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1. Introduction

Inspired by the Drozd’s result ([11]), one is often interested in classifying a given kind 
of finite-dimensional algebras according to their representation type. In the case of Hopf 
algebras, much effort was put in pointed Hopf algebras or their dual, that is, basic Hopf 
algebras. See, for example, [8,10,13--18,35,37]. The second author and his collaborators 
gave a classification of basic Hopf algebras according to their representation type from 
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2006 to 2013 [28,19,25,27]. They showed that a finite-dimensional basic Hopf algebra is 
of finite representation type if and only if it is a Nakayama algebra.

Meanwhile, Hopf algebras with the (dual) Chevalley property is a kind of natural 
generalization of basic (pointed) Hopf algebras. These Hopf algebras have been studied 
intensively by many authors. See, for examples, [1--3,24,29]. In [39] and [38], the authors 
tried to classify finite-dimensional Hopf algebras with the dual Chevalley property ac
cording to their corepresentation type. Here by the dual Chevalley property we mean 
that the coradical H0 is a Hopf subalgebra. They proved that a finite-dimensional Hopf 
algebra H with the dual Chevalley property is of finite corepresentation type if and only 
if it is coNakayama, if and only if the link quiver Q(H) of H is a disjoint union of basic 
cycles, if and only if the link-indecomposable component H(1) containing 𝕜1 is a pointed 
Hopf algebra and the link quiver of H(1) is a basic cycle.

One of the most important topics in representation theory is the classification of in
decomposable modules over an algebra. The category of finite-dimensional left (right) 
modules over a finite representation type algebra is considered easiest to understand. 
However, concerning infinite-dimensional Hopf algebras, it is no longer appropriate to 
discuss the (co)representation finiteness. Instead, we shall consider (co)representation 
discrete type (co)algebras as analogs of finite dimensional (co)representation finite type 
(co)algebras. We say a coalgebra C is of discrete corepresentation type if for any finite 
dimension vector d, there are only finitely many non-isomorphic indecomposable right 
H-comodules of dimension vector d. The authors in [20] and [22] classified pointed Hopf 
algebras of discrete corepresentation type over an algebraically closed field 𝕜 with char
acteristic zero. For such Hopf algebra H, they explicitly determined the algebra structure 
up to isomorphism for the link-indecomposable component H(1) containing 𝕜1.

The aim of this paper is to classify Hopf algebras with the dual Chevalley property of 
discrete corepresentation type. The main tool we want to use is the link quiver. In fact, 
one can describe the structures of the link quiver by applying multiplicative matrices 
and primitive matrices (see [39]). Denote the set of all the simple subcoalgebras of a 
Hopf algebra H with the dual Chevalley property by 𝒮. We can view the set 𝒞𝒫𝒟 of a 
complete family of non-trivial (𝒞,𝒟)-primitive matrices as the set of arrows from vertex 
D to vertex C. Denote 𝒞𝒫 =

⋃︁
𝒟∈𝒮

𝒞𝒫𝒟,𝒫𝒟 =
⋃︁

𝒞∈𝒮
𝒞𝒫𝒟,𝒫 =

⋃︁
𝒞∈𝒮

𝒞𝒫. We can also 
view 𝒫𝒟 as the set of arrows with start vertex D and view 𝒞𝒫 as the set of arrows with 
end vertex C. This means that we can view Q(H) = (𝒮,𝒫) as the link quiver of H.

Based on the consideration above, we characterize the link quiver of a non
cosemisimple Hopf algebra H with the dual Chevalley property of discrete corepre
sentation type. Our main results are Theorems 4.2 and 4.7, stating that:

Theorem 1.1. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property and H(1) be its link-indecomposable component containing 𝕜1. If the coradical 
of H(1) is finite-dimensional, then the following statements are equivalent:

(1) H is of discrete corepresentation type;
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(2) Every vertex in Q(H) is both the start vertex of only one arrow and the end vertex 
of only one arrow, that is, Q(H) is a disjoint union of basic cycles;

(3) There is only one arrow C → 𝕜1 in Q(H) whose end vertex is 𝕜1 and dim𝕜(C) = 1;
(4) There is only one arrow 𝕜1 → D in Q(H) whose start vertex is 𝕜1 and dim𝕜(D) = 1.

Theorem 1.2. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property of discrete corepresentation type and H(1) be its link-indecomposable component 
containing 𝕜1. Denote 1𝒮 = {C ∈ 𝒮 | 𝕜1 + C ̸= 𝕜1 ∧ C}. If the coradical of H(1) is 
infinite-dimensional, then one of the following three cases occurs:

(1) | 1𝒫 |= 1 and 1𝒮 = {𝕜g} for some g ∈ G(H);
(2) | 1𝒫 |= 2 and 1𝒮 = {𝕜g, 𝕜h} for some different group-like elements g, h;
(3) | 1𝒫 |= 1 and 1𝒮 = {Ck} for some Ck ∈ 𝒮 with dim𝕜(Ck) = 4.

In addition, for a non-cosemisimple Hopf algebra H over 𝕜 with the dual Chevalley 
property of discrete corepresentation type, we determine the structures of the link
indecomposable component H(1) containing 𝕜1. According to [39, Proposition 4.14], 
if all the simple subcoalgebras directly linked to 𝕜1 are 1-dimensional, then the link
indecomposable component H(1) containing 𝕜1 is a pointed Hopf algebra. Thus H(1) is a 
pointed Hopf algebra of discrete corepresentation type, which has been classified in [20] 
and [22].

Finally we deal with the remaining case, namely, | 1𝒫 |= 1 and 1𝒮 = {Ck}, where 
dim𝕜(Ck) = 4. We give a description of the structures of Grothendieck ring Gr((H(1))0
comod) of the category of finite-dimensional right (H(1))0-comodules and characterize 
the link quiver of H(1) in Subsection 4.3. Besides, we construct an infinite-dimensional 
non-pointed non-cosemisimple link-indecomposable Hopf algebra H(e±1, f±1, u, v) with 
the dual Chevalley property of discrete corepresentation type (see Definition 5.1).

The organization of this paper is as follows: In Section 2, we recall some basic facts 
about based ring and link quiver. In Section 3, we introduce the concept of discrete 
corepresentation type and formulate a necessary criterion for discreteness. In Section 4, 
we characterize the link quiver of a non-cosemisimple Hopf algebra H with the dual 
Chevalley property of discrete corepresentation type. Moreover, we determine the struc
tures of the link-indecomposable component H(1) containing 𝕜1. At last, we construct 
an infinite-dimensional non-pointed non-cosemisimple link-indecomposable Hopf algebra 
H(e±1, f±1, u, v) with the dual Chevalley property of discrete corepresentation type in 
Section 5.

2. Preliminaries

Throughout this paper 𝕜 denotes an algebraically closed field of characteristic 0 and 
all spaces are over 𝕜. The tensor product over 𝕜 is denoted simply by ⊗. The reader is 
referred to [30], [4] and [6] for the basics about Hopf algebras and representation theory.
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2.1. Based ring

Let us first recall the definition of multiplicative matrices.

Definition 2.1. ( [24, Definition 2.3]) Let (H,Δ, ε) be a coalgebra over 𝕜.

(1) A square matrix 𝒢 = (gij)r×r over H is said to be multiplicative, if for any 1 ≤ i, j ≤
r, we have Δ(gij) =

r∑︁
t=1

git ⊗ gtj and ε(gij) = δi,j , where δi,j denotes the Kronecker 
notation;

(2) A multiplicative matrix 𝒞 is said to be basic, if its entries are linearly independent.

Multiplicative matrices over a coalgebra can be understood as a generalization of 
group-like elements. The entries of a basic multiplicative matrix 𝒞 span a simple sub
coalgebra C of H. Conversely, for any simple coalgebra C over 𝕜, there exists a basic 
multiplicative matrix 𝒞 whose entries span C (for details, see [29], [24]). According to 
[24, Lemma 2.4], the basic multiplicative matrix of the simple coalgebra C would be 
unique up to the similarity relation.

Let Z+ be the set of nonnegative integers. Some relevant concepts are recalled as 
follows.

Definition 2.2. ( [32, Definitions 2.1 and 2.2]) Let A be an associative ring with unit 
which is free as a Z-module.

(1) A Z+-basis of A is a basis B = {bi}i∈I such that bibj =
∑︁

t∈I c
t
ijbt, where ctij ∈ Z+.

(2) A ring with a fixed Z+-basis {bi}i∈I is called a unital based ring if the following 
conditions hold:
(i) 1 is a basis element.
(ii) Let τ : A → Z denote the group homomorphism defined by

τ(bi) =
{︄

1, if bi = 1,

0, if bi ̸= 1.

There exists an involution i ↦→ i∗ of I such that the induced map

a =
∑︂
i∈I 

aibi ↦→ a∗ =
∑︂
i∈I 

aibi∗ , ai ∈ Z

is an anti-involution of A, and

τ(bibj) =
{︄

1, if i = j∗,

0, if i ̸= j∗.
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Recall that a finite-dimensional Hopf algebra is said to have the dual Chevalley prop
erty, if its coradical H0 is a Hopf subalgebra. In this paper, we still use the term dual 
Chevalley property to indicate a Hopf algebra H with its coradical H0 as a Hopf subal
gebra, even if H is infinite-dimensional.

In the following part, let H be a Hopf algebra over 𝕜 with the dual Chevalley prop
erty. Denote the coradical filtration of H by {Hn}n≥0 and the set of all the simple 
subcoalgebras of H by 𝒮.

For any matrix 𝒜 = (aij)r×s and ℬ = (bij)u×v over H, define 𝒜⊙′ ℬ as follows:

𝒜⊙′ ℬ =

⎛⎜⎝𝒜b11 · · · 𝒜b1v
...

. . .
...

𝒜bu1 · · · 𝒜buv

⎞⎟⎠ .

For any B,C ∈ 𝒮, let ℬ, 𝒞 be their basic multiplicative matrices, respectively. Since H
has the dual Chevalley property, [24, Proposition 2.6(2)] implies there exists an invertible 
matrix L over 𝕜 such that

L(ℬ ⊙′ 𝒞)L−1 =

⎛⎜⎜⎜⎜⎝
ℰ1 0 · · · 0
0 ℰ2 · · · 0
...

...
. . .

...
0 0 · · · ℰt

⎞⎟⎟⎟⎟⎠ , (2.1)

where ℰ1, ℰ2, · · · , ℰt are basic multiplicative matrices over H. Define a multiplication on 
Z𝒮 as follows: for B,C ∈ 𝒮,

B · C =
t ∑︂

i=1 
Ei,

where E1, · · · , Et ∈ 𝒮 are well-defined with basic multiplicative matrices ℰi as in (2.1).

Remark 2.3. Observe that the equality

B · C =
t ∑︂

i=1 
Ei

in Z𝒮 implies

√︁
dim𝕜(B)

√︁
dim𝕜(C) =

t ∑︂
i=1 

√︁
dim𝕜(Ei).

Let S be the antipode of H. By [23, Theorem 3.3], the map C ↦→ S(C) defines an 
anti-involution. With the multiplication and anti-involution defined above, we state the 
following lemma.
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Lemma 2.4. ([39, Proposition 4.3]) Let H be a Hopf algebra over 𝕜 with the dual Chevalley 
property and 𝒮 be the set of all the simple subcoalgebras of H. Then Z𝒮 is a unital based 
ring with Z+-basis 𝒮.

Remark 2.5. By Definition 2.2 (2) (ii), for any simple subcoalgebra C, the term 𝕜1
appears exactly once in the direct sum decomposition of S(C) · C.

