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1 Introduction

Quasitriangular Hopf algebra is undoubtedly important and has been studied ex-
tensively in past years. It is of interest to know how to construct a Hopf algebra,
determine whether it is quasitriangular and, moreover, describe all possible quasi-
triangular structures. Some researches related to this topic can be found in [2—4, 6].

In this paper we study quasitriangular structures on a class of semisimple Hopf
algebras H arising from exact factorizations of finite groups:

k¢ o H = kZ, (1.1)

where G is an abelian group. The well-known 8-dimensional Kac-Paljutkin algebra
Kg is an example of this kind. We can write H = kG#U—’TkZQ7 associated with
appropriate cohomology data o and 7 (see Section 2 for the definition).

In the paper [10], the authors have shown that there are only two types of
quasitriangular structures on kG#mTng: one is called trivial and the other non-
trivial. The present work can be regarded as a continuation of [10]. As the trivial
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quasitriangular structures can be given quite easily, we focus on the non-trivial
quasitriangular structures. We first show that there is a division-like operation on
the set of non-trivial quasitriangular structures. Using the division-like operation,
we divide the solutions of non-trivial quasitriangular structures in two steps by
analogy with the solutions of a system of linear equations. One step is to give all
the general solutions, while the other step is to find a special solution; the definitions
of a general solution and a special solution are given in Section 3.

This paper is organized as follows. In Section 2, we recall the definition of Hopf
algebras k%#, . kZy and give some examples of them. After that we review some
main results of [10] about the form of the quasitriangular structures on kG#o—’TkZQ.
In Section 3, we prove that there is a division-like operation on the set of non-trivial
quasitriangular structures. Then we observe that a non-trivial quasitriangular struc-
ture of kG#mTkZz can be expressed as a combination of a general solution and a
fixed special solution. Moreover, we show that the set of general solutions has a
natural group structure.

Throughout the paper we work over an algebraically closed field k of charac-
teristic 0. All Hopf algebras in this paper are finite-dimensional. The symbol § in
Section 2 means the classical Kronecker symbol.

2 Abelian Extensions of Zs

In this section, we recall the definition of kG#U’TkZ27 and then we give some ex-
amples of kG#U,Tng for guiding our further research.

e The definition of kG#U7TkZ2.

Definition 2.1. A short exact sequence of Hopf algebras is a sequence of Hopf
algebras and Hopf algebra maps

K->H5A (2.1)

such that
(i) ¢ is injective,
(ii) 7 is surjective, and
(iii) ker(m) = HK™, where KT is the kernel of the counit of K.

In this situation H is said to be an extension of A by K [5, Definiton 1.4]. An
extension (2.1) above such that K is commutative and A is cocommutative is called
abelian. In this paper, we only study the following special abelian extensions:

k¢ -5 H = kZo,

where G is a finite abelian group. Abelian extensions were classified by Masuoka
(see [5, Proposition 1.5]), and the above H can be expressed as k®#, ,kZs, which
is defined as follows.
Let Zo = {1,2} be the cyclic group of order 2 and let G be a finite group. To
give the description of k¢#, ;kZs, we need the following data:
(i) <: Zy — Aut(G) is an injective group homomorphism;
(ii) o: G — k* is a map such that o(g<z) = o(g) for g € G and o(1) = 1;
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(iii) 7: G x G — k* is a unital 2-cocycle and satisfies
a(gh)o(g)~ta(h)~t = 7(9,h)T(9<z, h<az) for g,h € G.

The aim of (i) is to avoid making a commutative algebra (in such a case all quasi-
triangular structures are given by bicharacters and, thus, are known).

Definition 2.2. [1, Section 2.2] As an algebra, the Hopf algebra kE#, ,kZs is
generated by {eg, x}4eq satisfying

2
€geh = 0g neg, T€g = €gapl, T~ = g o(g)eq, g,he€G.
geG

The coproduct, counit and antipode are given by

Aeg) = Z enQeg, Az)= [ Z 7(g,h)eg @ ep | (x @ ),

h,k€G, hk=g g,he€G
e(x) =1, e(eg) =411,

Sa)=> o9 '(g.97") tegan17, Sleg) =eg1, gEG.
geG

The following are some examples of kc#aﬁkzg and we will discuss them in the
next sections.

