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Abstract. In this paper, we study quasitriangular structures on a class of semisimple Hopf
algebras kG#σ,τkZ2 constructed through abelian extensions of kZ2 by kG for an abelian
group G. We find that there is an analogy between these quasitriangular structures and
the solutions of a linear system.
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1 Introduction

Quasitriangular Hopf algebra is undoubtedly important and has been studied ex-
tensively in past years. It is of interest to know how to construct a Hopf algebra,
determine whether it is quasitriangular and, moreover, describe all possible quasi-
triangular structures. Some researches related to this topic can be found in [2–4, 6].

In this paper we study quasitriangular structures on a class of semisimple Hopf
algebras H arising from exact factorizations of finite groups:

kG ι−−→ H
π−−→ kZ2, (1.1)

where G is an abelian group. The well-known 8-dimensional Kac-Paljutkin algebra
K8 is an example of this kind. We can write H = kG#σ,τkZ2, associated with
appropriate cohomology data σ and τ (see Section 2 for the definition).

In the paper [10], the authors have shown that there are only two types of
quasitriangular structures on kG#σ,τkZ2: one is called trivial and the other non-
trivial. The present work can be regarded as a continuation of [10]. As the trivial
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quasitriangular structures can be given quite easily, we focus on the non-trivial
quasitriangular structures. We first show that there is a division-like operation on
the set of non-trivial quasitriangular structures. Using the division-like operation,
we divide the solutions of non-trivial quasitriangular structures in two steps by
analogy with the solutions of a system of linear equations. One step is to give all
the general solutions, while the other step is to find a special solution; the definitions
of a general solution and a special solution are given in Section 3.

This paper is organized as follows. In Section 2, we recall the definition of Hopf
algebras kG#σ,τkZ2 and give some examples of them. After that we review some
main results of [10] about the form of the quasitriangular structures on kG#σ,τkZ2.
In Section 3, we prove that there is a division-like operation on the set of non-trivial
quasitriangular structures. Then we observe that a non-trivial quasitriangular struc-
ture of kG#σ,τkZ2 can be expressed as a combination of a general solution and a
fixed special solution. Moreover, we show that the set of general solutions has a
natural group structure.

Throughout the paper we work over an algebraically closed field k of charac-
teristic 0. All Hopf algebras in this paper are finite-dimensional. The symbol δ in
Section 2 means the classical Kronecker symbol.

2 Abelian Extensions of Z2

In this section, we recall the definition of kG#σ,τkZ2, and then we give some ex-
amples of kG#σ,τkZ2 for guiding our further research.

• The definition of kG#σ,τkZ2.

Definition 2.1. A short exact sequence of Hopf algebras is a sequence of Hopf
algebras and Hopf algebra maps

K
ι−−→ H

π−−→ A (2.1)

such that
(i) ι is injective,
(ii) π is surjective, and

(iii) ker(π) = HK+, where K+ is the kernel of the counit of K.

In this situation H is said to be an extension of A by K [5, Definiton 1.4]. An
extension (2.1) above such that K is commutative and A is cocommutative is called
abelian. In this paper, we only study the following special abelian extensions:

kG ι−−→ H
π−−→ kZ2,

where G is a finite abelian group. Abelian extensions were classified by Masuoka
(see [5, Proposition 1.5]), and the above H can be expressed as kG#σ,τkZ2, which
is defined as follows.

Let Z2 = {1, x} be the cyclic group of order 2 and let G be a finite group. To
give the description of kG#σ,τkZ2, we need the following data:

(i) / : Z2 → Aut(G) is an injective group homomorphism;
(ii) σ : G→ k× is a map such that σ(g / x) = σ(g) for g ∈ G and σ(1) = 1;
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(iii) τ : G×G→ k× is a unital 2-cocycle and satisfies

σ(gh)σ(g)−1σ(h)−1 = τ(g, h)τ(g / x, h / x) for g, h ∈ G.

The aim of (i) is to avoid making a commutative algebra (in such a case all quasi-
triangular structures are given by bicharacters and, thus, are known).

Definition 2.2. [1, Section 2.2] As an algebra, the Hopf algebra kG#σ,τkZ2 is
generated by {eg, x}g∈G satisfying

egeh = δg,heg, xeg = eg/xx, x2 =
∑
g∈G

σ(g)eg, g, h ∈ G.

