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Abstract. Let C be a fusion category over an algebraically closed field k of arbitrary
characteristic. Two numerical invariants of C, that is, the Casimir number and the determi-
nant of C are considered in this paper. These two numbers are both positive integers and
admit the property that the Grothendieck algebra Gr(C) ⊗Z K over any field K is semisim-
ple if and only if any of these numbers is not zero in K. This shows that these two numbers
have the same prime factors. If moreover C is pivotal, it gives a numerical criterion that C
is nondegenerate if and only if any of these numbers is not zero in k. For the case that C
is a spherical fusion category over the field C of complex numbers, these two numbers and
the Frobenius–Schur exponent of C share the same prime factors. This may be thought of
as another version of the Cauchy theorem for spherical fusion categories.

2010 Mathematics Subject Classification. Primary: 18D10, Secondary: 16T05

1. Introduction. A fusion category C over a field k is called nondegenerate if the
global dimension dim(C) of C is not zero in k. Since dim(C) is automatically not zero in a
field k of characteristic zero, this notation is only considered in a field k of positive char-
acteristic. A crucial property of nondegenerate fusion categories is that they can be lifted
to the case of characteristic zero (see, e.g., [6, Section 9]). It is interesting to know when
a fusion category over a field of positive characteristic is nondegenerate. Ostrik stated that
a spherical fusion category C over a field k is nondegenerated, if the Grothendieck algebra
Gr(C) ⊗Z k is semisimple (see [15, Proposition 2.9]). It has been proved by Shimizu that a
pivotal fusion category C over an algebraically closed field k is nondegenerate if and only
if its Grothendieck algebra Gr(C) ⊗Z k is semisimple (see [17, Theorem 6.5]).

In this paper, we first pay attention to the question when the Grothendieck algebra
Gr(C) ⊗Z k is semisimple for any fusion category C over an algebraically closed field k.
To solve this question, in Section 2, we associate any fusion category C with two positive
integers: the Casimir number mC and the determinant dC . These two numbers are numerical

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089520000294
Downloaded from https://www.cambridge.org/core. Nanjing University, Main Library, on 04 Aug 2020 at 08:50:31, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S0017089520000294
mailto:mailzhihua@126.com
mailto:gxliu@nju.edu.cn
mailto:lbli@yzu.edu.cn
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089520000294
https://www.cambridge.org/core


2 THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

invariants of C and provide a semisimplicity criterion on the Grothendieck algebra of C.
Namely, the Grothendieck algebra Gr(C) ⊗Z K over any field K is semisimple if and only if
any one of these two numbers is not zero in K. This leads to a result that the Casimir number
mC and the determinant dC have the same prime factors. The semisimplicity criterion for
the Grothendieck algebra of C together with Shimizu’s work [17, Theorem 6.5] gives a
numerical criterion for a pivotal fusion category to be nondegenerate. That is, a pivotal
fusion category C over a field k is nondegenerate if and only if any of the numbers mC and
dC is not zero in k.

As these two numbers mC and dC have the same prime factors, in Section 3, we only
focus on the determinant dC of a fusion category C. We give some results concerning prime
factors of determinants of representation categories of semisimple Hopf algebras. In partic-
ular, for a semisimple and cosemisimple Hopf algebra H , we show that the determinant of
the representation category of the Drinfeld double D(H) of H and the dimension dimk H
of H share the same prime factors. We also reveal a relationship between the determinant
dC of a fusion category C and the determinant dC̃ of the pivotalization C̃ of C. We show
that the former is a factor of the latter. This gives a result that any nondegenerate fusion
category over a field k has a nonzero determinant in k. However, the converse is not known
to be true.

The Frobenius–Schur exponent of a spherical fusion category C has been defined in
[12, Definition 5.1] as a minimal positive integer satisfying certain properties. In the case
that the ground field is the field C of complex numbers, the Cauchy theorem for spherical
fusion categories asserts that the prime ideals dividing the global dimension dim(C) of C
and those dividing the Frobenius–Schur exponent of C are the same in the ring of algebraic
integers [1, Theorem 3.9]. We prove in Section 4 that the determinant dC and the Frobenius–
Schur exponent of C have the same prime factors. This may be considered as an integer
version of the Cauchy theorem for spherical fusion categories.

2. Numerical invariants. In this section, all fusion categories and Hopf algebras are
defined over an algebraically closed field k of arbitrary characteristic. We first introduce
some numerical invariants of a fusion category C, and then use them to describe when the
Grothendieck algebra Gr(C) ⊗Z K over any field K is semisimple.

