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Abstract. We study the quantum double of a finite abelian group G twisted by a 3-cocycle
and give a sufficient condition when such a twisted quantum double will be gauge equivalent
to an ordinary quantum double of a finite group. Moreover, we will determine when a
twisted quantum double of a cyclic group is genuine. As an application, we contribute to the
classification of coradically graded finite-dimensional pointed coquasi-Hopf algebras over
abelian groups. As a byproduct, we show that the Nichols algebras B(M1 ⊕ M2 ⊕ M3) are
infinite-dimensional where M1, M2, M3 are three different simple Yetter-Drinfeld modules
of D8.

1. Introduction

Given a finite group G and a normalized 3-cocycle ω ∈ Z3(G, C
∗), Dijkgraaf-

Pasquier-Roche defines a certain braided quasi-Hopf algebra(twisted quantum dou-
ble) Dω(G) in [3]. This article is aimed to study the gauge equivalence between
certain twisted quantum doubles, which leads to tensor equivalence between their
representation categories.

We review the background motivation of Dω(G) briefly. Although this concept
and our results are purely algebraic, the motivation of studying these problems
comes from conformal field theory and vertex operator algebra(cf.[2,6,19]). The
readers only need to understand that vertex operator algebras have a representation
theory, especially, in [17], he proved that if V is C2-cofinite, rational, CFT type (i.e.
V (1) = C1), and self dual (i.e. V ∼= V

′), then Rep(V) is a modular tensor category.
Then by reconstruction theory [21], there might be a weak quasi-Hopf algebra H
with the property that Rep(H) ∼= Rep(V) as modular category. In the context of
[3], the authors conjectured that one can take H to be a twisted quantum double
Dω(G) of G in the case when V is a so-called holomorphic orbifold model, that is
there is a simple vertex operator algebra W and a finite group of automorphisms G
of W such that V = W

G , see also [22].
Now suppose there’s a equivalence of braided tensor category Rep(W

G1
1 ) ∼=

Rep(W
G2
2 ), for two holomorphic vertex operator algebras and finite groups G1,G2.
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If the conjecture is true, then there must be a braided tensor equivalence:

Rep(Dω1(G1)) ∼= Rep(Dω2(G2)) (1.1)

for some choices of 3-cocycles ω1, ω2 ofG1,G2. Conversely, deciding when equiv-
alences such as (1.1) can hold gives information about the vertex operator algebras
and the cocycles that they determine. This is an interesting problem in its own right,
and is the one we consider here.

The case in which the two twisted quantum doubles in question are commuta-
tive, i.e. two groups are abelian and the 3-cocycles are abelian 3-cocycle was solved
in [23]. In [7], the authors dealt with the case when G1 is an elementary abelian
2-group and G2 turns out to be an extra-special 2-group. Here we are concerned
with a particular case of (1.1) when taking G1 as a finite abelian group, ω1 is an
arbitrary normalized 3-cocycle and G2 is a finite group, ω2 is trivial:

Rep(Dω1(G1)) ∼= Rep(D(G2)). (1.2)

We will give a sufficient condition when equivalence (1.2) holds and the reason we
can do it is that we knew an explicit expression of these 3-cocycles as indicated
below.

Let G be a finite abelian group which is isomorphic to Zm1 × Zm2 × · · ·× Zmn

with mi | mi+1 for 1 ≤ i ≤ n − 1. Thanks to [12] and [14], we can write down all
representatives of normalized 3-cocycles on G:

ω
(
gi11 · · · ginn , g j1

1 · · · g jn
n , gk1

1 · · · gknn
)

=
n∏

l=1

ζ
al il
[
jl+kl
ml

]

ml

∏
1≤s<t≤n

ζ
ast ks
[
it+ jt
mt

]

ms

∏
1≤r<s<t≤n

ζ
arst kr js it
(mr ,ms ,mt )

(1.3)

where 0 ≤ al < ml , 0 ≤ ast < (ms,mt ), 0 ≤ arst < (mr ,ms,mt ). Let

a = (a1, a2, ..., al , ..., an, a12, a13, ..., ast , ..., an−1,n, a123, ..., arst , ...an−2,n−1,n).

(1.4)
For a fixed a, we define the following sets:

A1 := {i |ai j �= 0, 1 ≤ i < j ≤ n
}
, A2 := {i |ai jk �= 0, 1 ≤ i < j < k ≤ n

}
,

B1 := { j |ai j �= 0, 1 ≤ i < j ≤ n
}
, B2 := { j, k|ai jk �= 0, 1 ≤ i < j < k ≤ n

}
.

(1.5)
Let A = A1 ∪ A2, B = B1 ∪ B2. The first main result of the paper is the following
one.

Theorem 1.1. Let G be a finite abelian group and ω a normalized 3-cocycle on G
as in (1.3). If the following condition holds:

(i) ai = 0 for all 1 ≤ i ≤ n.
(ii) A ∩ B = ∅.

Then Dω(G) will be gauge equivalent to D(G ′) for a finite group G ′.
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Recall that for a quasi-Hopf algebra H , we say H is genuine if it will never
be gauge equivalent to a Hopf algebra. Obviously, if Dω(G) is gauge equivalent
to D(G ′) for a finite group G ′, then Dω(G) isn’t genuine. One may ask, if Dω(G)

will never be gauge equivalent to D(G ′) for a finite group G ′, then whether Dω(G)

is genuine or not. In general, the answer is no. In fact, Theorem 9.4 in [23] tells us
if G is of odd order, then Dω(G) is not genuine. But, we will prove for arbitrary
finite cyclic group G with a nontrivial 3-cocycle, the Dω(G) will never be gauge
equivalent to D(G ′) for a finite group G ′. Hence, to study the genuineness of a
twisted quantum double is another question. Here is some results about this question
up to the knowledge of the authors. Example 9.5 in [23] gives us the first example
of genuine twisted quantum, say Dω(Z2), where ω is the nontrivial 3-cocycle on
Z2. In [20] Theorem 4.1, the authors showed that if G is abelian, and ω is an abelian
cocycle, then Dω(G) is genuine if and only if there exists V ∈ Rep(Dω(G)) such
that ν(V ) = 0, where ν is the total Frobenius-Schur indicator of Rep(Dω(G)). Let
G be a finite cyclic group and ω a nontrivial 3-cocycle on G. Our second main
result is to provide a discriminant method for whether Dω(G) is genuine or not,
also though using the explicit expression of 3-cocycles. Here is the result.

Theorem 1.2. Let G ∼= Zm be a finite cyclic group and ω(gi , g j , gk) = ζ
ai[ j+k

m ]
m

for 1 ≤ a < m. Then Dω(G) is genuine if and only if (m, 2a) � (m, a).

As an application, we apply theorem 1.1 to the classification of pointed finite-
dimensional coquasi-Hopf algebras, which has been investigated in [10,11,13–15].
Recently, the classification of coradically graded finite-dimensional coquasi-Hopf
algebras over abelian groups has been done in [16]. One of key ingredients in
this paper is Proposition 4.1. The proof of this proposition is rather technical and
depends on complicated and long computations. Here we use our method to give a
simple proof (see Subsection 5.4 for related illustrations).

Theorem 1.3. Let G ∼= Z2 × Z2 × Z2 = 〈g1〉 × 〈g2〉 × 〈g3〉 be an abelian group
and ω the 3-cocycle on G:

ω
(
gi11 gi22 gi33 , g j1

1 g j2
2 g j3

3 , gk1
1 gk2

2 gk3
3

)
= (−1)k1 j2i3 . (1.6)

Let V1, V2, V3 ∈ G
GYDω be simple twisted Yetter-Drinfeld modules such that

dim(Vi ) = 2, deg(Vi ) = gi , 1 ≤ i ≤ 3, such that gi � v = −v for all v ∈ Vi ,
1 ≤ i ≤ 3. Then the Nichols algebra B(V1 ⊕ V2 ⊕ V3) is infinite-dimensional.

In order to apply our method to show above theorem, we also proved that the Nichols
algebras B(M1 ⊕ M2 ⊕ M3) are always infinite-dimensional where M1, M2, M3
are three different simple Yetter-Drinfeld modules of D8.

Here is the layout of the paper. Section 2 is devoted to some preliminary mate-
rials. In Section 3, we provide a sufficient condition that when the twisted quantum
double of a finite abelian group will be gauge equivalent to the ordinary quantum
double of a finite group. In Section 4, we give a criterion when a twisted quan-
tum double of a finite cyclic group is genuine. Section 5 is concentrated on above
application.
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Throughout this paper, � is an algebraically closed field with characteristic zero
and all linear spaces are over �. Vecω

G is the tensor category of G-graded vector
spaces with associativity defined by ω and Vecω

G is the fusion category of finite
dimensional G-graded vector spaces with associativity defined by ω. Rep(Dω(G))

is the tensor category of representations of Dω(G) while Rep(Dω(G)) is the fusion
category of finite-dimensional representations of Dω(G).

2. Preliminaries

Here we recall some necessary notions and results.

2.1. 3-cocycles of finite abelian groups

By Fundamental theorem of finite abelian groups, any finite abelian group is of the
form: Zm1 × Zm2 · · · × Zmn with mi | mi+1 for 1 ≤ i ≤ n − 1. Denote A the the
set of all N-sequences:

a = (a1, a2, ..., al , ..., an, a12, a13, ..., ast , ..., an−1,n, a123, ..., arst , ...an−2,n−1,n)

such that 0 ≤ al < ml , 0 ≤ ast < (ms,mt ), 0 ≤ arst < (mr ,ms,mt ) for
1 ≤ l, s, t, r ≤ n. Let gi be a generator of Zmi , 1 ≤ i ≤ n. For each a ∈ A , define

ωa : G × G × G → C
×

[
gi11 · · · ginn , g j1

1 · · · g jn
n , gk1

1 · · · gknn
]

�→
n∏

l=1

ζ
al il
[
jl+kl
ml

]

ml

∏
1≤s<t≤n

ζ
ast ks
[
it+ jt
mt

]

ms

∏
1≤r<s<t≤n

ζ
arst kr js it
(mr ,ms ,mt )

.