Example 2.3. Let n be an odd number and let i be a primitive 4th root of 1. A
Hopf algebra H belonging to k#, ,kZs is called Asy,2 by us if the data (G, <, 0,7)
of H satisfies the following conditions:
(i) G = Zyp X Zgn = (a,b|a*™ = b3 =1, ab=ba) and a <z = a®>" 1, baz = b;
(ii) o(g) =1 for g € G;
(iii) 7(a'd’,a*bl) =i for 1 < i,k <4n and 1 < 5,1 < 4n.

e Some results about quasitriangular structures on kG#o-ﬂ—kZQ. Now we
review some results in [10] about quasitriangular structures on kG#gﬂ—kZQ and give
a necessary condition for kG#O—’TkZQ preserving a quasitriangular structure.
Recall that a quasitriangular Hopf algebra is a pair (H, R), where H is a Hopf
algebra and R =Y R ® R® is an invertible element in H ® H such that

(A X Id)(R) = Ry13Ra3, (Id ®A)(R) = Ry13R1o, AOp(h)R = RA(h)

for h € H. Here, by definition, Rj» = > RV @ R® 1, Ri3 =3 RM 1@ R®
and Ryz = >.1® RM ® R, The element R is called a universal R-matrix of H
or a quasitriangular structure on H.

The first lemma below is well known.

Lemma 2.4. [8, Proposition 12.2.11] Let H be a Hopf algebra and R € H ® H.
For f € H*, if we define I(f) := (f ® Id)(R) and r(f) := (Id®f)(R), then the
following statements are equivalent:

(1) (A X Id)(R) = Ry13R23 and (Id ®A)(R) = Ri3R1o.

(ii) {(f0)l(f2) = U(f1f2) and r(f1)r(f2) = r(f2f1) for fi, fo € H™.

The following lemma is shown in [10, Lemma 3.2].
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Lemma 2.5. Denote the dual basis of {ey,eqx}tqec by {E4, Xg}geq, that is,
Ey(en) = g1, Eglenr) = 0, Xy(en) = 0, Xy(enx) = 94, for g,h € G. Then
the following equations hold in the dual Hopf algebra (K%#, kZ2)*:

E,En = Egny  EyXn = XnE, =0, X,Xp =7(9,h)Xgn, g,heG.

Let kG#mTﬂ{Zg be as before. We need the following two notions, which will be
used freely throughout this paper:

S:={g9lgeG, gax =g},
T:={g|g€eG, gz #g}

Let w', w?, w3, w*: G x G — k be four maps, and define R as follows:

R:= Z w'(g,h)e, @ ey, + Z w? (g, h)e,r @ ey,

g,heG g,heG
+ Z g7 eg X epr + Z h)egx®eha:.
e g,h€G

The following proposition shows that universal R-matrices of kG#U,TkZQ have only
two possible forms.

Proposition 2.6. [10, Proposition 3.6] If R is a universal R-matrix of k%#, kZs,
then R must belong to one of the following two cases:
(i) R= Zg,hec w'(g, h)eg @ en;
(ii) R = 251,5265 wh(s1,82)es, @ es, + ZSGS, et w?(s,t)esw ® ey
+ ZtGT’ seS w3(t, s)ey ® esw + Ztl,tQGT wh(ty,ta)en, © @ e, 2.

Remark 2.7. For simplicity, if R has the form in the case (i) (resp., (ii)) of Propo-
sition 2.6, we will say that R has trivial form (resp., non-trivial form). Further, if
R is a universal R-matrix and has form (i) (resp., (ii)), we call it a trivial (resp.,
non-trivial) quasitriangular structure. We will call the w® (resp., w' (1 <i < 4)) in
the case (i) (resp., (ii)) the associated map(s) of R.

If R has non-trivial form, then one can see that R is invertible if and only if
wl(sy,s9) # 0, w?(s,t) # 0, w(t,s) # 0, w(ty,t2) # 0 for s,51,82 € S and
t,t1,to € T. Therefore, we always assume that w!(sy,ss) # 0, w?(s,t) # 0,
w3(t,s) # 0, wi(ty,ta) # 0 for s,81,82 € S and t,t1,t5 € T in the following
content.

To determine all quasitriangular structures on kG#g7TkZQ7 we give the following
necessary condition.

Proposition 2.8. If kG#mTng admits a quasitriangular structure, then we have
7(81, 82) = 7(82,51) for s1,82 € S.