Let ℱ be the free abelian group generated by isomorphism classes of finite-dimensional 
right H0-comodules and ℱ0 the subgroup of ℱ generated by all expressions [Y ]−[X]−[Z], 
where 0 → X → Y → Z → 0 is a short exact sequence of finite-dimensional right 
H0-comodules. Recall that the Grothendieck group Gr(H0-comod) of the category of 
finite-dimensional right H0-comodules is defined by

Gr(H0-comod) := ℱ/ℱ0.

From [12, Proposition 4.5.4] and [23, Theorem 2.7], Gr(H0-comod) is a unital based 
ring with Z+-basis 𝒱, where 𝒱 is the set of all the isomorphism classes of simple right 
H0-comodules.

Let (M,ρ) be a finite-dimensional right comodule over a coalgebra H ′, where ρ :
M → M ⊗H ′. The coefficient coalgebra cf(M) of M is the smallest subcoalgebra of H ′

satisfying ρ(M) ⊆ M ⊗ cf(M). One can show that:

Lemma 2.6. Let H be a Hopf algebra over 𝕜 with the dual Chevalley property and 𝒮 be 
the set of all the simple subcoalgebras of H. Then Gr(H0-comod) is isomorphic to Z𝒮 as 
unital based rings.

Proof. Define

F : Gr(H0-comod) → Z𝒮,
M ↦→ cf(M).

Next we show that F is a ring isomorphism. In fact, since H0 is cosemisimple, it follows 
that M is a completely irreducible right H0-comodule. In other words, there are simple 
right H0-comodules V1, V2, · · · , Vt such that M =

⨁︁
1≤i≤t Vi. Note that for any simple 

right H0-comodule Vi, its coefficient coalgebra cf(Vi) is a simple subcoalgebra of H. If Vi

and Vj are non-isomorphic as right H0-comodules, it is apparent that cf(Vi) and cf(Vj)
are non-isomorphic as subcoalgebras. This means that F is injective. Furthermore, for 
any C ∈ 𝒮, any simple right C-comodule X is a simple H0-comodule and the coefficient 
coalgebra of X is C. One can show that F is surjective. Using the fact that the coefficient 
coalgebra cf(Vi⊗Vj) of Vi⊗Vj is cf(Vi) cf(Vj), we get that F is a ring isomorphism. □
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2.2. Link quiver

In this subsection, let (H,Δ, ε) be a coalgebra over 𝕜. Denote the coradical filtration 
of H by {Hn}n≥0 and the set of all the simple subcoalgebras of H by 𝒮. Now let us 
recall the concept of link quiver.

Definition 2.7. ( [9, Definition 4.1]) Let H be a coalgebra over 𝕜. Denote the set of all 
the simple subcoalgebras of H by 𝒮. The link quiver Q(H) of H is defined as follows: 
the vertices of Q(H) are the elements of 𝒮; for any simple subcoalgebra C,D ∈ 𝒮 with 
dim𝕜(C) = r2,dim𝕜(D) = s2, there are exactly 1 

rs dim𝕜((C ∧D)/(C + D)) arrows from 
D to C.

Next we will discuss the properties for the link quiver. Before proceeding further, let 
us recall the definition of primitive matrices, which is a non-pointed analogue of primitive 
elements.

Definition 2.8. ( [29, Definition 3.2]) Let (H,Δ, ε) be a coalgebra over 𝕜. Suppose 𝒞 =
(cij)r×r and 𝒟 = (dij)s×s are basic multiplicative matrices over H.

(1) A matrix 𝒳 = (xij)r×s over H is said to be (𝒞,𝒟)-primitive, if

Δ(xij) =
r∑︂

k=1

cik ⊗ xkj +
s ∑︂

t=1 
xit ⊗ dtj

holds for any 1 ≤ i, j ≤ r;
(2) A primitive matrix 𝒳 is said to be non-trivial, if there exists some entry of 𝒳 which 

does not belong to the coradical H0.

For any matrix 𝒳 = (xij)r×s over H1, denote the matrix (xij)r×s by 𝒳 , where xij =
xij + H0 ∈ H1/H0. Besides, the subspace of H1/H0 spanned by the entries of 𝒳 is 
denoted by span(𝒳 ).

Let C,D ∈ 𝒮 with basic multiplicative matrices 𝒞 and 𝒟, respectively. According to 
[39, Corollary 2.11 and Lemma 2.17], we know that there exists a family of non-trivial 
(𝒞,𝒟)-primitive matrices {𝒳 (γ𝒞,𝒟)}γ𝒞,𝒟∈Γ𝒞,𝒟 , which is said to be complete, such that 
(C∧D)/(C+D) ∼ = 

⨁︁
γ𝒞,𝒟∈Γ𝒞,𝒟

span(𝒳 (γ𝒞,𝒟)). Using [39, Corollary 2.18], we can transform 

the problem of number of arrows from vertex D to vertex C in the link quiver of H
to the problem of cardinal number of a complete family of non-trivial (𝒞,𝒟)-primitive 
matrices.

Let 𝒞𝒫𝒟 be the set of a complete family of non-trivial (𝒞,𝒟)-primitive matrices. 
Denote

𝒞𝒫 =
⋃︂
𝒟∈𝒮

𝒞𝒫𝒟,
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𝒫𝒟 =
⋃︂
𝒞∈𝒮

𝒞𝒫𝒟,

𝒫 =
⋃︂
𝒞∈𝒮

𝒞𝒫.

Now we can view 𝒞𝒫𝒟 as the set of arrows from vertex D to vertex C, view 𝒫𝒟 as the 
set of arrows with start vertex D and view 𝒞𝒫 as the set of arrows with end vertex C. 
This means that we can view Q(H) = (𝒮,𝒫) as the link quiver of H.

In the following part, let H be a Hopf algebra over 𝕜 with the dual Chevalley property. 
In [39, Section 3], the authors gave two different constructions of a complete family of 
non-trivial (𝒞,𝒟)-primitive matrices over H for any C,D ∈ 𝒮 with basic multiplicative 
matrices 𝒞,𝒟, respectively. Let us briefly recall one of the constructions.

Let ℳ denote the set of representative elements of basic multiplicative matrices over 
H for the similarity class. Denote 1𝒮 = {C ∈ 𝒮 | 𝕜1 + C ̸= 𝕜1 ∧ C}. For any C ∈ 1𝒮
with basic multiplicative matrix 𝒞 ∈ ℳ, we can fix a complete family {𝒳 (γ1,C)}γ1,𝒞∈Γ1,𝒞

of non-trivial (1, 𝒞)-primitive matrices.
Denote

1𝒫 :=
⋃︂

C∈1𝒮
{𝒳 (γ1,𝒞) | γ1,𝒞 ∈ Γ1,𝒞}.

For any non-trivial (1, 𝒞)-primitive matrix 𝒴 ∈ 1𝒫 and ℬ ∈ ℳ, we have

(︄
I 0
0 Lℬ,𝒞

)︄(︄
ℬ ⊙′

(︄
1 𝒴
0 𝒞

)︄)︄(︄
I 0
0 L−1

ℬ,𝒞

)︄
=

⎛⎜⎜⎜⎜⎜⎜⎝
ℬ 𝒴1 𝒴2 · · · 𝒴u(ℬ,𝒞)

0 ℰ1 0 · · · 0
0 0 ℰ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ℰu(ℬ,𝒞)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where Lℬ,𝒞 is an invertible matrix over 𝕜 and ℰ1, ℰ2, · · · , ℰu(ℬ,𝒞) ∈ ℳ.
Denote

ℬ𝒫𝒴 := {𝒴i | 1 ≤ i ≤ u(ℬ,𝒞)},
𝒫𝒴 :=

⋃︂
ℬ∈ℳ

ℬ𝒫𝒴 .

As a consequence, we obtain the following:

Lemma 2.9. ([39, Theorem 3.10]) Let H be a Hopf algebra over 𝕜 with the dual Chevalley 
property and C,D ∈ 𝒮 with basic multiplicative matrices 𝒞,𝒟 ∈ ℳ respectively. Then 
the set

{𝒳 ∈
⋃︂

𝒴∈1𝒫
𝒫𝒴 | 𝒳 is a non-trivial (𝒞,𝒟)-primitive matrix}
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is a complete family of non-trivial (𝒞,𝒟)-primitive matrices. Moreover, we have

H1/H0 =
⨁︂

𝒳∈ ⋃︁
𝒴∈1𝒫

𝒫𝒴

span(𝒳 ).

Let C,D ∈ 𝒮 with basic multiplicative matrices 𝒞,𝒟 ∈ ℳ respectively. Recall that C, 
D are said to be directly linked in H if C+D is a proper subspace of C∧D+D∧C. Note 
that by [24, Lemma 3.6 (2)] that C, D are directly linked in H if and only if there exists 
some (𝒞,𝒟)-primitive or (𝒟, 𝒞)-primitive matrix, which is non-trivial. At the end of this 
subsection, we recall the concept of link-indecomposable components of coalgebra.

Definition 2.10. ( [31, Definition 1.1]) A subcoalgebra H ′ of a coalgebra H is called link
indecomposable if the link quiver 𝒬(H ′) of H ′ is connected (as an undirected graph). 
A link-indecomposable component of H is a maximal link-indecomposable subcoalge
bra. In particular, for a Hopf algebra H, we denote the link-indecomposable component 
containing 𝕜1 by H(1).

According to [31, Theorem 3.2], the link-indecomposable component H(1) containing 
𝕜1 must be a normal Hopf subalgebra for any pointed Hopf algebra H. By [24, Proposition 
3.16], if H is a Hopf algebra with the dual Chevalley property, H(1) remains a Hopf 
subalgebra of H. However, concerning a non-pointed Hopf algebra H with the dual 
Chevalley property, H(1) may not necessarily be normal (see for example [39, Example 
6.1]). This demonstrates that Hopf algebras with the dual Chevalley property constitute 
a nontrivial generalization of pointed Hopf algebras.

3. Discrete corepresentation type

Recall that the dimension vector of a finite dimensional right comodule M over coal
gebra H is defined as dim(M) ∈ N(I) given by letting dim(M)i equal the multiplicity 
of simple right comodule Vi in a Jordan-Hölder series of M . In [22, Definition 1.1], the 
author introduced the definition of discrete corepresentation type for pointed coalgebra. 
We formally extend this concept.

Definition 3.1. A coalgebra H is said to be of discrete corepresentation type, if for any 
finite dimension vector d, there are only finitely many non-isomorphic indecomposable 
right H-comodules of dimension vector d.

It is clear that cosemisimple coalgebras are of discrete corepresentation type. More
over, if a coalgebra H is of finite corepresentation type, that is, there are finitely many 
non-isomorphic indecomposable right H-comodules, then H is of discrete corepresenta
tion type. Next we will focus on the general cases.

Let H be a coalgebra and Q(H) = (𝒮,𝒫) the link quiver of H. Suppose Q′ = (𝒮 ′,𝒫 ′)
is a sub-quiver of Q(H), where 𝒮 ′ ⊆ 𝒮,𝒫 ′ ⊆ 𝒫. Define Coalg(Q′) = (

⨁︁
𝒞∈𝒮′ C) ⊕
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(
⨁︁

𝒳∈𝒫′ span(𝒳 )), where span(𝒳 ) is the subspace of H spanned by the entries of 𝒳 . 
It is straightforward to show that Coalg(Q′) is a subcoalgebra of H. This leads to the 
following Lemma.

Lemma 3.2. Let H be a coalgebra over 𝕜 and Q(H) = (𝒮,𝒫) the link quiver of H. Suppose 
there is a finite sub-quiver Q′ = (𝒮 ′,𝒫 ′) of Q(H) satisfying the subcoalgebra Coalg(Q′)
is of infinite corepresentation type. Then H is not of discrete corepresentation type.

