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Abstract In continuation of the articles (Liu J Algebra 299:841–853, 2006; Huang,
J Algebra 321:2650–2669, 2009) we classify all finite-dimensional basic Hopf algebras
of tame type over an algebraically closed field of characteristic 0 in this paper. As
consequences, we show the following statements: (1) the representation dimension
of a tame basic Hopf algebra is exactly 3, (2) for a basic Hopf algebra H, if C(H) ≥ 3
then it is wild. These conclusions verify a folklore conjecture and one of Rickard’s
statements for the class of finite-dimensional basic Hopf algebras.

Keywords Basic Hopf algebra · Representation type · Representation dimension ·
Complexity
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1 Introduction

Throughout this paper k denotes an algebraically closed field and all spaces are k-
spaces. By an algebra we mean a finite-dimensional associative algebra with identity
element. We freely use the results, notations, and conventions of [35].

According to the fundamental result of Drozd [13], every finite dimensional
algebra exactly belongs to one of following three kinds of algebras: algebras of finite
representation type, algebras of tame type and wild algebras. For the algebras of
the former two kinds, a classification of indecomposable modules seems feasible.
By contrast, the module category of a wild algebra, being “complicated” at least as
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that of any other algebra, can’t afford such a classification. Inspired by the Drozd’s
trichotomy, one is often interested in classifying a given kind of algebras according
to their representation type. Such classification for finite-dimensional Hopf algebras
has received considerable attention. For modular group algebras of finite groups, a
block of such a modular group algebra is of finite representation type if and only if the
corresponding defect groups are cyclic while it is tame if and only if char k = 2 and its
defects groups are dihedral, semidihedral or generalized quaternion. See [7, 9, 14, 24].
In the case of small quantum groups, i.e., Frobenius–Lusztig kernels, the only tame
one is uq(sl2) and the others are all wild [12, 40, 41]. The classification for finite-
dimensional cocommutative Hopf algebras, i.e., finite algebraic groups, of finite
representation type and tame type was given by Farnsteiner and his cooperators
recently [17–21].

The class of basic Hopf algebras and their duals, pointed Hopf algebras, have been
studied intensively by many authors. See, for example, [3, 4, 23]. Our intention is to
classify finite dimensional basic Hopf algebras through their representation type. The
class of basic Hopf algebras of finite representation type has been given in [29] and all
radically graded basic Hopf algebras of tame type were classified recently [25]. So, in
order to give a complete classification of tame basic Hopf algebras, one needs to “lift”
radically graded basic Hopf algebras to the general case at first. Experiences tell us
that it is easier to deal with lifting for the dual case, i.e., pointed Hopf algebras. In fact,
the lifting method for pointed Hopf algebras has been developed by Andruskiewitsch
and Schneider [2–4]. Through Hopf-Galois approach, Masuoka showed that the
lifting developed by Andruskiewitsch and Schneider are special cases of 2-cocycle
deformations and gave many interesting applications [32–34]. In this paper, we will
explain such lifting through path coalgebras, an intuitive way. Upon this lifting way,
we get all liftings of the tame graded basic Hopf algebras and all of them are shown
to be tame (this is also a consequence of degeneration theory [22]). In fact, we indeed
show that the algebraic structures of these lifting are the same as that of their graded
versions.

One of the difficulties of this paper is to determine whether tame basic Hopf
algebras can be degenerated to wild algebras. In this paper, we will show that it
will not happen for finite-dimensional basic Hopf algebras, that is, we show that
the tameness of a basic Hopf algebra H implies the tameness of gr H. Thus the
lifting we get before is a complete classification of tame basic Hopf algebras over an
algebraically closed field of characteristic 0. In particular, the connected tame basic
Hopf algebras are shown to be the dual of small quantum groups of dihedral type,
which is not included in the list of Andruskiewitsch and Schneider [4].

As a consequence of this classification, some representation properties of basic
Hopf algebras are determined. We hope the representation properties we chose can
not only help us to give information about basic Hopf algebras but also to verify
some open problems in the representation theory of finite-dimensional algebras.
A folklore conjecture states that if an algebra A is tame, then its representation
dimension, introduced by Auslander [5] to measure how far an artin algebra is from
being of finite representation type, is 3. We will show that this is true for basic Hopf
algebras. As another unsettled case, Rickard [38] established an important result
implying that the complexity C(M) of a finite-dimensional module M over a self-
injective tame algebra A is bounded by 2, but there is a gap in his proof. Farnsteiner
showed that the Rickard’s conclusion is true for cocommutative Hopf algebras [16].
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As a consequence, we will show that the Rickard’s conclusion is also true for basic
Hopf algebras.

All preliminary notions and results that are relevant for our purpose are summa-
rized in Section 2. The main task of Section 3 is to give all liftings of tame graded
basic Hopf algebras. Section 4 tells us that the tameness of a finite-dimensional basic
Hopf algebras H is an invariant in the process of deformation of H. The complete
classification of tame basic Hopf algebras is formulated in Section 5 at last. In the last
section, the representation dimensions and complexities of tame basic Hopf algebras
are determined.

2 Preliminaries

Throughout we will be working over an algebraically closed field k of characteristic 0.
All spaces are k-spaces. For short, ⊗k is just denoted by ⊗.

2.1 Path Coalgebras

Given a quiver Q = (Q0, Q1) with Q0 the set of vertices and Q1 the set of arrows,
denote by kQ, kQa, and kQc, the k-space with basis the set of all paths in Q, the path
algebra of Q, and the path coalgebra of Q, respectively. Note that they are all graded
with respect to length grading. For α ∈ Q1, let s(α) and t(α) denote respectively the
starting and ending vertex of α.

Recall that the comultiplication of the path coalgebra kQc is defined by

�(p) = αl · · · α1 ⊗ s(α1) +
l−1∑

i=1

αl · · · αi+1 ⊗ αi · · ·α1 + t(αl) ⊗ αl · · ·α1

for each path p = αl · · · α1 with each αi ∈ Q1; and ε(p) = 0 for l ≥ 1 and 1 if l = 0
(l = 0 means p is a vertex). This is a pointed coalgebra.

