



The Grothendieck algebras of certain smash product semisimple Hopf algebras

Zhihua Wang, Gongxiang Liu & Libin Li

To cite this article: Zhihua Wang, Gongxiang Liu & Libin Li (2025) The Grothendieck algebras of certain smash product semisimple Hopf algebras, *Communications in Algebra*, 53:9, 3707-3720, DOI: [10.1080/00927872.2025.2466684](https://doi.org/10.1080/00927872.2025.2466684)

To link to this article: <https://doi.org/10.1080/00927872.2025.2466684>

Published online: 05 Mar 2025.

Submit your article to this journal

Article views: 62

View related articles

View Crossmark data

The Grothendieck algebras of certain smash product semisimple Hopf algebras

Zhihua Wang^a, Gongxiang Liu^b, and Libin Li^c

^aDepartment of Mathematics, Taizhou University, Taizhou, China; ^bDepartment of Mathematics, Nanjing University, Nanjing, China; ^cSchool of Mathematical Science, Yangzhou University, Yangzhou, China

ABSTRACT

Let H be a semisimple Hopf algebra over an algebraically closed field \mathbb{k} of positive characteristic p . Under the conditions that $p > \dim_{\mathbb{k}}(H)^{1/2}$ and $p \nmid 2 \dim_{\mathbb{k}}(H)$, we determine all non-isomorphic irreducible representations of the smash product semisimple Hopf algebra $H \# \mathbb{k}G$, where G is a cyclic group of order $n := 2 \dim_{\mathbb{k}}(H)$. We endow the Grothendieck algebra $(G_{\mathbb{k}}(H), *)$ of H with a new multiplication \star and show that the Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$ of $H \# \mathbb{k}G$ is isomorphic to $(G_{\mathbb{k}}(H), *)^{\oplus \frac{n}{2}} \oplus (G_{\mathbb{k}}(H), \star)^{\oplus \frac{n}{2}}$ as algebras. This reveals a relationship between the Grothendieck algebra of $H \# \mathbb{k}G$ and that of H .

ARTICLE HISTORY

Received 10 March 2023
Communicated by P. Kolesnikov

KEY WORDS

Grothendieck algebra; fusion category; smash product Hopf algebra

2020 MATHEMATICS SUBJECT CLASSIFICATION

16T05

1. Introduction

The Grothendieck rings of finite dimensional semisimple or cosemisimple Hopf algebras have been studied by Nichols and Richmond [11], Nikshych [12], Kashina [5], Chen, Yang and Wang [2, 17], etc. For a finite dimensional semisimple Hopf algebra H , the category $\text{Rep}(H)$ of finite dimensional representations of H is a fusion category and the Grothendieck ring $G_0(H)$ of H can be used to study the fusion category $\text{Rep}(H)$. For instance, the knowledge of the structure of the Grothendieck ring $G_0(H)$ allows to determine all fusion subcategories of $\text{Rep}(H)$, which correspond to the so-called based subrings of $G_0(H)$. Also, the Grothendieck ring $G_0(H)$ reveals the decompositions of the tensor products of irreducible representations into a direct sum of irreducible representations.

For a semisimple Hopf algebra H with antipode S over a field \mathbb{k} , it is known that S^2 is an inner automorphism of H (see [7]). Here an inner automorphism is understood to be the conjugation by an invertible element of H . If the ground field \mathbb{k} has positive characteristic p , whether or not S^2 can be given by conjugation with a group-like element is not completely solved (this problem is closely related to the Kaplansky's fifth conjecture). However, such a Hopf algebra H can be embedded into another finite dimensional Hopf algebra $H \# \mathbb{k}G$, namely, the smash product of H and a group algebra $\mathbb{k}G$, in which the square of the antipode is the conjugation with a group-like element. We refer to [6, 8, 15] for such Hopf algebras and related researches.

If H is a semisimple involutory Hopf algebra, namely, a semisimple Hopf algebra with $S^2 = id$, the smash product Hopf algebra $H \# \mathbb{k}G$ considered here is nothing but the usual tensor product Hopf algebra $H \otimes \mathbb{k}G$. In this case, the representations of $H \otimes \mathbb{k}G$ can be stemmed directly from the representations of H and those of $\mathbb{k}G$. Also, the Grothendieck algebra of $H \otimes \mathbb{k}G$ is the usual tensor product of the Grothendieck algebra of H and that of $\mathbb{k}G$. However, if H is not necessarily involutory (although the Kaplansky's fifth conjecture states that a semisimple Hopf algebra is necessarily involutory), the relationship between the Grothendieck algebra of $H \# \mathbb{k}G$ and that of H is not clear.

The purpose of this paper is to study representations of the smash product semisimple Hopf algebra $H \# \mathbb{k}G$ and to establish a relationship between the Grothendieck algebra of $H \# \mathbb{k}G$ and that of H , where H is a semisimple Hopf algebra over an algebraically closed field \mathbb{k} of positive characteristic $p > \dim_{\mathbb{k}}(H)^{1/2}$ with $p \nmid 2 \dim_{\mathbb{k}}(H)$ and G is a cyclic group of order $2 \dim_{\mathbb{k}}(H)$. It is worthy mentioning that such a Hopf algebra H is not known to be involutory unless the characteristic p is larger than a certain number (see [3, 15]).

The paper is organized as follows: In [Section 2](#), we give some basic results on semisimple Hopf algebras. In [Section 3](#), we describe some properties of certain elements \mathbf{u} and \mathbf{v} , where the two are the same up to a central element. In [Section 4](#), using the element \mathbf{v} we determine all non-isomorphic irreducible representations of $H \# \mathbb{k}G$ by virtue of those irreducible representations of H and those of $\mathbb{k}G$. We also describe the dual of these irreducible representations of $H \# \mathbb{k}G$. In [Section 5](#), to investigate the Grothendieck algebra of $H \# \mathbb{k}G$, we endow the Grothendieck algebra $G_{\mathbb{k}}(H)$ of H with a new multiplication \star so as to obtain a new algebra $(G_{\mathbb{k}}(H), \star)$. This algebra $(G_{\mathbb{k}}(H), \star)$ is nothing but the usual Grothendieck algebra $(G_{\mathbb{k}}(H), *)$ if H is involutory. We show that the Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$ of $H \# \mathbb{k}G$ has the direct sum decomposition

$$(G_{\mathbb{k}}(H \# \mathbb{k}G), *) \cong (G_{\mathbb{k}}(H), *)^{\oplus \frac{n}{2}} \bigoplus (G_{\mathbb{k}}(H), \star)^{\oplus \frac{n}{2}},$$

where $n = 2 \dim_{\mathbb{k}}(H)$. This reveals a relationship between the Grothendieck algebra of $H \# \mathbb{k}G$ and that of H . Moreover, we find a fusion subcategory \mathcal{C} of $\text{Rep}(H \# \mathbb{k}G)$ with its Grothendieck algebra $(G_{\mathbb{k}}(\mathcal{C}), *)$ being

$$(G_{\mathbb{k}}(\mathcal{C}), *) \cong (G_{\mathbb{k}}(H), *) \bigoplus (G_{\mathbb{k}}(H), \star).$$

In view of this, the Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$ is isomorphic to the direct sum $(G_{\mathbb{k}}(\mathcal{C}), *)^{\oplus \frac{n}{2}}$.

2. Preliminaries

Throughout this paper, H is a finite dimensional semisimple Hopf algebra over an algebraically closed field \mathbb{k} of positive characteristic p , with counit ε , comultiplication Δ and antipode S . We will use the Sweedler notation $\Delta(a) = a_{(1)} \otimes a_{(2)}$ for $a \in H$. We denote by Λ and λ the left and right integrals of H and H^* respectively so that $\lambda(\Lambda) = 1$. Since the semisimple Hopf algebra H is unimodular, the left and right integrals of H are the same. We refer to [9] for basic theory of Hopf algebras.

We denote $\{V_i \mid 0 \leq i \leq m-1\}$ the set of all simple left H -modules up to isomorphism and $\{e_i \mid 0 \leq i \leq m-1\}$ the set of all central primitive idempotents of H . Note that V_0 is the trivial H -module \mathbb{k} and e_0 is the idempotent $\Lambda/\varepsilon(\Lambda)$. The character of any simple H -module V_i is denoted by χ_i for $0 \leq i \leq m-1$ and the character of the left regular module H is denoted by χ_H . Obviously, $\chi_H = \sum_{i=0}^{m-1} \dim_{\mathbb{k}}(V_i) \chi_i$.