The coproduct, counit and antipode are given by

∆(eg) =
∑

h,k∈G, hk=g

eh ⊗ ek, ∆(x) =
[ ∑
g,h∈G

τ(g, h)eg ⊗ eh
]
(x⊗ x),

ε(x) = 1, ε(eg) = δg,11,

S(x) =
∑
g∈G

σ(g)−1τ(g, g−1)−1e(g / x)−1x, S(eg) = eg−1 , g ∈ G.

The following are some examples of kG#σ,τkZ2 and we will discuss them in the
next sections.

Example 2.3. Let n be an odd number and let i be a primitive 4th root of 1. A
Hopf algebra H belonging to kG#σ,τkZ2 is called A32n2 by us if the data (G, /, σ, τ)
of H satisfies the following conditions:

(i) G = Z4n × Z4n = 〈a, b | a4n = b4n = 1, ab = ba〉 and a / x = a2n+1, b / x = b;
(ii) σ(g) = 1 for g ∈ G;

(iii) τ(aibj , akbl) = ijk for 1 ≤ i, k ≤ 4n and 1 ≤ j, l ≤ 4n.

• Some results about quasitriangular structures on kG#σ,τkZ2. Now we
review some results in [10] about quasitriangular structures on kG#σ,τkZ2 and give
a necessary condition for kG#σ,τkZ2 preserving a quasitriangular structure.

Recall that a quasitriangular Hopf algebra is a pair (H,R), where H is a Hopf
algebra and R =

∑
R(1) ⊗R(2) is an invertible element in H ⊗H such that

(∆⊗ Id)(R) = R13R23, (Id⊗∆)(R) = R13R12, ∆op(h)R = R∆(h)

for h ∈ H. Here, by definition, R12 =
∑
R(1) ⊗R(2) ⊗ 1, R13 =

∑
R(1) ⊗ 1⊗R(2)

and R23 =
∑

1 ⊗ R(1) ⊗ R(2). The element R is called a universal R-matrix of H
or a quasitriangular structure on H.

The first lemma below is well known.

Lemma 2.4. [8, Proposition 12.2.11] Let H be a Hopf algebra and R ∈ H ⊗H.
For f ∈ H∗, if we define l(f) := (f ⊗ Id)(R) and r(f) := (Id⊗f)(R), then the
following statements are equivalent:

(i) (∆⊗ Id)(R) = R13R23 and (Id⊗∆)(R) = R13R12.
(ii) l(f1)l(f2) = l(f1f2) and r(f1)r(f2) = r(f2f1) for f1, f2 ∈ H∗.

The following lemma is shown in [10, Lemma 3.2].
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Lemma 2.5. Denote the dual basis of {eg, egx}g∈G by {Eg, Xg}g∈G, that is,
Eg(eh) = δg,h, Eg(ehx) = 0, Xg(eh) = 0, Xg(ehx) = δg,h for g, h ∈ G. Then
the following equations hold in the dual Hopf algebra (kG#σ,τkZ2)∗ :

EgEh = Egh, EgXh = XhEg = 0, XgXh = τ(g, h)Xgh, g, h ∈ G.

Let kG#σ,τkZ2 be as before. We need the following two notions, which will be
used freely throughout this paper:

S := {g | g ∈ G, g / x = g},
T := {g | g ∈ G, g / x 6= g}.

Let w1, w2, w3, w4 : G×G→ k be four maps, and define R as follows:

R :=
∑
g,h∈G

w1(g, h)eg ⊗ eh +
∑
g,h∈G

w2(g, h)egx⊗ eh

+
∑
g,h∈G

w3(g, h)eg ⊗ ehx+
∑
g,h∈G

w4(g, h)egx⊗ ehx.

The following proposition shows that universal R-matrices of kG#σ,τkZ2 have only
two possible forms.

Proposition 2.6. [10, Proposition 3.6] If R is a universalR-matrix of kG#σ,τkZ2,
then R must belong to one of the following two cases:

(i) R =
∑
g,h∈G w

1(g, h)eg ⊗ eh;

(ii) R =
∑
s1,s2∈S w

1(s1, s2)es1 ⊗ es2 +
∑
s∈S, t∈T w

2(s, t)esx⊗ et
+
∑
t∈T, s∈S w

3(t, s)et ⊗ esx+
∑
t1,t2∈T w

4(t1, t2)et1x⊗ et2x.