(2.1)

Here ζm represents an m-th primitive root of unity. The following gives us the
desired expression.

Lemma 2.1. ([14] Proposition 3.8) The set
{
ωa |a ∈ A

}
forms a complete set of

representatives of the normalized 3-cocycles on G up to 3-cohomology.

Remark 2.2. We choose a slightly different representatives of normalized 3-cocycles
on G, as they are actually cohomologous to the formula (3.10) in [14] for a fixed
a. We choose these representatives for convenience later.

2.2. Twisted quantum doubles

We recall the definition of the twisted quantum double for the completeness of the
article.
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Definition 2.3. The twisted quantum double Dω(G) of a finite groupG with respect
to the 3-cocycleω onG is the semisimple quasi-Hopf algebra with underlying vector
space (kG)∗⊗kG in which multiplication, comultiplication �, associator φ, counit
ε, antipode S, α and β are given by

(e(g) ⊗ x)(e(h) ⊗ y) = θg(x, y)δgx ,he(g) ⊗ xy,

�(e(g) ⊗ x) =
∑
hk=g

γx (h, k)e(h) ⊗ x ⊗ e(k) ⊗ x,

φ =
∑

g,h,k∈G
ω(g, h, k)−1e(g) ⊗ 1 ⊗ e(h) ⊗ 1 ⊗ e(k) ⊗ 1,

S(e(g) ⊗ x) = θg−1(x, x−1)−1γx (g, g
−1)−1e(x−1g−1x) ⊗ x−1,

ε(e(g) ⊗ x) = δg,1, α = 1, β =
∑
g∈G

ω(g, g−1, g)e(g) ⊗ 1,

where {e(g)|g ∈ G} is the dual basis of {g ∈ G},δg,1 is the Kronecker delta, gx =
x−1gx , and

θg(x, y) = ω(g, x, y)ω(x, y, (xy)−1gxy)

ω(x, x−1gx, y)
,

γg(x, y) = ω(x, y, g)ω(g, g−1xg, g−1yg)

ω(x, g, g−1yg)

for any x, y, g ∈ G.

We may use Dω(G) to define abelian cocycles, which has been studied deeply in
[23].

Definition 2.4. A 3-cocycle ω on an abelian group G is called abelian if Dω(G) is
a commutative algebra.

Using formula (2.1), there’s a nice description when the 3-cocycle ωa is abelian:

Lemma 2.5. ([14], Proposition 3.14) The 3-cocycle ωa is abelian if and only if

arst = 0

for all 1 ≤ r < s < t ≤ n.

2.3. Module category and categorical Morita equivalence

Module category is an important tool in the theory of tensor category. It is parallel
to the module theory over a ring. The definition is similar to the definition of a
tensor category.See [5] Section 7 for explicit definitions. The theory of categorical
Morita equivalence is a categorical analogue of Morita equivalence in ring theory,
which plays an important role in the theory of module category.
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Definition 2.6. Let C be a tensor category with enough projective objects. A mod-
ule category M over C is called exact if for any projective object P ∈ C and any
object M ∈ M the object P ⊗ M is projective in M .

For an exact indecomposable right module category, one can form the dual category
C ∗
M := FunC (M ,M ), that is, the category of module functors from M to itself.

It is known that C ∗
M is also a tensor category.

Definition 2.7. Let C , D be tensor categories. We will say that C and D are cate-
gorical Morita equivalent if there is an exact indecomposable C -module category
M and a tensor equivalence Dop ∼= C ∗

M .

Here is a basic example of categorical Morita equivalence.

Example 2.8. Let G be a finite group and let C = VecG . The category Vec is
an exact VecG-module category via the forgetful tensor functor VecG → Vec.
Consider the dual category (VecG)∗Vec. By definition, a VecG-module endofunctor
F of Vec consists of a vector space V := F(�) and a collection of isomorphisms

γg ∈ Hom(F(δg ⊗ �), δg ⊗ F(�))) = End�(V ).

By axiom of module functor, the map g �→ γg : G −→ GL(V ) is a representation
of G on V . Conversely, any such representation determines a VecG -module end-
ofunctor of Vec. The homomorphisms of representations are precisely morphisms
between the corresponding module functors. Thus, (VecG)∗Vec

∼= Rep(G)op, i.e.,
the categories VecG and Rep(G) are categorical Morita equivalent.

3. On gauge equivalence between Dω(G) and D(G′)

Throughout this section, let G = Zm1 × Zm2 × · · · × Zmn with mi | mi+1 for
1 ≤ i ≤ n − 1 and ω be a normalized 3-cocycle with the following form:

ω
(
gi11 · · · ginn , g j1

1 · · · g jn
n , gk1

1 · · · gknn
)

=
n∏

l=1

ζ
al il
[
jl+kl
ml

]

ml

∏
1≤s<t≤n

ζ
ast ks
[
it+ jt
mt

]

ms

∏
1≤r<s<t≤n

ζ
arst kr js it
(mr ,ms ,mt )

. (3.1)

3.1. Categorical Morita equivalence of pointed fusion categories

We first recall the result of categorical Morita equivalence in [26]:

Lemma 3.1. ([26] Theorem 3.9) Let G and Ĝ be finite groups, η ∈ Z3(G, C
∗)

and η̂ ∈ Z3(Ĝ, C
∗) be normalized 3-cocycles. Then the tensor categories Vecη

G

and Vecη̂

Ĝ
are categorical Morita equivalent if and only if the following conditions

are satisfied:
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(1) There exist isomorphism of groups:

φ : H �
F
K

∼=−→ G, φ̂ := Ĥ �

F̂
K

∼=−→ Ĝ (3.2)

for some finite group K acting on the abelian normal group H, with F ∈ Z2(K , H)

and F̂ ∈ Z2(K , Ĥ) where Ĥ := Hom(H, C
∗).

(2) There exists ε : K 3 −→ C
∗ such that

F̂ ∧ F = δK ε. (3.3)

Here F̂ ∧ F(k1, k2, k3, k4) := F̂(k1, k2) (F(k3, k4)) .

(3) The cohomology classes satisfy the equations [φ∗η] = [ω] and [φ̂∗η̂] = [ω̂]
with

ω ((h1, k1) , (h2, k2) , (h3, k3)) := F̂ (k1, k2) (h3) ε (k1, k2, k3) ,

ω̂ ((ρ1, k1) , (ρ2, k2) , (ρ3, k3)) := ε (k1, k2, k3) ρ1 (F (k2, k3)) .
(3.4)

For simplicity, we will regard ω (resp. ω′) as a normalized 3-cocycle on G and
H �

F̂
K (resp. G ′ and Ĥ �

F̂
K ) simultaneously in the following context. A simple

but useful application of this lemma is given as follows:

Corollary 3.2. Let G be a finite abelian group. IfVecω
G is categorical Morita equiv-

alent to VecG ′ for a finite group G ′, then
(i) The choice of ε in Lemma 3.1 must be ε(k1, k2, k3) = 1 for all k1, k2, k3 ∈ K.
(ii) The crossed product G = H �

F
K in Lemma 3.1 is actually a direct product.

That is, the decomposition of G must be of the form G = H × K for an abelian
normal subgroup H.

Proof. Suppose Vecω
G is categorical Morita equivalence to VecG ′ . By Lemma 3.1,

There exists isomorphism of groups: H �
F
K

∼=−→ G, Ĥ �

F̂
K

∼=−→ Ĝ for abelian

normal subgroup H of G. By assumption, the normalized 3-cocycle ω′ of G ′ is
trivial. That is

ω′ ((ρ1, k1) , (ρ2, k2) , (ρ3, k3)) = ε (k1, k2, k3) ρ1 (F (k2, k3)) ≡ 1

for all k1, k2, k3 ∈ K and ρ1, ρ2, ρ3 ∈ Ĥ .
We first assume ε is nontrivial, then there will exist k′, k′′, k′′′ ∈ K such that

ε(k′, k′′, k′′′) �= 1, then

ω′ ((1Ĥ , k′) , (ρ2, k
′′) , (ρ3, k

′′′,
)) = ε(k′, k′′, k′′′)1Ĥ (F(k1, k2))

= ε(k′, k′′, k′′′) �= 1.

This implies ω′ will never be identically equal to 1, which is a contradiction.
Suppose the crossed product is not a direct product. Then F ∈ Z2(K , H) is

nontrivial, and there will exist k′, k′′ ∈ K such that F(k′, k′′) �= 1H . So we can
choose a character ρ ∈ Ĥ such that ρ

(
F(k′, k′′)

) �= 1 and consider the ratio of

ω′ ((ρ, k1) ,
(
1Ĥ , k2
)
,
(
1Ĥ , k3
))

ω′ ((1Ĥ , k1
)
,
(
1Ĥ , k2
)
,
(
1Ĥ , k3
)) = ρ (F(k1, k2)) �= 1.

Thus one of the values of ω′ can’t be one. This leads to a contradiction as well. ��
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3.2. The first main result

Keep the notation above, we will give a sufficient condition of categorical Morita
equivalence between Vecω

G and VecG ′ in this subsection. Now let G = Zm1 ×Zm2 ×
· · · × Zmn with mi | mi+1 for 1 ≤ i ≤ n − 1. The 3-cocycle ω as in (3.1).

a = (a1, a2, ..., al , ..., an, a12, a13, ..., ast , ..., an−1,n,

a123, ..., arst , ...an−2,n−1,n) ∈ A

where 0 ≤ al < ml , 0 ≤ ast < (ms,mt ), 0 ≤ arst < (mr ,ms,mt ). For a fixed
a ∈ A , define the following sets:

A1 := {i |ai j �= 0, 1 ≤ i < j ≤ n
}
, A2 := {i |ai jk �= 0, 1 ≤ i < j < k ≤ n

}
,

B1 := { j |ai j �= 0, 1 ≤ i < j ≤ n
}
, B2 := { j, k|ai jk �= 0, 1 ≤ i < j < k ≤ n

}
.