Let C be a fusion category over k and {Xi}i∈I the set of isomorphism classes of sim-
ple objects of C. The Grothendieck ring Gr(C) of C is an associative unital ring with a
multiplication induced by the tensor product on C, namely,

XiXj =
∑
k∈I

Nk
ijXk,

where Nk
ij , called the fusion coefficient of Gr(C), is the multiplicity of Xk in the Jordan–

Hölder series of Xi ⊗ Xj. The duality functor ∗ of C induces an involution on Gr(C),
namely, (XiXj)

∗ = X ∗
j X ∗

i and (Xi)
∗∗ = Xi for i, j ∈ I . We write (Xi)

∗ = Xi∗ for convenience.
In view of this, the duality functor ∗ induces a permutation on the index set I .

There is an associative symmetric and nondegenerate Z-bilinear form (−, −) on Gr(C)

defined by

(Xi, Xj) = dimk Hom(Xi, X ∗
j ) = δi,j∗ ,

where δi,j∗ is the Kronecker symbol. This form is also ∗-invariant, namely, (Xi, Xj) =
(X ∗

i , X ∗
j ) for all i, j ∈ I . Thus, Gr(C) is a symmetric ∗-algebra over Z. The pair of dual bases
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ZHIHUA WANG ET AL. 3

with respect to the form (−, −) is the set {Xi, Xi∗ }i∈I satisfying the following equality:∑
i∈I

Xi ⊗ Xi∗ =
∑
i∈I

Xi∗ ⊗ Xi.

Note that Nk
ij = (XiXj, Xk∗) hold for all i, j, k ∈ I . It follows from

(XiXj, Xk∗) = (Xi∗Xk, Xj∗) = (XkXj∗ , Xi∗)

that Nk
ij = Nj

i∗k = Ni
kj∗ . Using this equality one is able to check the following two equalities:∑

i∈I

XjXi ⊗ Xi∗ =
∑
i∈I

Xi ⊗ Xi∗Xj, (2.1)

∑
i∈I

XiXj ⊗ Xi∗ =
∑
i∈I

Xi ⊗ XjXi∗ . (2.2)

The Casimir operator (see, e.g., [9, Section 3.1]) of the Grothendieck ring Gr(C) is
the map c from Gr(C) to its center Z(Gr(C)) given by

c(a) =
∑
i∈I

XiaXi∗ for a ∈ Gr(C).

The element c(1) =∑
i∈I XiXi∗ , depending on (−, −) only up to a central unit of Gr(C)

(see [9, Section 1.2.5]), is called the Casimir element of Gr(C). It is well known that the
image Imc of c is an ideal of Z(Gr(C)) and is called the Higman ideal of Gr(C).

The element c(1) =∑
i∈I XiXi∗ , as an element in Gr(C) ⊗Z Q, is central invertible (see

the proof of [4, Lemma 9.3.10]); hence there exists a unique central invertible element b
in Gr(C) ⊗Z Q such that c(1)b = 1. Suppose b =∑

i∈I
mi

ni
Xi, where mi and ni form a pair

of coprime integers for each i ∈ I . Denote by nC > 0 the least common multiple of ni for
all i ∈ I . Then bnC ∈ Gr(C) and nC = c(1)bnC = c(bnC). This means that nC ∈ Z ∩ Imc, and
hence Z ∩ Imc �= (0).

Since the intersection Z ∩ Imc is a nonzero principle ideal of Z, the positive generator
of Z ∩ Imc (denoted by mC) is called the Casimir number of C. Namely, Z ∩ Imc = (mC)

for mC > 0. The element a satisfying c(a) = mC is not unique in general. It is easy to see
that the element a satisfying c(a) = mC is unique if and only if the map c is injective, if and
only if Gr(C) is commutative. The Casimir number mC always divides the number nC since
we have seen that nC ∈ Z ∩ Imc. If Gr(C) is commutative, we have mC = nC .

Observe that the matrix [c(1)] of left multiplication by c(1) with respect to the basis
{Xi}i∈I of Gr(C) is a positive definite integer matrix (see [9, Proposition 8]). It follows that
the determinant dC := det[c(1)], called the determinant of C, is always a positive integer.

REMARK 2.1.

(1) If two fusion categories are monoidally equivalent under a monoidal functor, then
this functor induces an isomorphism preserving fusion coefficients between the
Grothendieck rings of fusion categories. Thus, equivalent fusion categories lead
to the same Casimir numbers and the same determinants.

