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1. Introduction

As a continuation to a series of previous works [13,14,16], this paper completes the 
classification problem of finite-dimensional coradically graded pointed coquasi-Hopf al
gebras over abelian groups. Throughout, we work over an algebraically closed field k of 
characteristic zero. Unless stated otherwise, in this paper all spaces, maps, (co)algebras, 
(co)modules, and categories, etc., are over k.

The classification of finite-dimensional pointed Hopf algebras over finite abelian groups 
was completed over the last two decades, and a systematic approach (in particular Weyl 
groupoids and arithmetic root systems) was established, see [1,3,4,11,12]. Meanwhile, 
Etingof and Gelaki proposed to classify pointed finite tensor categories. By the Tannakian 
formalism [8], this amounts to a classification of certain finite quasi-quantum groups, 
namely finite-dimensional elementary quasi-Hopf algebras, or dually finite-dimensional 
pointed coquasi-Hopf algebras. In the pioneering works [5--7,10,2], a few examples and 
classification results of such algebras, and consequently the associated pointed finite 
tensor categories, are thus obtained. In [13,14,16], the authors of the present paper 
continue the study of the classification problem of finite quasi-quantum groups and 
several interesting classification results are also obtained. To explain this and our main 
result of this paper, we need some concrete notations.

Once and for all, let G be a finite abelian group and Φ be a 3-cocycle on G. Based 
on an analog of the lifting method in the theory of finite-dimensional pointed Hopf 
algebras, a complete understanding of the Nichols algebras in the twisted Yetter-Drinfeld 
module category kGkG𝒴𝒟Φ is the crux for the classification of finite-dimensional pointed 
coquasi-Hopf algebras. A twisted Yetter-Drinfeld module V ∈ kG

kG𝒴𝒟Φ is said to be of 
diagonal type, if it is a direct sum of 1-dimensional twisted Yetter-Drinfeld modules. 
The associated Nichols algebra B(V ) is called diagonal if V is so. Let H be a pointed 
coquasi-Hopf algebra over G, and gr(H) the coradically graded coquasi-Hopf algebra 
associated to H. The coinvariant subalgebra R of gr(H) will be a twisted Yetter-Drinfeld 
module in kGkG𝒴𝒟Φ for certain Φ, and H is called diagonal if R is diagonal as a twisted 
Yetter-Drinfeld module. In [13,14], we classified all finite-dimensional Nichols algebras of 
diagonal type in kGkG𝒴𝒟Φ and proved that every finite-dimensional pointed coquasi-Hopf 
algebra of diagonal type must be the form of B(V )#kG.

The aim of this paper is to study Nichols algebras of nondiagonal type and the main 
result is the following (see Theorem 3.1 for an equivalent form).

Theorem 0.1. Let B(V ) ∈ kG
kG𝒴𝒟Φ be a Nichols algebra of nondiagonal type with GV =

G. Then B(V ) is infinite dimensional.

Here GV is the support group of V (see the paragraph after Definition 2.3). Under 
assumption that GV = G, which is natural for us since the braided Hopf algebra structure 
of B(V ) is determined by GV rather than G (see the paragraph after Proposition 2.6), our 
result tells us that every finite-dimensional Nichols algebra B(V ) ∈ kG

kG𝒴𝒟Φ must be of 
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diagonal type finally, which already was classified in our previous works. As consequences, 
we can get the structure of general finite-dimensional pointed coquasi-Hopf algebras now 
(see Theorems 5.1 and 5.2).

Theorem 0.2. If M is a finite-dimensional pointed coquasi-Hopf algebra over finite abelian 
group G, then gr(M) ∼ = B(V )#kG for a twisted Yetter-Drinfeld module of finite type 
V ∈ kG

kG𝒴𝒟Φ.

In [8], Etingof, Gelaki, Nikshych and Ostrik conjecture that every pointed finite tensor 
category over a field of characteristic zero is tensor generated by objects of length 2. Let 
G(𝒞) be the set of isomorphism classes of simple objects in a pointed tensor category 𝒞. 
Then G(𝒞) is naturally a group under tensor product. Using our classification result and 
some useful result in [14], we can partially prove the conjecture (see Theorem 5.5).

Theorem 0.3. Let 𝒞 be a pointed finite tensor category over a field of characteristic zero. 
If the group G(𝒞) is abelian, then 𝒞 is tensor generated by objects of length 2.

The paper is organized as follows. In Section 2, we recall some necessary notions and 
particularly introduce a method to study Nichols algebras in kGkG𝒴𝒟Φ called change of 
based groups. Sections 3 and 4 are designed to give a proof of the above Theorem 0.1. 
The last section is devoted to the classification of finite-dimensional pointed coquasi-Hopf 
algebras and the generation problem of pointed finite tensor categories.

2. Preliminaries

In this section, we recall some necessary notions and basic facts about pointed coquasi
Hopf algebras, twisted Yetter-Drinfeld modules and Nichols algebras. The reader is 
referred to [8,13,14] for related concepts and notations.

2.1. Pointed coquasi-Hopf algebras

A coquasi-Hopf algebra is a coalgebra (H,Δ, ε) equipped with a compatible quasi
algebra structure and a quasi-antipode. Namely, there exist two coalgebra homomor
phisms

m : H ⊗H −→ H, a⊗ b ↦→ ab and μ : k −→ H, λ ↦→ λ1H ,

a convolution-invertible map Φ : H⊗3 −→ k called the associator, a coalgebra antimor
phism S : H −→ H and two functions α, β : H −→ k such that for all a, b, c, d ∈ H the 
following equalities hold:

a1(b1c1)Φ(a2, b2, c2) = Φ(a1, b1, c1)(a2b2)c2,
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1Ha = a = a1H ,

Φ(a1, b1, c1d1)Φ(a2b2, c2, d2) = Φ(b1, c1, d1)Φ(a1, b2c2, d2)Φ(a2, b3, c3),

Φ(a, 1H , b) = ε(a)ε(b).

S(a1)α(a2)a3 = α(a)1H , a1β(a2)S(a3) = β(a)1H ,

Φ(a1, S(a3), a5)β(a2)α(a4) = Φ−1(S(a1), a3, S(a5))α(a2)β(a4) = ε(a).

The triple (S, α, β) is called a quasi-antipode. H is called a pointed coquasi-Hopf algebra 
if (H,Δ, ε) is a pointed coalgebra, i.e., every simple comodule of H is 1-dimensional.

Let C be a coalgebra, the coradical C0 of C is the sum of all simple subcoalgebras of 
C. Fix a coalgebra C with coradical C0, define Cn inductively as follows: for each n ≥ 1, 
define

Cn = Δ−1(C ⊗ Cn−1 + C0 ⊗ C).

Then we get a filtration C0 ⊂ C1 ⊂ · · ·Cn ⊂ · · · , which is called the coradical filtration 
of C. A coquasi-Hopf algebra has a coradical filtration since it is a coalgebra.

Given a coquasi-Hopf algebra (H,Δ, ε,m, μ,Φ, S, α, β), let {Hn}n≥0 be its coradical 
filtration, and let

grH = H0 ⊕H1/H0 ⊕H2/H1 ⊕ · · · ,

the corresponding coradically graded coalgebra. Then naturally grH inherits from H a 
graded coquasi-Hopf algebra structure. The corresponding graded associator grΦ satisfies 
gr Φ(ā, b̄, c̄) = 0 for all homogeneous elements ā, b̄, c̄ ∈ grH unless they all lie in H0. 
Similar conditions hold for grα and grβ. A coquasi-Hopf algebra H is called coradically 
graded if H ∼ = gr(H) as coquasi-Hopf algebras.

If H is a pointed coquasi-Hopf algebra, then H0 is a pointed cosemisimple coquasi
Hopf algebra, which is determined by a group G together with a 3-cocycle on G as 
follows.

Example 2.1. Let G be a group. Clearly the group algebra kG is a Hopf algebra with 
Δ(g) = g ⊗ g, S(g) = g−1 and ε(g) = 1 for any g ∈ G. Let ω be a normalized 3-cocycle 
on G, i.e.

ω(ef, g, h)ω(e, f, gh) = ω(e, f, g)ω(e, fg, h)ω(f, g, h), (2.1)

ω(f, 1, g) = 1 (2.2)

for all e, f, g, h ∈ G. By linearly extending, ω : (kG)⊗3 → k becomes a convolution
invertible map. Define two linear functions α, β : kG → k by

α(g) := ε(g) and β(g) := 1 
ω(g, g−1, g)
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for any g ∈ G. Then kG together with these ω, α and β makes a coquasi-Hopf algebra, 
which will be written as (kG,ω) in the following. The comodule category of (kG,ω)
forms a tensor category, which is called a Gr-category and denoted by VecωG.

Let us now consider the construction of Gr-categories which will be especially impor
tant in this paper. The crux to determine all the Gr-categories is to give a complete list 
of the representatives of the 3-cohomology classes in H3(G,k∗) for all groups G. How
ever, when G is a finite abelian group, the problem was solved in [14], and a list of the 
representatives of H3(G,k∗) can be given as follows.

Let N denote the set of nonnegative integers, Z the ring of integers, and Zm the cyclic 
group of order m. Any finite abelian group G is of the form Zm1×· · ·×Zmn

with mj ∈ N

for 1 ≤ j ≤ n. Denote by 𝒜 the set of all N-sequences

(c1, . . . , cl, . . . , cn, c12, . . . , cij , . . . , cn−1,n, c123, . . . , crst, . . . , cn−2,n−1,n) (2.3)

such that 0 ≤ cl < ml, 0 ≤ cij < (mi,mj), 0 ≤ crst < (mr,ms,mt) for 1 ≤ l ≤ n, 1 ≤
i < j ≤ n, 1 ≤ r < s < t ≤ n, where cij and crst are ordered in the lexicographic order 
of their indices. We denote by c the sequence (2.3) in the following. Let gi be a generator 
of Zmi

, 1 ≤ i ≤ n. For any c ∈ 𝒜, define

ωc : G×G×G −→ k∗

[gi11 · · · ginn , gj11 · · · gjnn , gk1
1 · · · gkn

n ] ↦→ (2.4)
n ∏︂

l=1 
ζ
clil[

jl+kl
ml

]
ml

∏︂
1≤s<t≤n

ζ
cstit[ js+ks

ms
]

mt

∏︂
1≤r<s<t≤n

ζcrstirjskt

(mr,ms,mt).

Here and below ζm stands for an m-th primitive root of unity. According to [14, Propo
sition 3.8], {ωc | c ∈ 𝒜} forms a complete set of representatives of the normalized 
3-cocycles on G up to 3-cohomology.

