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1. Introduction

Inspired by the Drozd’s result ([11]), one is often interested in classifying a given kind
of finite-dimensional algebras according to their representation type. In the case of Hopf
algebras, much effort was put in pointed Hopf algebras or their dual, that is, basic Hopf
algebras. See, for example, [8,10,13-18,35,37]. The second author and his collaborators
gave a classification of basic Hopf algebras according to their representation type from
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2006 to 2013 [28,19,25,27]. They showed that a finite-dimensional basic Hopf algebra is
of finite representation type if and only if it is a Nakayama algebra.

Meanwhile, Hopf algebras with the (dual) Chevalley property is a kind of natural
generalization of basic (pointed) Hopf algebras. These Hopf algebras have been studied
intensively by many authors. See, for examples, [1-3,24,29]. In [39] and [38], the authors
tried to classify finite-dimensional Hopf algebras with the dual Chevalley property ac-
cording to their corepresentation type. Here by the dual Chevalley property we mean
that the coradical Hy is a Hopf subalgebra. They proved that a finite-dimensional Hopf
algebra H with the dual Chevalley property is of finite corepresentation type if and only
if it is coNakayama, if and only if the link quiver Q(H) of H is a disjoint union of basic
cycles, if and only if the link-indecomposable component H(;) containing k1 is a pointed
Hopf algebra and the link quiver of H y) is a basic cycle.

One of the most important topics in representation theory is the classification of in-
decomposable modules over an algebra. The category of finite-dimensional left (right)
modules over a finite representation type algebra is considered easiest to understand.
However, concerning infinite-dimensional Hopf algebras, it is no longer appropriate to
discuss the (co)representation finiteness. Instead, we shall consider (co)representation
discrete type (co)algebras as analogs of finite dimensional (co)representation finite type
(co)algebras. We say a coalgebra C is of discrete corepresentation type if for any finite
dimension vector d, there are only finitely many non-isomorphic indecomposable right
H-comodules of dimension vector d. The authors in [20] and [22] classified pointed Hopf
algebras of discrete corepresentation type over an algebraically closed field k with char-
acteristic zero. For such Hopf algebra H, they explicitly determined the algebra structure
up to isomorphism for the link-indecomposable component H ;) containing k1.

The aim of this paper is to classify Hopf algebras with the dual Chevalley property of
discrete corepresentation type. The main tool we want to use is the link quiver. In fact,
one can describe the structures of the link quiver by applying multiplicative matrices
and primitive matrices (see [39]). Denote the set of all the simple subcoalgebras of a
Hopf algebra H with the dual Chevalley property by S. We can view the set PP of a
complete family of non-trivial (C, D)-primitive matrices as the set of arrows from vertex
D to vertex C. Denote P = (Jpes “PP, PP = Upes “PP, P = Uces P. We can also
view PP as the set of arrows with start vertex D and view P as the set of arrows with
end vertex C. This means that we can view Q(H) = (S, P) as the link quiver of H.

Based on the consideration above, we characterize the link quiver of a non-
cosemisimple Hopf algebra H with the dual Chevalley property of discrete corepre-
sentation type. Our main results are Theorems 4.2 and 4.7, stating that:

Theorem 1.1. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property and Hyy be its link-indecomposable component containing k1. If the coradical

of Hyy is finite-dimensional, then the following statements are equivalent:

(1) H is of discrete corepresentation type;
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(2) Every vertex in Q(H) is both the start vertex of only one arrow and the end vertex
of only one arrow, that is, Q(H) is a disjoint union of basic cycles;

(3) There is only one arrow C — k1 in Q(H) whose end vertex is k1 and dimg(C) = 1;

(4) There is only one arrowkl — D in Q(H) whose start vertez is k1 and dimg(D) = 1

Theorem 1.2. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property of discrete corepresentation type and Hyy be its link-indecomposable component
containing k1. Denote 'S = {C € § | k1 + C # k1 A C}. If the coradical of H(yy is

infinite-dimensional, then one of the following three cases occurs:

(1) |'P|=1 and 'S = {kg} for some g € G(H);
(2) | P |=2 and 'S = {kg,kh} for some different group-like elements g, h;
(3) |'P|=1 and 'S = {Cy} for some Cy € S with dimy(Cy) = 4.

In addition, for a non-cosemisimple Hopf algebra H over k with the dual Chevalley
property of discrete corepresentation type, we determine the structures of the link-
indecomposable component H(;) containing k1. According to [39, Proposition 4.14],
if all the simple subcoalgebras directly linked to k1 are 1-dimensional, then the link-
indecomposable component H ;) containing k1 is a pointed Hopf algebra. Thus H ;) is a
pointed Hopf algebra of discrete corepresentation type, which has been classified in [20]
and [22].

Finally we deal with the remaining case, namely, | P |= 1 and 'S = {C}}, where
dimy (Cy) = 4. We give a description of the structures of Grothendieck ring Gr((H))o-
comod) of the category of finite-dimensional right (H(;))o-comodules and characterize
the link quiver of H(;y in Subsection 4.3. Besides, we construct an infinite-dimensional
non-pointed non-cosemisimple link-indecomposable Hopf algebra H(et1, f11,u,v) with
the dual Chevalley property of discrete corepresentation type (see Definition 5.1).

The organization of this paper is as follows: In Section 2, we recall some basic facts
about based ring and link quiver. In Section 3, we introduce the concept of discrete
corepresentation type and formulate a necessary criterion for discreteness. In Section 4,
we characterize the link quiver of a non-cosemisimple Hopf algebra H with the dual
Chevalley property of discrete corepresentation type. Moreover, we determine the struc-
tures of the link-indecomposable component H(;y containing k1. At last, we construct
an infinite-dimensional non-pointed non-cosemisimple link-indecomposable Hopf algebra
H(et1, f+1,u,v) with the dual Chevalley property of discrete corepresentation type in
Section 5.

2. Preliminaries
Throughout this paper k denotes an algebraically closed field of characteristic 0 and

all spaces are over k. The tensor product over k is denoted simply by ®. The reader is
referred to [30], [4] and [6] for the basics about Hopf algebras and representation theory.



806 J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843

2.1. Based ring

Let us first recall the definition of multiplicative matrices.
Definition 2.1. ([24, Definition 2.3]) Let (H, A, ¢) be a coalgebra over k.

(1) A square matrix G = (gi;)rxr Over H is said to be multiplicative, if for any 1 <4, j <
T
r, we have A(g;;) = > git ® g¢; and €(gi;) = d; ;, where J; ; denotes the Kronecker
t=1

notation;
(2) A multiplicative matrix C is said to be basic, if its entries are linearly independent.

Multiplicative matrices over a coalgebra can be understood as a generalization of
group-like elements. The entries of a basic multiplicative matrix C span a simple sub-
coalgebra C' of H. Conversely, for any simple coalgebra C' over k, there exists a basic
multiplicative matrix C whose entries span C (for details, see [29], [24]). According to
[24, Lemma 2.4], the basic multiplicative matrix of the simple coalgebra C' would be
unique up to the similarity relation.

Let Z be the set of nonnegative integers. Some relevant concepts are recalled as
follows.

Definition 2.2. ([32, Definitions 2.1 and 2.2]) Let A be an associative ring with unit
which is free as a Z-module.

(1) A Z-basis of A is a basis B = {b; }ies such that bib; = 37, ci;b;, where ¢f; € Z.
(2) A ring with a fixed Z-basis {b;};cs is called a unital based ring if the following
conditions hold:
(i) 1 is a basis element.
(ii) Let 7 : A — Z denote the group homomorphism defined by

1, if b =1,
T(bi):
0, if b #1.

There exists an involution 7 +— ¢* of I such that the induced map

a:ZaibiHa* :Zaibi*, a; € 7

i€l iel
is an anti-involution of A, and

L Q=g
LU PR i
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Recall that a finite-dimensional Hopf algebra is said to have the dual Chevalley prop-
erty, if its coradical H is a Hopf subalgebra. In this paper, we still use the term dual
Chevalley property to indicate a Hopf algebra H with its coradical Hy as a Hopf subal-
gebra, even if H is infinite-dimensional.

In the following part, let H be a Hopf algebra over k with the dual Chevalley prop-
erty. Denote the coradical filtration of H by {H,},>o and the set of all the simple
subcoalgebras of H by S.

For any matrix A = (a;j)rxs and B = (b;j)uxv over H, define A ®' B as follows:

Abiy oAby,
A B= . .. ;
Abul e Abu’u

For any B,C € S, let B, C be their basic multiplicative matrices, respectively. Since H

has the dual Chevalley property, [24, Proposition 2.6(2)] implies there exists an invertible
matrix L over k such that

& 0 - 0
0 & -+ 0
Lo t=| . o |, (2.1)
0o 0 - &
where &£1,&s, -+ , & are basic multiplicative matrices over H. Define a multiplication on

ZS as follows: for B,C € S,

where E1,---, E; € S are well-defined with basic multiplicative matrices &; as in (2.1).

Remark 2.3. Observe that the equality

in ZS implies

V/dimy (B)y/dimg (C) = > \/dimy (E;).

i=1

Let S be the antipode of H. By [23, Theorem 3.3], the map C' +— S(C) defines an
anti-involution. With the multiplication and anti-involution defined above, we state the
following lemma.
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Lemma 2.4. (/39, Proposition 4.3]) Let H be a Hopf algebra overk with the dual Chevalley
property and S be the set of all the simple subcoalgebras of H. Then ZS is a unital based
ring with Z 4 -basis S.

Remark 2.5. By Definition 2.2 (2) (ii), for any simple subcoalgebra C, the term k1
appears exactly once in the direct sum decomposition of S(C) - C.

Let F be the free abelian group generated by isomorphism classes of finite-dimensional
right Hy-comodules and Fy the subgroup of F generated by all expressions [Y]—[X]—[Z],
where 0 - X — Y — Z — 0 is a short exact sequence of finite-dimensional right
Hy-comodules. Recall that the Grothendieck group Gr(Hp-comod) of the category of
finite-dimensional right Hy-comodules is defined by

Gr(Hy-comod) := F/Fy.

From [12, Proposition 4.5.4] and [23, Theorem 2.7], Gr(Hp-comod) is a unital based
ring with Z,-basis V, where V is the set of all the isomorphism classes of simple right
Hy-comodules.

Let (M, p) be a finite-dimensional right comodule over a coalgebra H', where p :
M — M ® H'. The coefficient coalgebra cf(M) of M is the smallest subcoalgebra of H’
satisfying p(M) C M ® cf(M). One can show that:

Lemma 2.6. Let H be a Hopf algebra over k with the dual Chevalley property and S be
the set of all the simple subcoalgebras of H. Then Gr(Hp-comod) is isomorphic to ZS as
unital based rings.

Proof. Define

F : Gr(Hp-comod) — ZS,
M —cf(M).