Recall that $S^2(a) = uau^{-1}$ for $a \in H$ and a certain unit $u \in H$. For any simple H -module V_i and any $\varphi \in \text{End}_{\mathbb{k}}(V_i)$, we define the map $\mathcal{I}(\varphi) \in \text{End}_{\mathbb{k}}(V_i)$ by

$$\mathcal{I}(\varphi)(v) = \Lambda_{(1)}\varphi(u^{-1}S(\Lambda_{(2)})v) \text{ for } v \in V_i.$$

Since $\mathcal{I}(\varphi)$ lies in $\text{End}_H(V_i) \cong \mathbb{k}$, there exists a unique element $c_i \in \mathbb{k}$ such that

$$\mathcal{I}(\varphi) = c_i \text{tr}(\varphi) id_{V_i} \text{ for all } \varphi \in \text{End}_{\mathbb{k}}(V_i).$$

Such an element c_i , depending only on the isomorphism class of V_i , is called the Schur element associated to V_i (see [4, Theorem 7.2.1]). Since H is semisimple, it follows from [4, Theorem 7.2.6] that the Schur element $c_i \neq 0$ in \mathbb{k} .

We denote $\mathbf{u} := S(\Lambda_{(2)})\Lambda_{(1)}$. The relationship between \mathbf{u} and the unit u can be found in [16, Proposition 3.1]:

$$\mathbf{u} = u \sum_{i=0}^{m-1} \dim_{\mathbb{k}}(V_i) c_i e_i. \tag{2.1}$$

For any map $\varphi \in \text{End}_{\mathbb{k}}(H)$, the trace of φ is $\text{tr}(\varphi) = \lambda(\varphi(S(\Lambda_{(2)}))\Lambda_{(1)})$ (see [13, Theorem 2]). Taking into account that $\varphi = L_a$, where L_a is the left multiplication operator of H by a , we have

$$\chi_H(a) = \text{tr}(L_a) = \lambda(aS(\Lambda_{(2)})\Lambda_{(1)}) = \lambda(a\mathbf{u}) = (\mathbf{u} \rightharpoonup \lambda)(a).$$

Note that the right integral λ of H^* satisfies $\lambda(ab) = \lambda(S^2(b)a)$ for all $a, b \in H$ (see [13, Theorem 3(a)]) and $S^2(\mathbf{u}) = \mathbf{u}$. Then

$$\chi_H(a) = \lambda(a\mathbf{u}) = \lambda(S^2(\mathbf{u})a) = \lambda(\mathbf{u}a) = (\lambda \leftarrow \mathbf{u})(a).$$

Thus, we have

$$\chi_H = \mathbf{u} \rightharpoonup \lambda = \lambda \leftarrow \mathbf{u}. \quad (2.2)$$

3. Some properties of the elements \mathbf{u} and \mathbf{v}

In this section we will describe some properties of the element $\mathbf{u} = S(\Lambda_{(2)})\Lambda_{(1)}$ and a certain element \mathbf{v} , where the element \mathbf{v} will be used in the forthcoming section to study representations of a certain smash product Hopf algebra. The following proposition gives some equivalent conditions for \mathbf{u} being invertible:

Proposition 3.1. *Let H be a finite dimensional semisimple Hopf algebra over the field \mathbb{k} of positive characteristic p . The following statements are equivalent:*

- (1) *The element \mathbf{u} is invertible.*
- (2) *For any simple H -module V_i , $p \nmid \dim_{\mathbb{k}}(V_i)$.*
- (3) *The regular character χ_H of H is non-degenerate in the sense that if $\chi_H(ab) = 0$ for all $a \in H$, then $b = 0$.*

Proof. (1) \Leftrightarrow (2). It follows from (2.1) that Part (1) and Part (2) are equivalent.

(1) \Rightarrow (3). Since λ is non-degenerate and \mathbf{u} is invertible, it follows from (2.2) that χ_H is non-degenerate.

(3) \Rightarrow (2). It follows from $\chi_H = \sum_{i=0}^{m-1} \dim_{\mathbb{k}}(V_i) \chi_i$ that the non-degeneracy of χ_H implies that $p \nmid \dim_{\mathbb{k}}(V_i)$ for any simple H -module V_i . \square

Remark 3.2. (1) Recall that the (left) annihilator of \mathbf{u} in H is the set $\text{ann}(\mathbf{u}) := \{b \in H \mid b\mathbf{u} = 0\}$. Using the non-degeneracy of λ we may see from (2.2) that the set $\text{ann}(\mathbf{u})$ coincides with the radical of χ_H defined by $\chi_H^\perp := \{b \in H \mid \chi_H(ab) = 0 \text{ for all } a \in H\}$.

(2) If $S^2 = \text{id}$, then

$$\mathbf{u} = S(\Lambda_{(2)})\Lambda_{(1)} = S(\Lambda_{(2)})S^2(\Lambda_{(1)}) = S(S(\Lambda_{(1)})\Lambda_{(2)}) = \varepsilon(\Lambda) \neq 0.$$

Namely, \mathbf{u} is a nonzero scalar. Conversely, if \mathbf{u} is a nonzero scalar, then \mathbf{u} is central by (2.1). It follows from $S^2(a) = uau^{-1}$ that $S^2 = \text{id}$.

- (3) If \mathbf{u} is invertible, then \mathbf{u} and \mathbf{u} are the same up to the central invertible element $\sum_{i=0}^{m-1} \dim_{\mathbb{k}}(V_i)c_i e_i$ by (2.1). Hence, $S^2(a) = uau^{-1}$ implies that $S^2(a) = uau^{-1}$ for all $a \in H$.
- (4) If the characteristic $p > \dim_{\mathbb{k}}(H)^{1/2}$, it follows that

$$p^2 > \dim_{\mathbb{k}}(H) = \sum_{i=0}^{m-1} \dim_{\mathbb{k}}(V_i)^2 \geq \dim_{\mathbb{k}}(V_i)^2.$$

Hence $p \nmid \dim_{\mathbb{k}}(V_i)$ for $0 \leq i \leq m-1$. In this case, \mathbf{u} is invertible by Proposition 3.1.

- Next, we assume that the field \mathbb{k} has positive characteristic $p > \dim_{\mathbb{k}}(H)^{1/2}$. By Remark 3.2, we have
- $S^2(a) = uau^{-1}$ for all $a \in H$;
 - $\dim_{\mathbb{k}}(V_i) \neq 0$ in \mathbb{k} for $0 \leq i \leq m-1$.

The following result can be found in [16, Proposition 3.3], so we omit the proof.

Proposition 3.3. *The element \mathbf{u} satisfies the following properties:*

- (1) $\mathbf{u} = \chi_H(\Lambda_{(1)})S(\Lambda_{(2)})$.
- (2) $\Lambda_{(1)}\mathbf{u}^{-1}S(\Lambda_{(2)}) = 1$.
- (3) $\lambda(e_i) = \dim_{\mathbb{k}}(V_i)\chi_i(\mathbf{u}^{-1}) \neq 0$.
- (4) $\mathbf{u}S(\mathbf{u}) = S(\mathbf{u})\mathbf{u} = \varepsilon(\Lambda) \sum_{i=0}^{m-1} \frac{\dim_{\mathbb{k}}(V_i)^2}{\lambda(e_i)} e_i$.
- (5) $S(\mathbf{u}^{-1})\mathbf{u} = \mathbf{u}S(\mathbf{u}^{-1})$, which is the distinguished group-like element g_0 of H .

Recall that the dual module V_i^* is also a simple H -module for $0 \leq i \leq m-1$. This induces a permutation $*$ on the index set $\{0, 1, \dots, m-1\}$ defined by $i^* = j$ if $V_i^* \cong V_j$. The permutation $*$ satisfies that $i^{**} = i$, $S(e_i) = e_{i^*}$, $\dim_{\mathbb{k}}(V_{i^*}) = \dim_{\mathbb{k}}(V_i)$ and by [16, Corollary 3.4] that $\lambda(e_{i^*}) = \lambda(e_i)$ for $0 \leq i \leq m-1$.

