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Abstract. Let k be an algebraically closed field. The main goal of this paper
is to classify the finite-dimensional pointed Hopf algebras over k of finite corep-
resentation type. To do so, we give a necessary and sufficient condition for a
basic Hopf algebra over k to be of finite representation type firstly. Explicitly,
we prove that a basic Hopf algebra over k is of finite representation type if and
only if it is Nakayama. By this conclusion, we classify all finite-dimensional
pointed Hopf algebras over k of finite corepresentation type.

1. Introduction

In this paper, let k be an algebraically closed field and all spaces are k-spaces.
We say a coalgebra C is of finite corepresentation type if C∗ is of finite represen-

tation type. It is known that a finite-dimensional coalgebra C is pointed if and only
if C∗ is a basic algebra. So, the classifications of finite-dimensional pointed Hopf
algebras over k of finite corepresentation type are equivalent to the classifications
of finite-dimensional basic Hopf algebras over k of finite representation type. In
this paper, this equivalence will be used frequently.

In the representation theory of algebras, one remarkable conclusion, due to P.
Gabriel, states that for any basic algebra A over k, there exists a unique quiver ΓA

such that kΓA/I ∼= A as algebras, where JN ⊆ I ⊆ J2 (N ≥ 2) and J is the ideal
generated by all arrows. An advantage for this conclusion is that we can transform
the study of A-modules to that of representations of path algebra with relations
(see [1]).

One of our goals is to characterize finite-dimensional basic Hopf algebras of finite
representation type by quivers. As a special kind of basic algebras, there must be
some additional restrictions on the corresponding quiver on a basic Hopf algebra.
Fortunately, Green and Solberg proved that the corresponding quiver must be a
so-called covering quiver (see [6]). This fact is important for us.
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At first, we give the definition of covering quivers. As a byproduct, we discuss
the relationship between covering quivers and Hopf quivers which were defined in
[3]. It turns out that they are equivalent (see Proposition 2.1). Some results from
[6], which are needed in this paper, are recalled in Section 2.

In Section 3, we will give the main result, that is, a finite-dimensional basic Hopf
algebra over k is of finite representation type if and only if it is Nakayama (Theorem
3.1). In the viewpoint of representation theory, Nakayama algebras are the best
understood Artin algebras next to semisimple algebras and their Auslander-Reiten
quivers are given explicitly (see [1]). Thus, the Gabriel quivers and the Auslander-
Reiten quivers of basic Hopf algebras over an algebraically closed field of finite
representation type are explicitly known.

By a conclusion in [2], we will show that a finite-dimensional pointed Hopf algebra
over k is of finite corepresentation type if and only if it is comonomial (see [2]). The
authors of [2] classified all comonomial Hopf algebras when the characteristic of k
is zero. In [7], the first author of this paper and Y. Ye have given a description
of the structures of comonomial Hopf algebras when the characteristic of k is not
zero. By these conclusions, we give the classifications of pointed Hopf algebras of
finite corepresentation type in Section 4.

2. Preliminaries

This section relies heavily on two beautiful papers [5], [6] and the book [1].
Quivers considered here are always finite. Given a quiver Γ = (Γ0, Γ1) with Γ0

the set of vertices and Γ1 the set of arrows, denote by kΓ the path algebra of Γ. For
α ∈ Γ1, let s(α) and t(α) denote respectively the starting and the ending vertex of
α. An ideal I of kΓ is admissible if JN ⊆ I ⊆ J2 for some positive integer N ≥ 2,
where J is the ideal generated by all arrows.

For any finite-dimensional algebra Λ, we denote the Jacobson radical of Λ by
JΛ. An algebra Λ is said to be basic if Λ ∼=

⊕n
i=1 Pi for some indecomposable

projective Λ-modules Pi; then Pi � Pj for i �= j. It is known that a basic algebra
Λ over an algebraically closed field k is elementary, i.e. Λ/JΛ

∼= k × k × · · · × k. A
remarkable conclusion in representation theory, due to P. Gabriel, states that, for
any elementary algebra Λ, there exists a unique finite quiver Γ and an admissible
ideal I of kΓ, such that Λ ∼= kΓ/I (see [1]).