2.2. Nichols algebras of twisted Yetter-Drinfeld modules

Nichols algebras are very important for the construction of pointed coquasi-Hopf 
algebras. For our purpose, we are mainly concerned with the Nichols algebras in the 
Yetter-Drinfeld module category of the coquasi-Hopf algebra (kG,Φ), where G is a finite 
abelian group and Φ is a normalized 3-cocycle on G. To emphasize Φ, we denote the 
Yetter-Drinfeld category of (kG,Φ) as kGkG𝒴𝒟Φ. For convenience, we call an object in 
kG
kG𝒴𝒟Φ a twisted Yetter-Drinfeld module. Define

˜︁Φg(x, y) = Φ(g, x, y)Φ(x, y, g)
Φ(x, g, y) (2.5)
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for all g, x, y ∈ G. By direct computation one can show that ˜︁Φg is a 2-cocycle on G. 
The construction of category of twisted Yetter-Drinfeld modules can be summarized as 
follows, the detailed computations can be found in [14,15].

Definition 2.2. An object in kGkG𝒴𝒟Φ is a G-graded vector space V = ⊕g∈GVg (Vg = {v ∈
V |δV (v) = g ⊗ v} as a kG-comodule) with each Vg a projective G-representation with 
respect to the 2-cocycle ˜︁Φg, namely for any e, f ∈ G, v ∈ Vg we have

e ▷ (f ▷ v) = ˜︁Φg(e, f)(ef) ▷ v. (2.6)

The module structure on the tensor product Vg ⊗ Vh is determined by

e ▷ (X ⊗ Y ) = ˜︁Φe(g, h)(e ▷ X) ⊗ (e ▷ Y ), X ∈ Vg, Y ∈ Vh. (2.7)

The associativity and the braiding constraints of kGkG𝒴𝒟Φ are given respectively by

aVe,Vf ,Vg
((X ⊗ Y ) ⊗ Z) = Φ(e, f, g)−1X ⊗ (Y ⊗ Z) (2.8)

R(X ⊗ Y ) = e ▷ Y ⊗X (2.9)

for all X ∈ Ve, Y ∈ Vf , Z ∈ Vg.

Let Φ be a 3-cocycle on G as given in (2.4). One can verify directly that

˜︁Φg
˜︁Φh = ˜︁Φgh, ∀g, h ∈ G. (2.10)

Suppose Vg is (G, ˜︁Φg)-representation, Vh is a (G, ˜︁Φh)-representation, then Vg ⊗ Vh

is a (G, ˜︁Φgh)-representation. In particular, the dual object V ∗
g of Vg is a (G, ˜︁Φg−1)

representation and (V ∗
g )∗ = Vg, see [16, Proposition 2.5] for details.

A twisted Yetter-Drinfeld module V ∈ kG
kG𝒴𝒟Φ is called diagonal if V is direct sum 

of 1-dimensional twisted Yetter-Drinfeld modules. For a simple twisted Yetter-Drinfeld 
module V in kGkG𝒴𝒟Φ, there exists some g ∈ G such that V = Vg and we define gV := g

in this case. Recall that a 2-cocycle φ on G is called symmetric if φ(g, h) = φ(h, g) for all 
h, g ∈ G. By (2.6), it is not hard to show that a simple twisted Yetter-Drinfeld module 
V with gV = g is 1-dimensional if and only if ˜︁Φg is symmetric.

Let V be a nonzero object in kGkG𝒴𝒟Φ. By T (V ) we denote the tensor algebra in kGkG𝒴𝒟Φ

generated freely by V . It is clear that T (V ) is isomorphic to 
⨁︁

n≥0 V
⊗−→n as a linear space, 

where V ⊗−→n means (· · · ((⏞ ⏟⏟ ⏞
n−1 

V ⊗V )⊗V ) · · ·⊗V ). This induces a natural N-graded structure 

on T (V ). Define a comultiplication on T (V ) by Δ(X) = X ⊗ 1 + 1 ⊗ X, ∀X ∈ V , a 
counit by ε(X) = 0, and an antipode by S(X) = −X. These provide a graded Hopf 
algebra structure on T (V ) in the braided tensor category kGkG𝒴𝒟Φ.
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Definition 2.3. The Nichols algebra B(V ) of V is the quotient Hopf algebra T (V )/I in 
kG
kG𝒴𝒟Φ, where I is the unique maximal graded Hopf ideal contained in 

⨁︁
n≥2 V

⊗−→n .

A Nichols algebra B(V ) is called of diagonal type if V is diagonal. Suppose V =⨁︁n
i=1 Vi ∈ kG

kG𝒴𝒟Φ is direct sum of simple objects, then we will say that the rank of B(V )
is n. According to [16, Proposition 3.1], B(V ) is a Zn-graded algebra with degVi = ei, 
where {ei : 1 ≤ i ≤ n} is a set of free generators of Zn. For V ∈ kG

kG𝒴𝒟Φ, we will call 
G the based group of V and B(V ). Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vn be direct sum of simple 
Yetter-Drinfeld modules in kGkG𝒴𝒟Φ, gi the degree of Vi for 1 ≤ i ≤ n, the subgroup 
GV := ⟨g1, g2, · · · gn⟩ will be called the support group of V .

Next we will recall the definition of the twisting of a Nichols algebra through a 2
cochain of G. Let (V, ▷, δL) ∈ kG

kG𝒴𝒟Φ, and let J be a 2-cochain of G. There is a new 
action ▷J of G on V determined by

g ▷J X = J(g, x)
J(x, g)g ▷ X (2.11)

for homogeneous element X ∈ V and g ∈ G. Here x = deg(X) is the G-degree of X. We 
denote (V, ▷J , δL) by V J , and one can verify that V J ∈ kG

kG𝒴𝒟Φ∗∂(J). Moreover there is 
a tensor equivalence

(FJ , φ0, φ2) : kG
kG𝒴𝒟Φ → kG

kG𝒴𝒟Φ∗∂(J),

which takes V to V J and

φ2(U, V ) : (U ⊗ V )J → UJ ⊗ V J , Y ⊗ Z ↦→ J(y, z)−1Y ⊗ Z

for Y ∈ U, Z ∈ V .
Let B(V ) be a Nichols algebra in kGkG𝒴𝒟Φ. Then B(V )J is a Hopf algebra in kGkG𝒴𝒟Φ∗∂J

with multiplication ◦ determined by

X ◦ Y = J(x, y)XY (2.12)

for all homogeneous elements X,Y ∈ B(V ), x = degX, y = deg Y . Using the same ter
minology as for coquasi-Hopf algebras, we say that B(V ) and B(V )J are twist equivalent, 
or B(V )J is a twisting of B(V )J .

Lemma 2.4. [14, Lemma 2.12] The twisting B(V )J of B(V ) is a Nichols algebra in 
kG
kG𝒴𝒟Φ∗∂J and B(V )J ∼ = B(V J).

2.3. Reduction

The study of Nichols algebras in kGkG𝒴𝒟Φ is deeply related on the 3-cocycle Φ on G. 
Recall that a 3-cocycle Φ on G is called an abelian 3-cocycle if kGkG𝒴𝒟Φ is pointed, i.e. 
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each simple object of kGkG𝒴𝒟Φ is 1-dimensional. A key observation in [14] is that every 
Nichols algebra in kGkG𝒴𝒟Φ is twist equivalent to a Nichols algebra in a normal Yetter
Drinfeld category when Φ is an abelian 3-cocycle. Suppose G = Zm1 ×Zm2 × · · ·×Zmn

, 
ei is a generator of Zmi

for all 1 ≤ i ≤ n, and Φ is an abelian 3-cocycle on G. Then up 
to cohomology Φ must be of the form

Φ(ei11 · · · einn , ej11 · · · ejnn , ek1
1 · · · ekn

N ) =
n ∏︂

l=1 
ζ
clil[

jl+kl
ml

]
l

∏︂
1≤s<t≤n

ζ
cstit[ js+ks

ms
]

mt . (2.13)

Let H be a subgroup of G and Φ a 3-cocycle on G, by ΦH we denote the restriction of 
Φ on H. The following lemma follows (2.13) immediately.

Lemma 2.5. 

(1). Each 3-cocycle of a finite cyclic group or direct sum of two finite cyclic groups is 
abelian;

(2). Suppose B(V ) ∈ kG
kG𝒴𝒟Φ is a Nichols algebra of rank 1 or rank 2, then ΦGV

is an 
abelian 3-cocycle on GV .

Suppose G = Zm1 × · · · × Zmn
= ⟨g1⟩ × · · · ⟨gn⟩. Associated to G there is a finite 

group ˆ︁G defined by

ˆ︁G = Zm2
1
× · · · × Zm2

n
= ⟨h1⟩ × · · · ⟨hn⟩ (2.14)

Let

π : ˆ︁G → G, hi ↦→ gi, 1 ≤ i ≤ n (2.15)

be the canonical epimorphism. The following proposition is important for the study of 
Nichol algebras of diagonal type.

Proposition 2.6. [14, Proposition 3.15] Suppose that Φ is an abelian 3-cocycle on G. Then 
π∗Φ is a 3-coboundary on ˆ︁G, namely, there is a 2-cochain J of ˆ︁G such that ∂J = π∗Φ.

Since the Yetter-Drinfeld module structure of B(V ) is determined by the based group 
G, while the braided Hopf algebra structure of B(V ) and the braiding are determined 
by the support group GV . So if the braided Hopf algebra structure of B(V ) is the only 
concern, we can omit some Yetter-Drinfeld module information of B(V ) and realize it in a 
new twisted Yetter-Drinfeld category. Let B(V ) ∈ kG

kG𝒴𝒟Φ and B(U) ∈ kH
kH𝒴𝒟Ψ, we will 

say that B(V ) is isomorphic to B(U) if there is a linear isomorphism F : B(V ) −→ B(U)
which preserves the multiplication and comultiplication.

For a twisted Yetter-Drinfeld module V ∈ kG
kG𝒴𝒟Φ, we use δV : V −→ kG ⊗ V to 

denote the comodule structure map of V .
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Lemma 2.7 ([14], Lemma 4.4). Suppose V ∈ kG
kG𝒴𝒟Φ and U ∈ kH

kH𝒴𝒟Ψ, where H is 
a finite abelian group. Let GV and HU be the support groups of V and U respectively. 
If there is a linear isomorphism F : V −→ U and a group epimorphism π : GV −→ HU

such that:

δU ◦ F = (π × F ) ◦ δV ,
F (g ▷ v) = π(g) ▷ F (v),

Φ|GV
= π∗(ΨHU

)

for any g ∈ GV , v ∈ V . Then B(V ) is isomorphic to B(U).

Let G and G be two finite groups and π : G → G a group epimorphism, ι : G → G be 
a section of π, that is π ◦ ι = idG. With these notations, we have following lemma.

Lemma 2.8. Let V ∈ kG
kG𝒴𝒟Φ. Then there is an object ˜︁V ∈ kG

kG𝒴𝒟π∗Φ such that ˜︁V = V

as linear spaces and the Yetter-Drinfeld module structure is determined by

δ ˜︁V = (ι⊗ id) ◦ δV , (2.16)

g ▷ v = π(g) ▷ v (2.17)

for any g ∈ G, v ∈ V . Moreover, we have B(V ) ∼ = B(˜︁V ).

Proof. We need to show that the space ˜︁V with action and coaction of G defined by 
(2.16) and (2.17) is a twisted Yetter-Drinfeld module in kGkG𝒴𝒟π∗Φ. Let V =

⨁︁
g∈G Vg. 