We denote η_i to be a square root of $\lambda(e_i)/\varepsilon(\Lambda)$ for $0 \leq i \leq m-1$. Note that $1/\varepsilon(\Lambda)^2 = \lambda(e_0)/\varepsilon(\Lambda)$ and $\eta_{i^*}^2 = \lambda(e_{i^*})/\varepsilon(\Lambda) = \lambda(e_i)/\varepsilon(\Lambda) = \eta_i^2$. In view of this, we further assume that

- $\eta_0 = 1/\varepsilon(\Lambda)$ and
- $\eta_i = \eta_{i^*}$ for $0 \leq i \leq m-1$.

We denote

$$\mathbf{v} := \mathbf{u} \sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_i. \quad (3.1)$$

As we shall see, the element \mathbf{v} plays a key role in the representation theory of a certain smash product Hopf algebra. For the element \mathbf{v} , we have the following result:

Proposition 3.4. *The element \mathbf{v} satisfies the following properties:*

- (1) $\varepsilon(\mathbf{v}) = 1$.
- (2) $S^2(a) = \mathbf{v}a\mathbf{v}^{-1}$ for $a \in H$.
- (3) $\mathbf{v}^2 = \mathbf{u}S(\mathbf{u}^{-1})$, which is the distinguished group-like element g_0 of H .
- (4) $\mathbf{v}^n = 1$, where $n = 2 \dim_{\mathbb{k}}(H)$.
- (5) $\mathbf{v}^{-1} = S(\mathbf{v})$.

Proof. (1) Note that $\eta_0 = 1/\varepsilon(\Lambda)$. Applying ε to both sides of the equality (3.1), we obtain that $\varepsilon(\mathbf{v}) = 1$.

(2) Since $S^2(a) = \mathbf{u}a\mathbf{u}^{-1}$ and the elements \mathbf{u} and \mathbf{v} are the same up to the central unit $\sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_i$, it follows that $S^2(a) = \mathbf{v}a\mathbf{v}^{-1}$ for $a \in H$.

(3) Note that $\mathbf{u}^{-1}S(\mathbf{u}^{-1}) = \frac{1}{\varepsilon(\Lambda)} \sum_{i=0}^{m-1} \frac{\lambda(e_i)}{\dim_{\mathbb{k}}(V_i)^2} e_i$ by Proposition 3.3 (4). It follows that

$$\mathbf{u}S(\mathbf{u}^{-1}) = \frac{\mathbf{u}^2}{\varepsilon(\Lambda)} \sum_{i=0}^{m-1} \frac{\lambda(e_i)}{\dim_{\mathbb{k}}(V_i)^2} e_i = \mathbf{v}^2,$$

which is the distinguished group-like element g_0 of H by Proposition 3.3 (5).

(4) It can be seen from Part (3) that \mathbf{v}^2 is the distinguished group-like element g_0 of H , while the order of g_0 divides $\dim_{\mathbb{k}}(H)$. This implies that $\mathbf{v}^n = (\mathbf{v}^2)^{\dim_{\mathbb{k}}(H)} = 1$.

(5) Note that $S(e_i) = e_{i^*}$, $\dim_{\mathbb{k}}(V_{i^*}) = \dim_{\mathbb{k}}(V_i)$ and $\eta_i = \eta_{i^*}$ for $0 \leq i \leq m-1$. We have

$$\begin{aligned} \mathbf{v}S(\mathbf{v}) &= \mathbf{u} \left(\sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_i \right) S(\mathbf{u}) \left(\sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_{i^*} \right) \\ &= \mathbf{u}S(\mathbf{u}) \left(\sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_i \right) \left(\sum_{i=0}^{m-1} \frac{\eta_{i^*}}{\dim_{\mathbb{k}}(V_{i^*})} e_{i^*} \right) \end{aligned}$$

$$\begin{aligned}
&= \mathbf{u}S(\mathbf{u}) \left(\sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_i \right)^2 \\
&= \mathbf{u}S(\mathbf{u}) \left(\frac{1}{\varepsilon(\Lambda)} \sum_{i=0}^{m-1} \frac{\lambda(e_i)}{\dim_{\mathbb{k}}(V_i)^2} e_i \right) \\
&= 1,
\end{aligned}$$

where the last equality follows from [Proposition 3.3](#) (4). We obtain that $\mathbf{v}^{-1} = S(\mathbf{v})$. The proof is completed. \square

4. Representations of smash product Hopf algebras

In this section, we will describe all non-isomorphic irreducible representations of a certain smash product Hopf algebra. We denote $n := 2 \dim_{\mathbb{k}}(H)$ and assume that the field \mathbb{k} has positive characteristic $p > \dim_{\mathbb{k}}(H)^{1/2}$ and $p \nmid n$.

Let G be a cyclic group of order n generated by g . The character group \widehat{G} of G is also a cyclic group of order n . Let ψ be a generator of \widehat{G} . Then $\widehat{G} = \{\psi^j \mid 0 \leq j \leq n-1\}$, which is the complete set of distinct irreducible characters of simple $\mathbb{k}G$ -modules. The simple $\mathbb{k}G$ -module with respect to the character ψ^j is denoted by W_j for $0 \leq j \leq n-1$.

Since the antipode S of H satisfies $S^{2n} = id$ by Radford's formula of S^4 [\[14\]](#), the Hopf algebra H is a left $\mathbb{k}G$ -module algebra whose action is given by

$$g^i \rightarrow h = S^{2i}(h) \text{ for } g^i \in G \text{ and } h \in H.$$

This reduces to a Hopf algebra $H \# \mathbb{k}G$ mentioned in [\[15\]](#). More precisely, the Hopf algebra $H \# \mathbb{k}G$ is the smash product of H and $\mathbb{k}G$. The multiplication of $H \# \mathbb{k}G$ is given by

$$(a \# g^i)(b \# g^j) = a(g^i \rightarrow b) \# g^{i+j} = aS^{2i}(b) \# g^{i+j} \text{ for } a, b \in H,$$

the identity of $H \# \mathbb{k}G$ is $1_H \# 1_{\mathbb{k}G}$. The comultiplication of $H \# \mathbb{k}G$ is given by

$$\Delta_{H \# \mathbb{k}G}(h \# g^i) = (h_{(1)} \# g^i) \otimes (h_{(2)} \# g^i).$$

The counit of $H \# \mathbb{k}G$ is $\varepsilon_{H \# \mathbb{k}G} = \varepsilon_H \# \varepsilon_{\mathbb{k}G}$ and the antipode of $H \# \mathbb{k}G$ is

$$S_{H \# \mathbb{k}G}(h \# g^i) = (1_H \# g^{-i})(S(h) \# 1_{\mathbb{k}G}) = S^{1-2i}(h) \# g^{-i}.$$

Moreover, $1_H \# g$ is a group-like element of $H \# \mathbb{k}G$ that satisfies

$$S_{H \# \mathbb{k}G}^2(h \# g^i) = (1_H \# g)(h \# g^i)(1_H \# g)^{-1}. \quad (4.1)$$

The Hopf algebra H can be considered as a sub-Hopf algebra of $H \# \mathbb{k}G$ under the injective map $H \rightarrow H \# \mathbb{k}G$, $h \mapsto h \# 1_{\mathbb{k}G}$.

Since Λ is an integral of H with $\varepsilon(\Lambda) \neq 0$ and $p \nmid n$, $\Lambda \# \frac{1}{n} \sum_{i=0}^{n-1} g^i$ is an integral of $H \# \mathbb{k}G$ with $\varepsilon_{H \# \mathbb{k}G}(\Lambda \# \frac{1}{n} \sum_{i=0}^{n-1} g^i) = \varepsilon(\Lambda) \neq 0$. Thus, $H \# \mathbb{k}G$ is a semisimple Hopf algebra over \mathbb{k} .

The representation theory of crossed product of an algebra with a group algebra has been studied in [\[10\]](#). However, we do not take advantage of those notations and methods in [\[10\]](#) to describe $H \# \mathbb{k}G$ -modules. Instead, since the Hopf algebra $H \# \mathbb{k}G$ is semisimple, we will determine all simple $H \# \mathbb{k}G$ -modules by the study of the character of the regular representation of $H \# \mathbb{k}G$.

