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1. Introduction

As a continuation to a series of previous works [13,14,16], this paper completes the
classification problem of finite-dimensional coradically graded pointed coquasi-Hopf al-
gebras over abelian groups. Throughout, we work over an algebraically closed field k of
characteristic zero. Unless stated otherwise, in this paper all spaces, maps, (co)algebras,
(co)modules, and categories, etc., are over k.

The classification of finite-dimensional pointed Hopf algebras over finite abelian groups
was completed over the last two decades, and a systematic approach (in particular Weyl
groupoids and arithmetic root systems) was established, see [1,3,4,11,12]. Meanwhile,
Etingof and Gelaki proposed to classify pointed finite tensor categories. By the Tannakian
formalism [8], this amounts to a classification of certain finite quasi-quantum groups,
namely finite-dimensional elementary quasi-Hopf algebras, or dually finite-dimensional
pointed coquasi-Hopf algebras. In the pioneering works [5-7,10,2], a few examples and
classification results of such algebras, and consequently the associated pointed finite
tensor categories, are thus obtained. In [13,14,16], the authors of the present paper
continue the study of the classification problem of finite quasi-quantum groups and
several interesting classification results are also obtained. To explain this and our main
result of this paper, we need some concrete notations.

Once and for all, let G be a finite abelian group and ® be a 3-cocycle on G. Based
on an analog of the lifting method in the theory of finite-dimensional pointed Hopf
algebras, a complete understanding of the Nichols algebras in the twisted Yetter-Drinfeld
module category ﬁg\)}’l)‘b is the crux for the classification of finite-dimensional pointed
coquasi-Hopf algebras. A twisted Yetter-Drinfeld module V' € ﬁg)}Dq’ is said to be of
diagonal type, if it is a direct sum of 1-dimensional twisted Yetter-Drinfeld modules.
The associated Nichols algebra B(V) is called diagonal if V' is so. Let H be a pointed
coquasi-Hopf algebra over G, and gr(H) the coradically graded coquasi-Hopf algebra
associated to H. The coinvariant subalgebra R of gr(H) will be a twisted Yetter-Drinfeld
module in ﬁg)}Dq’ for certain ®, and H is called diagonal if R is diagonal as a twisted
Yetter-Drinfeld module. In [13,14], we classified all finite-dimensional Nichols algebras of
diagonal type in ¥X§)D?® and proved that every finite-dimensional pointed coquasi-Hopf
algebra of diagonal type must be the form of B(V)#kG.

The aim of this paper is to study Nichols algebras of nondiagonal type and the main
result is the following (see Theorem 3.1 for an equivalent form).

Theorem 0.1. Let B(V) € ]ﬁ:gqu’ be a Nichols algebra of nondiagonal type with Gy =
G. Then B(V) is infinite dimensional.

Here Gy is the support group of V' (see the paragraph after Definition 2.3). Under
assumption that Gy = G, which is natural for us since the braided Hopf algebra structure
of B(V) is determined by Gy rather than G (see the paragraph after Proposition 2.6), our
result tells us that every finite-dimensional Nichols algebra B(V) € ﬁljgyD(b must be of
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diagonal type finally, which already was classified in our previous works. As consequences,
we can get the structure of general finite-dimensional pointed coquasi-Hopf algebras now
(see Theorems 5.1 and 5.2).

Theorem 0.2. If M is a finite-dimensional pointed coquasi-Hopf algebra over finite abelian
group G, then gr(M) =2 B(V)#KG for a twisted Yetter-Drinfeld module of finite type
Ve kGyp®.

In [8], Etingof, Gelaki, Nikshych and Ostrik conjecture that every pointed finite tensor
category over a field of characteristic zero is tensor generated by objects of length 2. Let
G(C) be the set of isomorphism classes of simple objects in a pointed tensor category C.
Then G(C) is naturally a group under tensor product. Using our classification result and
some useful result in [14], we can partially prove the conjecture (see Theorem 5.5).

Theorem 0.3. Let C be a pointed finite tensor category over a field of characteristic zero.
If the group G(C) is abelian, then C is tensor generated by objects of length 2.

The paper is organized as follows. In Section 2, we recall some necessary notions and
particularly introduce a method to study Nichols algebras in ﬁgyp‘b called change of
based groups. Sections 3 and 4 are designed to give a proof of the above Theorem 0.1.
The last section is devoted to the classification of finite-dimensional pointed coquasi-Hopf
algebras and the generation problem of pointed finite tensor categories.

2. Preliminaries

In this section, we recall some necessary notions and basic facts about pointed coquasi-
Hopf algebras, twisted Yetter-Drinfeld modules and Nichols algebras. The reader is
referred to [8,13,14] for related concepts and notations.

2.1. Pointed coquasi-Hopf algebras

A coquasi-Hopf algebra is a coalgebra (H, A, ¢) equipped with a compatible quasi-
algebra structure and a quasi-antipode. Namely, there exist two coalgebra homomor-
phisms

m: HOH — H, a®b+—ab and pu:k — H, A— Mg,
a convolution-invertible map ®: H®3 — k called the associator, a coalgebra antimor-

phism S: H — H and two functions «, 8: H — k such that for all a,b,c,d € H the
following equalities hold:

ai(bic1)®(ag, ba, c2) = ®(a1, b1, c1)(azba)co,
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lgpa=a=aly,
®(ay, by, c1dy)P(agba, ca,da) = O(by, c1,d1)P(ay, baca, d2)P(ag, b3, c3),
®(a,1p,b) = e(a)e(b).
S(ar)a(az)as = a(a)ly, aif(az)S(az) = B(a)ly,
®(a1,S(as), as)B(az)a(as) = 71 (S(ar), as, S(as))a(az)B(as) = e(a).

The triple (S, a, ) is called a quasi-antipode. H is called a pointed coquasi-Hopf algebra
if (H,A,¢) is a pointed coalgebra, i.e., every simple comodule of H is 1-dimensional.

Let C be a coalgebra, the coradical Cy of C' is the sum of all simple subcoalgebras of
C. Fix a coalgebra C' with coradical Cy, define C, inductively as follows: for each n > 1,
define

Crn=A"C®Cph_1+CoeC).

Then we get a filtration Cy C Cy C ---C),, C ---, which is called the coradical filtration
of C. A coquasi-Hopf algebra has a coradical filtration since it is a coalgebra.

Given a coquasi-Hopf algebra (H, A, e, m,u, ®,S,a, 5), let {H,}n>0 be its coradical
filtration, and let

grH=Hy® H/Hy® Hy/H, ® - -,

the corresponding coradically graded coalgebra. Then naturally gr H inherits from H a
graded coquasi-Hopf algebra structure. The corresponding graded associator gr ® satisfies
gr @(&j), ¢) = 0 for all homogeneous elements a,b,¢ € gr H unless they all lie in Hy.
Similar conditions hold for gr o and gr 5. A coquasi-Hopf algebra H is called coradically
graded if H = gr(H) as coquasi-Hopf algebras.

If H is a pointed coquasi-Hopf algebra, then Hj is a pointed cosemisimple coquasi-
Hopf algebra, which is determined by a group G together with a 3-cocycle on G as
follows.

Example 2.1. Let G be a group. Clearly the group algebra kG is a Hopf algebra with
Alg) =g®g, S(g) =g " and e(g) = 1 for any g € G. Let w be a normalized 3-cocycle
on G, i.e.

wlef,g,h)wl(e, f,gh) = w(e, f, g)w(e, fg, h)w(f,g,h), (2.1)
w(f,1,9) =1 (2.2)

for all e, f,g,h € G. By linearly extending, w: (kG)®* — k becomes a convolution-
invertible map. Define two linear functions «a, 8: kG — k by

1

alg) =elg) and flg):= Zr— s
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for any g € G. Then kG together with these w, o and 8 makes a coquasi-Hopf algebra,
which will be written as (kG,w) in the following. The comodule category of (kG,w)
forms a tensor category, which is called a Gr-category and denoted by Vec.

Let us now consider the construction of Gr-categories which will be especially impor-
tant in this paper. The crux to determine all the Gr-categories is to give a complete list
of the representatives of the 3-cohomology classes in HB(G, k*) for all groups G. How-
ever, when G is a finite abelian group, the problem was solved in [14], and a list of the
representatives of H*(G,k*) can be given as follows.