Next, let us recall the definition of covering quivers (see [6]). Let G be a finite
group and let W = (w1, w2, . . . , wn) be a sequence of elements of G. We say W is
a weight sequence if, for each g ∈ G, the sequences W and (gw1g

−1, gw2g
−1, . . . ,

gwng−1) are the same up to a permutation. In particular, W is closed under
conjugation. Define a quiver, denoted by ΓG(W ), as follows. The vertices of ΓG(W )
comprise the set {vg}g∈G, and the arrows are given by

{(ai, g) : vg−1 → vwig−1 |i = 1, 2, . . . , n, g ∈ G}.

We call this quiver the covering quiver (with respect to W ).

Example 2.1. (1): Let G = 〈g〉, gn = 1 and W = (g). Then the corresponding
covering quiver (we call such a quiver a basic cycle of length n) is pictured as follows.
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•v1������• vg

(a1, 1)

�• vg2
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−1)

····• vgn−3
����

• vgn−2
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3)

�
• vgn−1
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(2): Let G = K4 = {1, a, b, ab}, the Klein four group, and W = (1). Then the
corresponding covering quiver is

•1 �, •a �, •b �, •ab �

At present, we digress to discuss the relationship between covering quivers and
Hopf quivers, which are defined in [3]. Let us recall it.

Let G be a finite group and C the set of conjugate classes. Denote the set
of natural numbers by N . A class function χ : C → N is called a ramification,
denoted by χ =

∑
C∈C χCC. Given a ramification χ =

∑
C∈C χCC of G, then the

corresponding Hopf quiver Γ(G, χ) has the set of vertices Γ0 = G, and for each
x ∈ Γ0, c ∈ C ∈ C, one has χC arrows from x to cx.

Given a covering quiver ΓG(W ), where W = (w1, w2, . . . , wn) is a weight se-
quence, since W is closed under conjugation, W , as a set, equals the disjoint union
of elements in some conjugate classes. Without loss of generality, assume W is
the disjoint union of elements in C1, C2, . . . , Cm. Define a ramification χ by χC =
multiplicity of C in {C1, C2, . . . , Cm}. Then, we can get that ΓG(W ) ∼= Γ(G, χ) as
directed graphs.

Conversely, let Γ(G, χ) be a Hopf quiver with χ =
∑

C∈C χCC. Define W to be
the disjoint union of elements in χC copies of C. Since W is a finite set, we can
give an order on W such that W is a sequence. Clearly, W is a weight sequence,
ΓG(W ) is a covering quiver and Γ(G, χ) ∼= ΓG(W ) as directed graphs.

Combining these remarks, we get the following consequence.

Proposition 2.1. A quiver is a covering quiver if and only if it is a Hopf quiver.

The following conclusion (see Theorem 2.3 in [6]) states the importance of cov-
ering quivers.

Lemma 2.2. Let H be a finite-dimensional basic Hopf algebra over k. Then there
exists a finite group G and a weight sequence W = (w1, w2, . . . , wn) of G, such that
H ∼= kΓG(W )/I for an admissible ideal I.

Next, let us recall a wonderful E. Green’s conclusion, which plays a crucial role
in the proof of the main theorem (Theorem 3.1).