Proof. Since Q(H) is the link quiver of H, it follows that Coalg(Q′) ⊆ Coalg(Q(H)) ⊆
H are extensions of subcoalgebras. This means that there is an inclusion from the 
category of finite-dimensional right Coalg(Q′)-comodules to the category of finite
dimensional right H-comodules. Note that Coalg(Q′) is a finite-dimensional coalgebra 
of infinite corepresentation type and the category of finite-dimensional right comodules 
over Coalg(Q′) is isomorphic to the category of finite-dimensional left modules over 
(Coalg(Q′))∗. It follows that (Coalg(Q′))∗ is a finite-dimensional algebra of infinite rep
resentation type. By [7, Theorem 2.4], there is an infinitely family of isomorphism classes 
of indecomposable right comodules over Coalg(Q′) with a dimension vector d. Therefore 
the category of finite-dimensional right H-comodules contains infinitely many isomor
phism classes of indecomposable comodules with a dimension vector d, hence not of 
discrete corepresentation type. □

Let A (resp. C) be an algebra (resp. coalgebra) over 𝕜 and {Mi}i∈I be the complete 
set of isoclasses of simple left A-modules (resp. right C-comodules). The Ext quiver Γ(A)
(resp. Γ(C)) of A (resp. C) is an oriented graph with vertices indexed by I, and there 
are dim𝕜 Ext1(Mi,Mj) arrows from i to j for any i, j ∈ I.

Let us recall the definition of separated quiver.

Definition 3.3. ( cf. [4, §X. 2]) Let Q = (Q0,Q1) be a quiver, where Q0 = {1, 2, · · · , n}. 
The separated quiver Qs of Q has 2n vertices {1, 2, · · · , n, 1′, 2′, · · · , n′} and an arrow 
i → j′ for every arrow i → j of Q.

Now we can formulate a necessary criterion for discreteness.

Lemma 3.4. Let H be a non-cosemisimple coalgebra over 𝕜 of discrete corepresentation 
type and Q(H) = (𝒮,𝒫) the link quiver of H. Then for any finite sub-quiver Q′ of Q(H), 
the underlying graph of separated quiver Q′

s is a finite disjoint union of Dynkin diagrams.

Proof. In fact, the category of finite-dimensional right comodules over Coalg(Q′) is iso
morphic to the category of finite-dimensional left modules over (Coalg(Q′))∗. This means 
that the coalgebra’s version of Ext quiver Γc of Coalg(Q′) is the same as the algebra’s 
version of Ext quiver Γa of (Coalg(Q′))∗. According to [9, Theorem 2.1 and Corollary 
4.4], the link quiver Q′ of Coalg(Q′) coincides with the algebra’s version of Ext quiver 
Γa of (Coalg(Q′))∗. Note that (Coalg(Q′))∗ is Morita equivalent to a basic algebra B. 



J. Yu, G. Liu / Journal of Algebra 688 (2026) 803--843 813

Let J be the ideal generated by all the arrows in Q′. By the Gabriel’s theorem, there 
exists an admissible ideal I such that

𝕜Q′/I ∼ = B,

where J t ⊆ I ⊆ J2 for some integer t ≥ 2. Thus there exists an algebra epimorphism

f : B → 𝕜Q′/J2.

Since the Jacobson radical of 𝕜Q′/J2 is J/J2, we know that 𝕜Q′/J2 is an artinian 
algebra with radical square zero. It follows from the proof of [4, X.2 Theorem 2.6] 
that the separated quiver of 𝕜Q′/J2 coincides with the quiver of the hereditary alge

bra 
∑︁

=
(︄

(𝕜Q′/J2)/(J/J2) 0
J/J2 (𝕜Q′/J2)/(J/J2)

)︄
. Note that 𝕜Q′/J2 and 

∑︁
are stably 

equivalent, it follows that 𝕜Q′/J2 is of infinite representation type if and only if 
∑︁

is of 
infinite representation type. Suppose the underlying graph of Q′

s is not a finite disjoint 
union of Dynkin diagrams, then 

∑︁
is of infinite representation type, which indicates 

that 𝕜Q′/J2 is of infinite representation type. Thus B is of infinite representation type. 
It follows that Coalg(Q′) is of infinite corepresentation type. According to Lemma 3.2, 
we know that H is not of discrete corepresentation type, which is a contradiction. □

Recall that a quiver Q is said to be Schurian, if for each pair (C,D) of vertices of Q, 
there are at most one arrow from C to D. The following result is not hard:

Corollary 3.5. Let H be a coalgebra over 𝕜. If H is of discrete corepresentation, then the 
link quiver Q(H) of H is Schurian.

Proof. Otherwise, there exists some finite sub-quiver Q′ of Q(H) such that Q′
s contains 

a Kronecker quiver as a sub-quiver. This is contrary to Lemma 3.4. □
4. Hopf algebras with the dual Chevalley property of discrete corepresentation type

In this section, we classify Hopf algebras with the dual Chevalley property of discrete 
corepresentation type.

Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley property 
and Q(H) the link quiver of H. Denote the coradical filtration of H by {Hn}n≥0. For 
convenience, denote 𝒮 = {Ci | i ∈ I} the set of all the simple subcoalgebras of H. For 
any Ci, Cj ∈ 𝒮, let Ci · Cj =

∑︁
t∈I

αt
ijCt in Z𝒮, where αt

ij ∈ Z+. Moreover, we denote 

ℳ = {𝒞j | i ∈ I}, such that each 𝒞j ∈ ℳ is the basic multiplicative matrix of Cj ∈ 𝒮.
Denote 1𝒮 = {C ∈ 𝒮 | 𝕜1 + C ̸= 𝕜1 ∧ C}, 𝒮1 = {C ∈ 𝒮 | C + 𝕜1 ̸= C ∧ 𝕜1}. Observe 

that for any C ∈ 1𝒮, there exists some arrow from C to 𝕜1 in the link quiver Q(H) of 
H. For any C ∈ 𝒮1, there exists some arrow from 𝕜1 to C in the link quiver Q(H) of H.
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The authors of [39] establish certain properties for the link quiver of a finite
dimensional Hopf algebra H with the dual Chevalley property in Sections 4 and 5. As it 
turns out, several of these properties admit natural extensions to the infinite-dimensional 
setting. We now list some of these results from [39], the proofs of which are omitted.

Lemma 4.1. ([39, Lemmas 4.6, 4.7 and 5.4, Propositions 4.9, 4.14, Corollary 4.10]) Let 
H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley property.

(1) (i) We have | 1𝒫 |=| 𝒫1 |≥ 1. Moreover, C ∈ 1𝒮 if and only if S(C) ∈ 𝒮1;
(ii) | 𝒞𝒫 |=| 𝒫𝒞 |= 1 holds for all 𝒞 ∈ ℳ if and only if | 1𝒫 |= 1 and the unique 

subcoalgebra C ∈ 1𝒮 is 1-dimensional.
(2) For any 𝒴 ∈ 1𝒫, where 𝒴 is a non-trivial (1, 𝒞j)-primitive matrix and 𝒞j ∈ ℳ, then 

the cardinal number | 𝒞i𝒫𝒴 |= ∑︁
t∈I

αt
ij ≥ 1.

(3) If all the simple subcoalgebras directly linked to 𝕜1 are 1-dimensional, then we have
(i) | 𝒞𝒫 |=| 𝒫𝒞 |=| 1𝒫 |, for any 𝒞 ∈ ℳ;
(ii) H(1) is a pointed Hopf algebra.

(4) (i) αt
ik = αi

tk∗ holds for any i, j, k ∈ I;
(ii) If | 1𝒫 |= 1 and Ck is the unique simple subcoalgebra contained in 1𝒮. Then the 

number of arrows with end vertex Ci in Q(H) is equal to 
∑︁
t∈I

αt
ik, and the number 

of arrows with start vertex Ci in Q(H) is equal to 
∑︁
t∈I

αt
ik∗ . In particular, the 

number of arrows from Ct to Ci in Q(H) is equal to αt
ik.

Recall that a basic cycle of length n is a quiver with n vertices e0, e1, · · · , en−1 and 
n arrows a0, a1, · · · an−1, where the arrow ai goes from the vertex ei to the vertex ei+1. 
A finite-dimensional algebra is said to be Nakayama, if each indecomposable projective 
left and right module has a unique composition series. It is well-known that a finite
dimensional basic algebra A is Nakayama if and only if every vertex of the Ext quiver 
of A is the start vertex of at most one arrow and the end vertex of at most one arrow. 
With the help of the preceding lemma, we can now prove:

Theorem 4.2. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property and H(1) be its link-indecomposable component containing 𝕜1. If the coradical 
of H(1) is finite-dimensional, then the following statements are equivalent:

(1) H is of discrete corepresentation type;
(2) Every vertex in Q(H) is both the start vertex of only one arrow and the end vertex 

of only one arrow, that is, Q(H) is a disjoint union of basic cycles;
(3) There is only one arrow C → 𝕜1 in Q(H) whose end vertex is 𝕜1 and dim𝕜(C) = 1;
(4) There is only one arrow 𝕜1 → D in Q(H) whose start vertex is 𝕜1 and dim𝕜(D) = 1.
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Proof. According to Lemma 4.1 (1), we know the equivalence of (2), (3), and (4). It 
remains to show the equivalence of (1) and (2).

Suppose H is of discrete corepresentation type. Because of the fact that there is an 
inclusion from the category of finite-dimensional right H(1)-comodules to the category of 
finite-dimensional right H-comodules, we know that H(1) is of discrete corepresentation 
type. Clearly, if (H(1))0 is finite-dimensional, the number of simple subcoalgebras of 
H(1) is finite and [39, Lemma 4.12] works. Then by Lemma 3.4 and the same reason 
in the proof of [39, Theorem 5.6], we know that Q(H(1)) is a basic cycle. According to 
Lemma 4.1 (1), Q(H) is a disjoint union of basic cycles.

Conversely, from the proof of Lemma 3.4, for any finite-dimensional subcoalgebra H ′

of H, we know that the link quiver Q(H ′) of H ′ is the same as the Ext quiver Γ(H ′∗)a
of H ′∗. Observe that H ′∗ is Morita equivalent to a basic algebra B(H ′∗). Since every 
vertex in Γ(H ′∗)a is the start vertex of at most one arrow and the end vertex of at most 
one arrow, it follows that the basic algebra B(H ′∗) is a Nakayama algebra. By [4, §VI. 
Theorem 2.1], B(H ′∗) is of finite representation type, which implies that H ′ is of finite 
corepresentation type. For any finite dimension vector d, denote by cf(d) the smallest 
subcoalgebra of H such that all the right H-comodules of dimension vector d have their 
coefficient coalgebra contained in cf(d), that is,

cf(d) =
∑︂

dim(M)=d

cf(M).

Using [21, Lemma 2.6], we can show that cf(d) is finite-dimensional. It follows that cf(d)
is of finite corepresentation type. Therefore, the set of isomorphism classes of dimension 
vector d corepresentations is finite. This implies that H is of discrete corepresentation 
type. □

As a consequence of [39, Theorem 5.6] and Theorem 4.2, we have

Corollary 4.3. A finite-dimensional Hopf algebra H over 𝕜 with the dual Chevalley prop
erty is of finite corepresentation type if and only if it is of discrete corepresentation 
type.

Let q ∈ 𝕜 be an n-th root of unit of order d. In [33] and [5], Radford and 
Andruskiewitsch-Schneider have considered the following Hopf algebra A(n, d, μ, q) which 
as an associative algebra is generated by g and x with relations

gn = 1, xd = μ(1 − gd), xg = qgx.