(2) Let H1 and H2 be two finite dimensional semisimple Hopf algebras over k. If
H1 and H2 are twisted of each other in the sense that H1 = H2 as algebras and
H2 = (H1)� for some 2-pseudo-cocycle �, then the Grothendieck rings Gr(H1) and
Gr(H2) share the same fusion coefficients (see [13, Theorem 4.1]). It turns out that
the Casimir number or the determinant of the representation category of H1 is the
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4 THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

same as that of H2. In other words, the Casimir number or the determinant of the
representation category of a semisimple Hopf algebra is stable under twisting.

(3) The notation of the Casimir number of a fusion category defined here is indeed a
special case of the notation of Casimir number defined over a finite tensor category
[21].

PROPOSITION 2.2. Let C be a fusion category over k. For any field K, the following
statements are equivalent:

(1) The determinant dC �= 0 in K.
(2) The Casimir number mC �= 0 in K.
(3) The Grothendieck algebra Gr(C) ⊗Z K is semisimple.

Proof. (1) ⇒ (2): Let c(1) =∑
i∈I XiXi∗ denote the Casimir element of Gr(C).

Suppose the characteristic polynomial of the integer matrix [c(1)] is

f (x) = xn + α1xn−1 + · · · + αn−1x + αn,

where n is the cardinality of I , f (x) ∈ Z[x] and αn = ±dC . By the Cayley–Hamilton’s
theorem, the operator of left multiplication by c(1) satisfies that

0 = f (c(1)) = c(1)(c(1)n−1 + α1c(1)n−2 + · · · + αn−1) + αn = c(1)a + αn,

where a = c(1)n−1 + α1c(1)n−2 + · · · + αn−1 ∈ Z(Gr(C)). Thus, c(a) = c(1)a = −αn =
∓dC ∈ Z. By the definition of mC , we have mC | dC . Now dC �= 0 in K implies that mC �= 0
in K.

(2) ⇒ (3): Note that there exists some a ∈ Gr(C) such that
∑

i∈I XiaXi∗ = mC . Denote
by A := Gr(C) ⊗Z K and consider

∑
i∈I Xi

a
mC

⊗ Xi∗ ∈ A ⊗ A. Obviously,∑
i∈I

Xi
a

mC
Xi∗ = 1

and ∑
i∈I

bXi
a

mC
⊗ Xi∗ =

∑
i∈I

Xi
a

mC
⊗ Xi∗b

hold for any b ∈ A (see 2.1). Thus,
∑

i∈I Xi
a

mC
⊗ Xi∗ is a separable idempotent of A, and

hence A is a separable K-algebra. It is well known that any separable K-algebra is a
semisimple K-algebra (see, e.g., [2]).

(3) ⇒ (1): Let Tr(a) be the trace of the operator of left multiplication by a ∈ A =
Gr(C) ⊗Z K. Since A is semisimple, the bilinear form 〈a, b〉 = Tr(ab) on A is nondegener-
ate. This implies that the matrix [aij] for aij = 〈Xi, Xj〉 is an invertible matrix in K. Let cij

be the (i, j)-entry of [c(1)]. Then

cij =
(∑

k∈I

XkXk∗Xi, Xj∗

)
=
∑
k∈I

(XkXk∗ , XiXj∗) =
∑
k∈I

(XiXj∗ , XkXk∗)

=
∑
k∈I

(XiXj∗Xk, Xk∗) = Tr(XiXj∗) = aij∗ .

That is, the matrix [c(1)] differs from the matrix [aij] only by permutations of columns. It
follows that [c(1)] is an invertible matrix in K and det[c(1)] = dC �= 0 in K.
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ZHIHUA WANG ET AL. 5

REMARK 2.3.

(1) The proof of (3) ⇒ (1) in Proposition 2.2 comes from the proof of [15, Proposition
2.9]. From this proof one is able to see that dC = ± det[aij], where aij = Tr(XiXj)

for i, j ∈ I .
(2) The result that Gr(C) ⊗Z K is semisimple if and only if mC �= 0 in K is essen-

tially the Higman’s theorem applied to the Frobenius algebra Gr(C) ⊗Z K (see [8,
Theorem 1] or [9, Proposition 6]). This result can also be deduced directly from
[21, Theorem 3.7].