Let N denote the set of nonnegative integers, Z the ring of integers, and Z,, the cyclic
group of order m. Any finite abelian group G is of the form Z,,, XX Z,,, withm; € N
for 1 < j < n. Denote by A the set of all N-sequences

(Cly- s Clye ooy Cry CL2y 5 Cijiy e o+ Cu1,n5 C1235 + - 5 Crsty - -+ Cnm2n—1.n) (2.3)

such that 0 < ¢ <my, 0 < ¢ < (mi,my), 0< e < (My,mg,my) for 1 <1<, 1<
1<j<n, 1<r<s<t<n, where ¢;; and c,5 are ordered in the lexicographic order
of their indices. We denote by ¢ the sequence (2.3) in the following. Let g; be a generator
of Zm,;,1 <i<mn.Forany c € A, define

we: GXGExG— k*

i in J1 Jn k1 En
L R R T N s (2.4)
n . i1 +k . .
au [JZT"'L ‘] Cs"“[']snjfs ] Crstirjskt
Gmy Cmy C(mmms,mt)'
=1 1<s<t<n 1<r<s<t<n

Here and below (,, stands for an m-th primitive root of unity. According to [14, Propo-
sition 3.8], {we | ¢ € A} forms a complete set of representatives of the normalized
3-cocycles on G up to 3-cohomology.

2.2. Nichols algebras of twisted Yetter-Drinfeld modules

Nichols algebras are very important for the construction of pointed coquasi-Hopf
algebras. For our purpose, we are mainly concerned with the Nichols algebras in the
Yetter-Drinfeld module category of the coquasi-Hopf algebra (kG, ®), where G is a finite
abelian group and ® is a normalized 3-cocycle on G. To emphasize ®, we denote the
Yetter-Drinfeld category of (kG, ®) as ﬁ'ggypi’. For convenience, we call an object in
kKGYD? a twisted Yetter-Drinfeld module. Define

_ _ ®(g,2,9)®(z,y,9)
y(w,y) = o(z,9,y)

(2.5)
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for all g,z,y € G. By direct computation one can show that 59 is a 2-cocycle on G.
The construction of category of twisted Yetter-Drinfeld modules can be summarized as
follows, the detailed computations can be found in [14,15].

Definition 2.2. An object in %ﬁg)ﬂ)@ is a G-graded vector space V = @4ecqVy (Vg = {v €
V|oy(v) = g ® v} as a kG-comodule) with each V; a projective G-representation with
respect to the 2-cocycle ®,, namely for any e, f € G,v € V; we have

ed (fov) =, f)ef) > . (2.6)

The module structure on the tensor product Vy ® V3, is determined by

e> (X QY)=0.(g,h)(er X)@(erpY), X €V, Y €V, (2.7)
The associativity and the braiding constraints of ﬁg)ﬂ)‘b are given respectively by

av, vy, (X @Y)® Z) =®(e, f,9) ' X @ (Y © 2) (2.8)
RX®Y)=erY ®X (2.9)

foral X e V., Y eV, Z € V.
Let ® be a 3-cocycle on G as given in (2.4). One can verify directly that
$,0), = O, Vg, h € G. (2.10)

Suppose V, is (G, 5g)—representation, Vi is a (G, &)h)—representation, then V, @ V},
is a (G, :I;gh)—representation. In particular, the dual object V; of V; is a (G,igfl)-
representation and (V,)* = V,, see [16, Proposition 2.5] for details.

A twisted Yetter-Drinfeld module V' € ¥§)D? is called diagonal if V is direct sum
of 1-dimensional twisted Yetter-Drinfeld modules. For a simple twisted Yetter-Drinfeld
module V' in ﬁg)ﬂpq’, there exists some g € G such that V =V, and we define gy := g
in this case. Recall that a 2-cocycle ¢ on G is called symmetric if (g, h) = ¢(h, g) for all
h,g € G. By (2.6), it is not hard to show that a simple twisted Yetter-Drinfeld module
V with gy = g is 1-dimensional if and only if &)g is symmetric.

Let V be a nonzero object in ¥4 YD®. By T(V') we denote the tensor algebra in K& YD?®
generated freely by V. It is clear that T'(V') is isomorphic to ,,+ VO™ as a linear space,
where V®™ means w\/@‘/) ®V)---®V). This induces a natural N-graded structure

n—1
on T(V). Define a comultiplication on T(V) by A(X) = X ®1+10 X, VX €V, a
counit by ¢(X) = 0, and an antipode by S(X) = —X. These provide a graded Hopf
algebra structure on T'(V) in the braided tensor category &YD?®.
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Definition 2.3. The Nichols algebra B(V') of V is the quotient Hopf algebra T'(V)/I in
%ﬁg)ﬂ)@, where [ is the unique maximal graded Hopf ideal contained in @n22 Ve

A Nichols algebra B(V) is called of diagonal type if V' is diagonal. Suppose V =
D, Vi € K&YD? is direct sum of simple objects, then we will say that the rank of B(V')
is n. According to [16, Proposition 3.1], B(V) is a Z"-graded algebra with degV; = e,
where {e; : 1 <i < n} is a set of free generators of Z". For V € ¥6yD?  we will call
G the based group of V and B(V). Let V=V, ® Vo & --- @V, be direct sum of simple
Yetter-Drinfeld modules in ﬁgyp‘?, g; the degree of V; for 1 < i < n, the subgroup
Gv :={g1, g2, - - gn) Will be called the support group of V.

Next we will recall the definition of the twisting of a Nichols algebra through a 2-
cochain of G. Let (V,>,dr) € ﬁg)ﬂ)tb, and let J be a 2-cochain of G. There is a new
action >y of G on V determined by

J(g, )
gby; X = g> X 2.11
T(2,9) .
for homogeneous element X € V and g € G. Here © = deg(X) is the G-degree of X. We
denote (V,>7,61) by V7, and one can verify that V7’ € %ﬁg)ﬂ)q’*au). Moreover there is
a tensor equivalence

(Fr,00,02): £a¥D? — (GYDTO),
which takes V to V' and
(U V): (UaV) U V!, Y®Z— J(y,2) 'Y®Z

forYeU, ZeV.
Let B(V) be a Nichols algebra in X YD®. Then B(V)” is a Hopf algebra in X&)y D®*97
with multiplication o determined by

XoY = J(z,y)XY (2.12)
for all homogeneous elements X, Y € B(V), z = deg X, y = degY. Using the same ter-
minology as for coquasi-Hopf algebras, we say that B(V) and B(V)” are twist equivalent,

or B(V)” is a twisting of B(V)”.

Lemma 2.4. [14, Lemma 2.12] The twisting B(V)” of B(V) is a Nichols algebra in
KGYDPOT and B(V)? = B(V7).

2.8. Reduction

The study of Nichols algebras in ]%ligyD‘i’ is deeply related on the 3-cocycle ® on G.
Recall that a 3-cocycle @ on G is called an abelian 3-cocycle if J5VD?® is pointed, i.e.
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each simple object of y’D‘I’ is 1-dimensional. A key observation in [14] is that every
Nichols algebra in ]kgyD‘b is twist equivalent to a Nichols algebra in a normal Yetter-
Drinfeld category when ® is an abelian 3-cocycle. Suppose G = Zy,, X Zymy, X -+ X Ly,
e; is a generator of Z,,, for all 1 < i < n, and ® is an abelian 3-cocycle on G. Then up
to cohomology ® must be of the form

Dlef e eft el e H GO Gt @)

=1 1<s<t<n

Let H be a subgroup of G and ® a 3-cocycle on G, by ®5 we denote the restriction of
® on H. The following lemma follows (2.13) immediately.

Lemma 2.5.

(1). Each 3-cocycle of a finite cyclic group or direct sum of two finite cyclic groups is
abelian;

(2). Suppose B(V) € KGYD?® s a Nichols algebra of rank 1 or rank 2, then ®¢,, is an
abelian 3-cocycle on Gy .

Suppose G = Zp, X+ X L, = {g1) X -+ {gn). Associated to G there is a finite
group G defined by

()
I
N
3,
X
X
N
3I\J
Il
=
X
=
2

(2.14)
Let
GG, hig, 1<i<n (2.15)

be the canonical epimorphism. The following proposition is important for the study of
Nichol algebras of diagonal type.

Proposition 2.6. [14, Proposition 3.15] Suppose that ® is an abelian 3-cocycle on G. Then
7 ® is a 3-coboundary on G, namely, there is a 2-cochain J of G such that 0J = 7*®

Since the Yetter-Drinfeld module structure of B(V') is determined by the based group
G, while the braided Hopf algebra structure of B(V) and the braiding are determined
by the support group Gy. So if the braided Hopf algebra structure of B(V) is the only
concern, we can omit some Yetter-Drinfeld module information of B(V') and realize it in a
new twisted Yetter-Drinfeld category. Let B(V) € KGYD?® and B(U) € KEYDY | we will
say that B(V) is isomorphic to B(U) if there is a linear isomorphism F': B(V) — B(U)
which preserves the multiplication and comultiplication

For a twisted Yetter-Drinfeld module V' € yD ,weuse dy: V — kG RV to
denote the comodule structure map of V.
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Lemma 2.7 ([1/], Lemma 4.4). Suppose V- € ESYD* and U € KEYDY, where H is
a finite abelian group. Let Gy and Hy be the support groups of V. and U respectively.
If there is a linear isomorphism F:V — U and a group epimorphism w: Gy — Hy
such that:

dypoF = (mx F)ody,
F(gvv) =m(g)> F(v),
(I)|Gv = 7r*(\IJHU)

for any g € Gy, v € V. Then B(V) is isomorphic to B(U).