Its comultiplication Δ, counit ε, and the antipode S are given by

Δ(g) = g⊗ g, ε(g) = 1, Δ(x) = 1⊗x+x⊗ g, ε(x) = 0, S(g) = g−1, S(x) = −xg−1.
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According to [28, Theorem 4.6], we know that A(n, d, μ, q) is a finite-dimensional 
link-indecomposable pointed Hopf algebra of finite corepresentation type.

Corollary 4.4. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property and H(1) be its link-indecomposable component containing 𝕜1. If the coradical 
of H(1) is finite-dimensional, then H is of discrete corepresentation type if and only if 
H(1) is isomorphic to A(n, d, μ, q) or 𝕜[x].

Proof. If H(1) is isomorphic to A(n, d, μ, q) or 𝕜[x], there is only one arrow C → 𝕜1 in 
Q(H) whose end vertex is 𝕜1 and dim𝕜(C) = 1. Using Theorem 4.2, we know that H
is of discrete corepresentation type. Conversely, since H is of discrete corepresentation 
type, it follows from Theorem 4.2 that the link quiver Q(H(1)) of H(1) is a basic cycle. 
According to Lemma 4.1 (1), H(1) is a pointed Hopf algebra of discrete corepresentation 
type. It is a consequence of [22, Section 6] that H(1) is isomorphic to A(n, d, μ, q) or 
𝕜[x]. □
Example 4.5. Let H be the Hopf algebra generated by z, y, t, u satisfying the following 
relations:

z2 = 1, y2 = 1, t2 = 1, zy = yz, tz = zt, ty = yt,

zu = uz, yu = uy, tu = ut.

The coalgebra structure and antipode are given by:

Δ(z) = z ⊗ z, Δ(y) = y ⊗ y, ε(z) = ε(y) = 1,

Δ(t) = 1
2 [(1 + y)t⊗ t + (1 − y)t⊗ zt] , ε(t) = 1,

Δ(u) = 1 ⊗ u + u⊗ 1, ε(u) = 0,

S(z) = z, S(y) = y, S(t) = 1
2 [(1 + y)t + (1 − y)zt] , S(u) = −u.

Denote E = span{t, zt, yt, zyt}, then 𝒮 = {𝕜1, 𝕜z, 𝕜y, 𝕜zy,E}. We give the corre
sponding multiplicative matrix ℰ of E, where

ℰ = 1
2

(︄
t + yt t− yt

zt− zyt zt + zyt

)︄
.

By the definition of the comultiplication of H, we know that (u) is a non-trivial 
((1), (1))-primitive matrix, that is, u is a non-trivial primitive element. Moreover, we 
have 1𝒫 = {(u)}. Let ℳ be a set of representative elements of basic multiplicative 
matrices over H for the similarity class. For any ℬ ∈ ℳ, we have
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ℬ ⊙′
(︄

1 u

0 1

)︄
=

(︄
ℬ ℬu
0 ℬ

)︄
.

According to Lemma 2.9, we know that 𝒫 = {(u), (zu), (yu), (zyu),𝒳}, where

𝒳 = 1
2

(︄
(t + yt)u (t− yt)u

(zt− zyt)u (zt + zyt)u

)︄
.

It follows that (zu) is a non-trivial ((z), (z))-primitive matrix, (yu) is a non-trivial 
((y), (y))-primitive matrix, (zyu) is a non-trivial ((zy), (zy))-primitive matrix and 𝒳
is a non-trivial (ℰ , ℰ)-primitive matrix. Thus the link quiver of H is shown below:

𝕜1 𝕜z 𝕜y 𝕜zy E

From Theorem 4.2, H is a non-pointed Hopf algebra with the dual Chevalley property 
of discrete corepresentation type.

Next we consider the case when (H(1))0 is infinite-dimensional. Before proceeding 
further, let us give the following lemma.

Lemma 4.6. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property. If there exists some Ck ∈ 1𝒮 such that dim𝕜(Ck) ≥ 9, then H is not of discrete 
corepresentation type.

Proof. According to Lemma 3.4, the key idea of the proof is to find a finite sub-quiver 
Q′ of Q(H) such that the underlying graph of separated quiver Q′

s is not a disjoint union 
of Dynkin diagrams. Using Lemma 4.1 (4) (i), we know that the following two numbers 
are equal:

- The number of Ct contained in Ci · Ck;
- The number of Ci contained in Ct · S(Ck).

To prove this lemma, we divide the argument into several cases.

(I) Suppose

S(Ck) · Ck =
∑︂
i∈I 

αi
k∗kCi

in Z𝒮, where 
∑︁

i∈I α
i
k∗k ≥ 4. Then by Lemma 4.1 (2), the separated quiver of 

Q(H) contains a vertex which is the end vertex of at least 4 arrows. Evidently, we 
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can find a finite sub-quiver Q′ of Q(H) such that the underlying graph of separated 
quiver Q′

s is not a disjoint union of Dynkin diagrams.
(II) Suppose

S(Ck) · Ck = 𝕜1 + D1 + D2

in Z𝒮, where 
√︁

dim𝕜(D1) ≥
√︁

dim𝕜(D2). Since 
√︁

dim𝕜(Ck) ≥ 3, it follows that

√︁
dim𝕜(D1) +

√︁
dim𝕜(D2) ≥ 8

and

√︁
dim𝕜(D1) >

√︁
dim𝕜(S(Ck)).

From Lemma 4.1 (4), we have

D1 · S(Ck) = S(Ck) +
∑︂
i∈I 

βiCi

in Z𝒮, where βi ∈ Z+ for any i ∈ I and 
∑︁

i∈I βi ≥ 1. In fact, if 
∑︁

i∈I βi ≥ 2, by 
Lemma 4.1 (2), there exists a finite sub-quiver Q′ of 𝒬(H) such that Q′

s contains at 
least one vertex which is the end vertex of 3 arrows and at least one vertex which 
is the start vertex of 3 arrows. That is, Qs contains either

,

or

𝕜1 D2 D1

S(Ck)′

as a sub-quiver. The underlying graph of the sub-quiver in the latter case is D̃5 and 
it is an Euclidean graph. As a result, H is not of discrete corepresentation type. 
Now suppose 

∑︁
i∈I βi = 1, which means that

D1 · S(Ck) = S(Ck) + E1

in Z𝒮. Clearly, we have
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√︁
dim𝕜(E1) =

√︁
dim𝕜(S(Ck))

√︁
dim𝕜(D1) −

√︁
dim𝕜(S(Ck))

>
√︁

dim𝕜(S(Ck))
√︁

dim𝕜(D1) −
√︁

dim𝕜(D1)

>
√︁

dim𝕜(D1).

It follows from Lemma 4.1 (4) that

E1 · Ck = D1 +
∑︂
i∈I 

γiCi

in Z𝒮, where γi ∈ Z+ for any i ∈ I and 
∑︁

i∈I γi ≥ 1. A similar argument shows 
that either there exists a finite sub-quiver Q′ of Q(H) such that Q′

s contains at 
least one vertex which is the end vertex of 3 arrows and at least one vertex which 
is the start vertex of 3 arrows or 

∑︁
i∈I γi = 1. In the later case, we have

E1 · Ck = D1 + E2

in Z𝒮 and 
√︁

dim𝕜(E2) >
√︁

dim𝕜(E1). Continue the steps, if H is not of discrete 
corepresentation type, we can get an infinite sequence

Ei · Si+1(C) = Ei−1 + Ei+1

such that 
√︁

dim𝕜(Ei+1) >
√︁

dim𝕜(Ei), where i ≥ 1 and E0 = D1. One can finally 
get an infinite-dimensional simple subcoalgebra, which is impossible. Based on the 
above argument, we know that H is not of discrete corepresentation type in this 
case.

(III) Finally, we focus on the case that

S(Ck) · Ck = 𝕜1 + D1

in Z𝒮, where 
√︁

dim𝕜(D1) >
√︁

dim𝕜(S(Ck)).
(i) If

D1 · S(Ck) = S(Ck) +
∑︂
i∈I 

βiCi

in Z𝒮, where βi ∈ Z+ for any i ∈ I and 
∑︁
i∈I

βi ≥ 3. Using the same argument 

as in (I), we can easily show that H is not of discrete corepresentation type.
(ii) If

D1 · S(Ck) = S(Ck) + D2 + D3

in Z𝒮, where 
√︁

dim𝕜(D2) ≥
√︁

dim𝕜(D3). We have
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√︁
dim𝕜(D2) ≥ 1

2(
√︁

dim𝕜(D1)
√︁

dim𝕜(S(Ck)) −
√︁

dim𝕜(S(Ck)))

>
1
2(

√︁
dim𝕜(D1)

√︁
dim𝕜(S(Ck)) −

√︁
dim𝕜(D1))

≥
√︁

dim𝕜(D1).

It follows that

D2 · Ck = D1 +
∑︂
i∈I 

γiCi

in Z𝒮, where γi ∈ Z+ and 
∑︁
i∈I

γi ≥ 1. If 
∑︁
i∈I

γi ≥ 2, by Lemma 4.1 (2), there 

exists a finite sub-quiver Q′ of 𝒬(H) such that Q′
s contains at least one vertex 

which is the end vertex of 3 arrows and at least one vertex which is the start 
vertex of 3 arrows. This means that H is not of discrete corepresentation type. 
If 

∑︁
i∈I

γi = 1, that is,

D2 · Ck = D1 + D4

in Z𝒮, where 
√︁

dim𝕜(D4) >
√︁

dim𝕜(D2). Continue the steps, an argument 
similar to the one used in (II) shows that H is not of discrete corepresentation 
type.

(iii) If

D1 · S(Ck) = S(Ck) + D2

in Z𝒮, where 
√︁

dim𝕜(D2) >
√︁

dim𝕜(D1). By adopting the same procedure as 
in (III)(i) and (ii), we can show that either H is not of discrete corepresentation 
type or we can get an infinite sequence

Di · Si(C) = Di−1 + Di+1

such that 
√︁

dim𝕜(Di+1) >
√︁

dim𝕜(Di), where i ≥ 1 and D0 = S(Ck). In 
the later case, one can finally get an infinite-dimensional simple subcoalgebra, 
which is impossible.

In conclusion, H is not of discrete corepresentation type. □
Now we can characterize the link quiver of H when H is of discrete corepresentation 

type and (H(1))0 is infinite-dimensional.

Theorem 4.7. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property of discrete corepresentation type and H(1) be its link-indecomposable component 
containing 𝕜1. Denote 1𝒮 = {C ∈ 𝒮 | 𝕜1 + C ̸= 𝕜1 ∧ C}. If the coradical of H(1) is 
infinite-dimensional, then one of the following three cases occurs:
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(1) | 1𝒫 |= 1 and 1𝒮 = {𝕜g} for some g ∈ G(H);
(2) | 1𝒫 |= 2 and 1𝒮 = {𝕜g, 𝕜h} for some different group-like elements g, h ∈ G(H);
(3) | 1𝒫 |= 1 and 1𝒮 = {Ck} for some Ck ∈ 𝒮 with dim𝕜(Ck) = 4.

Proof. For any n ≥ 2, let 𝒮(n) be the set of all the n2-dimensional simple subcoalgebras 
of H.

(I) If | 1𝒫 |≥ 3, by adopting the same procedure as in the proof of [38, Theorem 4.2], 
one can find a finite sub-quiver Q′ of Q(H) such that the separated quiver Q′

s of 
Q′ is not a disjoint union of Dynkin diagrams. Using Lemma 3.4, we know that H
is not of discrete corepresentation type.

(II) According to Lemma 4.6, if there exists some Ck ∈ 1𝒮 such that dim𝕜(Ck) ≥ 9, 
then H is not of discrete corepresentation type.

