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Abstract. We study the quantum double of a finite abelian group G twisted by a 3-cocycle
and give a sufficient condition when such a twisted quantum double will be gauge equivalent
to an ordinary quantum double of a finite group. Moreover, we will determine when a
twisted quantum double of a cyclic group is genuine. As an application, we contribute to the
classification of coradically graded finite-dimensional pointed coquasi-Hopf algebras over
abelian groups. As a byproduct, we show that the Nichols algebras B(M| & My & M3) are
infinite-dimensional where M, My, M3 are three different simple Yetter-Drinfeld modules
of Dg.

1. Introduction

Given a finite group G and a normalized 3-cocycle w € Z3(G, C*), Dijkgraaf-
Pasquier-Roche defines a certain braided quasi-Hopf algebra(twisted quantum dou-
ble) D®(G) in [3]. This article is aimed to study the gauge equivalence between
certain twisted quantum doubles, which leads to tensor equivalence between their
representation categories.

We review the background motivation of D®(G) briefly. Although this concept
and our results are purely algebraic, the motivation of studying these problems
comes from conformal field theory and vertex operator algebra(cf.[2,6,19]). The
readers only need to understand that vertex operator algebras have a representation
theory, especially, in [17], he proved that if V is C»-cofinite, rational, CFT type (i.e.
V(1) = C1), and self dual (i.e. V = V), then Rep(V) is a modular tensor category.
Then by reconstruction theory [21], there might be a weak quasi-Hopf algebra H
with the property that Rep(H) = Rep(V) as modular category. In the context of
[3], the authors conjectured that one can take H to be a twisted quantum double
D?(G) of G in the case when V is a so-called holomorphic orbifold model, that is
there is a simple vertex operator algebra W and a finite group of automorphisms G
of W such that V = WY, see also [22].

Now suppose there’s a equivalence of braided tensor category Rep(WlG‘) =

Rep(WzG %), for two holomorphic vertex operator algebras and finite groups G, G».
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If the conjecture is true, then there must be a braided tensor equivalence:
Rep(D“'(G1)) = Rep(D“*(G2)) (I.D

for some choices of 3-cocycles w1, wy of G1, G>. Conversely, deciding when equiv-
alences such as (1.1) can hold gives information about the vertex operator algebras
and the cocycles that they determine. This is an interesting problem in its own right,
and is the one we consider here.

The case in which the two twisted quantum doubles in question are commuta-
tive, i.e. two groups are abelian and the 3-cocycles are abelian 3-cocycle was solved
in [23]. In [7], the authors dealt with the case when G is an elementary abelian
2-group and G, turns out to be an extra-special 2-group. Here we are concerned
with a particular case of (1.1) when taking G as a finite abelian group, w; is an
arbitrary normalized 3-cocycle and G, is a finite group, w; is trivial:

Rep(D“'(G1)) = Rep(D(G2)). (1.2)

We will give a sufficient condition when equivalence (1.2) holds and the reason we
can do it is that we knew an explicit expression of these 3-cocycles as indicated
below.

Let G be a finite abelian group which is isomorphic to Z,,; X Zy, X -+ X Zy,,
with m; | m;j41 for 1 <i <n — 1. Thanks to [12] and [14], we can write down all
representatives of normalized 3-cocycles on G:
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1<r<s<t<n

where 0 < a; < my, 0 < agy < (mg,my), 0 < arsy < (my, mg, my). Let

Q = (Cl], a2a sy alv ey ans 6112, a139 ey astv ey an—l,ns Cl123, sy arst’ ---an—Z,n—l,n)~
(1.4)
For a fixed a, we define the following sets:

Ay = ilajj #0,1<i < j<n}, Ay:=lilajjx #0.1<i <j<k=<n},

By :={jlajj #0,1<i<j<n}, By:={jklaj #0,1<i<j<k=<n}.
(1.5)
Let A = A1 U Ay, B = By U Bj. The first main result of the paper is the following
one.

Theorem 1.1. Let G be a finite abelian group and @ a normalized 3-cocycle on G
as in (1.3). If the following condition holds:

(i)a; =0foralll <i <n.
{)ANB=4¢.

Then D®(G) will be gauge equivalent to D(G’) for a finite group G'.
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Recall that for a quasi-Hopf algebra H, we say H is genuine if it will never
be gauge equivalent to a Hopf algebra. Obviously, if D”(G) is gauge equivalent
to D(G’) for a finite group G’, then D®(G) isn’t genuine. One may ask, if D®(G)
will never be gauge equivalent to D (G’) for a finite group G’, then whether D®(G)
is genuine or not. In general, the answer is no. In fact, Theorem 9.4 in [23] tells us
if G is of odd order, then D®(G) is not genuine. But, we will prove for arbitrary
finite cyclic group G with a nontrivial 3-cocycle, the D®(G) will never be gauge
equivalent to D(G’) for a finite group G’. Hence, to study the genuineness of a
twisted quantum double is another question. Here is some results about this question
up to the knowledge of the authors. Example 9.5 in [23] gives us the first example
of genuine twisted quantum, say D®(Z;), where w is the nontrivial 3-cocycle on
Z>.In[20] Theorem 4.1, the authors showed that if G is abelian, and w is an abelian
cocycle, then D®(G) is genuine if and only if there exists V € Rep(D®(G)) such
that v(V) = 0, where v is the total Frobenius-Schur indicator of Rep(D®(G)). Let
G be a finite cyclic group and w a nontrivial 3-cocycle on G. Our second main
result is to provide a discriminant method for whether D®(G) is genuine or not,
also though using the explicit expression of 3-cocycles. Here is the result.

~ . . Pk ail K]
Theorem 1.2. Let G = Z,, be a finite cyclic group and w(g', g7, 8") = &n "
for 1 < a < m. Then D®(G) is genuine if and only if (m, 2a) 1 (m, a).

As an application, we apply theorem 1.1 to the classification of pointed finite-
dimensional coquasi-Hopf algebras, which has been investigated in [10,11,13-15].
Recently, the classification of coradically graded finite-dimensional coquasi-Hopf
algebras over abelian groups has been done in [16]. One of key ingredients in
this paper is Proposition 4.1. The proof of this proposition is rather technical and
depends on complicated and long computations. Here we use our method to give a
simple proof (see Subsection 5.4 for related illustrations).

Theorem 1.3. Let G = Zr X Zr X Zy = (g1) X (g2) X (g3) be an abelian group
and w the 3-cocycle on G:

s N
o (gl sPel o el gl ol gkt = (10, (1.6)

Let Vi, Vb, V3 € gyD“) be simple twisted Yetter-Drinfeld modules such that
dim(V;) = 2, deg(V;) = gi, 1 <i < 3, such that gi >v = —v forallv € V;,
1 <i < 3. Then the Nichols algebra B(V| @ V> @ V3) is infinite-dimensional.

In order to apply our method to show above theorem, we also proved that the Nichols
algebras B(M| & M, & M3) are always infinite-dimensional where M, M>, M3
are three different simple Yetter-Drinfeld modules of Dg.

Here is the layout of the paper. Section 2 is devoted to some preliminary mate-
rials. In Section 3, we provide a sufficient condition that when the twisted quantum
double of a finite abelian group will be gauge equivalent to the ordinary quantum
double of a finite group. In Section 4, we give a criterion when a twisted quan-
tum double of a finite cyclic group is genuine. Section 5 is concentrated on above
application.
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Throughout this paper, k is an algebraically closed field with characteristic zero
and all linear spaces are over k. Vecy is the tensor category of G-graded vector
spaces with associativity defined by @ and Vecg, is the fusion category of finite
dimensional G-graded vector spaces with associativity defined by w. Rep(D* (G))
is the tensor category of representations of D®(G) while Rep(D®(G)) is the fusion
category of finite-dimensional representations of D*(G).

2. Preliminaries

Here we recall some necessary notions and results.