Proof. Note that the S is a subgroup of G. Consider the data (G, <, 0, 7) restricted
to S, and we write it as (S,<,0|g,T|sxs). It can be seen that (5,<,0|s,7|sxs)
satisfies the compatible conditions. By Definition 2.2, a Hopf algebra is given and
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we denote it as ks#gﬁng. Let ¢: kG#Uﬂ-kZQ — kS#O-ﬂ—kZQ be a linear map which
is defined as follows:

90(65) = €s, <P(et) =0, @(esx) = €5, @(etm) =0,

where s € S and t € T. Hence, it can be checked that ¢ is a surjective Hopf
map. Assume that kG#o-ﬂ—kZQ admits a quasitriangular structure. Since k* #o,- k7o
is a quotient of kG#gﬂ—kZQ, we know that kS#JJkZQ admits a quasitriangular
structure. Combining the quasitriangularity of k° #o,-kZy with its definition, we
know that kS#, ,kZs is cocommutative. In particular, we have A®P(z) = A(z)
for k®#, +kZo. This implies 7(s1, o) = 7(s2, 51) for 51,89 € S. O

If we let (g,h) = 7(g,h)7(h,g9)~* for g,h € G, then 7 is a bicharacter on G
since 7 is a 2-cocycle on the abelian group G, and so the necessary condition of
Proposition 2.8 is equivalent to 7(s1,s2) = 1 for s1,s2 € S. We will often use 7
without explanation in the following.

Corollary 2.9. The Hopf algebra Ass,2> in Example 2.3 admits no quasitriangular
structure.

Proof. Recall that n(g,h) = 7(g,h)7(h,g)~! for g,h € G. Tt can be seen that
a*,b € S and n(a®,b) = —1. Thus, there is no quasitriangular structure by
Proposition 2.8. (]

The following proposition is shown in [10, Proposition 3.8].

Proposition 2.10. If there is a non-trivial quasitriangular structure on kG#UJkZQ,
then
(i) [S] = [TT;
(i) There is b € S such that b> =1 and t<z = tb for t € T}
(ili) |G| =4m for some m € NT.

Remark 2.11. Since our aim is to find all non-trivial quasitriangular structures on
kG#J’Tng, we agree that kG#U’TkZQ satisfies both the condition of Proposition
2.8 and the conditions of Proposition 2.10 in all that follows.

3 Division-Like Operation

In this section, we introduce a division-like operation on the set of non-trivial quasi-
triangular structures of kG#gﬂ—kZQ. Using the division-like operation, we prove
that a non-trivial quasitriangular structure of kG#Uﬂ-kZQ can be expressed as a
combination of a general solution and a fixed special solution.

Using the data (G, <, g, 7) of the Hopf algebra kG#O—’TkZQ, we can induce another
data (G’,<',0',7’) by making G’ := G, <’ := < and o'(g9) := 1, 7'(g,h) := 1 for
g,h € G. Then the data (G',<’,0’,7") determines a Hopf algebra by Definition 2.2,
and we simply denote it as kC#kZ,.

Assume that R and R’ are non-trivial quasitriangular structures on kG#J,TkZQ,
and suppose that the four maps associated with R (resp., R') are w’ (resp., w'®),
1 <i < 4. Then we can use R, R’ to define R” € (kC#kZy) ® (k& #kZ5) as follows.
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The R" has a non-trivial form with associated maps v* (1 <i<4), where vt are
determined by R, R’ as

1 2
1 w'(s1,52) 9 wi(s,t)
v (81752) E w’l(shsz)’ v (Svt) . w’2(s,t)’

3 4
3 _ wi(t,s) 4 w(ty, t2)
VD n O G

for 5,517,590 € S and t,t1,t9 € T. For simplicity, we denote R as %.

Theorem 3.1. The above % is a non-trivial quasitriangular structure on k& #kZ.

To show Theorem 3.1, we need the following lemmas.