Then it is obvious that we have ˜︁V =
⨁︁

g∈G
˜︁Vι(g) such that ˜︁Vι(g) = Vg as vector spaces for 

all g ∈ G. We only need to prove that ˜︁Vι(g) is a projective G-representation associated 
to 2-cocycle π∗Φι(g). Let e, f ∈ G and v ∈ V , we have

e ▷ (f ▷ v) = π(e) ▷ (π(f) ▷ v)

= ˜︁Φg(π(e), π(f))π(ef) ▷ v

= Φ(g, π(e), π(f))Φ(π(e), π(f), g)
Φ(π(e), g, π(f)) ef ▷ v

= Φ(π ◦ ι(g), π(e), π(f))Φ(π(e), π(f), π ◦ ι(g))
Φ(π(e), π ◦ ι(g), π(f)) ef ▷ v

= π∗Φ(ι(g), e, f)π∗Φ(e, f, ι(g))
π∗Φ(e, ι(g), f) ef ▷ v

= ˜︃π∗Φι(g)(e, f)ef ▷ v.

So we have proved that ˜︁Vι(g) is a projective G-representation associated to the 2
cocycle π∗Φι(g), and hence ˜︁V ∈ kG

kG𝒴𝒟π∗Φ. The isomorphism B(V ) ∼ = B(˜︁V ) follows 
from Lemma 2.7 immediately. □
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Let B(V ) be a Nichols algebra in kGkG𝒴𝒟Φ. By Lemma 2.8, B(V ) is isomorphic to a 
Nichols algebra B(˜︁V ) in k ˆ︁G

k ˆ︁G𝒴𝒟π∗Φ. If Φ is an abelian 3-cocycle, then there is a 2-cochain 

J of ˆ︁G such that ∂J = π∗Φ. According to Lemma 2.4, B(˜︁V J−1) is a Nichols algebra in 
k ˆ︁G
k ˆ︁G𝒴𝒟, which is twist equivalent to B(V ). So we obtain the following proposition.

Proposition 2.9. Let Φ be an abelian 3-cocycle and B(V ) be a Nichols algebra in kGkG𝒴𝒟Φ. 
Then B(V ) is twist equivalent to a Nichols algebra in k ˆ︁G

k ˆ︁G𝒴𝒟.

Let V ∈ kG
kG𝒴𝒟Φ, if the action of the support group GV on V is diagonal, then V has 

a basis {X1, · · · , Xn} such that

δV (Xi) = gi ⊗Xi, gi ▷ Xj = qijXj , (2.18)

where qij ∈ k for 1 ≤ i, j ≤ n. Such a basis {X1, · · · , Xn} is called a standard basis of 
V . The following lemma follows from [14, Lemma 4.1] immediately.

Lemma 2.10. Let V ∈ kG
kG𝒴𝒟Φ, the following three conditions are equivalent:

(1). V has a standard basis.
(2). The action of support group GV on V is diagonal.
(3). ΦGV

is an abelian 3-cocycle on GV .

Now suppose V has a standard basis {X1, · · · , Xn}, then we can define a nondirected 
graph 𝒟(V ) associated to B(V ) as follows:

1) There is a bijection ϕ from I = {1, 2, . . . , n} to the set of vertices of 𝒟(V ).
2) For all 1 ≤ i ≤ n, the vertex ϕ(i) is labeled by qii.
3) For all 1 ≤ i, j ≤ n, the number nij of edges between ϕ(i) and ϕ(j) is either 0 or 

1. If i = j or qijqji = 1 then nij = 0, otherwise nij = 1 and the edge is labeled by ˜︂qij = qijqji for all 1 ≤ i < j ≤ n.

The diagram 𝒟(V ) is called the generalized Dynkin diagram of B(V ). Note that a Nichols 
algebra of diagonal type always has a generalized Dynkin diagram. It is also helpful to 
point out that if the generalized Dynkin diagram 𝒟(V ) exists, it does not depend on the 
choice of the standard basis of V . It is not hard to see that if B(V ) has a generalized 
Dynkin diagram, then B(V J) also have the same generalized Dynkin diagram with B(V )
for any 2-cochain J of G. So combining this with Proposition 2.9, we have the following 
important proposition.

Proposition 2.11. Let B(V ) ∈ kG
kG𝒴𝒟Φ be a Nichols algebra with a standard basis. Then 

B(V ) is twist equivalent to a Nichols algebra B(U) in k
ˆ︃GV

kˆ︃GV
𝒴𝒟, and the two Nichols 

algebras have the same generalized Dynkin diagrams.
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According to this proposition, all finite-dimensional Nichols algebras with a standard 
basis can be determined by Heckenberger’s classification result of arithmetic root systems 
[12]. Note that if B(V ) is rank 1 or rank 2, then GV must be a finite cyclic group or 
direct product of two finite cyclic groups. According to (2.4), all the 3-cocycles on finite 
cyclic group or direct product of two finite cyclic groups must be abelian. So a Nichols 
algebra of rank 1 or rank 2 always has a standard basis. One of the main results in [16] 
is as follows.

Proposition 2.12. [16, Proposition 3.18] Suppose V ∈ kG
kG𝒴𝒟Φ is a simple twisted Yetter

Drinfeld module of nondiagonal type with deg V = g. Then B(V ) is finite dimensional if 
and only if V is one of the following two types:

(I). g ▷ v = −v for all v ∈ V ;
(II). dim(V ) = 2 and g ▷ v = ζ3v for all v ∈ V , here ζ3 is a 3-rd primitive root of unity.

3. Nichols algebras

In this section, we will study Nichols algebras without a standard basis in kGkG𝒴𝒟Φ, 
where G is a finite abelian group and Φ is a 3-cocycle on G. The main result is as follows.

Theorem 3.1. Suppose that B(V ) ∈ kG
kG𝒴𝒟Φ has no standard basis, then B(V ) is infinite 

dimensional.

See Theorem 3.13 and Remark 3.14 for the proof. Since a Nichols algebra of rank 1
or 2 always has a standard basis, so our start point will be Nichols algebras of rank 3.

3.1. Nichols algebras of rank 3

Suppose B(V ) ∈ kG
kG𝒴𝒟Φ is a Nichols algebra of rank 3. If ΦGV

is an abelian 3-cocycle 
on GV , then the dimension of B(V ) can be determined by Proposition 2.11. So in this 
subsection, we will mainly consider the case that ΦGV

is nonabelian.

Definition 3.2. Let α be a 2-cocycle on G. An element g ∈ G is called an α-element if 
α(g, h) = α(h, g) for all h ∈ G.

Lemma 3.3. Suppose Φ is a 3-cocycle on G, g ∈ G, then g is a ˜︁Φg-element.

Proof. For each element h ∈ G, we have

˜︁Φg(g, h) = Φ(g, g, h)Φ(g, h, g)
Φ(g, g, h) = Φ(h, g, g)Φ(g, h, g)

Φ(h, g, g) = ˜︁Φg(h, g). □
Lemma 3.4. Let G be a finite abelian group and Φ a 3-cocycle on G. Then for any 
g1, g2, g3 ∈ G, we have
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˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)
=

˜︁Φg2(g3, g1)˜︁Φg2(g1, g3)
=

˜︁Φg3(g1, g2)˜︁Φg3(g2, g1)
. (3.1)

Proof. By definition of ˜︁Φg (see (2.5)), we have

˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)
= Φ(g1, g2, g3)Φ(g2, g3, g1)Φ(g3, g1, g2)

Φ(g2, g1, g3)Φ(g1, g3, g2)Φ(g3, g2, g1)
.

Similarly,

˜︁Φg2(g3, g1)˜︁Φg2(g1, g3)
=

˜︁Φg3(g1, g2)˜︁Φg3(g2, g1)
= Φ(g1, g2, g3)Φ(g2, g3, g1)Φ(g3, g1, g2)

Φ(g2, g1, g3)Φ(g1, g3, g2)Φ(g3, g2, g1)
.

Thus we obtain (3.1). □
Next, we consider the structure of simple twisted Yetter-Drinfeld modules of nondi

agonal type.

Lemma 3.5. Assume G = ⟨g1, g2, g3⟩ and V ∈ kG
kG𝒴𝒟Φ is a simple twisted Yetter-Drinfeld 

module with deg V = g1. Then dim(V ) = n, where n is the order of 
˜︁Φg1 (g2,g3)˜︁Φg1 (g3,g2)

. If V is 
nondiagonal, then n > 1 and there exists a basis {X1, X2, · · · , Xn} of V such that

g1 ▷ Xi = αXi, 1 ≤ i ≤ n; (3.2)

g2 ▷ Xi = β(
˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)

)i−1Xi, 1 ≤ i ≤ n; (3.3)

g3 ▷ Xi = Xi+1, g3 ▷ Xn = γX1, 1 ≤ i ≤ n− 1. (3.4)

Here α, β, γ ∈ k∗ satisfy

αm1 =
m1−1∏︂
i=1 

˜︁Φg1(g1, g
i
1), (3.5)

βm2 =
m2−1∏︂
i=1 

˜︁Φg1(g2, g
i
2), (3.6)

γ
m3
n =

m3−1∏︂
i=1 

˜︁Φg1(g3, g
i
3), (3.7)

where mi = |gi| is the order of gi for 1 ≤ i ≤ 3.
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Proof. Let g ∈ G and v ∈ V , m = |g|, by (2.5) we have

g ▷ (g ▷ (· · · (g⏞ ⏟⏟ ⏞
m 

▷v) · · · )) =
m−1∏︂
i=1 

˜︁Φg1(g, gi)v.