2.1. 3-cocycles of finite abelian groups

By Fundamental theorem of finite abelian groups, any finite abelian group is of the
form: Z,,;, X Zy, - -+ X Zyy,, withm; | mj4q for 1 <i <n — 1. Denote ./ the the
set of all N-sequences:

6_1 = (a19 a2’ cey alv sy am a123 Cl13, AARR] aSlv sy an—l,ﬂs 0123, ey arsl, --~an—2,n—1,n)

such that 0 < q; < my;, 0 < ay < (mg,my), 0 < ay5y < (my, mg, m;) for
1 <lI,s,t,r <n.Letg; bea generator of Z,,;,, 1 <i <n.Foreacha € &/, define

ws:GxGxG—C*

. . . in k .
I:glllg;ln’gflgé’gllgﬁ:l
2.1)

ittt

n gtk
alll[ mj ] astksl: mg ] arsiky jsi
st Kr Jslt
= 1_[ §n1[ l_[ é‘ms l_[ é‘(mr,ms,mr)'

=1 1<s<t<n 1<r<s<t<n

Here ¢, represents an m-th primitive root of unity. The following gives us the
desired expression.

Lemma 2.1. ([14] Proposition 3.8) The set {wg|g € A} forms a complete set of
representatives of the normalized 3-cocycles on G up to 3-cohomology.

Remark 2.2. We choose a slightly different representatives of normalized 3-cocycles

on G, as they are actually cohomologous to the formula (3.10) in [14] for a fixed
a. We choose these representatives for convenience later.

2.2. Twisted quantum doubles

We recall the definition of the twisted quantum double for the completeness of the
article.
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Definition 2.3. The twisted quantum double D® (G) of a finite group G with respect
to the 3-cocycle w on G is the semisimple quasi-Hopf algebra with underlying vector
space (kG)* ® kG in which multiplication, comultiplication A, associator ¢, counit
¢, antipode S, « and B are given by

(e(g) ® x)(e(h) ® y) = Og(x, y)8gr ne(g) ® xy,

Ale(g) ®x) = Z Yx(h, k)e(h) @ x ® e(k) ® x,
hk=g

p= Y ow@hh () ®lveh)@l®ek @1,
g,hkeG

S(e(®) ®x) =0p-10x,x N ye(g, g H e eIy @ x 7,

se(@®x) =81, a=1, f=) w(@gg ' 9e@®]l,
geG

where {e(g)|g € G} is the dual basis of {g € G},J,,1 is the Kronecker delta, g* =
x’lgx, and

w(g, x, Yo(x,y, (xy) lgxy)

9 k e 9
g Y) w(x, x~Tgx, y)
(s y) = wx,y, Qw(g, g 'xg.g7yg)
o w(x, g g7 'vg)

forany x,y,g € G.

We may use D”(G) to define abelian cocycles, which has been studied deeply in
[23].

Definition 2.4. A 3-cocycle w on an abelian group G is called abelian if D?(G) is
a commutative algebra.

Using formula (2.1), there’s a nice description when the 3-cocycle w, is abelian:

Lemma 2.5. ([14], Proposition 3.14) The 3-cocycle w, is abelian if and only if
arst =0

foralll <r <s <t <n.

2.3. Module category and categorical Morita equivalence

Module category is an important tool in the theory of tensor category. It is parallel
to the module theory over a ring. The definition is similar to the definition of a
tensor category.See [5] Section 7 for explicit definitions. The theory of categorical
Morita equivalence is a categorical analogue of Morita equivalence in ring theory,
which plays an important role in the theory of module category.
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Definition 2.6. Let & be a tensor category with enough projective objects. A mod-
ule category .# over ¢ is called exact if for any projective object P € ¢ and any
object M € ./ the object P ® M is projective in .Z .

For an exact indecomposable right module category, one can form the dual category
¢, = Fung (A, M), that is, the category of module functors from . to itself.
It is known that €/ is also a tensor category.

Definition 2.7. Let ¢, & be tensor categories. We will say that 4" and 2 are cate-
gorical Morita equivalent if there is an exact indecomposable 4-module category
-~/ and a tensor equivalence 7 = ¢,

Here is a basic example of categorical Morita equivalence.

Example 2.8. Let G be a finite group and let ¥ = Vecg. The category Vec is
an exact Vecg-module category via the forgetful tensor functor Vec; — Vec.
Consider the dual category (Vecg)y,.. By definition, a Vecg-module endofunctor
F of Vec consists of a vector space V := F (k) and a collection of isomorphisms

ve € Hom(F (8, ® k), 8, ® F(K))) = Endg (V).

By axiom of module functor, the map g — y, : G —> GL(V) is a representation
of G on V. Conversely, any such representation determines a Vecg-module end-
ofunctor of Vec. The homomorphisms of representations are precisely morphisms
between the corresponding module functors. Thus, (Vecg)y,, = Rep(G)P, ie.,
the categories Vecg and Rep(G) are categorical Morita equivalent.

3. On gauge equivalence between D“(G) and D(G’)

Throughout this section, let G = Z,,;; X Z,, X -+ X Zy,, with m; | m;4 for
1 <i <n — 1 and w be a normalized 3-cocycle with the following form:

n itk it +J
b oo ko) = T, aks[ 531
wgl...gn’gl...gn’gl ...gn _l_lé‘n” 1_[ é‘mx
=1 I<s<t<n
arstky jsis
1_[ é‘(mramx»mt). (31)

I<r<s<t<n

3.1. Categorical Morita equivalence of pointed fusion categories

We first recall the result of categorical Morita equivalence in [26]:
Lemma 3.1. (/26] Theorem 3.9) Let G and G be finite groups, n € Z3(G,C*)
and ) € Z3(G, C*) be normalized 3-cocycles. Then the tensor categories Vec"G

and Vecg are categorical Morita equivalent if and only if the following conditions
are satisfied:
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(1) There exist isomorphism of groups:

¢$:HxK—G, $:=HxK—>G (3.2)
F F
for some finite group K acting on the abelian normal group H, with F € Z*(K,H)
and F € Z*(K, H) where H := Hom(H, C*).
(2) There exists ¢ : K3 —> C* such that

FAF =dge. (3.3)

Here F' A F(ki, ko, k3, kq) := ﬁ(kl,kz) (F(k3, kg)) . .
(3) The cohomology classes satisfy the equations [¢*n] = [w] and [¢p*1] = [@]
with
o ((h1, k1), (ha, ko), (h3, k3)) i= F (k1 k2) (h3) & (ki, ko, k3)
o ((p1, k1), (P2, k2) , (p3, k3)) := & (k1, ka, k3) p1 (F (ka, k3)) .

For simplicity, we will regard @ (resp. @’) as a normalized 3-cocycle on G and

H x K (resp. G’ and H X K ) simultaneously in the following context. A simple
F F
but useful application of this lemma is given as follows:

(3.4)

Corollary 3.2. Let G be a finite abelian group. If Vecg, is categorical Morita equiv-
alent to Vecg' for a finite group G', then
(i) The choice of € in Lemma 3.1 must be e (ky, kz, k3) = 1 forallky, ko, k3 € K.
(ii) The crossed product G = H x K in Lemma 3.1 is actually a direct product.

F
That is, the decomposition of G must be of the form G = H x K for an abelian
normal subgroup H.