There is a natural left G-action on ΓG(W ). That is, g · vh = vhg−1 and g ·
(ai, h) = (ai, gh) for vh ∈ ΓG(W )0, (ai, h) ∈ ΓG(W )1 and g ∈ G. Assume W =
(w1, w2, . . . , wn) is the weight sequence. Clearly, the orbit graph, ΓG(W )/ ∼ G, is
the graph with one vertex and n loops. Thus, kΓG(W )/ ∼ G is isomorphic to the



4 GONGXIANG LIU AND FANG LI

free algebra in n non-commuting variables via assigning to each loop a variable and
then assigning each directed path its associated word in the n variables, i.e.

kΓG(W )/ ∼ G ∼= k{x1, x2, . . . , xn}.
Denote k{x1, x2, . . . , xn} by F . It is a G-graded algebra by giving xi degree wi

(for details, see [6]). Since the following conclusion is important, we call it Green’s
Theorem (see Corollary 4.5 in [6]). Note that we freely use some of the terminology
from [6].

Lemma 2.3 (Green’s Theorem). Let kΓG(W ) be a Hopf algebra with Hopf structure
given by an allowable kG-bimodule structure. Let I be an admissible Hopf ideal in
kΓG(W ), and let F be the G-graded free algebra isomorphic to kΓG(W )/ ∼ G,
which we view as an identification. Finally let I be the ideal generated in F by the
orbit classes of elements of I. Then

(a) I is a homogeneous ideal in the free algebra F , and hence F/I is a finite-
dimensional G-graded algebra.

(b) The category of G-graded F/I-modules (respectively, finite-dimensional G-
graded F/I-modules) is equivalent to the category of kΓG(W )/I-modules (resp.
finite-dimensional kΓG(W )/I-modules).

In fact, by the proof of this lemma in [6], when I satisfies the conditions G ·I ⊂ I
and I · G ⊂ I, Green’s Theorem is also true. Since, clearly, G · J2 ⊂ J2 and
J2 · G ⊂ J2 (J denotes the ideal generated by all arrows and see [6] for the right
action of G on J), we have the following corollary.

Corollary 2.4. With the notation above, the category of G-graded F/J2-modules
(respectively, finite-dimensional G-graded F/J2-modules) is equivalent to the cate-
gory of kΓG(W )/J2-modules (resp. finite-dimensional kΓG(W )/J2-modules).

3. Main result

Recall that an algebra is called Nakayama if each indecomposable projective left
and right module has a unique composition series. The main result of this paper is
the following theorem.

Theorem 3.1. Let H be a finite-dimensional basic Hopf algebra over k. Then H
is of finite representation type if and only if it is Nakayama.

The sufficiency follows immediately since it is known that every Nakayama alge-
bra is of finite representation type ([1], p. 197). In order to prove the necessity, we
need some preparations.

Lemma 3.2. Let G be a group. If k{x, y} has a G-graded structure and x, y are
homogeneous elements, then Λ = k{x, y}/(x, y)2 has an infinite number of isoclasses
of indecomposable G-graded modules.

Proof. For simplicity, we still denote the images of x and y in Λ by x and y. We
denote a G-graded Λ-module M by M =

⊕
g∈G Mg and call m ∈ Mg a homo-

geneous element of degree g. Let us construct an infinite number of isoclasses of
indecomposable G-graded Λ-modules directly. Assume the degrees of x and y are
gx and gy respectively for gx, gy ∈ G.

Let 1 be the identity element of G. For any natural number n, we construct an in-
decomposable G-graded Λ-module Qn. As a k-space, Qn = k2n+1. Let x and y act
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on Qn as the matrices en+1,1 +en+2,2 + · · ·+e2n,n and en+2,1 +en+3,2 + · · ·+e2n+1,n

respectively where eij denote the usual elementary matrices. We denote the sub-
space of k2n+1 spanned by (0, · · · , 0, 1, 0, · · · , 0)T by (ei) where the i-th coordinate
of (0, · · · , 0, 1, 0, · · · , 0) is 1 and T means transpose. Then Qn is G-graded since
Qn = (e1)1 ⊕ (e2)gyg−1

x
⊕ · · · ⊕ (en)gn−1

y g1−n
x

⊕ (en+1)gx
⊕ (en+2)gy

⊕ (en+3)g2
yg−1

x
⊕

· · · ⊕ (en+i)gi−1
y g2−i

x
⊕ · · · ⊕ (e2n+1)gn

y g1−n
x

. Let f be a graded endomorphism of Qn

satisfying f2 = f . It is straightforward to show that f = 0 or f = id. This implies
Qn is indecomposable as a G-graded Λ-module. �
Corollary 3.3. Let k{x1, x2, . . . , xn} be a G-graded algebra with homogeneous el-
ements x1, x2, . . . , xn. If n ≥ 2, k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2 has an infinite
number of isoclasses of indecomposable G-graded modules.