So it is obvious that the action of each element of G on V is diagonal. Moreover, by 
Lemma 3.3, for any g ∈ G and v ∈ V we have

g1 ▷ (g ▷ v) = ˜︁Φg1(g1, g)(g1g) ▷ v = ˜︁Φg1(g, g1)(gg1) ▷ v = g ▷ (g1 ▷ v). (3.8)

The identity implies that the map

g1 : V −→ V, v ↦→ g1 ▷ v

is an isomorphism of projective G-representations associated to Φg1 . Since V is irre
ducible, by Schur’s Lemma we have

g1 ▷ v = αv, ∀v ∈ V

for some scalar α ∈ k∗. Since

g1 ▷ (g1 ▷ (· · · (g1⏞ ⏟⏟ ⏞
m1

▷v) · · · )) =
m1−1∏︂
i=1 

˜︁Φg1(g1, g
i
1)v,

we get (3.2).
If n = 1, wen have ˜︁Φg1(g2, g3) = ˜︁Φg1(g3, g2). It is clear that V is diagonal and hence 

dim(V ) = 1. In what follows, we assume that n ≥ 2.
Take 0 ̸= v ∈ V such that g2 ▷ v = βv for some β ∈ k∗. Let s be the minimal positive 

integer such that

g3 ▷ (g3 ▷ (· · · (g3⏞ ⏟⏟ ⏞
s 

▷v) · · · )) = γv (3.9)

for some γ ∈ k∗. Note that such integer s exits and s|m3 since

g3 ▷ (g3 ▷ (· · · (g3⏞ ⏟⏟ ⏞
m3

▷v) · · · )) =
m3−1∏︂
i=1 

˜︁Φg1(g3, g
i
3) v. (3.10)

Since g1 ▷ v = αv and V is an irreducible projective G-representation with respect to ˜︁Φg1 , V must be spanned by

{v, g3 ▷ v, g3 ▷ (g3 ▷ v), · · · , g3 ▷ (g3 ▷ (· · · (g3⏞ ⏟⏟ ⏞
s−1 

▷v) · · · ))}.
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In fact, let Xi = g3 ▷ (g3 ▷ (· · · (g3⏞ ⏟⏟ ⏞
i−1 

▷v) · · · )), 1 ≤ i ≤ s. Then we have g2 ▷ X1 = βX1, 

and for all 1 ≤ i ≤ s we have

g2 ▷ Xi =g2 ▷ (g3 ▷ Xi−1) = ˜︁Φg1(g2, g3)(g2g3) ▷ Xi−1

=
˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)

g3 ▷ (g2 ▷ Xi−1).
(3.11)

So inductively we get

g2 ▷ Xi = (
˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)

)i−1βXi, 1 ≤ i ≤ s. (3.12)

Thus {X1, X2, · · · , Xs} spans a sub-Yetter-Drinfeld module of V . As V is simple, it is 
spanned by {X1, X2, · · · , Xs}.

Next we show that dimV = s. Let ζs be a primitive s-th roots of unit and ϵ1 be 
an s-th root of γ. Then ϵ1, ϵ2 = ϵ1ζs, · · · , ϵs = ϵ1ζ

s−1
s are all s-th roots of γ. For all 

1 ≤ i ≤ s, we set

Yi = X1 + ϵ−1
i X2 + · · · + ϵ1−l

i Xl + · · · + ϵ1−s
i Xs.

Then for all 1 ≤ i ≤ s we have

g3 ▷ Yi =g3 ▷ (X1 + ϵ−1
i X2 + · · · + ϵ1−l

i Xl + · · · + ϵ1−s
i Xs)

=X2 + ϵ−1
i X3 + · · · + ϵ1−l

i Xl+1 · · · + ϵ2−s
i Xs + ϵ1−s

i γX1

=ϵiX1 + X2 + ϵ−1
i X3 + · · · + ϵ1−l

i Xl+1 · · · + ϵ2−s
i Xs

=ϵiYi.

(3.13)

Then Yi’s are clearly linearly independent since they correspond to different eigenvalues. 
Then {Y1, · · · , Ys} forms a basis of V , and {ϵi|1 ≤ i ≤ s} are all eigenvalues of g3 when 
viewed as a linear transformation on V .

At last we prove that s = n. Notice that

g3 ▷ (g2 ▷ Y1) =˜︁Φg1(g3, g2)(g3g2) ▷ Y1

=
˜︁Φg1(g3, g2)˜︁Φg1(g2, g3)

g2 ▷ (g3 ▷ Y1)

=
˜︁Φg1(g3, g2)˜︁Φg1(g2, g3)

ϵ1g2 ▷ Y1.

(3.14)

Inductively we have
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g3 ▷ (g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
i 

▷Y1) · · · )))

=
(︂ ˜︁Φg1(g3, g2)˜︁Φg1(g2, g3)

)︂i

ϵ1 g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
i 

▷Y1) · · · )).
(3.15)

So we have g3 ▷ (g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
n 

▷Y1) · · · ))) = ϵ1 g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
n 

▷Y1) · · · )), and hence

g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
n 

▷Y1) · · · ))) = kY1

for some scaler k ∈ k∗. This implies that Y1, g2 ▷Y1, · · · , g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
n−1 

▷Y1) · · · )) span 

a sub-Yetter-Drinfeld module of V , and hence V since V is simple. So we obtain that 
dim(V ) = n and hence s = n.

The equations (3.3) and (3.4) follow from

g2 ▷ (g2 ▷ (· · · (g2⏞ ⏟⏟ ⏞
m2

▷X1) · · · )) =
m2−1∏︂
i=1 

˜︁Φg1(g2, g
i
2)X1,

g3 ▷ (g3 ▷ (· · · (g3⏞ ⏟⏟ ⏞
m3

▷X1) · · · )) =
m3−1∏︂
i=1 

˜︁Φg1(g3, g
i
3)X1. □

By this lemma, we have the following important proposition.

Proposition 3.6. Let V = V1 ⊕ V2 ⊕ V3 ∈ kG
kG𝒴𝒟Φ be a direct sum of simple twisted 

Yetter-Drinfeld modules with G = GV . Then we have

dim(V1) = dim(V2) = dim(V3). (3.16)

Proof. Let deg Vi = gi, 1 ≤ i ≤ 3. Then G = ⟨g1, g2, g3⟩ since GV = G. By Lemma 3.5, 
we have dim(V1) =

⃓⃓⃓ ˜︁Φg1 (g2,g3)˜︁Φg1 (g3,g2)

⃓⃓⃓
, dim(V2) =

⃓⃓⃓ ˜︁Φg2 (g3,g1)˜︁Φg2 (g1,g3)

⃓⃓⃓
, dim(V3) =

⃓⃓⃓ ˜︁Φg3 (g1,g2)˜︁Φg3 (g2,g1)

⃓⃓⃓
, and (3.16)

follows from Lemma 3.4. □
Now we can consider nondiagonal Nichols algebras of rank 3. Firstly, we have the 

following propositions.

Proposition 3.7. Let V = V1⊕V2⊕V3 ∈ kG
kG𝒴𝒟Φ be a direct sum of simple twisted Yetter

Drinfeld modules with G = GV . If dim(V1) = dim(V2) = dim(V3) ≥ 3, then B(V ) is 
infinite dimensional.

Proof. Let deg Vi = gi, 1 ≤ i ≤ 3. Since G = GV , we have G = ⟨g1, g2, g3⟩. Let 
|gi| = mi, 1 ≤ i ≤ 3, and n =

⃓⃓⃓ ˜︁Φg1 (g2,g3)˜︁Φg1 (g3,g2)

⃓⃓⃓
. Then dim(V1) = dim(V2) = dim(V3) = n
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by Proposition 3.6. According to Proposition 2.12, if Vi is not a simple twisted Yetter
Drinfeld module of type (I) for some i ∈ {1, 2, 3}, then B(Vi) must be infinite dimensional, 
hence B(V ) is infinite dimensional.

In the following, we assume that V1, V2, V3 are simple twisted Yetter-Drinfeld modules 
of type (I). By Lemma 3.5, V1 has a basis {X1, X2, · · · , Xn} such that

g1 ▷ Xi = −Xi, 1 ≤ i ≤ n, (3.17)

g2 ▷ Xi = β1(
˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)

)i−1Xi, 1 ≤ i ≤ n, (3.18)

where βm2
1 =

∏︁m2−1
i=1

˜︁Φg1(g2, g
i
2). Here (3.17) follows from the fact that V1 is a simple 

twisted Yetter-Drinfeld module of type (I).
Similarly, V2 also has a basis {Y1, Y2, · · · , Yn} such that

g2 ▷ Yi = −Yi, 1 ≤ i ≤ n, (3.19)

g1 ▷ Yi = β2(
˜︁Φg2(g1, g3)˜︁Φg2(g3, g1)

)i−1Yi, 1 ≤ i ≤ n, (3.20)

where βm1
2 =

∏︁m1−1
i=1

˜︁Φg2(g1, g
i
1). Let H = GV1⊕V2 and Ψ = ΦH . Since H is direct sum 

of two cyclic groups, Ψ must be an abelian 3-cocycle on H by Lemma 2.5. This implies 
V1⊕V2 is a twisted Yetter-Drinfeld module of diagonal type in kHkH𝒴𝒟Ψ. In the following, 
let W = k{X1, X2, X3, Y1, Y2, Y3} be a submodule of V1⊕V2 ∈ kH

kH𝒴𝒟Ψ. We will consider 
the generalized Dynkin diagram 𝒟(W ).

If β1β2 ̸= (
˜︁Φg2 (g1,g3)˜︁Φg2 (g3,g1)

)k for k ∈ {0,±1,±2}, then the generalized Dynkin diagram 

𝒟(W ) (with unlabeled edges) associated to B(W ) is

By Proposition 2.11, B(W ) is twist equivalent to a Nichols algebra B(U) in kˆ︂H
kˆ︂H𝒴𝒟, and 

B(U) has the same generalized Dynkin diagram with B(W ). Comparing the classifica
tion of generalized Dynkin diagrams of finite-dimensional Nichols algebras in [12], B(U)
and hence B(W ) must be infinite dimensional. This implies that B(V1 ⊕ V2) is infinite 
dimensional.

If β1β2 = (
˜︁Φg2 (g1,g3)˜︁Φg2 (g3,g1)

)k for some k ∈ {0,±1,±2}, then the generalized Dynkin diagram 

𝒟(W ) (with unlabeled edges) has a subdiagram of the form
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Comparing the classification result in [12], again we have B(W ) is infinite dimensional, 
and hence B(V1 ⊗ V2) is infinite dimensional.

In either case B(V1 ⊕ V2) is infinite dimensional, hence so is B(V ) since B(V1 ⊕ V2)
is a subalgebra of B(V ). □
Proposition 3.8. Let V = V1⊕V2⊕V3 ∈ kG

kG𝒴𝒟Φ be a direct sum of simple twisted Yetter
Drinfeld modules and G = GV . Assume that dim(V1) = dim(V2) = dim(V3) = 2, and at 
least one of Vi’s is of type (II). Then B(V ) is infinite dimensional.

Proof. Without loss of generality, we can assume that V1 is a simple twisted Yetter
Drinfeld module of type (II). In what follows we will prove that B(V1 ⊕ V2) (similarly 
for B(V1 ⊕ V3)) is infinite dimensional, which forces B(V ) is infinite dimensional.

Let gi = deg(Vi) and mi = |gi| for 1 ≤ i ≤ 3, H := GV1⊕V2 = ⟨g1, g2⟩ and Ψ = Φ|H . 
Then Ψ is an abelian 3-cocycle on H by Lemma 2.5, and hence B(V1 ⊕ V2) is a Nichols 
algebra of diagonal type in kHkH𝒴𝒟Ψ. By Lemma 3.5, V1 has a basis {X1, X2} such that

g1 ▷ Xi = ζ3Xi, i = 1, 2; (3.21)

g2 ▷ X1 = β1X1, g2 ▷ X2 = −β1X2. (3.22)

Here β1 is a root of unit satisfying βm2
1 =

∏︁m2−1
i=1

˜︁Φg1(g2, g
i
2). In the following, we need 

to consider two cases: (a) V2 has type (I), (b) V2 has type (II).
(a). Since dim(V2) = 2, by Lemma 3.5, V2 has a basis {Y1, Y2} such that

g2 ▷ Yi = −Yi, i = 1, 2; (3.23)

g1 ▷ Y1 = β2Y1, g2 ▷ Y2 = −β2Y2. (3.24)

Here βm1
2 =

∏︁m1−1
i=1

˜︁Φg2(g1, g
i
1). If β1β2 ̸= ±1, the generalized Dynkin diagram 𝒟(V1⊕V2)

(with unlabeled edges) of B(V1 ⊕ V2) is

If β1β2 = ±1, the generalized Dynkin diagram 𝒟(V1 ⊕ V2) is
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By Proposition 2.11, B(V1 ⊕ V2) is twist equivalent to some Nichols algebra B(U) in 
kˆ︂H
kˆ︂H𝒴𝒟, and B(U) have the same generalized Dynkin diagram with B(V1⊕V2). By check
ing up the classification of generalized Dynkin diagrams of finite-dimensional Nichols 
algebras of diagonal type in [12], we can see that B(U) and hence B(V1 ⊕ V2) is infinite 
dimensional.