Proof. Suppose Vec¢, is categorical Morita equlvalence to VecG/ By Lemma 3.1,

There exists isomorphism of groups: H x K —> G, H x K —> G for abelian
F F
normal subgroup H of G. By assumption, the normalized 3-cocycle ' of G’ is

trivial. That is

o' ((p1, k1) 5 (P2, k2) , (03, k3)) = & (k1. ka, k3) p1 (F (k2, k3)) = 1
for all k1, k2, k3 € K and p1, 02, p3 € H.
We first assume ¢ is nontrivial, then there will exist k', k", k"’ € K such that
(k' k", k") # 1, then
o ((lﬁ k’), (pz, k”) , (p3, k", )) = ek, k", k"5 (F(ki, k2))
=e(k', K" k") # 1.
This implies @’ will never be identically equal to 1, which is a contradiction.
Suppose the crossed product is not a direct product. Then F € Z>(K, H) is

nontrivial, and there will exist k', k" € K such that F(k', k") # 1p. So we can
choose a character p € H such that p (F k', k" )) # 1 and consider the ratio of

o ((p. k1) . (15.k2) . (15.k3))

o ((1g. k1), (15, k2) . (1. k3))
Thus one of the values of o’ can’t be one. This leads to a contradiction as well. O

= p (F(k1, k2)) # 1.
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3.2. The first main result

Keep the notation above, we will give a sufficient condition of categorical Morita
equivalence between Vecg; and Vecg in this subsection. Now let G = Zy,; X Zyy,, X
<o X Zpy, Withm; | m;4q for 1 <i <n — 1. The 3-cocycle w as in (3.1).

a= (a13 A2y eees Ay ooey Ay A12, A135 ceey gty oeey an—l,n,

a123, -« Arsty '--an—Z,n—l,n) € o

where 0 < a; < my, 0 < ay, < (mg,my), 0 < arg¢ < (m,, mg, my). For a fixed
a € o/, define the following sets:

Ap={ilajj #0,1<i<j<n}, Ay:=lilajx#0,1<i<j<k=<n},
By :={jlajj #0,1<i < j<n}, By:={j klajjx #0.1<i<j<k<n}.
Let A=A{UA,, B=B{UBs.

Theorem 3.3. Let G be a finite abelian group and w is a normalized 3-cocycle on
Gasin(13).If

(i)a; =0foralll <i <n,
{l)ANB=4@.

Then Vec, is categorical Morita equivalent to Vecg for a finite group G'.

Proof. Leta; =0foralll <i <nand ANB = @. Denote I = {1,2,---,n}.
Clearly A, B C I. Now take H = [[Zy; = [[(gi), and K = [[ Zu; =

icA icA Je\A
[T (gj),then G = H x K. Define
jel\A
n . . iqg+iq L
Pl Tl [Teir)= 1 ™" [1 oo
mel\A mel\A P<q r<s<t
peAi,qeB reAs,s,teB;

where xp, € Z,, is primitive. F lies in Z2(K, H) by direct computation. We are
now going to show Vecg, is categorical Morita equivalent to Vecy xx by Lemma

F
3.1:
Equation (3.2) has bpen done. If we set ¢ : Kf — k* being identical to 1, then
(3.3) is satisfied since F' A F(ky, ky, k3, kq) = F(k1, ko) (F(k3, k4)) = 1 = Sge.
Note

ak [iq-%—.fq] i
i1 i J1 Jn ki k, _ PATP | mg arstkr Jsis
R R I S N s,
1<p<q=n I<r<s<t=<n
iqtiq .
I gaf"?"f’[ g ) [T oo
np (my,ms,mp)
pP<q r<s<t
pEA1,qEB) reAj,s,teBy
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sinceapy =0if p ¢ Ajorqg ¢ Bianda,,, =0ifr ¢ Ayors ¢ Boort ¢ B>.On
the other hand

[fq +ig ] mykr jsit

F ( 1_[ gizl’ 1_[ gn'n) (l_[ gf,;”) = 1_[ {Z’;qkp Tmg l_[ {Z"S’ (mp,mg.,mpg)

nel\A nel\A meA P<q r<s<t
pEAL,qEB) reAs,s,teBy
ig+J
aqup[ [’mqjq] arsiky jsiz
= I @ [T o
pP=<q r<s<t
pEA],gEB) reAs,s,t€By

Hence
[ in i n k kn
w(g'l1 cegrgl g g g )

=o(([] s [T e (JT e TT e (JT gk TT &k

meA nel\A meA nel\A meA nel\A
— l_[ gaqup[ mq ] 1_[ ;arsrkr]xll
- mp (my,mg,my)
P<q r<s<t
peAL,qeB reAs,s,t€By
> i J k
=FC[T ¢ TT em(JT aim-
nel\A nel\A meA

Thus the first equation of (3.4) has been verified.
Since G = H x K = H x K where F(k;, ko) = 1y forall k1, k; € K. Then
F

p(F(ki,ky)) = 1forall p € H and ki, ky € K. Thus
o' ((p1, k1), (2. k2) , (p3,k3)) = 1 = p1(F(ka, k3)).

We have verified all conditions in Lemma 3.1. Hence Vec{, is categorical Morita
equivalent to Vecﬁm( ifaj =0foralll <i <nand ANB =4{. m]
F

This theorem implies Theorem 1.1 directly.

Proof of Theorem 1.1. According to Theorem 3.3, if @; = Oforall 1 <i < n and
AN B = ¢, then Vecg, is categorical Morita equivalent to Vecg for some finite
group G'. By Theorem 3.1 in [5], the centers of these two fusion categories are
braided equivalent. It is known that the center is equivalent to the representation
category of the corresponding Drinfeld double (see for example [25]). That is,
Rep(D?(G)) is braided tensor equivalent to Rep(D(G’)). Hence D®(G) will be
gauge equivalent to D(G”) by Theorem 2.2 in [24]. O

A natural question is when G’ can be a finite abelian group in the theorem above.
Here is the answer.

Corollary 3.4. Let G be a finite abelian group and w a normalized 3-cocycle on G
as above. Then Vec, is categorical Morita equivalent to Vecg' for a finite abelian
group G’ if

(D a;i =0foralll <i <nandays =0foralll <r <s <t <n,

2) AN By =4.
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Proof. We first assume the condition (i) and (ii) in Theorem 3.3 hold. Thus there’s
a finite group G’ such that Vec{ is categorical Morita equivalence to Vecg'. By

construction, G' = ([ Zw;) x ( [] Zm;) where F is defined to be
i€A F jel\A

ﬁ' l_[ g;‘;’n’ l_[ ng';m = l_[ (Xp)apq[%] l—[ (Xr)(m‘:r,in[;rf:m)jfi’_

mel\A mel\A rP<q r<s<t
peAl,qeB; reAs,s,teBy
Then G’ is abelian < ([ [gir. T el - (JTem. [T &
meA nel\A meA nel\A
J J i i
=([Ten. TT e -(I1ek T &
meA nel\A meA nel\A
A l 5 A ] l
eF| [Ter [Ter|=F{ e ITear
nel\A nel\A nel\A nel\A
iq+ig arstmy jsit
s [T ™ ] o
pP<q r<s<t
pEAL,qEB) reAa,s,teB
Jqtiq arsimrisj
= I o™ T ey
P<q r<s<t
peA|,qEB) reAs,s,t€By
& Ay, Br =10

This is equivalent to a,; = 0 forall 1 <r < s <t < n. Thus if (1) and (2) hold,
then G’ is abelian. O

If G is a cyclic group, then conditions (i),(ii) in Theorem 3.3 are also necessary. In
fact, for any cyclic group G = Z,, =< g|g" = 1 > with a normalized 3-cocycle

wq given by w, (g', g7, gk) = {,‘:,l[ " ], where 0 < a, i, j, k < m, we have (noting

that the condition (ii) is always satisfied now)

Proposition 3.5. The fusion category Vec‘é" is categorical Morita equivalent to
Vecg: for a finite group G’ if and only if a = 0.

Proof. The sufficiency follows from Theorem 3.3. Now suppose that Vecaé" is
categorical Morita equivalent to Vecg: for a finite group G’. By Corollary 3.2, G
must be direct product of two subgroups, like G = H x K and the function ¢ should
be 1. Since G is cyclic, then H and K must be cyclic subgroups. Moreover, |H |
should be prime to | K|, hence H2(K, H ) = {1}. Thus w, should be 1 by formula
(3.4). Thatis,a = 0. m]

But in general the conditions (i) and (ii) in Theorem 3.3 both are not necessary as
the following example shows.
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Example 3.6. Let G = Zy x Zy x Zr = (g1) X {g2) X {(g3) and

(g’l‘g’fg? g{‘gézgf,gl g22g3 )
— (_])i2[122 ])kl['i 3](_])](2 i3 /'5]

In this case,a = (0,1,0,1,1,1,0) € &/, ap 2#0and A| N By # 0.
Take H = Z; = (g1) and K = Zy x Zy = (g1g2) x (g3). Obviously,
G = H x K. Define

[i2+1'2 ] [i3+13 ]

F:KxK—H, F(g18)" ¢ gig)™ e =x > x °

where x| generates H.LetG' = H x K, we are going to show Vecg; is categorical
F
Morita equivalent to Vecg.