Proof. Note that there is a natural epimorphism as G-graded algebras:

k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2
π� k{x1, x2}/(x1, x2)2.

Thus, through the algebra morphism π above, we have that every G-graded
k{x1, x2}/(x1, x2)2-module is a G-graded k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2-
module. Therefore, Lemma 3.2 implies this corollary. �
Proof of Theorem 3.1. We only need to prove the necessity now. Let H be a basic
Hopf algebra of finite representation type. By Lemma 2.2, there exist a finite
group G and a weight sequence W = (w1, w2, . . . , wn) such that H ∼= kΓG(W )/I
for an admissible ideal I. We claim n ≤ 1. Otherwise, let n ≥ 2. Recall that
kΓG(W )/ ∼ G ∼= k{x1, x2, . . . , xn}, which is a G-graded algebra by giving xi

degree wi. Let I ′ be an ideal of kΓG(W ). As before, we denote by I ′ the ideal
generated in k{x1, x2, . . . , xn} by the orbit classes of elements of I ′. Let J denote
the ideal generated by all arrows. Then it is easy to see that k{x1, x2, . . . , xn}/J2 =
k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2. Thus by Corollary 3.3, k{x1, x2, . . . , xn}/J2

has an infinite number of isoclasses of indecomposable G-graded modules. By
Corollary 2.4, kΓG(W )/J2 is of infinite representation type. Since I ⊂ J2, there
is a natural epimorphism as algebras kΓG(W )/I � kΓG(W )/J2. Therefore, H ∼=
kΓG(W )/I is of infinite representation type too. It is a contradiction. This implies
n ≤ 1.

When n = 0, there is no arrow in ΓG(W ). This means H is semisimple and of
course Nakayama.

When n = 1, ΓG(W ) is composed of a disjoint union of basic cycles (see Example
2.1). It is well known that an indecomposable elementary algebra is Nakayama if
and only if its quiver is a basic cycle or a linear quiver Am (see [4]). Thus H is
Nakayama too. �
Example 3.1. Let q be an n-th primitive root of unity. Recall that the Taft algebra
Tn2(q) is a Hopf algebra generated by elements g and x, with relations

gn = 1, xn = 0, xg = qgx

with comultiplication ∆, counit ε, and antipode S given by

∆(g) = g ⊗ g, ∆(x) = 1 ⊗ x + x ⊗ g,

ε(g) = 1, ε(x) = 0,

S(g) = g−1, S(x) = −xg−1.
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It is a basic Hopf algebra. (This fact can be obtained from two known results,
Tn2(q) ∼= Tn2(q)∗ and Tn2(q) is a pointed Hopf algebra.) We claim that it is
Nakayama. (This conclusion can also be deduced from [2].)

Denote Tn2(q) by A. Then JA = span{gixj |i = 0, 1, . . . , n − 1, j = 1, 2, . . . ,
n − 1}, the linear span of {gixj}0≤i≤n−1, 1≤j≤n−1 and thus J2

A = span{gixj |
i = 0, 1, . . . , n − 1, j = 2, 3, . . . , n − 1}. Denote A/J2

A by Λ and the socle of
A/J2

A by SocΛ. Then it is easy to see that

SocΛ = JA/J2
A = span{gjx + J2

A|j = 0, 1, . . . , n − 1}.