Next we show that F is a ring isomorphism. In fact, since Hy is cosemisimple, it follows
that M is a completely irreducible right Hg-comodule. In other words, there are simple
right Ho-comodules Vi, Vs, - -+, V; such that M = @, ,, Vi. Note that for any simple
right Ho-comodule V;, its coefficient coalgebra cf(V;) is a simple subcoalgebra of H. If V;
and V; are non-isomorphic as right Hy-comodules, it is apparent that cf(V;) and cf(V})
are non-isomorphic as subcoalgebras. This means that F' is injective. Furthermore, for
any C € S, any simple right C-comodule X is a simple Hy-comodule and the coefficient
coalgebra of X is C'. One can show that F is surjective. Using the fact that the coefficient
coalgebra cf(V; @ V;) of V; ® V; is cf(V;) cf(V;), we get that F is a ring isomorphism. O
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2.2. Link quiver

In this subsection, let (H, A, ) be a coalgebra over k. Denote the coradical filtration
of H by {H,}n>0 and the set of all the simple subcoalgebras of H by S. Now let us
recall the concept of link quiver.

Definition 2.7. (]9, Definition 4.1]) Let H be a coalgebra over k. Denote the set of all
the simple subcoalgebras of H by S. The link quiver Q(H) of H is defined as follows:
the vertices of Q(H) are the elements of S; for any simple subcoalgebra C, D € S with
dim(C) = r?, dimg (D) = s, there are exactly - dimy((C' A D)/(C + D)) arrows from
D to C.

Next we will discuss the properties for the link quiver. Before proceeding further, let
us recall the definition of primitive matrices, which is a non-pointed analogue of primitive
elements.

Definition 2.8. ([29, Definition 3.2]) Let (H, A, ¢) be a coalgebra over k. Suppose C =
(¢ij)rxr and D = (d;j)sxs are basic multiplicative matrices over H.

(1) A matrix X = (x;;),xs over H is said to be (C, D)-primitive, if

Alwy) = cir @+ Y wit ®dy
k=1 =1

holds for any 1 <i,j <r;
(2) A primitive matrix X is said to be non-trivial, if there exists some entry of X which
does not belong to the coradical Hy.

For any matrix X = (z;;), , over Hy, denote the matrix (77;),., by X, where 7;; =
x;; + Hy € Hy/Hy. Besides, the subspace of Hi/Hy spanned by the entries of X is
denoted by span(X).

Let C, D € § with basic multiplicative matrices C and D, respectively. According to
[39, Corollary 2.11 and Lemma 2.17], we know that there exists a family of non-trivial
(C, D)-primitive matrices {X(e?)} o, which is said to be complete, such that
(CAD)/(C+D)= @  span(X(re.?)). Using [39, Corollary 2.18], we can transform

Ye,p€le,
the problem of number of arrows from vertex D to vertex C' in the link quiver of H

to the problem of cardinal number of a complete family of non-trivial (C, D)-primitive
matrices.

Let PP be the set of a complete family of non-trivial (C,D)-primitive matrices.
Denote

CP — U CrID’D7
DeS



810 J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843

pD — ¢pP,
P=J°P
cesS

Now we can view “PP as the set of arrows from vertex D to vertex C, view PP as the
set of arrows with start vertex D and view ¢P as the set of arrows with end vertex C.
This means that we can view Q(H) = (S, P) as the link quiver of H.

In the following part, let H be a Hopf algebra over k with the dual Chevalley property.
In [39, Section 3], the authors gave two different constructions of a complete family of
non-trivial (C,D)-primitive matrices over H for any C, D € S with basic multiplicative
matrices C, D, respectively. Let us briefly recall one of the constructions.

Let M denote the set of representative elements of basic multiplicative matrices over
H for the similarity class. Denote 'S = {C € S | kl + C # k1 A C}. For any C € 'S
with basic multiplicative matrix C € M, we can fix a complete family {X('Vl«C)}chpl,c
of non-trivial (1, C)-primitive matrices.

Denote

173 = U {X(’Yl’c) | 71,c € FI,C}-
cels

For any non-trivial (1,C)-primitive matrix ) € P and B € M, we have

B Y ¥ o Vewe
0 & 0 - 0
I 0 1Yy I 0
B o o & - 0 ’
0 0 0 - Eupe
where Lg ¢ is an invertible matrix over k and &;,&, - -- ’guw,@ e M.

Denote

Bpy ={y;|1<i< uB,C) s

Py = U pr.
BeM

As a consequence, we obtain the following:

Lemma 2.9. (/39, Theorem 3.10]) Let H be a Hopf algebra overk with the dual Chevalley
property and C, D € S with basic multiplicative matrices C,D € M respectively. Then
the set

{X € U Py | X is a non-trivial (C, D)-primitive matriz}
yelp
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is a complete family of non-trivial (C, D)-primitive matrices. Moreover, we have

H,/Hy = @ span(X).
Xe U Py
yelp

Let C, D € S with basic multiplicative matrices C, D € M respectively. Recall that C,
D are said to be directly linked in H if C+ D is a proper subspace of C A D+ D AC. Note
that by [24, Lemma 3.6 (2)] that C, D are directly linked in H if and only if there exists
some (C, D)-primitive or (D, C)-primitive matrix, which is non-trivial. At the end of this
subsection, we recall the concept of link-indecomposable components of coalgebra.

Definition 2.10. ([31, Definition 1.1]) A subcoalgebra H' of a coalgebra H is called link-
indecomposable if the link quiver Q(H') of H' is connected (as an undirected graph).
A link-indecomposable component of H is a maximal link-indecomposable subcoalge-
bra. In particular, for a Hopf algebra H, we denote the link-indecomposable component
containing k1 by H ).

According to [31, Theorem 3.2], the link-indecomposable component H(;) containing
k1 must be a normal Hopf subalgebra for any pointed Hopf algebra H. By [24, Proposition
3.16], if H is a Hopf algebra with the dual Chevalley property, H(;) remains a Hopf
subalgebra of H. However, concerning a non-pointed Hopf algebra H with the dual
Chevalley property, H(;y may not necessarily be normal (see for example [39, Example
6.1]). This demonstrates that Hopf algebras with the dual Chevalley property constitute
a nontrivial generalization of pointed Hopf algebras.

3. Discrete corepresentation type

Recall that the dimension vector of a finite dimensional right comodule M over coal-
gebra H is defined as dim(M) € NU) given by letting dim(M); equal the multiplicity
of simple right comodule V; in a Jordan-Hoélder series of M. In [22, Definition 1.1], the
author introduced the definition of discrete corepresentation type for pointed coalgebra.
We formally extend this concept.

Definition 3.1. A coalgebra H is said to be of discrete corepresentation type, if for any
finite dimension vector d, there are only finitely many non-isomorphic indecomposable
right H-comodules of dimension vector d.

It is clear that cosemisimple coalgebras are of discrete corepresentation type. More-
over, if a coalgebra H is of finite corepresentation type, that is, there are finitely many
non-isomorphic indecomposable right H-comodules, then H is of discrete corepresenta-
tion type. Next we will focus on the general cases.

Let H be a coalgebra and Q(H) = (S, P) the link quiver of H. Suppose Q' = (S',P’)
is a sub-quiver of Q(H), where &’ C §,P’ C P. Define Coalg(Q') = (Pecs C) @
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(B ycp span(X)), where span(X) is the subspace of H spanned by the entries of X.
It is straightforward to show that Coalg(Q’) is a subcoalgebra of H. This leads to the
following Lemma.

Lemma 3.2. Let H be a coalgebra overk and Q(H) = (S, P) the link quiver of H. Suppose
there is a finite sub-quiver Q' = (8, P’) of Q(H) satisfying the subcoalgebra Coalg(Q’)
is of infinite corepresentation type. Then H is not of discrete corepresentation type.

Proof. Since Q(H) is the link quiver of H, it follows that Coalg(Q’) C Coalg(Q(H)) C
H are extensions of subcoalgebras. This means that there is an inclusion from the
category of finite-dimensional right Coalg(Q’)-comodules to the category of finite-
dimensional right H-comodules. Note that Coalg(Q’) is a finite-dimensional coalgebra
of infinite corepresentation type and the category of finite-dimensional right comodules
over Coalg(Q') is isomorphic to the category of finite-dimensional left modules over
(Coalg(Q'))*. It follows that (Coalg(Q’))* is a finite-dimensional algebra of infinite rep-
resentation type. By [7, Theorem 2.4], there is an infinitely family of isomorphism classes
of indecomposable right comodules over Coalg(Q’) with a dimension vector d. Therefore
the category of finite-dimensional right H-comodules contains infinitely many isomor-
phism classes of indecomposable comodules with a dimension vector d, hence not of
discrete corepresentation type. O

Let A (resp. C') be an algebra (resp. coalgebra) over k and {M;};cr be the complete
set of isoclasses of simple left A-modules (resp. right C-comodules). The Ext quiver T'(A)
(resp. I'(C)) of A (resp. C) is an oriented graph with vertices indexed by I, and there
are dimy Ext!(M;, M;) arrows from ¢ to j for any ¢,j € I.

Let us recall the definition of separated quiver.

Definition 3.3. (cf. [4, §X. 2]) Let Q = (Qo, Q1) be a quiver, where Qg = {1,2,--- ,n}.
The separated quiver Qg of Q has 2n vertices {1,2,---,n,1',2',--- 'n’} and an arrow
1 — 7' for every arrow i — j of Q.

Now we can formulate a necessary criterion for discreteness.

Lemma 3.4. Let H be a non-cosemisimple coalgebra over k of discrete corepresentation
type and Q(H) = (S, P) the link quiver of H. Then for any finite sub-quiver Q' of Q(H),
the underlying graph of separated quiver Q' is a finite disjoint union of Dynkin diagrams.

Proof. In fact, the category of finite-dimensional right comodules over Coalg(Q’) is iso-
morphic to the category of finite-dimensional left modules over (Coalg(Q’))*. This means
that the coalgebra’s version of Ext quiver I'° of Coalg(Q’) is the same as the algebra’s
version of Ext quiver I'* of (Coalg(Q’))*. According to [9, Theorem 2.1 and Corollary
4.4], the link quiver Q' of Coalg(Q’) coincides with the algebra’s version of Ext quiver
I of (Coalg(Q'))*. Note that (Coalg(Q’))* is Morita equivalent to a basic algebra B.
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Let J be the ideal generated by all the arrows in Q’. By the Gabriel’s theorem, there
exists an admissible ideal I such that

kQ'/I = B,
where J* C I C J? for some integer t > 2. Thus there exists an algebra epimorphism
f:B—=kQ/J

Since the Jacobson radical of kQ'/J? is J/J?, we know that kQ'/J? is an artinian

algebra with radical square zero. It follows from the proof of [4, X.2 Theorem 2.6]

that the separated quiver of kQ'/J? coincides with the quiver of the hereditary alge-
(kQ'/J?)/(J]T?) 0

b =

> ( JPE Q)P

equivalent, it follows that kQ'/J? is of infinite representation type if and only if 3 is of

). Note that kQ'/J? and > are stably

infinite representation type. Suppose the underlying graph of Q. is not a finite disjoint
union of Dynkin diagrams, then ) is of infinite representation type, which indicates
that kQ'/J? is of infinite representation type. Thus B is of infinite representation type.
It follows that Coalg(Q’) is of infinite corepresentation type. According to Lemma 3.2,
we know that H is not of discrete corepresentation type, which is a contradiction. O

Recall that a quiver Q is said to be Schurian, if for each pair (C, D) of vertices of Q,
there are at most one arrow from C to D. The following result is not hard:

Corollary 3.5. Let H be a coalgebra over k. If H is of discrete corepresentation, then the
link quiver Q(H) of H is Schurian.