(3) Any one of the statements of Proposition 2.2 is equivalent to the result that c(1) =∑
i∈I XiXi∗ is invertible in Gr(C) ⊗Z K (see [19, Theorem 3.8]).

If the field K is of characteristic p > 0, it follows from Proposition 2.2 that p � dC if
and only if p � mC . This gives the following relationship between the numbers mC and dC :

COROLLARY 2.4. The Casimir number mC and the determinant dC of a fusion
category C have the same prime factors.

Recall from [17, Theorem 6.5] that a pivotal fusion category C over a field k is non-
degenerate (i.e., the global dimension dim(C) of C is not zero in k) if and only if its
Grothendieck algebra Gr(C) ⊗Z k is semisimple. This result together with Proposition 2.2
gives the following numerical characterization of a nondegenerate pivotal fusion category:

PROPOSITION 2.5. A pivotal fusion category C over a field k is nondegenerate if and
only if the Casimir number mC (or equivalently, the determinant dC) is not zero in k.

The rest of this section provides some fusion categories whose determinants or Casimir
numbers can be explicitly described.

EXAMPLE 2.6. Let C be a pointed fusion category over a field k. The Grothendieck
ring of C is the group ring ZG for a finite group G. The Casimir number of C is the order
|G| of G, and the determinant of C is |G||G|. It follows from Proposition 2.2 that for any
field K, the K-algebra KG = ZG ⊗Z K is semisimple if and only if |G| �= 0 in K. This is
the Maschke’s theorem for group algebras.

EXAMPLE 2.7. Let C be a modular category over a field kwith isomorphism classes of
simple objects {Xi}i∈I . That is, C is a spherical fusion category with a braiding c such that
the S-matrix S = [sij] is invertible in k, where sij = Tr(cXjXi ◦ cXiXj) (see, e.g., [4, Section
8.14]). Note that dim(Xi) �= 0 in k for any i ∈ I (see [4, Proposition 4.8.4]). For any i ∈ I ,
the map

hi : Xj → sij

dim(Xi)
for j ∈ I

defines a homomorphism from Gr(C) to k. In other words, {hi(Xj)}i∈I consists of all eigen-
values of the matrix [Xj] of left multiplication by Xj with respect to the basis {Xi}i∈I of
Gr(C). Note that all eigenvalues of the matrix [c(1)] are hi(c(1)) for i ∈ I . Moreover,

hi(c(1)) = hi

⎛⎝∑
j∈I

XjXj∗

⎞⎠=
∑
j∈I

hi(Xj)hi(Xj∗) =
∑
j∈I

sijsij∗

dim(Xi)2
= dim(C)

dim(Xi)2
,

where the last equality follows from [4, Proposition 8.14.2]. It follows that

dC =
∏
i∈I

hi(c(1)) = (dim C)n∏
i∈I dim(Xi)2

,

where n is the cardinality of I .
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6 THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

EXAMPLE 2.8. Recall from [18] that the near-group category C is a rigid fusion
category whose simple objects except for one are invertible. Let G be the group of iso-
morphism classes of invertible objects in C and X the isomorphism class of the remaining
non-invertible simple object. The Grothendieck ring Gr(C) of C obeys the following
multiplication rule:

g · h = gh, g · X = X · g = X , X 2 =
∑
g∈G

g + ρX ,

where g, h ∈ G and ρ is a positive integer. The matrix [c(1)] of left multiplication by c(1)

with respect to the basis G ∪ {X } of Gr(C) can be written explicitly as follows (see [20,
Example 3.3]):

[c(1)] =
⎡⎣M u

ut ρ2 + 2|G|

⎤⎦,

where M is a square matrix of size |G| whose diagonal elements are all |G| + 1 and off-
diagonal elements are all 1, and u is a column vector of size |G| whose elements are all ρ.
It is easy to compute that

dC = det[c(1)] = (4|G| + ρ2)|G||G|.

Note that the Casimir number of C is a minimal positive integer mC such that∑
g∈G

gag−1 + XaX = mC for some a ∈ Gr(C).

Accordingly, the Casimir number mC and the associated a ∈ Gr(C) can be determined
separately as follows:

Case 1: If ρ is odd, then a = (4|G| + ρ2) − 2
∑

g∈G g − ρX and mC = (4|G| + ρ2)|G|.

Case 2: If ρ is even, then a = 1
2 (4|G| + ρ2) −∑

g∈G g − ρ

2 X and mC = 1
2 (4|G| + ρ2)|G|.

We may see that mC and dC have the same prime factors no matter what ρ is odd or even.