Define a linear isomorphism

f : Λ/JΛ → SocΛ by (gi + J2
A) + JΛ → gix + J2

A

for i = 0, 1, . . . , n − 1. Clearly, f is also a Λ-module map. Thus Λ/JΛ
∼= SocΛ as

Λ-modules which implies Λ is a self-injective algebra (see exercise 12 on p. 135 in
[1]). Therefore Λ is Nakayama by Proposition 2.16 on p. 119 in [1]. It is known
that an algebra B is Nakayama if and only if B/J2

B is Nakayama. Since Λ = A/J2
A,

A = Tn2(q) is Nakayama. So it is of finite representation type.

Remark 3.4. In the viewpoint of representation theory, Nakayama algebras are the
best understood Artin algebras next to semisimple algebras. Many properties of
its representations are known. For example, we can draw its Auslander-Reiten
quivers directly (see [1]). When a Nakayama algebra is elementary, its Gabriel
quiver is either a basic cycle or a linear quiver Am. Thus the Gabriel quiver and
the Auslander-Reiten quiver of a basic Hopf algebra over an algebraically closed
field of finite representation type are explicitly known.

4. Classifications

In this section we will classify all finite-dimensional pointed Hopf algebras over
an algebraically closed field k of finite corepresentation type. Let H be a finite-
dimensional pointed Hopf algebra over k. When H is cosemisimple, it is easy to
see that H ∼= kG for a finite group G. So, our main task is to classify them in the
non-cosemisimple case.

Recall that an algebra A is called monomial if there exists a quiver Γ and an
admissible ideal I generated by some paths such that A ∼= kΓ/I. A coalgebra
C is called comonomial if C∗ is a monomial algebra. A finite-dimensional Hopf
algebra is called a monomial (resp. comonomial) Hopf algebra if it is monomial
(resp. comonomial) as an algebra (resp. coalgebra). So, it is obvious that a finite-
dimensional Hopf algebra H is a monomial Hopf algebra if and only if H∗ is a
comonomial Hopf algebra. One of the key observations we need in our study is the
following lemma which was proved in [2] (see Corollary 2.4 in [2]).

Lemma 4.1. A non-semisimple Hopf algebra is a monomial Hopf algebra if and
only if it is elementary and Nakayama.

Therefore, combining Theorem 3.1, we have the following corollary.

Corollary 4.2. Let H be a finite-dimensional non-cosemisimple Hopf algebra over
an algebraically closed field k. Then H is a pointed Hopf algebra of finite corepre-
sentation type if and only if it is a comonomial Hopf algebra.
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Proof. Equivalently, we need to prove that H∗ is a basic Hopf algebra of finite
representation type if and only if it is a monomial Hopf algebra. But this is the
direct consequence of Lemma 4.1 and Theorem 3.1. �

So, in order to classify finite-dimensional pointed Hopf algebras over an al-
gebraically closed field of finite corepresentation type, it is sufficient to classify
comonomial Hopf algebras. In [2], the authors classified all comonomial Hopf al-
gebras when the characteristic of k is 0 (see Theorem 5.9 in [2]). Let us recall
it.

Lemma 4.3. Let k be an algebraically closed field with characteristic 0. There is
a one-to-one correspondence between the sets

{the isoclasses of non-cosemisimple comonomial Hopf k-algebras}
and

{the isoclasses of group data over k}.

In the above lemma, a group data (for details, see [2]) over k is defined to be a
sequence α = (G, g, χ, µ) consisting of

(1) a finite group G, with an element g in its center,
(2) a one-dimensional k-representation χ of G,
(3) an element µ ∈ k such that µ = 0 if o(g) = o(χ(g)), and if µ �= 0, then

χo(χ(g)) = 1.

Remark 4.4. For a group datum α = (G, g, χ, µ) over k, the corresponding comono-
mial Hopf algebra A(α) was defined in [2], which is generated as an algebra by x
and all h ∈ G with relations

xd = µ(1 − gd), xh = χ(h)hx, ∀ h ∈ G

where d = o(χ(g)). Its comultiplication ∆, counit ε, and antipode S are defined by

∆(x) = g ⊗ x + x ⊗ 1, ε(x) = 0,

∆(h) = h ⊗ h, ε(h) = 1 ∀ h ∈ G,

S(x) = −g−1x, S(h) = h−1, ∀ h ∈ G.