Proof. Otherwise, there exists some finite sub-quiver Q' of Q(H) such that Q/, contains
a Kronecker quiver as a sub-quiver. This is contrary to Lemma 3.4. 0O

4. Hopf algebras with the dual Chevalley property of discrete corepresentation type

In this section, we classify Hopf algebras with the dual Chevalley property of discrete
corepresentation type.

Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property
and Q(H) the link quiver of H. Denote the coradical filtration of H by {Hy},>0. For
convenience, denote S = {C; | i € I} the set of all the simple subcoalgebras of H. For

any C;,Cj € S, let C; - C; = Y af,Cy in ZS, where of; € Z,. Moreover, we denote
tel
M ={C, | i € I}, such that each C; € M is the basic multiplicative matrix of C; € S.

Denote !1S={C €S|kl +C #klAC}, S' ={C €S| C +kl #C Akl}. Observe
that for any C' € 1S, there exists some arrow from C' to k1 in the link quiver Q(H) of
H. For any C' € S!, there exists some arrow from k1 to C in the link quiver Q(H) of H.
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The authors of [39] establish certain properties for the link quiver of a finite-
dimensional Hopf algebra H with the dual Chevalley property in Sections 4 and 5. As it
turns out, several of these properties admit natural extensions to the infinite-dimensional
setting. We now list some of these results from [39], the proofs of which are omitted.

Lemma 4.1. (/39, Lemmas 4.6, 4.7 and 5.4, Propositions 4.9, 4.14, Corollary 4.10]) Let
H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

(1) (i) We have | 1P |=| P! |> 1. Moreover, C € 'S if and only if S(C) € S*;
(ii) | ¢P |=|] P€ |= 1 holds for all C € M if and only if | *P |= 1 and the unique
subcoalgebra C' € 'S is 1-dimensional.
(2) For any Y € 'P, where Y is a non-trivial (1,C;)-primitive matriz and C; € M, then
the cardinal number | ©iPy |= %afj > 1.

(3) If all the simple subcoalgebras directly linked to k1 are 1-dimensional, then we have
(i) | ¢P |=| PC |=| *P |, for any C € M;
(ii) Hyy is a pointed Hopf algebra.
4) () o
(i) If | *P |=1 and Cy, is the unique simple subcoalgebra contained in *S. Then the
number of arrows with end vertex C; in Q(H) is equal to Y o, , and the number
tel

Lo =al.. holds for any i, j k € I;

of arrows with start vertex C; in Q(H) is equal to Y oky.. In particular, the
tel

number of arrows from Cy to C; in Q(H) is equal to oy

Recall that a basic cycle of length n is a quiver with n vertices eg, e, ,e,_1 and
n arrows ag, ai, - - - G,—1, where the arrow a; goes from the vertex e; to the vertex e;1;.
A finite-dimensional algebra is said to be Nakayama, if each indecomposable projective
left and right module has a unique composition series. It is well-known that a finite-
dimensional basic algebra A is Nakayama if and only if every vertex of the Ext quiver
of A is the start vertex of at most one arrow and the end vertex of at most one arrow.
With the help of the preceding lemma, we can now prove:

Theorem 4.2. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property and H(yy be its link-indecomposable component containing k1. If the coradical
of Hyy is finite-dimensional, then the following statements are equivalent:

(1) H is of discrete corepresentation type;

(2) Every vertex in Q(H) is both the start vertex of only one arrow and the end vertex
of only one arrow, that is, Q(H) is a disjoint union of basic cycles;

(3) There is only one arrow C — k1 in Q(H) whose end vertez is k1 and dimg(C) =

(4) There is only one arrowkl — D in Q(H) whose start vertex is k1 and dimg(D) =
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Proof. According to Lemma 4.1 (1), we know the equivalence of (2), (3), and (4). It
remains to show the equivalence of (1) and (2).

Suppose H is of discrete corepresentation type. Because of the fact that there is an
inclusion from the category of finite-dimensional right H;)-comodules to the category of
finite-dimensional right H-comodules, we know that H(;) is of discrete corepresentation
type. Clearly, if (H(1))o is finite-dimensional, the number of simple subcoalgebras of
Hyy is finite and [39, Lemma 4.12] works. Then by Lemma 3.4 and the same reason
in the proof of [39, Theorem 5.6], we know that Q(H(y)) is a basic cycle. According to
Lemma 4.1 (1), Q(H) is a disjoint union of basic cycles.

Conversely, from the proof of Lemma 3.4, for any finite-dimensional subcoalgebra H'
of H, we know that the link quiver Q(H') of H’ is the same as the Ext quiver T'(H"*)*
of H'*. Observe that H'* is Morita equivalent to a basic algebra B(H'*). Since every
vertex in I'(H"*)? is the start vertex of at most one arrow and the end vertex of at most
one arrow, it follows that the basic algebra B(H') is a Nakayama algebra. By [4, §VI.
Theorem 2.1], B(H'*) is of finite representation type, which implies that H' is of finite
corepresentation type. For any finite dimension vector d, denote by cf(d) the smallest
subcoalgebra of H such that all the right H-comodules of dimension vector d have their
coefficient coalgebra contained in cf(d), that is,

cf(d)= > cf(M).

dim(M)=d

Using [21, Lemma 2.6], we can show that cf(d) is finite-dimensional. It follows that cf(d)
is of finite corepresentation type. Therefore, the set of isomorphism classes of dimension
vector d corepresentations is finite. This implies that H is of discrete corepresentation
type. O

As a consequence of [39, Theorem 5.6] and Theorem 4.2, we have

Corollary 4.3. A finite-dimensional Hopf algebra H over k with the dual Chevalley prop-
erty is of finite corepresentation type if and only if it is of discrete corepresentation

type.
Let ¢ € k be an n-th root of unit of order d. In [33] and [5], Radford and

Andruskiewitsch-Schneider have considered the following Hopf algebra A(n, d, i1, ¢) which
as an associative algebra is generated by g and x with relations

g"=1, at=pl-g%), zg=qgz.
Its comultiplication A, counit ¢, and the antipode S are given by

Alg) =g®g, e(g) =1, Ale) =1®z+a®g, c(z) =0, S(g)=g"", S(z)=-ag™".
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According to [28, Theorem 4.6], we know that A(n,d,u,q) is a finite-dimensional
link-indecomposable pointed Hopf algebra of finite corepresentation type.

Corollary 4.4. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property and H(yy be its link-indecomposable component containing k1. If the coradical
of Hyy 1is finite-dimensional, then H is of discrete corepresentation type if and only if
Hyy is isomorphic to A(n,d, u,q) or klx].

Proof. If H(yy is isomorphic to A(n,d, i, q) or k[z], there is only one arrow C' — k1 in
Q(H) whose end vertex is k1 and dimg(C) = 1. Using Theorem 4.2, we know that H
is of discrete corepresentation type. Conversely, since H is of discrete corepresentation
type, it follows from Theorem 4.2 that the link quiver Q(H(y)) of H(y) is a basic cycle.
According to Lemma 4.1 (1), H(y) is a pointed Hopf algebra of discrete corepresentation
type. It is a consequence of [22, Section 6] that H(yy is isomorphic to A(n,d, u,q) or
klz]. O

Example 4.5. Let H be the Hopf algebra generated by z,y,t, u satisfying the following
relations:

=1, y*’=1, t* =1, zy=yz, tz=zt, ty=uyt,
U =uz, yu=uy, tu=ut.
The coalgebra structure and antipode are given by:
A)=z@2 Al) =y®y, (z) =c) =1,

Ay =-[Q1+ytet+ (1 —-y)t=t], ) =1,

DN | =

Alu)=1u+u®l, e(u)=0,

S(z) =z Sy) =y, S(t):%[(1+y)t+(1*y)zt], S(u) = —u.

Denote E = span{t, zt, yt, zyt}, then S = {kl,kz ky,kzy, E}. We give the corre-
sponding multiplicative matrix £ of E, where

e 1 thyt -yt
S 2\ zt—zayt zt+zyt )’

By the definition of the comultiplication of H, we know that (u) is a non-trivial
((1), (1))-primitive matrix, that is, u is a non-trivial primitive element. Moreover, we
have P = {(u)}. Let M be a set of representative elements of basic multiplicative
matrices over H for the similarity class. For any B € M, we have
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(1 u) (B Bu
Bo (0 1) \o B )
According to Lemma 2.9, we know that P = {(u), (zu), (yu), (zyu), X'}, where

Xl(((t+yt)u (t — yt)u >

2\ (2t —zyt)u (2t + zyt)u

It follows that (zu) is a non-trivial ((z),(z))-primitive matrix, (yu) is a non-trivial
((y), (y))-primitive matrix, (zyu) is a non-trivial ((zy), (zy))-primitive matrix and X
is a non-trivial (£, )-primitive matrix. Thus the link quiver of H is shown below:

O O O O

From Theorem 4.2, H is a non-pointed Hopf algebra with the dual Chevalley property
of discrete corepresentation type.

Next we consider the case when (H()o is infinite-dimensional. Before proceeding
further, let us give the following lemma.

Lemma 4.6. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property. If there exists some Cy € 1S such that dimy(Cy) > 9, then H is not of discrete
corepresentation type.

Proof. According to Lemma 3.4, the key idea of the proof is to find a finite sub-quiver
Q' of Q(H) such that the underlying graph of separated quiver Q’, is not a disjoint union
of Dynkin diagrams. Using Lemma 4.1 (4) (i), we know that the following two numbers
are equal:

- The number of C; contained in C; - Cy;
- The number of C; contained in Cy - S(Cy).