Let G and G be two finite groups and 7: G — G a group epimorphism, ¢: G — G be
a section of 7, that is m o v = idg. With these notations, we have following lemma.

Lemma 2.8. Let V € qu> Then there is an object 1% 6 yD”*‘I’ such that V. =V
as linear spaces and the Yetter-Drinfeld module structure is determined by

0y = (t®id) o oy, (2.16)
grv=mn(g)>v (2.17)

for any g € G, v € V. Moreover, we have B(V) = B(V).

Proof. We need to show that the space V with action and coaction of G defined by
(2.16) and (2.17) is a twisted Yetter—Drinfeld module in k& yD" P Let V=6

Then it is obvious that we have V = ) geG

all g € G. We only need to prove that V,, is a projective G-representation associated
to 2-cocycle m*®, (. Let e, f € G and v € V, we have

gGG
1(¢) such that V(g) V, as vector spaces for

*‘P(e u(9), f)
=70, 4 (e, flef > .
So we have proved that ﬁ(g) is a projective G-representation associated to the 2-

cocycle m*®,,y, and hence Ve %:gyl)”*q’. The isomorphism B(V) = B(V) follows
from Lemma 2.7 immediately. O
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Let B(V) be a Nichols algebra in ¥X4YD®. By Lemma 2.8, B(V) is isomorphic to a
Nichols algebra B(f/) in ﬁg)}’l)”*q’. If @ is an abelian 3-cocycle, then there is a 2-cochain
J of G such that 8.J = 7*®. According to Lemma 2.4, B(V/ ') is a Nichols algebra in
tgyD, which is twist equivalent to B(V'). So we obtain the following proposition.

Proposition 2.9. Let ® be an abelian 3-cocycle and B(V)Abe a Nichols algebra in ﬁg)ﬂ)@.
Then B(V) is twist equivalent to a Nichols algebra in tg)ﬂ).

Let V € ﬁgyD'I’, if the action of the support group Gy on V is diagonal, then V has
a basis {X1, -+, X, } such that

ov(Xi) =0 @ Xi, gi>X; =q;; Xj, (2.18)

where ¢;; € k for 1 <,j < n. Such a basis {Xy,---,X,} is called a standard basis of
V. The following lemma follows from [14, Lemma 4.1] immediately.

Lemma 2.10. Let V € ﬁg)ﬂ)@, the following three conditions are equivalent:

(1). V has a standard basis.
(2). The action of support group Gy on 'V is diagonal.
(3). ¢, is an abelian 3-cocycle on Gy .

Now suppose V has a standard basis {X7, -+, X, }, then we can define a nondirected
graph D(V) associated to B(V) as follows:

1) There is a bijection ¢ from I = {1,2,...,n} to the set of vertices of D(V).

2) For all 1 < ¢ < n, the vertex ¢(i) is labeled by g;.

3) For all 1 < i,j < n, the number n;; of edges between ¢(i) and ¢(j) is either 0 or
1. If i = j or ¢;;q;5 = 1 then n;; = 0, otherwise n;; = 1 and the edge is labeled by
Qi; = Gijq;; forall 1 <i < j<n.

The diagram D(V) is called the generalized Dynkin diagram of B(V'). Note that a Nichols
algebra of diagonal type always has a generalized Dynkin diagram. It is also helpful to
point out that if the generalized Dynkin diagram D(V') exists, it does not depend on the
choice of the standard basis of V. It is not hard to see that if B(V') has a generalized
Dynkin diagram, then B(V”) also have the same generalized Dynkin diagram with B(V)
for any 2-cochain J of G. So combining this with Proposition 2.9, we have the following
important proposition.

Proposition 2.11. Let B(V) € ﬁ‘jgyz)‘l’ be a Nichols algebra with a standard basis. Then

B(V) is twist equivalent to a Nichols algebra B(U) in ﬁiglyl), and the two Nichols
\'4
algebras have the same generalized Dynkin diagrams.
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According to this proposition, all finite-dimensional Nichols algebras with a standard
basis can be determined by Heckenberger’s classification result of arithmetic root systems
[12]. Note that if B(V) is rank 1 or rank 2, then Gy must be a finite cyclic group or
direct product of two finite cyclic groups. According to (2.4), all the 3-cocycles on finite
cyclic group or direct product of two finite cyclic groups must be abelian. So a Nichols
algebra of rank 1 or rank 2 always has a standard basis. One of the main results in [16]
is as follows.

Proposition 2.12. [16, Proposition 3.18] Suppose V' € ﬁg)}Dq’ is a simple twisted Yetter-
Drinfeld module of nondiagonal type with degV = g. Then B(V) is finite dimensional if
and only if V is one of the following two types:

(@). grv=—v forallveV;
(I0). dim(V) =2 and g>v = (3v for allv € V, here (3 is a 3-rd primitive root of unity.

3. Nichols algebras

In this section, we will study Nichols algebras without a standard basis in ﬁjg)ﬂ)‘b,
where G is a finite abelian group and @ is a 3-cocycle on G. The main result is as follows.

Theorem 3.1. Suppose that B(V) € KSYD® has no standard basis, then B(V) is infinite
dimensional.

See Theorem 3.13 and Remark 3.14 for the proof. Since a Nichols algebra of rank 1
or 2 always has a standard basis, so our start point will be Nichols algebras of rank 3.

8.1. Nichols algebras of rank 3

Suppose B(V) € %ﬁgqu) is a Nichols algebra of rank 3. If ®¢,, is an abelian 3-cocycle
on Gy, then the dimension of B(V') can be determined by Proposition 2.11. So in this
subsection, we will mainly consider the case that ®,, is nonabelian.

Definition 3.2. Let o be a 2-cocycle on G. An element g € G is called an a-element if
a(g,h) = a(h,g) for all h € G.

Lemma 3.3. Suppose ® is a 3-cocycle on G, g € G, then g is a EI;g-element.

Proof. For each element h € G, we have

Y _ (I)(gvg7h)q)(gahvg) _ (I)(hvgvg)q)(gvhmg) ™Y
(bg(gv h) - <I>(g,g,h) - <I>(h,g,g) - (I)g(hag)' u

Lemma 3.4. Let G be a finite abelian group and ® a 3-cocycle on G. Then for any

g1, 92,93 € G, we have
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Dy, (92»93) _ Py, (93791) _ ‘I’gs<91,92) (3.1)

Dy (93,92)  Pgr(91.93)  Py,(92,91)

Proof. By definition of ég (see (2.5)), we have

Dy, (92,93)  P(91,92,93)P(g2,93,91)P(g3, 91, g2)

D, (93,92) P(92,91,93) (91, 93. 92) (g3, 92, 91)

Similarly,

D4,(93,91) Py, (91,92)  P(91,92,93)P(g92, 93, 91)P(93, 91, 92)

D, (91,93)  Pga(g2,01)  P(92,91,93)2(91, 93, 92)2(g5, 92, 91)

Thus we obtain (3.1). O

Next, we consider the structure of simple twisted Yetter-Drinfeld modules of nondi-
agonal type.

Lemma 3.5. Assume G = (g1,¢2,93) andV € %jgyl)@ is a simple twisted Yetter-Drinfeld

module with degV = g1. Then dim(V) = n, where n is the order of M If V is

g91(93:92)
nondiagonal, then n > 1 and there exists a basis {X1, X2, -+, Xn} of Vlsuch that
g> X, =aX;, 1<i<mn; (3.2)
) .
g X = p(Rel9298)viciy o (3.3)
@y, (93, 92)
g3l>Xi=Xi+1, ggDXn:’yXl, 1<i<n—1. (34)

Here a, B,v € k* satisfy

1

my

a™ = I @4(91.90), (3.5)
=1
mzfl .

B Dy, (92, 95), (3.6)
=1

my m371 _ )

Y o= Dy, (93,95), (3.7)

=1

where m; = |g;| is the order of g; for 1 <i < 3.
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Proof. Let g € G and v € V, m = |g|, by (2.5) we have

m—1
g5 (g0 (- (gov) =) = [ @alg.9")0.
=1
m

So it is obvious that the action of each element of G on V is diagonal. Moreover, by
Lemma 3.3, for any g € G and v € V' we have

91> (9> v) = Py, (91,9)(919) > v = g, (9,91)(991) > v = g (1 > v). (3.8)
The identity implies that the map
g:V—V v—gi>v

is an isomorphism of projective G-representations associated to ®,, . Since V is irre-
ducible, by Schur’s Lemma we have

grv=av, YveV

for some scalar o € k*. Since

91> (g1 (- (g1b0) H (91,910
— —
ma -

we get (3.2).