Remark 2.7. For simplicity, if R has the form in the case (i) (resp., (ii)) of Propo-
sition 2.6, we will say that R has trivial form (resp., non-trivial form). Further, if
R is a universal R-matrix and has form (i) (resp., (ii)), we call it a trivial (resp.,
non-trivial) quasitriangular structure. We will call the w1 (resp., wi (1 ≤ i ≤ 4)) in
the case (i) (resp., (ii)) the associated map(s) of R.

If R has non-trivial form, then one can see that R is invertible if and only if
w1(s1, s2) 6= 0, w2(s, t) 6= 0, w3(t, s) 6= 0, w4(t1, t2) 6= 0 for s, s1, s2 ∈ S and
t, t1, t2 ∈ T . Therefore, we always assume that w1(s1, s2) 6= 0, w2(s, t) 6= 0,
w3(t, s) 6= 0, w4(t1, t2) 6= 0 for s, s1, s2 ∈ S and t, t1, t2 ∈ T in the following
content.

To determine all quasitriangular structures on kG#σ,τkZ2, we give the following
necessary condition.

Proposition 2.8. If kG#σ,τkZ2 admits a quasitriangular structure, then we have
τ(s1, s2) = τ(s2, s1) for s1, s2 ∈ S.

Proof. Note that the S is a subgroup of G. Consider the data (G, /, σ, τ) restricted
to S, and we write it as (S, /, σ|S , τ |S×S). It can be seen that (S, /, σ|S , τ |S×S)
satisfies the compatible conditions. By Definition 2.2, a Hopf algebra is given and
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we denote it as kS#σ,τkZ2. Let ϕ : kG#σ,τkZ2 → kS#σ,τkZ2 be a linear map which
is defined as follows:

ϕ(es) = es, ϕ(et) = 0, ϕ(esx) = esx, ϕ(etx) = 0,

where s ∈ S and t ∈ T . Hence, it can be checked that ϕ is a surjective Hopf
map. Assume that kG#σ,τkZ2 admits a quasitriangular structure. Since kS#σ,τkZ2

is a quotient of kG#σ,τkZ2, we know that kS#σ,τkZ2 admits a quasitriangular
structure. Combining the quasitriangularity of kS#σ,τkZ2 with its definition, we
know that kS#σ,τkZ2 is cocommutative. In particular, we have ∆cop(x) = ∆(x)
for kS#σ,τkZ2. This implies τ(s1, s2) = τ(s2, s1) for s1, s2 ∈ S. �

If we let η(g, h) = τ(g, h)τ(h, g)−1 for g, h ∈ G, then η is a bicharacter on G
since τ is a 2-cocycle on the abelian group G, and so the necessary condition of
Proposition 2.8 is equivalent to η(s1, s2) = 1 for s1, s2 ∈ S. We will often use η
without explanation in the following.

Corollary 2.9. The Hopf algebra A32n2 in Example 2.3 admits no quasitriangular
structure.

Proof. Recall that η(g, h) = τ(g, h)τ(h, g)−1 for g, h ∈ G. It can be seen that
a2n, b ∈ S and η(a2n, b) = −1. Thus, there is no quasitriangular structure by
Proposition 2.8. �

The following proposition is shown in [10, Proposition 3.8].

Proposition 2.10. If there is a non-trivial quasitriangular structure on kG#σ,τkZ2,
then

(i) |S| = |T |;
(ii) There is b ∈ S such that b2 = 1 and t / x = tb for t ∈ T ;

(iii) |G| = 4m for some m ∈ N+.

Remark 2.11. Since our aim is to find all non-trivial quasitriangular structures on
kG#σ,τkZ2, we agree that kG#σ,τkZ2 satisfies both the condition of Proposition
2.8 and the conditions of Proposition 2.10 in all that follows.

3 Division-Like Operation

In this section, we introduce a division-like operation on the set of non-trivial quasi-
triangular structures of kG#σ,τkZ2. Using the division-like operation, we prove
that a non-trivial quasitriangular structure of kG#σ,τkZ2 can be expressed as a
combination of a general solution and a fixed special solution.