Define ¢ : K3 — C*ase = 1, then equation (3.3) holds. Note that

AN . . I . ki —ko) k
w(gi” 2 ((2182), 82, eV (219202 ¢0), 6T ((g122)265))
ki _ky k
(gi‘g’zzg? el'el el gllgzzgf)

2+i

5 ](_1)k|[

i3+/3
2

— (_1)1'2[]22 2](_1)1{1[ ](_1) [i3;j3]’

and

A o e
F (((8182)’2,g§3), ((g1g2)127g§3)> (gi 1=k
= (= ylki—k) T2 -k 1252

for 0 < iy, ia, j1, j2, k1, ko < 1. Actually,

(_l)iz[”;kz](_1)k1[i2§j2]( 1)k|[3+”]( 1)k2 3+13]

(— 1)(k1—k2)’[i2+j2]( 1)(k1—kz)[’3+13]
_(=DEE 1)“
I ]( 1~
— (_l)kz[ 2212] . (_1)12[

2/2

i2+j2

—ko[ 3+/3]

2tk
2

-1,

i1 I ki ko k -~ i i i j
Thus a)(glllg'zzg g{'gézgé3 g11g22g33) =F (((8182)12,8?), ((8182)/2,%3))
(& (ki kzy) and the first equation in (3.4) holds. Obviously, if we define the 3-cocycle
o' on G’ as

o =1.

Then the second equation in (3.4) holds. Hence we have proved Vecg; is categorical
Morita equivalent to Vecg'.
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4. On genuineness of twisted quantum double

In the article [3], the authors asked whether D®(G) can be obtained by twisting
a Hopf algebra or not. In [23] Example 9.5, the authors have shown that D (Z;)
is genuine for w being the normalized 3-cocycle on G whose cohomology class is
nontrivial. This gives a negative answer to the above question. In this section, we
will investigate when a twisted quantum double of a cyclic group to be genuine,
that is, it can’t be obtained by twisting a Hopf algebra.

4.1. The structure of D®(G)

Let G be an abelian group and w an abelian 3-cocycle on G. Let I'” be the group
of all group-like elements in D”(G), and denote wg(x, y) = %‘;%m for
g,x,y €G.

Lemma 4.1. (/23] Corollary 3.6) With the notation above, D®(G) is spanned by
the set of group-like elements I' and it is a commutative algebra. In particular,
wg is a 2-coboundary for any g € G.

Moreover, I'” can be seen as an abelian extension, which may help us to figure out
the explicit structure of D*(G).

Lemma 4.2. (/23] Proposition 3.8) Let G be the character group of G, then T'? is
an extension

11— G —>T?— G —> 1. 4.1

For each g € G, let wg = 874 for a 1-cochain vy : G — C*. The 2-cocycle
associated to this central extension is given by

T (8) Ty (8)

Bx, y)(g) = T (@)

wg(x,y). 4.2)

From now on, let G = Z,, = (g) be a finite cyclic group and w(g’, g/, g¥) =
g“,‘,l,l[ ) be a nontrivial normalized 3-cocycle. In this case, G = Z,,, = (x), where
x(g) = &m. We will determine when D®(G) is genuine. The first task is to figure
out the group structure on I'“. Since I'“ is totally determined by D®(G), it is

independent of the choice of 7, for each x € G.

Lemma 4.3. Let 7, (g/) = g“n‘;;j forall0 < i, j < m. then 8ty = w,i. Further,

J

B(g', g)) = )(2“[17] in this case.

Proof. Direct computation shows that
. i1 .k .
i (e T, (8" ¢ e gai[%] = wigl g
i '-‘rk 7 - ; '-‘rk ;T Sm - gl ’ .
Tyi (gUth"y é_ZLIZ(J )

87,i(g). ") =
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Here (j + k)’ denotes the reminder of j + k modulo m. Now

T, (8)Ter(8")

; 2
— 0, (g ) =t "
Tglith) (i)

B(g’, g g =

Hence B(g', g/) = 1), 0

Note that I' consists of all group-like elements, hence it is benefit to write down
explicit formulas of all group-like elements. By [23], a nonzero element u in D* (G)
is a group-like element if and only if

=or(a,x) =Y a(@)T(g)e(s) ®x. (4.3)
geG

fora € G and x € G. Here we have assumed G is a cyclic group, we can simplify
the expression of oy (¢, x).

Lemmad4. (i) Wehave o (x/,1) = x/ @ 1 and o (x7, g) = Z;"z_ol ;"’;’2 1
e(gi) ® g, where0 < j <m— 1.
(i) Let s = o:(x, 1),t = 0.(1, g), then T'® has the following presentation:
mZ
<s, Hema =" =1, §2* =", st = ts>. 4.4)

Proof. First, by direct computation

-1, = i —li 1
e(g)=1; = Em X (4.5)
m
=0
x' = we(g). (4.6)
i=0
Then
. mil . . . . 'nil ;o . .
o (X, =Y x/(eHmg)e)®1=Y Gleg)®1=x'®1,
i=0 i=0
and
o, @)=Y 1 (ght(ghe(eh @g =) thhiie(@) ®zg.
i=0 i=0

By multiplication rule of twisted quantum double,

or(1,8)-0c(x, ) =0:(x,8) =0:(x, 1) - 0:(1, g).

Suppose 0 <! <m — 1, we have

m—1
or(1,g) =) e ®g =oc(l, 8.
—
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Moreover,

m—1

or(1,g)" = > ¢Mle(gN0, (" ) ® 1
i=0

_ Z é-zale(gi) ® 1 = Xza X 1= GI(X’ 1)261.

It is easy to verify that o (x, 1)’" = 1 and thus o7 (x, 1)** has order 2a) This

implies that o; (1, g) has order 2 3 Obviously, each o7 (x/, g*) can be expressed
as a production of some powers of o:(1,g)and o, (x, 1). Thus we get the desired
presentation of I'“. O

I'® is actually a metacyclic group, for details, see [9]. In general, it is not easy
to determine the group structure of ['® while in our case I'“ can be gotten not so
hard.

Proposition 4.5. We have I'” = Z2q. ) X Z 2

(2a,m)

Proof. Itis obvious that I'® is an abelian group and has order m?. By the presenta-
tion of ', the number of generators of [', must be equal or less than 2. Thus we
may write I' = Z,,, x Z,,,, where m | my. Consider the element o7 (1, g) and we

know that its order is (2’"—2 Hence I' has a cyclic subgroup (o7 (1, g)) of order
(2a ) .If (2a, m) = 1, then o, (1, g) has order m2. So I'® X Z,, = (o:(1, g)).
Actually, we may regard it as Z; x Z,,» for consistency.

If 2a, m) # 1, then (2:1”—2”,) is strict less than m2. We claim that for arbitrary

element 1 = o; (Xi, gj), 0 < i, j < m, the order of h will be less than or equal

to Q;”—Zm) The case i = j = O is trivial and for the case i # 0 but j = O,
2

ord(h) = (m 5 = m = (mm_Za) The remaining case is that j # 0, by direct

computation.

Vllz . . m
BT = (o (X, D™ - e (1, g) ™) T4

= (o¢ (x. 1)) ki
=1

So ord(h) < (mm—zaj) Note that (m, 2aj) > (m,2a), hence T 2a]) < (m 2a) So

(o¢(1, g)) is a maximal subgroup of G. Since I'” = Z,,, x Z,,, with m; | m2,
(o7 (1, g)) must be isomorphic to Z,,. Hence Z,,, has order (2a,m). So I'* =

Zoamy X Z 2 . |
a,m)
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4.2. A criterion of 3-coboudaries on abelian groups

Let us recall an approach to determine whether a 3-cohomology on a finite abelian
group is nontrivial or not.