Let C be a coalgebra. The set of group-like elements is defined to be

G(C) := {c ∈ C|�(c) = c ⊗ c, c �= 0}.

It is clear ε(c) = 1 for c ∈ G(C). For x, y ∈ G(C), denote by

Px,y(C) := {c ∈ C|�(c) = c ⊗ x + y ⊗ c}

the set of x, y-primitive elements in C. It is clear that ε(c) = 0 for c ∈ Px,y(C). Note
that k(x − y) ⊆ Px,y(C). An element c ∈ Px,y(C) is non-trivial if c /∈ k(x − y). Note
that G(kQc) = Q0; and

Lemma 2.1 (Lemma 1.1 in [10]) For x, y ∈ Q0, we have Px,y(C) = y(kQ1)x⊕
k(x − y) where y(kQ1)x denotes the k-space spanned by all arrows from x to y. In
particular, there is a non-trivial x, y-primitive element in kQc if and only if there is an
arrow from x to y in Q.



774 G. Liu

For a coalgebra C, one can construct its coradically graded coalgebra gr C (see
Chapter 5 in [35]). Chin and Montgomery showed the following result [11]:

Lemma 2.2 Let C be a pointed coalgebra, then there exists a unique quiver Q(C) such
that C can be embedded into the path coalgebra kQ(C)c as a large subcoalgebra.

This unique quiver Q(C) is called its dual Gabriel quiver. Here “large” means
that C contains all group-like elements and x, y-primitive elements of kQ(C)c for
x, y ∈ Q(C)0. For a pointed coalgebra, it is easy too see that

Lemma 2.3 Q(C) = Q(gr C).

Let H be a pointed Hopf algebra, then H can be embedded into a path coalgebra
kQ(H)c.

2.2 Bosonization

Let H, H0 be Hopf algebras and π : H → H0 and ι : H0 → H Hopf homomor-
phisms. Assume that πι = idH0 , so that π is surjective and ι is injective. Define

RH := Hcoπ = {h ∈ H|(id ⊗ π)�(h) = h ⊗ 1}.
By a result of Radford’s (see Theorem 3 of [37]),

H ∼= RH × H0 as Hopf algebras

where “×” is called biproduct in [37] and bosonization in [31]. Now let H be a basic
Hopf algebra, so the Jacobson radical JH is a Hopf ideal automatically [23]. Thus
grH := H/JH ⊕ JH/J2

H ⊕ · · · is a graded Hopf algebra. Clearly, H/JH =grH(0) is
a Hopf subalgebra of grH and there is a natural Hopf algebra epimorphism π :
grH → H/JH with a retraction of the inclusion. We can then apply the above
discussion. Let RH = {h ∈ H|(id ⊗ π)�(h) = h ⊗ 1}, then grH can be reconstructed
from RH and H/JH as a bosonization

grH ∼= RH × H/JH.

The main result of [25] can be stated in the following way.

Lemma 2.4 Let H be a radically graded basic Hopf algebra of tame type. Then

H ∼= k〈x, y〉/I × (kG)∗

for some f inite group G and I = (x2, y2, (xy)m − c(yx)m) for some m ≥ 1 and c ∈ k.

2.3 Representation Type

A finite-dimensional algebra A is said to be of f inite representation type provided
there are finitely many non-isomorphic indecomposable A-modules. A is of tame
type or A is a tame algebra if A is not of finite representation type, whereas for
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any dimension d > 0, there are a finite number of A-k[T]-bimodules Mi which
are free of finite rank as right k[T]-modules such that all but a finite number of
indecomposable A-modules of dimension d are isomorphic to Mi ⊗k[T] k[T]/(T − λ)

for λ ∈ k. We say that A is of wild type or A is a wild algebra if there is a finitely
generated A-k〈X, Y〉-bimodule B which is free as a right k〈X, Y〉-module such
that the functor B⊗k〈X,Y〉—from mod-k〈X, Y〉, the category of finitely generated
k〈X, Y〉-modules, to mod-A, the category of finitely generated A-modules, preserves
indecomposability and reflects isomorphisms. See [14] for more details. For other
unexplained notations about representation theory of finite-dimensional algebras in
this paper, see [6, 14].

3 Lifting of Connected Tame Graded Basic Hopf Algebras

All connected tame radically graded basic Hopf algebras were classified in [25]
(Theorems 4.9, 4.16). The main result of this section is to give all possible liftings
of these tame graded basic Hopf algebras. Our basic idea is quite simple: We dualize
the radically graded tame basic Hopf algebras at first, then we get some coradically
graded pointed Hopf algebra; Lift such pointed Hopf algebras and then dualize them
back. In this procedure, there are two difficulties we need to overcome. One is to
find suitable generators of the dual Hopf algebras and another is to make sure that
all lifting we get are still tame.

We recall a Hopf algebra is called connected if it is connected as an algebra. In
[25], all connected radically graded tame basic Hopf algebras are given by using
covering quivers and allowable bimodules on them. For our purpose, we describe
such Hopf algebras through generators and relations. Consider the following three
kinds of basic Hopf algebras:

Type 1 (gr I1)
∗ Let W = Zn = 〈g|gn = 1〉 be a cyclic group of order n with n even

and q an n-th primitive root of unity. The Hopf algebra (gr I1)
∗ is

defined to be an associative algebra generated by elements x, y and
g, with relations

gn = 1, x2 = y2 = xy + yx = 0, gxg−1 = qx, gyg−1 = qy.

The comultiplication �, counit ε, and antipode S are given by

�(g) = g ⊗ g, �(x) = x ⊗ 1 + g
n
2 ⊗ x, �(y) = y ⊗ 1 + g

n
2 ⊗ y,

ε(g) = 1, ε(x) = ε(y) = 0

S(g) = g−1, S(x) = −g
n
2 x, S(y) = −g

n
2 y.