Let A = A1 ∪ A2, B = B1 ∪ B2.

Theorem 3.3. Let G be a finite abelian group and ω is a normalized 3-cocycle on
G as in (1.3). If

(i) ai = 0 for all 1 ≤ i ≤ n,
(ii) A ∩ B = ∅.

Then Vecω
G is categorical Morita equivalent to VecG ′ for a finite group G ′.

Proof. Let ai = 0 for all 1 ≤ i ≤ n and A ∩ B = ∅. Denote I = {1, 2, · · · , n}.
Clearly A, B ⊂ I . Now take H = ∏

i∈A
Zmi = ∏

i∈A
〈gi 〉, and K = ∏

j∈I\A
Zm j =

∏
j∈I\A

〈g j 〉, then G ∼= H × K . Define

F̂

⎛
⎝ ∏

m∈I\A
gimm ,
∏

m∈I\A
g jm
m

⎞
⎠ =

∏
p<q

p∈A1,q∈B1

(χp)
apq [ iq+ jq

mq
] ∏

r<s<t
r∈A2,s,t∈B2

(χr )
arst mr

(mr ,ms ,mt )
js it

where χp ∈ Ẑm p is primitive. F̂ lies in Z2(K , Ĥ) by direct computation. We are
now going to show Vecω

G is categorical Morita equivalent to VecH�

F̂
K by Lemma

3.1:
Equation (3.2) has been done. If we set ε : K 3 → k× being identical to 1, then

(3.3) is satisfied since F̂ ∧ F(k1, k2, k3, k4) = F̂(k1, k2) (F(k3, k4)) = 1 = δK ε.
Note

ω
(
gi11 · · · ginn , g j1

1 · · · g jn
n , gk1

1 · · · gknn
)

=
∏

1≤p<q≤n

ζ
apq kp
[
iq+ jq
mq

]

mp

∏
1≤r<s<t≤n

ζ
arst kr js it
(mr ,ms ,mt )

=
∏
p<q

p∈A1,q∈B1

ζ
apq kp[ iq+ jq

mq
]

mp

∏
r<s<t

r∈A2,s,t∈B2

ζ
arst kr js it
(mr ,ms ,mt )
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since apq = 0 if p /∈ A1 or q /∈ B1 and arst = 0 if r /∈ A2 or s /∈ B2 or t /∈ B2. On
the other hand

F̂

⎛
⎝ ∏

n∈I\A
ginn ,
∏

n∈I\A
g jn
n

⎞
⎠ (
∏
m∈A

gkmm ) =
∏
p<q

p∈A1,q∈B1

ζ
apq kp[ iq+ jq

mq
]

mp

∏
r<s<t

r∈A2,s,t∈B2

ζ
arst

mr kr js it
(mr ,ms ,mt )

mr

=
∏
p<q

p∈A1,q∈B1

ζ
apq kp[ iq+ jq

mq
]

mp

∏
r<s<t

r∈A2,s,t∈B2

ζ
arst kr js it
(mr ,ms ,mt )

.

Hence

ω
(
gi11 · · · ginn , g j1

1 · · · g jn
n , gk1

1 · · · gknn
)

= ω((
∏
m∈A

gimm ,
∏

n∈I\A
ginn ), (
∏
m∈A

g jm
m ,
∏

n∈I\A
g jn
n ), (
∏
m∈A

gkmm ,
∏

n∈I\A
gknn ))

=
∏
p<q

p∈A1,q∈B1

ζ
apqkp[ iq+ jq

mq
]

mp

∏
r<s<t

r∈A2,s,t∈B2

ζ
arst kr js it
(mr ,ms ,mt )

= F̂(
∏

n∈I\A
ginn ,
∏

n∈I\A
g jn
n )(
∏
m∈A

gkmm ).

Thus the first equation of (3.4) has been verified.
Since G ∼= H × K = H �

F
K where F(k1, k2) = 1H for all k1, k2 ∈ K . Then

ρ(F(k1, k2)) = 1 for all ρ ∈ Ĥ and k1, k2 ∈ K . Thus

ω′ ((ρ1, k1) , (ρ2, k2) , (ρ3, k3)) = 1 = ρ1(F(k2, k3)).

We have verified all conditions in Lemma 3.1. Hence Vecω
G is categorical Morita

equivalent to VecĤ�

F̂
K if ai = 0 for all 1 ≤ i ≤ n and A ∩ B = ∅. ��

This theorem implies Theorem 1.1 directly.

Proof of Theorem 1.1. According to Theorem 3.3, if ai = 0 for all 1 ≤ i ≤ n and
A ∩ B = ∅, then Vecω

G is categorical Morita equivalent to VecG ′ for some finite
group G ′. By Theorem 3.1 in [5], the centers of these two fusion categories are
braided equivalent. It is known that the center is equivalent to the representation
category of the corresponding Drinfeld double (see for example [25]). That is,
Rep(Dω(G)) is braided tensor equivalent to Rep(D(G ′)). Hence Dω(G) will be
gauge equivalent to D(G ′) by Theorem 2.2 in [24]. ��
A natural question is when G ′ can be a finite abelian group in the theorem above.
Here is the answer.

Corollary 3.4. Let G be a finite abelian group and ω a normalized 3-cocycle on G
as above. Then Vecω

G is categorical Morita equivalent to VecG ′ for a finite abelian
group G ′ if
(1) ai = 0 for all 1 ≤ i ≤ n and arst = 0 for all 1 ≤ r < s < t ≤ n,
(2) A1 ∩ B1 = ∅.
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Proof. We first assume the condition (i) and (ii) in Theorem 3.3 hold. Thus there’s
a finite group G ′ such that Vecω

G is categorical Morita equivalence to VecG ′ . By

construction, G ′ ∼= (
∏
i∈A

Zmi ) �

F̂
(
∏

j∈I\A
Zm j ) where F̂ is defined to be

F̂

⎛
⎝ ∏

m∈I\A
gimm ,
∏

m∈I\A
g jm
m

⎞
⎠ =

∏
p<q

p∈A1,q∈B1

(χp)
apq [ iq+ jq

mq
] ∏

r<s<t
r∈A2,s,t∈B2

(χr )
arst mr

(mr ,ms ,mt )
js it .

Then G ′ is abelian ⇔ (
∏
m∈A

gimm ,
∏

n∈I\A
ginn ) · (
∏
m∈A

g jm
m ,
∏

n∈I\A
g jn
n )

= (
∏
m∈A

g jm
m ,
∏

n∈I\A
g jn
n ) · (
∏
m∈A

gimm ,
∏

n∈I\A
ginn )

⇔ F̂

⎛
⎝ ∏

n∈I\A
ginn ,
∏

n∈I\A
g jn
n

⎞
⎠ = F̂

⎛
⎝ ∏

n∈I\A
g jn
n ,
∏

n∈I\A
ginn

⎞
⎠

⇔
∏
p<q

p∈A1,q∈B1

(χp)
apq [ iq+ jq

mq
] ∏

r<s<t
r∈A2,s,t∈B2

(χr )
arst mr js it
(mr ,ms ,mt )

=
∏
p<q

p∈A1,q∈B1

(χp)
apq [ jq+iq

mq
] ∏

r<s<t
r∈A2,s,t∈B2

(χr )
arst mr is jt
(mr ,ms ,mt )

⇔ A2, B2 = ∅.

This is equivalent to arst = 0 for all 1 ≤ r < s < t ≤ n. Thus if (1) and (2) hold,
then G ′ is abelian. ��

If G is a cyclic group, then conditions (i),(ii) in Theorem 3.3 are also necessary. In
fact, for any cyclic group G ∼= Zm =< g|gm = 1 > with a normalized 3-cocycle

ωa given by ωa(gi , g j , gk) = ζ
ai[ j+k

m ]
m , where 0 ≤ a, i, j, k < m, we have (noting

that the condition (ii) is always satisfied now)

Proposition 3.5. The fusion category Vecωa
G is categorical Morita equivalent to

VecG ′ for a finite group G ′ if and only if a = 0.

Proof. The sufficiency follows from Theorem 3.3. Now suppose that Vecωa
G is

categorical Morita equivalent to VecG ′ for a finite group G ′. By Corollary 3.2, G
must be direct product of two subgroups, like G ∼= H×K and the function ε should
be 1. Since G is cyclic, then H and K must be cyclic subgroups. Moreover, |H |
should be prime to |K |, hence H2(K , Ĥ) = {1}. Thus ωa should be 1 by formula
(3.4). That is, a = 0. ��

But in general the conditions (i) and (ii) in Theorem 3.3 both are not necessary as
the following example shows.
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Example 3.6. Let G ∼= Z2 × Z2 × Z2 = 〈g1〉 × 〈g2〉 × 〈g3〉 and

ω
(
gi11 gi22 gi33 , g j1

1 g j2
2 g j3

3 , gk1
1 gk2

2 gk3
3

)

= (−1)i2[ j2+k2
2 ](−1)k1[ i2+ j2

2 ](−1)k1[ i3+ j3
2 ](−1)k2[ i3+ j3

2 ].