Using the data (G, /, σ, τ) of the Hopf algebra kG#σ,τkZ2, we can induce another
data (G′, /′, σ′, τ ′) by making G′ := G, /′ := / and σ′(g) := 1, τ ′(g, h) := 1 for
g, h ∈ G. Then the data (G′, /′, σ′, τ ′) determines a Hopf algebra by Definition 2.2,
and we simply denote it as kG#kZ2.

Assume that R and R′ are non-trivial quasitriangular structures on kG#σ,τkZ2,
and suppose that the four maps associated with R (resp., R′) are wi (resp., w′i),
1 ≤ i ≤ 4. Then we can use R,R′ to define R′′ ∈ (kG#kZ2)⊗ (kG#kZ2) as follows.
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The R′′ has a non-trivial form with associated maps vi (1 ≤ i ≤ 4), where vi are
determined by R,R′ as

v1(s1, s2) :=
w1(s1, s2)

w′1(s1, s2)
, v2(s, t) :=

w2(s, t)

w′2(s, t)
,

v3(t, s) :=
w3(t, s)

w′3(t, s)
, v4(t1, t2) :=

w4(t1, t2)

w′4(t1, t2)

for s, s1, s2 ∈ S and t, t1, t2 ∈ T . For simplicity, we denote R′′ as R
R′ .

Theorem 3.1. The above R
R′ is a non-trivial quasitriangular structure on kG#kZ2.

To show Theorem 3.1, we need the following lemmas.

Lemma 3.2. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then ∆op(h)R = R∆(h) holds
for h ∈ kG#σ,τkZ2 if and only if the following equations hold:

w2(s, t / x) = w2(s, t) η(s, t), s ∈ S, t ∈ T, (3.1)

w3(t / x, s) = w3(t, s) η(t, s), s ∈ S, t ∈ T, (3.2)

τ(t2, t1)w4(t1 / x, t2 / x) = τ(t1 / x, t2 / x)w4(t1, t2), t1, t2 ∈ T. (3.3)

Proof. Since kG#σ,τkZ2 is generated by {eg, x | g ∈ G} as an algebra, we know
that ∆op(h)R = R∆(h) for h ∈ kG#σ,τkZ2 is equivalent to ∆op(h)R = R∆(h) for
h ∈ {eg, x | g ∈ G}. We first show ∆op(eg)R = R∆(eg) for g ∈ G. Taking s ∈ S
and t ∈ T , we directly have

∆op(es)R =
[ ∑
s1,s2∈S,
s1s2=s

w1(s1, s2)es1 ⊗ es2
]
+
[ ∑
t1,t2∈T,
t1t2=s

w4(t1, t2)et1x⊗ et2x
]
,

R∆(es) =
[ ∑
s1,s2∈S,
s1s2=s

w1(s1, s2)es1 ⊗ es2
]
+
[ ∑
t1,t2∈T,
t1t2=s

w4(t1 / x, t2 / x)et1/xx⊗ et2/xx
]
.

By assumption, t1t2 ∈ S. Thus, we find that t1t2 = (t1 / x)(t2 / x). This implies
∆op(s)R = R∆(s). Similarly, we have

∆op(et)R = R∆(et)

=
[ ∑
s∈S, t′∈T,
st′=s

w2(s, t′)esx⊗ et′
]
+
[ ∑
s∈S, t′∈T,
st′=s

w3(t′, s)et′ ⊗ esx
]
,

but G = S ∪ T , and so we have shown that ∆op(eg)R = R∆(eg) for g ∈ G. Next
we prove that ∆op(x)R = R∆(x) is equivalent to the equations (3.1)–(3.3). On the
one hand, we have

∆op(x)R =
[ ∑
g,h∈G

τ(h, g)eg ⊗ eh
]
(x⊗ x)R
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=
[ ∑
s1,s2∈S

τ(s2, s1)w1(s1, s2)es1 ⊗ es2

+
∑

s∈S, t∈T
τ(t, s)w2(s, t / x)esx⊗ et

+
∑

t∈T, s∈S
τ(s, t)w3(t / x, s)et ⊗ esx

+
∑

t1,t2∈T
τ(t2, t1)w4(t1 / x, t2 / x)et1x⊗ et2x

]
(x⊗ x).