If n =1, wen have &)gl (92,93) = 591 (g3,92). It is clear that V is diagonal and hence
dim(V) = 1. In what follows, we assume that n > 2.

Take 0 # v € V such that go >v = B for some g € k*. Let s be the minimal positive
integer such that

g3 (g3 > (-~ (g3bv)---)) = v (3.9)
N ——

S

for some v € k*. Note that such integer s exits and s|mg since

93> (93> (-~ (gsbv) H (93, 95) (3.10)
N— —
ms3 -

Since g1 >v = av and V is an irreducible projective G-representation with respect to

®,,, V must be spanned by

{v, gz v, g3>(g3pv), -, 93> (93> (-~ (gz>v)---))}.
s—1
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In fact, let X; = gs> (g3 (- (g3>v)--+)),1 < i < s. Then we have go > X1 = 8X7,
—_—

i—1
and for all 1 < ¢ < s we have

g2 X =g2> (93> Xi_1) = E’gl (92, 93)(9293) > X1

d (3.11)
:~91 (92793)93 > (92 |>Xi71>-
q)gl (93392)
So inductively we get
o ,
oo X; = (D92 08) gy g o (3.12)

Dy, (93, 92)

Thus {X;, Xo, -, X} spans a sub-Yetter-Drinfeld module of V. As V' is simple, it is
spanned by {X1, Xo, -+, Xs}.

Next we show that dimV = s. Let (s be a primitive s-th roots of unit and €; be
an s-th root of 7. Then €1,e2 = €1(s, -+ , €5 = €,¢S71 are all s-th roots of +. For all
1 <4< s, we set

Vi=Xi+6 ' Xo+ 46 X+ 460 X,
Then for all 1 <7 < s we have

g3[>Yi:g3[>(X1+€;1X2+"'+511_ZX1+"~—|—6}_SXS)
=X b Kot X TN AT
:EiX1+X2—|—e;1X3_|_..._i_eilleHl.”_'_G?,sXs .

=€;Y;.
Then Y;’s are clearly linearly independent since they correspond to different eigenvalues.
Then {Y7,---,Y,} forms a basis of V, and {¢;|1 < i < s} are all eigenvalues of g3 when

viewed as a linear transformation on V.
At last we prove that s = n. Notice that

93> (g2> Y1) q)gl (93,92)(9392) > Y1

)

Py, (93,92)
92,93) (3.14)

24, (93, 92)

)

Inductively we have
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93> (g2 (92> (- (g2>Y1) -+ +)))

- (3.15)
— (M) €192 (g2t (- (g2Y7) - ++)).

(1)91(92393) —

So we have g3 > (g2> (92> (-~ (922Y1) - +))) = €1 92> (92> (- - (92>Y1) - +)), and hence
—_— —

n n

2> (g2 (---(g2>Y1)--+))) = kY
—_

n

for some scaler k € k*. This implies that Y7,g2>Y7, - ;g2 (g2 > (- -+ (g2>Y1) - -+ )) span
(S ——
n—1

a sub-Yetter-Drinfeld module of V', and hence V since V is simple. So we obtain that
dim(V) = n and hence s = n.
The equations (3.3) and (3.4) follow from

mo—1
920 (92> (- (920X1) ) = ] o (92,95) X1,
—_— i
mo i=1
93> (g3 (-~ (93> X)) = H (93,95 X1, O
—_—— iy
ms3

By this lemma, we have the following important proposition.

Proposition 3.6. Let V = V; @ Vo & V3 € ﬁg)ﬂ)‘b be a direct sum of simple twisted
Yetter-Drinfeld modules with G = Gy . Then we have

dim(V;) = dim(Va) = dim(V3). (3.16)

Proof. Let degV; = g;, 1 <i < 3. Then G = (g1, 92,93) since Gy = G. By Lemma 3.5,

91(92753) , dim(V3) = ‘M dim(V3) = ‘M and (3.16)
(93,92) (91,93) (92,91 )

follows from Lemma 3 4 O

we have dim(V;) = ‘

Now we can consider nondiagonal Nichols algebras of rank 3. Firstly, we have the
following propositions.

Proposition 3.7. Let V =V, Vo V3 E qu) be a direct sum of simple twisted Yetter-
Drinfeld modules with G = Gy. If dlm(Vl) = dim(V;) = dim(V3) > 3, then B(V) is
infinite dimensional.

Proof. Let degV; = g;, 1 < ¢ < 3. Since G = Gy, we have G = (g1, g2,93). Let

L01(92:93) | Then dim(V;) = dim(Vz) = dim(V3) = n

| =m;,1 <3 <3, and n =
|g7l| v - - ’ (bgl (93792)
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by Proposition 3.6. According to Proposition 2.12, if V; is not a simple twisted Yetter-
Drinfeld module of type (I) for some i € {1,2, 3}, then B(V;) must be infinite dimensional,
hence B(V) is infinite dimensional.

In the following, we assume that Vi, Vo, V3 are simple twisted Yetter-Drinfeld modules
of type (I). By Lemma 3.5, V] has a basis {X1, Xa, -+, X,,} such that

g1 I>XZ‘ = _Xi7 1< < n, (317)

(?91 (927 93) )if

'X;, 1<i<n, (3.18)
Dy, (935 92)

g2> X; = P1

where 872 = [["% " @, (g2, gb). Here (3.17) follows from the fact that V; is a simple
twisted Yetter-Drinfeld module of type (I).
Similarly, V5 also has a basis {Y7,Ys,--- ,Y,} such that

g2>Y;=-Y;, 1<i<n, (3.19)

(?92 (glv 93))

=y, 1<i<n, (3.20)
Dy, (93,91)

g1>Y; =B

where g =[] ®,,(91,9%). Let H = Gviav, and U = &5 Since H is direct sum
of two cyclic groups, ¥ must be an abelian 3-cocycle on H by Lemma 2.5. This implies
V1 @ Vs is a twisted Yetter-Drinfeld module of diagonal type in ﬁgyp‘l’. In the following,
let W = k{X7, Xo, X3,Y7,Y5, Y5} be a submodule of V1 &V, € ﬁg)ﬂ)‘l’. We will consider

the generalized Dynkin diagram D(W).

If 8182 # (%)k for k € {0,41,+2}, then the generalized Dynkin diagram
92\93,91

D(W) (with unlabeled edges) associated to B(W) is

AvAN
AVAYA

By Proposition 2.11, B(W) is twist equivalent to a Nichols algebra B(U) in tg)ﬂl and
B(U) has the same generalized Dynkin diagram with B(W). Comparing the classifica-
tion of generalized Dynkin diagrams of finite-dimensional Nichols algebras in [12], B(U)
and hence B(W) must be infinite dimensional. This implies that B(V; @ V3) is infinite
dimensional. _

If 182 = (%“?;)k for some k € {0,+1,£2}, then the generalized Dynkin diagram
92\93,91

D(W) (with unlabeled edges) has a subdiagram of the form
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-1 O/O—O\O -1
N

Comparing the classification result in [12], again we have B(W) is infinite dimensional,
and hence B(V; ® V,) is infinite dimensional.

In either case B(V; @ V) is infinite dimensional, hence so is B(V) since B(V; @ Va)
is a subalgebra of B(V). O

Proposition 3.8. Let V =V, ®&Vop V3 € ]ﬁ;g)}D(b be a direct sum of simple twisted Yetter-
Drinfeld modules and G = Gy . Assume that dim(V;) = dim(Vy) = dim(V3) = 2, and at
least one of V;’s is of type (II). Then B(V) is infinite dimensional.

Proof. Without loss of generality, we can assume that V;j is a simple twisted Yetter-
Drinfeld module of type (II). In what follows we will prove that B(V; @ V2) (similarly
for B(V4 @ V3)) is infinite dimensional, which forces B(V) is infinite dimensional.

Let g; = deg(V;) and m; = |g;| for 1 <14 < 3, H := Gy,ev, = (01,92) and ¥ = P|y.
Then ¥ is an abelian 3-cocycle on H by Lemma 2.5, and hence B(V; @ V) is a Nichols
algebra of diagonal type in ﬁgyl)@. By Lemma 3.5, V; has a basis {X;, X5} such that

g1 >X; = C3Xi, 1 =1,2; (321)
g2> X1 = f1X1, goa Xo = —1 Xo. (3.22)

Here (; is a root of unit satisfying 87"? = H;ﬂjfl igl (g2, 95). In the following, we need

to consider two cases: (a) V; has type (I), (b) V; has type (II).
(a). Since dim(V2) = 2, by Lemma 3.5, V5 has a basis {Y7, Y2} such that

9> Y=Y, i=12 (3.23)
g1>Y1 = 3oY1, ga> Yo = —f35Y5. (3.24)

Here 83" = H;';ll_l (f)gz (g1, 4%). If 31 B2 # +1, the generalized Dynkin diagram D(V; & V3)
(with unlabeled edges) of B(V}, @ V3) is

-1 -1

€] €

If 8182 = £1, the generalized Dynkin diagram D(V; @ Va) is
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-1 G e G, -1

O O

By Proposition 2.11, B(V1 @ Vz) is twist equivalent to some Nichols algebra B(U) in
ﬁ:g\yD, and B(U) have the same generalized Dynkin diagram with B(V; @ V53). By check-
ing up the classification of generalized Dynkin diagrams of finite-dimensional Nichols
algebras of diagonal type in [12], we can see that B(U) and hence B(V} & V) is infinite
dimensional.