Let H = Z,,, X Zy, X --- X Zy, be a finite abelian group and (B,, d,) be
the bar resolution of H. By applying Homz g (—, k*) we get a complex (B, 37),
where k* is a trivial H-module. In [14] Section 3, the authors defined another free
resolution (K,, d,) for arbitrary abelian groups and constructed a chain map F,
from (K,, d,) to (B,, de). For our purpose, we only need the morphism F3, see
[[14] Lemma 3.9] :

F;5: K3 — B3,
W s = [8r, 85 81— (85, &r» &1 — [&r» &> 851 + &) & &5]
+ (&5, &> &1 — (81 &5» &1

my—1
Vs = Z ([gf, 8r» gs] - [gﬁ, 8s» gr] + I:gx, gi, gr]) )
=0

myg—1
\I’r,s,s = Z (I:grv gé, gs] - I:gi, 8r gs] + [gé, 85 gr]> ,
=0
mp—1
\I"r,r,r = Z |:gr, gi, gr] ,
=0

for1 <r < s <t < n, where the symbols like W, , , are terms in the resolu-
tions (K,, do). Moreover, we have the following observation since F3* induces an
isomorphism between 3-cohomology groups.

Lemma 4.6. Let ¢ in (B}, 3}) be a 3-cocycle. Then ¢ is a 3-coboundary if and
only if F5 () is a 3-coboundary.

The following lemma provides a criterion for whether a 3-cochain f €
Homyzg (K3, k™) is 3-coboundary.

Lemma 4.7. ([14] Lemma 3.3) The 3-cochain f € Homgzpgy (K3, k*) is 3-
coboundary if and only if for all 1 < i < j < n, there are g; ; € k™ such
that

FUii ) =gl fWig ) =g s and fU) =1, f(Wps) = 1. @7)

forl <l<nandl <r<s<t<n.

4.3. The second main result

In [20], the authors gave a criterion when a twisted quantum double with an abelian
cocycle to be genuine.
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Lemma 4.8. ([20] Theorem 4.1, Lemma 4.5) Let G be a finite abelian group, and
w a normalized abelian 3-cocycle of G. Then D®(G) is a genuine quasi-Hopf
algebra if. and only if o' € Z3(I'®?,C*) is a nontrivial 3-cocycle of T'®, where
o' € Z3(I'®, C*) is the inflation of ™" along the above map T® —> G.

Now it suffices to determine whether ' is nontrivial on I'” = Z(2g ) X Z ,2
(2a,m)
or not. Obviously, if @’ is nontrivial on Z ,2 , then o’ will be nontrivial on I'“.
(2a,m)
Hence we may consider this condition at first.

Jj+k
m ]

Proposition 4.9. Let G = Z,, be a finite cyclic group and w(g', g7, g*) = ;,Zl[
forl <a <m.If (m,2a) 1 (m,a), then @' is nontrivial on T®.

Proof. Since I'? is the extension of G by G. there is a obvious group surjection
Tl — Zy o (x, ) > 1,
ar(l,g)i — gi.
Hence 7*(w~!) will actually be the restriction of ' to Z > .
2a,m)

To show 7*(w™1) is nontrivial, it suffices to show F3 (T* (@™ 1))(¥1.1.1) not
equals to 1 by Lemmas 4.6 and 4.7. By definition of F3,

2

T !
Ff* (@ " NWi) =7 ) Y loc(l,8),0:(1, 8), oe (1, 2)))
=0
T
=0 '( ) L8 8D
=0

_ —a m
— (é‘m )(ZH.m) .

Note that (£,,4) @em — 1ifand only if (mLa) | (m’,n_Za)’ that is, (m, 2a) should divide

(m, a). Hence if (m, 2a) t (m, a), then ' is nontrivial on Z ,» , hence on I'”. O
(2a,m)

The necessity of Theorem 1.2 is obvious by Proposition 4.9, since o’ is a 3-
coboundary on I' will imply (m, 2a) | (m, a).

Now we need to deal with the case (m, 2a) | (m, a). Unfortunately, it is difficult
to write down the explicit generator of Z(24,,,). We avoid this difficulty via the
following result. By [15] Lemma 2.16, it’s harmless to assume Z 24 n) = {0 (x, 1)-
o:(1, 8)%) = (o:(x, g%)) for 0 < b < (2a, m). Note that this assumption requires

bQ2a, m)
m | bQRa,m), and m | 2a,m) + 2a[———].
m

since o (x, g?)3%™ = 1. All preparations have been done and we are going to
prove Theorem 1.2.
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Proof of Theorem 1.2. We only need to show @’ is a 3-coboundary on I'® if
(m,2a) | (m,a). For consistency, we regard o (1, g) as the first generator and
o (X, gb ) the second generator. We have already shown F3* (n*(w_l))(\lll,l, 1) =1.
The remaining is to verify the condition in Lemma 4.7. By direct computations, we
have

(2a,m)—1
Fi(r* (@ )22 = 7" (@ H( D loe(x. 8. 00(x. M or (x. 0]
=0
2a,m)—1
=o' Y 187 @& "D
=0
a,m)—1

=[] o,
=0

We have m | ab since (2a, m) | (m, a),(m,a) | a andm | (2a, m)b by assumption,
thus F§ (m* (0™ 1)) (W222) = 1.

Next we are going to compute F;(n*(w’l))(\yl,zyz) and Fg‘(n*(a)’l))(\yl,l,z).
We have

F(* (0™ )(W1.1.2)
m2
Qamy 1

=7* @ )| Y loe(1,9) 00 (1, 8), 0 (x, 801
=0

~lor(1. ). 0: (x. 8", 07 (1 )] + [0 (1. 87), 07 (1, 8)' o (1, 9)])
m? g ) )
- (zaﬁ o '(g" g 8N (8" 8" 9)
w'(g". g% )

=0
2
(Z’Z,m) -1

[T @ =1.
=0

since m | ab by the analysis above. On the other hand,

F5 (m* (@™ ) (W1 2,2)
2a,m)—1
=7* N ) loc(1,8), 00 (x, g")' e (x, 801
[=0
—[oe(x, g0 0: (1, ), 00 (X, €)1 4 [(00 (x5 €0, a0 (1, °), o (1, ©)])

(2 ) )—1 — / _ ’
a,m w l(g’g(bl) ’gb)w l(g(bl) 7gb’ 2)

w1 (g(bl)/, g, gb)

=0
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(2a,m)—1

_ l—[ (é‘m ) (bl) +b].

=0

If b = 0, then F;(n*(w_l))(\lll’z,g) = 1. If we take g1 2 = 1, then equation (4.7)
holds, thus ' is a 3-coboundary. If b # 0, then (b((2a, m) — 1))’ + b equals m
since m | b(2a, m) by assumption. Thus

b(Za

Fi (0 )N(W122) = (£,") »

ab
In this case, take g1 2 = &' . Since (m, 2a) | m and m | ab, we have

2 —
gléam) ({ma)

= F}(m* (0™ ")) (¥12,2),

and

2

Qam o m 1
812" =t T = 1= F{ (@ (@ ) (¥1,2).

As aresult, if (m, 2a) | (m, a), then ' is a 3-coboundary on I'®. Hence D®(G) is
genuine if and only if (m, 2a) 1 (m, a). O

Next we will investigate when (m, 2a) 1 (m, a) holds. This can provide a more

intuitive discrimination.

Theorem 4.10. Let G = Z,, be a finite cyclic group and w(g', g/, g*) = §:,l[ ]
A / b;

forl1 <a<m.Letm =2"[], pi* and a = 2" [1; p/.’ be their prime decompo-

sition, where n,n’ > 0. Then D®(G) is genuine if and only if n’ < n.