To prove this lemma, we divide the argument into several cases.
(I) Suppose

S(Cr) - Cr = 41,Ci

iel

in ZS, where ), ;a}., > 4. Then by Lemma 4.1 (2), the separated quiver of
Q(H) contains a vertex which is the end vertex of at least 4 arrows. Evidently, we
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(1)
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can find a finite sub-quiver Q' of Q(H) such that the underlying graph of separated
quiver Q. is not a disjoint union of Dynkin diagrams.
Suppose

S(Ck) - Cr =kl + Dy + Dy

in ZS, where \/dimy (D7) > \/dimg (D). Since /dimy(Cy) > 3, it follows that

V/dimy (D) 4 /dimy(Ds) > 8

and

From Lemma 4.1 (4), we have

Dy - S(Cr) = S(Ck) + Y BiC;

iel

in ZS, where 8; € Zy for any i € I and ), ., f; > 1. In fact, if ), 8 > 2, by
Lemma 4.1 (2), there exists a finite sub-quiver Q' of Q(H) such that Q’, contains at
least one vertex which is the end vertex of 3 arrows and at least one vertex which
is the start vertex of 3 arrows. That is, Qs contains either

AV

S(Cr)

as a sub-quiver. The underlying graph of the sub-quiver in the latter case is D5 and
it is an Euclidean graph. As a result, H is not of discrete corepresentation type.
Now suppose >, .; #; = 1, which means that

in ZS. Clearly, we have
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\/dlmk(El) = \/dlmk(S(Ck))\/dlmk(Dl) - \/dlmk(S(Ck))
> \/dlmk(S(Ok))\/dlm]k(Dl) — \/dimk(Dl)

>/ dlmk(Dl)

It follows from Lemma 4.1 (4) that

Ey-Cp=Di+ Y %G

i€l

in ZS, where v; € Z for any i € I and ) ,.;v; > 1. A similar argument shows
that either there exists a finite sub-quiver Q' of Q(H) such that Q. contains at
least one vertex which is the end vertex of 3 arrows and at least one vertex which
is the start vertex of 3 arrows or ) . ;7; = 1. In the later case, we have

E,-Cy =D+ E>

in ZS and /dimg(E2) > /dimy(E7). Continue the steps, if H is not of discrete
corepresentation type, we can get an infinite sequence

E;-S"NC)=Ei_1 + Ein

such that \/dimk(EiH) > \/dimk(Ei), where ¢ > 1 and Ey = D;. One can finally
get an infinite-dimensional simple subcoalgebra, which is impossible. Based on the
above argument, we know that H is not of discrete corepresentation type in this
case.

Finally, we focus on the case that

S(Ck) -Cr=kl1+ D,

in ZS, where \/dimy(D1) > /dimg(S(Cy)).
(i) If

Dy - S(Cr) = S(Cr) + Y BiC;

icl

in ZS, where 8; € Z4 for any i € I and ) §; > 3. Using the same argument
i€l
as in (I), we can easily show that H is not of discrete corepresentation type.

(ii) If

in ZS, where \/dimg(Ds) > \/dimg(D3). We have
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(iii)
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Ty (D) > %(\/dimk(Dl)\/dimk(S(C’k)) — /dimy (S(CR)))

> 3 (VD)) /Am, (S(Cr) — /Tmna(Dy))
Z \/ dimk(Dl).

It follows that

Dy - Cy =D +Z%‘Ci
iel
in ZS, where v; € Z4 and Y v; > 1. If Y v; > 2, by Lemma 4.1 (2), there
i€l i€l
exists a finite sub-quiver Q' of Q(H) such that Q/, contains at least one vertex
which is the end vertex of 3 arrows and at least one vertex which is the start
vertex of 3 arrows. This means that H is not of discrete corepresentation type.
If > ~; =1, that is,
i€l

Dy-Cy=D1+ Dy

in ZS, where /dimy(Dy) > 1/dimg(D,). Continue the steps, an argument
similar to the one used in (II) shows that H is not of discrete corepresentation

type.
If

D - S(Ck) = S(Ck> + Do

in ZS, where \/ dimy (Ds) > \/ dimy (D). By adopting the same procedure as
in (IIT) (i) and (ii), we can show that either H is not of discrete corepresentation
type or we can get an infinite sequence

D; - Si(C) =D; 1+ Dita

such that \/dimg(D;11) > /dimg(D;), where ¢ > 1 and Dy = S(C%). In

the later case, one can finally get an infinite-dimensional simple subcoalgebra,
which is impossible.

In conclusion, H is not of discrete corepresentation type. 0O

Now we can characterize the link quiver of H when H is of discrete corepresentation

type and (H(1))o is infinite-dimensional.

Theorem 4.7. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley

property of discrete corepresentation type and Hyy be its link-indecomposable component
containing k1. Denote 'S = {C € S | k1 + C # k1 A C}. If the coradical of H(yy is
infinite-dimensional, then one of the following three cases occurs:
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(1) |'P|=1 and 'S = {kg} for some g € G(H);
(2) |'P |=2 and 'S = {kg,kh} for some different group-like elements g,h € G(H);
(3) |'P|=1 and 'S = {Cy} for some Cy € S with dimy(Cy) = 4.

Proof. For any n > 2, let S(n) be the set of all the n2-dimensional simple subcoalgebras
of H.

(I) If | 1P |> 3, by adopting the same procedure as in the proof of [38, Theorem 4.2],
one can find a finite sub-quiver Q' of Q(H) such that the separated quiver Q/, of
Q' is not a disjoint union of Dynkin diagrams. Using Lemma 3.4, we know that H
is not of discrete corepresentation type.
(IT) According to Lemma 4.6, if there exists some Cj € 'S such that dimy(Cy) > 9,
then H is not of discrete corepresentation type.
(IIT) Suppose that

P ={x, )},

where X is a non-trivial (1,kg)-primitive matrix and ) is a non-trivial (1,Cy)-
primitive matrix for some g € G(H) and Cj € S(2). Note that H is of discrete
corepresentation type and 'S contains a 4-dimensional simple subcoalgebra. Pro-
ceeding as in the proof of [39, Proposition 5.5], we can get an infinite sequence (a)
S(Cy) - C, = kl +kg+ D,
D - S(Ck) = S(C) + DS,
D¢, = D + DY,

DS) O = Dg)fl + Déﬁlv
2 2 2
Déii—l : S(Ckr) = Déi) + Dgilz,

or an infinite sequence (b)

S(Cy) - Cp = k1 + D,
D S(Cv) = S(Cr) + DY,
p¥.c, = ¥ + D),

ng) O = D§2¢—1) +D§2i+1),
D§2¢+1) .5(Cy) = ng) _i_D§2z'+2)7

)
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where Dz(j) € 8(j),g € G(H). Otherwise, we can find a finite sub-quiver Q' of
Q(H) such that the separated quiver Q) of Q' is not a disjoint union of Dynkin
diagrams, which is a contradiction to Lemma 3.4. Next we deal with case (a) and
(b). In case (a), according to [39, Corollary 3.9] and Lemma 4.1 (2), we have

| KSCOKT p | 2| KSCOK ™ | 4 | KSCOK ™ py = 4,

where K is an invertible matrix over k such that KS(C,)K~! € M is the basic
multiplicative matrix of S(C). Thus Q(H)s contains at least one vertex which
is the end vertex of at least 4 arrows. In such a case, we can show that H is
not of discrete corepresentation type by Lemma 3.4. In case (b), one can get an
infinite-dimensional simple subcoalgebra, which leads to a contradiction.

(IV) By Corollary 3.5, we know that if | P |= 2 and 'S = {kg,kh} for some g,h €
G(H), then g # h.

To conclude, if H is of discrete corepresentation type, then either | 1P |= 1 and 'S =
{Cy} for some Cy € S with dimg(Cy) < 4, or | 'P |= 2 and 'S = {kg,kh} for some
different group-like elements g,h € G(H). O

In the following part, let H be a non-cosemisimple Hopf algebra over k with the dual
Chevalley property of discrete corepresentation type such that the coradical of H(yy is

infinite-dimensional. Next we give an accurate description for H ;) when H is of discrete
corepresentation type. We discuss these three cases separately.

4.1. Case (1)

Suppose | 1P |=1 and 1S = {kg}, where g € G(H). According to Lemma 4.1 (3), we
know that

|°P = PC = 1.

It follows that the link quiver of H ;) is double infinite quiver . Ax:

Let us give several examples of pointed Hopf algebras whose link quiver is oo Age-

Example 4.8. ([26, Section 2]) The Hopf algebra A(n, q) is generated by g, ¢!, x subjects
to relations:

99 " =g"'g=1, zg=qgz, 2" =1-g",
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where ¢ € k is a n-th primitive root of unity. The coalgebra structure and antipode are
given by:

Alg)=9g®g, Alx)=201+g®w,
elg) =1, e(x) =0, S(g) =g " S(z)=—g '

Example 4.9. ([20, Theorem 5.4]) The Hopf algebra H.,(x, \) is generated by g,g~ 1,z
subjects to relations:

99~ =9 'g=1, xg9=x(9)gz + A(g)(g — ¢°),
where y is a 1-dimensional character such that x(g) = 1 or x(g) is not a root of unity
and A € (k(g,g1))° is an element in the finite dual Hopf algebra such that A(hf) =

X(R)A(f) +A(h) for any f,h € k(g,g~1). The coalgebra structure and antipode are given
by:

Alg)=g®g, Alx)=1z+rRy9,
e(g)=1, e(x)=0, S(g)=g", S)=—-xg "

Now we give a description of the algebra structure of H y) in this case.

Proposition 4.10. Let H be a non-cosemisimple Hopf algebra over k with the dual Cheval-
ley property such that the coradical of Hy is infinite-dimensional. If | P =1 and
1S = {kg}, where g € G(H), then H is of discrete corepresentation type. Moreover, H)
is isomorphic to A(n,q) or Hoo(X, A).

Proof. Since | P |=1 and 'S = {kg}, where g € G(H), it follows from Lemma 4.1 (3)
that

[P 1= 7€ =1

Using the same argument as in the proof of Theorem 4.2, we can easily show that H is
of discrete corepresentation type. According to Lemma 4.1 (3), H(y) is a pointed Hopf
algebra of discrete corepresentation type. Using [22, Section 6], we know that H(j) is
isomorphic to A(n,q) or Hxo(x,A). O

4.2. Case (2)

Suppose | P |= 2 and 'S = {kg,kh}, where g, h are two different group-like ele-
ments. It follows from Lemma 4.1 (3) that H(;y is a pointed Hopf algebra of discrete
corepresentation type.

Let (m,n) be a pair of integers such that (m,n) # £(1,1). Let Q™" be a quiver
defined as follows: The set of vertices of Qu"" = (g,h | gh = hg,g™ = h™), for each
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vertex, there is a unique arrow from ¢°h’ to ¢**'h? and a unique arrow from g¢*h? to
g‘h? 1. According to [22, Theorem 4.9], we know that the link quiver of H (1) in this case
is Q™™

In [22, Section 5], the authors construct a family of Hopf algebra B"™™(\, s,t, k) such
that the link quiver of B™™(\, s,t, k) is Q™.