In this case, a = (0, 1, 0, 1, 1, 1, 0) ∈ A , a2 �= 0 and A1 ∩ B1 �= 0.
Take H ∼= Z2 = 〈g1〉 and K ∼= Z2 × Z2 = 〈g1g2〉 × 〈g3〉. Obviously,

G ∼= H × K . Define

F̂ : K × K → Ĥ , F̂((g1g2)
i2 , gi33 , (g1g2)

j2 , g j3
3 ) = χ

[ i2+ j2
2 ]

1 χ
[ i3+ j3

2 ]
1 ,

where χ1 generates Ĥ . Let G ′ = Ĥ �

F̂
K , we are going to show Vecω

G is categorical

Morita equivalent to VecG ′ .
Define ε : K 3 → C

∗ as ε ≡ 1, then equation (3.3) holds. Note that

ω(g(i1−i2)′
1 ((g1g2)

i2 , gi33 ), g( j1− j2)′
1 ((g1g2)

j2g j3
3 ), g(k1−k2)′

1 ((g1g2)
k2gk3

3 ))

= ω
(
gi11 gi22 gi33 , g j1

1 g j2
2 g j3

3 , gk1
1 gk2

2 gk3
3

)

= (−1)i2[ j2+k2
2 ](−1)k1[ i2+ j2

2 ](−1)k1[ i3+ j3
2 ](−1)k2[ i3+ j3

2 ],

and

F̂
(
((g1g2)

i2 , gi33 ), ((g1g2)
j2 , g j3

3 )
)

(g(k1−k2)′
1 )

= (−1)(k1−k2)
′[ i2+ j2

2 ](−1)(k1−k2)
′[ i3+ j3

2 ]

for 0 ≤ i1, i2, j1, j2, k1, k2 ≤ 1. Actually,

(−1)i2[ j2+k2
2 ](−1)k1[ i2+ j2

2 ](−1)k1[ i3+ j3
2 ](−1)k2[ i3+ j3

2 ]

(−1)(k1−k2)′[ i2+ j2
2 ](−1)(k1−k2)′[ i3+ j3

2 ]

= (−1)i2[ j2+k2
2 ](−1)k1[ i2+ j2

2 ](−1)k1[ i3+ j3
2 ](−1)k2[ i3+ j3

2 ]

(−1)k1[ i2+ j2
2 ](−1)−k2[ i2+ j2

2 ](−1)k1[ i3+ j3
2 ](−1)−k2[ i3+ j3

2 ]

= (−1)k2[ i2+ j2
2 ] · (−1)i2[

j2+k2
2 ] = 1.

Thus ω
(
gi11 gi22 gi33 , g j1

1 g j2
2 g j3

3 , gk1
1 gk2

2 gk3
3

)
= F̂
(
((g1g2)

i2 , gi33 ), ((g1g2)
j2 , g j3

3 )
)

(g(k1−k2)
′

1 ) and the first equation in (3.4) holds. Obviously, if we define the 3-cocycle
ω′ on G ′ as

ω′ ≡ 1.

Then the second equation in (3.4) holds. Hence we have proved Vecω
G is categorical

Morita equivalent to VecG ′ .
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4. On genuineness of twisted quantum double

In the article [3], the authors asked whether Dω(G) can be obtained by twisting
a Hopf algebra or not. In [23] Example 9.5, the authors have shown that Dω(Z2)

is genuine for ω being the normalized 3-cocycle on G whose cohomology class is
nontrivial. This gives a negative answer to the above question. In this section, we
will investigate when a twisted quantum double of a cyclic group to be genuine,
that is, it can’t be obtained by twisting a Hopf algebra.

4.1. The structure of Dω(G)

Let G be an abelian group and ω an abelian 3-cocycle on G. Let �ω be the group
of all group-like elements in Dω(G), and denote ωg(x, y) = ω(g,x,y)ω(x,y,g)

ω(x,g,y) for
g, x, y ∈ G.

Lemma 4.1. ([23] Corollary 3.6) With the notation above, Dω(G) is spanned by
the set of group-like elements �ω and it is a commutative algebra. In particular,
ωg is a 2-coboundary for any g ∈ G.

Moreover, �ω can be seen as an abelian extension, which may help us to figure out
the explicit structure of Dω(G).

Lemma 4.2. ([23] Proposition 3.8) Let Ĝ be the character group of G, then �ω is
an extension

1 −→ Ĝ −→ �ω −→ G −→ 1. (4.1)

For each g ∈ G, let ωg = δτg for a 1-cochain τg : G → C
×. The 2-cocycle β

associated to this central extension is given by

β(x, y)(g) = τx (g)τy(g)

τxy(g)
ωg(x, y). (4.2)

From now on, let G = Zm = 〈g〉 be a finite cyclic group and ω(gi , g j , gk) =
ζ
ai[ j+k

m ]
m be a nontrivial normalized 3-cocycle. In this case, Ĝ = Ẑm = 〈χ〉, where

χ(g) = ζm . We will determine when Dω(G) is genuine. The first task is to figure
out the group structure on �ω. Since �ω is totally determined by Dω(G), it is
independent of the choice of τx for each x ∈ G.

Lemma 4.3. Let τgi (g
j ) = ζ

ai j
m2 for all 0 ≤ i, j ≤ m. then δτgi = ωgi . Further,

β(gi , g j ) = χ2a[ i+ j
m ] in this case.

Proof. Direct computation shows that

δτgi (g
j , gk) = τgi (g

j )τgi (g
k)

τgi (g( j+k)′)
= ζ

ai j
m2 ζ aik

m2

ζ
ai( j+k)′
m2

= ζ
ai[ j+k

m ]
m = ωgi (g

j , gk).
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Here ( j + k)′ denotes the reminder of j + k modulo m. Now

β(g j , gk)(gi ) = τg j (gi )τgk (g
i )

τg( j+k)(gi )
ωgi (g

j , gk) = ζ
2ai[ j+k

m ]
m .

Hence β(gi , g j ) = χ2a[ i+ j
m ]. ��

Note that �ω consists of all group-like elements, hence it is benefit to write down
explicit formulas of all group-like elements. By [23], a nonzero element u in Dω(G)

is a group-like element if and only if

u = στ (α, x) =
∑
g∈G

α(g)τx (g)e(g) ⊗ x . (4.3)

for α ∈ Ĝ and x ∈ G. Here we have assumed G is a cyclic group, we can simplify
the expression of στ (α, x).

Lemma 4.4. (i) We have στ (χ
j , 1) = χ j ⊗ 1 and στ (χ

j , g) =∑m−1
i=0 ζ ai

m2ζ
i j
m

e(gi ) ⊗ g, where 0 ≤ j ≤ m − 1.
(ii) Let s = στ (χ, 1), t = στ (1, g), then �ω has the following presentation:

〈
s, t |t m2

(m,2a) = sm = 1, s2a = tm, st = ts

〉
. (4.4)

Proof. First, by direct computation

e(gi ) = 1i = 1

m

m−1∑
l=0

ζ−li
m χ l , (4.5)

χ j =
m−1∑
i=0

ζ
i j
m e(gi ). (4.6)

Then

στ (χ
j , 1) =

m−1∑
i=0

χ j (gi )τ1(g
i )e(gi ) ⊗ 1 =

m−1∑
i=0

ζ
i j
m e(gi ) ⊗ 1 = χ j ⊗ 1,

and

στ (χ
j , g) =

m−1∑
i=0

χ j (gi )τg(g
i )e(gi ) ⊗ g =

m−1∑
i=0

ζ aim2ζ
i j
m e(gi ) ⊗ g.

By multiplication rule of twisted quantum double,

στ (1, g) · στ (χ, 1) = στ (χ, g) = στ (χ, 1) · στ (1, g).

Suppose 0 ≤ l ≤ m − 1, we have

στ (1, g)l =
m−1∑
i=0

ζ ailm2 e(g
i ) ⊗ gl = στ (1, gl).
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Moreover,

στ (1, g)m =
m−1∑
i=0

ζmai
m2 e(gi )θgi (g

m−1, g) ⊗ 1

=
m−1∑
i=0

ζ 2ai
m e(gi ) ⊗ 1 = χ2a ⊗ 1 = στ (χ, 1)2a .

It is easy to verify that στ (χ, 1)m = 1 and thus στ (χ, 1)2a has order m
(m,2a)

. This

implies that στ (1, g) has order m2

(m,2a)
. Obviously, each στ (χ

j , gk) can be expressed
as a production of some powers of στ (1, g) and στ (χ, 1). Thus we get the desired
presentation of �ω. ��

�ω is actually a metacyclic group, for details, see [9]. In general, it is not easy
to determine the group structure of �ω while in our case �ω can be gotten not so
hard.

Proposition 4.5. We have �ω ∼= Z(2a,m) × Z m2
(2a,m)

.

Proof. It is obvious that �ω is an abelian group and has order m2. By the presenta-
tion of �ω, the number of generators of �ω, must be equal or less than 2. Thus we
may write �ω ∼= Zm1 × Zm2 , where m1 | m2. Consider the element στ (1, g) and we

know that its order is m2

(2a,m)
. Hence �ω has a cyclic subgroup 〈στ (1, g)〉 of order

m2

(2a,m)
. If (2a,m) = 1, then στ (1, g) has order m2. So �ω ∼= Zm2 = 〈στ (1, g)〉.

Actually, we may regard it as Z1 × Zm2 for consistency.

If (2a,m) �= 1, then m2

(2a,m)
is strict less than m2. We claim that for arbitrary

element h = στ (χ
i , g j ), 0 ≤ i, j < m, the order of h will be less than or equal

to m2

(2a,m)
. The case i = j = 0 is trivial and for the case i �= 0 but j = 0,

ord(h) = m
(m,i) ≤ m ≤ m2

(m,2a)
. The remaining case is that j �= 0, by direct

computation.

h
m2

(m,2aj) = (στ (χ, 1)im · στ (1, g) jm)
m

(m,2aj)

= (στ (χ, 1)2aj )
m

(m,2aj)

= 1.