Proof of Theorem 1.2. Supposem = 2"[]; p{ anda = 2711 j p?j be their prime
decomposition. Then '

. ’ b ’ . b
2w =@ [T 2 [T = @2 ot TT o)
i J i J

and

may =@ [T 2" pr’d:(2”,2"’>-<1_[p?’¢l_[p?">.
/ i J

Thus (m, 2a) 4 (m, a) if and only if (27,27 1) t (2,2""). This is equivalent to
n <n. O

Remark 4.11. (i) Note that if m is odd, then D®(G) will never be genuine for
arbitrary 0 < a < m. This conclusion is consistent with the [23] Theorem 9.4.

(i1) According to Proposition 3.5, if G is cyclic, D“(G) will never be gauge
equivalent to D(G’) for arbitrary finite group G’ by the theory of categorical Morita
equivalence, but D®(G) may be gauge equivalent to a Hopf algebra by Theorem
1.2.
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5. Application to the classification of finite-dimensional coquasi-Hopf
algebras

The purpose of this section is to give a new proof of Proposition 4.1 in [16] through
applying our previous observations. It should be emphasized that Proposition 4.1
plays the key role in that paper and the original proof relays on heavy computations.
To do that, we firstly prove that all Nichols algebra generated by three pairwise non-
isomorphic Yetter-Drinfeld modules over Dg are infinite-dimensional which seems
has its independent interest.

5.1. Classification of finite-dimensional Nichols algebras generated by
irreducible Yetter-Drinfeld modules over Dg

We first recall the basic notation of irreducible Yetter-Drinfeld modules over groups.
Let G be afinite group, O aconjugacy classof G, s € O fixed, (p, V) anirreducible
representation of G°, where G* is the centralizer of s in G. Lett; = s, ..., f)s be a
numeration of O and let g; € G such that 8isg; - t; forall 1 <i < M. Then the
corresponding irreducible Yetter-Drinfeld module M (O, p) is defined as follows:
As a space, it just ;. & ® V. Letgiv := g ®v e MO,p),1 <i <M,
veV.IfveVand1 <i < M, then the coaction and the action of g € G are
given by

d(giv) =1 ®giv, g (gv)=gj(yov),

where ggi = gjy and y ov = p(y)(v) forsome 1 < j < M,y € G°. The
Yetter-Drinfeld module M (O, p) is a braided vector space with braiding given by

c(giv®@gjw) =1 > (gjw) ® giv = gn(y ov) ® giv

forany 1 <i,j <M,v,w €V, where t;g; = gpy forunique h, 1 < h < M and
y € G°.

Next, we describe the well-known classification result of finite-dimensional
Nichols algebras generated by irreducible Yetter-Drinfeld modules over Dg. Recall
that the dihedral group Dy is generated by x and y with the following presentation

<x,y | y2 =1 =x4,yxy =x_1>
and let x be a character of (x) such that x (x) = w is a primitive 4-th root of unity.

Lemma 5.1. ([1] Theorem 3.1) Let M(O, p) be the irreducible Yetter-Drinfeld
module over Dg corresponding to a pair (O, p). Assume that its Nichols algebra
is finite-dimensional, then (O, p) is one of the following:

(1) (0,2, p), where p € EE satisfies p(x?) = 1.

(i) (O, x7), where h =1 or 3, and 0"/ = —1. .

(iii) (Oy, sgn ® sgn) or (Oy, sgn ®e), where sgn ® sgn, sgn @ sgn € Dy, Dy =
() @ (x?) = 25 x Zs.
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(iv) (Oxy, sgn @ sgn) or (Oyy, sgn ®¢), where sgn @ sgn, sgn @ sgn € Dy,
Dy = (xy) @ (x*) = Z, x Zs.

Remark 5.2. (i) In all above cases, dim M (O, p) = 2 and dim B(O, p) = 4.
(ii) It is obviously that

MOy, x) = MOy, x°)

as irreducible Yetter-Drinfeld modules. Meanwhile, there are isomorphisms of
braided vector spaces

MOy, sgn ®sgn) = M(Oy,y, sgn ® sgn),
MOy, sgn®e) = M(Oyy, sgn ®¢).

5.2. Nichols algebras over Dg of rank 3

In this subsection, we will prove all Nichols algebras generated by three pairwise
nonisomorphic Yetter-Drinfeld modules over Dg are infinite-dimensional. Our main
ingredient is generalized Cartan matrix and Heckenberger’s classification of finite-
dimensional Nichols algebra of rank > 3. We first recall the definition of the Cartan
matrix. We assume / is a finite non-abelian group in this subsection.

Definition 5.3. Let fyD be the Yetter-Drinfeld module category over / and 6 € N
and I = {1, ...,60}. For N = (N1, N3, ..., Np) where N; are simple Yetter-Drinfeld
module for all i, let

N _ |- if (ad N))" (N;) # 0forallm > 0,
G =) - sup{m € Ny : (ad N;)" (N;) # 0} otherwise

foralli € I and j € I\ {i}. Moreover, let aﬁ’ = 2foralli € I. Then AN =
(al.l}l )i, jer is called the generalized Cartan matrix of N.

So far, the classification of finite-dimensional Nichols algebra in usual Yetter-
Drinfeld module category have achieved many progression. In [18], Heckenberger
has classified all finite-dimensional Nichols algebra over a non-abelian group of
rank > 3. Let’s give a brief introduction.

Definition 5.4. ([18] Definition 2.1) Let § € N, M = (M1, My, ..., My) € fyD
with each M; simple is called braid-indecomposable if there exists no decomposi-
tion M’ & M" of @7_, M; with M’, M" # 0 such that (id — c))(M' ® M") =0

Definition 5.5. ([18] Definition 2.2) Let 0 € N, M = (M, M3, ..., My) € fyD
with each M; simple. Let A = (a;;) be the generalized Cartan matrix of M, we say
M has a skeleton if:

(1) forall 1 < i < 6, there exists s; € supp M;, and o; € G5 such that M; =
M(Oy,, 0;), and

(2)forall1 <i < j <0 witha;; # 0, at least one of a;;, aj; is —1.
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In this case the skeleton of M is a partially oriented partially labeled loopless graph
with 6 vertices with the following properties:

e For all 1 < i < 0, the i-th vertex is symbolized by |supp M;| = dim M;
points. If dim M; = 1, then the vertex is labeled by o; (s;). If dim M; = 2 and there
is an additional restriction on p = o; <s;si_ 1), where supp M; = {si, 5] }, then the
i-th vertex is labeled by (p). Otherwise there is no label.

eForalli,j € {1,...,0} withi # j there are a;;a;; edges between the i-th
and j-th vertex. The edge is oriented towards j if and only if a;; = —1,a;; < —1.

eletl <i < j <6 witha;; <O0.If supp M; and supp M; commute, then the
connection between the i-th and j-th vertex consists of continuous lines. Otherwise
the connection consists of dashed lines. The connection is labeled with o; (s )0 (s;)
if dim M; = 1 or dim M; = 1, and otherwise it is not labeled.

The next Theorem gives a criterion to determine when B(M) € fyD is finite-
dimensional.

Theorem 5.6. ([18] Theorem 2.5) Let 6 € Nx3. Let I be a non-abelian group and
M = (M, My, ..., Mp) with each M; simple and supp M generates 1. Assume that
M is braid-indecomposable. Then the following are equivalent:

(1) M has a skeleton of finite type.

(2) B(M) is finite-dimensional.

(3) M admits all reflections and the Weyl groupoid W(M) of M is finite.

A complete classification result of skeletons of finite type with at least three vertices
over arbitrary field is given simultaneously, see [18].

Let us return to the dihedral group Dg case. There are six nonisomor-
phic irreducible Yetter-Drinfeld modules over Dg. For simplicity, denote M| =
M(O,2, p) = span{lui, luz}, Mo = M(Oy, x) = span{lv, yv}, M3 =
MOy, sgn ®sgn) = span {lwy, xwy}, My = M(Oy, sgn ®e) = span {lwz, xw>},
Ms = M(Oyy,sgn®sgn) = span{lws, xw3}, Mg = M(Oyy,sgn®ce) =
span {lwg, xw4}. For simplicity, we denote S := {M = M;,Mj, M) | 1 <
i< j<k< 6}. Now we are going to state the main result of this subsection.
Actually, it just results from direct computations.