On the other hand, we have

R∆(x) = R
[ ∑
g,h∈G

τ(g, h)eg ⊗ eh
]
(x⊗ x)

=
[ ∑
s1,s2∈S

τ(s1, s2)w1(s1, s2)es1 ⊗ es2

+
∑

s∈S, t∈T
τ(s, t)w2(s, t)esx⊗ et

+
∑

t∈T, s∈S
τ(t, s)w3(t, s)et ⊗ esx

+
∑

t1,t2∈T
τ(t1 / x, t2 / x)w4(t1, t2)et1x⊗ et2x

]
(x⊗ x).

By assumption, we already have τ(s1, s2) = τ(s2, s1) for s1, s2 ∈ S. Therefore,
∆op(x)R = R∆(x) holds if and only if the equations (3.1)–(3.3) hold. �

In order to know whether (∆ ⊗ Id)(R) = R13R23 and (Id⊗∆)(R) = R13R12

hold, we need the following lemmas.

Lemma 3.3. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then l(f1)l(f2) = l(f1f2) for
f1, f2 ∈ (kG#σ,τkZ2)∗ if and only if the following equations hold for s, s1, s2 ∈ S
and t, t1, t2 ∈ T :

(i) l(Es1)l(Es2) = l(Es1s2), l(Es)l(Et) = l(Est), l(Et1)l(Et2) = l(Et1t2);
(ii) l(Xs1)l(Xs2) = l(Xs1s2), l(Xs)l(Xt) = l(XsXs);

(iii) l(Xt)l(Xs) = l(XtXs), l(Xt1)l(Xt2) = l(Xt1Xt2).

Proof. By definition, we only need to show the sufficiency. To do this, we will check
the following equations:

l(Eg)l(Xh) = l(EgXh), l(Xh)l(Eg) = l(XhEg), l(Es)l(Et) = l(Est),

where g, h ∈ G, s ∈ S, and t ∈ T . Since R has non-trivial form, we have

l(Es) =
∑
s′∈S

w1(s, s′)es′ , l(Et) =
∑
s′∈S

w3(t, s′)es′x, (3.4)

l(Xs) =
∑
t∈S

w2(s, t′)et′ , l(Xt) =
∑
t′∈T

w4(t, t′)et′x. (3.5)
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Thus, we get l(Eg)l(Xh) = l(EgXh) = 0 and l(Xh)l(Eg) = l(XhEg) = 0 for g, h in
G. Moreover, we have l(Es)l(Et) = l(Et)l(Es) by (3.4). So l(Es)l(Et) = l(Est). �

Lemma 3.4. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then r(f1)r(f2) = r(f2f1) for
f1, f2 ∈ (kG#σ,τkZ2)∗ if and only if the following equations hold for s, s1, s2 ∈ S
and t, t1, t2 ∈ T :

(i) r(Es1)r(Es2) = r(Es1s2), r(Es)r(Et) = r(Est), r(Et1)r(Et2) = r(Et1t2);
(ii) r(Xs1)r(Xs2) = r(Xs1s2), r(Xs)r(Xt) = r(XtXs);

(iii) r(Xt)r(Xs) = r(XsXt), r(Xt1)r(Xt2) = r(Xt2Xt1).

Proof. Similar to the proof of Lemma 3.3. �

In order to use Lemmas 3.3–3.4 more conveniently, we give some more lemmas.

Lemma 3.5. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then we have

(i) l(Es1)l(Es2) = l(Es1s2)⇔ w1(s1, s)w
1(s2, s) = w1(s1s2, s),

(ii) l(Es)l(Et) = l(Est)⇔ w1(s, s′)w3(t, s′) = w3(st, s′),
(iii) l(Et1)l(Et2) = l(Et1t2)⇔ w3(t1, s)w

3(t2, s)σ(s) = w1(t1t2, s),
where s, s′, s1, s2 ∈ S and t, t1, t2 ∈ T .

Proof. We only show (iii), and the other statements can be proved in a similar way.
By (3.4), we have

l(Et1)l(Et2) =
[∑
s∈S

w3(t1, s)esx
][∑
s∈S

w3(t2, s)esx
]

=
∑
s∈S

w3(t1, s)w
3(t2, s)σ(s)es.

Since we have assumed that |S| = |T |, we obtain TT = S. Hence, t1t2 ∈ S and we
get

l(Et1t2) =
∑
s∈S

w1(t1t2, s)es.