Lemma 3.2. Let R € (k9#,.kZs) ® (kS#, ,kZs) and assume that R has non-
trivial form with associated maps w® (1 < i < 4). Then A°P(h)R = RA(h) holds
for h € k944 .kZs if and only if the following equations hold:

w’(s, tazx) = w(s,t)n(s,t), scS, teT, (3.1)
wi(t<ax, s) = w(t,s)n(t,s), scS,teT,
T(t2,t1)ﬂ)4(t1 4z, t2<]1’) :’T(tl 4z, t2<1m)w4(t1,t2), t1,to € T. (33)

Proof. Since k®#, ,kZs is generated by {eg,2 | g € G} as an algebra, we know
that A°P(h)R = RA(h) for h € kS#, ,kZ, is equivalent to A°P(h)R = RA(h) for
h € {eg,x | g € G}. We first show A°P(es)R = RA(ey) for g € G. Taking s € S
and t € T, we directly have

A°P(es)R = [ Z w'(s1,52)es, @ 632] + [ Z wh(ty,ta)es, x ® etzx},

51,52€8, t1,t2€T),
§182=S8 t1ta=s
1 4
RA(es) = [ E w(s1,82)es, ® BSQ} + [ E w(t] QX ty Ax) et quk @ et2<ma:].
51,52€58, t1,t2€T),
§182=S8 ti1ta=s

By assumption, ¢1t2 € S. Thus, we find that ¢t1t2 = (t; <x)(tz <x). This implies
A°P(s)R = RA(s). Similarly, we have

A°P(e;)R = RA(ey)
= [ Z w2(s,t/)es$ ® et’i| +[ Z w3(t/, s)ey ® esx},

seS,t'eT, seS,t’'eT,
st'=s st'=s

but G = SUT, and so we have shown that A°P(e;)R = RA(e,) for g € G. Next
we prove that A°P(z)R = RA(zx) is equivalent to the equations (3.1)—(3.3). On the
one hand, we have

A°?(z)R = { Z 7(h,g)eqg @ eh} (r®@x)R
g,he€C
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:{ Z (52, 81)w' (s1, 82)es, @ es,

S$1,52€8

+ Z w?(s,tax)e,x @ ey
seS, teT

+ Z t<1x ,S)er R esx
teT,seS

+ Z (to, t))w*(ty <, tyaz)ep, x @ e,z | (x @ ).
t1,to€T
On the other hand, we have
RA(z) = R[ Z 7(g,h)ey ® eh} (r®x)

g,heG

:[ Z 7(s1,82)w! (51, 82)€s, @ s,

81,52€85

+ Z w(s,t)esx @ e

seS, teT

+ Z 3(t,8)es ® es
teT, seS
+ Z tl 4z, t2<1l‘) 4(t1,t2)€t1$®6t25€:| (J?@l‘)
t1,t2 €T
By assumption, we already have 7(s1,82) = 7(s2,51) for s1,s5 € S. Therefore,
A°P(z)R = RA(x) holds if and only if the equations (3.1)—(3.3) hold. O
In order to know whether (A ® Id)(R) = Ri3R23 and (Id®A)(R) = Ri3R12
hold, we need the following lemmas.

Lemma 3.3. Let R € (k%#, .kZs) ® (k#, ,kZy) and assume that R has non-
trivial form with associated maps w® (1 < i < 4). Then I(f1)l(f2) = I(f1f2) for
fi, f2 € (KS#,.kZ>)* if and only if the following equations hold for s,s1,s2 € S
and t,ty,to € T':

(i) I(Es, )l(E 2) = UEss,), UE)UEY) = U(Est), U(Ey)I(Er,) = U(Eye,);

( ) l( ) ) - l( 8152>7 Z(Xs)l<Xt) = l(XsXs)§

(111) Z(Xt) ( ) - l(Xt ) l(th)l(th) = l(deth)'

Proof. By definition, we only need to show the sufficiency. To do this, we will check
the following equations:

HEGU(Xn) = UEgXn), UXn)l(Eg) =U(XnEy), I(E)I(E) =1(Eq),

where g,h € G, s € S, and t € T. Since R has non-trivial form, we have

I(E,) = Z wh(s,s ey, U(E;) = Z w(t, s ey, (3.4)
s'es s'ES
Xs) = sz(s,t’)et/, (X)) = Z wh(t, e x. (3.5)

tesS t'eT
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Thus, we get [(Eg)(X}) = I(E, X)) =0 and I(X,)I(Ey) = I(XpEy) =0 for g,h in
G. Moreover, we have [(E)I(Ey) = l(Ey)I(Es) by (3.4). So l(E)I(E:) =1(Es). O

Lemma 3.4. Let R € (kG#U}TkZQ) ® (kG#U’TkZQ) and assume that R has non-
trivial form with associated maps w® (1 < i < 4). Then r(f1)r(f2) = r(faf1) for
f1, fo € (k%#4,.,kZs)* if and only if the following equations hold for s,s;,s2 € S
and t,t1,to € T:

(1) T(Esl)T(Esz) = T(E3152) (E ) (Et) ( ) (Etl)r(EM) = T(Etth);

(i) r(Xo )r(Xon) = 7(Xaron), r(Xo)r(Xp) = 1(X0X,);

(ill) r(Xe)r(Xs) = r(XsXe), r(Xe, )r(Xe,) = r(Xe, X3, ).