Theorem 5.7. The Nichols algebra B(M) = B(M; & M; & My) is infinite-
dimensional forall1 <i < j <k <6.

This theorem relies on the following lemmas. We deal with the cases when supp(M)
is an abelian group at first. In these cases, M can be reduced to a diagonal type
Yetter-Drinfeld module over supp(M).

Lemma 5.8. Let M = (M;, Mj, My), where 1 < i < j < k < 6. Suppose
M e Sy :={(My, My, My) | 3 <k < 6}. Then B(M) is infinite-dimensional.

Proof. Note supp(M; @ M) = (x) = Z4. By restriction, B(M; & M») € 7' YDis
of diagonal type. Hence we choose a new basis of M| by setting t; = luj +i(1uz)
and tp = lu; —i(lup). Then M| & M, = span {t1, t>, 1v, yv}. Direct computation
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gives the braiding matrix:

—1-11 1
—1-11 1
—i i —1-1
i —1—-1-1

The corresponding generalized Dynkin diagram is of the form

-1 -1

-1 -1

which does not appear in the classification of arithmetic root system [8]. So
B(M| & M>) is infinite-dimensional, hence (M) is infinite-dimensional. |

Lemma 5.9. [f M € S, := {(M, M3, My), (M, Ms, Mg)}, then B(M) is infinite-
dimensional.

Proof. We will prove B(M) = B(M| & M3 @ My) is infinite-dimensional, another
case is similar. Note that supp(M; @& My @& Ms) = Z, x Z = (y) x (x?) By
restriction, B(M) € égiﬁ;yp is of diagonal type, We choose a new basis of M|
viat; = luy 4+ lup, to = luy — luy. Then M = span {1, to, 1wy, xwy, lwo, xwy}
by direct computation, the corresponding braiding matrix is

-1-11 1 1 1
—1-1-1-11 1
-11 -11 —-1-1
1 -11 —-1-1-1
-11 -11 —-1-1
1 -1 1 —-1-1-1

The corresponding generalized Dynkin diagram is of the form

which does not appear in the classification of arithmetic root system [8]. So
B(M) is infinite-dimensional. |

We are going to deal with the cases which not appear in Lemmas 5.8 and 5.9. It is
obviously that supp(M) = Dg in these cases. We are going to use Theorem 5.6 to
show B(M) are all infinite-dimensional.
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Table 1. Braiding-Indecomposability of M

M; @ M; xX®y € M; ® Mj, st M; @ M; xX®y € M; ® Mj, st

(id—cH)(x ® y) # 0. (id—cH)(x ® y) # 0.

M| ® M3 lu; ® lw M| @ My lup ® xwy
M|, ® Ms lu; ® Tws M; ® Mg lu;p ® xwy
My ® M3 1v ® xw; My ® My 1v ® xwy

My ® Ms lv ® lws M>r ® Mg v ® lwy

M3 ® My 1w ® xwy M3 ® M5 lw; ® xw3
M3 ® Mg 1w ® xwy My @ Ms 1wy ® xw3
My ® Mg lwy ® xwy Ms ® Mg lws @ xwy

Lemma 5.10. Suppose M = (M;, Mj, M) € S\ S1US2, then M is braid-
indecomposable.

Proof. 1t is not difficult to observe that as long as forany i, j 1 < i < j < 6,
@id —cz)(M,- ® M ;) # 0. Then M is braid-indecomposable forall M € §\ S1 U S,.
In particular, we will not consider braid-indecomposability of M| & M, since
B(M| & M) is infinite-dimensional by Lemma 5.8. We will compute one case as
an example and list complete situations in the following table.

We are going to show M| ® M3 is braid-indecomposable. Choose 11| ® lw; €
M| ® Mz. Note §(1uy) = x2® luj and S(1wy) = y® lwy. Then c(lu @ lwy) =
X2 (lw) ® lu; = —1w; ® luy, and c(—1lw; @ lu;) = —y > (lup) @ lwy =
luy ® 1wq. Hence

@id —6‘2)(1u1 R lwy) =1u; ® lw; — lug @ 1wy # 0.

Proposition 5.11. Suppose M = (M;, M;, M) € S\ S1US,, then B(M) =
B(M; & M; ® M) is infinite-dimensional.

Proof. We choose some cases to calculate since they are similar. The key is to find
out the generalized Cartan matrix for each M, then draw the corresponding skeleton
and apply the Theorem 5.6 finally.

Take M = (M, M3, Ms), we first calculate the number a{‘g . Note that
adlul (lwy) = 1luy - 1wy + 1wy - 1uy, adlul (xwy) = luy - xwy + xwy - luy,
adi,, lwy) = luy - 1wy + 1wy - lug, and adyy,, (xw1) = luz - xwy + xwy - lus.
Then we take coproduct of these elements.

A(adyy, (1wy)) = 1 ®ady,, (1wy) + ady,, Jwy) ® 1 4+ 1uy @ 1wy — lux ® 1wy,
A(ady,, (xwy)) =1 @ ady,, (xwy) +ady,, cwy) @ 1 + 1u; @ xwy + luz @ xwy,
A(adyy, (1wy)) = 1 ® ady,, 1wy) +adiy, (lw) @ 1 4+ 1uz ® 1wy — luy @ 1wy,
Aadyy, (xwr)) = 1@ adiy, (xwy) + adyy, xwy) ® 1 4+ 1uz @ xwi — lu; @ xwy.

Obviously, ady,, (1wy) + ady,, (1w;) = 0 and ady,, (xw;) + ady,, (xw;) = 0 by
their coproduct. Hence ad;, (M3) = span {ady,, (1w1), ady,, (xw1)}.
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Next, since lu% = lu% = le = xw% = 0, we have ad]ul(adlul(lw])) =
Luy - (uy - 1wy + 1wy - 1ug) — x“ > (Qug - lwy + 1wy - lug)luy = 0 as well as
adj,, (adqy, (xw1)) = 0. Moreover

ad iy, (adyy, (1w1))
= lur - (luy - 1wy + 1wy - 1uy) —x2 > (luy - 1wy + 1wy - 1uy) - luy
=1luy-luy - 1wy + luy - 1wy - lug — lug - 1wy - lup — 1wy - 1ug - lun
= luy - (—luy - lwy — 1wy - lug) — (—luy - lwy — lwy - lup) - lupy = 0.

where the last equation we use the fact that ady,,, (1w1) + adj,, (1w;) = 0.We can
prove ady,, (ad,, (xwy)) = O similarly. Thus adfw1 (M3) = 0.
Using the same method, we can prove adys, (Ms) # 0 and adp, (Ms) # 0.
But adj; (Ms) = adj, (Ms) = 0. Hence M = (M1, M3, Ms) has Cartan matrix
2 —1-1
-1 2 -1
—1-12
It is not surprising that for all M € S\ S U S3, the Cartan matrix of M are
2 —1-1
all | —1 2 —1 ], because their Yetter-Drinfeld module structures are similar. We
—-1-12
omit the proof for simplicity.
Although they have the same Cartan matrix, the corresponding skeletons may
be different.
IfG, j, k) €{(,3,5), (1,3,6), (1,4,5), (1,4, 6)}, the corresponding skele-
ton will be the first picture.
If (i, j, k) € {2,3,4), 3,4,5), (3,4,6), (3,5,6), (4,5,6), (2,5,6)}, the
corresponding skeleton will be the second picture.
If@Q, j, k) € {(2,3,5), (2,3,6), (2,4,5), (2,4, 6)}, the corresponding skele-
ton will be the third picture.

