
Journal of Pure and Applied Algebra 226 (2022) 106871
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On the antipode of Hopf algebras with the dual Chevalley 

property ✩

Kangqiao Li ∗, Gongxiang Liu
Department of Mathematics, Nanjing University, Nanjing 210093, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 August 2020
Received in revised form 4 July 2021
Available online 28 July 2021
Communicated by J. Pevtsova

MSC:
16T05

Keywords:
Hopf algebra
Antipode
Exponent
Dual Chevalley property

In this paper, we study the antipode of a finite-dimensional Hopf algebra H with the 
dual Chevalley property and obtain an annihilation polynomial for the antipode. 
This generalizes an old result given by Taft and Wilson in 1974. As consequences, we 
show that 1) the quasi-exponent of H is the same as the exponent of its coradical, 
that is, qexp(H) = exp(H0); 2) qexp(H � k〈S2〉) = qexp(H).
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1. Introduction

Let H be a finite-dimensional Hopf algebra over a field k with the antipode S, and denote the composition 
order of S2 by ord(S2). The order or annihilation polynomials of S2 have been studied for more than 40 
years. The first most general result is given by Radford [19] in 1976, which states that ord(S2) is always 
finite. Then the people want to find an explicit bound for ord(S2). Actually, the people made the progress 
at least in the following two different cases for H: semisimple case and pointed case.

As for the first case when H is semisimple, Kaplansky conjectured in [6] that semisimple Hopf algebras 
are all involutory (that is, ord(S2) = 1), which is well-known as the Kaplansky’s fifth conjecture and still 
open in small positive characteristic. Moreover, when H is cosemisimple in addition, a positive answer was 
given by Etingof and Gelaki [2]. The other case when H is pointed was once studied by Taft and Wilson 
[25] in 1974. They obtained the following annihilation polynomial:
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(S2N − id)L−1 = 0, (1.1)

where N is the exponent of the coradical and L denotes the Loewy length. This formula implies directly 
that ord(S2) | N in characteristic 0 ([4]) and ord(S2) | NpM in characteristic p > 0 for some positive integer 
M ([25]).

Our main goal in this paper is to generalize Formula (1.1) to the case when H has the dual Chevalley 
property. The main tools are so-called coradical orthonormal idempotents in H∗ and (multiplicative and 
primitive) matrices over H. Multiplicative and primitive matrices could be regarded as generalizations of 
grouplike and primitive elements, respectively. Such concepts are studied in [14], and applied to generalize 
some propositions from pointed case to non-pointed case. For example, if the coradical filtration is denoted by 
{Hn}n≥0, one could decompose an arbitrary element in H1 into a sum of entries coming from multiplicative 
and primitive matrices.

The idea for setting the Formula (1.1) for our case can be described as follows. With the help of our 
developed tools, we find that the action of S2 on primitive matrices behaves similar to a conjugate action 
by a multiplicative matrix at first. Then along the similar line as the pointed case, we show that the action 
of S2N on H1 is exactly the identity map. At last, by a lemma in [25] which gives us an inductive way from 
Hn to Hn+1, where {Hn}n≥0 is the coradical filtration of H, we get our desired formula.

Afterwards we provide some applications of Formula (1.1) for our case. The first one is that the order of 
S2 divides exp(H0) in characteristic 0. This implies our second application that the quasi-exponent of H is 
exactly exp(H0). Finally, by specific calculations, we show that how the quasi-exponent of the semi-direct 
product Hopf algebra H � k〈S2〉 are determined by that of H.

The organization of this paper is as follows: In Section 2, we recall definitions and properties of tools we 
need, including the exponent, coradical orthonormal idempotents, as well as multiplicative and primitive 
matrices mentioned above. Section 3 is devoted to give a proof of Formula (1.1) for H with the dual Chevalley 
property. A direct corollary that ord(S2) | exp(H0) in characteristic 0 is also obtained in this section. Some 
applications of our Formula (1.1) are given in the last section.

2. Preliminaries

We recall the most needed knowledge, including the definitions and some properties of multiplicative and 
primitive matrices, in this section. Let k be a field throughout this paper, and the tensor product over k is 
always denoted simply by ⊗. For a coalgebra (H, Δ, ε) over a field k, Sweedler notation Δ(h) =

∑
h(1)⊗h(2)

for h ∈ H is always used.

2.1. Coradical filtration and Loewy length

Recall the notion of the wedge on a coalgebra (H, Δ, ε) that

V ∧W := Δ−1(V ⊗H + H ⊗W )

for any subspaces V, W ⊆ H. There are further notations as follows:

∧0V := V ;

∧nV := V ∧
(
∧n−1V

)
(∀n ≥ 1).

Denote the coradical of H by H0. The coradical filtration of H is a sequence of subcoalgebras defined 
inductively as

Hn+1 := H0 ∧Hn = ∧n+1H0 (n ≥ 0)
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and always denoted by {Hn}n≥0 in this paper. These definitions could be found in [24, Chapter 9].
The Loewy length (cf. [5, Lemma 2.2]) of a coalgebra H is denoted as

Lw(H) := min{l ≥ 0 | Hl−1 = H}

with convention H−1 = 0 and min∅ = ∞. It is apparent that Lw(H) < ∞ if H is finite-dimensional.