So ord(h) ≤ m2

(m,2aj) . Note that (m, 2aj) ≥ (m, 2a), hence m2

(m,2aj) ≤ m2

(m,2a)
. So

〈στ (1, g)〉 is a maximal subgroup of G. Since �ω ∼= Zm1 × Zm2 with m1 | m2,
〈στ (1, g)〉 must be isomorphic to Zm2 . Hence Zm1 has order (2a,m). So �ω ∼=
Z(2a,m) × Z m2

(2a,m)

. ��
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4.2. A criterion of 3-coboudaries on abelian groups

Let us recall an approach to determine whether a 3-cohomology on a finite abelian
group is nontrivial or not.

Let H ∼= Zm1 × Zm2 × · · · × Zmn be a finite abelian group and (B•, ∂•) be
the bar resolution of H . By applying HomZH (−,�×) we get a complex (B∗• , ∂∗• ),
where �× is a trivial H -module. In [14] Section 3, the authors defined another free
resolution (K•, d•) for arbitrary abelian groups and constructed a chain map F•
from (K•, d•) to (B•, ∂•). For our purpose, we only need the morphism F3, see
[[14] Lemma 3.9] :

F3 : K3 → B3,

�r,s,t �→ [gr , gs, gt ] − [gs, gr , gt ] − [gr , gt , gs] + [gt , gr , gs]

+ [gs, gt , gr ] − [gt , gs, gr ] ,

�r,r,s �→
mr−1∑
l=0

([
glr , gr , gs

]
−
[
glr , gs, gr

]
+
[
gs, g

l
r , gr
])

,

�r,s,s �→
ms−1∑
l=0

([
gr , g

l
s, gs
]

−
[
gls, gr , gs

]
+
[
gls, gs, gr

])
,

�r,r,r �→
mr−1∑
l=0

[
gr , g

l
r , gr
]
,

for 1 ≤ r < s < t ≤ n, where the symbols like �r,r,r are terms in the resolu-
tions (K•, d•). Moreover, we have the following observation since F∗

3 induces an
isomorphism between 3-cohomology groups.

Lemma 4.6. Let φ in (B∗• , ∂∗• ) be a 3-cocycle. Then φ is a 3-coboundary if and
only if F∗

3 (φ) is a 3-coboundary.

The following lemma provides a criterion for whether a 3-cochain f ∈
HomZH (K3,�

×) is 3-coboundary.

Lemma 4.7. ([14] Lemma 3.3) The 3-cochain f ∈ HomZH (K3,�
×) is 3-

coboundary if and only if for all 1 ≤ i < j ≤ n, there are gi, j ∈ �× such
that

f (�i,,i, j ) = gmi
i, j , f (�i, j, j ) = g

−m j
i, j , and f (�l,l,l) = 1, f (�r,s,t ) = 1. (4.7)

for 1 ≤ l ≤ n and 1 ≤ r < s < t ≤ n.

4.3. The second main result

In [20] , the authors gave a criterion when a twisted quantum double with an abelian
cocycle to be genuine.
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Lemma 4.8. ([20] Theorem 4.1, Lemma 4.5) Let G be a finite abelian group, and
ω a normalized abelian 3-cocycle of G. Then Dω(G) is a genuine quasi-Hopf
algebra if, and only if ω′ ∈ Z3(�ω, C

×) is a nontrivial 3-cocycle of �ω, where
ω′ ∈ Z3(�ω, C

×) is the inflation of ω−1 along the above map �ω −→ G.

Now it suffices to determine whether ω′ is nontrivial on �ω ∼= Z(2a,m) × Z m2
(2a,m)

or not. Obviously, if ω′ is nontrivial on Z m2
(2a,m)

, then ω′ will be nontrivial on �ω.

Hence we may consider this condition at first.

Proposition 4.9. Let G ∼= Zm be a finite cyclic group andω(gi , g j , gk) = ζ
ai[ j+k

m ]
m

for 1 ≤ a < m. If (m, 2a) � (m, a), then ω′ is nontrivial on �ω.

Proof. Since �ω is the extension of G by Ĝ. there is a obvious group surjection

π : �ω −→ Zm : στ (χ, 1) j �→ 1,

στ (1, g)i �→ gi .

Hence π∗(ω−1) will actually be the restriction of ω′ to Z m2
(2a,m)

.

To show π∗(ω−1) is nontrivial, it suffices to show F∗
3 (π∗(ω−1))(�1,1,1) not

equals to 1 by Lemmas 4.6 and 4.7. By definition of F3,

F∗
3 (π∗(ω−1))(�1,1,1) = π∗(ω−1)(

m2
(2a,m)

−1∑
l=0

[στ (1, g), στ (1, g)l , στ (1, g)])

= ω−1(

m2
(2a,m)

−1∑
l=0

[g, gl , g])

= (ζ−a
m )

m
(2a,m) .

Note that (ζ−a
m )

m
(2a,m) = 1 if and only if m

(m,a)
| m

(m,2a)
, that is, (m, 2a) should divide

(m, a). Hence if (m, 2a) � (m, a), then ω′ is nontrivial on Z m2
(2a,m)

, hence on �ω. ��

The necessity of Theorem 1.2 is obvious by Proposition 4.9, since ω′ is a 3-
coboundary on �ω will imply (m, 2a) | (m, a).

Now we need to deal with the case (m, 2a) | (m, a). Unfortunately, it is difficult
to write down the explicit generator of Z(2a,m). We avoid this difficulty via the
following result. By [15] Lemma 2.16, it’s harmless to assume Z(2a,m) = 〈στ (χ, 1)·
στ (1, g)b〉 = 〈στ (χ, gb)〉 for 0 ≤ b ≤ (2a,m). Note that this assumption requires

m | b(2a,m), and m | (2a,m) + 2a[b(2a,m)

m
].

since στ (χ, gb)(2a,m) = 1. All preparations have been done and we are going to
prove Theorem 1.2.



On gauge equivalence of twisted quantum doubles Page 17 of 29 36

Proof of Theorem 1.2. We only need to show ω′ is a 3-coboundary on �ω if
(m, 2a) | (m, a). For consistency, we regard στ (1, g) as the first generator and
στ (χ, gb) the second generator. We have already shown F∗

3 (π∗(ω−1))(�1,1,1) = 1.
The remaining is to verify the condition in Lemma 4.7. By direct computations, we
have

F∗
3 (π∗(ω−1))(�2,2,2) = π∗(ω−1)(

(2a,m)−1∑
l=0

[στ (χ, gb), στ (χ, gb)l , στ (χ, gb)]

= ω−1(

(2a,m)−1∑
l=0

[gb, (gb)l , gb])

=
(2a,m)−1∏

l=0

(ζ−a
m )b[

(bl)′+b
m ].

We have m | ab since (2a,m) | (m, a),(m, a) | a and m | (2a,m)b by assumption,
thus F∗

3 (π∗(ω−1))(�2,2,2) = 1.
Next we are going to compute F∗

3 (π∗(ω−1))(�1,2,2) and F∗
3 (π∗(ω−1))(�1,1,2).

We have

F∗
3 (π∗(ω−1))(�1,1,2)

= π∗(ω−1)

⎛
⎜⎝

m2
(2a,m)

−1∑
l=0

[στ (1, g)l , στ (1, g), στ (χ, gb)]

−[στ (1, g)l , στ (χ, gb), στ (1, g)] + [στ (χ, gb), στ (1, g)l , στ (1, g)]
)

=
m2

(2a,m)
−1∏

l=0

ω−1(gl
′
, g, gb)ω−1(gb, gl

′
, g)

ω−1(gl ′, gb, g)

=
m2

(2a,m)
−1∏

l=0

(ζ−a
m )b[

l′+1
m ] = 1.

since m | ab by the analysis above. On the other hand,

F∗
3 (π∗(ω−1))(�1,2,2)

= π∗(ω−1)(

(2a,m)−1∑
l=0

[στ (1, g), στ (χ, gb)l , στ (χ, gb)]

− [στ (χ, gb)l , στ (1, g), στ (χ, gb)] + [(στ (χ, gb)l , στ (χ, gb), στ (1, g)])

=
(2a,m)−1∏

l=0

ω−1(g, g(bl)′, gb)ω−1(g(bl)′, gb, g)

ω−1(g(bl)′, g, gb)
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=
(2a,m)−1∏

l=0

(ζ−a
m )[

(bl)′+b
m ].

If b = 0, then F∗
3 (π∗(ω−1))(�1,2,2) = 1. If we take g1,2 = 1, then equation (4.7)

holds, thus ω′ is a 3-coboundary. If b �= 0, then (b((2a,m) − 1))′ + b equals m
since m | b(2a,m) by assumption. Thus

F∗
3 (π∗(ω−1))(�1,2,2) = (ζ−a

m )
b(2a,m)

m .

In this case, take g1,2 = ζ
ab
m
m . Since (m, 2a) | m and m | ab, we have

g−(2a,m)
1,2 = (ζ−a

m )
b(2a,m)

m = F∗
3 (π∗(ω−1))(�1,2,2),

and

g
m2

(2a,m)

1,2 = ζ
ab
m

m
(2a,m)

m
m = 1 = F∗

3 (π∗(ω−1))(�1,1,2).

As a result, if (m, 2a) | (m, a), then ω′ is a 3-coboundary on �ω. Hence Dω(G) is
genuine if and only if (m, 2a) � (m, a). ��
Next we will investigate when (m, 2a) � (m, a) holds. This can provide a more
intuitive discrimination.

Theorem 4.10. Let G ∼= Zm be a finite cyclic group and ω(gi , g j , gk) = ζ
ai[ j+k

m ]
m

for 1 ≤ a < m. Let m = 2n
∏

i p
ai
i and a = 2n

′∏
j p

b j
j be their prime decompo-

sition, where n, n′ ≥ 0. Then Dω(G) is genuine if and only if n′ < n.