Type 2 (gr I1
m)∗ Let W = Zn1 × Zn2 = 〈g, h|gn1 = hn2 = 1, gh = hg〉 be the direct

product of two cyclic groups of orders n1, n2 respectively with
n1, n2 even. Let q, p be n1-th and n2-th primitive roots of unity
respectively. Take two integers m1, m2 with m1|n1, m2|n2 and set
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q2 := qm1 , p1 := pm2 . Assume that p1q2 is an m-th primitive root
of unity. Then the basic Hopf algebra (gr I1

m)∗ is defined to be
an associative algebra generated by elements x, y and g, h, with
relations

gn1 = hn2 = 1, x2 = y2 = (xy)m + (−q2)
m(yx)m = 0,

gxg−1 = qx, gyg−1 = y, hxh−1 = x, hyh−1 = py.

The comultiplication �, counit ε, and antipode S are given by

�(g) = g ⊗ g, �(h) = h ⊗ h

�(x) = x ⊗ 1 + g
n1
2 hm2 ⊗ x, �(y) = y ⊗ 1 + gm1 h

n2
2 ⊗ y,

ε(g) = ε(h) = 1, ε(x) = ε(y) = 0

S(g) = g−1, S(h) = h−1, S(x) = −g
n1
2 h−m2 x, S(y) = −g−m1 h

n2
2 y.

Type 3 (gr I2
m)∗ Let W = Zn = 〈g|gn = 1〉 be a cyclic group of order n with n is even.

Assume gi, g j generate W and thus (i, j) = 1 which implies there
exist s, t ∈ Z such that

si + t j = 1.

Assume that the orders of gi, g j are n1, n2 respectively with n1, n2

are all even. Let q, p be n1-th and n2-th primitive root of unity
respectively. Take two integers m1, m2 with m1|n1, m2|n2 and set
q2 := qm1 , p1 := pm2 . Assume that p1q2 is an m-th primitive root
of unity. Then the basic Hopf algebra (gr I2

m)∗ is defined to be an
associative algebra generated by elements x, y and g, with relations

gn =1, x2 = y2 =(xy)m+(−q2)
m(yx)m =0, gxg−1 =qisx, gyg−1 = pjt y,

The comultiplication �, counit ε, and antipode S are given by

�(g)=g ⊗ g,�(x)=x ⊗ 1+g
n
2 + jm2 ⊗ x, �(y)= y ⊗ 1+gim1+ n

2 ⊗ y,

ε(g) = 1, ε(x) = ε(y) = 0

S(g) = g−1, S(x) = −g−( n
2 + jm2)x, S(y) = −g−(im1+ n

2 )y.

Lemma 3.1 (Theorems 4.9, 4.16 in [25]) Let H be a connected radically graded tame
basic Hopf algebra over an algebraically closed f ield k with characteristic 0. Then as a
Hopf algebra it is isomorphic to (gr I1)

∗ or (gr I1
m)∗ or (gr I2

m)∗.

Let H be a finite-dimensional Hopf algebra. Assume its Jacobson radical is a
Hopf ideal, then the radically graded version gr H := H/JH ⊕ JH/J2

H ⊕ · · · is a Hopf
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algebra too. Consider its dual H∗ and we know its coradical H∗
0 is a sub Hopf algebra

now. Thus its coradically graded version gr H∗ := H∗
0 ⊕ H∗

1/H∗
0 ⊕ · · · is also a Hopf

algebra. Here we use the notation “gr” to denote both radically graded versions
and coradically graded versions and we can discriminate the exact meaning of this
notation by using the context.

Lemma 3.2 Let H be as above. Then H is a lifting of gr H if and only if H∗ is a lifting
of gr H∗.

Proof It is enough to show that (gr H)∗ ∼= gr H∗ as Hopf algebras. This is indeed a
direct consequence of Proposition 5.2.9 in [35]. 
�

Type 1 Let n be an even number. Define the Hopf algebra gr I1 now. As an
associative algebra, it is generated by X, Y and G with relations

Gn = 1, X2 = Y2 = XY + Y X = 0, GXG−1 = −X, GYG−1 = −Y.

The comultiplication �, counit ε and antipode S are defined by

�(G) = G ⊗ G, �(X) = X ⊗ 1 + G ⊗ X, �(Y) = Y ⊗ 1 + G ⊗ Y,

ε(G) = 1, ε(X) = ε(Y) = 0,

S(G) = G−1, S(X) = −G−1 X, S(Y) = −G−1Y.

It is tedious to show that gr I1 is indeed a Hopf algebra.

Proposition 3.3 As a Hopf algebra, the dual Hopf algebra of (gr I1)
∗ is isomorphic

to gr I1.

We will give a relatively detailed proof of this proposition, as an example to
illustrate how to get the dual Hopf algebras. By the diamond lemma [8], (gr I1)

∗ has
a basis {glxi y j|0 ≤ l ≤ n − 1, 0 ≤ i, j ≤ 1} and denote by (glxi y j)∗ the element of the
dual of (gr I1)

∗ which sends glxi y j to 1 and the other elements in this basis to 0. Recall
q is an n-th primitive root of unity and define

G :=
n−1∑

i=0

qi(gi)∗, X :=
n−1∑

i=0

qi(gix)∗, Y :=
n−1∑

i=0

qi(gi y)∗.

Lemma 3.4 The elements G, X, Y generate the dual Hopf algebra of (gr I1)
∗.