(b). By Lemma 3.5, V3 has a basis {Y7, Y2} such that
92> Y; = (Y, i =12 (3.25)
1> Y1 = oY1, ga> Yy = =[5 (3.26)

Here 85" = H;ilfl EISQQ (g1,9%) and k € {1,2} is a fixed number. If 3135 # £1, then the
generalized Dynkin diagram D(V; & V) (with unlabeled edges) of B(Vy & V2) is

If 5182 = +1, then the generalized Dynkin diagram D(V; @ V3) (with unlabeled edges)
of B(Vi @ Va) is

In both cases B(V;@®V>) is infinite dimensional by the classification of generalized Dynkin
diagrams of finite-dimensional Nichols algebras of diagonal type in [12]. O

It remains to consider B(Vy @ Vo @ V3) where Vi, Vs, Vs are simple twisted Yetter-
Drinfeld modules of type (I) and dim(V;) = 2, 1 < ¢ < 3. We have the following theorem.

Theorem 3.9. Let Vi, Vo, Vs € KGYD?® be simple Yetter-Drinfeld modules of type (I) such
that dim(V;) = 2, deg(V;) = ¢;,1 < i <3 and G = {g1) x {g2) x g3). Then the Nichols
algebra B(Vy @ Vo @ V3) is infinite dimensional.

The proof of the theorem is quite technical and lengthy. To avoid digressing from the
present main theme, we postpone the proof to the next section. With the help of this
theorem, we can prove the following proposition.
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Proposition 3.10. Let V = V; @ Vo, @ V3 € ﬁ‘jgqu’ be a direct sum of simple Yetter-
Drinfeld modules and G = Gy . If dim(V;) = dim(V2) = dim(V3) = 2 and Vi, V5, V3 are
all simple twisted Yetter-Drinfeld modules of type (I), then B(V) is infinite dimensional.

Proof. Let g; = deg(V;) and m; = |g;| for i = 1,2,3. Let G = (g1) x {(g2) X (g3) be
the abelian group with free generators g, gs, g3 such that |g;| = m; for 1 < i < 3.
Then it is obvious that there is a group epimorphism 7: G — G such that 7 (g;) = g;,
1 <i<3. Let t.: G — G be a section of 7 (that is m ot = idg) such that (g;) = g;
for all 1 <i < 3. For each i € {1,2,3}, let \Z E yD” "® bhe the twisted Yetter-Drinfeld
module associated to V; define by (2.16)-(2.17). Let V =V,®Vo® V5. By Lemma 2.8, we
have B(V) 2 B(V). On the other hand, by Theorem 3.9, B(V) is infinite dimensional,
thus B(V) is also infinite dimensional. O

Combining Proposition 3.7, 3.8 and 3.10, the following theorem is clear.

Theorem 3.11. Let B(V) € ﬁgyl)@ be a nondiagonal Nichols algebra of rank 3 with
Gy = G. Then B(V) is infinite dimensional.

Corollary 3.12. Let B(V) € ﬁg)}Dq’ be a Nichols algebra of rank 3, and ¢, a nonabelian
3-cocycle on Gy . Then B(V) is infinite dimensional.

Proof. Let H = Gy and ¥ = ®p. Then the Nichols algebra B(V) can be realized in
KHyDY and the rank of B(V) must be greater than or equal to 3. For each i € {1,2,3},
let U; be a nonzero simple twisted Yetter-Drinfeld submodule of V; and U = Uy ®Us ®Us.
It is clear H = Gy. By Lemma 2.10, U is nondiagonal since W is nonabelian on H = Gy,
thus Uy, Us, Us are all nondiagonal in K2 YDY. Now B(U) is infinite dimensional by
Theorem 3.11, and so is B(V) since B(U) ¢ B(V). O

3.2. The general case

In this subsection, we will give a classification of finite-dimensional Nichols algebras
in kGqu’ where G is a finite abelian group and @ is a 3-cocycle on G. Firstly, we have
the following theorem.

Theorem 3.13. Let B(V) € KGYD?® such that ®¢,, is nonabelian. Then B(V) is infinite
dimensional.

Proof. By Lemma 2.7, B(V) can be realized in ]kg"yD‘I"Gv Since each 3-cocycle of
cyclic group or direct sum of two cyclic groups is abelian, so the rank of B(V) must be
greater than or equal to 3 because ®|g,, is nonabelian. Thus B(V) is infinite dimensional
by Corollary 3.12. O
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Remark 3.14. Since the conditions “®|q, is abelian” and “B(V') has a standard basis”
are equivalent by Lemma 2.10, Theorem 3.13 is equivalent to Theorem 5.1.

We draw the following immediate consequences.

Corollary 3.15. Suppose B(V) € %ﬁgqu) is a finite-dimensional Nichols algebra and
G = Gy. Then B(V) must be of diagonal type.

Corollary 3.16. Suppose B(V) € ]ﬁjgyD{) is a finite-dimensional Nichols algebra. Then
we have

(1). ®|g, is abelian and V has a standard basis;
(2). B(V) is isomorphic to a Nichols algebra of diagonal type in ig“j)}Dq’Gv.

Proof. (1). It follows from Theorem 3.13 and Lemma 2.10. (2). By Lemma 2.8, B(V)
is isomorphic to a Nichols algebra in %‘(gg YD®Ev . Since ®¢,, is abelian, every Nichols
algebra in ]%lzg“ijq)Gv is diagonal. O

3.8. Classification

Next we will present a classification of finite-dimensional Nichols algebras in %‘(gyl)‘b.
We need the notion of arithmetical root systems. The reader is refereed to [12] (or [14])
for the detailed definition.

Let A, g be an arithmetic root system, where E = {ei,--- ,e,} is a set of free
generators of Z™ and x is a bicharacter of Z™. For each positive root o € A, g, define
do = X(, @). The height of « is defined by

ht(a) = |gal, if go # 1 is a root of unity; (3.27)
] 0, otherwise. '

Let V € ﬁ‘zgyD‘I’ be a twisted Yetter-Drinfeld module with a standard basis
{Y1,---,Y,}, deg(Y;) = gi,1 < i < n. Then there is a pair (x, F) associated to V,
where E = {e1, -+ ,e,} is a set of free generator of Z™ and x is a bicharacter of Z"
given by

giDY—j :X(eivej)}/}a 1 SZ,] STL (328)

Remark 3.17. Let {Y{,--- Y} be another standard basis and let (X', E') be the associated
bicharacter basis pair. Then there is an isomorphism 7: Z™ — Z™ such that

T(E)=E, X(r(e),7(e;)) = x(ei ;)

foralll <i,j <n.
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Definition 3.18. A twisted Yetter-Drinfeld module V' & ﬁlzgypq’ is said to be of finite
type if

(1) V has a standard basis;
(2) A, g is an arithmetic root system and ht(a) < oo for all @ € A, g, where (x, F) is
a pair associated to V determined by (3.28).

Theorem 3.19. Let V € ]%;gypq’ be a twisted Yetter-Drinfeld module. Then B(V') is finite
dimensional if and only if V' is of finite type.

Proof. Firstly, suppose that B(V) is finite dimensional. By Corollary 3.16, ®|g,, is an
abelian 3-cocycle on Gy, thus V has a standard basis. Let H = Gy, ¥ = ®|g,,, and
(x; E) a pair associated to V. By Proposition 2.11, B(V) is isomorphic to a Nichols
algebra B(U) in ﬁg)ﬂD. Note that U can be obtained from V by change of based groups
and twisting, which do not change the pair (y, E) associated to V, thus (x, F) is also
a pair associated to U. On the other hand, since B(U) € ¥ YD is finite dimensional,
A, g is an arithmetic root system. Moreover, B(U) is finite dimensional implies that the
nilpotent index of a root vector of each root o € A, g is finite, i.e., ht(a) < oo for all
o€ Ax,E“

Conversely, Suppose that V' is finite type. By Proposition 2.11, B(V) is twist equiva-
lent to a Nichols algebra B(U) in %ﬁg\yl), and B(V) have the same generalized Dynkin
diagram with B(V'). So A, g is the arithmetic root system of B(U). Furthermore, B(U)
is finite dimensional since ht(a) < oo for all & € A, g. This implies B(V) is finite
dimensional since B(V) is twist equivalent to B(U). O

4. The proof of Theorem 3.9

The main task of this section is to prove Theorem 3.9. Firstly, we will consider a
special case.