Example 4.11. ([22, Definition 5.11]) For pairs of integers (m,n) # £(1,1) and m +
n € 27, define B™™(\, s,t, k) be the Hopf algebra generated by g, h, x, y satisfying the
following conditions, where A # 0, s,¢, k € k.

gh=hg, ¢" =h", zy+ \yz =k(1— gh),
gr+xg=0, Nz +2zh=0, z%=s(1—g°
hy +yh =0, gy+Ayg =0, y*=t(1—h*
Alg)=g®g, AR)=h®h, A(z)=1®z2+209 A(y)=1Ry+y®h,
(g)=e(h) =1, e(x) =e(y) =0,
S(g)=g7", S(hy=h7", S(z)=—zg™", S(y)=—yh™".

),
)

)

Using [22, Theorem 5.15], we know that the Hopf algebra B™™(\, s, t, k) is of discrete
corepresentation type if and only if m # n or m = n = 0. Besides, the authors classified
the Hopf algebra B™™ (), s,t, k) up to isomorphism in [22, Lemma 5.16] and showed that
there are more constraints on the parameters A, s, ¢, k in [22, Lemma 5.18]. As mentioned
above, we can now obtain the following proposition.

Proposition 4.12. Let H be a non-cosemisimple Hopf algebra over k with the dual Cheval-
ley property of discrete corepresentation type such that the coradical of Hyy is infinite-
dimensional. If | P |= 2 and 'S = {kg,kh}, where g,h are two different group-like
elements, then Hyy is isomorphic to exactly one of the following:

(1) B™"(),0,0,0), A € k* and N9 ™=t if (m n) # (0,0);
(2) B™"(-1,0,1,0), if both m,n are even;

(3) B™"(-1,1,0,0), if both m,n are even;

(4) B™"(-1,1,1,0), if both m,n are even;

(5) B™"™(1,1,1,k), k € k;

(6) B™"(1,1,0,0);

(6") B™"(1,0,1,0);

(7) B™"(1,1,0,1);

(7) B™"(1,0,1,0);

(8) B™"(1,0,0,1).

Proof. It follows from Lemma 4.1 (3) that H ) is a pointed Hopf algebra of discrete
corepresentation type. According to [22, Section 6], the proof is done. O



J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843 825

4.8. Case (3)

In this subsection, let &’ be the set of simple subcoalgebras of H;y and Gr((H))o-
comod) be the Grothendieck ring of the category of finite-dimensional right (H))o-
comodules. Next we give a description of the structures of Gr((H))o-comod) and
determine the link quiver of H(jy in the case that | 'P |= 1 and 'S = {Cy}, where
dimk(Ck) = 4.

It follows from [24, Proposition 3.16] that H ;) is a Hopf subalgebra. Using Lemma 2.6,
we know that Gr((Hy))o-comod) is isomorphic to ZS’. Thus we only need to focus on
the structures of ZS’. Before that, we give a new construction of a complete family of
non-trivial (C, D)-primitive matrices over H for any C, D € § with basic multiplicative
matrices C, D, respectively.

For any matrix A = (a;j)rxs and B = (b;;)uxv over H, define A ® B as follows

anB - a8
AeB=| i
arlB e arsB

For any B,C € S with basic multiplicative matrices B,C respectively. Since H has

the dual Chevalley property, it follows from [24, Proposition 2.6(2)] that there exists an
invertible matrix L over k such that

Fi 0 0
0 F 0
LCoBL™! = :
0 0 - Fuen
where F1, Fa,- -+, F; are basic multiplicative matrices over H.

Let M denote the set of representative elements of basic multiplicative matrices over
H for the similarity class. For any C' € 1S with basic multiplicative matrix C € M, we
can fix a complete family {X(%’C)}m,celﬁ,c of non-trivial (1,C)-primitive matrices.

Denote

1P = U {X(’Yl'c) | 1,c S FI,C}~
cels

Then for any non-trivial (1,C)-primitive matrix Y € P and B € M, we have

B yi yé y;(c,s)
I 0 1y I 0 S
o o ®m -+ 0
<0 L> ((O C>®B> (O L_1> N . '2 : N 7
0O 0 0 - F



826 J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843

where Fi, Fa, -, F, e M.

b u(C,B)
Denote

Bpl = {Y/|1<i< u(e,B) s

5p= U PPy Py= U PPy
Yerpr BeM

Moreover, denote
/. Bpr _ /
P=J = P
BeM Yelp

According to [34, Corollary 3.6], since H has the dual Chevalley property, the antipode
S of H is bijective. Then for the mixed Hopf module H;/Hy in My, we have

cOH”(H1/HO) ® Hy = Hy/H,,

where “°Ho(H, /Hy) is the left coinvariants of Hy in H;/Hy. And the isomorphism maps
T®h toT-h, where h € Hy, T € “°Ho(H,/Hy).

The proof of the following lemma can be completed by the method analogous to that
used in the proof of [39, Remark 3.6, Corollary 3.9 and Theorem 3.10].

Lemma 4.13.

(1) With the notations above, we have
(i) the cardinal number | BP& |= uec,B);
(ii) the union P' = |J Py, is disjoint.
yelfpl
(2) Let C,D € S with basic multiplicative matrices C,D € M respectively. Denote

CPP .= (X € P | X' is a non-trivial (C, D)-primitive matriz}.
Then it is a complete family of non-trivial (C, D)-primitive matrices. Moreover, we
have Hy/Hy = @ 3/ cp: span(X’).

Now it is not difficult to verify the following lemma.

Lemma 4.14. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property. If 1S = {C}}, then both Cy and S(Cy) are in the center of Z.S.

Proof. For any C; € S, suppose that

Ci-Cp =Y alCy,

icl

Ci-Ci=_ a},Ch.

icl
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Combining Lemma 2.9 and [39, Corollary 3.9], we know that
| P = TP | ady.
Using Lemma 4.13, one can show that
| P =] P | ol

According to [39, Corollary 2.11 and Lemma 2.17], we have

V dimk(C»)l\/dimk(Ct) dimg ((C; A Cy)/(Ci + Cy))
— | Cl’])/ct | )

It follows that

t t
O = Oy
which means that
C; - Cp=C-C;

for any C; € S. Besides, we have
S(Cy) - S(Cr) = S(Ck) - S(Cy)
for any C; € S. Thus both Cy and S(C}) are in the center of ZS. O

Lemma 4.15. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property. Denote by S’ the set of simple subcoalgebras of H(yy. Suppose that | pi=1
and Cy, is the unique subcoalgebra contained in 'S. Then D € S’ if and only if there exist
some m,n € Z such that (C)™ - (S(Ck))™ contains D with a nonzero coefficient.

Proof. By the same reason in the proof of [38, Proposition 3.10] and the fact that Cj
and S(Cy) are in the center of ZS, we can easily prove the lemma. O

In the following part, suppose H is a non-cosemisimple Hopf algebra over k with the
dual Chevalley property of discrete corepresentation type such that the coradical of H )
is infinite-dimensional. Suppose | !P |= 1 and 'S = {C}}, where dimy (C}) = 4. From the
fact that simple subcoalgebras are finite-dimensional and the proof of [39, Proposition
5.5], we can get an infinite sequence
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S(Ck)Ok = k1 + kg + Dy,
Dy - S(Cy) S(Ck) + Da,
D, -Cy = D1 + Ds,

Dy; - Cy = Daj_1 + Doy,
Dyiy1-S(Cr) = Do; + Daja,

where g € G(H) and dimg(D;) = 4 for any ¢ > 1. Moreover, we have D; # D;iom
for any ¢ > 1,m > 0. Otherwise, we can find a finite sub-quiver Q' of Q(H) such that
the separated quiver Q, of Q' is not a disjoint union of Dynkin diagrams, which is in
contradiction with Lemma 3.4. Moreover, since
S(Ck) -Cy =kl +kg+ Dy,
it follows that
S(Cy) - S*(Cx) = k1 +kS(g) + S(Dy).
This means that S(g) = g and S(D;) = D;. Using Lemmas 4.1 (4) and 4.14, we have
Ck . kg = Ck7
and
Cr-D1=Cr+ S(DQ)
It follows that

C - (Ck . S(Ck)) =3CkL + S(Dg)

For any n > 2, let S(n) be the set of all the n?-dimensional simple subcoalgebras of H.
Now we figure out Cy - C.

Lemma 4.16. We have
Ci-Cr =khy +khy + F

in ZS, where hy, ho are two different group-like elements and E is a 4-dimensional simple
subcoalgebra.



J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843 829

Proof. (I) Suppose that Cy - Cj, = E™ | where E() € S(4). We have

(I10)

(IvV)

EW . S(Ck) = Ck - (Ck - S(Ck)) = 3Ck + S(Da).

According to Lemma 4.1 (4), the separated quiver of Q(H()) contains a vertex
which is the start vertex of 4 arrows. Evidently, we can find a finite sub-quiver Q’
of Q(H) such that the separated quiver Q’, of Q' is not a disjoint union of Dynkin
diagrams. It follows from Lemma 3.4 that H is not of discrete corepresentation

type.
Suppose

Ci-Cr =kh+ E®,
where h € G(H) and E®) € S(3). A similar argument shows that
kh - S(Ck) = Cy
and
E®) . 8(Cy) = 2C), 4 S(Dy).

Combining Corollary 3.5 and Lemma 4.1 (2), one can show that H is not of discrete
corepresentation type.
Suppose

Cr-Cp = E%z) + E§2),

where Ez@) € §(2) for i = 1,2. A similar argument shows that there exists some
i € {1,2} such that

E® . s(cy) =20y,

which follows that H is not of discrete corepresentation type.
Suppose

Ci - Cp = khy 4+ kho + khz + khy,

where hy, ho, hs, hy € G(H). One can show that H is not of discrete corepresenta-
tion type by the same taken.
Suppose

Cr-Cr=khy +khoy + F

in ZS, where hy,he € G(H) and E € §(2). According to Corollary 3.5, we know
that hq 7é he. O
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Note that S(D;) = D; and
Dy - S(Cy) = S(Ck) + D2
in ZS. It follows from Lemma 4.1 (4) that
Cr Dy =Cr+ S(Ds)
in ZS. Moreover, by the fact that Cy, S(Cy) are in the center of ZS, we have

Cr - (S(Ck) - Cx) = Cr - (k1 + kg + Dy)
=30, + S(Dy)
= (Ck - Cx) - S(C)
— (khy + kho + E) - S(Cp).

This means that
E-S(Ck)=Cr+ S(D2)

in ZS.

Recall that a quotient quiver Q = (Qq, Q;) of Q = (Qo, Q1) is a quiver, whose vertices
are blocks of partitions of Qg and the number of arrows from D to E in Q equals the
total number of arrows from D to E for all D € D and E € E. According to Lemma 4.1
(4), the number of arrows from C; to C; is equal to the number of arrows from S(Ct)
to S(C;). Now using Lemma 4.1 (4), we can show that Q(H(y)) contains a sub-quiver
which is the quotient quiver of the following form:

khq k1

kho Ch kg

D,y

/\/
\WViN i
N/

/
\
$(ba) /

Based on the consideration above, we can get the link quiver of H(;y when Cy = S(Cy,).