(b). By Lemma 3.5, V2 has a basis {Y1, Y2} such that

g2 ▷ Yi = ζk3Yi, i = 1, 2; (3.25)

g1 ▷ Y1 = β2Y1, g2 ▷ Y2 = −β2Y2. (3.26)

Here βm1
2 =

∏︁m1−1
i=1

˜︁Φg2(g1, g
i
1) and k ∈ {1, 2} is a fixed number. If β1β2 ̸= ±1, then the 

generalized Dynkin diagram 𝒟(V1 ⊕ V2) (with unlabeled edges) of B(V1 ⊕ V2) is

If β1β2 = ±1, then the generalized Dynkin diagram 𝒟(V1 ⊕ V2) (with unlabeled edges) 
of B(V1 ⊕ V2) is

In both cases B(V1⊕V2) is infinite dimensional by the classification of generalized Dynkin 
diagrams of finite-dimensional Nichols algebras of diagonal type in [12]. □

It remains to consider B(V1 ⊕ V2 ⊕ V3) where V1, V2, V3 are simple twisted Yetter
Drinfeld modules of type (I) and dim(Vi) = 2, 1 ≤ i ≤ 3. We have the following theorem.

Theorem 3.9. Let V1, V2, V3 ∈ kG
kG𝒴𝒟Φ be simple Yetter-Drinfeld modules of type (I) such 

that dim(Vi) = 2, deg(Vi) = gi, 1 ≤ i ≤ 3 and G = ⟨g1⟩ × ⟨g2⟩ × g3⟩. Then the Nichols 
algebra B(V1 ⊕ V2 ⊕ V3) is infinite dimensional.

The proof of the theorem is quite technical and lengthy. To avoid digressing from the 
present main theme, we postpone the proof to the next section. With the help of this 
theorem, we can prove the following proposition.
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Proposition 3.10. Let V = V1 ⊕ V2 ⊕ V3 ∈ kG
kG𝒴𝒟Φ be a direct sum of simple Yetter

Drinfeld modules and G = GV . If dim(V1) = dim(V2) = dim(V3) = 2 and V1, V2, V3 are 
all simple twisted Yetter-Drinfeld modules of type (I), then B(V ) is infinite dimensional.

Proof. Let gi = deg(Vi) and mi = |gi| for i = 1, 2, 3. Let G = ⟨g1⟩ × ⟨g2⟩ × ⟨g3⟩ be 
the abelian group with free generators g1,g2,g3 such that |gi| = mi for 1 ≤ i ≤ 3. 
Then it is obvious that there is a group epimorphism π : G −→ G such that π(gi) = gi, 
1 ≤ i ≤ 3. Let ι : G −→ G be a section of π (that is π ◦ ι = idG) such that ι(gi) = gi
for all 1 ≤ i ≤ 3. For each i ∈ {1, 2, 3}, let ˜︁Vi ∈ kG

kG𝒴𝒟π∗Φ be the twisted Yetter-Drinfeld 
module associated to Vi define by (2.16)-(2.17). Let ˜︁V = ˜︂V1⊕˜︂V2⊕˜︂V3. By Lemma 2.8, we 
have B(V ) ∼ = B(˜︁V ). On the other hand, by Theorem 3.9, B(˜︁V ) is infinite dimensional, 
thus B(V ) is also infinite dimensional. □

Combining Proposition 3.7, 3.8 and 3.10, the following theorem is clear.

Theorem 3.11. Let B(V ) ∈ kG
kG𝒴𝒟Φ be a nondiagonal Nichols algebra of rank 3 with 

GV = G. Then B(V ) is infinite dimensional.

Corollary 3.12. Let B(V ) ∈ kG
kG𝒴𝒟Φ be a Nichols algebra of rank 3, and ΦGV

a nonabelian 
3-cocycle on GV . Then B(V ) is infinite dimensional.

Proof. Let H = GV and Ψ = ΦH . Then the Nichols algebra B(V ) can be realized in 
kH
kH𝒴𝒟Ψ, and the rank of B(V ) must be greater than or equal to 3. For each i ∈ {1, 2, 3}, 
let Ui be a nonzero simple twisted Yetter-Drinfeld submodule of Vi and U = U1⊕U2⊕U3. 
It is clear H = GU . By Lemma 2.10, U is nondiagonal since Ψ is nonabelian on H = GU , 
thus U1, U2, U3 are all nondiagonal in kHkH𝒴𝒟Ψ. Now B(U) is infinite dimensional by 
Theorem 3.11, and so is B(V ) since B(U) ⊂ B(V ). □
3.2. The general case

In this subsection, we will give a classification of finite-dimensional Nichols algebras 
in kGkG𝒴𝒟Φ, where G is a finite abelian group and Φ is a 3-cocycle on G. Firstly, we have 
the following theorem.

Theorem 3.13. Let B(V ) ∈ kG
kG𝒴𝒟Φ such that ΦGV

is nonabelian. Then B(V ) is infinite 
dimensional.

Proof. By Lemma 2.7, B(V ) can be realized in kGV

kGV
𝒴𝒟Φ|GV . Since each 3-cocycle of 

cyclic group or direct sum of two cyclic groups is abelian, so the rank of B(V ) must be 
greater than or equal to 3 because Φ|GV

is nonabelian. Thus B(V ) is infinite dimensional 
by Corollary 3.12. □
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Remark 3.14. Since the conditions ``Φ|GV
is abelian'' and ``B(V ) has a standard basis'' 

are equivalent by Lemma 2.10, Theorem 3.13 is equivalent to Theorem 3.1.

We draw the following immediate consequences.

Corollary 3.15. Suppose B(V ) ∈ kG
kG𝒴𝒟Φ is a finite-dimensional Nichols algebra and 

G = GV . Then B(V ) must be of diagonal type.

Corollary 3.16. Suppose B(V ) ∈ kG
kG𝒴𝒟Φ is a finite-dimensional Nichols algebra. Then 

we have

(1). Φ|GV
is abelian and V has a standard basis;

(2). B(V ) is isomorphic to a Nichols algebra of diagonal type in kGV

kGV
𝒴𝒟ΦGV .

Proof. (1). It follows from Theorem 3.13 and Lemma 2.10. (2). By Lemma 2.8, B(V )
is isomorphic to a Nichols algebra in kGV

kGV
𝒴𝒟ΦGV . Since ΦGV

is abelian, every Nichols 
algebra in kGV

kGV
𝒴𝒟ΦGV is diagonal. □

3.3. Classification

Next we will present a classification of finite-dimensional Nichols algebras in kGkG𝒴𝒟Φ. 
We need the notion of arithmetical root systems. The reader is refereed to [12] (or [14]) 
for the detailed definition.

Let Δχ,E be an arithmetic root system, where E = {e1, · · · , en} is a set of free 
generators of Zn and χ is a bicharacter of Zn. For each positive root α ∈ Δχ,E , define 
qα = χ(α, α). The height of α is defined by

ht(α) =
{︄

|qα|, if qα ̸= 1 is a root of unity;
∞, otherwise.

(3.27)

Let V ∈ kG
kG𝒴𝒟Φ be a twisted Yetter-Drinfeld module with a standard basis 

{Y1, · · · , Yn}, deg(Yi) = gi, 1 ≤ i ≤ n. Then there is a pair (χ,E) associated to V , 
where E = {e1, · · · , en} is a set of free generator of Zn and χ is a bicharacter of Zn

given by

gi ▷ Yj = χ(ei, ej)Yj , 1 ≤ i, j ≤ n. (3.28)

Remark 3.17. Let {Y ′
1 , · · · , Y ′

n} be another standard basis and let (χ′, E′) be the associated 
bicharacter basis pair. Then there is an isomorphism τ : Zn → Zn such that

τ(E) = E′, χ′(τ(ei), τ(ej)) = χ(ei, ej)

for all 1 ≤ i, j ≤ n.
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Definition 3.18. A twisted Yetter-Drinfeld module V ∈ kG
kG𝒴𝒟Φ is said to be of finite 

type if

(1) V has a standard basis;
(2) Δχ,E is an arithmetic root system and ht(α) < ∞ for all α ∈ Δχ,E , where (χ,E) is 

a pair associated to V determined by (3.28).

Theorem 3.19. Let V ∈ kG
kG𝒴𝒟Φ be a twisted Yetter-Drinfeld module. Then B(V ) is finite 

dimensional if and only if V is of finite type.

Proof. Firstly, suppose that B(V ) is finite dimensional. By Corollary 3.16, Φ|GV
is an 

abelian 3-cocycle on GV , thus V has a standard basis. Let H = GV , Ψ = Φ|GV
, and 

(χ,E) a pair associated to V . By Proposition 2.11, B(V ) is isomorphic to a Nichols 
algebra B(U) in kˆ︂H

kˆ︂H𝒴𝒟. Note that U can be obtained from V by change of based groups 
and twisting, which do not change the pair (χ,E) associated to V , thus (χ,E) is also 
a pair associated to U . On the other hand, since B(U) ∈ kH

kH𝒴𝒟 is finite dimensional, 
Δχ,E is an arithmetic root system. Moreover, B(U) is finite dimensional implies that the 
nilpotent index of a root vector of each root α ∈ Δχ,E is finite, i.e., ht(α) < ∞ for all 
α ∈ Δχ,E .

Conversely, Suppose that V is finite type. By Proposition 2.11, B(V ) is twist equiva
lent to a Nichols algebra B(U) in kˆ︂H

kˆ︂H𝒴𝒟, and B(V ) have the same generalized Dynkin 
diagram with B(V ). So Δχ,E is the arithmetic root system of B(U). Furthermore, B(U)
is finite dimensional since ht(α) < ∞ for all α ∈ Δχ,E . This implies B(V ) is finite 
dimensional since B(V ) is twist equivalent to B(U). □
4. The proof of Theorem 3.9

The main task of this section is to prove Theorem 3.9. Firstly, we will consider a 
special case.

4.1. A special case

In this subsection, we will prove the following proposition.