Thus, (iii) holds. �

Lemma 3.6. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then we have

(i) l(Xs1)l(Xs2) = l(Xs1Xs2)⇔ w2(s1, t)w
2(s2, t) = τ(s1, s2)w2(s1s2, t),

(ii) l(Xs)l(Xt) = l(XsXt)⇔ w2(s, t′)w4(t, t′) = τ(s, t)w4(st, t′),
(iii) l(Xt)l(Xs) = l(XtXs)⇔ w2(s, t′ / x)w4(t, t′) = τ(t, s)w4(st, t′),
(iv) l(Xt1)l(Xt2) = l(Xt1Xt2)⇔ w4(t1, t

′)w4(t2, t
′ / x)σ(t) = τ(t1, t2)w2(t1t2, t

′),
where s, s′, s1, s2 ∈ S and t, t′, t1, t2 ∈ T .

Proof. The statements (iii) and (iv) are not obvious, and hence we only show them.
By (3.5), we have

l(Xt)l(Xs) =
[∑
t′∈T

w4(t, t′)et′x
][∑
t′∈T

w2(s, t′)et′
]

=
∑
t′∈T

w4(t, t′)w2(s, t′ / x)et′x
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and

l(Xst) =
∑
t′∈T

w4(st, t′)et′x.

Thus, (iii) holds. Directly, we have

l(Xt1)l(Xt2) =
[∑
t′∈T

w4(t1, t
′)et′x

][∑
t′∈T

w4(t2, t
′)et′x

]
=

∑
t∈T

w4(t1, t
′)w4(t2, t

′)σ(t′)et′ .

Since we have assumed that |S| = |T |, we know that TT = S. Hence, t1t2 ∈ S and
we get

l(Xt1t2) =
∑
t′∈T

w2(t1t2, t
′)et′ .

Thus, (iv) holds. �

The following two lemmas hold, which can be proved similarly to Lemmas 3.5
and 3.6, respectively.

Lemma 3.7. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then we have

(i) r(Es1)r(Es2) = r(Es1s2)⇔ w1(s, s1)w1(s, s2) = w1(s, s1s2),
(ii) r(Es)r(Et) = r(Est)⇔ w1(s′, s)w2(s′, t) = w2(s′, st),

(iii) r(Et1)r(Et2) = r(Et1t2)⇔ w2(s, t1)w2(s, t2)σ(s) = w1(s, t1t2),
where s, s′, s1, s2 ∈ S and t, t1, t2 ∈ T .

Lemma 3.8. Let R ∈ (kG#σ,τkZ2) ⊗ (kG#σ,τkZ2) and assume that R has non-
trivial form with associated maps wi (1 ≤ i ≤ 4). Then we have

(i) r(Xs1)r(Xs2) = r(Xs2Xs1)⇔ w3(t, s1)w3(t, s2) = τ(s2, s1)w3(t, s1s2),
(ii) r(Xs)r(Xt) = r(XtXs)⇔ w3(t′, s)w4(t′, t) = τ(t, s)w4(t′, st),
(iii) r(Xt)r(Xs) = r(XsXt)⇔ w3(t′ / x, s)w4(t′, t) = τ(s, t)w4(t′, st),
(iv) r(Xt1)r(Xt2) = r(Xt2Xt1)⇔ w4(t′, t1)w4(t′/x, t2)σ(t′) = τ(t1, t2)w3(t′, t1t2),

where s, s1, s2 ∈ S and t, t′, t1, t2 ∈ T .

Remark 3.9. Assume that R has non-trivial form. Owing to the definition of quasi-
triangular structure, we know that R is a quasitriangular structure on kG#σ,τkZ2

if and only if it satisfies the conditions of Lemma 3.2 and Lemmas 3.5–3.8.

Proof of Theorem 3.1. In view of the above remark, we only need to show that
the maps vi (1 ≤ i ≤ 4) satisfy the conditions of Lemmas 3.2 and 3.5–3.8. By
assumption, R and R′ are non-trivial quasitriangular structures on kG#σ,τkZ2.
Thus, wi and w′i (1 ≤ i ≤ 4) satisfy the conditions of Lemmas 3.2 and 3.5–3.8.
This implies that vi (1 ≤ i ≤ 4) satisfy the conditions of Lemmas 3.2 and 3.5–
3.8. �

By virtue of Theorem 3.1, we introduce the following definition.
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Definition 3.10. LetNQ={non-trivial quasitriangular structures onkG#σ,τkZ2}
and let NQ′ = {non-trivial quasitriangular structures on kG#kZ2}. If NQ is not
empty, then the map φ : NQ × NQ → NQ′ defined by φ(R,R′) = R

R′ is called a
division-like operation on NQ.