Proof. Similar to the proof of Lemma 3.3. ]

In order to use Lemmas 3.3-3.4 more conveniently, we give some more lemmas.

Lemma 3.5. Let R € (k®#,.kZy) @ (k®#, ,kZy) and assume that R has non-
trivial form with associated maps w' (1 < i < 4). Then we have
() 1(Es)I(Es,) = (Eq,s,) < wl(s1,s)w(s2,s) = wl(s1s2,8),
(i) UENI(E;) = (Es) < w(s,s)w(t,s) = w(st, '),
(iii) (B )(Ey,) = 1(Ey,) < w(ty, s)w3(ty, s)o(s) = wh(tite, s),
where s,s8',51,50 €S and t,t1,to € T.

Proof. We only show (iii), and the other statements can be proved in a similar way.
By (3.4), we have

WE)(Ey,) = [Zw t1,8)esx HZU} ta, s em} Zw t1,8)w3(ta, 8)o(s)es.

ses ses ses

Since we have assumed that |S| = |T|, we obtain TT = S. Hence, t1t3 € S and we

get
U(Bp,) =Y w'(tita, s)
seS

Thus, (iii) holds. O

Lemma 3.6. Let R € (k®#,.kZy) ® (k®#, ,kZy) and assume that R has non-
trivial form with associated maps w' (1 < i < 4). Then we have
(1) UXs)(Xsy) = UXs, Xs,) & w?(s1,t)w?(s2,t) = 7(s1, s2)w?(s152, 1),
(i) (XU X)) = U(XsXt) & wi(s, t)wh(t, t') = 7(s, t)w(st, t'),
(iii) (X)) Xs) = (X1 Xs) & w2(s, t' a<x)wt(t, t') = 7(t, s)w(st, 1),
(iv) LX) (X)) = U(Xy, Xp,) & wh(ty, t)wi(te, t ax)o(t) = T(t1, to)w? (t1ta, '),
where s,s', 81,89 € S and t,t',t1,to € T.

Proof. The statements (iii) and (iv) are not obvious, and hence we only show them.
By (3.5), we have

UX)I(X,) = [Z w4(t,t’)et/x} [Z w2(s,t’)et,}

t'eT t'e’Tl

= Z (s,t' <x)epx

t'erl
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and

(Xg) = Z w(st,t ey .

t'eT

Thus, (iii) holds. Directly, we have

(X)) Xy,) = [Z w4(t1,t’)et/x} {Z w4(t27t’)et/x}

t'eT t'eT
=3 wity, thw' (ta,t)o(t ey
teT

Since we have assumed that |S| = |T'|, we know that TT = S. Hence, t1t3 € S and
we get

Z(thh) = Z wQ(tlt%t/)et“

=
Thus, (iv) holds. O

The following two lemmas hold, which can be proved similarly to Lemmas 3.5
and 3.6, respectively.

Lemma 3.7. Let R € (kG#a,Tng) ® (kG#gﬂ-kZQ) and assume that R has non-
trivial form with associated maps w’ (1 <i<4). Then we have
(1) T(Esl)T(Esz) = T(E3152) ~ wl(s, Sl)wl(sv 82) = wl(sv 5132)’
(ii) r(Es)r(Ey) = r(Es) & wi(s', s)w?(s',t) = w?(s, st),
(iii) r(Ey,)r(Ey,) = r(EByt,) & w?(s, t1)w?(s, ta)o(s) = wl(s, tita),
where s,s',51,50 € S and t,ty,to € T.
Lemma 3.8. Let R € (kG#G,T]ng) ® (kS#, ,kZy) and assume that R has non-
trivial form with associated maps w' (1 < i < 4). Then we have
(1) r(Xs))7r(Xsy) = 7(Xs, Xs,) & w?(t, s1)w?(t, 52) = 7(s2, 51)w?(t, 5152),
(i) r(Xs)r(Xy) = (X Xs) & w3 (¥, s)wi(t',t) = 7(¢, s)w* (', st),
(iii) 7(X;)r(Xs) = r(X: Xy) & w3t <z, s)wt(t',t) = 7(s, t)w(t, st),
(iv) 7( X, )r(Xy,) = 1( X, Xyp,) © w(t t)wh (' <z, ta)o(t) = 7(t1, ta)w (¥, tita),
where s,s1,80 € S and t,t',t1,to € T.