4.1. A special case

In this subsection, we will prove the following proposition.

Proposition 4.1. Suppose G = {e) x (f) x (g) is a finite abelian group, ® is a 3-cocycle
on G given by

(I)(eh fi("gls,ejl fj29j3, ek1 szgks) _ (_1)i1j2k3 (4.1)

fOT’ all0 S il,jlakl < m, 0 S ig,jg,kQ <mi, 0 S ig,jg,kg < ms, where mi = ‘6‘77712 =
|f],ms =|g|. Let U,V,W € ﬁgypq’ be simple twisted Yetter-Drinfeld modules of type (1)
such that deg(U) = e, deg(V) = f, deg(W) = g and dim(U) = dim(V) = dim(W) = 2.
Then B(U @V @ W) is infinite dimensional.
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In what follows, the twisted Yetter-Drinfeld category ]ﬂigy’D(b and objects U, V, W in
it are assumed satisfying the conditions of this proposition.

Lemma 4.2. The simple twisted Yetter-Drinfeld module U has a basis {X1, Xo} satisfying

e> X;=—-X;, 1=1,2, (42)
fo X1 =p5X1, foXe=—51Xs, (4.3)
g> X1 =71X2, 9> Xo =7 Xy, (4.4)

Here 81,71 € k such that 57" =1, 7" = 1.

Proof. Since U is of type (I) and dim(U) = 2, by Lemma 3.5, U has a basis {X7, X5}
such that

ep X! = X!, i=1,2,
foX)=0X], foXe=—F1Xo,
g X1 = X5, 9> X5 =1 X].

Here 87 = 1,7} 2 = 1. Let v € k such that /2 = /. It is clear that 7™ = 1. Let
X1 = X1, Xo = 5-Xj, we get (4.2)-(44). O

Similar to Lemma 4.2, we have the following two lemmas.

Lemma 4.3. The simple twisted Yetter-Drinfeld module V' has a basis {Y1,Y2} satisfying

fb}/i:—}/;-, =12 (45)
gDYI = BZS/IugD}/Q = _52}/27 (46)
e> Y] = aYs,en Yo = Y5, (4.7)

Here 9,72 € k are numbers such that f5'° =1, y5"* = 1.

Lemma 4.4. The simple twisted Yetter-Drinfeld module W has a basis {Z1, Z2} such that

gbv Z; = _Zi7 1= 1,2, (48)
[>Zy = B321, f> 2o = —P32o, (4.9)
e 21 =y3Za,e> Zy = Y321, (4.10)

where B3,v3 € k are numbers 83 = 1,75 = 1.

In the following, (8:,7:), @« = 1,2,3 will be called structure constants of U, V, W
respectively. It is clear that the structure constants depend on the choice of the bases of
UvVv,w.
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Remark 4.5. The structure constants (8;,7v:),¢ = 1,2,3 can be changed to be (—05;,7;),
(Bi, —vi) and (=B, —y;) if we transform the bases of U,V and W respectively. For
example, let X; = X5, X5 = X, the constants will be changed to be (—f1,71). Let
X1 = X1,X2 = —Xo, the constants will be (31, —71). Let X1 = X5, Xo = — X, the
constants will be changed to be (=81, —71).

Proposition 4.6. Keep the previous notations, we have

(1). If Bafs # £1, then B(V @ W) is infinite dimensional.
(2). If p1y2 # £1, then B(U @ V) is infinite dimensional.
(3). If m1ys # £1, then B(U & W) is infinite dimensional.

Proof. (1). Let H = (f) x (g) and ¥ = ®|p. Then it is obvious that ¥ =1 and B(V &
W) e ﬁljgyD is a Nichols algebra of diagonal type with a standard basis {Y1, Y2, Z1, Z>}.
The generalized Dynkin diagram D(V @ W) is

-1 -1

Comparing the classification result of finite-dimensional Nichols algebras in X2 YD, we
obtain that B(V @ W) is infinite dimensional.

(2). Let Y1 =Y, + Yy, Yy =Y — Ys. Then it is clear that {Y,Y5} is a basis of V
which satisfies

foY,=-Y,; i=1,2,

e D?l = ’)/2?1, e D?Q = 7"}/2?2,

gr Y1 =[2Y0,g>Y, = BoY1.
It is clear that {X7, X2,71,72} is a standard basis of U @ V. The rest of the proof is
similar to (1).

(3). Let X1 = X1 + Xo, X2 = X1 — Xo. Then it is clear that {X;, X,} is a basis of

U which satisfies

6l>71' = 771‘, = 1,2,

gbyl = 7171,91>72 = —71727

fo X1 =p5Xs frXo= 01X

Similarly, let Z = Z; + Zo, Zy = Z1 — Zo. Then {Z, Z5} is a basis of W and we have
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gD?i:_ih i:1727
e>Zy =321, f>Zy = —V32,
[>Z1=P3Zs,e>Zy=—PB3Z;.

Thus {X1, X2, 71,725} is a standard basis of U @ W. The same as (1), if y1y3 # +1,
then B(U @ W) is infinite dimensional. 0O

If the structure constants of U, V, W satisfy B85 = 1, S172 = +1 and 173 = £1,
then one can show that B(U @& V), B(U @ W), B(V & W) are all finite dimensional, the
proof is the same as that of [16, Proposition 5.1]. In what follows, we will prove that
B(U @V @ W) is infinite dimensional. For Z3-graded homogeneous elements X,Y €
BUaV @ W), we denote deg(X ® Y) = (deg(X), deg(Y)).

Proposition 4.7. Suppose B283 = £1, P12 = £1 and y1v3 = £1, then BU GV @ W) is
infinite dimensional.

Proof. Let T(U @V @ W) be the tensor algebra of U@V & W, Z the maximal N-graded
Hopf ideal contained in @, ~,(U @ VEBW)®W. Thus BUeVeW)=TUasVaeW)/I
by definition. According to Proposition 2.9, B(U &V @& W) is Z3-graded with deg(U) =
e1,deg(V) = ez, deg(W) = e3, where {e1, e2,e3} are free generators of Z3. Next we will
prove that B(U @ V @ W) is infinite dimensional. Without loss of generality, we can
assume that 8383 = —1, f172 = —1 and ~1v3 = —1 by Remark 4.5.

The remaining proof will be divided into four steps.

Step 1. We will consider the comultiplications of some elements in the spaces ady (W),
ady(V), ady(W) Cc BU®V @ W). In ady (W) we have

ady, (Z1) =Y1Z1 — (fv Z1)Y1 = Y12, — 332, Y7,
thus

A(ady, (21)) =AM1Zy — B3Z1 Y1)
=1eV1+YV1)(1®Z1+7Z1®1)
-1+ 22 1)(1eY1+Yi®1)

(4.11)
=1VZ1 +VMZ1 @1+ 5321 0T +Y1 @ Z;
— 53[1 QI+ M RQ1+Y1Q21+71® Yl]
=1® adyl (Zl) + adyl (Z1) ®1+2Y] ® 7.
Similarly, we have
A(adyl (Zg)) =1® adyl (ZQ) + ady1 (ZQ) ® 1, (412)

A(adyz (Zl)) =1® adyz (Zl) + ady2 (Zl) ®1, (413)
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A(ady,(Z2)) = 1 ®@ ady, (Z2) + ady, (Z2) @ 1 + 2Y2 @ Zs. (4.14)

The identities (4.12)-(4.13) imply that ady, (Z2) = 0,ady,(Z1) = 0.
In ady (V), we have
(adx, (Y1) = (V1) +ady, (Y1) ® 1+ X, © (V1 + Y2), (4.15)
A(ady, (Y2)) = 1 @ ady, (Ya2) + adx, (Y2) ® 1 + X; ® (Y1 + Y2), (4.16)
(adx,(Y1)) = (Y1) +adx, (Y1) @ 1+ Xp @ (Y1 - Y2), (4.17)
( (Y2)) = (Y2) +adx,(Y2) @ 1 + Xo ® (Yo — V7). ( )

It is easy to see that

aXm (Yl) — aXm (Yz) =
adX2 (Yl) + adX2 (Yg) =

0, (4.19)
0.