Proposition 4.17. Let H be a non-cosemisimple Hopf algebra over k with the dual Cheval-
ley property of discrete corepresentation type such that the coradical of Hyy is infinite-
dimensional. If | P |= 1 and 'S = {Cyx}, where C, = S(Cy) and dimy(Cy) = 4, then
the link quiver Q(H(1y) of Hyy is of the following form:
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ﬁ

k'l Ck D'1 D'Q DS

)
where g € G(H) and D; are distinct 4-dimensional simple subcoalgebras for any i > 1.

Proof. Using Lemma 4.15, we know that (H(1))o is generated by C. If there exist some
distinct 4, j > 0 such that D; = D;, where Dy = Cy, then (H(y))o is finite-dimensional.
This is a contradiction. Now we claim that for any ¢ > 1, we have D; = S(D;). Indeed,
suppose for any i <n — 1, we have D; = S(D;). When i = n, since

Dy—1-Cy = Dn—2+ Dy,
it follows that
S(Ck) - S(Dp-1) = S(Dn—2) + S(Dn).
According to Lemma 4.14 and the induction assumption, we know that
Dy_1-Cx=Dy_o+ S(Dy),

which indicates that D,, = S(D,,). By Lemma 4.1 (4), we have thus proved the proposi-
tion. O

Finally, we consider the converse of Theorem 4.7, that is, whether H is of discrete
corepresentation type if H satisfies cases (1), (2), or (3).

Remark 4.18. Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley
property such that the coradical of H(yy is infinite-dimensional. In case (1) of Theo-
rem 4.7, it follows from Proposition 4.10 that H is of discrete corepresentation type. But
in cases (2) and (3), H is not necessarily a discrete corepresentation type Hopf algebra.
In fact, B™"™(\, s,t, k) is precisely the Hopf algebra corresponding to the quiver Q™.
To ensure B™™(\, s,t, k) is of discrete corepresentation type, the authors in [22] imposed
some restrictions on these parameters (see, for example, [22, Theorem 5.15]). In other
words, counterexamples exist in case (2); B™™(\, s,t, k) being one such example, where
m # 0. Besides, we will provide an example of non-discrete corepresentation type Hopf
algebra satisfying case (3) in the next section (see Remark 5.5 below).

5. Example

In this section, we will show that the situation (3) of Theorem 4.7 does occur. That
is, we introduce a new algebra H(e+1, f+1,u,v) and show that this algebra is a Hopf
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algebra with the dual Chevalley property of discrete corepresentation type such that its
link quiver is of the form (4.1) in Proposition 4.17.

Definition 5.1. As an algebra, H(et1, f+1,u,v) is generated by u,v,e;, f; for i € Z,
subject to the following relations

1=eo+ fo, eie; =eirj, fifj = firj, eif; = fjei =0,
€iu = (*Diuem fiu= (—1)iufi, €V = (*1)%% fiv= (*DiUfi,

u? =02 =0, w = —ou,

for any i,j € Z.
The comultiplication, counit and the antipode are given by

Ale) =e;@ei+ f; @ iy e(e) =1, S(e;) = e,
Alfi)=e® fi+ fi®es, (fi)=0, S(f;) = fi,
Alw) =1@u+u®er +v® fo1, e(u) =0, S(u)=—vf1—ue_,
A)=1@v+u® fi+v®e_1, e(v) =0, S(v)=—ufi —ve,

for any i € Z.
With operations defined above, we have

Lemma 5.2. H(ey1, f11,u,v) is a Hopf algebra with the dual Chevalley property.
Moreover, H(ey1, f11,u,v)o is spanned by e;, fi,i € Z and H(eiy, fyi,u,v) =
H(ej:17filau7v)2-

Proof. The proof is routine. For completeness and the convenience for other reader, we
give the proof here. As usual, we decompose the proof into several steps.

e Step 1 (A and ¢ are algebra homomorphisms.)

First of all, it is clear that ¢ is an algebra homomorphism. By definition, we have

Aleg + fo) =eo®@eo + fo® fo+eo® fo+ fo@eo
= (eg + fo) ® (e0 + fo)
= A(1),

and for any i € Z,

Alei)A(ej) = (ei@ei + fi @ fi)(ej @ej + f3 @ f-5)
=€itj Q€itj+ fir; ® f-ij
= A(ei-‘rj)a
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A(fDA(f) = (i@ fi + fi®e_)(e; @ fj + f; @e_j)
=€itj ® firj + firi ®e—i—j

= A(fi+s),

Ale))A(fj) =(ei®@ei+ fi® foi)e; @ fi + fi ®e_j)
—0,

A(f)A(e:) = (e; @ f + fj @ e—j)(ei @i + fi @ f-i)
=0.

Meanwhile, for any i € Z,

Ale)Au)=(e;®@e+ i foi)(lQutu®er +v® fo1)
=eQeut+ fi®futeu®e+ ived foig
= (—1)"(e; ®ue; + fi @ uf_i +ue; @ €1 +vfi @ foi—1)
= (=1)'A(u)A(ey),

and

A(fi)Alu)=(e; @ fi+ five))1Qu+tu®er +v® f_q)
=e® fiut fi®e ut+ fiu®e_iy1+ev® fia
= (_l)i(ei Qufi+fiQue_; +ufi®e_jt1 +ve; ® f¢_1)
= (1) A(w)A(f).
Using a similar argument, one can get A(e;)A(v) = (—1)*A(v)A(e;) and A(fi)A(v) =
(—1)*A(v)A(f;). Moreover, we find that
AW Aw)=(1Qutu®er+vQ f1)(lRv+u® f1+v®e_q)
=lQuwt+uufi +tvRue_1+uRevt+uwRey+v® fLi1v+vu® fy

and

AW Au) =1®v+u® fi+tve1)(l1@utu®e +v® f_1)
=1luutu®uer +vRvf1+u® fru+uw® fo+vRe_1u+vu® eg.

It follows that A(u)A(v) = —A(v)A(u). Through direct calculation, we have

AwWAu)=1u+u®e +v® f1)(lQutu®e; +v® f_q)
=uuer+tvRuf 1 +uReu+v® fqu
=0



834 J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843

and

AWAW)=1@v+u® fr+vRe1)(l@v+u® fi+tv®e_q)
=u®ufi+tvRue_; +u® fro+vRe_1v
=0.

e Step 2 (Coassociative and counit.)
Indeed, for any i € Z,

(A®id)Ae;) = (A®id)(e; ® e + fi @ f-i)
=6 Qe®e+fiRfi®ei+eRfiVf i+ fi®e; ® f;
and
(id @A) A(e;) = (Id @A) (e; @ e; + fi @ i)
=e®e®e+eQi®f i+ fi®e i @f i+[i®fiQe.

It is not hard to see that they are the same and thus (A ® id)A(e;) = (id ®A)A(e;).
Similarly, one can show that both (A ® id)A(f;) and (id ®A)A(f;) equal to

eiReRfi+fidvfi®fite®fiRe i+ fi®e ;i ®ey,
for any i € Z. Moreover, a simple computation shows that
(A ®id)A(u) = (id ®A)A(u)

=(1®1l®u+leueer+u®e e +vR® fo1 ey
+luvefa+u®fidfa+v®e 1 ® fq)

and

(A ®id)A(v) = (Id ®A)A(v)
=(1®1Qv+l@ud itu®e®fi+v® fo1® fi
+l®uvRe1+u® fiRe_1+vRe_1®e_q).
The verification of the axiom for counit is easy and it is omitted.

e Step 3 (Antipode is an algebra anti-homomorphism.)
It is clear that

S(eo + fo) =eo + fo =1,
S(ej)S(ei) = e—je—i =e_i—j = S(eirj), S(f;)S(fi) = fifi = firj = S(firj)s
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S(fj)S(ei) = fie—i =0, S(e:)S(fj) =e—ifj =0.
We also have

S(u)S(e:)

(—vfo1 —ue_y)e—; = —ue_;_q
and
S(ei)S(u) = e—i(—vf-1 —ue_1) = (1) ue_;_1,

which follows that S(u)S(e;) = (—1)%S(e;)S(u). Besides,

Sw)S(fi) = —vfi-1 = (=1)'S(fi)S(u),
S(0)S(e:) = —ver_i = (~1)iS(e)S ().

S@)S(fi) = —ufir1 = (=1)'S(f:)S(v),

Su)S(u) = (—vfo1 —ue_q1)(—vfo1 —ue_1) =0,
S()S(v) = (—ufr —ver)(—uf; —ve) =0,
S(v)S(u) = —uvfy — vueg = —S(u)S(v)

e Step 4 (The axiom for antipode.)
By definition, we have

eiS(ei) + fiS(f=i) = eo + fo =1 =¢€(es),
S(ei)ei +s(fi)f-i =eo+ fo=1=¢e(ei),
e;S(fi) + fiS(e—i) = 0 =¢(fi).
S(ei)fi+S(fi)e—i =0=¢e(fy),

S(u) +uS(er) +vS(f-1) =0 =¢e(u),
u+ S(u)er +S(v)fo1 =0=¢e(u),

S) +uS(f1) +vS(e—1) =0 =¢e(v),
v+ S(u)fi + Sw)e—1 =0 =¢e(v).

By steps 1,2,3,4, H(et1, f+1,u,v) is a Hopf algebra.
Denote H(et1, f+1) = span{e;, f; | ¢ € Z}. We know that

H(ex1, fr1) =klokg & (@ span{ei, fi,e—i, f—i}),
i>1

where g = eg — fo. This means that H(e+1, f+1) is a cosemisimple Hopf subalgebra of
H(ex1, f11,u,v). Denote
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H(ex1, fe1,u,0)(0) = H(exr, fr1),
H(e:tl,f:tlaU,v)(]-) = H(e:tlaf:tl)u @ H(e:tlaf:tl)v

and

H(et1, f+1,u,v)(2) = H(ex1, f+1)uv

We have

H(et1, fx1,u,v) = H(ex1, f+1,u,v)(0) & H(ex1, f+1,4,v)(1) & H(ex1, f+1,u,v)(2).

It is straightforward to show that H(et1, f11,u,v) is a graded algebra with the grading
defined as above and S(H (e41, f+1,u,v)(J)) C H(ex1, f11,u,v)(j) for j = 0,1,2. Note
that

Alu) =10u+u®e +v® f1
€ H(e:t17f:tlau7v)(0) ®H(e:t17f:|:13u7v)(1)
+H(e:|:17f:t17uav)(1) ®H(€:|:1,fi1,u,v)(0)-

It follows that

A(H(ex1, f+1)u) = A(H (ex+1, f+1))A(u)
C H(et1, f+1,u,v)(0) ® H(ex1, f+1,u,v)(1)
+H(ex1, fe1,u,v)(1) ® H(exr, fr1,u,v)(0).