Proof Denote the sub algebra generated by G, X, Y by H. It is enough to show
(glxi y j)∗ ∈ H for 0 ≤ l ≤ n − 1, 0 ≤ i, j ≤ 1. Indeed, it is easy to see that G is a
character of Zn and also generates a cyclic group of order n. This implies that
(gi)∗ ∈ H for 0 ≤ i ≤ n − 1. Direct computations show that (gi)∗(g jx)∗ �= 0 if and only
if i = j + n

2 and in this case we have

(gi+ n
2 )∗(gix)∗ = (gix)∗.
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Thus

(g0)∗ X = −(g
n
2 x)∗, (g1)∗ X = −q(g1+ n

2 x)∗, · · ·
which implies that (gix)∗ ∈ H for 0 ≤ i ≤ n − 1. Similarly, (gi y)∗ ∈ H for 0 ≤ i ≤
n − 1.

Let us compute (gix)∗(g jy)∗. In order to make (gix)∗(g jy)∗(glxs yt) �= 0, we must
have s = t = 1. And,

�(glxy) = glxy ⊗ gl − gl+ n
2 x ⊗ gl y + gl+ n

2 y ⊗ glx + gl ⊗ glxy.

Thus (gix)∗(g jy)∗ �= 0 if and only if i = j + n
2 and in this case

(gi+ n
2 x)∗(gi y)∗ = −(gixy)∗.

So (gixy)∗ ∈ H for 0 ≤ i ≤ n − 1. 
�

Lemma 3.5 With G, X, Y def ined as above, we have

X2 = Y2 = 0, XY = −Y X, GXG−1 = −X, GYG−1 = −Y.

Proof It is easy to see that X2 = Y2 = 0. Using the proof of the last lemma,

XY =
∑

i, j

qi+ j(gix)∗(g jy)∗

=
∑

j

−q j+ n
2 + j(g jxy)∗

=
∑

j

q2 j(g jxy)∗.

Similarly, Y X = ∑
j −q2 j(g jxy)∗. Thus XY = −Y X.

Similar to the proof of the last lemma, one can show that

(gi)∗(g jx)∗(gk)∗ �= 0 ⇔ i = j + n
2

= k + n
2

and in this case it is equal to (g jx)∗. Therefore,

GXG−1 =
∑

i, j,k

qiq jq−k(gi)∗(g jx)∗(gk)∗

=
∑

j

q j+ n
2 (g jx)∗

= −X.

Similarly, GYG−1 = −Y. 
�

Lemma 3.6 With G, X, Y def ined as above, the comultiplications of G, X, Y are
given by

�(G) = G ⊗ G, �(X) = X ⊗ 1 + G ⊗ X, �(Y) = Y ⊗ 1 + G ⊗ Y.
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Proof It is not hard to show that �((gi)∗) = ∑
j+k≡i(g

j)∗ ⊗ (gk)∗ and

�((gix)∗) =
∑

j+k≡i

q−k(g jx)∗ ⊗ (gk)∗ +
∑

j+k≡i

(g j)∗ ⊗ (gkx)∗,

�((gi y)∗) =
∑

j+k≡i

q−k(g jy)∗ ⊗ (gk)∗ +
∑

j+k≡i

(g j)∗ ⊗ (gk y)∗.

Thus

�(G) =
∑

j,k

q j+k(g j)∗ ⊗ (gk)∗ = G ⊗ G

and

�(X) =
∑

i

�(qi(gix)∗)

=
∑

i

qi(
∑

j+k≡i

q−k(g jx)∗ ⊗ (gk)∗ +
∑

j+k≡i

(g j)∗ ⊗ (gkx)∗)

=
∑

j,k

q j+kq−k(g jx)∗ ⊗ (gk)∗ +
∑

j,k

q j+k(g jx)∗ ⊗ (gk)∗

= X ⊗ 1 + G ⊗ X.

Similarly, �(Y) = Y ⊗ 1 + G ⊗ Y. 
�

Combining Lemmas 3.4–3.6, we give the proof of Proposition 3.3. Now we con-
sider lifting of the pointed Hopf algebra gr I1. Let λ1, λ2, λ3 ∈ k and define a pointed
Hopf algebra I1(λ1, λ2, λ3) as follows. As an associative algebra, it is generated by
G, X, Y with relations

Gn = 1, GXG−1 = −X, GYG−1 = −Y,

X2 = λ1(G2 − 1), Y2 = λ2(G2 − 1), XY + Y X = λ3(G2 − 1).

The comultiplication �, counit ε and antipode S are defined by

�(G) = G ⊗ G, �(X) = X ⊗ 1 + G ⊗ X, �(Y) = Y ⊗ 1 + G ⊗ Y,

ε(G) = 1, ε(X) = ε(Y) = 0,

S(G) = G−1, S(X) = −G−1 X, S(Y) = −G−1Y.

Proposition 3.7 Suppose that A is a lifting of gr I1. Then A ∼= I1(λ1, λ2, λ3) for some
λ1, λ2, λ3 ∈ k.
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Proof Clearly, the coradical A0 is the sub Hopf algebra generated by G. By
Lemma 6.1 in [4], there are elements X, Y ∈ A corresponding to X, Y ∈ gr I1 and
satisfy

�(X) = G ⊗ X + X ⊗ 1, �(Y) = G ⊗ Y + Y ⊗ 1,

GXG−1 = −X, GYG−1 = −Y.

By gr I1 is generated by group-like elements and skew primitive elements, we know
A is indeed generated by G, X and Y. Direct computations show that the elements
X2, Y2 and XY + Y X are all 1, G2-primitive elements. By Lemma 2.3, there are
no arrows from 1 to G2 and thus Lemma 2.1 implies that there are no non-trivial
1, G2-primitive elements. Therefore, there are λ1, λ2, λ3 ∈ k such that

X2 = λ1(G2 − 1), Y2 = λ2(G2 − 1), XY + Y X = λ3(G2 − 1).

So we have a surjective Hopf morphism from I1(λ1, λ2, λ3) to A. Since A is a lifting
of gr I1,

dimk A = dimk gr I1 = dimk I1(λ1, λ2, λ3).