3. Prime factors of the Casimir numbers or determinants. Denote by dH the
determinant of the representation category Rep(H) of a semisimple Hopf algebra H . In
this section, we will give some results concerning prime factors of dH . Obviously, these
results holding for the determinant of Rep(H) also hold for the Casimir number of Rep(H)

as the two numbers have the same prime factors. Then we show that the determinant dC
of a fusion category C divides the determinant dC̃ of the pivotalization C̃. This is used to
prove that any nondegenerate fusion category has a nonzero determinant.

A finite dimensional Hopf algebra H is call pivotal if H contains a group-like element
g such that S2(h) = ghg−1 for all h ∈ H . The representation category Rep(H) of a finite
dimensional semisimple pivotal Hopf algebra H is a pivotal fusion category.

PROPOSITION 3.1. Let H be a finite dimensional semisimple pivotal Hopf algebra
over k. The determinant dH �= 0 in k if and only if S2 = idH and dimk H �= 0 in k.

Proof. The determinant dH �= 0 in k if and only if Rep(H) is nondegenerate by
Proposition 2.5, if and only if H is cosemisimple by [6, Section 9.1], if and only if S2 = idH

and dimk H �= 0 in k by [3, Corollary 3.2].
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ZHIHUA WANG ET AL. 7

Since a finite dimensional semisimple and cosemisimple Hopf algebra H over k
always satisfies that S2 = idH and dimk H �= 0 (see [3, Corollary 3.2]), Proposition 3.1
has the following corollary:

COROLLARY 3.2. Let H be a finite dimensional semisimple and cosemisimple Hopf
algebra over k. The determinant dH is always not zero in k.

The following result gives more information about the determinant dH of a semisimple
and cosemisimple Hopf algebra H under a certain hypothesis.

PROPOSITION 3.3. Let H be a finite dimensional semisimple and cosemisimple Hopf
algebra over k. If the Grothendieck ring Gr(H) of H is commutative, then the determinant
dH and the dimension dimk H have the same prime factors.

Proof. We first consider the case char(k) = 0. The set of isomorphism classes of
simple objects of Rep(H) is denoted by {Xi}i∈I . Since the Grothendieck ring Gr(H) is com-
mutative, it follows from [9, Proposition 20] that all eigenvalues of the matrix [c(1)] of left
multiplication by c(1) =∑

i∈I XiXi∗ with respect to the basis {Xi}i∈I of Gr(H) are positive
integers, and moreover, all these eigenvalues divide dimk H . In particular, dimk H itself is
the largest eigenvalue of [c(1)] (see [9, Proposition 8]). On the other hand, the determinant
dH is obtained by multiplying all these eigenvalues. Thus, dH and dimk H have the same
prime factors.

For the case char(k) = p > 0, we denote O the ring of Witt vectors of k and K the
field of fractions of O. For the semisimple and cosemisimple Hopf algebra H , using the
lifting Theorem [3, Theorem 2.1] we may construct a Hopf algebra A over O which is free
of rank dimk H as an O−module such that A/pA is isomorphic to H as a Hopf algebra.
The Hopf algebra A0 := A ⊗O K is a semisimple and cosemisimple Hopf algebra over the
field K of characteristic 0 with the same Grothendieck ring as for H . It follows that the
Grothendieck ring Gr(A0) is commutative and the determinant dA0 of Rep(A0) is equal
to the determinant dH of Rep(H). By the same argument as for the case of char(k) = 0,
we may see that the determinant dA0 and dimK A0 have the same prime factors. Note that
dimK A0 = dimK(A ⊗O K) which is equal to dimk H , since the Hopf algebra A over O is
free of rank dimk H and O as a discrete valuation ring is a unique factorization domain.
We conclude that dH and dimk H have the same prime factors.

Applying Proposition 3.3 to the Drinfeld double of a semisimple and cosemisimple
Hopf algebra, we have the following result:

THEOREM 3.4. Let H be a finite dimensional semisimple and cosemisimple Hopf alge-
bra over k and D(H) the Drinfeld double of H. The determinant dD(H) and the dimension
dimk H have the same prime factors.

Proof. The representation category of the Drinfeld double D(H) is a modular fusion
category over k, since D(H) is a quasitriangular semisimple and cosemisimple Hopf
algebra (see [10, Corollary 10.3.13]). It follows that the Grothendieck ring Gr(D(H)) of
D(H) is a commutative ring. By Proposition 3.3, the determinant dD(H) and the dimension
dimk D(H) = (dimk H)2 have the same prime factors. This gives the desired result.