Proof of Theorem 1.2. Suppose m = 2n
∏

i p
ai
i and a = 2n

′∏
j p

b j
j be their prime

decomposition. Then

(m, 2a) = (2n
∏
i

paii , 2n
′+1
∏
j

p
b j
j ) = (2n, 2n

′+1) · (
∏
i

paii ,
∏
j

p
b j
j ).

and
(m, a) = (2n

∏
i

paii , 2n
′∏

j

p
b j
j ) = (2n, 2n

′
) · (
∏
i

paii ,
∏
j

p
b j
j ).

Thus (m, 2a) � (m, a) if and only if (2n, 2n
′+1) � (2n, 2n

′
). This is equivalent to

n′ < n. ��
Remark 4.11. (i) Note that if m is odd, then Dω(G) will never be genuine for
arbitrary 0 ≤ a < m. This conclusion is consistent with the [23] Theorem 9.4.

(ii) According to Proposition 3.5, if G is cyclic, Dω(G) will never be gauge
equivalent to D(G ′) for arbitrary finite group G ′ by the theory of categorical Morita
equivalence, but Dω(G) may be gauge equivalent to a Hopf algebra by Theorem
1.2.
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5. Application to the classification of finite-dimensional coquasi-Hopf
algebras

The purpose of this section is to give a new proof of Proposition 4.1 in [16] through
applying our previous observations. It should be emphasized that Proposition 4.1
plays the key role in that paper and the original proof relays on heavy computations.
To do that, we firstly prove that all Nichols algebra generated by three pairwise non-
isomorphic Yetter-Drinfeld modules over D8 are infinite-dimensional which seems
has its independent interest.

5.1. Classification of finite-dimensional Nichols algebras generated by
irreducible Yetter-Drinfeld modules over D8

We first recall the basic notation of irreducible Yetter-Drinfeld modules over groups.
LetG be a finite group,O a conjugacy class ofG , s ∈ O fixed, (ρ, V ) an irreducible
representation of Gs , where Gs is the centralizer of s in G. Let t1 = s, ..., tM be a
numeration of O and let gi ∈ G such that gi sg

−1
i = ti for all 1 ≤ i ≤ M . Then the

corresponding irreducible Yetter-Drinfeld module M(O, ρ) is defined as follows:
As a space, it just

⊕
1≤i≤M gi ⊗ V . Let giv := gi ⊗ v ∈ M(O, ρ), 1 ≤ i ≤ M ,

v ∈ V . If v ∈ V and 1 ≤ i ≤ M , then the coaction and the action of g ∈ G are
given by

δ(giv) = ti ⊗ giv, g � (giv) = g j (γ ◦ v),

where ggi = g jγ and γ ◦ v = ρ(γ )(v) for some 1 ≤ j ≤ M ,γ ∈ Gs . The
Yetter-Drinfeld module M(O, ρ) is a braided vector space with braiding given by

c(giv ⊗ g jw) = ti � (g jw) ⊗ giv = gh(γ ◦ v) ⊗ giv

for any 1 ≤ i, j ≤ M , v,w ∈ V , where ti g j = ghγ for unique h, 1 ≤ h ≤ M and
γ ∈ Gs .

Next, we describe the well-known classification result of finite-dimensional
Nichols algebras generated by irreducible Yetter-Drinfeld modules over D8. Recall
that the dihedral group D8 is generated by x and y with the following presentation

〈
x, y | y2 = 1 = x4, yxy = x−1

〉

and let χ be a character of 〈x〉 such that χ(x) = ω is a primitive 4-th root of unity.

Lemma 5.1. ([1] Theorem 3.1) Let M(O, ρ) be the irreducible Yetter-Drinfeld
module over D8 corresponding to a pair (O, ρ). Assume that its Nichols algebra
is finite-dimensional, then (O, ρ) is one of the following:

(i) (Ox2 , ρ), where ρ ∈ D̂8 satisfies ρ(x2) = 1.
(ii) (Oxh , χ

j ), where h = 1 or 3, and ωh j = −1.

(iii) (Oy, sgn ⊗ sgn) or (Oy, sgn ⊗ε), where sgn ⊗ sgn, sgn ⊗ sgn ∈ D̂y
8 , D

y
8 =

〈y〉 ⊕ 〈x2
〉 ∼= Z2 × Z2.
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(iv) (Oxy, sgn ⊗ sgn) or (Oxy, sgn ⊗ε), where sgn ⊗ sgn, sgn ⊗ sgn ∈ ̂Dxy
8 ,

Dxy
8 = 〈xy〉 ⊕ 〈x2

〉 ∼= Z2 × Z2.

Remark 5.2. (i) In all above cases, dim M(O, ρ) = 2 and dim B(O, ρ) = 4.
(ii) It is obviously that

M(Ox , χ) ∼= M(Ox3, χ3)

as irreducible Yetter-Drinfeld modules. Meanwhile, there are isomorphisms of
braided vector spaces

M(Oy, sgn ⊗ sgn) ∼= M(Oxy, sgn ⊗ sgn),

M(Oy, sgn ⊗ε) ∼= M(Oxy, sgn ⊗ε).

5.2. Nichols algebras over D8 of rank 3

In this subsection, we will prove all Nichols algebras generated by three pairwise
nonisomorphic Yetter-Drinfeld modules over D8 are infinite-dimensional. Our main
ingredient is generalized Cartan matrix and Heckenberger’s classification of finite-
dimensional Nichols algebra of rank ≥ 3. We first recall the definition of the Cartan
matrix. We assume I is a finite non-abelian group in this subsection.

Definition 5.3. Let I
IYD be the Yetter-Drinfeld module category over I and θ ∈ N

and I = {1, ..., θ}. For N = (N1, N2, ..., Nθ ) where Ni are simple Yetter-Drinfeld
module for all i , let

aNi j =
{−∞ if (ad Ni )

m (N j
) �= 0 for all m ≥ 0,

− sup
{
m ∈ N0 : (ad Ni )

m (N j
) �= 0
}

otherwise

for all i ∈ I and j ∈ I \ {i}. Moreover, let aNii = 2 for all i ∈ I . Then AN =
(aNi j )i, j∈I is called the generalized Cartan matrix of N.

So far, the classification of finite-dimensional Nichols algebra in usual Yetter-
Drinfeld module category have achieved many progression. In [18], Heckenberger
has classified all finite-dimensional Nichols algebra over a non-abelian group of
rank ≥ 3. Let’s give a brief introduction.

Definition 5.4. ([18] Definition 2.1) Let θ ∈ N, M = (M1, M2, ..., Mθ ) ∈ I
IYD

with each Mi simple is called braid-indecomposable if there exists no decomposi-
tion M ′ ⊕ M ′′ of

⊕θ
i=1 Mi with M ′, M ′′ �= 0 such that (id − c2)(M ′ ⊗ M ′′) = 0

Definition 5.5. ([18] Definition 2.2) Let θ ∈ N, M = (M1, M2, ..., Mθ ) ∈ I
IYD

with each Mi simple. Let A = (ai j ) be the generalized Cartan matrix of M , we say
M has a skeleton if:
(1) for all 1 ≤ i ≤ θ , there exists si ∈ supp Mi , and σi ∈ Ĝsi such that Mi ∼=
M(Osi , σi ), and
(2) for all 1 ≤ i < j ≤ θ with ai j �= 0, at least one of ai j , a ji is −1.
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In this case the skeleton of M is a partially oriented partially labeled loopless graph
with θ vertices with the following properties:

• For all 1 ≤ i ≤ θ , the i-th vertex is symbolized by |supp Mi | = dim Mi

points. If dim Mi = 1, then the vertex is labeled by σi (si ). If dim Mi = 2 and there

is an additional restriction on p = σi

(
s′
i s

−1
i

)
, where supp Mi = {si , s′

i

}
, then the

i-th vertex is labeled by (p). Otherwise there is no label.
• For all i, j ∈ {1, . . . , θ} with i �= j there are ai j a ji edges between the i-th

and j-th vertex. The edge is oriented towards j if and only if ai j = −1, a ji < −1.
• Let 1 ≤ i < j ≤ θ with ai j < 0. If supp Mi and supp Mj commute, then the

connection between the i-th and j-th vertex consists of continuous lines. Otherwise
the connection consists of dashed lines. The connection is labeled with σi (s j )σ j (si )
if dim Mi = 1 or dim Mj = 1, and otherwise it is not labeled.

The next Theorem gives a criterion to determine when B(M) ∈ I
IYD is finite-

dimensional.

Theorem 5.6. ([18] Theorem 2.5) Let θ ∈ N≥3. Let I be a non-abelian group and
M = (M1, M2, ..., Mθ ) with each Mi simple and supp M generates I . Assume that
M is braid-indecomposable. Then the following are equivalent:
(1) M has a skeleton of finite type.
(2) B(M) is finite-dimensional.
(3) M admits all reflections and the Weyl groupoid W(M) of M is finite.

A complete classification result of skeletons of finite type with at least three vertices
over arbitrary field is given simultaneously, see [18].

Let us return to the dihedral group D8 case. There are six nonisomor-
phic irreducible Yetter-Drinfeld modules over D8. For simplicity, denote M1 =
M(Ox2 , ρ) = span {1u1, 1u2}, M2 = M(Ox , χ) = span {1v, yv}, M3 =
M(Oy, sgn ⊗ sgn) = span {1w1, xw1}, M4 = M(Oy, sgn ⊗ε) = span {1w2, xw2},
M5 = M(Oxy, sgn ⊗ sgn) = span {1w3, xw3}, M6 = M(Oxy, sgn ⊗ε) =
span {1w4, xw4}. For simplicity, we denote S := {M = (Mi , Mj , Mk) | 1 ≤
i < j < k ≤ 6

}
. Now we are going to state the main result of this subsection.