Therefore, the surjective Hopf morphism must be an isomorphism. 
�

Theorem 3.8 Let H be a lifting of radically graded Hopf algebra (gr I1)
∗. Then as a

Hopf algebra

H ∼= (I1(λ1, λ2, λ3))
∗

for some λ1, λ2, λ3 ∈ k.

Proof It is a direct consequence of Proposition 3.7 and Lemma 3.2. 
�

Remark 3.9 If we define

g :=
n−1∑

i=0

qi(Gi)∗, x :=
n−1∑

i=0

(−1)i(Gi X)∗, y :=
n−1∑

i=0

(−1)i(GiY)∗

where q is the n-th primitive root of unity given in the definition of (gr I1)
∗. Just

like the proofs of Lemmas 3.4–3.6, one can show that (I1(λ1, λ2, λ3))
∗ is generated by

g, x, y and satisfy

gn = 1, x2 = y2 = xy + yx = 0, gxg−1 = qx, gyg−1 = qy.

The comultiplications � for x, y are

�(x) = x ⊗ 1 + g
n
2 ⊗ x, �(y) = y ⊗ 1 + g

n
2 ⊗ y.

But the comultiplication for g is complicated. By this, we know that the algebraic
structure is not changed through a lifting. Thus, all (I1(λ1, λ2, λ3))

∗ are still tame.
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Type 2 We use the same notations in the definition for (gr I1
m)∗. Define the Hopf

algebra gr I1
m now. As an associative algebra, it is generated by X, Y and G, H with

relations

Gn1 = Hn2 = 1, X2 = Y2 = (XY)m + (−q2)
m(Y X)m = 0,

GXG−1 = −X, GYG−1 = −q2Y, HX H−1 = p1 X, HY H−1 = −Y.

The comultiplication �, counit ε and antipode S are defined by

�(G) = G ⊗ G, �(H) = H ⊗ H,

�(X) = X ⊗ 1 + G ⊗ X, �(Y) = Y ⊗ 1 + H ⊗ Y,

ε(G) = ε(H) = 1, ε(X) = ε(Y) = 0,

S(G) = G−1, S(H) = H−1, S(X) = −G−1 X, S(Y) = −H−1Y.

For λ1, λ2, λ3 ∈ k, define the Hopf algebra I1
m(λ1, λ2, λ3) in the following way. It is

also generated by X, Y and G, H with relations

Gn1 = Hn2 = 1, X2 = λ1(G2 − 1), Y2 = λ2(H2 − 1),

(XY)m + (−q2)
m(Y X)m = λ3((GH)m − 1),

GXG−1 = −X, GYG−1 = −q2Y, HX H−1 = p1 X, HY H−1 = −Y.

The comultiplication �, counit ε and antipode S are given in the same way as gr I1
m.

Theorem 3.10

(1) gr I1
m and gr I1

m(λ1, λ2, λ3) are Hopf algebras.
(2) The dual Hopf algebra of (gr I1

m)∗ is isomorphic to gr I1
m.

(3) Any lifting of gr I1
m is isomorphic to I1

m(λ1, λ2, λ3) for some λ1, λ2, λ3 ∈ k.
(4) Any lifting of (gr I1

m)∗ is isomorphic to the dual Hopf algebra of I1
m(λ1, λ2, λ3) for

some λ1, λ2, λ3 ∈ k.

Proof (1) is straightforward. For (2), just define

G :=
n1,n2∑

i=0, j=0

qi(gih j)∗, H :=
n1,n2∑

i=0, j=0

pj(gih j)∗,

X :=
n1,n2∑

i=0, j=0

qi(gih jx)∗, Y :=
n1,n2∑

i=0, j=0

pj(gih jy)∗.
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One can check (2) just as the proof of Proposition 3.3. (3)(4) can be obtained similarly
as in Proposition 3.7 and Theorem 3.8. 
�

Remark 3.11 Just as the Remark 3.9, we define

g :=
n1,n2∑

i=0, j=0

qi(Gi H j)∗, h :=
n1,n2∑

i=0, j=0

pj(Gi H j)∗,

x :=
n1,n2∑

i=0, j=0

(−1)i p j
1(G

i H jX)∗, Y :=
n1,n2∑

i=0, j=0

(−1) jqi
2(G

i H jY)∗.

One can show that g, h, x, y generate the dual Hopf algebra of I1
m(λ1, λ2, λ3) and

the algebraic structure of (I1
m(λ1, λ2, λ3))

∗ is the same as that of (gr I1
m)∗. Thus

(I1
m(λ1, λ2, λ3))

∗ is still tame.

Type 3 We use the same notations as in the definition for (gr I2
m)∗. Define the Hopf

algebra gr I2
m now. As an associative algebra, it is generated by X, Y and G with

relations

Gn = 1, X2 = Y2 = (XY)m + (−q2)
m(Y X)m = 0,

GXG−1 = (−1)s pt
1 X, GYG−1 = −qs

2(−1)tY.

The comultiplication �, counit ε and antipode S are defined by

�(G) = G ⊗ G, �(X) = X ⊗ 1 + Gi ⊗ X, �(Y) = Y ⊗ 1 + G j ⊗ Y,

ε(G) = 1, ε(X) = ε(Y) = 0,

S(G) = G−1, S(X) = −G−i X, S(Y) = −G− jY.

For λ1, λ2, λ3 ∈ k, define the Hopf algebra I1
m(λ1, λ2, λ3) in the following way. It is

also generated by X, Y and G with relations

Gn = 1, X2 = λ1(G2i − 1), Y2 = λ2(G2 j − 1),

(XY)m + (−q2)
m(Y X)m = λ3((G)(i+ j)m − 1),

GXG−1 = (−1)s pt
1 X, GYG−1 = −qs

2(−1)tY.

The comultiplication �, counit ε and antipode S are given in the same way as gr I2
m.