(III) Suppose that

1𝒫 = {𝒳 ,𝒴},

where 𝒳 is a non-trivial (1, 𝕜g)-primitive matrix and 𝒴 is a non-trivial (1, 𝒞k)
primitive matrix for some g ∈ G(H) and Ck ∈ 𝒮(2). Note that H is of discrete 
corepresentation type and 1𝒮 contains a 4-dimensional simple subcoalgebra. Pro
ceeding as in the proof of [39, Proposition 5.5], we can get an infinite sequence (a)

S(Ck) · Ck = 𝕜1 + 𝕜g + D
(2)
1 ,

D
(2)
1 · S(Ck) = S(Ck) + D

(2)
2 ,

D
(2)
2 · Ck = D

(2)
1 + D

(2)
3 ,

· · ·
D

(2)
2i · Ck = D

(2)
2i−1 + D

(2)
2i+1,

D
(2)
2i+1 · S(Ck) = D

(2)
2i + D

(2)
2i+2,

· · ·

or an infinite sequence (b)

S(Ck) · Ck = 𝕜1 + D
(3)
1 ,

D
(3)
1 · S(Ck) = S(Ck) + D

(4)
1 ,

D
(4)
1 · Ck = D

(3)
1 + D

(5)
1 ,

· · ·
D

(2i)
1 · Ck = D

(2i−1)
1 + D

(2i+1)
1 ,

D
(2i+1)
1 · S(Ck) = D

(2i)
1 + D

(2i+2)
1 ,

· · · ,
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where D(j)
i ∈ 𝒮(j), g ∈ G(H). Otherwise, we can find a finite sub-quiver Q′ of 

Q(H) such that the separated quiver Q′
s of Q′ is not a disjoint union of Dynkin 

diagrams, which is a contradiction to Lemma 3.4. Next we deal with case (a) and 
(b). In case (a), according to [39, Corollary 3.9] and Lemma 4.1 (2), we have

| KS(𝒞k)K−1𝒫 |=| KS(𝒞k)K−1𝒫𝒳 | + | KS(𝒞k)K−1𝒫𝒴 |= 4,

where K is an invertible matrix over 𝕜 such that KS(𝒞k)K−1 ∈ ℳ is the basic 
multiplicative matrix of S(Ck). Thus Q(H)s contains at least one vertex which 
is the end vertex of at least 4 arrows. In such a case, we can show that H is 
not of discrete corepresentation type by Lemma 3.4. In case (b), one can get an 
infinite-dimensional simple subcoalgebra, which leads to a contradiction.

(IV) By Corollary 3.5, we know that if | 1𝒫 |= 2 and 1𝒮 = {𝕜g, 𝕜h} for some g, h ∈
G(H), then g ̸= h.

To conclude, if H is of discrete corepresentation type, then either | 1𝒫 |= 1 and 1𝒮 =
{Ck} for some Ck ∈ 𝒮 with dim𝕜(Ck) ≤ 4, or | 1𝒫 |= 2 and 1𝒮 = {𝕜g, 𝕜h} for some 
different group-like elements g, h ∈ G(H). □

In the following part, let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual 
Chevalley property of discrete corepresentation type such that the coradical of H(1) is 
infinite-dimensional. Next we give an accurate description for H(1) when H is of discrete 
corepresentation type. We discuss these three cases separately.

4.1. Case (1)

Suppose | 1𝒫 |= 1 and 1𝒮 = {𝕜g}, where g ∈ G(H). According to Lemma 4.1 (3), we 
know that

| 𝒞𝒫 |=| 𝒫𝒞 |= 1.

It follows that the link quiver of H(1) is double infinite quiver ∞𝒜∞:

· · · · · · .

Let us give several examples of pointed Hopf algebras whose link quiver is ∞𝒜∞.

Example 4.8. ( [26, Section 2]) The Hopf algebra A(n, q) is generated by g, g−1, x subjects 
to relations:

gg−1 = g−1g = 1, xg = qgx, xn = 1 − gn,
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where q ∈ 𝕜 is a n-th primitive root of unity. The coalgebra structure and antipode are 
given by:

Δ(g) = g ⊗ g, Δ(x) = x⊗ 1 + g ⊗ x,

ε(g) = 1, ε(x) = 0, S(g) = g−1, S(x) = −g−1x.

Example 4.9. ( [20, Theorem 5.4]) The Hopf algebra H∞(χ, λ) is generated by g, g−1, x

subjects to relations:

gg−1 = g−1g = 1, xg = χ(g)gx + λ(g)(g − g2),

where χ is a 1-dimensional character such that χ(g) = 1 or χ(g) is not a root of unity 
and λ ∈ (𝕜⟨g, g−1⟩)◦ is an element in the finite dual Hopf algebra such that λ(hf) =
χ(h)λ(f)+λ(h) for any f, h ∈ 𝕜⟨g, g−1⟩. The coalgebra structure and antipode are given 
by:

Δ(g) = g ⊗ g, Δ(x) = 1 ⊗ x + x⊗ g,

ε(g) = 1, ε(x) = 0, S(g) = g−1, S(x) = −xg−1.

Now we give a description of the algebra structure of H(1) in this case.

Proposition 4.10. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Cheval
ley property such that the coradical of H(1) is infinite-dimensional. If | 1𝒫 |= 1 and 
1𝒮 = {𝕜g}, where g ∈ G(H), then H is of discrete corepresentation type. Moreover, H(1)
is isomorphic to A(n, q) or H∞(χ, λ).

Proof. Since | 1𝒫 |= 1 and 1𝒮 = {𝕜g}, where g ∈ G(H), it follows from Lemma 4.1 (3) 
that

| 𝒞𝒫 |=| 𝒫𝒞 |= 1.

Using the same argument as in the proof of Theorem 4.2, we can easily show that H is 
of discrete corepresentation type. According to Lemma 4.1 (3), H(1) is a pointed Hopf 
algebra of discrete corepresentation type. Using [22, Section 6], we know that H(1) is 
isomorphic to A(n, q) or H∞(χ, λ). □
4.2. Case (2)

Suppose | 1𝒫 |= 2 and 1𝒮 = {𝕜g, 𝕜h}, where g, h are two different group-like ele
ments. It follows from Lemma 4.1 (3) that H(1) is a pointed Hopf algebra of discrete 
corepresentation type.

Let (m,n) be a pair of integers such that (m,n) ̸= ±(1, 1). Let Qm,n be a quiver 
defined as follows: The set of vertices of Qm,n

0 = ⟨g, h | gh = hg, gm = hn⟩, for each 
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vertex, there is a unique arrow from gihj to gi+1hj and a unique arrow from gihj to 
gihj+1. According to [22, Theorem 4.9], we know that the link quiver of H(1) in this case 
is Qm,n.

In [22, Section 5], the authors construct a family of Hopf algebra Bm,n(λ, s, t, k) such 
that the link quiver of Bm,n(λ, s, t, k) is Qm,n.

Example 4.11. ( [22, Definition 5.11]) For pairs of integers (m,n) ̸= ±(1, 1) and m +
n ∈ 2Z, define Bm,n(λ, s, t, k) be the Hopf algebra generated by g, h, x, y satisfying the 
following conditions, where λ ̸= 0, s, t, k ∈ 𝕜.

gh = hg, gm = hn, xy + λyx = k(1 − gh),

gx + xg = 0, λhx + xh = 0, x2 = s(1 − g2),

hy + yh = 0, gy + λyg = 0, y2 = t(1 − h2),

Δ(g) = g ⊗ g, Δ(h) = h⊗ h, Δ(x) = 1 ⊗ x + x⊗ g Δ(y) = 1 ⊗ y + y ⊗ h,

ε(g) = ε(h) = 1, ε(x) = ε(y) = 0,

S(g) = g−1, S(h) = h−1, S(x) = −xg−1, S(y) = −yh−1.

Using [22, Theorem 5.15], we know that the Hopf algebra Bm,n(λ, s, t, k) is of discrete 
corepresentation type if and only if m ̸= n or m = n = 0. Besides, the authors classified 
the Hopf algebra Bm,n(λ, s, t, k) up to isomorphism in [22, Lemma 5.16] and showed that 
there are more constraints on the parameters λ, s, t, k in [22, Lemma 5.18]. As mentioned 
above, we can now obtain the following proposition.

Proposition 4.12. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Cheval
ley property of discrete corepresentation type such that the coradical of H(1) is infinite
dimensional. If | 1𝒫 |= 2 and 1𝒮 = {𝕜g, 𝕜h}, where g, h are two different group-like 
elements, then H(1) is isomorphic to exactly one of the following:

(1) Bm,n(λ, 0, 0, 0), λ ∈ 𝕜
× and λgcd(m,n)=1 if (m,n) ̸= (0, 0);

(2) Bm,n(−1, 0, 1, 0), if both m,n are even;
(3) Bm,n(−1, 1, 0, 0), if both m,n are even;
(4) Bm,n(−1, 1, 1, 0), if both m,n are even;
(5) Bm,n(1, 1, 1, k), k ∈ 𝕜;
(6) Bm,n(1, 1, 0, 0);
(6’) Bm,n(1, 0, 1, 0);
(7) Bm,n(1, 1, 0, 1);
(7’) Bm,n(1, 0, 1, 0);
(8) Bm,n(1, 0, 0, 1).

Proof. It follows from Lemma 4.1 (3) that H(1) is a pointed Hopf algebra of discrete 
corepresentation type. According to [22, Section 6], the proof is done. □
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4.3. Case (3)

In this subsection, let 𝒮 ′ be the set of simple subcoalgebras of H(1) and Gr((H(1))0
comod) be the Grothendieck ring of the category of finite-dimensional right (H(1))0
comodules. Next we give a description of the structures of Gr((H(1))0-comod) and 
determine the link quiver of H(1) in the case that | 1𝒫 |= 1 and 1𝒮 = {Ck}, where 
dim𝕜(Ck) = 4.

It follows from [24, Proposition 3.16] that H(1) is a Hopf subalgebra. Using Lemma 2.6, 
we know that Gr((H(1))0-comod) is isomorphic to Z𝒮 ′. Thus we only need to focus on 
the structures of Z𝒮 ′. Before that, we give a new construction of a complete family of 
non-trivial (𝒞,𝒟)-primitive matrices over H for any C,D ∈ 𝒮 with basic multiplicative 
matrices 𝒞,𝒟, respectively.

For any matrix 𝒜 = (aij)r×s and ℬ = (bij)u×v over H, define 𝒜⊙ ℬ as follows

𝒜⊙ ℬ =

⎛⎜⎝ a11ℬ · · · a1sℬ
...

. . .
...

ar1ℬ · · · arsℬ

⎞⎟⎠ .

For any B,C ∈ 𝒮 with basic multiplicative matrices ℬ, 𝒞 respectively. Since H has 
the dual Chevalley property, it follows from [24, Proposition 2.6(2)] that there exists an 
invertible matrix L over 𝕜 such that

L(𝒞 ⊙ ℬ)L−1 =

⎛⎜⎜⎜⎜⎝
ℱ1 0 · · · 0
0 ℱ2 · · · 0
...

...
. . .

...
0 0 · · · ℱu(𝒞,ℬ)

⎞⎟⎟⎟⎟⎠ ,

where ℱ1,ℱ2, · · · ,ℱt are basic multiplicative matrices over H.
Let ℳ denote the set of representative elements of basic multiplicative matrices over 

H for the similarity class. For any C ∈ 1𝒮 with basic multiplicative matrix 𝒞 ∈ ℳ, we 
can fix a complete family {𝒳 (γ1,C)}γ1,𝒞∈Γ1,𝒞 of non-trivial (1, 𝒞)-primitive matrices.

Denote

1𝒫 :=
⋃︂

C∈1𝒮
{𝒳 (γ1,𝒞) | γ1,𝒞 ∈ Γ1,𝒞}.