Remark 3.9. Assume that R has non-trivial form. Owing to the definition of quasi-
triangular structure, we know that R is a quasitriangular structure on kG#mTng
if and only if it satisfies the conditions of Lemma 3.2 and Lemmas 3.5-3.8.

Proof of Theorem 3.1. In view of the above remark, we only need to show that
the maps v* (1 < i < 4) satisfy the conditions of Lemmas 3.2 and 3.5-3.8. By
assumption, R and R’ are non-trivial quasitriangular structures on kG#g,Tng.
Thus, w® and w'* (1 < i < 4) satisfy the conditions of Lemmas 3.2 and 3.5-3.8.
This implies that v (1 < i < 4) satisfy the conditions of Lemmas 3.2 and 3.5
3.8. |

By virtue of Theorem 3.1, we introduce the following definition.
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Definition 3.10. Let NQ = {non-trivial quasitriangular structures onk®#, ,kZs}
and let NQ' = {non-trivial quasitriangular structures on k#kZ,}. If NQ is not
empty, then the map ¢: NQ x NQ — NQ’ defined by ¢(R,R') = % is called a
division-like operation on NQ.

Remark 3.11. We will call a non-trivial quasitriangular structure on kC#kZ, a
general solution for kG#o-ﬂ-kZQ. Naturally, we will call a non-trivial quasitriangular
structure on kG#mTng a special solution for kG#U,T]kZQ. By analogy with the
solutions of a linear system, one can use two steps to determine quasitriangular
structures of kG#mTng. One step is to give all the general solutions for kG#UﬁTkZQ,
while the other step is to find a special solution for k%#,  kZs.

Let NQ and NQ' be the sets as in Definition 3.10. Then we have

Proposition 3.12. If NQ # 0 and Ry € NQ, then the map ¢: NQ — NQ'
R

defined by ¢(R) = & is bijective.

Proof. Assume that the associated maps of Ry are wé (1 <4 < 4). By Theorem
3.1, ¢ is well-defined. By the definition of ¢, we know that ¢ is injective. Assume
that R € NQ' with associated maps v* (1 < i < 4). Therefore, we can define
R € (k%44 .kZ2)®(kS#, ,kZs) such that R has non-trivial form and its associated
maps are (wiv®) (1 < i < 4). Similarly to the proof of Theorem 3.1, we know that
R € NQ. By definition, we get ¢(R) = R’. This implies that ¢ is surjective. a

We know that the homogeneous solutions of a system of linear equations form
a vector space. Similarly, all general solutions for kG#U,TkZQ form a finite group.
Assume that Ry, R € NQ' and suppose that the four maps associated with Ry
(resp., R}) are w) (resp., wf) for 1 <i < 4. Then we can use these maps to define
four other maps vé (1 <i<4) as follows:

vp(s1, 82) 1= wy(s1, s2)w (s1,82), vy (s, 1) := wi(s, t)wg (s, b),

1
0
v (t, 8) == wi(t, s)wi(t,s), vp(ty,te) == wy(ty, ta)wl (t1,1t2),

where 5,571,582 € S and t,t1,t2 € T. Using the maps v§ (1 < i < 4), we can define
Rl € (KC#kZsy) @ (kS#kZs) as follows. The R{ has non-trivial form and the
associated maps of it are given by v{ (1 < i < 4). For simplicity, we denote R as
Ry R),.

Proposition 3.13. We have Ry - R, € NQ'. Moreover, (NQ',-) is a finite group.