Proposition 4.1. Suppose G = ⟨e⟩ × ⟨f⟩ × ⟨g⟩ is a finite abelian group, Φ is a 3-cocycle 
on G given by

Φ(ei1f i2gi3 , ej1f j2gj3 , ek1fk2gk3) = (−1)i1j2k3 (4.1)

for all 0 ≤ i1, j1, k1 < m1, 0 ≤ i2, j2, k2 < m1, 0 ≤ i3, j3, k3 < m3, where m1 = |e|,m2 =
|f |,m3 = |g|. Let U, V,W ∈ kG

kG𝒴𝒟Φ be simple twisted Yetter-Drinfeld modules of type (I) 
such that deg(U) = e, deg(V ) = f, deg(W ) = g and dim(U) = dim(V ) = dim(W ) = 2. 
Then B(U ⊕ V ⊕W ) is infinite dimensional.
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In what follows, the twisted Yetter-Drinfeld category kGkG𝒴𝒟Φ and objects U, V,W in 
it are assumed satisfying the conditions of this proposition.

Lemma 4.2. The simple twisted Yetter-Drinfeld module U has a basis {X1, X2} satisfying

e ▷ Xi = −Xi, i = 1, 2, (4.2)

f ▷ X1 = β1X1, f ▷ X2 = −β1X2, (4.3)

g ▷ X1 = γ1X2, g ▷ X2 = γ1X1. (4.4)

Here β1, γ1 ∈ k such that βm2
1 = 1, γm3

1 = 1.

Proof. Since U is of type (I) and dim(U) = 2, by Lemma 3.5, U has a basis {X ′
1, X

′
2}

such that

e ▷ X ′
i = −X ′

i, i = 1, 2,

f ▷ X ′
1 = β1X

′
1, f ▷ X2 = −β1X2,

g ▷ X ′
1 = X ′

2, g ▷ X
′
2 = γ′

1X
′
1.

Here βm2
1 = 1, γ′

1
m3
2 = 1. Let γ ∈ k such that γ2

1 = γ′
1. It is clear that γm3

1 = 1. Let 
X1 = X ′

1, X2 = 1 
γ1
X ′

2, we get (4.2)-(4.4). □
Similar to Lemma 4.2, we have the following two lemmas.

Lemma 4.3. The simple twisted Yetter-Drinfeld module V has a basis {Y1, Y2} satisfying

f ▷ Yi = −Yi, i = 1, 2, (4.5)

g ▷ Y1 = β2Y1, g ▷ Y2 = −β2Y2, (4.6)

e ▷ Y1 = γ2Y2, e ▷ Y2 = γ2Y1. (4.7)

Here β2, γ2 ∈ k are numbers such that βm3
2 = 1, γm1

2 = 1.

Lemma 4.4. The simple twisted Yetter-Drinfeld module W has a basis {Z1, Z2} such that

g ▷ Zi = −Zi, i = 1, 2, (4.8)

f ▷ Z1 = β3Z1, f ▷ Z2 = −β3Z2, (4.9)

e ▷ Z1 = γ3Z2, e ▷ Z2 = γ3Z1, (4.10)

where β3, γ3 ∈ k are numbers βm2
3 = 1, γm1

3 = 1.

In the following, (βi, γi), i = 1, 2, 3 will be called structure constants of U, V,W
respectively. It is clear that the structure constants depend on the choice of the bases of 
U, V,W .
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Remark 4.5. The structure constants (βi, γi), i = 1, 2, 3 can be changed to be (−βi, γi), 
(βi,−γi) and (−βi,−γi) if we transform the bases of U, V and W respectively. For 
example, let X1 = X2, X2 = X1, the constants will be changed to be (−β1, γ1). Let 
X1 = X1, X2 = −X2, the constants will be (β1,−γ1). Let X1 = X2, X2 = −X1, the 
constants will be changed to be (−β1,−γ1).

Proposition 4.6. Keep the previous notations, we have

(1). If β2β3 ̸= ±1, then B(V ⊕W ) is infinite dimensional.
(2). If β1γ2 ̸= ±1, then B(U ⊕ V ) is infinite dimensional.
(3). If γ1γ3 ̸= ±1, then B(U ⊕W ) is infinite dimensional.

Proof. (1). Let H = ⟨f⟩ × ⟨g⟩ and Ψ = Φ|H . Then it is obvious that Ψ = 1 and B(V ⊕
W ) ∈ kH

kH𝒴𝒟 is a Nichols algebra of diagonal type with a standard basis {Y1, Y2, Z1, Z2}. 
The generalized Dynkin diagram 𝒟(V ⊕W ) is

Comparing the classification result of finite-dimensional Nichols algebras in kHkH𝒴𝒟, we 
obtain that B(V ⊕W ) is infinite dimensional.

(2). Let Y 1 = Y1 + Y2, Y 2 = Y1 − Y2. Then it is clear that {Y 1, Y 2} is a basis of V
which satisfies

f ▷ Y i = −Y i, i = 1, 2,

e ▷ Y 1 = γ2Y 1, e ▷ Y 2 = −γ2Y 2,

g ▷ Y 1 = β2Y 2, g ▷ Y 2 = β2Y 1.

It is clear that {X1, X2, Y 1, Y 2} is a standard basis of U ⊕ V . The rest of the proof is 
similar to (1).

(3). Let X1 = X1 + X2, X2 = X1 −X2. Then it is clear that {X1, X2} is a basis of 
U which satisfies

e ▷ Xi = −Xi, i = 1, 2,

g ▷ X1 = γ1X1, g ▷ X2 = −γ1X2,

f ▷ X1 = β1X2, f ▷ X2 = β1X1.

Similarly, let Z1 = Z1 + Z2, Z2 = Z1 − Z2. Then {Z1, Z2} is a basis of W and we have
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g ▷ Zi = −Zi, i = 1, 2,

e ▷ Z1 = γ3Z1, f ▷ Z2 = −γ3Z2,

f ▷ Z1 = β3Z2, e ▷ Z2 = −β3Z1.

Thus {X1, X2, Z1, Z2} is a standard basis of U ⊕ W . The same as (1), if γ1γ3 ̸= ±1, 
then B(U ⊕W ) is infinite dimensional. □

If the structure constants of U, V,W satisfy β2β3 = ±1, β1γ2 = ±1 and γ1γ3 = ±1, 
then one can show that B(U ⊕ V ), B(U ⊕W ), B(V ⊕W ) are all finite dimensional, the 
proof is the same as that of [16, Proposition 5.1]. In what follows, we will prove that 
B(U ⊕ V ⊕ W ) is infinite dimensional. For Z3-graded homogeneous elements X,Y ∈
B(U ⊕ V ⊕W ), we denote deg(X ⊗ Y ) = (deg(X), deg(Y )).

Proposition 4.7. Suppose β2β3 = ±1, β1γ2 = ±1 and γ1γ3 = ±1, then B(U ⊕ V ⊕W ) is 
infinite dimensional.

Proof. Let T (U ⊕V ⊕W ) be the tensor algebra of U ⊕V ⊕W , ℐ the maximal N-graded 
Hopf ideal contained in 

⨁︁
n≥2(U ⊕V ⊕W )⊗−→n . Thus B(U ⊕V ⊕W ) = T (U ⊕V ⊕W )/ℐ

by definition. According to Proposition 2.9, B(U ⊕ V ⊕W ) is Z3-graded with deg(U) =
e1,deg(V ) = e2,deg(W ) = e3, where {e1, e2, e3} are free generators of Z3. Next we will 
prove that B(U ⊕ V ⊕ W ) is infinite dimensional. Without loss of generality, we can 
assume that β2β3 = −1, β1γ2 = −1 and γ1γ3 = −1 by Remark 4.5.

The remaining proof will be divided into four steps.
Step 1. We will consider the comultiplications of some elements in the spaces adV (W ), 

adU (V ), adU (W ) ⊂ B(U ⊕ V ⊕W ). In adV (W ) we have

adY1(Z1) = Y1Z1 − (f ▷ Z1)Y1 = Y1Z1 − β3Z1Y1,

thus

Δ(adY1(Z1)) =Δ(Y1Z1 − β3Z1Y1)

=(1 ⊗ Y1 + Y1 ⊗ 1)(1 ⊗ Z1 + Z1 ⊗ 1)

− β3(1 ⊗ Z1 + Z1 ⊗ 1)(1 ⊗ Y1 + Y1 ⊗ 1)

=1 ⊗ Y1Z1 + Y1Z1 ⊗ 1 + β3Z1 ⊗ Y1 + Y1 ⊗ Z1

− β3[1 ⊗ Z1Y1 + Z1Y1 ⊗ 1 + β2Y1 ⊗ Z1 + Z1 ⊗ Y1]

=1 ⊗ adY1(Z1) + adY1(Z1) ⊗ 1 + 2Y1 ⊗ Z1.

(4.11)

Similarly, we have

Δ(adY1(Z2)) = 1 ⊗ adY1(Z2) + adY1(Z2) ⊗ 1, (4.12)

Δ(adY2(Z1)) = 1 ⊗ adY2(Z1) + adY2(Z1) ⊗ 1, (4.13)
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Δ(adY2(Z2)) = 1 ⊗ adY2(Z2) + adY2(Z2) ⊗ 1 + 2Y2 ⊗ Z2. (4.14)

The identities (4.12)-(4.13) imply that adY1(Z2) = 0, adY2(Z1) = 0.
In adU (V ), we have

Δ(adX1(Y1)) = 1 ⊗ adX1(Y1) + adX1(Y1) ⊗ 1 + X1 ⊗ (Y1 + Y2), (4.15)

Δ(adX1(Y2)) = 1 ⊗ adX1(Y2) + adX1(Y2) ⊗ 1 + X1 ⊗ (Y1 + Y2), (4.16)

Δ(adX2(Y1)) = 1 ⊗ adX2(Y1) + adX2(Y1) ⊗ 1 + X2 ⊗ (Y1 − Y2), (4.17)

Δ(adX2(Y2)) = 1 ⊗ adX2(Y2) + adX2(Y2) ⊗ 1 + X2 ⊗ (Y2 − Y1). (4.18)

It is easy to see that

adX1(Y1) − adX1(Y2) = 0, (4.19)

adX2(Y1) + adX2(Y2) = 0. (4.20)

Similarly in adU (W ), we have

Δ(adX1(Z1)) = 1 ⊗ adX1(Z1) + adX1(Z1) ⊗ 1 + X1 ⊗ Z1 + X2 ⊗ Z2, (4.21)

Δ(adX1(Z2)) = 1 ⊗ adX1(Z2) + adX1(Z2) ⊗ 1 + X1 ⊗ Z2 + X2 ⊗ Z1, (4.22)

Δ(adX2(Z1)) = 1 ⊗ adX2(Z1) + adX2(Z1) ⊗ 1 + X2 ⊗ Z1 + X1 ⊗ Z2, (4.23)

Δ(adX2(Z2)) = 1 ⊗ adX2(Z2) + adX2(Z2) ⊗ 1 + X1 ⊗ Z1 + X2 ⊗ Z2. (4.24)

By (4.21)-(4.24) we get

adX1(Z1) − adX2(Z2) = 0, (4.25)

adX1(Z2) − adX2(Z1) = 0. (4.26)

Step 2. We will prove that adX1(adY1(Z1)), adX2(adY2(Z2)), adY1(adX1(Z2)) and 
adY2(adX2(Z1)) are linear independent in B(U ⊕ V ⊕W ). Firstly we have

Δ(adX1(adY1(Z1)))

= Δ(X1 adY1(Z1) − e ▷ (adY1(Z1))X1)

= Δ(X1 adY1(Z1) + γ2γ3 adY2(Z2)X1)

= (1 ⊗X1 + X1 ⊗ 1)(1 ⊗ adY1(Z1) + adY1(Z1) ⊗ 1 + 2Y1 ⊗ Z1)

+ γ2γ3(1 ⊗ adY2(Z2) + adY2(Z2) ⊗ 1 + 2Y2 ⊗ Z2)(1 ⊗X1 + X1 ⊗ 1)

= 1 ⊗ adX1(adY1(Z1)) + adX1(adY1(Z1)) ⊗ 1 + X1 ⊗ adY1(Z1)

+ X2 ⊗ adY2(Z2) − 2γ2Y2 ⊗ adX1(Z1) − 2X1Y1 ⊗ Z1 − 2γ2Y2X2 ⊗ Z2.