We give the following result without proofs since its proof is totally the same as
that of Theorem 3.10.
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Theorem 3.12

(1) gr I2
m and gr I2

m(λ1, λ2, λ3) are Hopf algebras.
(2) The dual Hopf algebra of (gr I2

m)∗ is isomorphic to gr I2
m.

(3) Any lifting of gr I2
m is isomorphic to I2

m(λ1, λ2, λ3) for some λ1, λ2, λ3 ∈ k.
(4) Any lifting of (gr I2

m)∗ is isomorphic to the dual Hopf algebra of I2
m(λ1, λ2, λ3) for

some λ1, λ2, λ3 ∈ k.

Remark 3.13

(1) Just like Remarks 3.9, 3.11, the algebraic structure of (I2
m(λ1, λ2, λ3))

∗ is the
same as that of (gr I2

m)∗ and thus all liftings of (gr I2
m)∗ are still tame.

(2) In the process of the classification of finite-dimensional pointed Hopf algebras
given by Andruskiewitsch and Schneider [4], they need the condition that the
order of the group of group-like elements must be odd. In contrast to this
requirement, we always need the order to be even. Thus the pointed Hopf
algebras I1(λ1, λ2, λ3), I1

m(λ1, λ2, λ3) and I2
m(λ1, λ2, λ3) constructed in this paper

are not included in the list of pointed Hopf algebras given in [4]. Therefore they
are new examples of non-commutative, non-cocommutative Hopf algebras,
that is, quantum groups. Since the algebraic structures of them are clearly
close to dihedral groups, we call them small quantum groups of dihedral type.
Sometimes, some experts denote dihedral group of order 2m by Im and this is
the reason why we use the notation Im to represent such pointed Hopf algebras.

4 The Invariance of Tameness

The main result of this section is the following theorem.

Theorem 4.1 Let H be a f inite-dimensional basic Hopf algebra and gr H its radically
graded version. Then H is tame if and only if gr H is so.

By the general degeneration theory (see [22]), the tameness of gr H indeed implies
that H is tame too. Note that for a finite-dimensional tame algebra A, it is possible
that gr A is a wild algebra. So the main difficulty of the proof of this theorem is to
show that tame basic Hopf algebras can not be degenerated to wild algebras. To
give the “only if” part of the theorem, we need some preliminaries and the main
ingredient of the proof is the following result.

Lemma 4.2 (Theorem 4.15 in [28]) Let H be a basic Hopf algebra. Assume that
dimk H/JH is invertible in k and the characteristic of k is not 2. Then H is tame if
and only if as an algebra, H ∼= k〈x, y〉/I#σ (kG)∗ for some f inite group G and some
ideal I which is one of the following forms:

(1) I = (xm − yn, yx − axm, xy) for a ∈ k and m, n ≥ 2;
(2) I = (x2, y2, (xy)m − a(yx)m) for 0 �= a ∈ k and m ≥ 1;
(3) I = (x2 − (yx)m, y2, (xy)m + (yx)m, ) for m ≥ 1;
(4) I = (x2 − (yx)m, y2 − (xy)m, (xy)m + (yx)m, (xy)mx) for m ≥ 1;
(5) I = (x2, y2, (xy)mx − a(yx)m y) for 0 �= a ∈ k and m ≥ 1;
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(6) I = (x2 − (yx)m−1 y − b(xy)m, y2, (xy)m − a(yx)m) for a, b ∈ k with a �= 0
and m ≥ 2;

(7) I = (x2 − (yx)m−1 y − b(xy)m, y2 − (xy)m, (xy)m + (yx)m, (xy)mx) for a,

b ∈ k
with a �= 0 and m ≥ 2;

(8) I = (x2 − (yx)m−1 y − f (xy)m, y2 − (xy)m−1x − e(xy)m, (xy)m −
a(yx)m, (xy)mx) for a, e f ∈ k with a �= 0 and m ≥ 2;

(9) I = (x2 − (yx)m, y2, (xy)mx − a(yx)m y) for 0 �= a ∈ k and m ≥ 1;
(10) I = (x2 − (yx)m, y2 − (xy)m, (xy)mx − a(yx)m y, (xy)m+1) for 0 �= a ∈ k

and m ≥ 1.

Remark 4.3 As pointed out by Akira Masuoka, the above crossed products are
indeed smash products.

So, our idea is very simple. That is, we just have to verify the radically graded
versions of algebras listed in this lemma are tame Hopf algebras or not. We divide
this task into four lemmas.

Clearly, the following lemma is true.

Lemma 4.4 The algebras (2), (5) given in Lemma 4.2 are radically graded and they
are tame.

Lemma 4.5 The algebras (1), (9), (10) given in Lemma 4.2 are not Hopf algebras.

Proof If they are, then their radically graded versions are Hopf algebras too. Note
that their graded versions must contain the relations xy = 0 or yx = 0 or (xy)mx =
a(yx)m y for some 0 �= a ∈ k and m ≥ 1. By the proofs of Lemmas 4.6, 4.7 and 4.12 in
[25], such relations can not occur in Hopf ideals. 
�

Let H be a semisimple cosemisimple Hopf algebra and A an H-module algebra,
then A and A#H have the same representation type (see Theorem 4.5 in [27]).
Thus, sometimes to consider the representation type’s problems of algebras A#(kG)∗
appearing in Lemma 4.2, we only consider the corresponding problems for local
algebras A.

Lemma 4.6 The radically graded versions of algebras (3), (4) given in Lemma 4.2 are
still tame.

Proof If m > 1, then their graded versions contains relations x2 = 0 = y2 and thus
such graded versions are special biserial algebras (see Definition 6.1). There-
fore, they are tame or of finite representation type (see [14]). Since the algebra
k[x, y]/(x2, y2, xy) is a quotient of them, they are tame.