Remark 3.11. We will call a non-trivial quasitriangular structure on kG#kZ2 a
general solution for kG#σ,τkZ2. Naturally, we will call a non-trivial quasitriangular
structure on kG#σ,τkZ2 a special solution for kG#σ,τkZ2. By analogy with the
solutions of a linear system, one can use two steps to determine quasitriangular
structures of kG#σ,τkZ2. One step is to give all the general solutions for kG#σ,τkZ2,
while the other step is to find a special solution for kG#σ,τkZ2.

Let NQ and NQ′ be the sets as in Definition 3.10. Then we have

Proposition 3.12. If NQ 6= ∅ and R0 ∈ NQ, then the map ϕ : NQ → NQ′

defined by ϕ(R) = R
R0

is bijective.

Proof. Assume that the associated maps of R0 are wi0 (1 ≤ i ≤ 4). By Theorem
3.1, ϕ is well-defined. By the definition of ϕ, we know that ϕ is injective. Assume
that R′ ∈ NQ′ with associated maps vi (1 ≤ i ≤ 4). Therefore, we can define
R ∈ (kG#σ,τkZ2)⊗(kG#σ,τkZ2) such that R has non-trivial form and its associated
maps are (wi0v

i) (1 ≤ i ≤ 4). Similarly to the proof of Theorem 3.1, we know that
R ∈ NQ. By definition, we get ϕ(R) = R′. This implies that ϕ is surjective. �

We know that the homogeneous solutions of a system of linear equations form
a vector space. Similarly, all general solutions for kG#σ,τkZ2 form a finite group.
Assume that R0, R

′
0 ∈ NQ′ and suppose that the four maps associated with R0

(resp., R′0) are wi0 (resp., w′i0 ) for 1 ≤ i ≤ 4. Then we can use these maps to define
four other maps vi0 (1 ≤ i ≤ 4) as follows:

v10(s1, s2) := w1
0(s1, s2)w′10 (s1, s2), v20(s, t) := w2

0(s, t)w′20 (s, t),

v30(t, s) := w3
0(t, s)w′30 (t, s), v40(t1, t2) := w4

0(t1, t2)w′40 (t1, t2),

where s, s1, s2 ∈ S and t, t1, t2 ∈ T . Using the maps vi0 (1 ≤ i ≤ 4), we can define
R′′0 ∈ (kG#kZ2) ⊗ (kG#kZ2) as follows. The R′′0 has non-trivial form and the
associated maps of it are given by vi0 (1 ≤ i ≤ 4). For simplicity, we denote R′′0 as
R0 ·R′0.

Proposition 3.13. We have R0 ·R′0 ∈ NQ′. Moreover, (NQ′, ·) is a finite group.

Proof. By assumption, R0, R
′
0 ∈ NQ′. Thus, R0 and R′0 satisfy the conditions of

Lemmas 3.2 and 3.5–3.8. This implies that R0 · R′0 also satisfies the conditions of
Lemmas 3.2 and 3.5–3.8. Hence, R0 ·R′0 is a quasitriangular structure on kG#kZ2.
To complete the proof, we only need to show that NQ′ has a unit and it is finite.
Define a non-trivial form R1 by letting wi1 = 1 for 1 ≤ i ≤ 4, where wi1 are associated
maps of R1. Obviously, R1 is the unit of (NQ′, ·). Since kG#kZ2 is semisimple, we
know that NQ′ is finite by [7, Theorem 1]. �

Now, let us give an example to illustrate (NQ′, ·). Recall that the well-known
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8-dimensional Kac algebra K8 is isomorphic to kG#σ,τkZ2 (see for example [1,
Section 2.3]), and the data (G, /, σ, τ) of K8 is given as follows:

(i) G = Z2 × Z2 = 〈a, b | a2 = b2 = 1, ab = ba〉 and a / x = b, b / x = a;
(ii) σ(aibj) = (−1)ij , 1 ≤ i, j ≤ 2;

(iii) τ(aibj , akbl) = (−1)jk, 1 ≤ i, j, k, l ≤ 2.