Lemma 4.1. *If V is a finite dimensional H -module and W is a finite dimensional $\mathbb{k}G$ -module, then the vector space $V \otimes W$ is a finite dimensional $H \# \mathbb{k}G$ -module, where the $H \# \mathbb{k}G$ -module structure on $V \otimes W$ is given by*

$$(h \# g^k) \cdot (v \otimes w) = (hv^k \cdot v) \otimes (g^k \cdot w) \text{ for } v \in V, w \in W. \quad (4.2)$$

Proof. By Proposition 3.4 (4), we have $\mathbf{v}^n = 1$. It follows that

$$(h\#g^n) \cdot (v \otimes w) = (h\mathbf{v}^n \cdot v) \otimes (g^n \cdot w) = (h \cdot v) \otimes w = (h\#1_{\mathbb{k}G}) \cdot (v \otimes w).$$

Hence the $H\#\mathbb{k}G$ -module structure defined on $V \otimes W$ is compatible with the equality $h\#g^n = h\#1_{\mathbb{k}G}$. For $a, b \in H$, by $S^2(h) = \mathbf{v}h\mathbf{v}^{-1}$ for $h \in H$, we may check that

$$((a\#g^i)(b\#g^j)) \cdot (v \otimes w) = (a\#g^i) \cdot ((b\#g^j) \cdot (v \otimes w)).$$

Indeed,

$$\begin{aligned} ((a\#g^i)(b\#g^j)) \cdot (v \otimes w) &= (aS^{2i}(b)\#g^{i+j}) \cdot (v \otimes w) \\ &= (aS^{2i}(b)\mathbf{v}^{i+j} \cdot v) \otimes (g^{i+j} \cdot w), \end{aligned}$$

while

$$\begin{aligned} (a\#g^i) \cdot ((b\#g^j) \cdot (v \otimes w)) &= (a\#g^i) \cdot ((b\mathbf{v}^j \cdot v) \otimes (g^j \cdot w)) \\ &= (a\mathbf{v}^i \cdot (b\mathbf{v}^j \cdot v)) \otimes (g^i \cdot (g^j \cdot w)) \\ &= (a\mathbf{v}^i b\mathbf{v}^j \cdot v) \otimes (g^{i+j} \cdot w) \\ &= (aS^{2i}(b)\mathbf{v}^{i+j} \cdot v) \otimes (g^{i+j} \cdot w). \end{aligned}$$

The proof is completed. \square

Lemma 4.2. *If V is a simple H -module and W is a simple $\mathbb{k}G$ -module, then $V \otimes W$ is a simple $H\#\mathbb{k}G$ -module.*

Proof. Note that $H\#\mathbb{k}G$ is a semisimple Hopf algebra over an algebraically closed field \mathbb{k} . It is sufficient to show that $\text{End}_{H\#\mathbb{k}G}(V \otimes W) \cong \mathbb{k}$. Suppose that the map $\phi : V \otimes W \rightarrow V \otimes W$ is an $H\#\mathbb{k}G$ -module morphism. Since W is one dimensional, we fix a basis w of W . The $H\#\mathbb{k}G$ -module morphism ϕ induces an H -module morphism $\phi_0 : V \rightarrow V$ as follows: $\phi(v \otimes w) = \phi_0(v) \otimes w$ for any $v \in V$. This shows that ϕ is the identity map of $V \otimes W$ up to a scalar, since V is simple and ϕ_0 is the identity map of V up to a scalar. \square

Remark 4.3. For simple H -module V_i and simple $\mathbb{k}G$ -module W_j , it can be seen from Lemma 4.2 that $V_i \otimes W_j$ is a simple $H\#\mathbb{k}G$ -module. Let χ_{ij} be the character associated to the simple $H\#\mathbb{k}G$ -module $V_i \otimes W_j$. It follows from (4.2) that

$$\chi_{ij}(h \otimes g^k) = \chi_i(h\mathbf{v}^k)\psi^j(g^k) \text{ for } 0 \leq i \leq m-1, 0 \leq j \leq n-1.$$

Theorem 4.4. *The set $\{V_i \otimes W_j \mid 0 \leq i \leq m-1, 0 \leq j \leq n-1\}$ forms a complete set of non-isomorphic simple $H\#\mathbb{k}G$ -modules.*

Proof. Note that $\Lambda \# \frac{1}{n} \sum_{i=0}^{n-1} g^i$ is a left integral of $H\#\mathbb{k}G$ and $\lambda \# \sum_{j=0}^{n-1} \psi^j$ is a right integral of $(H\#\mathbb{k}G)^*$ satisfying $(\lambda \# \sum_{j=0}^{n-1} \psi^j)(\Lambda \# \frac{1}{n} \sum_{i=0}^{n-1} g^i) = 1$. By (2.2), the characters of left regular representations of H and $H\#\mathbb{k}G$ are respectively given by $\chi_H = \lambda \leftarrow \mathbf{u}$ and $\chi_{H\#\mathbb{k}G} = (\lambda \# \sum_{j=0}^{n-1} \psi^j) \leftarrow \mathbf{u}_{H\#\mathbb{k}G}$, where $\mathbf{u} = S(\Lambda_{(2)})\Lambda_{(1)}$ and

$$\begin{aligned} \mathbf{u}_{H\#\mathbb{k}G} &= \frac{1}{n} \sum_{i=0}^{n-1} S_{H\#\mathbb{k}G}(\Lambda_{(2)}\#g^i)(\Lambda_{(1)}\#g^i) \\ &= \frac{1}{n} \sum_{i=0}^{n-1} (S^{1-2i}(\Lambda_{(2)})\#g^{-i})(\Lambda_{(1)}\#g^i) \end{aligned}$$

$$\begin{aligned}
&= \frac{1}{n} \sum_{i=0}^{n-1} S^{1-2i}(\Lambda_{(2)}) S^{-2i}(\Lambda_{(1)}) \# 1_{\mathbb{k}G} \\
&= \frac{1}{n} \sum_{i=0}^{n-1} S^{-2i}(\mathbf{u}) \# 1_{\mathbb{k}G} \\
&= \mathbf{u} \# 1_{\mathbb{k}G}.
\end{aligned}$$

It follows that

$$\chi_{H\#\mathbb{k}G} = (\lambda \# \sum_{j=0}^{n-1} \psi^j) \leftarrow (\mathbf{u} \# 1_{\mathbb{k}G}) = (\lambda \leftarrow \mathbf{u}) \# \sum_{j=0}^{n-1} \psi^j = \chi_H \# \sum_{j=0}^{n-1} \psi^j.$$

Hence,

$$(\chi_{H\#\mathbb{k}G})(h \# g^k) = \chi_H(h) \sum_{j=0}^{n-1} \psi^j(g^k) = \begin{cases} n\chi_H(h), & k = 0; \\ 0, & 1 \leq k \leq n-1. \end{cases}$$

While

$$\begin{aligned}
\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \dim_{\mathbb{k}}(V_i \otimes W_j) \chi_{ij}(h \# g^k) &= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \dim_{\mathbb{k}}(V_i) \chi_i(h\mathbf{v}^k) \psi^j(g^k) \\
&= \chi_H(h\mathbf{v}^k) \sum_{j=0}^{n-1} \psi^j(g^k) \\
&= \begin{cases} n\chi_H(h), & k = 0; \\ 0, & 1 \leq k \leq n-1. \end{cases}
\end{aligned}$$

We obtain that

$$\chi_{H\#\mathbb{k}G} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \dim_{\mathbb{k}}(V_i \otimes W_j) \chi_{ij}.$$

Hence, all non-isomorphic simple $H\#\mathbb{k}G$ -modules are $V_i \otimes W_j$ for $0 \leq i \leq m-1$ and $0 \leq j \leq n-1$. \square

Remark 4.5. Note that $\chi_{00} = \varepsilon_{H\#\mathbb{k}G}$. Hence $V_0 \otimes W_0$ is the trivial $H\#\mathbb{k}G$ -module, where V_0 is the trivial H -module and W_0 is the trivial $\mathbb{k}G$ -module.