If m = 1, the radically graded version of (3) is the algebra k〈x, y〉/(x2 −
yx, y2, xy + yx) and the radically graded version of (4) is k〈x, y〉/(x2 − yx, y2 −
xy, xy + yx, xyx). Denote them by A and B respectively. Both of them are local
Frobenius algebra. It is known that for Frobenius algebras 	, 	 and 	/soc	
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have the same representation type. Now one can find A/socA ∼= B/socB ∼=
k[x, y]/(x2, y2, xy) and thus both A and B are tame. 
�

Lemma 4.7 The radically graded versions of algebras (6), (7) and (8) given in
Lemma 4.2 are still tame.

Proof It is not hard to see that the radically graded versions of (6), (7) and (8) contain
the relations x2 = y2 = 0 at the same time. So they are special biserial. Similar to the
proof of the first part of the above lemma, they are tame. 
�

Proof of Theorem 4.1. “If part”. A direct consequence of Geiss’s degeneration the-
orem (see [22]).

“Only if part”. It is a corollary of Lemma 4.2 and 4.4–4.7. 
�

5 Classification of Tame Basic Hopf Algebras

The classification of tame basic Hopf algebras can be given now. We consider the
connected case at first.

Proposition 5.1 Let H be a connected tame basic Hopf algebra. Then

H ∼= A∗

where A is a small quantum group of dihedral type given in Section 3.

Proof By Theorem 4.1, H is a lifting of a tame graded basic Hopf algebra. Thus the
statement is just a direct consequence of Theorems 3.8, 3.10, 3.12 and Remark 3.13.


�

The following theorem is the general case.

Theorem 5.2 Suppose that H is a tame basic Hopf algebra over an algebraically closed
f ield of characteristic 0. Then as a Hopf algebra

H ∼= (A#σ kG)∗

for some f inite group G and a small quantum group of dihedral type A def ined in
Section 3.

Proof It is known that k is an H-module through the counit map ε : H → k. We say
a block of H is the principle block if k, as a simple H-module, belongs to this block.
We denote this block by H◦. By dualizing the discussion for pointed Hopf algebras
(see, for example Corollary 5.6.4 in [35]), we know as an algebra H is a direct sum of
copies of H◦. Therefore, if H is tame, so is H◦. Consider H∗ and it is a pointed Hopf
algebra. By Theorem 3.2 in [36],

H∗ ∼= A#σ kG
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where A is the connected (as a coalgebra) component containing the identity element
of H∗. Clearly, A ∼= (H◦)∗ and thus A is a small quantum group of dihedral type by
Proposition 5.1. 
�

Remark 5.3 Our classification is based on the main results gotten in [25] where the
assumption k is an algebraically closed field of characteristic 0 is essentially needed
(see Remark 5.3 (2) in [25]). Just like the fact pointed out in Remark 5.3 (2) in [25],
our classification can also be established if the characteristic of k is big enough. In
general, the classification of tame basic Hopf algebras (even radically graded) over
an algebraically closed field of positive characteristic is still an open and interesting
question.

6 Representation Dimensions and Complexities of Tame Basic Hopf Algebras

6.1 Representation Dimensions

At first, we show that the representation dimension of tame basic Hopf algebras
is 3.

Let A be a finite-dimensional algebra, and denote by modA the category of
finitely generated A-modules. The representation dimension of A, denoted by
repdimA, is defined as

repdimA := inf{gldim EndA(M)|M generates and cogenerates modA},
where gldim denotes the global dimension of an algebra. In [5], Auslander intro-
duced the representation dimension of an Artin algebra at first to study algebras
of infinite representation type. In particular, he showed that an algebra is of finite
representation type if and only if its representation dimension is 2. Iyama showed that
representation dimensions of Artin algebras are always finite [26] and Rouquier [39]
proved that the representation dimension of the exterior algebra on a d-dimensional
vector space is d + 1.

Our basic observation is that tame basic Hopf algebras are special biserial alge-
bras. Recall for a basic algebra A, by the Gabriel’s Theorem, there is a unique quiver
QA, and an admissible ideal I of kQa

A, such that A ∼= kQa
A/I (see [6]).

Definition 6.1 The algebra A is special biserial provided the its basic algebra kQa/I
satisfies the following conditions:

(1) Any vertex of Q is starting point of at most two arrows.
(1’) Any vertex of Q is end point of at most two arrows.
(2) Given an arrow β, there is at most one arrow γ with s(β) = t(γ ) and βγ /∈ I.

(2’) Given an arrow γ , there is at most one arrow β with s(β) = t(γ ) and βγ /∈ I.

See [14] for this definition and related facts about special biserial algebras.

Lemma 6.2 Let H be a tame basic Hopf algebra. Then H is special biserial.
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Proof By the proof of Theorem 5.2, as an algebra H is a direct sum of copies of H◦,
which is a connected tame basic Hopf algebras. By Remarks 3.9, 3.11 and 3.13, the
algebraic structures of connected tame basic Hopf algebras are not changed when
we apply lifting methods to them. Thus as algebras, they are isomorphic to their
radically graded versions. And clearly all algebras given in Lemma 3.1 are special
biserial. 
�

The following result was proved in [15].

Lemma 6.3 (Corollary 1.3 in [15]) Let A be a special biserial algebra. Then repdim
A ≤ 3.

Note that Auslander has proved that an algebra is of finite representation type if
and only if its representation dimension is 2. Thus above two lemmas indeed imply
our main result of this subsection.

Theorem 6.4 Assume that H is a tame basic Hopf algebra. Then

repdimH = 3.

For the class of basic Hopf algebras, this gives a positive answer for the following
conjecture.

Conjecture If A is tame, then repdimA = 3.

6.2 Complexities

The concept of complexity of a module was first introduced by Alperin [1] in the
setting of group representations and group cohomology. Let A be an associative
algebra, M an A-module with minimal projective resolution

· · · → Pn → Pn−1 → · · · → P0 → M → 0.

Then the complexity of M is defined to be the integer

CA(M) := min{c ∈ N0 ∪ ∞ |∃λ > 0 : dimk Pn ≤ λnc−1, ∀ n ≥ 1}.
And the complexity of A is the maximum of the complexities of all A-modules, that
is,

C(A) := sup{CA(M) |M ∈ A-mod}.
For our purpose, we need consider the following examples.