In the sequel, we describe a relationship between the determinant dC of a fusion
category C and the determinant dC̃ of C̃, where C̃ is the pivotalization of C stated below.

Let C be a fusion category over k. Recall from [6, Theorem 2.6] that there exists an
isomorphism γ : id → ∗ ∗ ∗∗ between the identity and the fourth duality tensor autoequiv-
alences of C. Denote by C̃ := CZ/2Z the corresponding equivariantization. More explicitly,
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8 THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

simple objects of C̃ are pairs (X , α), where X is a simple object of C, and α : X → X ∗∗
satisfies α∗∗α = γX . The fusion category C̃ has a canonical pivotal structure which is called
the pivotalization of C (see [4, Definition 7.21.9] for details). Moreover, the pivotal fusion
category C̃ is also spherical (see [5, Corollary 7.6]).

To describe any simple object (X , α) of C̃, we first fix an isomorphism θ : X → X ∗∗.
Since Hom(X , X ∗∗) is one dimensional, we may write α = uθ and γX = vθ∗∗θ for some
u, v ∈ k×. Then α∗∗α = γX implies that u2 = v. Therefore, for each simple object X of
C, we only have two choices of α, and if one of them is α, then another one is −α. In
view of this, we may write (X , α) = X + and (X , −α) = X −. It follows that 1+ = 1, 1− ⊗
1− = 1, dim(1−) = −1, and X ± ⊗ 1− = 1− ⊗ X ± = X ∓ (see [16, Section 5.1]). Note that
the forgetful function F : C̃ → C, X ± → X preserves squared norms of simple objects [4,
Remark 7.21.11]. It follows that dim(C̃) = 2 dim(C).

If char(k) �= 2, the Grothendieck algebra Gr(C̃) ⊗Z k has the following decomposi-
tion:

Gr(C̃) ⊗Z k= e(Gr(C̃) ⊗Z k) ⊕ (1 − e)(Gr(C̃) ⊗Z k), (3.1)

where e = 1−1−
2 is a central idempotent element of Gr(C̃) ⊗Z k. It follows from [16, Section

5.1] that

Gr(C) ⊗Z k∼= (Gr(C̃) ⊗Z k)/e(Gr(C̃) ⊗Z k) ∼= (1 − e)(Gr(C̃) ⊗Z k). (3.2)

The determinants dC (resp. mC) and dC̃ (resp. mC̃) have the following divisibility
relation:

PROPOSITION 3.5. Let C be a fusion category over k and C̃ the pivotalization of C.

(1) mC | mC̃ .
(2) dC | dC̃ .

Proof. (1) Denote by {Xi}i∈I the set of isomorphism classes of simple objects of C.
Then {X ±

i }i∈I is the set of isomorphism classes of simple objects of C̃. For the Casimir
number mC̃ , there exists some a ∈ Gr(C̃) such that

∑
i∈I X ±

i a(X ±
i )∗ = mC̃ . Applying the

ring homomorphism f : Gr(C̃) → Gr(C) induced by the forgetful function F : C̃ → C to
this equation, we have

∑
i∈I Xi2f (a)(Xi)

∗ = mC̃ . It follows that mC̃ ∈ Z ∩ Imc = (mC). This
gives a proof of Part (1).

(2) In the Grothendieck ring Gr(C̃), we suppose for any j ∈ I that∑
i∈I

X +
i (X +

i )∗X +
j =

∑
i∈I

μijX
+
i +

∑
i∈I

νijX
−
i , (3.3)

where μij, νij ∈ Z. Then for any j ∈ I , we have∑
i∈I

X +
i (X +

i )∗X −
j =

∑
i∈I

X +
i (X +

i )∗X +
j 1− =

∑
i∈I

μijX
−
i +

∑
i∈I

νijX
+
i .

This means that, in the Grothendieck ring Gr(C̃), the matrix of left multiplication by the
Casimir element

∑
i∈I X ±

i (X ±
i )∗ = 2

∑
i∈I X +

i (X +
i )∗ with respect to the basis {X ±

i }i∈I of
Gr(C̃) is

2

⎛⎝A B

B A

⎞⎠ ,
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ZHIHUA WANG ET AL. 9

where A = (μij)n×n, B = (νij)n×n, and n is the cardinality of I . Thus, the determinant of C̃ is

dC̃ = 22n det

⎛⎝A B

B A

⎞⎠= 22n det(A + B) det(A − B).