Similarly in ady (W), we have

A(aXm (Zl)) =1® adxl (Zl) + aXm (Zl) ®14+ Xl ® Zl + X2 ® ZQ, (421)
A(adxl (Zg)) =1®adyx, (ZQ) + adyx, (ZQ) R1+X1® 2+ X9 ® 21, (4.22)
A(adxz(Zl)) 1®adXQ(Z1)+adX2(Zl)®1+X2®Z1+X1®Z2, (423)
A(adx2 (ZQ)) =1® adX2 (ZQ) + adX2 (ZQ) ®14+ X1 (24 Zl + X2 X ZQ. (424)

By (4.21)-(4.24) we get
aXm (Zl) - adX2 (ZQ) =0, (4.25)
ady, (Z2) — adx, (Z1) = 0. (4.26)

Step 2. We will prove that ady, (ady,(Z1)), adx,(ady,(Z2)), ady, (adx,(Z2)) and
ady, (adx,(Z71)) are linear independent in B(U & V & W). Firstly we have

Aladx, (ady, (Z1)))
= A(X;ady, (Z1) — e (ady, (Z1))X7)
= A(X; ady, (Z1) + 273 ady, (Z2) X1)
=1eXi+X1®1)(1®ady,(Z1)+ady,(Z1) ® 1 +2Y1 @ Z4) (4.27)
+7273(1 ® ady, (Z2) + ady, (Z2) ® 1 +2Y2 ® Zo)(1 ® X1 + X1 ® 1)
=1 ®adx, (ady, (Z1)) + adx, (ady, (Z1)) ® 1 + Xy ® ady, (Z1)
+ X5 @ ady, (Z2) — 272Ys @ ady, (Z1) — 2X1Y1 ® Z) — 272Y2 Xo @ Zs.

Here the third identity follows from (4.11) and (4.14). Similarly we have
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A(adx, (ady, (22)))
= A(XQ ady2 (ZQ) —eb (ady2 (ZQ))XQ)
= A(Xzady, (Z2) + 123 ady, (Z1)X2)

:41®X§+x§®1m1®amgzg+mh4@)®1+ma®zg (4.28)

+ Y273 (1 & adyl (Zl) + adyl (Zl) ®1+2Y1® Zl)(l R X+ Xo® 1)
=1® adX2 (ady2 (ZQ)) + adX2 (ady2(Z2)) ®R1-X1® ady1 (Zl)
+ X2 &® ady2 (Zg) - 2’}/21/1 & adX2 (Zg) — 2X2}/2 ® ZQ - 2’)’2Y1X1 X Zl,

A(ady, (adx, (Z2)))

= A(Yqadx, (Z2) — fr (adx, (Z2))Y1)
= A(Y1adx,(Z2) — 5185 adx, (Z2)Y7)
=(le1+Y1®1)

x(1®muAZﬂ+mu4&ﬁ®1+X¢®Z§+X§®ZQ (4.29)

8185 (1@ adx, (22) +adx, () 0 1+ X, © o+ Xa 0 21 )
x(1eY1+Y1e1)
=1® ady, (adx, (Z2)) + ady, (adx, (Z2)) @ 1 + (Y1 4+ Y2) ® adx, (Z2)
+ /1 X2 ®ady, (Z1) + (Y1 X2 — S1X2Y1) ® Z1 + ady, (X1) ® Zo

and
A(ady, (adx,(Z1)))
=AYz adx, (Z1) — [ > (adx, (£1))Y2)

= A(Yz2adx,(Z1) — 183 adx, (Z1)Y2)
=10 +Y2®1)

x(1®muxaj+muga)®1+Xg®zy+xa®zg (4.30)
*5153(1 ®adx,(Z1) + adx,(Z1) @ 1 + Xo ® Z1 + Xy ®Zz)
x(1eYs+Y,®1)

=1® a’dYQ (adxz (Zl)) + adY2 (adx2 (Zl)) ®1+ (}/2 - Yl) ® adX2 (Zl)
— f1X1 ®ady, (Z2) + (Yo X1 + 61 X1Y2) ® Z2 + ady, (X2) ® 7.

Now let k1, ka2, k3, k4 € k such that

k1 aXm (adYI (Zl)) + k2 adXz (adyz (Z2)) + k3 adY1 (aXm (ZQ)) + k4 ade (adXQ (Zl)) =0.
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By (4.27)-(4.30), the homogeneous term in the comultiplication of the left hand side of
the above identity with degree (es,e; + e3) is

— 2k172Y2 ® adx, (Z1) — 2ka72Y1 ® adx, (Z2)
+ kg(Yl + Yz) ® adx, (ZQ) + ]{74(Y2 —-Y1) ®adx,(Z1)
= —2’}/2(]%‘1}/2 + k2Y1) X adxl (Zl) + ((k‘g — ki4)Y1 + (k3 + k4)Y2) ® adxl (ZQ)
On the other hand, this element must be zero since comultiplication keep Z3-degrees.
This implies k; = k2 = k3 = kg = 0 because adx, (Z1) and adx, (Z3) are linear indepen-

dent by (4.21)-(4.22) and {Y7, Y2} is a basis of V.
Step 3. Let

E= a’dxl (a‘dyl (Zl))a F= adXz (adY'z (ZQ))7
M = ady1 (aXm (ZQ)), N = adyz(adx2(Z1)).

We will prove that adg(M) # 0 and can not be linear spanned by M2 M N, NM, N2.
Firstly we have

(efg)> E

= Derg(e, N)Pesglef.g)ev {f > g (adx, (adv, (20))]}

= —e>{f>[gp (adx, (ady, (21))]}

= —Bomred> [f > (adx, (ady, (Z1))] (4.31)
= Pam1P1Bse > (adx, (ady, (21))

= B2 51837273 (adx, (ady, (Z2))

= _F

Similarly, one can show that (efg)> F = E,(efg)> M = —N,(efg)> N = M. By
(4.27)-(4.30), the comultiplications of E, F;, M and N can be written as the forms of

AE)=E®1+1@E+Y Ei®E,, (4.32)
AF)=F®1+1®@F+Y F1®F, (4.33)
AM)=M®1+1@M+> My ® Mo, (4.34)
AN)=N®1+1®N+Y N;®N», (4.35)

where deg(E2),deg(F2),deg(Mz),deg(N2) € {e1 + e, e2 + e3,e3}. In the following, let
Z be the subset of Z3 defined by

Z = {k1€1 + koeo + k383| ki, ko < k‘3,min{]€1, ]412} < k3} (436)
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Here min{ky, k2} means the smaller number of {ky, ko }. It is clear that deg(E>), deg(F),
deg(M3), deg(N3) € Z. Moreover, for all homogeneous elements X,Y,Z € B{U @V @
W) such that deg(X),deg(Y) € Z, deg(Z) = k(e1 + e2 + e3), we have deg(XY) €
Z, deg(XZ) =deg(ZX) € 2.

By (4.32)-(4.35), we have

A(adg(M))

=A(EM —efgr ME)=A(EM + NE)
:(E®1+1®E+ZE1®E2)(M®1+1®M+ZM1®H2) (437)
+(N®1+1®N+ZN1®N2)(E®1+1®E+ZE1®E2)
=adp(M)@1+1®adg(M)+ E@ M+ FRN+ Y Ti ® T,

where

ZT1®T2 = (E®1+1®E)(ZW1 ®M2)+(ZE1 ®Ey)(M®1+1® M)
+(N@1+1@N)D E1®E)+ () N1@No)(E®1+1® E)
+(ZE1 ®F2)(ZM1 ®M2) + (ZN1 ®N2)(ZE1 ®E2).

It is easy to see that deg(T3) € Z, so A(adg(M)) # 0 since E® M + F ® N # 0 and
deg(M) ¢ Z,deg(N) ¢ Z. Next consider the comultiplications of M?, M N, NM, N2.
Since

AMY) =(M1+1@M+> M @Ma)(M@1+1®M+ > M ®My)
=MR1+1aM?*+(M-N)®@M+(Me1+1® M)(>_ M@ M,)

+O M@ M) (M @1+10 M)+ (> My @ Ms)(Y My ® Moy).

The term in A(M?) with degree (e; + e + e3,e1 + ez +e3) is (M — N) ® M. Similarly,
the terms in A(MN),A(NM) and A(N?) with degree (e + ez + e3,€1 + €2 + e3) are
M®&(N+M), N (M — N) and (M + N)® N respectively. Now suppose that there
exist ki, ko, k3, k4 such that

adp(M) = kyM? + koM N + ksNM + kyN>. (4.38)

Considering the terms with degree (e; + es + e3, e1 + e2 + e3) in the comultiplications of
the both sides of (4.38), we obtain

EQM+F®N
= k(M = N)® M) + koM & (N + M) + ksN @ (M — N) + ks(M + N) @ N
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=M®[(k1 + ko)M + (k2 + k4)N] + N @ [(ks — k1)M + (ks — k3)N].