Actually, it just results from direct computations.

Theorem 5.7. The Nichols algebra B(M) = B(Mi ⊕ Mj ⊕ Mk) is infinite-
dimensional for all 1 ≤ i < j < k ≤ 6.

This theorem relies on the following lemmas. We deal with the cases when supp(M)

is an abelian group at first. In these cases, M can be reduced to a diagonal type
Yetter-Drinfeld module over supp(M).

Lemma 5.8. Let M = (Mi , Mj , Mk), where 1 ≤ i < j < k ≤ 6. Suppose
M ∈ S1 := {(M1, M2, Mk) | 3 ≤ k ≤ 6}. Then B(M) is infinite-dimensional.

Proof. Note supp(M1 ⊕ M2) = 〈x〉 ∼= Z4. By restriction, B(M1 ⊕ M2) ∈ Z4
Z4
YD is

of diagonal type. Hence we choose a new basis of M1 by setting t1 = 1u1 + i(1u2)

and t2 = 1u1 − i(1u2). Then M1 ⊕ M2 = span {t1, t2, 1v, yv}. Direct computation
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gives the braiding matrix: ⎛
⎜⎜⎝

−1 −1 1 1
−1 −1 1 1
−i i −1 −1
i −i −1 −1

⎞
⎟⎟⎠ .

The corresponding generalized Dynkin diagram is of the form

-1

-1

-1

-1

i
−i −ii

which does not appear in the classification of arithmetic root system [8]. So
B(M1 ⊕ M2) is infinite-dimensional, hence B(M) is infinite-dimensional. ��
Lemma 5.9. If M ∈ S2 := {(M1, M3, M4), (M1, M5, M6)}, thenB(M) is infinite-
dimensional.

Proof. We will prove B(M) = B(M1 ⊕ M3 ⊕ M4) is infinite-dimensional, another
case is similar. Note that supp(M1 ⊕ M4 ⊕ M5) ∼= Z2 × Z2 = 〈y〉 × 〈x2

〉
By

restriction, B(M) ∈ Z2×Z2
Z2×Z2

YD is of diagonal type, We choose a new basis of M1
via t1 = 1u1 + 1u2, t2 = 1u1 − 1u2. Then M = span {t1, t2, 1w1, xw1, 1w2, xw2}
by direct computation, the corresponding braiding matrix is

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 1 1 1
−1 −1 −1 −1 1 1
−1 1 −1 1 −1 −1
1 −1 1 −1 −1 −1

−1 1 −1 1 −1 −1
1 −1 1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The corresponding generalized Dynkin diagram is of the form

-1 -1

-1

−1

−1 −1

-1 -1

-1

−1

−1 −1

which does not appear in the classification of arithmetic root system [8]. So
B(M) is infinite-dimensional. ��
We are going to deal with the cases which not appear in Lemmas 5.8 and 5.9. It is
obviously that supp(M) = D8 in these cases. We are going to use Theorem 5.6 to
show B(M) are all infinite-dimensional.
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Table 1. Braiding-Indecomposability of M

Mi ⊗ Mj x ⊗ y ∈ Mi ⊗ Mj , s.t.

(id −c2)(x ⊗ y) �= 0.

Mi ⊗ Mj x ⊗ y ∈ Mi ⊗ Mj , s.t.

(id −c2)(x ⊗ y) �= 0.

M1 ⊗ M3 1u1 ⊗ 1w1 M1 ⊗ M4 1u1 ⊗ xw2
M1 ⊗ M5 1u1 ⊗ 1w3 M1 ⊗ M6 1u1 ⊗ xw4
M2 ⊗ M3 1v ⊗ xw1 M2 ⊗ M4 1v ⊗ xw2
M2 ⊗ M5 1v ⊗ 1w3 M2 ⊗ M6 1v ⊗ 1w4
M3 ⊗ M4 1w1 ⊗ xw2 M3 ⊗ M5 1w1 ⊗ xw3
M3 ⊗ M6 1w1 ⊗ xw4 M4 ⊗ M5 1w2 ⊗ xw3
M4 ⊗ M6 1w2 ⊗ xw4 M5 ⊗ M6 1w3 ⊗ xw4

Lemma 5.10. Suppose M = (Mi , Mj , Mk) ∈ S \ S1 ∪ S2, then M is braid-
indecomposable.

Proof. It is not difficult to observe that as long as for any i, j 1 ≤ i < j ≤ 6,
(id −c2)(Mi ⊗Mj ) �= 0. Then M is braid-indecomposable for all M ∈ S \ S1 ∪ S2.
In particular, we will not consider braid-indecomposability of M1 ⊕ M2 since
B(M1 ⊕ M2) is infinite-dimensional by Lemma 5.8. We will compute one case as
an example and list complete situations in the following table.

We are going to show M1 ⊗M3 is braid-indecomposable. Choose 1u1 ⊗1w1 ∈
M1 ⊗ M3. Note δ(1u1) = x2 ⊗ 1u1 and δ(1w1) = y⊗ 1w1. Then c(1u1 ⊗ 1w1) =
x2 � (1w1) ⊗ 1u1 = −1w1 ⊗ 1u1, and c(−1w1 ⊗ 1u1) = −y � (1u1) ⊗ 1w1 =
1u2 ⊗ 1w1. Hence

(id −c2)(1u1 ⊗ 1w1) = 1u1 ⊗ 1w1 − 1u2 ⊗ 1w1 �= 0.

��

Proposition 5.11. Suppose M = (Mi , Mj , Mk) ∈ S \ S1 ∪ S2, then B(M) =
B(Mi ⊕ Mj ⊕ Mk) is infinite-dimensional.

Proof. We choose some cases to calculate since they are similar. The key is to find
out the generalized Cartan matrix for each M , then draw the corresponding skeleton
and apply the Theorem 5.6 finally.

Take M = (M1, M3, M5), we first calculate the number aM13. Note that
ad1u1(1w1) = 1u1 · 1w1 + 1w1 · 1u1, ad1u1(xw2) = 1u1 · xw1 + xw1 · 1u1,
ad1u2(1w1) = 1u2 · 1w1 + 1w1 · 1u2, and ad1u2(xw1) = 1u2 · xw1 + xw1 · 1u2.
Then we take coproduct of these elements.

�(ad1u1(1w1)) = 1 ⊗ ad1u1(1w1) + ad1u1(1w1) ⊗ 1 + 1u1 ⊗ 1w1 − 1u2 ⊗ 1w1,

�(ad1u1(xw1)) = 1 ⊗ ad1u1(xw1) + ad1u1(xw1) ⊗ 1 + 1u1 ⊗ xw1 + 1u2 ⊗ xw1,

�(ad1u2(1w1)) = 1 ⊗ ad1u2(1w1) + ad1u2(1w1) ⊗ 1 + 1u2 ⊗ 1w1 − 1u1 ⊗ 1w1,

�(ad1u2(xw1)) = 1 ⊗ ad1u2(xw1) + ad1u2(xw1) ⊗ 1 + 1u2 ⊗ xw1 − 1u1 ⊗ xw1.

Obviously, ad1u1(1w1) + ad1u2(1w1) = 0 and ad1u1(xw1) + ad1u2(xw1) = 0 by
their coproduct. Hence adM1(M3) = span

{
ad1u1(1w1), ad1u2(xw1)

}
.



36 Page 24 of 29 B. Li, G. Liu

Next, since 1u2
1 = 1u2

2 = 1w2
1 = xw2

1 = 0, we have ad1u1(ad1u1(1w1)) =
1u1 · (1u1 · 1w1 + 1w1 · 1u1) − x2 � (1u1 · 1w1 + 1w1 · 1u1)1u1 = 0 as well as
ad1u2(ad1u2(xw1)) = 0. Moreover

ad1u2(ad1u1(1w1))

= 1u2 · (1u1 · 1w1 + 1w1 · 1u1) − x2 � (1u1 · 1w1 + 1w1 · 1u1) · 1u2

= 1u2 · 1u1 · 1w1 + 1u2 · 1w1 · 1u1 − 1u1 · 1w1 · 1u2 − 1w1 · 1u1 · 1u2

= 1u2 · (−1u2 · 1w1 − 1w1 · 1u2) − (−1u2 · 1w1 − 1w1 · 1u2) · 1u2 = 0.

where the last equation we use the fact that ad1u1(1w1) + ad1u2(1w1) = 0.We can
prove ad1u1(ad1u2(xw1)) = 0 similarly. Thus ad2

M1
(M3) = 0.

Using the same method, we can prove adM1(M5) �= 0 and adM3(M5) �= 0.
But ad2

M1
(M5) = ad2

M3
(M5) = 0. Hence M = (M1, M3, M5) has Cartan matrix⎛

⎝
2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠.

It is not surprising that for all M ∈ S \ S1 ∪ S2, the Cartan matrix of M are

all

⎛
⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞
⎠, because their Yetter-Drinfeld module structures are similar. We

omit the proof for simplicity.
Although they have the same Cartan matrix, the corresponding skeletons may

be different.
If (i, j, k) ∈ {(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6)}, the corresponding skele-

ton will be the first picture.
If (i, j, k) ∈ {(2, 3, 4), (3, 4, 5), (3, 4, 6), (3, 5, 6), (4, 5, 6), (2, 5, 6)}, the

corresponding skeleton will be the second picture.
If (i, j, k) ∈ {(2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)}, the corresponding skele-

ton will be the third picture.