Applying the ring homomorphism f : Gr(C̃) → Gr(C) induced from the forgetful function
F : C̃ → C to the equation (3.3), we have that∑

i∈I

Xi(Xi)
∗Xj =

∑
i∈I

(μij + νij)Xi.

This shows that, in the Grothendieck ring Gr(C), the matrix of left multiplication by the
Casimir element

∑
i∈I XiX ∗

i with respect to the basis {Xi}i∈I of Gr(C) is A + B. Thus, the
determinant of C is dC = det(A + B), which is a factor of dC̃ .

As a consequence, we have the following result:

PROPOSITION 3.6. Let C be a fusion category over k with char(k) �= 2. If C is
nondegenerate, then dC �= 0 in k.

Proof. Since C is nondegenerate, that is, the global dimension dim(C) �= 0 in k, it
follows that dim(C̃) = 2 dim(C) �= 0. Thus, the pivotal fusion category C̃ is nondegenerate.
It follows from Proposition 2.5 that dC̃ �= 0 in k. As a result, dC �= 0 since dC is a factor
of dC̃ .

We expect that the converse of Proposition 3.6 is also true. However, the proof seems
too hard to be finished. What we can do is the proof of the following statement:

PROPOSITION 3.7. Let C be a fusion category over k with char(k) �= 2. Then C is
nondegenerate if and only if the subalgebra e(Gr(C̃) ⊗Z k) is semisimple, where e = 1−1−

2

is a central idempotent element of Gr(C̃) ⊗Z k.

Proof. The global dimension dim(C) �= 0 shows that dim(C̃) = 2 dim(C) �= 0. Thus, the
Grothendieck algebra Gr(C̃) ⊗Z k of the pivotal fusion category C̃ is semisimple by [17,
Theorem 6.5]. It follows that the quotient algebra (see (3.1))

(Gr(C̃) ⊗Z k)/(1 − e)(Gr(C̃) ⊗Z k) ∼= e(Gr(C̃) ⊗Z k)

is semisimple. Conversely, consider t =∑
i∈I dim(X ±

i )(X ±
i )∗ ∈ Gr(C̃) ⊗Z k. Obviously,

t �= 0. For any a ∈ Gr(C̃) ⊗Z k, it follows from (2.1) that

ta =
∑
i∈I

dim(X ±
i )(X ±

i )∗a =
∑
i∈I

dim(aX ±
i )(X ±

i )∗ = dim(a)t.

Similarly, it follows from (2.2) that at = dim(a)t. Thus, t is a central element of Gr(C̃) ⊗Z k
satisfying t2 = dim(t)t = dim(C̃)t = 2 dim(C)t. Moreover,

t = et + (1 − e)t = et + dim(1 − e)t = et ∈ e(Gr(C̃) ⊗Z k).

If dim(C) = 0, then t2 = 0, and hence the ideal of e(Gr(C̃) ⊗Z k) generated by t is nilpotent,
a contradiction to the semisimplicity of e(Gr(C̃) ⊗Z k). The proof is completed.
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10 THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

4. Determinants vs. Frobenius–Schur exponents. In this section, we shall show
that the determinant (or equivalently, the Casimir number) and the Frobenius–Schur expo-
nent of a spherical fusion category over the field C of complex numbers have the same
prime factors.

Let C be a fusion category over k and V a finite dimensional left Gr(C) ⊗Z K-module
over an algebraic closure field K. For any ϕ ∈ EndK(V), we define I(ϕ) ∈ EndK(V) by

I(ϕ)(v) =
∑
i∈I

Xiϕ(Xi∗v) for v ∈ V .

Then I(ϕ) lies in EndGr(C)⊗ZK(V) and does not depend on the choice of a pair of dual
bases of Gr(C) ⊗Z K (see [7, Lemma 7.1.10]). If V is a simple Gr(C) ⊗Z K-module, then
EndGr(C)⊗ZK(V) ∼= K. In this case, there exists a unique element cV ∈ K such that

I(ϕ) = cV Tr(ϕ)idV for all ϕ ∈ EndK(V).

Such an element cV only depends on the isomorphism class of V and is called the Schur
element associated with V (see [7, Theorem 7.2.1]). Note that the semisimplicity criterion
stated in [7, Theorem 7.2.6] works for Grothendieck algebras. Namely, the Grothendieck
algebra Gr(C) ⊗Z K is semisimple if and only if any Schur element associated with a simple
module over Gr(C) ⊗Z K is not zero in K.