But this is impossible since E, F, M, N are linear independent. We have proved that
adg(M) can not be linearly spanned by M2 M N, NM, N2

Step 4. We will prove that (adg(M))™ # 0 for all n € N inductively, and this clearly
implies that B(U®V ®@W) is infinite dimensional. In Step 3, we have show that adg (M) #
0. Next suppose (adg(M))"~1 £ 0.

By (4.37), Aladg(M)) =adpg(M)®@1+1@adpg(M)+ EQ M+ FQ N+ > T @ T>,
where deg(T) € Z. Thus the terms in A((adg(M))™) with degrees of the form

(k(er +ea+es),l(er +ex+e3)), k,leN
must be contained in
adg(M)®1+1®adg(M)+ E® M+ F® N|".
So the term in A((adg(M))™) with degree ((2n — 2)(e1 + e2 + e3),2(e1 + €2 + e3)) is
n(adp(M))" ' @adg(M) +S1 @ M?> + S @ MN + S @ NM + S, ® N2,

where S1, Sa, S3, S4 are certain elements with degree (2n—2)(e; +ea+e3). By hypothesis,
we have n(adg(M))" ! ® adg(M) # 0. On the other hand, since adg(M) can not be
spanned by M2, M N, NM, N?, we obtain

n(adg(M))" ' @adp(M) +S1 ® M? 4+ So @ MN 4+ S5 @ NM + S; @ N? # 0.
This implies A((adg(M))™) # 0 and hence (adg(M))™ #0. O
It is clear that Proposition 4.1 follows from Propositions 4.6 and 4.7.

4.2. A proof of Theorem 3.9

In this subsection, let G = (g1) X {g2) X g3), ® be a nonabelian 3-cocycle on G,
Vi, Vo, V3 € %ﬁg)ﬂ)@ be simple twisted Yetter-Drinfeld modules of type (I) (see Proposi-
tion 2.12) such that dim(V;) = 2, deg(V;) = g; for 1 < i < 3. In what follows, we denote
m; = gi|, 1 =1,2,3. By (2.4), we have

k1 k
(g1 g2t gl gl gt 9t 91)

) [jl+k

3 cri L] [Lst
1X2% S Cstit
ot U ECZR | e

=1 1<s<t<3

(4.39)

Js+ s

] <0123ilj2 k3
(m1,m2,m3)’

where 0 < ¢g < myfor1 <1 <3,0<¢cy <mgforl <s<t<3,0<c3 <
(mq,m2,m3). Furthermore, we have the following lemma.
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Lemma 4.8. With the notations above, we have c123 = (7"1’";42’”13), that is

Cclgskljzig _ (_1)k1j2i3' (440)

(my,ma,m3z) —

Proof. By Lemma 3.5, dim(V;) = ‘M

or 3 IH] (93 92) r # SlnCe d |[](‘/;) — f!
<7 1 S 9 we ha\/e

g1 (93792

(I)gl (92, 93)

-1 (4.41)
(bgl (g3a 92)

By (4.39) and (4.41), we obtain

P
M é(glag2ag3) C(rl,ff,mz)ms) -1. O
Dy, (93, 92)

Proof of Theorem 3.9. Let ¥ and I" be the 3-cocycles of G given by

(gl ggt®, g g2 gl gV gt g1®) = ( 1)iizks, (4.42)
bk czu[ Cotit[L mfs]
T(gg2g%, g1 91201, 0¥ gt g5) =TI, G H1<s<t<3€“ - . (4.43)

By (4.39) and Lemma 4.8, we have & =T x V. By (2.13), T' is an abelian 3-cocycle of
G. Let G = (g1) x {g2) x (g3) such that |g;| = m?,1 <i < 3, and 7: G — G be the
epimorphism determined by

m(gi) =g, 1 <i <3 (4.44)
Let t: G —» G be the section of given by
ug) =gl 0<1<m, (4.45)

Then we have an object V = Vy @ Vo & Vs € tg)ﬂ)”*‘b defined by (2.16)-(2.17), and
B(V) 2 B(V) by Lemma 2.8. By Proposition 2.6, 7*T is a 3-coboundary of G. Let J be
the 2-cochain of G such that 0J = 7*I". So we have

OJ ™ - 7*® = (7*T) 1 - 7*(YT) = 7* 0.

By Lemma 2.4, we have

Il

B’ = B7) € $aypor e _ KGypry,

Note that deg(‘N/iJfl) = deg(V;) = g; for 1 <i < 3, and
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* i1 i 1 Ji _J2 _jz ki1 ko _k
(g ey e, e e’ e’ e et er)

i1 i2 93 J1 J2 I3 k1 ko k3

= U(m(gy'grer’), (g1 g’ er’), (g1 81’ 81”))

= V(g 0r° g g1 91 ot o 91 on”)

— (_1)k1j2i3
for all 0 < iy, j;, ky < m?,1 <1< 3. By Proposition 4.1, B(f/)‘r1 is infinite dimensional.
So B(V) and B(V) are also infinite dimensional. O

5. Finite quasi-quantum groups over abelian groups

In this section, we will give a classification of finite-dimensional coradically graded
pointed coquasi-Hopf algebras over finite abelian groups.

Let M = @;>0M; be a coradically graded pointed coquasi-Hopf algebra over a finite
abelian group G. Then My = (kG, ®) for a 3-cocycle ® on G. Let R = @;>0R[i] be the
coinvariant subalgebra of M. With these notations, we have

Theorem 5.1. Assume that M 1is finite dimensional. Then coinvariant subalgebra R of
M is a Nichols algebra in ﬁgyp‘l’.

Proof. First we have Ggj;j = Gr for R is coradically graded. Since R is finite dimen-
sional, we have B(R[1]) is also finite dimensional since B(R[1]) is a subquotient of R.
This implies that @, ,, is an abelian 3-cocycle on Ggyyj by Corollary 3.16. So we have
R = B(R][1]) by [14, Proposition 5.1]. O

Now we can give a classification of finite-dimensional coradically graded pointed
coquasi-Hopf algebras over finite abelian groups.

Theorem 5.2.

(1). LetV € %ﬁg)ﬂ){) be a twisted Yetter-Drinfeld module of finite type. Then B(V)#kG
18 a finite-dimensional pointed coquasi-Hopf algebra.

(2). Let M be a finite-dimensional coradically graded pointed coquasi-Hopf algebra over
a finite abelian group, My = (kG, ®). Then we have M = B(V)#KG for a twisted
Yetter-Drinfeld module of finite type V € ﬁligqu).

Proof. (1). It follows from Theorem 3.19 that B(V) is finite dimensional, thus B(V)#kG
is finite dimensional.

(2). Let R be the coinvariant subalgebra of M. Then M = R#KkG. Let V = RI1].
Then by Theorem 5.1, R = B(V) is a Nichols algebra in X§YD®. So M = B(V)#kG for
the twisted Yetter-Drinfeld module V', and V is of finite type since M and hence B(V)

is finite dimensional. O
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Finally, we will consider the generation problem of pointed finite tensor categories.
We partially prove the following conjecture due to Etingof, Gelaki, Nikshych and Ostrik.

Conjecture 5.3. Every pointed finite tensor category over a field of characteristic zero is
tensor generated by objects of length two.

In fact, this conjecture can be viewed as a generalization of Andruskiewitsch-Schneider
conjecture. Let C be a pointed finite tensor categories. Then it is well known that C =
comod(M) for a finite-dimensional pointed coquasi-Hopf algebra M, see [9] for details.
In [16], we prove the following proposition.

Proposition 5.4. [16, Proposition 4.10] Let C be a pointed finite tensor category, and M
a finite-dimensional pointed coquasi-Hopf algebra such that C = comod(M). Then C is
tensor generated by objects of length two if and only if M is generated by group-like
elements and skew-primitive elements.

With the help of Theorem 5.2 and Proposition 5.4, we can prove the following theorem.

Theorem 5.5. Let C be a pointed finite tensor category over a field of characteristic zero
such that G(C) is an abelian group. Then C is tensor generated by objects of length two.

Proof. Let M be a finite-dimensional pointed coquasi-Hopf algebra such that C =
comod(M). By Proposition 5.4, we only need to show that M is generated by group-like
elements and Skew—prlmltlve elements. Let k be the based field of M, K the algebraically
closure of k. Let M = M ®; K. Then M is also a pointed coquasi-Hopf algebra with
the structure induced from that of M, and it is obvious that M is generated by group-
like elements and skew-primitive elements if and only if M is generated by group-like
elements and skew-primitive elements. On the other hand, we have gr(ﬁ ) = B(V)#kG
by Theorem 5.2, where G = G(C) and V is a twisted Yetter-Drinfeld module of finite
type in ﬁg)}Dq’ for some 3-cocycle ® on G. Thus gr(]\7 ), and hence M are generated
by group-like elements G and skew-primitive elements V. Therefore M is generated by
group-like elements and skew-primitive elements. O
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