG), ∗),
using Part (1) and Part (2) we obtain the following algebra isomorphism:

(Gk(H#kG), ∗) ∼= (Gk(H), ∗)⊕
n
2
⊕

(Gk(H), �)⊕
n
2 .

The proof is completed.

Remark 5.5. If S2 = id, then u = ε(�) and λ(ei)/ε(�) = (dimk(Vi)/ε(�))2 by Proposition 3.3 (3).
Now ηi, as a square root of λ(ei)/ε(�), may be chosen to be dimk(Vi)/ε(�). It follows that

v = u
m−1∑
i=0

ηi
dimk(Vi)

ei = 1.

In this case, The multiplication operator � considered above is nothing but the convolution ∗ and the
algebra (Gk(H), �) is nothing but the Grothendieck algebra (Gk(H), ∗). Moreover,

(Gk(H#kG), ∗) ∼= (Gk(H), ∗)⊕
n
2
⊕

(Gk(H), �)⊕
n
2 ∼= (Gk(H), ∗)⊕n.
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Let C be the k-linear subcategory of Rep(H#kG) spanned by objects

{Vi ⊗ W0, Vi ⊗ W n
2

| 0 ≤ i ≤ m − 1}.

Then C is closed under taking dual by Proposition 4.6. It follows from Proposition 5.2 that C is also
closed under the tensor product of objects. More explicitly,

(Vi ⊗ W n
2
) ⊗ (Vj ⊗ W n

2
) ∼= (Vi ⊗ W0) ⊗ (Vj ⊗ W0)

∼=
m−1⊕
k=0

1
2
(Nk

ij + Lk
ij)(Vk ⊗ W0)

⊕ m−1⊕
k=0

1
2
(Nk

ij − Lk
ij)(Vk ⊗ W n

2
),

and

(Vi ⊗ W0) ⊗ (Vj ⊗ W n
2
) ∼= (Vi ⊗ W n

2
) ⊗ (Vj ⊗ W0)

∼=
m−1⊕
k=0

1
2
(Nk

ij + Lk
ij)(Vk ⊗ W n

2
)
⊕ m−1⊕

k=0

1
2
(Nk

ij − Lk
ij)(Vk ⊗ W0).

Hence C is a fusion subcategory of Rep(H#kG). Let (Gk(C), ∗) be the Grothendieck algebra of C. Then
{χi0, χi n

2
| 0 ≤ i ≤ m − 1} forms a k-basis of (Gk(C), ∗).

Proposition 5.6. We have the following algebra isomorphism:

(Gk(C), ∗) ∼= (Gk(H), ∗)
⊕

(Gk(H), �).

Proof. We denote θ = 1
2 (χ00 +χ0 n

2
). Then 1−θ = 1

2 (χ00 −χ0 n
2
), where 1 is the unity χ00 of (Gk(C), ∗).

Note that θ and 1 − θ are both central idempotents of (Gk(C), ∗). In particular,

χi n
2

∗ θ = χi0 ∗ χ0 n
2

∗ θ = χi0 ∗ θ for 0 ≤ i ≤ m − 1.

Consider the k-linear map

φ : (Gk(H), ∗) → (Gk(C), ∗) ∗ θ , χi �→ χi0 ∗ θ for 0 ≤ i ≤ m − 1.

It is easy to see that φ is bijective and

φ(χi ∗ χj) = φ(

m−1∑
k=0

Nk
ijχk) =

m−1∑
k=0

Nk
ijχk0 ∗ θ

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ θ +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk0 ∗ θ

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ θ +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk n

2
∗ θ

= (χi0 ∗ χj0) ∗ θ

= (χi0 ∗ θ) ∗ (χj0 ∗ θ)

= φ(χi) ∗ φ(χj).