A similar argument shows that

A(H(ex1, f+1)v) C H(ex1, f+1,4,v)(0) @ H(ex1, fx1,u,v)(1)
+H(et1, f+1,u,v)(1) ® H(ex1, f+1,u,v)(0).

Moreover,

A(H(et1, f+1)uwv) = A(H(e41, f+1))A(u)A(v)

(ex1, f+1)(0 ex1, f£1)(2)
(€1, f+1)(1 ex1, f+1)(1)
(

)
)
)
ex1, f+1)(2) e+1, f+1)(0).

)
CH ® H(
+H ® H(
+H ® H(

Thus we can show that H(ex1, f+1,u,v) is a graded Hopf algebra. Moreover, we have

1 2

H(exr, fr1,u,0)(0) € € Hexr, fr1,u,0)(j) € €D Hlexr, fr1,u,0)())

Jj=0 j=0
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is a Hopf algebra filtration. It follows from [36, Proposition 11.1.1] that H(ex1, f11,u,v)o
C H(et1, f+1,u,v)(0). By the fact that H(exy, f11) is a cosemisimple Hopf algebra, we
know that H(ex1, fx1,u,v)o = H(ex1, f+1) and H(ex1, fx1,u,v) = H(ex1, f+1,u,v)s.
This means that H(et1, f+1,u,v) has the dual Chevalley property. O

In the following part, denote g = eg — fy, it is clear that g is a group-like element of
order 2. For any ¢ > 1, denote C; = span{e;, f;,e_;, f—;}. We can show that each C; is
a simple subcoalgebra with basic multiplicative matrix C;, where

(e fi
Ci_(fi 61‘)'

It should be pointed out that C; = S(C;) for any ¢ > 1. We can obtain

H(eilvfilauvv)o = kl@kg@@cz,

i>1

which follows that S = {kl,kg} U{C; | i > 1}.
From the definition, it follows automatically that (u v) is a non-trivial (1,Cy)-
primitive matrix. Besides, we have

Cy-Cr =kl +kg+ Cs
and
C;-Cr=Cip1+Ci—q fori>2
in ZS. We can show that
1pCi

. o)

9plr — —gu gv)

{
(-

Rail S |
“PY = {<ue 1fvf_ >}

For any ¢ > 1, we know that

CipCit1 € fiv
P {<f—iu e_ﬂJ)}’

Cq‘,+1fPC7~, _ {< €i4+1V fz'-‘rlu >}

foiciv e_j_1u
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By the construction of P in subsection 2.2, it turns out that

P="PO Pt UGP UG Py (| EPo)u ([P,

i>1 i>1

As a consequence, the link quiver of H(ex1, f11,u,v) is of the following form:

ﬁ

k1 @l s Cs Ciy

We now turn to the category of finite-dimensional right comodules over H(e41, f+1,u,
v). For convenience, for any matrix A := (ai;)mxn and B := (b;j)nx; over H(ex1, f+1,u,
v), denote the following matrix

AR B := (Z air ® bkl)
k=1

Let C,D,E, F € S with dimg(C) = r2,dimg(D) = s?,dimy(E) = t2,dimy(F) = u?
respectively, where 7,s,t,u € {1,2}. Suppose Xxs = (2ij),,, € P is a non-trivial
(C, D)-primitive matrix, Vrxs = (¥ij),., € P is a non-trivial (C, £)-primitive matrix and

mxl

Zuxs = (2ij) yxs € P is a non-trivial (F, D)-primitive matrix.
It is clear that

S = span{cii, 12, -, Cir}
is a simple right H(eyt1, f+1,u,v)-comodule with
p(S) =S ®C.
Moreover,
U = span{ci1,c12,- -+ ,C1py T11,T12, -+ , T1s}

is a indecomposable right H(ey1, fi1,u,v)-comodule with

~ [(C X
pU)=U® (O D).

We also have

V= Span{cn,cmw" y Clrs £11, 2125 *° 5 L1ss Y11, Y12, " - 7y1t}
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is a indecomposable right H(ex1, f11,u,v)-comodule with
c x Yy
D
&
For any non-zero k € k, denote
W(k) = span{cii, c12,- -, cir, kfi1, kfi2, -+ kfru, xr1i+kzin, wat+kzio, - 21s+kzis )

One can easily show that W (k) is a indecomposable right H(ex1, f11,u,v)-comodule
with

=
=
=
I
=
=
&
S.I
SESES

Besides, we know that W(k) = W(I) as right H(ext1, fi1,u,v)-comodule for any non-
zero k,l € k. From this discussion, we get some indecomposable right H(e11, f+1,u,v)-
comodules of small dimension.

In order to show that H(e41, f41,u,v) is of discrete corepresentation type, we consider
a special case of subcoalgebras of H(ex1, f41,u,v). For N > 1, let

HY (ex1, f11,u,v) = span{e;, fi, esu, e;v, fyu, fiv, e;uv, fiuv | =N <i < N} @ Cny1.
We have the following lemma.
Lemma 5.3. HY (e41, fi1,u,v) is of finite corepresentation type.

Proof. Since H(ex1, f+1,u,v) = H(ex, fr1,u,v)2, it follows that HY (exy, fi1,u,v)
only contains comodules with Loewy length at most 3. Note that indecomposable co-
modules with Loewy length 1 are simple comodules. This means that the number of
non-isomorphic indecomposable comodules with Loewy length 1 is finite.

Denote

M = Spa'n{17 u, U} + Span{g7 —gu, g’U} + Span{elu f17 _ufl - 7}61}
+span{er, fi,ufi —ver}
+( > span{e;, fi,equ, fiv}) + (Y span{e;, fi, ev, fiul})

1<i<N 1<i<N

+( Z span{e;, fi, €i—2, fi—2,€;0 + €i_ou, fiu + fi_ov}).
3<i<N-1
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Up to isomorphism, any indecomposable comodule N with Loewy length 2 is a subco-
module of M such that the link-quiver of coefficient coalgebra cf(N) is connected. That
is, cf (V) is a subcoalgebra of HY (e41, f+1,u,v); and the link-quiver Q(cf(N)) of cf(IN)
is a connected sub-quiver of Q(H™ (e+1, f+1,u,v)). Thus there are only finitely many
non-isomorphic indecomposable comodules with Loewy length 2.

Denote

Vo = span{1,u, v, uv}

Vi = span{g, gu, gv, guv}

Vi1 = spanie;, fi, e;u, fiv, e;v, fiu, e;uv, fiuv}) for any i > 1.

For any indecomposable comodule U with Loewy length 3, U is an extension of Soc(U),
which is a direct sum of simple comodules, and U/Soc(U), which has Loewy length 2.
This leads to any indecomposable comodule U with Loewy length 3 is isomorphic to
V; for some ¢ > 0. Hence there are only finitely many non-isomorphic indecomposable
comodules with Loewy length 3.

In conclusion, HY (e11, f+1,u,v) is of finite corepresentation type. O

We conclude this section by point out that H(e+1, f+1,u,v) is of discrete corepresen-
tation type.

Proposition 5.4. H(ex1, f+1,u,v) is a Hopf algebra with the dual Chevalley property of
discrete corepresentation type.

Proof. Indeed, any finite-dimensional subcoalgebra of H(e41, f11, u,v) is a subcoalgebra
of HN (e+1, f+1,u,v) for some N. Using Lemma 5.3, we know that any finite-dimensional
subcoalgebra of H(e+1, f+1,u,v) is of finite corepresentation type. Now for any finite di-
mension vector d, denote by cf(d) the smallest subcoalgebra of H™ (ex1, f+1,u,v) such
that all the right H-comodules of dimension vector d have their coefficient coalgebra
contained in cf(d). Using [21, Lemma 2.6], we can show that cf(d) is finite-dimensional,
which follows that cf(d) is of finite corepresentation type. Therefore, the set of isomor-
phism classes of dimension vector d is finite. This implies that H(ex1, fo1,u,v) is of
discrete corepresentation type. O

Remark 5.5. If we remove uv = —vu from Definition 5.1 and keep the rest of the Hopf
algebra structure unchanged, we obtain a new Hopf algebra H'(e41, f11,u,v). Since

H(eihfil?uav)l = H/(eilafihuvv)h

H(exy, f+1,u,v) and H'(e41, f+1,u,v) have the same link quiver with each other. How-
ever, their corepresentation type is different. Indeed, for any A € k,i € Z, denote

Vi(A) = span{e;, fi, e;u, fiv, e, fiu, e;uv + Ae;vu, fivu + Afiuv}.
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We know that

p((es, fis e, fiv, ev, fiu, e;uv + Aejou, fivu + A fiuv))
= (e, fi, €iu, fiv, e;v, fiu, e;uv + Aejou, fivu + A fiuv)@

e; fi e;u fiv e;v fiu e;uv + Ae;vu fivu + A fuv
foi ey foiu oe_jv fov e_ju fouv+ Af_jvu e_jvu+ Ae_juv
0 0 €i+1 fi-i-l 0 0 (1 — /\)61‘4_11} (1 — /\)fi+1u
0 0 f—i—l €_i—-1 0 0 (1 — )\)f_i_lv (1 — )\)e_i_lu
0 0 0 0 €;—1 fi—l (/\ — 1)ei_1u ()\ — l)fi_lv
0 0 0 0 foiy1 e—imn A=Dfoipiv (A=1De—ipv
0 0 0 0 0 0 e fi
0 0 0 0 0 0 fei e_;

Note that {V;(\) }aek is a family of non-isomorphic indecomposable right H' (11, f+1,u,
v)-comodules admitting the same dimension vector. Thus H'(ex1, f+1,u,v) is not of
discrete corepresentation type.
CRediT authorship contribution statement

All authors contributed to all aspects of this project.
Ethical approval

Not applicable.
Declaration of competing interest

The authors declare no competing interests.
Acknowledgment

The authors highly appreciate the referee’s detailed comments, which have been in-
valuable in improving this paper. The second author was supported by National Key
R&D Program of China 2024YFA1013802 and NSFC 12271243.
Data availability

No data was used for the research described in the article.

References

[1] A. Ardizzoni, M. Beattie, C. Menini, Gauge deformations for Hopf algebras with the dual Chevalley
property, J. Algebra Appl. 11 (3) (2012) 1-37, https://doi.org/10.1142/50219498811005798.


https://doi.org/10.1142/S0219498811005798

842 J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843

[2] N. Andruskiewitsch, P. Etingof, S. Gelaki, Triangular Hopf algebras with the Chevalley property,
Mich. Math. J. 49 (2) (2001) 277298, https://doi.org/10.1307/mm;j/1008719774.

[3] N. Andruskiewitsch, C. Galindo, M. Miiller, Examples of finite-dimensional Hopf algebras
with the dual Chevalley property, Publ. Mat. 61 (2) (2017) 445-474, https://doi.org/10.5565/
PUBLMAT6121705.