2.2. Dual Chevalley property

A Hopf algebra H is said to have the dual Chevalley property, if its coradical H0 is a Hopf subalgebra 
(or equivalently, H0 is a subalgebra of H and S(H0) ⊆ H0). A well-known result about the dual Chevalley 
property is the following lemma (see e.g. [17, Lemma 5.2.8]).

Lemma 2.1. Let H be a Hopf algebra H with the coradical filtration {Hn}n≥0. Then the followings are 
equivalent:

(1) H0 is a Hopf subalgebra of H;
(2) {Hn}n≥0 is a Hopf algebra filtration.

2.3. Exponent

Let (H, m, u, Δ, ε) be a Hopf algebra with antipode S over a field k. For convenience, we define following 
k-linear maps for any positive integer n:

mn : H⊗n → H, h1 ⊗ h2 ⊗ · · · ⊗ hn �→ h1h2 · · ·hn;

Δn : H → H⊗n, h �→
∑

h(1) ⊗ h(2) ⊗ · · · ⊗ h(n).

When S is bijective, the notion of the exponent of H introduced in [3] by Etingof and Gelaki is defined 
as

exp(H) := min{n ≥ 1 | mn ◦ (id⊗S−2 ⊗ · · · ⊗ S−2n+2) ◦ Δn = u ◦ ε}

with convention min∅ = ∞. One of their most crucial ways to study the exponent is the following identifi-
cation [3, Theorem 2.5(2)], when H is finite-dimensional:

exp(H) equals to the multiplication order of uD(H),

where uD(H) is the Drinfeld element of the Drinfeld double D(H) ([1]). We remark that there is also another 
notion of “exponent” introduced by Kashina [7,8] (see also Remark 4.10).

It is known that if H is finite-dimensional, D(H) is also a Hopf algebra, whose antipode is denoted 
by SD(H). Moreover, SD(H)

2 is in fact an inner automorphism determined by uD(H) on D(H). Thus 
SD(H)

2 exp(H) becomes the identity map on D(H), as long as exp(H) < ∞. Restricting this map onto 
the Hopf subalgebra H ∼= ε �� H ⊆ D(H), we obtain the following fact immediately:

Corollary 2.2. Let H be a finite-dimensional Hopf algebra with antipode S. If exp(H) < ∞, then S2 exp(H) =
id (the identity map on H).

There are two theorems [3, Theorem 4.3] and [3, Theorem 4.10] describing the finiteness of the exponent. 
We state them below:
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Lemma 2.3. Let H be a finite-dimensional Hopf algebra over k.

(1) If H is semisimple and cosemisimple, then exp(H) is finite and divides dim(H)3;
(2) If char k > 0, then exp(H) < ∞.

As a conclusion of the theorems above, it is easy to check that the coradical of a finite-dimensional Hopf 
algebra with the dual Chevalley property always has finite exponent:

Corollary 2.4. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property over k. Then 
exp(H0) < ∞.

Proof. If char k > 0, then this is a direct consequence of the (2) of the above lemma. If char k = 0, the 
cosemisimple Hopf algebra H0 is also semisimple now by [12, Theorem 3.3]. Then (1) of the above lemma 
is applied. �
2.4. Coradical orthonormal idempotents

For any coalgebra H, its dual algebra with the convolution product is denoted by H∗. Now we refer a 
certain kind of family of idempotents in H∗ introduced by Radford [20], which are called coradical orthonor-
mal idempotents in this paper. To introduce them, let S be the set of simple subcoalgebras of H and the 
classical Kronecker delta is denoted by δ.

Definition 2.5. Let H be a coalgebra. A family of coradical orthonormal idempotents of H∗ is a family of 
non-zero elements {eC}C∈S in H∗ satisfying following conditions:

(1) eCeD = δC,DeC for C, D ∈ S;
(2)

∑
C∈S

eC = ε on H (distinguished condition);

(3) eC |D = δC,Dε|D for C, D ∈ S.

The existence of (a family of) coradical orthonormal idempotents in H∗ for any coalgebra H is affirmed 
in [20, Lemma 2] or [21, Corollary 3.5.15], using properties of injective comodules. It is always assumed that 
{eC}C∈S is a given family of coradical orthonormal idempotents in H∗ for the remaining of this paper.

We remark that when H is pointed, there is another way to construct coradical orthonormal idempotents 
from [17, Theorem 5.4.2] for example, and some convenient notations are used there. Similar notations for 
{eC}C∈S will be used in this paper too:

Ch = h ↼ eC , h
D = eD ⇀ h,ChD = eD ⇀ h ↼ eC , h ∈ H, C,D ∈ S,

where ↼ and ⇀ are hit actions of H∗ on H. Specially if C = kg is pointed, then we also denote gh := Ch, 
hg := hC , and V C := eC ⇀ V , etc.