For any simple $H\#\mathbb{k}G$ -module $V_i \otimes W_j$, its dual module $(V_i \otimes W_j)^*$ can be described as follows:

Proposition 4.6. We have $(V_i \otimes W_j)^* \cong V_{i^*} \otimes W_{j^*}$ for $0 \leq i \leq m-1, 0 \leq j \leq n-1$, where V_{i^*} is the dual of V_i as an H -module and W_{j^*} is the dual of W_j as a $\mathbb{k}G$ -module.

Proof. We need to check that $\chi_{i^*j^*} = \chi_{ij} \circ S_{H\#\mathbb{k}G}$ for $0 \leq i \leq m-1, 0 \leq j \leq n-1$. Note that $S(\mathbf{v}) = \mathbf{v}^{-1}$ and $S^{-2}(h) = \mathbf{v}^{-1}h\mathbf{v}$ for $h \in H$. On the one hand,

$$\chi_{i^*j^*}(h \# g^k) = \chi_{i^*}(h\mathbf{v}^k) \psi^{j^*}(g^k) = \chi_i(S(\mathbf{v})^k S(h)) \psi^j(g^{-k}) = \chi_i(\mathbf{v}^{-k} S(h)) \psi^j(g^{-k}).$$

On the other hand,

$$\begin{aligned}
(\chi_{ij} \circ S_{H\#\mathbb{k}G})(h \# g^k) &= \chi_{ij}(S_{H\#\mathbb{k}G}(h \# g^k)) \\
&= \chi_{ij}(S^{1-2k}(h) \# g^{-k}) \\
&= \chi_{ij}(\mathbf{v}^{-k} S(h) \mathbf{v}^k \# g^{-k}) \\
&= \chi_i(\mathbf{v}^{-k} S(h)) \psi^j(g^{-k}).
\end{aligned}$$

We conclude that $\chi_{i^*j^*} = \chi_{ij} \circ S_{H\#\mathbb{k}G}$ for $0 \leq i \leq m-1, 0 \leq j \leq n-1$. \square

5. The Grothendieck algebras of smash product Hopf algebras

In this section, we will investigate a relationship between the Grothendieck algebra of the smash product Hopf algebra $H \# \mathbb{k}G$ and that of H . We still assume that the field \mathbb{k} has positive characteristic $p > \dim_{\mathbb{k}}(H)^{1/2}$ and $p \nmid n$, where $n = 2 \dim_{\mathbb{k}}(H)$.

Recall that the Grothendieck algebra $(G_{\mathbb{k}}(H), *)$ of H is an associative algebra over the field \mathbb{k} with unity ε_H under the convolution $*$, where the convolution $*$ on the basis $\{\chi_i \mid 0 \leq i \leq m-1\}$ of $G_{\mathbb{k}}(H)$ is defined by

$$(\chi_i * \chi_j)(h) = (\chi_i \otimes \chi_j)(\Delta(h)) \text{ for } h \in H.$$

We define a new multiplication operator \star on $G_{\mathbb{k}}(H)$ by

$$(\chi_i \star \chi_j)(h) = (\chi_i \otimes \chi_j) \left(\Delta(h) \Delta(\mathbf{v}^{-1})(\mathbf{v} \otimes \mathbf{v}) \right) \text{ for } h \in H.$$

Proposition 5.1. *The pair $(G_{\mathbb{k}}(H), \star)$ is an associative algebra over the field \mathbb{k} with unity ε_H .*

Proof. We first need to prove that \star is a multiplication operator on $G_{\mathbb{k}}(H)$. That is, $\chi_i \star \chi_j \in G_{\mathbb{k}}(H)$ for $0 \leq i, j \leq m-1$. Indeed, for $a, b \in H$, using $S^2(h) = \mathbf{v}h\mathbf{v}^{-1}$ for $h \in H$, we have

$$\begin{aligned} (\chi_i \star \chi_j)(ab) &= \chi_i(a_{(1)}b_{(1)}\mathbf{v}^{-1}(1)\mathbf{v})\chi_j(a_{(2)}b_{(2)}\mathbf{v}^{-1}(2)\mathbf{v}) \\ &= \chi_i(a_{(1)}(\mathbf{b}\mathbf{v}^{-1})_{(1)}\mathbf{v})\chi_j(a_{(2)}(\mathbf{b}\mathbf{v}^{-1})_{(2)}\mathbf{v}) \\ &= \chi_i(a_{(1)}(\mathbf{v}^{-1}S^2(b))_{(1)}\mathbf{v})\chi_j(a_{(2)}(\mathbf{v}^{-1}S^2(b))_{(2)}\mathbf{v}) \\ &= \chi_i(a_{(1)}\mathbf{v}^{-1}(1)S^2(b_{(1)})\mathbf{v})\chi_j(a_{(2)}\mathbf{v}^{-1}(2)S^2(b_{(2)})\mathbf{v}) \\ &= \chi_i(a_{(1)}\mathbf{v}^{-1}(1)\mathbf{v}b_{(1)})\chi_j(a_{(2)}\mathbf{v}^{-1}(2)\mathbf{v}b_{(2)}) \\ &= \chi_i(b_{(1)}a_{(1)}\mathbf{v}^{-1}(1)\mathbf{v})\chi_j(b_{(2)}a_{(2)}\mathbf{v}^{-1}(2)\mathbf{v}) \\ &= (\chi_i \star \chi_j)(ba). \end{aligned}$$

It follows from [7] that $\chi_i \star \chi_j \in G_{\mathbb{k}}(H)$ for $0 \leq i, j \leq m-1$. Since the map $H \rightarrow H \otimes H$, $h \mapsto \Delta(h)\Delta(\mathbf{v}^{-1})(\mathbf{v} \otimes \mathbf{v})$ is a coassociative comultiplication in H for which ε_H is still a counit (see [1, Eq.(12)]), the operator \star dual to the coassociative comultiplication is an associative multiplication on $G_{\mathbb{k}}(H)$ with unity ε_H . The associativity and unity ε_H of \star on $G_{\mathbb{k}}(H)$ can also be checked directly. Indeed, for $a \in H$, we have

$$\begin{aligned} ((\chi_i \star \chi_j) \star \chi_k)(a) &= ((\chi_i \star \chi_j) \otimes \chi_k) \left(\Delta(a) \Delta(\mathbf{v}^{-1})(\mathbf{v} \otimes \mathbf{v}) \right) \\ &= (\chi_i \star \chi_j)(a_{(1)}\mathbf{v}^{-1}(1)\mathbf{v})\chi_k(a_{(2)}\mathbf{v}^{-1}(2)\mathbf{v}) \\ &= \chi_i(a_{(1)}\mathbf{v}^{-1}(1)\mathbf{v})\chi_j(a_{(2)}\mathbf{v}^{-1}(2)\mathbf{v})\chi_k(a_{(3)}\mathbf{v}^{-1}(3)\mathbf{v}) \\ &= \chi_i(a_{(1)}\mathbf{v}^{-1}(1)\mathbf{v})(\chi_j \star \chi_k)(a_{(2)}\mathbf{v}^{-1}(2)\mathbf{v}) \\ &= (\chi_i \star (\chi_j \star \chi_k))(a). \end{aligned}$$

Therefore, $(\chi_i \star \chi_j) \star \chi_k = \chi_i \star (\chi_j \star \chi_k)$ for $0 \leq i, j, k \leq m-1$.

$$\begin{aligned} (\varepsilon_H \star \chi_k)(a) &= (\varepsilon_H \otimes \chi_k) \left(\Delta(a) \Delta(\mathbf{v}^{-1})(\mathbf{v} \otimes \mathbf{v}) \right) \\ &= \varepsilon_H(a_{(1)}\mathbf{v}^{-1}(1)\mathbf{v})\chi_k(a_{(2)}\mathbf{v}^{-1}(2)\mathbf{v}) \\ &= \chi_k(a). \end{aligned}$$

Hence $\varepsilon_H \star \chi_k = \chi_k$ for $0 \leq k \leq m-1$. It is similar that $\chi_k \star \varepsilon_H = \chi_k$ for $0 \leq k \leq m-1$. \square

Next, we will use the algebras $(G_{\mathbb{k}}(H), *)$ and $(G_{\mathbb{k}}(H), \star)$ to describe the structure of the Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$ of $H \# \mathbb{k}G$. Note that $\{\chi_0, \chi_1, \dots, \chi_{m-1}\}$ is a \mathbb{k} -basis of $G_{\mathbb{k}}(H)$.