Proof. By assumption, Ry, Ry € NQ'. Thus, Ry and R}, satisfy the conditions of
Lemmas 3.2 and 3.5-3.8. This implies that Ry - R{, also satisfies the conditions of
Lemmas 3.2 and 3.5-3.8. Hence, Ry - Ry, is a quasitriangular structure on kG H#KkZ,.
To complete the proof, we only need to show that NQ’ has a unit and it is finite.
Define a non-trivial form R; by letting wt = 1 for 1 < i < 4, where w! are associated
maps of Ry. Obviously, R; is the unit of (NQ’,-). Since k&#kZ, is semisimple, we
know that N@Q’ is finite by [7, Theorem 1]. O

Now, let us give an example to illustrate (N@Q’,-). Recall that the well-known
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8-dimensional Kac algebra Ky is isomorphic to k9#, .kZs (see for example [1,
Section 2.3]), and the data (G,<,0,7) of Kg is given as follows:

(i) G=Zy xZy={a,b|a?=b*=1,ab="ba) and a<z =0b, bz = a;

(if) o(a'’) = (1), 1 <i,j <2;

(iii) 7(a'd’,afbl) = (=1)7%, 1 <i,5,k,1 < 2.

Example 3.14. Let 7 € k such that v* = —1. Define R, as below:

Ry:=[e1®e1+ el ®@eq +ea @e1 — eap @ €qp)
+ a1z @ eq + €12 @ €5 — Yeapt ® €q + Y eapt @ €]
+lea ®e1x+ ey @erx + Ve, ® e — Ve ® Eab]
+ Y ea @ eq + veax @ ept + yepr ® e + v lepr ® epl.

The quasitriangular structures on Ky were determined in [9]. From this result, we
know that {R, | v* = —1} gives all non-trivial quasitriangular structures on Kg.
By the definition of NQ’, one can get NQ' = Z,4 for Kg.

Lastly, we will introduce a division-like operation on the set of trivial quasitri-
angular structures of kG#U,Tng for the sake of uniformity. To do this, we first give
the following proposition.

Proposition 3.15. [10, Proposition 3.10] R is a trivial quasitriangular structure
on kG#U,TkZQ if and only if the following conditions hold:

() R=3_, necw(g,h)eg ® ey for some bicharacter w on G;
(i) w(g <z, h<az) =w(g,h)n(g,h), where n(g,h) = 7(g,h)7(h,g)~* for g,h € G.

Suppose R = Zg nec W(g, h)eg@ep, where w is a bicharacter on G satisfying the
condition (ii) of Proposition 3.15. If R’ is another trivial quasitriangular structure on
kG#O—J—kZQ with associated map w’, then we can mimic the above process to give an
element R € (k®#kZy)® (k®#kZy) such that R” = > gnec W' (g, h)eg®ep, where

w’(g,h) = 5,((‘; 7,2))' By Proposition 3.15, we know that R” is a trivial quasitriangular
R

structure on k€#kZ,. For consistency, we also write R as -

Definition 3.16. Let T'Q) = {trivial quasitriangular structures on kG#UVTkZQ} and
TQ' = {trivial quasitriangular structures on k¢#kZy}. If TQ # (), then the map
¢: TQ x TQ — TQ' defined by ¢(R, R') = % is called a division-like operation on
TO.

Just like before, we still call a trivial quasitriangular structure on k&#kZs
a general solution for kG#o—ﬂ—kZQ and call a trivial quasitriangular structure on
k#, +kZ a special solution for k9#, kZs, without distinction. Let TQ and T'Q’
be the sets as in Definition 3.16. Then we have the following result, for which the
proof is similar to that of Proposition 3.12.

Proposition 3.17. If TQ # () and Ry € TQ, then the map ¢: TQ — TQ’ defined

by ¢(R) = R% is bijective.
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Assume that Ry, R}, € TQ' and suppose that the map associated with Ry (resp.,
R}) is wg (resp., wh). Then we can define Rl € (kC#kZy) @ (k¢#kZy) such that
RY =37, heq Wi (9, h)eg@en, where wy (g, h) = wo(g, h)wy (g, h) for g,h € G. Thus,
we have the next proposition, which we can prove similarly to Proposition 3.13.

Proposition 3.18. We have Ry - R, € NQ'. Moreover, (T'Q)’,-) is a finite group.
Finally, we provide an example to illustrate T'Q’.

Example 3.19. Let a, 3 € k such that a? = 82 = 1. Define

Ropg:=e1®e1+eq+ep+eq)+e,®[er + aeq + Bep + afeqs)
+ep ® [e1 — Beq + ey — afeqy] + eay @ [e1 — afleq + afey — eqp).

From the results in [9] we know that { R, s | a® = 82 = 1} gives all trivial quasitrian-
gular structures on Kg. Using the definition of T'Q)’, one can see that T'Q" = Zqy X Zo
for Kx.
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