This shows that φ is an algebra isomorphism. Consider the k-linear map

ϕ : (Gk(H), �) → (Gk(C), ∗) ∗ (1 − θ), χi �→ χi0 ∗ (1 − θ) for 0 ≤ i ≤ m − 1.
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Then ϕ is bijective. Using χi n
2

∗ (1 − θ) = −χi0 ∗ (1 − θ) we may see that

ϕ(χi � χj) = ϕ(

m−1∑
k=0

Lk
ijχk) =

m−1∑
k=0

Lk
ijχk0 ∗ (1 − θ)

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ (1 − θ) −

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk0 ∗ (1 − θ)

=
m−1∑
k=0

1
2
(Nk

ij + Lk
ij)χk0 ∗ (1 − θ) +

m−1∑
k=0

1
2
(Nk

ij − Lk
ij)χk n

2
∗ (1 − θ)

= (χi0 ∗ χj0) ∗ (1 − θ)

= (χi0 ∗ (1 − θ)) ∗ (χj0 ∗ (1 − θ))

= ϕ(χi) ∗ ϕ(χj)

Hence, ϕ is an algebra isomorphism.

Note that θ = θ0 + θ2 + θ4 + · · · + θn−2 and 1 − θ = θ1 + θ3 + θ5 + · · · + θn−1. By Theorem 5.4
and Proposition 5.6, we have the following corollary:

Corollary 5.7. We have algebra isomorphism:

(Gk(H#kG), ∗) ∼= (Gk(C), ∗)⊕
n
2 .

Finally, we give some remarks on the pivotal (spherical) structures of the fusion categories
Rep(H#kG) and C. Since S2

H#kG is an inner automorphism of H#kG and

S2
H#kG(h#gi) = (1H#g)(h#gi)(1H#g)−1,

where 1H#g is a group-like element of H#kG, the category Rep(H#kG) is a pivotal fusion category, where
the pivotal structure τ on Rep(H#kG) is the isomorphism of monoidal functors τV⊗W : V ⊗ W →
(V ⊗ W)∗∗ natural in V ⊗ W. Here τV⊗W(v ⊗ w) is defined by

τV⊗W(v ⊗ w)(f ) = f (1H#g · v ⊗ w) = f (v · v ⊗ g · w)

for v ∈ V , w ∈ W and f ∈ (V ⊗ W)∗.
The quantum dimension of V ⊗ W ∈ Rep(H#kG) with respect to the pivotal structure τ is denoted

by dim(V ⊗ W), which is the following composition

1
coev(V⊗W)−−−−−−→ (V ⊗ W) ⊗ (V ⊗ W)∗ τV⊗W⊗id−−−−−→ (V ⊗ W)∗∗ ⊗ (V ⊗ W)∗

ev(V⊗W)∗−−−−−→ 1,

where 1 is the trivial H#kG-module V0 ⊗ W0. From this composition, we have

dim(V ⊗ W) = χV(v)χW(g).

Especially,

dim(Vi ⊗ Wj) = χi(v)ψ j(g) = ε(�)ηiψ
j(g).

For the dual module (Vi ⊗ Wj)∗ ∼= Vi∗ ⊗ Wj∗ , we have

dim(Vi∗ ⊗ Wj∗) = ε(�)ηi∗ψ
j(g−1) = ε(�)ηiψ

j(g−1).

Therefore, dim(Vi∗ ⊗Wj∗) = dim(Vi ⊗Wj) if and only if ψ j(g) = ψ j(g−1), if and only if j = 0 or j = n
2 .

This means that with respect to the pivotal structure τ , the fusion category Rep(H#kG) is pivotal but
not spherical, while the fusion subcategory C of Rep(H#kG) spanned by objects {Vi ⊗ W0, Vi ⊗ W n

2
|

0 ≤ i ≤ m − 1} is both pivotal and spherical.
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[15] Sommerhäuser, Y. (1998). On Kaplansky’s fifth conjecture. J. Algebra 204:202–224.
[16] Wang, Z., Liu, G., Li, L. (2024). Higher Frobenius-Schur indicators for semisimple Hopf algebras in positive

characteristic. Algebra Colloq. 31(4):675–688.
[17] Yang, R., Yang, S. (2021). The Grothendieck rings of Wu-Liu-Ding algebras and their Casimir numbers (II). Comm.

Algebra 49(5):2041–2073.


	1.  Introduction
	2.  Preliminaries
	3.  Some properties of the elements u and v
	4.  Representations of smash product Hopf algebras
	5.  The Grothendieck algebras of smash product Hopf algebras
	Funding
	References