Some direct properties, which can be found in [14, Proposition 2.2], are listed as follows:

Proposition 2.6. Let H be a coalgebra. Then for all C, D ∈ S, we have

(1) CH0
D = δC,DC;

(2) CH1
D ⊆ Δ−1(C ⊗ CH1

D + CH1
D ⊗D);

(3) CHD ⊆ Ker(ε) if C �= D;
(4) Suppose V ⊆ H is a k-subspace. We have following direct-sum decomposition:
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(i) V =
⊕
C∈S

CV if V is a left coideal;

(ii) V =
⊕
D∈S

V D if V is a right coideal;

(iii) V =
⊕

C,D∈S
CV D if V is a subcoalgebra.

2.5. Multiplicative and primitive matrices

The content of this subsection could be found in [14, Section 3]. For positive integers r and s, we use 
Mr×s(V ) to denote the set of all r×s matrices over a vector space V . If r = s, we write Mr(V ) = Mr×r(V ).

Notation 2.7. Let V, W be k-vector spaces.

(1) Define a bilinear map

⊗̃ : Mr×s(V ) ⊗Ms×t(W ) → Mr×t(V ⊗W ),

(vij) ⊗ (wkl) �→
(

s∑
k=1

vik ⊗ wkj

)
.

Note that ⊗̃ ◦ (⊗̃ ⊗ id) = ⊗̃ ◦ (id⊗⊗̃) holds on Mr×s(U) ⊗Ms×t(V ) ⊗Mt×u(W ).
(2) Let f ∈ Homk(V, W ), we always use the same symbol f to denote the linear map f : Mr×s(V ) →

Mr×s(W ), (vij) �→ (f(vij)).

Remark 2.8. With such notations, it is direct that when (H, m, u) is an algebra, the linear map m ◦ ⊗̃ on 
Mr×s(H) ⊗Ms×t(H) is exactly the matrix multiplication Mr×s(H) ⊗Ms×t(H) → Mr×t(H).

A “multiplicative matrix” over a coalgebra, once introduced in [15, Section 2.6] for quantum group 
constructions, has similar properties to a grouplike element.

Definition 2.9. Let (H, Δ, ε) be a coalgebra and r be a positive integer. Let Ir denote the unit matrix of 
order r over k.

(1) A matrix G ∈ Mr(H) is called a multiplicative matrix over H if Δ(G) = G ⊗̃ G and ε(G) = Ir.
(2) For any C ∈ S, a multiplicative matrix C is called a basic multiplicative matrix of C, if all the entries 

of C form a linear basis of C.

Remark 2.10. It is well-known that every simple coalgebra over an algebraically closed field has a basic 
multiplicative matrix.

Moreover, if H is a bialgebra, then the nth Sweedler power [n] : h �→
∑

h(1)h(2) · · ·h(n) of a multiplicative 
matrix G = (gij) over H equals to the nth (multiplication) power of G (see [9, Corollary 3] or [14, Proposition 
4.2]).

Lemma 2.11. Let (H, m, u, Δ, ε) be a k-bialgebra. Let G be an r × r multiplicative matrix over H. Then

(1) G[n] := (gij [n]) = Gn for any positive integer n.
(2) If H is a Hopf algebra with antipode S, then S(G)G = GS(G) = Ir.

Primitive elements play an important role in the study of pointed coalgebras, and “primitive matrices” 
play a similar role in non-pointed case.



6 K. Li, G. Liu / Journal of Pure and Applied Algebra 226 (2022) 106871
Definition 2.12. Let H be a coalgebra, and let Cr×r, Ds×s be two multiplicative matrices. A matrix W ∈
Mr×s(H) is called a (C,D)-primitive matrix if Δ(W) = C ⊗̃ W + W ⊗̃ D.

Remark 2.13. It is easy to show that ε(W) = 0 for any primitive matrix W.

Using the method of coradical orthonormal idempotents, we could express any element in H1 as a sum 
of entries in multiplicative and primitive matrices. For any subspace V ⊆ H, we denote V ∩Ker(ε) by V +. 
The following lemma is important for us (see [14, Theorem 3.1]).

Lemma 2.14. Assume that k is algebraically closed. Let H be a coalgebra, C, D be simple subcoalgebras of H
and C = (ci′i)r×r, D = (djj′)s×s be respectively basic multiplicative matrices for C and D. Then

(1) If C �= D, then for any w ∈ CH1
D, there exist rs-number of (C,D)-primitive matrices

W(i′,j′) =
(
w

(i′,j′)
ij

)
r×s

(1 ≤ i′ ≤ r, 1 ≤ j′ ≤ s),

such that w =
r∑

i=1

s∑
j=1

w
(i,j)
ij ;

(2) If C = D if we choose that C = D, then for any w ∈ CH1
C , there exist rs-number of (C, C)-primitive 

matrices

W(i′,j′) =
(
w

(i′,j′)
ij

)
r×s

(1 ≤ i′ ≤ r, 1 ≤ j′ ≤ s)

such that w −
r∑

i=1

s∑
j=1

w
(i,j)
ij ∈ C.