[4] M. Auslander, I. Reiten, S. Smalg, Representation Theory of Artin Algebras, Cambridge Studies in
Adv. Math., vol. 36, Cambridge University Press, 1995.

(5] N. Andruskiewitsch, H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras
of order p?, J. Algebra 209 (2) (1998) 658-691, https://doi.org/10.1006/jabr.1998.7643.

[6] I. Assem, D. Simson, A. Skowroriski, Elements of the Representation Theory of Associative Algebra
vol. 1, Techniques of Representation Theory, Lond. Math. Soc. Students Texts, vol. 65, Cambridge
University Press, 2006.

[7] R. Bautista, On algebras of strongly unbounded representation type, Comment. Math. Helv. 60 (3)
(1985) 392-399, https://doi.org/10.1007/BF02567422.

[8] V. Bondarenko, Y. Drozd, Representation type of finite groups, J. Sov. Math. 20 (1982) 2515-2528,
https://doi.org/10.1007/BF01681468.

[9] X. Chen, H. Huang, P. Zhang, Dual Gabriel theorem with applications, Sci. China Ser. A 49 (1)
(2006) 9-26, https://doi.org/10.1007/s11425-004-5235-4.

[10] C. Cibils, Half-quantum groups at roots of unit, path algebras, and representation type, Int. Math.
Res. Not. 12 (1997) 541-553, https://doi.org/10.1155/51073792897000366.

[11] J.A. Drozd, Tame and wild matrix problems, representation theory, II, in: Proc. Second Internat.
Jonf., Carleton Univ., Ottawa, Ont., 1979, in: Lecture Notes in Math., vol. 832, Springer, Berlin,
1980, pp. 242-258.

[12] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor Categories, Mathematical Surveys and Mono-
graphs, vol. 205, Amer. Math. Soc., Providence, 2015.

[13] R. Farnsteiner, Polyhedral groups, Mckey quivers and the finite algebraic groups with tame principal
blocks, Invent. Math. 166 (2006) 27-94, https://doi.org/10.1007/s00222-006-0506-z.

[14] R. Farnsteiner, A. Skowronski, Classification of restricted Lie algebras with tame principal block,
J. Reine Angew. Math. 546 (2002) 1-45, https://doi.org/10.1515/crll.2002.043.

[15] R. Farnsteiner, A. Skowronski, Galois actions and blocks of tame infinitesimal group schemes, Trans.
Am. Math. Soc. 359 (12) (2007) 5867-5898, https://doi.org/10.1090/S0002-9947-07-04124-4.

[16] R. Farnsteiner, D. Voigt, On cocommutative Hopf algebras of finite representation type, Adv. Math.
155 (1) (2000) 1-22, https://doi.org/10.1006 /aima.2000.1920.

[17] R. Farnsteiner, D. Voigt, On infinitesimal groups of tame representation type, Math. Z. 244 (3)
(2003) 479-513, https://doi.org/10.1007/s00209-003-0491-5.

[18] D. Higman, Indecomposable representation at characteristic p, Duke Math. J. 21 (1954) 377-381,
http://projecteuclid.org/euclid.dmj/1077465741.

[19] H. Huang, G. Liu, On the structure of tame graded basic Hopf algebras II, J. Algebra 321 (9) (2009)
2650-2669, https://doi.org/10.1016/j.jalgebra.2009.02.007.

[20] M.C. Tovanov, Infinite dimensional serial algebras and their representations, J. Algebra 514 (2018)
330-371, https://doi.org/10.1016/j.jalgebra.2018.05.023.

[21] M.C. Iovanov, On the infinite tame-wild dichotomy conjecture and related problems, arXiv:1803.
00173.

[22] M.C. Tovanov, E. Sen, A. Sistko, S. Zhu, Pointed Hopf algebras of discrete corepresentation type,
J. Pure Appl. Algebra 228 (4) (2024) 1-25, https://doi.org/10.1016/j.jpaa.2023.107541.

[23] R.G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971) 352-368, https://doi.org/10.1016/
0021-8693(71)90018-4.

[24] K. Li, The link-indecomposable components of Hopf algebras and their products, J. Algebra 593
(2022) 235273, https://doi.org/10.1016/j.jalgebra.2021.11.016.

[25] G. Liu, On the structure of tame graded basic Hopf algebras, J. Algebra 299 (2) (2006) 841-853,
https://doi.org/10.1016/j.jalgebra.2005.08.027.

[26] G. Liu, On Noetherian affine prime regular Hopf algebras of Gelfand-Kirillov dimension 1, Proc.
Am. Math. Soc. 137 (3) (2009) 777-785, https://doi.org/10.1090/50002-9939-08-09034-5.

[27] G. Liu, Basic Hopf algebras of tame type, Algebr. Represent. Theory 16 (3) (2013) 771-791, https://
doi.org/10.1007/s10468-011-9331-1.

[28] F. Li, G. Liu, Pointed Hopf algebras of finite corepresentation type and their classifications, Proc.
Am. Math. Soc. 135 (3) (2007) 649-657, https://doi.org/10.1090/S0002-9939-06-08504-2.

[29] K. Li, S. Zhu, On the exponent of finite-dimensional non-cosemisimple Hopf algebras, Commun.
Algebra 47 (11) (2019) 4476-4495, https://doi.org/10.1080/00927872.2018.1539176.


https://doi.org/10.1307/mmj/1008719774
https://doi.org/10.5565/PUBLMAT6121705
https://doi.org/10.5565/PUBLMAT6121705
http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF0ED021664FC23C79C9B5EE033E4998Bs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF0ED021664FC23C79C9B5EE033E4998Bs1
https://doi.org/10.1006/jabr.1998.7643
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib4097423EB09760CF5B48686D94A1BAADs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib4097423EB09760CF5B48686D94A1BAADs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib4097423EB09760CF5B48686D94A1BAADs1
https://doi.org/10.1007/BF02567422
https://doi.org/10.1007/BF01681468
https://doi.org/10.1007/s11425-004-5235-4
https://doi.org/10.1155/S1073792897000366
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib4490AF7B4456B49EC34F6EB0C73BED5Fs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib4490AF7B4456B49EC34F6EB0C73BED5Fs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib4490AF7B4456B49EC34F6EB0C73BED5Fs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib9D3BEC62286E1E189B0AF31D96B49D44s1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib9D3BEC62286E1E189B0AF31D96B49D44s1
https://doi.org/10.1007/s00222-006-0506-z
https://doi.org/10.1515/crll.2002.043
https://doi.org/10.1090/S0002-9947-07-04124-4
https://doi.org/10.1006/aima.2000.1920
https://doi.org/10.1007/s00209-003-0491-5
http://projecteuclid.org/euclid.dmj/1077465741
https://doi.org/10.1016/j.jalgebra.2009.02.007
https://doi.org/10.1016/j.jalgebra.2018.05.023
http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF4C223A7829361BD721FDFBEF9276F74s1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF4C223A7829361BD721FDFBEF9276F74s1
https://doi.org/10.1016/j.jpaa.2023.107541
https://doi.org/10.1016/0021-8693(71)90018-4
https://doi.org/10.1016/0021-8693(71)90018-4
https://doi.org/10.1016/j.jalgebra.2021.11.016
https://doi.org/10.1016/j.jalgebra.2005.08.027
https://doi.org/10.1090/S0002-9939-08-09034-5
https://doi.org/10.1007/s10468-011-9331-1
https://doi.org/10.1007/s10468-011-9331-1
https://doi.org/10.1090/S0002-9939-06-08504-2
https://doi.org/10.1080/00927872.2018.1539176

J. Yu, G. Liu / Journal of Algebra 688 (2026) 803-843 843

[30] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series
in Mathematics, vol. 82, American Mathematical Society, Providence, RI, 1993. Published for the
Conference Board of the Mathematical Sciences, Washington, DC.

[31] S. Montgomery, Indecomposable coalgebras, simple comodules and pointed Hopf algebras, Proc.
Am. Math. Soc. 123 (8) (1995) 2343-2351, https://doi.org/10.2307/2161257.

[32] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2)
(2003) 177206, https://doi.org/10.1007/s00031-003-0515-6.

[33] D.E. Radford, On the coradical of a finite-dimensional Hopf algebra, Proc. Am. Math. Soc. 53 (1)
(1975) 9-15, https://doi.org/10.2307/2040355.

[34] D.E. Radford, Operators on Hopf algebras, Am. J. Math. 99 (1) (1977) 139-158, https://doi.org/
10.2307/2374012.

[35] R. Suter, Modules over Uy (sl2), Commun. Math. Phys. 163 (2) (1994) 359-393, http://projecteuclid.
org/euclid.cmp/1104270468.

[36] M. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, Inc., New York, 1969,
vii+336 pp.

[37] J. Xiao, Finite-dimensional representations of Uy (sl2) at roots of unity, Can. J. Math. 49 (4) (1997)
772-787, https://doi.org/10.4153/CJIM-1997-038-4.

[38] J. Yu, G. Liu, Coradically graded Hopf algebras with the dual Chevalley property of tame corepre-
sentation type, arXiv:2407.21389.

[39] J. Yu, K. Li, G. Liu, Hopf algebras with the dual Chevalley property of finite corepresentation type,
Algebr. Represent. Theory 27 (5) (2024) 1821-1867, https://doi.org/10.1007/s10468-024-10284-8.


http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF570206413F5357C4F857DEE1432AE0As1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF570206413F5357C4F857DEE1432AE0As1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bibF570206413F5357C4F857DEE1432AE0As1
https://doi.org/10.2307/2161257
https://doi.org/10.1007/s00031-003-0515-6
https://doi.org/10.2307/2040355
https://doi.org/10.2307/2374012
https://doi.org/10.2307/2374012
http://projecteuclid.org/euclid.cmp/1104270468
http://projecteuclid.org/euclid.cmp/1104270468
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib96AD8CD8B916F63E751B1C0921D068BCs1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib96AD8CD8B916F63E751B1C0921D068BCs1
https://doi.org/10.4153/CJM-1997-038-4
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib7EF3383F1B89F4C1C8292D19766D1784s1
http://refhub.elsevier.com/S0021-8693(25)00580-0/bib7EF3383F1B89F4C1C8292D19766D1784s1
https://doi.org/10.1007/s10468-024-10284-8

	Hopf algebras with the dual Chevalley property of discrete corepresentation type
	1 Introduction
	2 Preliminaries
	2.1 Based ring
	2.2 Link quiver

	3 Discrete corepresentation type
	4 Hopf algebras with the dual Chevalley property of discrete corepresentation type
	4.1 Case (1)
	4.2 Case (2)
	4.3 Case (3)

	5 Example
	CRediT authorship contribution statement
	Ethical approval
	Declaration of competing interest
	Acknowledgment
	Data availability
	References