(4.27)

Here the third identity follows from (4.11) and (4.14). Similarly we have
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Δ(adX2(adY2(Z2)))

= Δ(X2 adY2(Z2) − e ▷ (adY2(Z2))X2)

= Δ(X2 adY2(Z2) + γ2γ3 adY1(Z1)X2)

= (1 ⊗X2 + X2 ⊗ 1)
(︂
1 ⊗ adY2(Z2) + adY2(Z2) ⊗ 1 + 2Y2 ⊗ Z2

)︂
+ γ2γ3

(︂
1 ⊗ adY1(Z1) + adY1(Z1) ⊗ 1 + 2Y1 ⊗ Z1

)︂
(1 ⊗X2 + X2 ⊗ 1)

= 1 ⊗ adX2(adY2(Z2)) + adX2(adY2(Z2)) ⊗ 1 −X1 ⊗ adY1(Z1)

+ X2 ⊗ adY2(Z2) − 2γ2Y1 ⊗ adX2(Z2) − 2X2Y2 ⊗ Z2 − 2γ2Y1X1 ⊗ Z1,

(4.28)

Δ(adY1(adX1(Z2)))

= Δ(Y1 adX1(Z2) − f ▷ (adX1(Z2))Y1)

= Δ(Y1 adX1(Z2) − β1β3 adX1(Z2)Y1)

= (1 ⊗ Y1 + Y1 ⊗ 1)

×
(︂
1 ⊗ adX1(Z2) + adX1(Z2) ⊗ 1 + X1 ⊗ Z2 + X2 ⊗ Z1

)︂
− β1β3

(︂
1 ⊗ adX1(Z2) + adX1(Z2) ⊗ 1 + X1 ⊗ Z2 + X2 ⊗ Z1

)︂
× (1 ⊗ Y1 + Y1 ⊗ 1)

= 1 ⊗ adY1(adX1(Z2)) + adY1(adX1(Z2)) ⊗ 1 + (Y1 + Y2) ⊗ adX1(Z2)

+ β1X2 ⊗ adY1(Z1) + (Y1X2 − β1X2Y1) ⊗ Z1 + adY1(X1) ⊗ Z2

(4.29)

and

Δ(adY2(adX2(Z1)))

= Δ(Y2 adX2(Z1) − f ▷ (adX2(Z1))Y2)

= Δ(Y2 adX2(Z1) − β1β3 adX2(Z1)Y2)

= (1 ⊗ Y2 + Y2 ⊗ 1)

×
(︂
1 ⊗ adX2(Z1) + adX2(Z1) ⊗ 1 + X2 ⊗ Z1 + X1 ⊗ Z2

)︂
− β1β3

(︂
1 ⊗ adX2(Z1) + adX2(Z1) ⊗ 1 + X2 ⊗ Z1 + X1 ⊗ Z2

)︂
× (1 ⊗ Y2 + Y2 ⊗ 1)

= 1 ⊗ adY2(adX2(Z1)) + adY2(adX2(Z1)) ⊗ 1 + (Y2 − Y1) ⊗ adX2(Z1)

− β1X1 ⊗ adY2(Z2) + (Y2X1 + β1X1Y2) ⊗ Z2 + adY2(X2) ⊗ Z1.

(4.30)

Now let k1, k2, k3, k4 ∈ k such that

k1 adX1(adY1(Z1)) + k2 adX2(adY2(Z2)) + k3 adY1(adX1(Z2)) + k4 adY2(adX2(Z1)) = 0.
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By (4.27)-(4.30), the homogeneous term in the comultiplication of the left hand side of 
the above identity with degree (e2, e1 + e3) is

− 2k1γ2Y2 ⊗ adX1(Z1) − 2k2γ2Y1 ⊗ adX2(Z2)

+ k3(Y1 + Y2) ⊗ adX1(Z2) + k4(Y2 − Y1) ⊗ adX2(Z1)

= −2γ2(k1Y2 + k2Y1) ⊗ adX1(Z1) + ((k3 − k4)Y1 + (k3 + k4)Y2) ⊗ adX1(Z2)

On the other hand, this element must be zero since comultiplication keep Z3-degrees. 
This implies k1 = k2 = k3 = k4 = 0 because adX1(Z1) and adX1(Z2) are linear indepen
dent by (4.21)-(4.22) and {Y1, Y2} is a basis of V .

Step 3. Let

E = adX1(adY1(Z1)), F = adX2(adY2(Z2)),

M = adY1(adX1(Z2)), N = adY2(adX2(Z1)).

We will prove that adE(M) ̸= 0 and can not be linear spanned by M2,MN,NM,N2. 
Firstly we have

(efg) ▷ E

= ˜︁Φefg(e, f)˜︁Φefg(ef, g)e ▷ {f ▷ [g ▷ (adX1(adY1(Z1))]}
= −e ▷ {f ▷ [g ▷ (adX1(adY1(Z1))]}
= −β2γ1e ▷ [f ▷ (adX2(adY1(Z1))]

= β2γ1β1β3e ▷ (adX2(adY1(Z1))

= β2γ1β1β3γ2γ3(adX2(adY2(Z2))

= −F.

(4.31)

Similarly, one can show that (efg) ▷ F = E, (efg) ▷ M = −N, (efg) ▷ N = M . By 
(4.27)-(4.30), the comultiplications of E,F,M and N can be written as the forms of

Δ(E) = E ⊗ 1 + 1 ⊗ E +
∑︂

E1 ⊗ E2, (4.32)

Δ(F ) = F ⊗ 1 + 1 ⊗ F +
∑︂

F 1 ⊗ F 2, (4.33)

Δ(M) = M ⊗ 1 + 1 ⊗M +
∑︂

M1 ⊗M2, (4.34)

Δ(N) = N ⊗ 1 + 1 ⊗N +
∑︂

N1 ⊗N2, (4.35)

where deg(E2),deg(F 2),deg(M2),deg(N2) ∈ {e1 + e3, e2 + e3, e3}. In the following, let 
𝒵 be the subset of Z3 defined by

𝒵 = {k1e1 + k2e2 + k3e3| k1, k2 ≤ k3,min{k1, k2} < k3}. (4.36)
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Here min{k1, k2} means the smaller number of {k1, k2}. It is clear that deg(E2), deg(F 2), 
deg(M2), deg(N2) ∈ 𝒵. Moreover, for all homogeneous elements X,Y, Z ∈ B(U ⊕ V ⊕
W ) such that deg(X),deg(Y ) ∈ 𝒵, deg(Z) = k(e1 + e2 + e3), we have deg(XY ) ∈
𝒵, deg(XZ) = deg(ZX) ∈ 𝒵.

By (4.32)-(4.35), we have

Δ(adE(M))

= Δ(EM − efg ▷ ME) = Δ(EM + NE)

=
(︂
E ⊗ 1 + 1 ⊗E +

∑︂
E1 ⊗ E2

)︂(︂
M ⊗ 1 + 1 ⊗M +

∑︂
M1 ⊗M2

)︂
+
(︂
N ⊗ 1 + 1 ⊗N +

∑︂
N1 ⊗N2

)︂(︂
E ⊗ 1 + 1 ⊗E +

∑︂
E1 ⊗ E2

)︂
= adE(M) ⊗ 1 + 1 ⊗ adE(M) + E ⊗M + F ⊗N +

∑︂
T1 ⊗ T2,

(4.37)

where∑︂
T1 ⊗ T2 = (E ⊗ 1 + 1 ⊗E)(

∑︂
M1 ⊗M2) + (

∑︂
E1 ⊗ E2)(M ⊗ 1 + 1 ⊗M)

+(N ⊗ 1 + 1 ⊗N)(
∑︂

E1 ⊗ E2) + (
∑︂

N1 ⊗N2)(E ⊗ 1 + 1 ⊗ E)

+(
∑︂

E1 ⊗ E2)(
∑︂

M1 ⊗M2) + (
∑︂

N1 ⊗N2)(
∑︂

E1 ⊗ E2).

It is easy to see that deg(T2) ∈ 𝒵, so Δ(adE(M)) ̸= 0 since E ⊗M + F ⊗ N ̸= 0 and 
deg(M) / ∈ 𝒵,deg(N) / ∈ 𝒵. Next consider the comultiplications of M2,MN,NM,N2. 
Since

Δ(M2) = (M ⊗ 1 + 1 ⊗M +
∑︂

M1 ⊗M2)(M ⊗ 1 + 1 ⊗M +
∑︂

M1 ⊗M2)

= M2 ⊗ 1 + 1 ⊗M2 + (M −N) ⊗M + (M ⊗ 1 + 1 ⊗M)(
∑︂

M1 ⊗M2)

+(
∑︂

M1 ⊗M2)(M ⊗ 1 + 1 ⊗M) + (
∑︂

M1 ⊗M2)(
∑︂

M1 ⊗M2).

The term in Δ(M2) with degree (e1 + e2 + e3, e1 + e2 + e3) is (M −N) ⊗M . Similarly, 
the terms in Δ(MN),Δ(NM) and Δ(N2) with degree (e1 + e2 + e3, e1 + e2 + e3) are 
M ⊗ (N + M), N ⊗ (M −N) and (M + N) ⊗N respectively. Now suppose that there 
exist k1, k2, k3, k4 such that

adE(M) = k1M
2 + k2MN + k3NM + k4N

2. (4.38)

Considering the terms with degree (e1 + e2 + e3, e1 + e2 + e3) in the comultiplications of 
the both sides of (4.38), we obtain

E ⊗M + F ⊗N

= k1((M −N) ⊗M) + k2M ⊗ (N + M) + k3N ⊗ (M −N) + k4(M + N) ⊗N
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= M ⊗ [(k1 + k2)M + (k2 + k4)N ] + N ⊗ [(k3 − k1)M + (k4 − k3)N ].

But this is impossible since E,F,M,N are linear independent. We have proved that 
adE(M) can not be linearly spanned by M2,MN,NM,N2.