3. An annihilation polynomial for antipode

Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property and H0 be its corad-
ical. We denote its Loewy length by Lw(H). In this section, our aim is to prove the following annihilation 
polynomial for S2 ∈ Endk(H):

Theorem 3.1. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote N :=
exp(H0) < ∞ and L := Lw(H). Then

(S2N − id)L−1 = 0

holds on H.

Remark 3.2. For a finite-dimensional pointed Hopf algebra, the same annihilation polynomial was established 
by Taft and Wilson 46 years ago [25, Theorem 5]. So above theorem can be regarded as a generalization 
since finite-dimensional pointed Hopf algebras clearly have the dual Chevalley property.

Before the proof, an immediate but meaningful conclusion on the order of the antipode should be noted 
as follows, which generalizes [4, Theorem 4.4] as well as [25, Corollary 6] for the pointed case. We denote 
the composition order of S2 by ord(S2).

Corollary 3.3. Let H, N and L be as in Theorem 3.1. Then
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(1) If char k = 0, then ord(S2) | N ;
(2) If char k = p > 0, then ord(S2) | gcd(NpM , exp(H)), where M is a natural number satisfying pM ≥

L − 1.

Proof. (1) The order of S is finite, for H is finite-dimensional [19, Theorem 1]. Then S2N is semisimple in 
characteristic 0, but unipotent. It follows that S2N = id.

(2) It is evident that S2NpM − id = (S2N − id)pM = 0. On the other hand, Lemma 2.2 implies that 
ord (S2) | exp(H). �

We divide the proof of Theorem 3.1 into several steps which occupy the following subsections.

3.1. Antipode on primitive matrices

First of all, we show how algebra anti-endomorphisms act on products of matrices over an (associative) 
algebra. For a matrix A = (aij)r×s over an algebra, we denote the transpose of A by AT := (aji)s×r.

Lemma 3.4. Let H be an associative algebra with an algebra anti-endomorphism S. For any matrices 
A1, A2, · · · , An over H, we have

S(A1A2 · · · An)T = S(An)TS(An−1)T · · ·S(A1)T

as long as the product A1A2 · · · An is well-defined.

Proof. The equation holds due to direct calculations. �
From now on, suppose that H is a finite-dimensional Hopf algebra with the antipode S. With the help 

of the lemma above, we could in fact calculate the image of a certain kind of primitive matrices under S2n

for each positive integer n.

Lemma 3.5. Let C = (cij)r×r be a multiplicative matrix, and let X = (x1, x2, · · · , xr)T be a (C, 1)-primitive 
matrix over H.

(1) S(X ) = −S(C)X ;
(2) S2(X ) = ((S(C)X )TS2(C)T)T. In other words, S2(xi) =

r∑
k1,k2=1

S(ck2k1)xk1S
2(cik2) for each 1 ≤ i ≤ r;

(3) For any positive integer n,

S2n(X ) = [[S2n−1(C) · · · ((S(C)X )TS2(C)T)T · · · ]TS2n(C)T]T.

Specifically, the (i, 1)-entry of S2n(X ) is

S2n(xi) =
r∑

k1,k2,··· ,k2n=1

S
[
ck2k1S

2(ck4k3) · · ·S2n−4(ck2n−2k2n−3)S2n−2(ck2nk2n−1)
]

xk1S
2 [ck3k2S

2(ck5k4) · · ·S2n−4(ck2n−1k2n−2)S2n−2(cik2n)
]
.

Proof. (1) The definition of (C, 1)-primitive matrices means that Δ(X ) = C ⊗̃ X+X ⊗̃ 1. We map m ◦(S⊗id)
onto this equation and obtain

0 = ε(X ) = S(C)X + S(X ),
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which follows S(X ) = −S(C)X immediately.
(2) According to (1) and Lemma 3.4, it is direct that

S2(X ) = S(−S(C)X ) = − (S(X )TS2(C)T)T = − ((−S(C)X )TS2(C)T)T

= ((S(C)X )TS2(C)T)T.

(3) We prove it by induction on n. Assume that the equation holds for any multiplicative matrix C and (C, 1)-
primitive matrix X in case n − 1. Note that S2(C) is multiplicative and S2(X ) is (S2(C), 1)-primitive, 
because S2 is a coalgebra endomorphism (as well as an isomorphism) on H. Then

S2n(xi) = S2n−2(S2(xi))

=
r∑

k3,k4,··· ,k2n=1

S
[
S2(ck4k3) · · ·S2n−4(ck2n−2k2n−3)S2n−2(ck2nk2n−1)

]
S2(xk3)S2 [S2(ck5k4) · · ·S2n−4(ck2n−1k2n−2)S2n−2(cik2n)

]
=

r∑
k3,k4,··· ,k2n=1

S
[
S2(ck4k3) · · ·S2n−4(ck2n−2k2n−3)S2n−2(ck2nk2n−1)

]
⎛
⎝ r∑

k1,k2=1

S(ck2k1)xk1S
2(ck3k2)