Suppose in $(G_{\mathbb{k}}(H), *)$ that

$$\chi_i * \chi_j = \sum_{k=0}^{n-1} N_{ij}^k \chi_k$$

and in $(G_{\mathbb{k}}(H), \star)$ that

$$\chi_i \star \chi_j = \sum_{k=0}^{n-1} L_{ij}^k \chi_k,$$

where N_{ij}^k and L_{ij}^k are respectively the structure coefficients of the two algebras with respect to the basis $\{\chi_0, \chi_1, \dots, \chi_{m-1}\}$. We stress that the coefficient N_{ij}^k is the multiplicity of V_k appeared in the decomposition of tensor product $V_i \otimes V_j$ as H -modules, so each N_{ij}^k is indeed a nonnegative integer. For the coefficient L_{ij}^k , we shall see in [Remark 5.3](#) that each L_{ij}^k is an integer.

Proposition 5.2. *We have the following equations in the Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$:*

- (1) $\chi_{ij} = \chi_{i0} * \chi_{0j} = \chi_{0j} * \chi_{i0}$ for $0 \leq i \leq m-1, 0 \leq j \leq n-1$.
- (2) $\chi_{i0} * \chi_{j0} = \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_{k0} + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}}$ for $0 \leq i, j \leq m-1$.
- (3) $\chi_{is} * \chi_{jt} = \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_{k,s+t} + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_{k,\frac{n}{2}+s+t}$ for $0 \leq i, j \leq m-1$ and $0 \leq s, t \leq n-1$, where $s+t$ and $\frac{n}{2}+s+t$ are reduced modulo n .

Proof. (1) It is direct to calculate that

$$\begin{aligned} (\chi_{i0} * \chi_{0j})(h \# g^k) &= \chi_{i0}(h_{(1)} \# g^k) \chi_{0j}(h_{(2)} \# g^k) \\ &= \chi_i(h_{(1)} v^k) \psi^0(g^k) \chi_0(h_{(2)} v^k) \psi^j(g^k) \\ &= \chi_i(h v^k) \psi^j(g^k) \\ &= \chi_{ij}(h \# g^k). \end{aligned}$$

So we have $\chi_{i0} * \chi_{0j} = \chi_{ij}$. It is similar that $\chi_{0j} * \chi_{i0} = \chi_{ij}$.

(2) We show that the values that both sides of the desired equation taking on $h \# g^l$ are the same. Note that v^2 is the distinguished group-like element of H and $\psi^{\frac{n}{2}}(g) = -1$. For the case $l = 2s$, we have

$$\begin{aligned} &\sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_{k0}(h \# g^{2s}) + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}}(h \# g^{2s}) \\ &= \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_k(h v^{2s}) + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_k(h v^{2s}) \psi^{\frac{n}{2}}(g^{2s}) \\ &= \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_k(h v^{2s}) + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_k(h v^{2s}) \\ &= \sum_{k=0}^{m-1} N_{ij}^k \chi_k(h v^{2s}) = (\chi_i * \chi_j)(h v^{2s}) \\ &= \chi_i(h_{(1)} v^{2s}) \chi_j(h_{(2)} v^{2s}) \quad (\text{since } v^{2s} \text{ is a group-like element}) \\ &= \chi_{i0}(h_{(1)} \# g^{2s}) \chi_{j0}(h_{(2)} \# g^{2s}) \\ &= (\chi_{i0} * \chi_{j0})(h \# g^{2s}). \end{aligned}$$

For the case $l = 2s + 1$, we have

$$\begin{aligned}
& \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_{k0}(h \# g^{2s+1}) + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}}(h \# g^{2s+1}) \\
&= \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_k(h \mathbf{v}^{2s+1}) + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_k(h \mathbf{v}^{2s+1}) \psi^{\frac{n}{2}}(g^{2s+1}) \\
&= \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_k(h \mathbf{v}^{2s+1}) - \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_k(h \mathbf{v}^{2s+1}) \\
&= \sum_{k=0}^{m-1} L_{ij}^k \chi_k(h \mathbf{v}^{2s+1}) = (\chi_i \star \chi_j)(h \mathbf{v}^{2s+1}) \\
&= \chi_i(h_{(1)} \mathbf{v}^{2s+1}) \chi_j(h_{(2)} \mathbf{v}^{2s+1}) \quad (\text{since } \mathbf{v}^{2s} \text{ is a group-like element}) \\
&= \chi_{i0}(h_{(1)} \# g^{2s+1}) \chi_{j0}(h_{(2)} \# g^{2s+1}) \\
&= (\chi_{i0} * \chi_{j0})(h \# g^{2s+1}).
\end{aligned}$$

We obtain the desired equation.

(3) Using Part (1) and Part (2) we may see that Part (3) holds. \square

Remark 5.3. It follows from Proposition 5.2 (2) that the tensor product $(V_i \otimes W_0) \otimes (V_j \otimes W_0)$ has the following decomposition as $H \# \mathbb{k}G$ -modules:

$$(V_i \otimes W_0) \otimes (V_j \otimes W_0) \cong \bigoplus_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) (V_k \otimes W_0) \bigoplus \bigoplus_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) (V_k \otimes W_{\frac{n}{2}}).$$

Thus, these coefficients $\frac{1}{2} (N_{ij}^k + L_{ij}^k)$ and $\frac{1}{2} (N_{ij}^k - L_{ij}^k)$ are both nonnegative integers. Since all N_{ij}^k are nonnegative integers, it follows that all L_{ij}^k are integers and satisfy $-N_{ij}^k \leq L_{ij}^k \leq N_{ij}^k$. In view of this, the multiplication operator \star defined on the Grothendieck algebra $G_{\mathbb{k}}(H)$ can be defined as well on the Grothendieck ring $G_0(H)$.

The Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$ is an associative unity algebra with a \mathbb{k} -basis $\{\chi_{ij} \mid 0 \leq i \leq m-1, 0 \leq j \leq n-1\}$. Denote by

$$\theta_l = \frac{1}{n} \sum_{t=0}^{n-1} \psi(g)^{-lt} \chi_{0t} \text{ for } 0 \leq l \leq n-1.$$

Note that $\chi_{0t} = \psi^t$ for $0 \leq t \leq n-1$. Thus, $\{\theta_l \mid 0 \leq l \leq n-1\}$ is the set of all central primitive idempotents of the algebra $\mathbb{k}\widehat{G}$. Moreover, we have

$$\chi_{0j} * \theta_l = \psi(g)^{jl} \theta_l \text{ and } \chi_{ij} * \theta_l = \chi_{i0} * \chi_{j0} * \theta_l = \psi(g)^{jl} \chi_{i0} * \theta_l. \quad (5.1)$$

In particular, each θ_l is a central idempotent of $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$. The structure of the Grothendieck algebra $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$ now can be described as follows:

Theorem 5.4. *We have the following algebra isomorphisms:*

- (1) *If l is even, then $(G_{\mathbb{k}}(H \# \mathbb{k}G), *) * \theta_l \cong (G_{\mathbb{k}}(H), *)$.*
- (2) *If l is odd, then $(G_{\mathbb{k}}(H \# \mathbb{k}G), *) * \theta_l \cong (G_{\mathbb{k}}(H), \star)$.*
- (3) *We have $(G_{\mathbb{k}}(H \# \mathbb{k}G), *) \cong (G_{\mathbb{k}}(H), *)^{\oplus \frac{n}{2}} \bigoplus (G_{\mathbb{k}}(H), \star)^{\oplus \frac{n}{2}}$.*

Proof. (1) For the case l being even, we consider the \mathbb{k} -linear map

$$\phi_l : (G_{\mathbb{k}}(H), *) \rightarrow (G_{\mathbb{k}}(H \# \mathbb{k}G), *) * \theta_l, \quad \chi_i \mapsto \chi_{i0} * \theta_l \text{ for } 0 \leq i \leq m-1.$$

It can be seen from (5.1) that ϕ_l is bijective, and moreover, $\chi_{i\frac{n}{2}} * \theta_l = \chi_{i0} * \theta_l$. Now

$$\begin{aligned}
 \phi_l(\chi_i * \chi_j) &= \phi_l\left(\sum_{k=0}^{m-1} N_{ij}^k \chi_k\right) = \sum_{k=0}^{m-1} N_{ij}^k \chi_{k0} * \theta_l \\
 &= \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k + L_{ij}^k) \chi_{k0} * \theta_l + \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k - L_{ij}^k) \chi_{k0} * \theta_l \\
 &= \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k + L_{ij}^k) \chi_{k0} * \theta_l + \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}} * \theta_l \\
 &= (\chi_{i0} * \chi_{j0}) * \theta_l \\
 &= (\chi_{i0} * \theta_l) * (\chi_{j0} * \theta_l) \\
 &= \phi_l(\chi_i) * \phi_l(\chi_j).
 \end{aligned}$$

This shows that ϕ_l is an algebra isomorphism.