Example 6.5

(1) Let A be a selfinjective algebra of finite representation type. It is well-known
that C(A) ≤ 1.
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(2) Consider the algebra A = k〈x, y〉/(x2, y2, (xy)m − c(yx)m) for some m ≥ 1 and
c ∈ k. It is a local algebra and we denote the unique simple module by k. We
can construct the minimal projective resolution of k as follows.

k� � 0A�A ⊕ A

�(k)

������
�A ⊕ A ⊕ A

�2(k)
������

�· · ·

�3(k)

������

Here �(M) is the kernel of a minimal projective cover of the A-module M. It is
not hard to show that

x

yx

xyx

...

(yx)m

y

xy

yxy

...

(xy)m




�
�

�� �
�

��

�2(k) =

where 
 = c(yx)m−1 y − (xy)m−1x. Define

x + c2 y

���
���yx

xyx

...
���

xy

yxy

...
���

(xy)m

N :=

Then through direct computations, we have for any i ∈ N

�i(k) =
{

�i−1(k) ⊕ N if i is odd,
�i−1(k) ⊕ �(N) if i is even.

By this, we indeed have get

Pn
∼= A(n+1)

for a minimal projective resolution P• → k. This implies that CA(k) = 2. Since A is
local, C(A) = 2.
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The complexities of basic Hopf algebras are summarized as follows.

Theorem 6.6 For a basic Hopf algebra H, we have

(1) If H is of f inite representation type, then C(H) ≤ 1.
(2) If H is tame, then C(H) = 2.
(3) If C(H) ≥ 3, then H is wild.

Clearly, (3) verifies Rickard’s statement (see Section 1) for basic Hopf algebras
and it is a direct consequence of (1)(2). So, we need only to show (1)(2). (1) is well-
known (see Example 6.5 (1)).

Attack to (2), the following result is needed. It implies that complexity is an
invariant under semisimple Hopf actions.

Proposition 6.7 Let H be a semisimple Hopf algebra and A an H-module algebra.
Then

C(A#H) = C(A).

Let us fix some notation first. Let R be a ring and M, N two R-modules. If M
is a direct summand of N as a R-module, then we denote it by M|N. To prove this
proposition, we need recall the following lemma (see Lemma 4.1 in [27]).

Lemma 6.8 Let H be a semisimple Hopf algebra and A an H-module algebra. For
any f initely generated A#H-module X, X|(A#H) ⊗A X.

Proof of Proposition 6.7. Let’s show that C(A#H) ≤ C(A) at first. If C(A) = ∞,
done. So we can assume that C(A) = m for some m ∈ N. Now let M be an A#H-
module. Since A is a sub algebra of A#H, M can be regarded as an A-module by the
restriction and we denote it by A M. By assumption, CA(A M) ≤ m. Assume

· · · Pn → Pn−1 → · · · → P0 �A M

is a minimal projective resolution of A M. Then there is a natural number β such that
dimk Pn ≤ βnm−1. Since A#H is a free right A-module of rank dimk H,

· · · A#H ⊗A Pn → A#H ⊗A Pn−1 → · · · → A#H ⊗A P0 � A#H ⊗A M

is a projective resolution of A#H ⊗A M. Assume that P′• → M is a minimal resolu-
tion of M as an A#H-module, then Lemma 6.8 implies that

dimk P′
n ≤ dimk A#H ⊗A Pn ≤ dimk Hβnm−1.

Therefore, CA#H(M) ≤ m and so C(A#H) ≤ m. This proves that we always have
C(A#H) ≤ C(A).

For the other direction, we note that H being semisimple implies that H is
cosemisimple [30] and thus H∗ is semisimple. By the proof of the above paragraph,
we know that C((A#H)#H∗) ≤ C(A#H). By the Blattner-Montgomery Duality
Theorem (see Section 9.4 in [35]), (A#H)#H∗ ∼= Mn(A) which is Morita equivalent
to A. Thus C((A#H)#H∗) = C(A) and so C(A) ≤ C(A#H). 
�
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Example 6.9 (Book algebras) Let q be an n-th primitive root of unity and m a
positive integer satisfying (m, n) = 1. Let H = h(q, m) = k < y, x, g > /(xn, yn, gn −
1, gx − qxg, gy − qm yg, xy − yx) and with comultiplication, antipode and counit
given by

�(x) = x ⊗ g + 1 ⊗ x, �(y) = y ⊗ 1 + gm ⊗ y, �(g) = g ⊗ g

S(x) = −xg−1, S(y) = −g−m y, S(g) = g−1, ε(x) = ε(y) = 0. ε(g) = 1

It is a Hopf algebra and is called a book algebra. It is a basic algebra since
h(q, m)/Jh(q,m) is a commutative semisimple algebra. For more information about
book algebras, see [3]. It is shown that only when n = 2, q = −1, m = 1, the book
algebra is tame (see Example 5.2 in [27]). In this case, h(−1, 1) ∼= k < X, Y >

/(X2, Y2, XY + Y X)#kZn where kZn is the group algebra of the cyclic group Zn

of order n. By Example 6.5(2) and Proposition 6.7, C(h(−1, 1)) = 2.

Proof of Theorem 6.6 (2) Similar to the proof of Lemma 6.2, we only need to show
that connected radically graded tame basic Hopf algebras have complexity 2. Let H
be of this type, then by Lemma 2.4,

H ∼= k〈x, y〉/I × (kG)∗,

where I = (x2, y2, (xy)m − c(yx)m) for some c ∈ k. Note that (kG)∗ is semisimple
and the bosonization is a special kind of smash product. Therefore, Proposition 6.7
implies that

C(H) = C(k〈x, y〉/I),

which equals to 2 by Example 6.5 (2). The proof is done. 
�
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