⎞
⎠S2 [S2(ck5k4) · · ·S2n−4(ck2n−1k2n−2)S2n−2(cik2n)

]

=
r∑

k1,k2,k3,k4,··· ,k2n=1

S
[
S2(ck4k3) · · ·S2n−4(ck2n−2k2n−3)S2n−2(ck2nk2n−1)

]
S(ck2k1)xk1S

2(ck3k2)S2 [S2(ck5k4) · · ·S2n−4(ck2n−1k2n−2)S2n−2(cik2n)
]

=
r∑

k1,k2,k3,k4,··· ,k2n=1

S
[
ck2k1S

2(ck4k3) · · ·S2n−4(ck2n−2k2n−3)S2n−2(ck2nk2n−1)
]

xk1S
2 [ck3k2S

2(ck5k4) · · ·S2n−4(ck2n−1k2n−2)S2n−2(cik2n)
]
,

which is exactly the required equation in case n. �
It is suggested in Lemma 3.5 that the mapping S2 on (C, 1)-primitive matrices is somehow similar to a 

“conjugate action by C”. We show next that such an action has finite order when H has finite exponent.

Lemma 3.6. Let C = (cij)r×r be a basic multiplicative matrix of a simple subcoalgebra C ∈ S of H. Assume 
that N := exp(H) < ∞. Then for 1 ≤ i, j ≤ r,

r∑
k2,k3,··· ,k2N=1

ck2jS
2(ck4k3) · · ·S2N−4(ck2N−2k2N−3)S2N−2(ck2Nk2N−1)

⊗ ck3k2S
2(ck5k4) · · ·S2N−4(ck2N−1k2N−2)S2N−2(cik2N )

= δij(1 ⊗ 1),

which is the (i, j)-entry of the identity matrix Ir ⊗̃ Ir ∈ Mr(H ⊗H).

Proof. Firstly it is known that exp(H∗op) = exp(H) = N according to [3, Proposition 2.2(4) and Corollary 
2.6]. Here the antipode of dual Hopf algebra H∗ is also denoted as S, and then the antipode of H∗op is 
actually S−1.
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Let us prove the equation by taking values of the function f ⊗ g ∈ H∗⊗H∗ for arbitrary f, g ∈ H∗. Note 
that

Δ2N (cij) =
r∑

k2,k3,··· ,k2N=1

cik2N ⊗ ck2Nk2N−1 ⊗ · · · ⊗ ck3k2 ⊗ ck2j .

The value of f ⊗ g on the left side of the required equation is then

r∑
k2,k3,··· ,k2N=1

〈f, ck2jS
2(ck4k3) · · ·S2N−4(ck2N−2k2N−3)S2N−2(ck2Nk2N−1)〉

〈g, ck3k2S
2(ck5k4) · · ·S2N−4(ck2N−1k2N−2)S2N−2(cik2N )〉

=
r∑

k2,k3,··· ,k2N=1

〈g(N), S
2N−2(cik2N )〉〈f(N), S

2N−2(ck2Nk2N−1)〉

〈g(N−1), S
2N−4(ck2N−1k2N−2)〉〈f(N−1), S

2N−4(ck2N−2k2N−3)〉
· · · 〈g(2), S

2(ck5k4)〉〈f(2), S
2(ck4k3)〉〈g(1), ck3k2〉〈f(1), ck2j〉

= 〈
∑

S2N−2(g(N))S2N−2(f(N))S2N−4(g(N−1))S2N−4(f(N−1))

· · ·S2(g(2))S2(f(2))g(1)f(1), cij〉

=
〈∑

S2N−2(g(N)f(N))S2N−4(g(N−1)f(N−1)) · · ·S2(g(2)f(2))g(1)f(1), cij

〉
=

〈
m∗op

N ◦
(
id⊗(S−1)−2 ⊗ · · · ⊗ (S−1)−2N+2) ◦ Δ∗

N (gf), cij
〉

= 〈gf, 1〉〈ε, cij〉 = δij〈f, 1〉〈g, 1〉 = 〈f ⊗ g, δij(1 ⊗ 1)〉.

The proof is now complete since f and g are arbitrary linear functions. �
The following proposition is a conclusion of two lemmas above.

Proposition 3.7. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote N :=
exp(H0) < ∞. Then for any basic multiplicative matrix C and any (C, 1)-primitive matrix X , we have 
S2N (X ) = X .

Proof. Denote C = (cij)r×r and X = (x1, x2, · · · , xr)T. Since C is a multiplicative matrix over H0 as well, 
Lemma 3.5(3) and Lemma 3.6 imply that for any 1 ≤ i ≤ r,

S2N (xi) =
r∑

k1,k2,··· ,k2N=1

S
[
ck2k1S

2(ck4k3) · · ·S2N−4(ck2N−2k2N−3)S2N−2(ck2Nk2N−1)
]

xk1S
2 [ck3k2S

2(ck5k4) · · ·S2N−4(ck2N−1k2N−2)S2N−2(cik2N )
]

=
r∑

k1=1

δik1S(1)xk11 = xi.