(2) For the case l being odd, we consider the \mathbb{k} -linear map

$$\phi_l : (G_{\mathbb{k}}(H), \star) \rightarrow (G_{\mathbb{k}}(H \# \mathbb{k}G), *) * \theta_l, \quad \chi_i \mapsto \chi_{i0} * \theta_l \text{ for } 0 \leq i \leq m-1.$$

It can be seen from (5.1) that ϕ_l is bijective, and moreover, $\chi_{i\frac{n}{2}} * \theta_l = -\chi_{i0} * \theta_l$. Now

$$\begin{aligned}
 \phi_l(\chi_i \star \chi_j) &= \phi_l\left(\sum_{k=0}^{m-1} L_{ij}^k \chi_k\right) = \sum_{k=0}^{m-1} L_{ij}^k \chi_{k0} * \theta_l \\
 &= \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k + L_{ij}^k) \chi_{k0} * \theta_l - \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k - L_{ij}^k) \chi_{k0} * \theta_l \\
 &= \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k + L_{ij}^k) \chi_{k0} * \theta_l + \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}} * \theta_l \\
 &= (\chi_{i0} * \chi_{j0}) * \theta_l \\
 &= (\chi_{i0} * \theta_l) * (\chi_{j0} * \theta_l) \\
 &= \phi_l(\chi_i) * \phi_l(\chi_j).
 \end{aligned}$$

Thus, ϕ_l is an algebra isomorphism.

(3) Let $(G_{\mathbb{k}}(H), *)^{\oplus \frac{n}{2}}$ be the direct sum of $\frac{n}{2}$ -folds of $(G_{\mathbb{k}}(H), *)$ and $(G_{\mathbb{k}}(H), \star)^{\oplus \frac{n}{2}}$ the direct sum of $\frac{n}{2}$ -folds of $(G_{\mathbb{k}}(H), \star)$. Since $\theta_0 + \theta_1 + \dots + \theta_{n-1} = 1$, where 1 is the unity χ_{00} of $(G_{\mathbb{k}}(H \# \mathbb{k}G), *)$, using Part (1) and Part (2) we obtain the following algebra isomorphism:

$$(G_{\mathbb{k}}(H \# \mathbb{k}G), *) \cong (G_{\mathbb{k}}(H), *)^{\oplus \frac{n}{2}} \bigoplus (G_{\mathbb{k}}(H), \star)^{\oplus \frac{n}{2}}.$$

The proof is completed. □

Remark 5.5. If $S^2 = id$, then $\mathbf{u} = \varepsilon(\Lambda)$ and $\lambda(e_i)/\varepsilon(\Lambda) = (\dim_{\mathbb{k}}(V_i)/\varepsilon(\Lambda))^2$ by Proposition 3.3 (3). Now η_i , as a square root of $\lambda(e_i)/\varepsilon(\Lambda)$, may be chosen to be $\dim_{\mathbb{k}}(V_i)/\varepsilon(\Lambda)$. It follows that

$$\mathbf{v} = \mathbf{u} \sum_{i=0}^{m-1} \frac{\eta_i}{\dim_{\mathbb{k}}(V_i)} e_i = 1.$$

In this case, The multiplication operator \star considered above is nothing but the convolution $*$ and the algebra $(G_{\mathbb{k}}(H), \star)$ is nothing but the Grothendieck algebra $(G_{\mathbb{k}}(H), *)$. Moreover,

$$(G_{\mathbb{k}}(H \# \mathbb{k}G), *) \cong (G_{\mathbb{k}}(H), *)^{\oplus \frac{n}{2}} \bigoplus (G_{\mathbb{k}}(H), \star)^{\oplus \frac{n}{2}} \cong (G_{\mathbb{k}}(H), *)^{\oplus n}.$$

Let \mathcal{C} be the \mathbb{k} -linear subcategory of $\text{Rep}(H \# \mathbb{k}G)$ spanned by objects

$$\{V_i \otimes W_0, V_i \otimes W_{\frac{n}{2}} \mid 0 \leq i \leq m-1\}.$$

Then \mathcal{C} is closed under taking dual by [Proposition 4.6](#). It follows from [Proposition 5.2](#) that \mathcal{C} is also closed under the tensor product of objects. More explicitly,

$$(V_i \otimes W_{\frac{n}{2}}) \otimes (V_j \otimes W_{\frac{n}{2}}) \cong (V_i \otimes W_0) \otimes (V_j \otimes W_0)$$

$$\cong \bigoplus_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) (V_k \otimes W_0) \bigoplus \bigoplus_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) (V_k \otimes W_{\frac{n}{2}}),$$

and

$$(V_i \otimes W_0) \otimes (V_j \otimes W_{\frac{n}{2}}) \cong (V_i \otimes W_{\frac{n}{2}}) \otimes (V_j \otimes W_0)$$

$$\cong \bigoplus_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) (V_k \otimes W_{\frac{n}{2}}) \bigoplus \bigoplus_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) (V_k \otimes W_0).$$

Hence \mathcal{C} is a fusion subcategory of $\text{Rep}(H \# \mathbb{k}G)$. Let $(G_{\mathbb{k}}(\mathcal{C}), *)$ be the Grothendieck algebra of \mathcal{C} . Then $\{\chi_{i0}, \chi_{i\frac{n}{2}} \mid 0 \leq i \leq m-1\}$ forms a \mathbb{k} -basis of $(G_{\mathbb{k}}(\mathcal{C}), *)$.

Proposition 5.6. *We have the following algebra isomorphism:*

$$(G_{\mathbb{k}}(\mathcal{C}), *) \cong (G_{\mathbb{k}}(H), *) \bigoplus (G_{\mathbb{k}}(H), \star).$$

Proof. We denote $\theta = \frac{1}{2}(\chi_{00} + \chi_{0\frac{n}{2}})$. Then $1 - \theta = \frac{1}{2}(\chi_{00} - \chi_{0\frac{n}{2}})$, where 1 is the unity χ_{00} of $(G_{\mathbb{k}}(\mathcal{C}), *)$. Note that θ and $1 - \theta$ are both central idempotents of $(G_{\mathbb{k}}(\mathcal{C}), *)$. In particular,

$$\chi_{i\frac{n}{2}} * \theta = \chi_{i0} * \chi_{0\frac{n}{2}} * \theta = \chi_{i0} * \theta \text{ for } 0 \leq i \leq m-1.$$

Consider the \mathbb{k} -linear map

$$\phi : (G_{\mathbb{k}}(H), *) \rightarrow (G_{\mathbb{k}}(\mathcal{C}), *) * \theta, \quad \chi_i \mapsto \chi_{i0} * \theta \text{ for } 0 \leq i \leq m-1.$$

It is easy to see that ϕ is bijective and

$$\begin{aligned} \phi(\chi_i * \chi_j) &= \phi\left(\sum_{k=0}^{m-1} N_{ij}^k \chi_k\right) = \sum_{k=0}^{m-1} N_{ij}^k \chi_{k0} * \theta \\ &= \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_{k0} * \theta + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_{k0} * \theta \\ &= \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k + L_{ij}^k) \chi_{k0} * \theta + \sum_{k=0}^{m-1} \frac{1}{2} (N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}} * \theta \\ &= (\chi_{i0} * \chi_{j0}) * \theta \\ &= (\chi_{i0} * \theta) * (\chi_{j0} * \theta) \\ &= \phi(\chi_i) * \phi(\chi_j). \end{aligned}$$