Step 4. We will prove that (adE(M))n ̸= 0 for all n ∈ N inductively, and this clearly 
implies that B(U⊗V ⊗W ) is infinite dimensional. In Step 3, we have show that adE(M) ̸=
0. Next suppose (adE(M))n−1 ̸= 0.

By (4.37), Δ(adE(M)) = adE(M)⊗ 1 + 1⊗ adE(M) +E ⊗M + F ⊗N +
∑︁

T1 ⊗ T2, 
where deg(T2) ∈ 𝒵. Thus the terms in Δ((adE(M))n) with degrees of the form

(k(e1 + e2 + e3), l(e1 + e2 + e3)), k, l ∈ N

must be contained in

[adE(M) ⊗ 1 + 1 ⊗ adE(M) + E ⊗M + F ⊗N ]n.

So the term in Δ((adE(M))n) with degree ((2n− 2)(e1 + e2 + e3), 2(e1 + e2 + e3)) is

n(adE(M))n−1 ⊗ adE(M) + S1 ⊗M2 + S2 ⊗MN + S3 ⊗NM + S4 ⊗N2,

where S1, S2, S3, S4 are certain elements with degree (2n−2)(e1+e2+e3). By hypothesis, 
we have n(adE(M))n−1 ⊗ adE(M) ̸= 0. On the other hand, since adE(M) can not be 
spanned by M2,MN,NM,N2, we obtain

n(adE(M))n−1 ⊗ adE(M) + S1 ⊗M2 + S2 ⊗MN + S3 ⊗NM + S4 ⊗N2 ̸= 0.

This implies Δ((adE(M))n) ̸= 0 and hence (adE(M))n ̸= 0. □
It is clear that Proposition 4.1 follows from Propositions 4.6 and 4.7.

4.2. A proof of Theorem 3.9

In this subsection, let G = ⟨g1⟩ × ⟨g2⟩ × g3⟩, Φ be a nonabelian 3-cocycle on G, 
V1, V2, V3 ∈ kG

kG𝒴𝒟Φ be simple twisted Yetter-Drinfeld modules of type (I) (see Proposi
tion 2.12) such that dim(Vi) = 2, deg(Vi) = gi for 1 ≤ i ≤ 3. In what follows, we denote 
mi = |gi|, i = 1, 2, 3. By (2.4), we have

Φ(gi11 gi21 gi31 , gj11 gj21 gj31 , gk1
1 gk2

1 gk3
1 )

=
3 ∏︂

l=1 
ζ
clil[

jl+kl
ml

]
ml

∏︂
1≤s<t≤3

ζ
cstit[ js+ks

ms
]

mt × ζc123i1j2k3
(m1,m2,m3),

(4.39)

where 0 ≤ cl < ml for 1 ≤ l ≤ 3, 0 ≤ cst < mt for 1 ≤ s < t ≤ 3, 0 ≤ c123 <

(m1,m2,m3). Furthermore, we have the following lemma.
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Lemma 4.8. With the notations above, we have c123 = (m1,m2,m3)
2 , that is

ζc123k1j2i3
(m1,m2,m3) = (−1)k1j2i3 . (4.40)

Proof. By Lemma 3.5, dim(V1) =
⃓⃓⃓ ˜︁Φg1 (g2,g3)˜︁Φg1 (g3,g2)

⃓⃓⃓
, the order of 

˜︁Φg1 (g2,g3)˜︁Φg1 (g3,g2)
. Since dim(Vi) = 2

for 1 ≤ i ≤ 3, we have

˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)
= −1. (4.41)

By (4.39) and (4.41), we obtain

˜︁Φg1(g2, g3)˜︁Φg1(g3, g2)
= Φ(g1, g2, g3) = ζc123(m1,m2,m3) = −1. □

Proof of Theorem 3.9. Let Ψ and Γ be the 3-cocycles of G given by

Ψ(gi11 gi21 gi31 , gj11 gj21 gj31 , gk1
1 gk2

1 gk3
1 ) = (−1)i1j2k3 , (4.42)

Γ(gi11 gi21 gi31 , gj11 gj21 gj31 , gk1
1 gk2

1 gk3
1 ) =

∏︁3
l=1 ζ

clil[
jl+kl
ml

]
ml

∏︁
1≤s<t≤3 ζ

cstit[ js+ks
ms

]
mt . (4.43)

By (4.39) and Lemma 4.8, we have Φ = Γ × Ψ. By (2.13), Γ is an abelian 3-cocycle of 
G. Let ˆ︁G = ⟨g1⟩ × ⟨g2⟩ × ⟨g3⟩ such that |gi| = m2

i , 1 ≤ i ≤ 3, and π : ˆ︁G −→ G be the 
epimorphism determined by

π(gi) = gi, 1 ≤ i ≤ 3. (4.44)

Let ι : G −→ ˆ︁G be the section of π given by

ι(gli) = gli, 0 ≤ l < mi. (4.45)

Then we have an object ˜︁V = ˜︁V1 ⊕ ˜︁V2 ⊕ ˜︁V3 ∈ k ˆ︁G
k ˆ︁G𝒴𝒟π∗Φ defined by (2.16)-(2.17), and 

B(˜︁V ) ∼ = B(V ) by Lemma 2.8. By Proposition 2.6, π∗Γ is a 3-coboundary of ˆ︁G. Let J be 
the 2-cochain of ˆ︁G such that ∂J = π∗Γ. So we have

∂(J−1) · π∗Φ = (π∗Γ)−1 · π∗(ΨΓ) = π∗Ψ.

By Lemma 2.4, we have

B(˜︁V )J
−1 ∼ = B(˜︁V J−1

) ∈ k ˆ︁G
k ˆ︁G𝒴𝒟∂J·π∗Φ = k ˆ︁G

k ˆ︁G𝒴𝒟π∗Ψ.

Note that deg(˜︁V J−1

i ) = deg(˜︁Vi) = gi for 1 ≤ i ≤ 3, and
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π∗Ψ(gi11 g
i2
1 g

i3
1 ,gj11 g

j2
1 g

j3
1 ,gk1

1 g
k2
1 g

k3
1 )

= Ψ(π(gi11 g
i2
1 g

i3
1 ), π(gj11 g

j2
1 g

j3
1 ), π(gk1

1 g
k2
1 g

k3
1 ))

= Ψ(gi11 gi21 gi31 , gj11 gj21 gj31 , gk1
1 gk2

1 gk3
1 )

= (−1)k1j2i3

for all 0 ≤ il, jl, kl < m2
l , 1 ≤ l ≤ 3. By Proposition 4.1, B(˜︁V )J−1 is infinite dimensional. 

So B(˜︁V ) and B(V ) are also infinite dimensional. □
5. Finite quasi-quantum groups over abelian groups

In this section, we will give a classification of finite-dimensional coradically graded 
pointed coquasi-Hopf algebras over finite abelian groups.

Let M = ⊕i≥0Mi be a coradically graded pointed coquasi-Hopf algebra over a finite 
abelian group G. Then M0 = (kG,Φ) for a 3-cocycle Φ on G. Let R = ⊕i≥0R[i] be the 
coinvariant subalgebra of M . With these notations, we have

Theorem 5.1. Assume that M is finite dimensional. Then coinvariant subalgebra R of 
M is a Nichols algebra in kGkG𝒴𝒟Φ.

Proof. First we have GR[1] = GR for R is coradically graded. Since R is finite dimen
sional, we have B(R[1]) is also finite dimensional since B(R[1]) is a subquotient of R. 
This implies that ΦGR[1] is an abelian 3-cocycle on GR[1] by Corollary 3.16. So we have 
R ∼ = B(R[1]) by [14, Proposition 5.1]. □

Now we can give a classification of finite-dimensional coradically graded pointed 
coquasi-Hopf algebras over finite abelian groups.

Theorem 5.2. 

(1). Let V ∈ kG
kG𝒴𝒟Φ be a twisted Yetter-Drinfeld module of finite type. Then B(V )#kG

is a finite-dimensional pointed coquasi-Hopf algebra.
(2). Let M be a finite-dimensional coradically graded pointed coquasi-Hopf algebra over 

a finite abelian group, M0 = (kG,Φ). Then we have M ∼ = B(V )#kG for a twisted 
Yetter-Drinfeld module of finite type V ∈ kG

kG𝒴𝒟Φ.

Proof. (1). It follows from Theorem 3.19 that B(V ) is finite dimensional, thus B(V )#kG
is finite dimensional.

(2). Let R be the coinvariant subalgebra of M . Then M ∼ = R#kG. Let V = R[1]. 
Then by Theorem 5.1, R ∼ = B(V ) is a Nichols algebra in kGkG𝒴𝒟Φ. So M ∼ = B(V )#kG for 
the twisted Yetter-Drinfeld module V , and V is of finite type since M and hence B(V )
is finite dimensional. □
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Finally, we will consider the generation problem of pointed finite tensor categories. 
We partially prove the following conjecture due to Etingof, Gelaki, Nikshych and Ostrik.

Conjecture 5.3. Every pointed finite tensor category over a field of characteristic zero is 
tensor generated by objects of length two.

In fact, this conjecture can be viewed as a generalization of Andruskiewitsch-Schneider 
conjecture. Let 𝒞 be a pointed finite tensor categories. Then it is well known that 𝒞 ∼ = 
comod(M) for a finite-dimensional pointed coquasi-Hopf algebra M , see [9] for details. 
In [16], we prove the following proposition.

Proposition 5.4. [16, Proposition 4.10] Let 𝒞 be a pointed finite tensor category, and M
a finite-dimensional pointed coquasi-Hopf algebra such that 𝒞 ∼ = comod(M). Then 𝒞 is 
tensor generated by objects of length two if and only if M is generated by group-like 
elements and skew-primitive elements.

With the help of Theorem 5.2 and Proposition 5.4, we can prove the following theorem.

Theorem 5.5. Let 𝒞 be a pointed finite tensor category over a field of characteristic zero 
such that G(𝒞) is an abelian group. Then 𝒞 is tensor generated by objects of length two.

Proof. Let M be a finite-dimensional pointed coquasi-Hopf algebra such that 𝒞 ∼ = 
comod(M). By Proposition 5.4, we only need to show that M is generated by group-like 
elements and skew-primitive elements. Let k be the based field of M , K the algebraically 
closure of k. Let ˜︂M = M ⊗k K. Then ˜︂M is also a pointed coquasi-Hopf algebra with 
the structure induced from that of M , and it is obvious that M is generated by group
like elements and skew-primitive elements if and only if ˜︂M is generated by group-like 
elements and skew-primitive elements. On the other hand, we have gr(˜︂M) ∼ = B(V )#kG
by Theorem 5.2, where G = G(𝒞) and V is a twisted Yetter-Drinfeld module of finite 
type in kGkG𝒴𝒟Φ for some 3-cocycle Φ on G. Thus gr(˜︂M), and hence ˜︂M are generated 
by group-like elements G and skew-primitive elements V . Therefore M is generated by 
group-like elements and skew-primitive elements. □
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