That is to say, S2N (X ) = X . �
In Subsection 2.4, we have made the convention that a family of coradical orthonormal idempotents 

{eC}C∈S is always given. Now recall that according to Proposition 2.6(4), the left coideal H1
1 could be 

decomposed as a direct sum:
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H1
1 =

⊕
C∈S

CH1
1.

On the other hand, if we assume that k is algebraically closed, then every simple subcoalgebra C ∈ S has 
a basic multiplicative matrix C, and thus each element in CH1

1 is a sum of some entries in (C, 1)-primitive 
matrices and some elements in H0. This is followed from Lemma 2.14. As a consequence, we could obtain 
the following corollary that the transformation S2N on H1

1 equals to identity in this case.

Corollary 3.8. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property over an alge-
braically closed field k. Denote N := exp(H0) < ∞. Then S2N |H11= idH11 .

Proof. This is because S2N keeps any basic multiplicative matrix C as well as any (C, 1)-primitive matrix. �
3.2. Antipode on H1

Our first goal in this subsection is to give the following proposition.

Proposition 3.9. Let H be a Hopf algebra with the dual Chevalley property. Then H1 = H1
1 ·H0.

Proof. It seems that this is known and we give an approach to prove it for safety. At first, using comul-
tiplication and multiplication one can show that there is a right H0-Hopf module structure on H1/H0. 
Secondly, it is straightforward to show that the space of coinvariants of this right Hopf module is exactly 
(H1

1 + H0)/H0. At last, we can apply the fundamental theorem of Hopf modules ([13, Proposition 1]) to 
get the result. �

Proposition 3.9 provides that H1
1 and H0 generate H1 by multiplication. Then we can continue to 

investigate whether S2N could be identified with the identity map on H1 or not.

Proposition 3.10. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property over an 
algebraically closed field k. Denote N := exp(H0) < ∞. Then S2N |H1= idH1 .

Proof. We already know that the algebra morphism S2N restricted to subspaces H0 or H1
1 is supposed 

to be the identity (Corollaries 2.2 and 3.8). Now that Proposition 3.9 gives H1 = H1
1 · H0, consequently 

S2N |H1= idH1 holds in this case. �
3.3. Proof of Theorem 3.1

We remark firstly a classical result on coradical filtrations in [25, Proposition 4], which holds for non-
pointed coalgebras as well.

Lemma 3.11. ([25, Proposition 4]) Let H be an arbitrary coalgebra. Let i be a positive integer and ϕ : H → H

be a coalgebra endomorphism, such that (ϕ − id)(Hj) ⊆ Hj−1 for all 0 ≤ j ≤ i. Then (ϕ − id)(Hi+1) ⊆ Hi.

Proof of Theorem 3.1 when k is algebraically closed. Combining Lemma 3.11 and Proposition 3.10, it is 
clear that the statement of Theorem 3.1 holds when the base field k is algebraically closed. �

Next we want to prove Theorem 3.1 using the method of field extensions. For the purpose, it is necessary 
to show that exp(H0) and Lw(H) are invariant under field extensions due to the dual Chevalley property. 
The following lemma seems also known.
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Lemma 3.12. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property over k. Suppose 
K is a field extension of k, and H ⊗K denotes the extended finite-dimensional K-Hopf algebra. Then

(1) H ⊗K has the dual Chevalley property with coradical H0 ⊗K;
(2) The coradical filtration of H ⊗K is {Hn ⊗K}n≥0;
(3) Moreover exp(H0 ⊗K) = exp(H0) and Lw(H ⊗K) = Lw(H).

Proof. The definition of H ⊗K could be found in [21, Exercise 7.1.8] for example.

(1) Regard H0 ⊗ K ↪→ H ⊗ K as a subspace canonically, which is in fact a Hopf subalgebra over K. 
Meanwhile, H0 ⊗K is cosemisimple because H0 is ([11, Lemma 1.3]). Thus H0 ⊗K is contained in the 
coradical (H ⊗K)0.
On the other hand, the coalgebra structure of H ⊗ K follows naturally that {∧n(H0 ⊗ K)}n≥0 is a 
coalgebra filtration of H ⊗K, which implies that H0 ⊗K ⊇ (H ⊗K)0 by [24, Proposition 11.1.1].
As a conclusion, the coradical (H ⊗K)0 = H0 ⊗K, and the dual Chevalley property for H ⊗K could 
be obtained since H0 ⊗K is closed under the multiplication evidently.

(2) This could be inferred with (H ⊗K)0 = H0 ⊗K as well as

(H0 ⊗K) ∧ (Hn ⊗K) = (H0 ∧Hn) ⊗K

for each n ≥ 0.
(3) The equation Lw(H⊗K) = Lw(H) follows immediately from (2). The exponent is invariant under field 

extensions is stated in [3, Proposition 2.2(8)]. �
Proof of Theorem 3.1 for general k. Let K := k be the algebraic closure of k. Then H ⊗ K is a finite-
dimensional Hopf algebra over the algebraically closed field K. We know from Lemma 3.12 that H ⊗K has 
the dual Chevalley property, exp(H0 ⊗K) = N and Lw(H ⊗K) = L according to our notations.