Then for any non-trivial (1, 𝒞)-primitive matrix 𝒴 ∈ 1𝒫 and ℬ ∈ ℳ, we have

(︄
I 0
0 L

)︄(︄(︄
1 𝒴
0 𝒞

)︄
⊙ ℬ

)︄(︄
I 0
0 L−1

)︄
=

⎛⎜⎜⎜⎜⎜⎜⎝
ℬ 𝒴 ′

1 𝒴 ′
2 · · · 𝒴 ′

u(𝒞,ℬ)

0 ℱ1 0 · · · 0
0 0 ℱ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ℱu(𝒞,ℬ)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where ℱ1,ℱ2, · · · ,ℱu(𝒞,ℬ) ∈ ℳ.
Denote

ℬ𝒫 ′
𝒴 := {𝒴 ′

i | 1 ≤ i ≤ u(𝒞,ℬ)},
ℬ𝒫 ′ :=

⋃︂
𝒴∈1𝒫

ℬ𝒫 ′
𝒴 , 𝒫 ′

𝒴 :=
⋃︂

ℬ∈ℳ

ℬ𝒫 ′
𝒴 .

Moreover, denote

𝒫 ′ :=
⋃︂

ℬ∈ℳ

ℬ𝒫 ′ =
⋃︂

𝒴∈1𝒫′
𝒫 ′
𝒴 .

According to [34, Corollary 3.6], since H has the dual Chevalley property, the antipode 
S of H is bijective. Then for the mixed Hopf module H1/H0 in HℳH , we have

coH0(H1/H0) ⊗H0 ∼ = H1/H0,

where coH0(H1/H0) is the left coinvariants of H0 in H1/H0. And the isomorphism maps 
x⊗ h to x · h, where h ∈ H0, x ∈ coH0(H1/H0).

The proof of the following lemma can be completed by the method analogous to that 
used in the proof of [39, Remark 3.6, Corollary 3.9 and Theorem 3.10].

Lemma 4.13. 

(1) With the notations above, we have
(i) the cardinal number | ℬ𝒫 ′

𝒴 |= u(𝒞,ℬ);
(ii) the union 𝒫 ′ =

⋃︁
𝒴∈1𝒫′

𝒫 ′
𝒴 is disjoint.

(2) Let C,D ∈ 𝒮 with basic multiplicative matrices 𝒞,𝒟 ∈ ℳ respectively. Denote

𝒞𝒫 ′𝒟 := {𝒳 ′ ∈ 𝒫 ′ | 𝒳 ′ is a non-trivial (𝒞,𝒟)-primitive matrix}.

Then it is a complete family of non-trivial (𝒞,𝒟)-primitive matrices. Moreover, we 
have H1/H0 =

⨁︁
𝒳 ′∈𝒫′ span(𝒳 ′).

Now it is not difficult to verify the following lemma.

Lemma 4.14. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property. If 1𝒮 = {Ck}, then both Ck and S(Ck) are in the center of Z𝒮.

Proof. For any Ci ∈ 𝒮, suppose that

Ci · Ck =
∑︂
i∈I 

αt
ikCt,

Ck · Ci =
∑︂
i∈I 

αt
kiCt.
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Combining Lemma 2.9 and [39, Corollary 3.9], we know that

| 𝒞i𝒫𝒞t |=| 1𝒫𝒞k | αt
ik.

Using Lemma 4.13, one can show that

| 𝒞i𝒫 ′𝒞t |=| 1𝒫𝒞k | αt
ki.

According to [39, Corollary 2.11 and Lemma 2.17], we have

1 √︁
dim𝕜(Ci)

√︁
dim𝕜(Ct)

dim𝕜((Ci ∧ Ct)/(Ci + Ct))

= | 𝒞i𝒫𝒞t |
= | 𝒞i𝒫 ′𝒞t | .

It follows that

αt
ik = αt

ki,

which means that

Ci · Ck = Ck · Ci

for any Ci ∈ 𝒮. Besides, we have

S(Ci) · S(Ck) = S(Ck) · S(Ci)

for any Ci ∈ 𝒮. Thus both Ck and S(Ck) are in the center of Z𝒮. □
Lemma 4.15. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property. Denote by 𝒮 ′ the set of simple subcoalgebras of H(1). Suppose that | 1𝒫 |= 1
and Ck is the unique subcoalgebra contained in 1𝒮. Then D ∈ 𝒮 ′ if and only if there exist 
some m,n ∈ Z+ such that (Ck)m · (S(Ck))n contains D with a nonzero coefficient.

Proof. By the same reason in the proof of [38, Proposition 3.10] and the fact that Ck

and S(Ck) are in the center of Z𝒮, we can easily prove the lemma. □
In the following part, suppose H is a non-cosemisimple Hopf algebra over 𝕜 with the 

dual Chevalley property of discrete corepresentation type such that the coradical of H(1)
is infinite-dimensional. Suppose | 1𝒫 |= 1 and 1𝒮 = {Ck}, where dim𝕜(Ck) = 4. From the 
fact that simple subcoalgebras are finite-dimensional and the proof of [39, Proposition 
5.5], we can get an infinite sequence
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S(Ck) · Ck = 𝕜1 + 𝕜g + D1,

D1 · S(Ck) = S(Ck) + D2,

D2 · Ck = D1 + D3,

· · ·
D2i · Ck = D2i−1 + D2i+1,

D2i+1 · S(Ck) = D2i + D2i+2,

· · · ,

where g ∈ G(H) and dim𝕜(Di) = 4 for any i ≥ 1. Moreover, we have Di ̸= Di+2m
for any i ≥ 1,m > 0. Otherwise, we can find a finite sub-quiver Q′ of Q(H) such that 
the separated quiver Q′

s of Q′ is not a disjoint union of Dynkin diagrams, which is in 
contradiction with Lemma 3.4. Moreover, since

S(Ck) · Ck = 𝕜1 + 𝕜g + D1,

it follows that

S(Ck) · S2(Ck) = 𝕜1 + 𝕜S(g) + S(D1).

This means that S(g) = g and S(D1) = D1. Using Lemmas 4.1 (4) and 4.14, we have

Ck · 𝕜g = Ck,

and

Ck ·D1 = Ck + S(D2).

It follows that

Ck · (Ck · S(Ck)) = 3Ck + S(D2).

For any n ≥ 2, let 𝒮(n) be the set of all the n2-dimensional simple subcoalgebras of H. 
Now we figure out Ck · Ck.

Lemma 4.16. We have

Ck · Ck = 𝕜h1 + 𝕜h2 + E

in Z𝒮, where h1, h2 are two different group-like elements and E is a 4-dimensional simple 
subcoalgebra.



J. Yu, G. Liu / Journal of Algebra 688 (2026) 803--843 829

Proof. (I) Suppose that Ck · Ck = E(4), where E(4) ∈ 𝒮(4). We have

E(4) · S(Ck) = Ck · (Ck · S(Ck)) = 3Ck + S(D2).

According to Lemma 4.1 (4), the separated quiver of Q(H(1)) contains a vertex 
which is the start vertex of 4 arrows. Evidently, we can find a finite sub-quiver Q′

of Q(H) such that the separated quiver Q′
s of Q′ is not a disjoint union of Dynkin 

diagrams. It follows from Lemma 3.4 that H is not of discrete corepresentation 
type.

(II) Suppose

Ck · Ck = 𝕜h + E(3),

where h ∈ G(H) and E(3) ∈ 𝒮(3). A similar argument shows that

𝕜h · S(Ck) = Ck

and

E(3) · S(Ck) = 2Ck + S(D2).

Combining Corollary 3.5 and Lemma 4.1 (2), one can show that H is not of discrete 
corepresentation type.

(III) Suppose

Ck · Ck = E
(2)
1 + E

(2)
2 ,

where E(2)
i ∈ 𝒮(2) for i = 1, 2. A similar argument shows that there exists some 

i ∈ {1, 2} such that

E
(2)
1 · S(Ck) = 2Ck,

which follows that H is not of discrete corepresentation type.
(IV) Suppose

Ck · Ck = 𝕜h1 + 𝕜h2 + 𝕜h3 + 𝕜h4,

where h1, h2, h3, h4 ∈ G(H). One can show that H is not of discrete corepresenta
tion type by the same taken.

(V) Suppose

Ck · Ck = 𝕜h1 + 𝕜h2 + E

in Z𝒮, where h1, h2 ∈ G(H) and E ∈ 𝒮(2). According to Corollary 3.5, we know 
that h1 ̸= h2. □
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Note that S(D1) = D1 and

D1 · S(Ck) = S(Ck) + D2

in Z𝒮. It follows from Lemma 4.1 (4) that

Ck ·D1 = Ck + S(D2)

in Z𝒮. Moreover, by the fact that Ck, S(Ck) are in the center of Z𝒮, we have

Ck · (S(Ck) · Ck) = Ck · (𝕜1 + 𝕜g + D1)

= 3Ck + S(D2)

= (Ck · Ck) · S(Ck)

= (𝕜h1 + 𝕜h2 + E) · S(Ck).

This means that

E · S(Ck) = Ck + S(D2)

in Z𝒮.
Recall that a quotient quiver Q = (Q0,Q1) of Q = (Q0,Q1) is a quiver, whose vertices 

are blocks of partitions of Q0 and the number of arrows from D to E in Q equals the 
total number of arrows from D to E for all D ∈ D and E ∈ E. According to Lemma 4.1
(4), the number of arrows from Ci to Ct is equal to the number of arrows from S(Ct)
to S(Ci). Now using Lemma 4.1 (4), we can show that Q(H(1)) contains a sub-quiver 
which is the quotient quiver of the following form:

𝕜h−1
2S(Ck)𝕜gCk𝕜h2

𝕜h−1
1

𝕜1𝕜h1

S(E)D1E

D2S(D2) .

Based on the consideration above, we can get the link quiver of H(1) when Ck = S(Ck).

Proposition 4.17. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Cheval
ley property of discrete corepresentation type such that the coradical of H(1) is infinite
dimensional. If | 1𝒫 |= 1 and 1𝒮 = {Ck}, where Ck = S(Ck) and dim𝕜(Ck) = 4, then 
the link quiver Q(H(1)) of H(1) is of the following form:
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D3𝕜1 D2D1Ck

· · ·

𝕜g

, (4.1)

where g ∈ G(H) and Di are distinct 4-dimensional simple subcoalgebras for any i ≥ 1.

Proof. Using Lemma 4.15, we know that (H(1))0 is generated by Ck. If there exist some 
distinct i, j ≥ 0 such that Di = Dj , where D0 = Ck, then (H(1))0 is finite-dimensional. 
This is a contradiction. Now we claim that for any i ≥ 1, we have Di = S(Di). Indeed, 
suppose for any i ≤ n− 1, we have Di = S(Di). When i = n, since

Dn−1 · Ck = Dn−2 + Dn,

it follows that

S(Ck) · S(Dn−1) = S(Dn−2) + S(Dn).

According to Lemma 4.14 and the induction assumption, we know that

Dn−1 · Ck = Dn−2 + S(Dn),

which indicates that Dn = S(Dn). By Lemma 4.1 (4), we have thus proved the proposi
tion. □

Finally, we consider the converse of Theorem 4.7, that is, whether H is of discrete 
corepresentation type if H satisfies cases (1), (2), or (3).

Remark 4.18. Let H be a non-cosemisimple Hopf algebra over 𝕜 with the dual Chevalley 
property such that the coradical of H(1) is infinite-dimensional. In case (1) of Theo
rem 4.7, it follows from Proposition 4.10 that H is of discrete corepresentation type. But 
in cases (2) and (3), H is not necessarily a discrete corepresentation type Hopf algebra. 
In fact, Bm,n(λ, s, t, k) is precisely the Hopf algebra corresponding to the quiver Qm,n. 
To ensure Bm,n(λ, s, t, k) is of discrete corepresentation type, the authors in [22] imposed 
some restrictions on these parameters (see, for example, [22, Theorem 5.15]). In other 
words, counterexamples exist in case (2); Bm,m(λ, s, t, k) being one such example, where 
m ̸= 0. Besides, we will provide an example of non-discrete corepresentation type Hopf 
algebra satisfying case (3) in the next section (see Remark 5.5 below).