Example 3.14. Let γ ∈ k such that γ4 = −1. Define Rγ as below:

Rγ := [e1 ⊗ e1 + e1 ⊗ eab + eab ⊗ e1 − eab ⊗ eab]
+ [e1x⊗ ea + e1x⊗ eb − γ2eabx⊗ ea + γ2eabx⊗ eb]
+ [ea ⊗ e1x+ eb ⊗ e1x+ γ2ea ⊗ eabx− γ2eb ⊗ eabx]

+ [γ−1eax⊗ eax+ γeax⊗ ebx+ γebx⊗ eax+ γ−1ebx⊗ ebx].

The quasitriangular structures on K8 were determined in [9]. From this result, we
know that {Rγ | γ4 = −1} gives all non-trivial quasitriangular structures on K8.
By the definition of NQ′, one can get NQ′ ∼= Z4 for K8.

Lastly, we will introduce a division-like operation on the set of trivial quasitri-
angular structures of kG#σ,τkZ2 for the sake of uniformity. To do this, we first give
the following proposition.

Proposition 3.15. [10, Proposition 3.10] R is a trivial quasitriangular structure
on kG#σ,τkZ2 if and only if the following conditions hold:

(i) R =
∑
g,h∈G w(g, h)eg ⊗ eh for some bicharacter w on G;

(ii) w(g / x, h / x) = w(g, h)η(g, h), where η(g, h) = τ(g, h)τ(h, g)−1 for g, h ∈ G.

Suppose R =
∑
g,h∈G w(g, h)eg⊗eh, where w is a bicharacter on G satisfying the

condition (ii) of Proposition 3.15. IfR′ is another trivial quasitriangular structure on
kG#σ,τkZ2 with associated map w′, then we can mimic the above process to give an
element R′′ ∈ (kG#kZ2)⊗(kG#kZ2) such that R′′ =

∑
g,h∈G w

′′(g, h)eg⊗eh, where

w′′(g, h) = w(g,h)
w′(g,h) . By Proposition 3.15, we know that R′′ is a trivial quasitriangular

structure on kG#kZ2. For consistency, we also write R′′ as R
R′ .

Definition 3.16. Let TQ={trivial quasitriangular structures on kG#σ,τkZ2} and
TQ′ = {trivial quasitriangular structures on kG#kZ2}. If TQ 6= ∅, then the map
φ : TQ× TQ→ TQ′ defined by φ(R,R′) = R

R′ is called a division-like operation on
TQ.

Just like before, we still call a trivial quasitriangular structure on kG#kZ2

a general solution for kG#σ,τkZ2 and call a trivial quasitriangular structure on
kG#σ,τkZ2 a special solution for kG#σ,τkZ2, without distinction. Let TQ and TQ′

be the sets as in Definition 3.16. Then we have the following result, for which the
proof is similar to that of Proposition 3.12.

Proposition 3.17. If TQ 6= ∅ and R0 ∈ TQ, then the map ϕ : TQ→ TQ′ defined
by ϕ(R) = R

R0
is bijective.
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Assume that R0, R
′
0 ∈ TQ′ and suppose that the map associated with R0 (resp.,

R′0) is w0 (resp., w′0). Then we can define R′′0 ∈ (kG#kZ2) ⊗ (kG#kZ2) such that
R′′0 =

∑
g,h∈G w

′′
0 (g, h)eg⊗eh, where w′′0 (g, h) = w0(g, h)w′0(g, h) for g, h ∈ G. Thus,

we have the next proposition, which we can prove similarly to Proposition 3.13.

Proposition 3.18. We have R0 ·R′0 ∈ NQ′. Moreover, (TQ′, ·) is a finite group.

Finally, we provide an example to illustrate TQ′.

Example 3.19. Let α, β ∈ k such that α2 = β2 = 1. Define

Rα,β := e1 ⊗ [e1 + ea + eb + eab] + ea ⊗ [e1 + αea + βeb + αβeab]

+ eb ⊗ [e1 − βea + αeb − αβeab] + eab ⊗ [e1 − αβea + αβeb − eab].

From the results in [9] we know that {Rα,β | α2 = β2 = 1} gives all trivial quasitrian-
gular structures on K8. Using the definition of TQ′, one can see that TQ′ ∼= Z2×Z2

for K8.
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