Therefore, if we denote the antipode and identity map of H ⊗K by SH⊗K and idH⊗K respectively, then 
we already know that

(SH⊗K
2N − idH⊗K)L−1 = 0 (3.1)

holds in EndK(H ⊗K). Now we apply Equation (3.1) on element h ⊗ 1K ∈ H ⊗K for h ∈ H, and obtain

(S2N − id)L−1(h) ⊗ 1K = 0.

This implies that (S2N − id)L−1 = 0 holds in Endk(H) too. �
4. Two applications

In this section, we want to give two applications of our main result. Both of them concern with an 
important gauge invariant which is called the quasi-exponent.

4.1. A generalization

In [4], they introduced a gauge invariant called the quasi-exponent for finite-dimensional Hopf algebras, 
which has similar properties with the exponent but always finite. Precisely, the quasi-exponent of a finite-
dimensional Hopf algebra H, denoted by qexp(H), is defined to be the least positive integer n such that 
the nth power of the Drinfeld element in D(H) is unipotent ([4, Definition 2.1]).
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When H is moreover pointed over C, there is a description of qexp(H) in the following Etingof-Gelaki’s 
theorem (see [4, Theorem 4.6]).

Theorem 4.1. Let H be a finite-dimensional pointed Hopf algebra over C. Then qexp(H) = exp(G(H)).

Its proof is based on following lemma which is a combination of [4, Lemma 4.2] and [4, Proposition 4.3].

Lemma 4.2. Let H be a finite-dimensional Hopf algebra over C.

(1) If H is filtered and let grH be its associated graded Hopf algebra. Then qexp(H) = qexp(grH).
(2) Assume that H is graded with zero part H(0). Then

qexp(H) = lcm(qexp(H(0)), ord(S2)),

where lcm denotes the least common multiple.

With the help of the lemma above and Corollary 3.3 (1), we generalize Theorem 4.1 to finite-dimensional 
Hopf algebras with the dual Chevalley property.

Theorem 4.3. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property over C. Then 
qexp(H) = exp(H0).

Proof. As mentioned in Lemma 2.1, the dual Chevalley property implies that H is a filtered Hopf algebra 
with the filtration {Hn}n≥0. Thus

qexp(H) = qexp(grH)

holds by Lemma 4.2 (1). Meanwhile, Lemma 4.2 (2) provides the equation

qexp(grH) = lcm(qexp((grH)(0)), ord(SgrH
2)).

In fact, it could be shown that ord(SgrH
2) = ord(S2) in our situation. Precisely, according to the definition 

of the associated graded Hopf algebra (e.g. [24, Chapter 11]), ord(SgrH
2) ≤ ord(S2) holds evidently. On the 

other hand, if we assume ord(SgrH
2) = M < ∞, the definition of grH follows that (S2M − id)Lw(H) = 0 on 

H. Thus S2M = id holds as well, since S is semisimple in characteristic 0.
As a conclusion, we have

qexp(H) = qexp(grH) = lcm(qexp((grH)(0)), ord(SgrH
2))

= lcm(qexp(H0), ord(S2)) = qexp(H0),

as long as we note that the zero part (grH)(0) = H0. Besides, the last equation holds because of Corollary 3.3
(1) by noting that qexp(H0) = exp(H0). �

Since the quasi-exponent is a gauge invariant, we have the following corollary which was known for 
pointed Hopf algebras (see [4, Corollary 4.8]):

Corollary 4.4. Let H and H ′ be two finite-dimensional Hopf algebras with the dual Chevalley property over 
C. If they are twist equivalent, then exp(H0) = exp(H ′

0).



K. Li, G. Liu / Journal of Pure and Applied Algebra 226 (2022) 106871 13
Note that the quasi-exponent is invariant under taking duals of finite-dimensional Hopf algebras. Thus 
a dual version of Theorem 4.3 could be given, which holds for Hopf algebras with the Chevalley property. 
Recall that a finite-dimensional Hopf algebra H is said to have the Chevalley property, if the tensor product 
of any two simple H-modules is semisimple, or, equivalently, if the radical of H is a Hopf ideal. And it is 
clear that H has the Chevalley property if and only if H∗ has the dual Chevalley property. The dual version 
of Theorem 4.3 could be regarded as a generalization of [4, Propostion 4.13]:

Corollary 4.5. Let H be a finite-dimensional Hopf algebra with the Chevalley property over C, and let 
H/Rad(H) be its semisimple quotient. Then qexp(H) = exp(H/Rad(H)).

4.2. Quasi-exponent of a pivotal Hopf algebra

In this subsection, we concentrate on a kind of semidirect product of a Hopf algebra H, which is denoted 
by H � k〈S2〉. It is a pivotal Hopf algebra containing H and appears in some researches such as [23]. Thus 
we think that it is interesting to investigate the exponent and quasi-exponent of H � k〈S2〉. Let us begin 
by recalling the corresponding concepts.