This shows that ϕ is an algebra isomorphism. Consider the \mathbb{k} -linear map

$$\varphi : (G_{\mathbb{k}}(H), \star) \rightarrow (G_{\mathbb{k}}(\mathcal{C}), *) * (1 - \theta), \quad \chi_i \mapsto \chi_{i0} * (1 - \theta) \text{ for } 0 \leq i \leq m-1.$$

Then φ is bijective. Using $\chi_{i\frac{n}{2}} * (1 - \theta) = -\chi_{i0} * (1 - \theta)$ we may see that

$$\begin{aligned}
\varphi(\chi_i * \chi_j) &= \varphi\left(\sum_{k=0}^{m-1} L_{ij}^k \chi_k\right) = \sum_{k=0}^{m-1} L_{ij}^k \chi_{k0} * (1 - \theta) \\
&= \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k + L_{ij}^k) \chi_{k0} * (1 - \theta) - \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k - L_{ij}^k) \chi_{k0} * (1 - \theta) \\
&= \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k + L_{ij}^k) \chi_{k0} * (1 - \theta) + \sum_{k=0}^{m-1} \frac{1}{2}(N_{ij}^k - L_{ij}^k) \chi_{k\frac{n}{2}} * (1 - \theta) \\
&= (\chi_{i0} * \chi_{j0}) * (1 - \theta) \\
&= (\chi_{i0} * (1 - \theta)) * (\chi_{j0} * (1 - \theta)) \\
&= \varphi(\chi_i) * \varphi(\chi_j)
\end{aligned}$$

Hence, φ is an algebra isomorphism. \square

Note that $\theta = \theta_0 + \theta_2 + \theta_4 + \cdots + \theta_{n-2}$ and $1 - \theta = \theta_1 + \theta_3 + \theta_5 + \cdots + \theta_{n-1}$. By [Theorem 5.4](#) and [Proposition 5.6](#), we have the following corollary:

Corollary 5.7. *We have algebra isomorphism:*

$$(G_{\mathbb{k}}(H\#\mathbb{k}G), *) \cong (G_{\mathbb{k}}(\mathcal{C}), *)^{\oplus \frac{n}{2}}.$$

Finally, we give some remarks on the pivotal (spherical) structures of the fusion categories $\text{Rep}(H\#\mathbb{k}G)$ and \mathcal{C} . Since $S_{H\#\mathbb{k}G}^2$ is an inner automorphism of $H\#\mathbb{k}G$ and

$$S_{H\#\mathbb{k}G}^2(h\#g^i) = (1_{H\#g})(h\#g^i)(1_{H\#g})^{-1},$$

where $1_{H\#g}$ is a group-like element of $H\#\mathbb{k}G$, the category $\text{Rep}(H\#\mathbb{k}G)$ is a pivotal fusion category, where the pivotal structure τ on $\text{Rep}(H\#\mathbb{k}G)$ is the isomorphism of monoidal functors $\tau_{V\otimes W} : V \otimes W \rightarrow (V \otimes W)^{**}$ natural in $V \otimes W$. Here $\tau_{V\otimes W}(v \otimes w)$ is defined by

$$\tau_{V\otimes W}(v \otimes w)(f) = f(1_{H\#g} \cdot v \otimes w) = f(v \cdot v \otimes g \cdot w)$$

for $v \in V, w \in W$ and $f \in (V \otimes W)^*$.

The quantum dimension of $V \otimes W \in \text{Rep}(H\#\mathbb{k}G)$ with respect to the pivotal structure τ is denoted by $\mathbf{dim}(V \otimes W)$, which is the following composition

$$\mathbf{1} \xrightarrow{\text{coev}_{(V \otimes W)}} (V \otimes W) \otimes (V \otimes W)^* \xrightarrow{\tau_{V \otimes W} \otimes \text{id}} (V \otimes W)^{**} \otimes (V \otimes W)^* \xrightarrow{\text{ev}_{(V \otimes W)^*}} \mathbf{1},$$

where $\mathbf{1}$ is the trivial $H\#\mathbb{k}G$ -module $V_0 \otimes W_0$. From this composition, we have

$$\mathbf{dim}(V \otimes W) = \chi_V(\mathbf{v}) \chi_W(g).$$

Especially,

$$\mathbf{dim}(V_i \otimes W_j) = \chi_i(\mathbf{v}) \psi^j(g) = \varepsilon(\Lambda) \eta_i \psi^j(g).$$

For the dual module $(V_i \otimes W_j)^* \cong V_{i^*} \otimes W_{j^*}$, we have

$$\mathbf{dim}(V_{i^*} \otimes W_{j^*}) = \varepsilon(\Lambda) \eta_{i^*} \psi^j(g^{-1}) = \varepsilon(\Lambda) \eta_i \psi^j(g^{-1}).$$

Therefore, $\mathbf{dim}(V_{i^*} \otimes W_{j^*}) = \mathbf{dim}(V_i \otimes W_j)$ if and only if $\psi^j(g) = \psi^j(g^{-1})$, if and only if $j = 0$ or $j = \frac{n}{2}$. This means that with respect to the pivotal structure τ , the fusion category $\text{Rep}(H\#\mathbb{k}G)$ is pivotal but not spherical, while the fusion subcategory \mathcal{C} of $\text{Rep}(H\#\mathbb{k}G)$ spanned by objects $\{V_i \otimes W_0, V_i \otimes W_{\frac{n}{2}} \mid 0 \leq i \leq m-1\}$ is both pivotal and spherical.

Funding

The second author was supported by National Natural Science Foundation of China (Grant No. 12271243). The third author was supported by National Natural Science Foundation of China (Grant No. 12371041).

References

- [1] Aljadeff, E., Etingof, P., Gelaki, S., Nikshych, D. (2002). On twisting of finite-dimensional Hopf algebras. *J. Algebra* 256:484–501.
- [2] Chen, J., Yang, S., Wang, D. (2021). Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type. *Front. Math. China* 16(1):29–47.
- [3] Etingof, P., Gelaki, S. (1998). On finite dimensional semisimple and cosemisimple Hopf algebras in positive characteristic. *Int. Math. Res. Notices* 1998(16):851–864.
- [4] Geck, M., Pfeiffer, G. *Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras*. New York: Oxford University Press, 2000.
- [5] Kashina, Y. (2000). Classification of semisimple Hopf algebras of dimension 16. *J. Algebra* 232:617–663.
- [6] Li, K., Liu, G. (2022). On the antipode of Hopf algebras with the dual Chevalley property. *J. Pure Appl. Algebra* 226(3):106871.
- [7] Lorenz, M. (1997). Representations of finite-dimensional Hopf algebras. *J. Algebra* 188:476–505.
- [8] Molnar, R. K. (1977). Semi-direct products of Hopf algebras. *J. Algebra* 47(1):29–51.
- [9] Montgomery, S. (1993). *Hopf Algebras and Their Actions on Rings*, CBMS Series in Math, Vol. 82. Providence: AMS.
- [10] Montgomery, S., Witherspoon, S. J. (1998). Irreducible representations of crossed products. *J. Pure Appl. Algebra* 129(3):315–326.
- [11] Nichols, W. D., Richmond, M. B. (1996). The Grothendieck group of a Hopf algebra. *J. Pure Appl. Algebra* 106(3):297–306.
- [12] Nikshych, D. (1998). K_0 -rings and twisting of finite dimensional semisimple Hopf algebras. *Comm. Algebra* 26:321–342.
- [13] Radford, D. E. (1994). The trace function and Hopf algebras. *J. Algebra* 163:583–622.
- [14] Radford, D. E. (1976). The order of the antipode of a finite dimensional Hopf algebra is finite. *Am. J. Math.* 98:333–355.
- [15] Sommerhäuser, Y. (1998). On Kaplansky's fifth conjecture. *J. Algebra* 204:202–224.
- [16] Wang, Z., Liu, G., Li, L. (2024). Higher Frobenius-Schur indicators for semisimple Hopf algebras in positive characteristic. *Algebra Colloq.* 31(4):675–688.
- [17] Yang, R., Yang, S. (2021). The Grothendieck rings of Wu-Liu-Ding algebras and their Casimir numbers (II). *Comm. Algebra* 49(5):2041–2073.