5. Example

In this section, we will show that the situation (3) of Theorem 4.7 does occur. That 
is, we introduce a new algebra H(e±1, f±1, u, v) and show that this algebra is a Hopf 
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algebra with the dual Chevalley property of discrete corepresentation type such that its 
link quiver is of the form (4.1) in Proposition 4.17.

Definition 5.1. As an algebra, H(e±1, f±1, u, v) is generated by u, v, ei, fi for i ∈ Z, 
subject to the following relations

1 = e0 + f0, eiej = ei+j , fifj = fi+j , eifj = fjei = 0,

eiu = (−1)iuei, fiu = (−1)iufi, eiv = (−1)ivei, fiv = (−1)ivfi,

u2 = v2 = 0, uv = −vu,

for any i, j ∈ Z.
The comultiplication, counit and the antipode are given by

Δ(ei) = ei ⊗ ei + fi ⊗ f−i, ε(ei) = 1, S(ei) = e−i,

Δ(fi) = ei ⊗ fi + fi ⊗ e−i, ε(fi) = 0, S(fi) = fi,

Δ(u) = 1 ⊗ u + u⊗ e1 + v ⊗ f−1, ε(u) = 0, S(u) = −vf−1 − ue−1,

Δ(v) = 1 ⊗ v + u⊗ f1 + v ⊗ e−1, ε(v) = 0, S(v) = −uf1 − ve1,

for any i ∈ Z.

With operations defined above, we have

Lemma 5.2. H(e±1, f±1, u, v) is a Hopf algebra with the dual Chevalley property. 
Moreover, H(e±1, f±1, u, v)0 is spanned by ei, fi, i ∈ Z and H(e±1, f±1, u, v) =
H(e±1, f±1, u, v)2.

Proof. The proof is routine. For completeness and the convenience for other reader, we 
give the proof here. As usual, we decompose the proof into several steps. 
• Step 1 (Δ and ε are algebra homomorphisms.) 
First of all, it is clear that ε is an algebra homomorphism. By definition, we have

Δ(e0 + f0) = e0 ⊗ e0 + f0 ⊗ f0 + e0 ⊗ f0 + f0 ⊗ e0

= (e0 + f0) ⊗ (e0 + f0)

= Δ(1),

and for any i ∈ Z,

Δ(ei)Δ(ej) = (ei ⊗ ei + fi ⊗ f−i)(ej ⊗ ej + fj ⊗ f−j)

= ei+j ⊗ ei+j + fi+j ⊗ f−i−j

= Δ(ei+j),
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Δ(fi)Δ(fj) = (ei ⊗ fi + fi ⊗ e−i)(ej ⊗ fj + fj ⊗ e−j)

= ei+j ⊗ fi+j + fi+j ⊗ e−i−j

= Δ(fi+j),

Δ(ei)Δ(fj) = (ei ⊗ ei + fi ⊗ f−i)(ej ⊗ fj + fj ⊗ e−j)

= 0,

Δ(fj)Δ(ei) = (ej ⊗ fj + fj ⊗ e−j)(ei ⊗ ei + fi ⊗ f−i)

= 0.

Meanwhile, for any i ∈ Z,

Δ(ei)Δ(u) = (ei ⊗ ei + fi ⊗ f−i)(1 ⊗ u + u⊗ e1 + v ⊗ f−1)

= ei ⊗ eiu + fi ⊗ f−iu + eiu⊗ ei+1 + fiv ⊗ f−i−1

= (−1)i(ei ⊗ uei + fi ⊗ uf−i + uei ⊗ ei+1 + vfi ⊗ f−i−1)

= (−1)iΔ(u)Δ(ei),

and

Δ(fi)Δ(u) = (ei ⊗ fi + fi ⊗ e−i)(1 ⊗ u + u⊗ e1 + v ⊗ f−1)

= ei ⊗ fiu + fi ⊗ e−iu + fiu⊗ e−i+1 + eiv ⊗ fi−1

= (−1)i(ei ⊗ ufi + fi ⊗ ue−i + ufi ⊗ e−i+1 + vei ⊗ fi−1)

= (−1)iΔ(u)Δ(fi).

Using a similar argument, one can get Δ(ei)Δ(v) = (−1)iΔ(v)Δ(ei) and Δ(fi)Δ(v) =
(−1)iΔ(v)Δ(fi). Moreover, we find that

Δ(u)Δ(v) = (1 ⊗ u + u⊗ e1 + v ⊗ f−1)(1 ⊗ v + u⊗ f1 + v ⊗ e−1)

= 1 ⊗ uv + u⊗ uf1 + v ⊗ ue−1 + u⊗ e1v + uv ⊗ e0 + v ⊗ f−1v + vu⊗ f0

and

Δ(v)Δ(u) = (1 ⊗ v + u⊗ f1 + v ⊗ e−1)(1 ⊗ u + u⊗ e1 + v ⊗ f−1)

= 1 ⊗ vu + u⊗ ve1 + v ⊗ vf−1 + u⊗ f1u + uv ⊗ f0 + v ⊗ e−1u + vu⊗ e0.

It follows that Δ(u)Δ(v) = −Δ(v)Δ(u). Through direct calculation, we have

Δ(u)Δ(u) = (1 ⊗ u + u⊗ e1 + v ⊗ f−1)(1 ⊗ u + u⊗ e1 + v ⊗ f−1)

= u⊗ ue1 + v ⊗ uf−1 + u⊗ e1u + v ⊗ f−1u

= 0
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and

Δ(v)Δ(v) = (1 ⊗ v + u⊗ f1 + v ⊗ e−1)(1 ⊗ v + u⊗ f1 + v ⊗ e−1)

= u⊗ vf1 + v ⊗ ve−1 + u⊗ f1v + v ⊗ e−1v

= 0.

• Step 2 (Coassociative and counit.) 
Indeed, for any i ∈ Z,

(Δ ⊗ id)Δ(ei) = (Δ ⊗ id)(ei ⊗ ei + fi ⊗ f−i)

= ei ⊗ ei ⊗ ei + fi ⊗ f−i ⊗ ei + ei ⊗ fi ⊗ f−i + fi ⊗ e−i ⊗ f−i

and

(id⊗Δ)Δ(ei) = (id⊗Δ)(ei ⊗ ei + fi ⊗ f−i)

= ei ⊗ ei ⊗ ei + ei ⊗ fi ⊗ f−i + fi ⊗ e−i ⊗ f−i + fi ⊗ f−i ⊗ ei.

It is not hard to see that they are the same and thus (Δ ⊗ id)Δ(ei) = (id⊗Δ)Δ(ei). 
Similarly, one can show that both (Δ ⊗ id)Δ(fi) and (id⊗Δ)Δ(fi) equal to

ei ⊗ ei ⊗ fi + fi ⊗ f−i ⊗ fi + ei ⊗ fi ⊗ e−i + fi ⊗ e−i ⊗ e−i,

for any i ∈ Z. Moreover, a simple computation shows that

(Δ ⊗ id)Δ(u) = (id⊗Δ)Δ(u)

= (1 ⊗ 1 ⊗ u + 1 ⊗ u⊗ e1 + u⊗ e1 ⊗ e1 + v ⊗ f−1 ⊗ e1

+1 ⊗ v ⊗ f−1 + u⊗ f1 ⊗ f−1 + v ⊗ e−1 ⊗ f−1)

and

(Δ ⊗ id)Δ(v) = (id⊗Δ)Δ(v)

= (1 ⊗ 1 ⊗ v + 1 ⊗ u⊗ f1 + u⊗ e1 ⊗ f1 + v ⊗ f−1 ⊗ f1

+1 ⊗ v ⊗ e−1 + u⊗ f1 ⊗ e−1 + v ⊗ e−1 ⊗ e−1).

The verification of the axiom for counit is easy and it is omitted. 
• Step 3 (Antipode is an algebra anti-homomorphism.) 
It is clear that

S(e0 + f0) = e0 + f0 = 1,

S(ej)S(ei) = e−je−i = e−i−j = S(ei+j), S(fj)S(fi) = fjfi = fi+j = S(fi+j),
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S(fj)S(ei) = fje−i = 0, S(ei)S(fj) = e−ifj = 0.

We also have

S(u)S(ei) = (−vf−1 − ue−1)e−i = −ue−i−1

and

S(ei)S(u) = e−i(−vf−1 − ue−1) = (−1)i+1ue−i−1,

which follows that S(u)S(ei) = (−1)iS(ei)S(u). Besides,

S(u)S(fi) = −vfi−1 = (−1)iS(fi)S(u),

S(v)S(ei) = −ve1−i = (−1)iS(ei)S(v),

S(v)S(fi) = −ufi+1 = (−1)iS(fi)S(v),

S(u)S(u) = (−vf−1 − ue−1)(−vf−1 − ue−1) = 0,

S(v)S(v) = (−uf1 − ve1)(−uf1 − ve1) = 0,

S(v)S(u) = −uvf0 − vue0 = −S(u)S(v).

• Step 4 (The axiom for antipode.) 
By definition, we have

eiS(ei) + fiS(f−i) = e0 + f0 = 1 = ε(ei),

S(ei)ei + s(fi)f−i = e0 + f0 = 1 = ε(ei),

eiS(fi) + fiS(e−i) = 0 = ε(fi),

S(ei)fi + S(fi)e−i = 0 = ε(fi),

S(u) + uS(e1) + vS(f−1) = 0 = ε(u),

u + S(u)e1 + S(v)f−1 = 0 = ε(u),

S(v) + uS(f1) + vS(e−1) = 0 = ε(v),

v + S(u)f1 + S(v)e−1 = 0 = ε(v).

By steps 1, 2, 3, 4, H(e±1, f±1, u, v) is a Hopf algebra.
Denote H(e±1, f±1) = span{ei, fi | i ∈ Z}. We know that

H(e±1, f±1) = 𝕜1 ⊕ 𝕜g ⊕ (
⨁︂
i≥1 

span{ei, fi, e−i, f−i}),

where g = e0 − f0. This means that H(e±1, f±1) is a cosemisimple Hopf subalgebra of 
H(e±1, f±1, u, v). Denote
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H(e±1, f±1, u, v)(0) = H(e±1, f±1),
H(e±1, f±1, u, v)(1) = H(e±1, f±1)u⊕H(e±1, f±1)v

and

H(e±1, f±1, u, v)(2) = H(e±1, f±1)uv.

We have

H(e±1, f±1, u, v) = H(e±1, f±1, u, v)(0) ⊕H(e±1, f±1, u, v)(1) ⊕H(e±1, f±1, u, v)(2).

It is straightforward to show that H(e±1, f±1, u, v) is a graded algebra with the grading 
defined as above and S(H(e±1, f±1, u, v)(j)) ⊆ H(e±1, f±1, u, v)(j) for j = 0, 1, 2. Note 
that

Δ(u) = 1 ⊗ u + u⊗ e1 + v ⊗ f−1

∈ H(e±1, f±1, u, v)(0) ⊗H(e±1, f±1, u, v)(1)

+H(e±1, f±1, u, v)(1) ⊗H(e±1, f±1, u, v)(0).

It follows that

Δ(H(e±1, f±1)u) = Δ(H(e±1, f±1))Δ(u)

⊆ H(e±1, f±1, u, v)(0) ⊗H(e±1, f±1, u, v)(1)

+H(e±1, f±1, u, v)(1) ⊗H(e±1, f±1, u, v)(0).