: :

:

: :

:

: :

:

All skeletons above don’t appear in [18] Figure2.1, hence by Theorem 5.6,
dim(B(M)) = ∞ for all M ∈ S \ S1 ∪ S2. ��

Proof of Theorem 5.7. It is direct from Lemma 5.8, 5.9 and Proposition 5.11. ��



On gauge equivalence of twisted quantum doubles Page 25 of 29 36

5.3. An invariant preserved by gauge equivalence

By definition, a coquasi-Hopf algebra is exactly the dual notion of a Drinfeld’s
quasi-Hopf algebra [4]. One may refer [14] Section 2 for explicit definition, exam-
ples and related notions such as the category of Yetter-Drinfeld module (which is
denoted by G

GYDω) over the coquasi-Hopf algebra (�G, ω), the Nichols algebra in
this category etc.

Now let G be an abelian group with a nontrivial 3-cocycle ω and H is a finite
group. Denoting G

GYDω
fd the full subcategory of G

GYDωconsisting of all finite-
dimensional twisted Yetter-Drinfeld modules. Suppose F : G

GYDω
fd −→ H

HYDfd
is an equivalence of fusion categories. The following results seem well-known, but
we can’t find suitable reference. For the convenience of readers, we write them out.

Lemma 5.12. For each X ∈ G
GYDω

fd, we have the following equations with respect
to dimensions:

dim�(X) = FPdim(X) = FPdim(F(X)) = dim�(F(X)).

Proof of Theorem 5.7. There’s an equivalence of fusion categories: G
GYDω

fd
∼=

Z(Vecω
G) ∼= Rep(Dω(G)). By [5] Example 5.13.8, dim�(X) = FPdim(X) for

all X ∈ G
GYDω

fd.
Note G

GYDω
fd and H

HYDfd are all fusion categories and F is a tensor functor,
then by [5] Proposition 4.5.7

FPdimG
GYDω

fd
(X) = FPdimH

HYDfd
(F(X)).

The last equation FPdim(F(X)) = dim�(F(X)) can be obtained via using the
same result as the first equation. ��
Proposition 5.13. Suppose F : G

GYDω
fd −→ H

HYDfd is a tensor equivalence. Then
F maps a Nichols algebra in G

GYDω
fd to a Nichols algebra in H

HYDfd.

Proof of Theorem 5.7. Although we deal with finite-dimensional Nichols algebras,
but by definition they are quotient of infinite-dimensional objects in G

GYDω, so we
should extend F to G

GYDω at first.
For all X,Y ∈ G

GYDω
fd, define F̃(X) = F(X) and F̃( f ) = F( f ) : F(X) →

F(Y ). Now suppose X ∈ G
GYDω but X /∈ G

GYDω
fd. Since G

GYDω and H
HYD are

semisimple categories and the Grothendieck ring of both categories are finite. X
will be direct sum of simple objects X =⊕

i∈I
Xi , where Xi are simple objects. Each

Xi belongs to G
GYDω

fd, because all simple objects in G
GYDω are finite-dimensional.

Then F̃(X) may be defined via

F̃(X) :=
⊕
i∈I

F(Xi ).
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For f : X → Y be a morphism in G
GYDω, F̃( f ) may be defined as⊕

(i, j)∈I×I
Hom(Xi ,Y j ). Obviously, F̃ preserves composition of morphisms, iden-

tity morphism and finite direct sums. Thus F̃ is an additive functor. Now we are
going to show F̃ is a tensor functor. We have the following isomorphism:

F̃(X ⊗ Y ) ∼= F̃( ⊕
i∈I

Xi ⊗ ⊕
j∈I

Y j ) ∼= F̃( ⊕
i∈I

⊕
j∈I

Xi ⊗ Y j )

= ⊕
i∈I

⊕
j∈I

F(Xi ⊗ Y j ) ∼= ⊕
i∈I

⊕
j∈I

F(Xi ) ⊗ F(Y j ) ∼= F̃(X) ⊗ F̃(Y ).

and F(�) ∼= �. The tensor structure F̃X,Y : F̃(X ⊗ Y )
∼=→ F̃(X) ⊗ F̃(Y ) sat-

isfies hexagon diagrams since the tensor structure J of F does. Thus F̃ is a ten-
sor functor. Moreover, since F is a tensor equivalence, it has an inverse functor
F−1 : H

HYDfd → G
GYDω

fd. Using this functor with similar method, we can prove
F̃ is a tensor equivalence as well.

Now let V ∈ G
GYDω

fd be finite-dimensional and JV,V : F(V ⊗ V ) ∼= F(V ) ⊗
F(V ) the tensor structure of F . Using J repeatedly, we have

F(V
−→⊗n) ∼= F(V )

−→⊗n

for each n ∈ N. Here by definition, V⊗−→n = (· · · ((V ⊗ V ) ⊗ V ) · · · ⊗ V ) . The

associative constraint in H
HYDfd is trivial, hence F(V )

−→⊗n ∼= F(V )⊗n . Thus we

have F̃(
⊕
n∈N

V
−→⊗n) ∼= ⊕

n∈N

F(V
−→⊗n) ∼= ⊕

n∈N

F(V )⊗n . That is F̃(Tω(V )) ∼= T (F(V )).

Recall that the finite-dimensional twisted Nichols algebra in G
GYDω are of the

form Tω(V )/I where V ∈ G
GYDω

fd and I is the unique maximal graded Hopf ideal
in Tω(V ) generated by homogeneous elements of degree greater than or equal to
2. F̃ is exact since G

GYDω is semisimple, then using F̃(Tω(V )) ∼= T (F(V )), we
have

F̃(Tω(V )/I ) ∼= T (F(V ))/F̃(I ),

which is finite-dimensional as well. Here F̃(I ) is a homogeneous Hopf ideal of
degree greater than or equal to 2 of T (F(V )). Note that Nichols algebra generated
by F(V ) must be of the form T (F(V ))/J , where J is the unique maximal homo-
geneous graded Hopf ideal of T (F(V )) ∈ H

HYD with degree greater than or equal
to 2. Hence F̃(I ) ⊂ J and T (F(V ))/J ⊂ T (F(V ))/F̃(I ). On the other hand,
F̃−1 : H

HYD −→ G
GYDω is inverse of F̃ , which is an exact tensor functor. Hence

F̃−1(T (F(V ))/J ) ∼= Tω(F−1(F(V ))/F̃−1(J ) ∼= Tω(V )/F̃−1(J ) ⊇ Tω(V )/I.

So F̃−1(J ) ⊆ I , combining F̃(I ) ⊆ J implies F̃(I ) = J , which leads to
F(Tω(V )/I ) ∼= T (F(V ))/J and the proof is done. ��
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5.4. Proof of Theorem 1.3

The situation considered in the [16] is the following: Let G = Z2 × Z2 × Z2 =
〈e〉 × 〈 f 〉 × 〈g〉 and ω the nontrivial 3-cocycle on G:

ω(ei1 f i2gi3, e j1 f j2g j3, ek1 f k2gk3) = (−1)k1 j2i3 (5.1)

for 0 ≤ i1, j1, k1 < 2, 0 ≤ i2, j2, k2 < 2, 0 ≤ i3, j3, k3 < 2. Let V1, V2, V3 ∈
G
GYDω be three 2-dimensional pairwise non-isomorphic simple objects in G

GYDω

such that deg(V1) = e, deg(V2) = f , deg(V3) = g. Proposition 4.1 in [16] just
states that B(V1 ⊕ V2 ⊕ V3) ∈ G

GYDω must be infinite-dimensional. Our work on
categorical Morita equivalence can give us a new proof now.

Proposition 5.14. The category G
GYDω

fd is braided fusion equivalent to D8
D8
YDfd.

Proof. Existence of the finite group H is immediately by Theorem 3.3. Explicitly,
take A = 〈e〉, K = 〈 f 〉 × 〈g〉, F = 1 in Lemma 3.1. Let

F̂( f i2gi3, f j2g j3) = χ j2i3 ,

where χ ∈ Â is primitive such that χ(g1) = −1. and let ε ≡ 1, By Theorem 3.3,
Vecω

G and VecẐ2�

F̂
(Z2×Z2)

are categorical Morita equivalent. Let H = Ẑ2�

F̂
Z2 × Z2.

Actually, H is isomorphic to D8 since H has such a presentation

< (1, ( f, g)), (1, ( f, 1)) | (1, ( f, g))4 = (1, (1, 1)) = (1, ( f, 1))2,

(1, ( f, 1)) · (1, ( f, g)) · (1, ( f, 1))

= (1, ( f, g))−1 > .

Hence

G
GYDω

fd � Z(Vecω
G) � Z(VecD8) � D8

D8
YDfd

as braided fusion category. ��
Now we are going to prove Theorem 1.3.

Proof of Theorem 1.3. Let V = (V1, V2, V3) be the 3-tuple. Since V1, V2, V3 are
pairwise non-isomorphic, simple and F : G

GYDω
fd −→ D8

D8
YDfd is a braided fusion

equivalence then F(V1), F(V2) and F(V3) are pairwise nonisomorphic and simple.
SupposeB(V ) ∈ G

GYDω
fd is finite-dimensional, then F(B(V )) should be a finite-

dimensional Nichols algebra of rank 3 in D8
D8
YDfd since F maps Nichols algebra

in G
GYDω

fd to usual Nichols algebra by Proposition 5.13. But all Nichols algebra
generated by three pairwise nonisomorphic simple Yetter-Drinfeld module over
D8 are infinite-dimensional by Theorem 5.7. This is a contradiction, so B(V ) is
infinite-dimensional. ��
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Remark 5.15. It is not hard to see the our method can be applied to more general
situation, for example, the case: G is of the form Zm1 × Zm2 × Zm3 = 〈g1〉×〈g2〉×
〈g3〉 and ω be a nontrivial 3-cocycle on G:

ω
(
gi11 gi22 gi33 , g j1

1 g j2
2 g j3

3 , gk1
1 gk2

2 gk3
3

)
= ζ

a123k1 j2i3
(m1,m2,m3)

.
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