Definition 4.6. A Hopf algebra is called pivotal if there exists a grouplike element g ∈ H such that

S2(h) = ghg−1, h ∈ H.

Such an grouplike element g is called a pivotal element of H.

When a Hopf algebra H is finite-dimensional, the subgroup generalized by S2 ∈ Endk(H), which is 
denoted by 〈S2〉, is finite by [19, Theorem 1].

Definition 4.7. Let H be a finite-dimensional Hopf algebra. The semidirect product (or, smash product)
Hopf algebra H � k〈S2〉 of H with 〈S2〉 is defined through:

• H � k〈S2〉 = H ⊗ k〈S2〉 as a coalgebra;
• The multiplication is that (h � S2i)(k � S2j) := hS2i(k) � S2(i+j) for all h, k ∈ H and i, j ∈ Z;
• The unit element is 1 � id;
• The antipode is then SH�k〈S2〉 : h � S2i �→ S−2i+1(h) � S−2i.

Remark 4.8. 1) The algebra H � k〈S2〉 is in fact a Hopf algebra (e.g. [16, Theorem 2.13]) with H ∼= H � id
as its Hopf subalgebra.

2) It is pivotal with a pivotal element 1 � S2, since

S2
H�k〈S2〉(h� S2i) = S2(h) � S2i

= (1 � S2)(h� S2i)(1 � S2)−1

for h ∈ H and i ∈ Z.

For the remaining of this subsection, we aim to establish a formula for the exponent of H � k〈S2〉, and 
then deduce its quasi-exponent when H has the dual Chevalley property. The process goes forward mainly 
by direct calculations, and the following notation should be given for our purpose. It could be regarded as 
a special case of twisted exponents introduced in [22, Definition 3.1] and [18, Definition 3.1].
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Notation 4.9. Let H be a finite-dimensional Hopf algebra. For any i ∈ Z, we denote

exp2i(H) := min{n ≥ 1 | mn ◦ (id⊗S2i ⊗ · · · ⊗ S2(n−1)i) ◦ Δn = u ◦ ε}.

Remark 4.10. With this notation, exp(H) is exactly exp−2(H) here. We also remark that the research of 
“exponents” firstly begun in [7] and [8] as exp0(H) here, which was later studied in [10] and so on.

For simplicity, we always make following conventions:

• min∅ = ∞;
• Any positive integer divides ∞;
• Any positive integer divided by ∞ is also ∞.

Then whenever finite and infinite,

exp2i(H) = exp(H) for all i ∈ Z (4.1)

when H is involutory. In fact, Equation (4.1) holds as long as H is pivotal, which is directly followed from 
the lemma below:

Lemma 4.11. ([23, Lemma 4.2]) Let H be a Hopf algebra and g ∈ H is grouplike. Denote ϕ as the inner 
automorphism on H determined by g. Then

(hg)[n] =
∑

h(1)ϕ(h(2)) · · ·ϕn−1(h(n))gn

holds for each n ≥ 1 and all h ∈ H.

Notation 4.9 helps us to describe the exponent of the semidirect product H � k〈S2〉.

Proposition 4.12. Let H be a finite-dimensional Hopf algebra. Then

exp(H � k〈S2〉) = lcm(exp2i(H) | i ∈ Z).

Proof. Note that we have exp(H � k〈S2〉) = exp0(H � k〈S2〉) by Equation (4.1). Now for any positive 
integer n and each h ∈ H, i ∈ Z, we calculate that

(h� S2i)[n] =
∑

h(1)S
2i(h(2)) · · ·S2(n−1)i(h(n)) � S2ni.

Therefore, the nth Sweedler power [n]H�k〈S2〉 on H � k〈S2〉 is trivial if and only if S2ni = id and

mn ◦ (id⊗S2i ⊗ · · · ⊗ S2(n−1)i) ◦ Δn = u ◦ ε

both hold for all i ∈ Z. In other words,

[n]H�k〈S2〉 is trivial ⇐⇒ lcm
(
ord(S2i), exp2i(H) | i ∈ Z

)
| n.

However, we know that ord(S2) | exp−2(H) by Corollary 2.2. As a conclusion, exp(H � k〈S2〉) =
lcm(exp2i(H) | i ∈ Z) is obtained. �
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We end up by describing the quasi-exponent of H�C〈S2〉 when H has the dual Chevalley property over 
C. In this case H �C〈S2〉 also has the dual Chevalley property with the coradical H0 �C〈S2〉.

Proposition 4.13. Let H be a finite-dimensional Hopf algebra with the dual Chevalley property over C. Then

qexp(H �C〈S2〉) = exp(H0) = qexp(H).

Proof. By Theorem 4.3, we know that exp(H0) = qexp(H), and qexp(H�C〈S2〉) = exp(H0�C〈S2〉) which 
equals to lcm(exp2i(H0) | i ∈ Z) by Proposition 4.12. Since H0 is semisimple over C, (S |H0)2 = idH0 . This 
implies that lcm(exp2i(H0) | i ∈ Z) = exp(H0). �
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