A similar argument shows that

Δ(H(e±1, f±1)v) ⊆ H(e±1, f±1, u, v)(0) ⊗H(e±1, f±1, u, v)(1)

+H(e±1, f±1, u, v)(1) ⊗H(e±1, f±1, u, v)(0).

Moreover,

Δ(H(e±1, f±1)uv) = Δ(H(e±1, f±1))Δ(u)Δ(v)

⊆ H(e±1, f±1)(0) ⊗H(e±1, f±1)(2)

+ H(e±1, f±1)(1) ⊗H(e±1, f±1)(1)

+ H(e±1, f±1)(2) ⊗H(e±1, f±1)(0).

Thus we can show that H(e±1, f±1, u, v) is a graded Hopf algebra. Moreover, we have

H(e±1, f±1, u, v)(0) ⊆
1 ⨁︂

j=0 
H(e±1, f±1, u, v)(j) ⊆

2 ⨁︂
j=0 

H(e±1, f±1, u, v)(j)
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is a Hopf algebra filtration. It follows from [36, Proposition 11.1.1] that H(e±1, f±1, u, v)0
⊆ H(e±1, f±1, u, v)(0). By the fact that H(e±1, f±1) is a cosemisimple Hopf algebra, we 
know that H(e±1, f±1, u, v)0 = H(e±1, f±1) and H(e±1, f±1, u, v) = H(e±1, f±1, u, v)2. 
This means that H(e±1, f±1, u, v) has the dual Chevalley property. □

In the following part, denote g = e0 − f0, it is clear that g is a group-like element of 
order 2. For any i ≥ 1, denote Ci = span{ei, fi, e−i, f−i}. We can show that each Ci is 
a simple subcoalgebra with basic multiplicative matrix 𝒞i, where

𝒞i =
(︄

ei fi
f−i e−i

)︄
.

It should be pointed out that Ci = S(Ci) for any i ≥ 1. We can obtain

H(e±1, f±1, u, v)0 = 𝕜1 ⊕ 𝕜g ⊕
⨁︂
i≥1 

Ci,

which follows that 𝒮 = {𝕜1, 𝕜g} ∪ {Ci | i ≥ 1}.
From the definition, it follows automatically that 

(︂
u v

)︂
is a non-trivial (1, 𝒞1)

primitive matrix. Besides, we have

C1 · C1 = 𝕜1 + 𝕜g + C2

and

Ci · C1 = Ci+1 + Ci−1 for i ≥ 2

in Z𝒮. We can show that

1𝒫𝒞1 = {
(︂
u v

)︂
},

g𝒫𝒞1 = {
(︂
−gu gv

)︂
},

𝒞1𝒫1 = {
(︄

−uf1 − ve1
−vf−1 − ue−1

)︄
},

𝒞1𝒫g = {
(︄

uf1 − ve1
ue−1 − vf−1

)︄
}.

For any i ≥ 1, we know that

𝒞i𝒫𝒞i+1 = {
(︄

eiu fiv

f−iu e−iv

)︄
},

𝒞i+1𝒫𝒞i = {
(︄

ei+1v fi+1u

f−i−1v e−i−1u

)︄
}.
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By the construction of 𝒫 in subsection 2.2, it turns out that

𝒫 = 1𝒫𝒞1 ∪ g𝒫𝒞1 ∪ 𝒞1𝒫1 ∪ 𝒞1𝒫g ∪ (
⋃︂
i≥1

𝒞i𝒫𝒞i+1) ∪ (
⋃︂
i≥1

𝒞i+1𝒫𝒞i).

As a consequence, the link quiver of H(e±1, f±1, u, v) is of the following form:

C4𝕜1 C3C2C1
· · ·

𝕜g

.

We now turn to the category of finite-dimensional right comodules over H(e±1, f±1, u, 
v). For convenience, for any matrix 𝒜 := (aij)m×n and ℬ := (bij)n×l over H(e±1, f±1, u, 
v), denote the following matrix

𝒜 ˜︁⊗ ℬ :=
(︄

n ∑︂
k=1

aik ⊗ bkl

)︄
m×l

.

Let C,D,E, F ∈ 𝒮 with dim𝕜(C) = r2,dim𝕜(D) = s2,dim𝕜(E) = t2,dim𝕜(F ) = u2

respectively, where r, s, t, u ∈ {1, 2}. Suppose 𝒳r×s = (xij)r×s ∈ 𝒫 is a non-trivial 
(𝒞,𝒟)-primitive matrix, 𝒴r×t = (yij)r×t ∈ 𝒫 is a non-trivial (𝒞, ℰ)-primitive matrix and 
𝒵u×s = (zij)u×s ∈ 𝒫 is a non-trivial (ℱ ,𝒟)-primitive matrix.

It is clear that

S = span{c11, c12, · · · , c1r}

is a simple right H(e±1, f±1, u, v)-comodule with

ρ(S) = S ˜︁⊗ 𝒞.

Moreover,

U = span{c11, c12, · · · , c1r, x11, x12, · · · , x1s}

is a indecomposable right H(e±1, f±1, u, v)-comodule with

ρ(U) = U ˜︁⊗ (︄
𝒞 𝒳
0 𝒟

)︄
.

We also have

V = span{c11, c12, · · · , c1r, x11, x12, · · · , x1s, y11, y12, · · · , y1t}
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is a indecomposable right H(e±1, f±1, u, v)-comodule with

ρ(V ) = V ˜︁⊗
⎛⎜⎝ 𝒞 𝒳 𝒴

𝒟
ℰ

⎞⎟⎠ .

For any non-zero k ∈ 𝕜, denote

W (k) = span{c11, c12, · · · , c1r, kf11, kf12, · · · , kf1u, x11+kz11, x12+kz12, · · · , x1s+kz1s}.

One can easily show that W (k) is a indecomposable right H(e±1, f±1, u, v)-comodule 
with

ρ(W (k)) = W (k) ˜︁⊗
⎛⎜⎝ 𝒞 𝒳

ℱ 𝒵
𝒟

⎞⎟⎠ .

Besides, we know that W (k) ∼ = W (l) as right H(e±1, f±1, u, v)-comodule for any non
zero k, l ∈ 𝕜. From this discussion, we get some indecomposable right H(e±1, f±1, u, v)
comodules of small dimension.

In order to show that H(e±1, f±1, u, v) is of discrete corepresentation type, we consider 
a special case of subcoalgebras of H(e±1, f±1, u, v). For N ≥ 1, let

HN (e±1, f±1, u, v) = span{ei, fi, eiu, eiv, fiu, fiv, eiuv, fiuv | −N ≤ i ≤ N} ⊕ CN+1.

We have the following lemma.

Lemma 5.3. HN (e±1, f±1, u, v) is of finite corepresentation type.

Proof. Since H(e±1, f±1, u, v) = H(e±1, f±1, u, v)2, it follows that HN (e±1, f±1, u, v)
only contains comodules with Loewy length at most 3. Note that indecomposable co
modules with Loewy length 1 are simple comodules. This means that the number of 
non-isomorphic indecomposable comodules with Loewy length 1 is finite. 
Denote

M = span{1, u, v} + span{g,−gu, gv} + span{e1, f1,−uf1 − ve1}
+ span{e1, f1, uf1 − ve1}
+(

∑︂
1≤i≤N

span{ei, fi, eiu, fiv}) + (
∑︂

1≤i≤N

span{ei, fi, eiv, fiu})

+(
∑︂

3≤i≤N−1
span{ei, fi, ei−2, fi−2, eiv + ei−2u, fiu + fi−2v}).
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Up to isomorphism, any indecomposable comodule N with Loewy length 2 is a subco
module of M such that the link-quiver of coefficient coalgebra cf(N) is connected. That 
is, cf(N) is a subcoalgebra of HN (e±1, f±1, u, v)1 and the link-quiver Q(cf(N)) of cf(N)
is a connected sub-quiver of Q(HN (e±1, f±1, u, v)). Thus there are only finitely many 
non-isomorphic indecomposable comodules with Loewy length 2. 
Denote

V0 = span{1, u, v, uv}
V1 = span{g, gu, gv, guv}

Vi+1 = span{ei, fi, eiu, fiv, eiv, fiu, eiuv, fiuv}) for any i ≥ 1.

For any indecomposable comodule U with Loewy length 3, U is an extension of Soc(U), 
which is a direct sum of simple comodules, and U/Soc(U), which has Loewy length 2. 
This leads to any indecomposable comodule U with Loewy length 3 is isomorphic to 
Vi for some i ≥ 0. Hence there are only finitely many non-isomorphic indecomposable 
comodules with Loewy length 3. 
In conclusion, HN (e±1, f±1, u, v) is of finite corepresentation type. □

We conclude this section by point out that H(e±1, f±1, u, v) is of discrete corepresen
tation type.

Proposition 5.4. H(e±1, f±1, u, v) is a Hopf algebra with the dual Chevalley property of 
discrete corepresentation type.

Proof. Indeed, any finite-dimensional subcoalgebra of H(e±1, f±1, u, v) is a subcoalgebra 
of HN (e±1, f±1, u, v) for some N . Using Lemma 5.3, we know that any finite-dimensional 
subcoalgebra of H(e±1, f±1, u, v) is of finite corepresentation type. Now for any finite di
mension vector d, denote by cf(d) the smallest subcoalgebra of HN (e±1, f±1, u, v) such 
that all the right H-comodules of dimension vector d have their coefficient coalgebra 
contained in cf(d). Using [21, Lemma 2.6], we can show that cf(d) is finite-dimensional, 
which follows that cf(d) is of finite corepresentation type. Therefore, the set of isomor
phism classes of dimension vector d is finite. This implies that H(e±1, f±1, u, v) is of 
discrete corepresentation type. □
Remark 5.5. If we remove uv = −vu from Definition 5.1 and keep the rest of the Hopf 
algebra structure unchanged, we obtain a new Hopf algebra H ′(e±1, f±1, u, v). Since

H(e±1, f±1, u, v)1 = H ′(e±1, f±1, u, v)1,

H(e±1, f±1, u, v) and H ′(e±1, f±1, u, v) have the same link quiver with each other. How
ever, their corepresentation type is different. Indeed, for any λ ∈ 𝕜, i ∈ Z, denote

Vi(λ) = span{ei, fi, eiu, fiv, eiv, fiu, eiuv + λeivu, fivu + λfiuv}.
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We know that

ρ((ei, fi, eiu, fiv, eiv, fiu, eiuv + λeivu, fivu + λfiuv))

= (ei, fi, eiu, fiv, eiv, fiu, eiuv + λeivu, fivu + λfiuv)˜︁⊗⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei fi eiu fiv eiv fiu eiuv + λeivu fivu + λfiuv

f−i e−i f−iu e−iv f−iv e−iu f−iuv + λf−ivu e−ivu + λe−iuv

0 0 ei+1 fi+1 0 0 (1 − λ)ei+1v (1 − λ)fi+1u

0 0 f−i−1 e−i−1 0 0 (1 − λ)f−i−1v (1 − λ)e−i−1u

0 0 0 0 ei−1 fi−1 (λ− 1)ei−1u (λ− 1)fi−1v

0 0 0 0 f−i+1 e−i+1 (λ− 1)f−i+1u (λ− 1)e−i+1v

0 0 0 0 0 0 ei fi
0 0 0 0 0 0 f−i e−i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that {Vi(λ)}λ∈𝕜 is a family of non-isomorphic indecomposable right H ′(e±1, f±1, u, 
v)-comodules admitting the same dimension vector. Thus H ′(e±1, f±1, u, v) is not of 
discrete corepresentation type.
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