For any quiver Γ, we define Cd(Γ) :=
⊕d−1

i=1 kΓ(i) for d ≥ 2, where Γ(i) is the
set of all paths of length i in Γ. We denote the basic cycle of length n (Example
2.1) by Zn and denote Cd(Zn) by Cd(n). In [7], we get the following conclusion
(see Theorem 4.2 in [7]).

Lemma 4.5. Let H be a non-cosemisimple comonomial Hopf algebra over k of
characteristic p. Then there exist a d0-th primitive root of unity q ∈ k with d0|n,
r ≥ 0 and d = prd0 ≥ 2 such that

H ∼= Cd(n) ⊕ · · · ⊕ Cd(n)

as coalgebras and
H ∼= Cd(n)#σk(G/N)

as Hopf algebras, where G = G(H), the set of group-like elements of H, and N =
G(Cd(n)), the set of group-like elements of Cd(n).

Summarizing the above conclusions, we have the following classification theorem
of finite-dimensional pointed Hopf algebras of finite corepresentation type.
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Theorem 4.6. (A) Let H be a finite-dimensional pointed Hopf algebra of finite
corepresentation type over an algebraically closed field k. Then

(A.1) if H is cosemisimple, then H ∼= kG for some finite group G;
(A.2) if H is not cosemisimple and the characteristic of k is zero, then H ∼= A(α)

for some group datum α = (G, g, χ, µ) where A(α) was defined in the above remark;
(A.3) if H is not cosemisimple and the characteristic of k is p, then there exists

a d0-th primitive root of unity q ∈ k with d0|n, r ≥ 0 and d = prd0 ≥ 2 such that

H ∼= Cd(n) ⊕ · · · ⊕ Cd(n)

as coalgebras and
H ∼= Cd(n)#σk(G/N)

as Hopf algebras, where G = G(H) and N = G(Cd(n)).
(B) Let H be a finite-dimensional Hopf algebra. If
(B.1) H ∼= kG for some finite group G or
(B.2) H ∼= A(α) for some group datum α = (G, g, χ, µ) where A(α) was defined

in the above remark or
(B.3) H ∼= Cd(n) ⊕ · · · ⊕ Cd(n) as coalgebras,

then H is a pointed Hopf algebra of finite corepresentation type.

Proof. (A.1) is explained in the first paragraph of this section. By using Lemma
4.3 and Lemma 4.5, (A.2) and (A.3) can be obtained directly as long as we note
that H is a comonomial Hopf algebra now.

Since kG is cosemisimple and clearly pointed, (B.1) implies H is a pointed Hopf
algebra of finite corepresentation type.

By Lemma 4.3 and Remark 4.4, A(α) is a comonomial Hopf algerba and thus
(B.2) implies H is a comonomial Hopf algebra. Therefore, by Corollary 4.2, H is a
pointed Hopf algebra of finite corepresentation type.

It is known that Cd(n) is a comonomial coalgebra (see [2]). From this fact we
know that (B.3) implies H is a comonomial Hopf algebra. Thus, by Corollary 4.2
again, H is a pointed Hopf algebra of finite corepresentation type. �

Remark 4.7. (1) In order to not cause confusion, we introduced the concept of
comonomial Hopf algebras. Note that, in [2] and [7], comonomial Hopf algebra in
this paper was called monomial Hopf algebra.

(2) Part (A) of Theorem 4.6 gives the structures of finite-dimensional pointed
Hopf algebras of finite corepresentation type. In some sense, Part (B) of Theorem
4.6 is the converse of Part (A) since Part (B) implies that the structures given in
Part (A) are precisely all finite-dimensional pointed Hopf algebras of finite corep-
resentation type.
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