All skeletons above don’t appear in [18] Figure2.1, hence by Theorem 5.6,
dim(B(M)) = ocoforall M € S\ S| US,. O

Proof of Theorem 5.7. 1t is direct from Lemma 5.8, 5.9 and Proposition 5.11. O
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5.3. An invariant preserved by gauge equivalence

By definition, a coquasi-Hopf algebra is exactly the dual notion of a Drinfeld’s
quasi-Hopf algebra [4]. One may refer [14] Section 2 for explicit definition, exam-
ples and related notions such as the category of Yetter-Drinfeld module (which is
denoted by gwa) over the coquasi-Hopf algebra (kG, w), the Nichols algebra in
this category etc.

Now let G be an abelian group with a nontrivial 3-cocycle w and H is a finite
group. Denoting gyngi the full subcategory of gwaconsisting of all finite-
dimensional twisted Yetter-Drinfeld modules. Suppose F : gyD;‘(’i — Znyd
is an equivalence of fusion categories. The following results seem well-known, but
we can’t find suitable reference. For the convenience of readers, we write them out.

Lemma 5.12. For each X € gyD%, we have the following equations with respect
to dimensions:

dimy (X) = FPdim(X) = FPdim(F (X)) = dimy (F (X)).

~

Proof of Theorem 5.7. There’s an equivalence of fusion categories: gyDﬁ’j =
Z(Vecg) = Rep(D“(G)). By [5] Example 5.13.8, dimy (X) = FPdim(X) for
all X e YDy

Note $YDY and Znyd are all fusion categories and F is a tensor functor,
then by [5] Proposition 4.5.7

FPdimg y,p (X) = FPdimg g (F(X)).

The last equation FPdim(F (X)) = dimy (F (X)) can be obtained via using the
same result as the first equation. O

Proposition 5.13. Suppose F : gyD‘f’é — Znyd is a tensor equivalence. Then
F maps a Nichols algebra in gyD%fj to a Nichols algebra in ZJ}Dfd.

Proof of Theorem 5.7. Although we deal with finite-dimensional Nichols algebras,
but by definition they are quotient of infinite-dimensional objects in gwa, SO wWe
should extend F to gwa at first.

Forall X, Y € SYDY, define F(X) = F(X) and F(f) = F(f) : F(X) —
F(Y). Now suppose X € gwa but X ¢ gypgg,. Since gwa and ZyD are
semisimple categories and the Grothendieck ring of both categories are finite. X
will be direct sum of simple objects X = @) X;, where X; are simple objects. Each

iel
X; belongs to gyD;‘(’i, because all simple objects in gwa are finite-dimensional.
Then F(X) may be defined via

F(X) := @ F(X;).

iel
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For f : X — Y be a morphism in gwa, f(f) may be defined as

@ Hom(X;,Y;). Obviously, F preserves composition of morphisms, iden-
(i,))elxI

tity morphism and finite direct sums. Thus F is an additive functor. Now we are
going to show F is a tensor functor. We have the following isomorphism:

F(X®Y)’\“F(€BX ®€BY)NF(69 D X;i®Y))
iel jel

—691 @IF(X ®Y)— 69 65 F(X)®F(Y)—F(X)®F(Y)
i€l je

and F (k) = k. The tensor structure I?X’y : F(X RY) > F(X) ® I?(Y) sat-
isfies hexagon diagrams since the tensor structure J of F' does. Thus F is a ten-
sor functor. Moreover, since F is a tensor equivalence, it has an inverse functor
e Znyd — gyD;g. Using this functor with similar method, we can prove
F is a tensor equivalence as well.
Now let V € gypgg be finite-dimensional and Jy,y : F(V® V) = F(V) ®
F (V) the tensor structure of F. Using J repeatedly, we have

FVE) = F(v)®

for each n € N. Here by definition, v — (- (Ve V) ®V)---®V). The
associative constraint in Hnyd is trivial, hence F (V)®" = F(V)®". Thus we
have F (P v®") =P F(V®”) = P F(V)®". Thatis F(T,(V)) = T(F(V)).
neN neN neN

Recall that the finite-dimensional twisted Nichols algebra in gwa are of the
form 7,,(V)/I where V € Gwa and / is the unique maximal graded Hopf ideal
in 7, (V) generated by homogeneous elements of degree greater than or equal to
2. F is exact since Gwa is semisimple, then using F(T (V)) ET(F(V)), we
have

F(T,(V)/1) = T(F(V))/F(D),

which is finite-dimensional as well. Here F (I) is a homogeneous Hopf ideal of
degree greater than or equal to 2 of 7' (F (V). Note that Nichols algebra generated
by F (V) must be of the form T (F(V))/J, where J is the unique maximal homo-
geneous graded Hopf ideal of T (F(V)) € HyD with degree greater than or equal
to 2 Hence F(I) C J and T(F(V))/J C T(F(V))/F(I). On the other hand,
F-1.H gYD — Gwa is inverse of F which is an exact tensor functor. Hence

FY T (FWV)/ D) = T,(FYFWV)/F ) ZT,(V)/F1(J) 2 T,(V)/I.

So F~1(J) < I, combining F(I) < J implies F(I) = J, which leads to
F(T,(V)/I) =T (F(V))/J and the proof is done. O
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5.4. Proof of Theorem 1.3

The situation considered in the [16] is the following: Let G = Z» x Zy X Zp =
(e) x (f) x (g) and w the nontrivial 3-cocycle on G:

w(eilfizgi3, el szgj3, P szgkz) — (_1)k1j2i3 (5.1

for 0 < iy, j1,k1 <2, 0<iy, jo, ko <2, 0<i3, j3,kz <2.Let V|, Vp, V3 €
g;))D“’ be three 2-dimensional pairwise non-isomorphic simple objects in gwa
such that deg(V) = e, deg(V2) = f, deg(V3) = g. Proposition 4.1 in [16] just
states that B(V, @ Vo @ V3) € gwa must be infinite-dimensional. Our work on
categorical Morita equivalence can give us a new proof now.

Proposition 5.14. The category gyD;% is braided fusion equivalent to gz YDxq.

Proof. Existence of the finite group H is immediately by Theorem 3.3. Explicitly,
take A = (e), K = (f) x {g), F = 1 in Lemma 3.1. Let

ﬁ(fizglé’ szgj3) — Xj2i3’

where x € Ais primitive such that x(g1) = —1. and let ¢ = 1, By Theorem 3.3,

Vecg; and Vecz; x(Zyx Zy) A€ categorical Moritaequivalent. Let H = Z» >1§ Zy X 7).
F
Actually, H is isomorphic to Dg since H has such a presentation

< (L (f8), (L(AD) (L (fi ) =1, (1, D) = (1, (f, D)?,
(L (D) -, (£, g (L, (f, 1)
= (f,ig) "' >.

Hence
GYDY ~ Z(Vec) ~ Z(Vecpy) ~ pi YDy
as braided fusion category. O

Now we are going to prove Theorem 1.3.

Proof of Theorem 1.3. Let V. = (V1, Va, V3) be the 3-tuple. Since Vi, V,, V3 are
pairwise non-isomorphic, simple and F : g)}D‘f‘(’i — ggypfd is a braided fusion
equivalence then F (V7), F(V») and F (V3) are pairwise nonisomorphic and simple.

Suppose B(V) € gyDﬁ’j is finite-dimensional, then F (B(V')) should be a finite-
dimensional Nichols algebra of rank 3 in gZnyd since F' maps Nichols algebra
in g)}D% to usual Nichols algebra by Proposition 5.13. But all Nichols algebra
generated by three pairwise nonisomorphic simple Yetter-Drinfeld module over
Dy are infinite-dimensional by Theorem 5.7. This is a contradiction, so B(V) is
infinite-dimensional. O
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Remark 5.15. 1t is not hard to see the our method can be applied to more general
situation, for example, the case: G is of the form Z,;,; X Zy, X Z,; = (g1) X (82) X
(g3) and w be a nontrivial 3-cocycle on G:

ip i3 _J1_J2_J3 ky k3\ _ ,a123kyj2i3
(81 8785 . gl'eref . 81 85’85 ) = Cmymam3)”
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