Let V be a simple Gr(C) ⊗Z K-module with the Schur element cV . The character of V
is denoted by χV . Then

∑
i∈I χV (Xi)Xi∗ is a central element of Gr(C) ⊗Z K. This element

acts by a scalar fV on V and by zero on any simple module not isomorphic to V . The scalar
fV is called the formal codegree of V (see [14, Lemma 2.3]).

LEMMA 4.1. Let V be a simple Gr(C) ⊗Z K-module with the Schur element cV and
the formal codegree fV . The action of

∑
i,j∈I XiXjXi∗Xj∗ on V is a scalar multiple by cV fV .

Proof. For a simple module V over Gr(C) ⊗Z K, there is a corresponding algebra
morphism

ρV : Gr(C) ⊗Z K → EndK(V), ρV (a)(v) = av for a ∈ Gr(C) ⊗Z K, v ∈ V .

Note that I(ϕ)(v) = cV Tr(ϕ)v holds for any ϕ ∈ EndK(V) and v ∈ V . Replacing ϕ and v in
this equality by ρV (Xj) and Xj∗v respectively, we have I(ρV (Xj))(Xj∗v) = cV Tr(ρV (Xj))Xj∗v.
Summing over all j ∈ I , we have∑

j∈I

I(ρV (Xj))(Xj∗v) = cV

∑
j∈I

Tr(ρV (Xj))Xj∗v.

Taking into account the definition of I, we have∑
i,j∈I

XiρV (Xj)(Xi∗Xj∗v) = cV

∑
j∈I

χV (Xj)Xj∗v.

This gives rise to the desired result
∑

i,j∈I XiXjXi∗Xj∗v = cV fV v for any v ∈ V .

Note that Gr(C) ⊗Z C is always semisimple and dim(C) is always not zero in the field
C of complex numbers. Thus, [17, Theorem 6.5] is trivial if the field k is taken to be C. We
shall give a modified version of [17, Theorem 6.5], so that we can use it to present another
statement of the Cauchy theorem for spherical fusion categories.

Let C be a spherical fusion category over C with isomorphism classes of simple objects
{Xi}i∈I . The Frobenius–Schur exponent of C has been defined in [12, Definition 5.1] in
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ZHIHUA WANG ET AL. 11

terms of the higher Frobenius–Schur indicators of objects of C. This exponent, denoted
by N , can be regarded as the order of the twist θ of the Drinfeld center Z(C) associated
with a pivotal structure of C (see [12, Theorem 5.5]). Let ξN ∈ C be a primitive N-th root
of unity. Then Z[ξN ] is a Dedekind domain and every nonzero proper ideal factors into a
product of prime ideal factors. Let p be a prime ideal of Z[ξN ]. Then p is maximal since
Z[ξN ] is Dedekind. Thus, the quotient ring Z[ξN ]/p is a field. In this case, dim(X ) ∈ Z[ξN ]
(see [12]) can be considered as an element in Z[ξN ]/p in a natural way.

THEOREM 4.2. Let C be a spherical fusion category over C with the Frobenius–Schur
exponent N. Let ξN be a primitive N-th root of unity with dim(X ) ∈ Z[ξN ] for any object X
of C. For any prime ideal p of Z[ξN ], the determinant dC �= 0 in Z[ξN ]/p if and only if the
global dimension dim(C) �= 0 in Z[ξN ]/p.

Proof. Note that the Casimir number mC =∑
i∈I XiaXi∗ for some a ∈ Gr(C). Applying

dim to this equality, we have mC = dim(C) dim(a). Thus, if dC �= 0 in Z[ξN ]/p, then mC �= 0
in Z[ξN ]/p, and hence dim(C) �= 0 in Z[ξN ]/p. Conversely, if dim(C) �= 0 in Z[ξN ]/p, so
is dim(C) �= 0 in K, where K is an algebraic closure of the field Z[ξN ]/p. Let Z(C) be the
Drinfeld center of C. Since dim(C) �= 0 in K, it follows from [11, Section 5] that Z(C) is
a modular category and dim(Z(C)) = dim(C)2 �= 0 in K. If we denote Irr(Z(C)) the set of
isomorphism classes of simple objects of Z(C) and n the cardinality of Irr(Z(C)), then by
Example 2.7 the determinant of Z(C) is

dZ(C) = dim(Z(C))n∏
Y∈Irr(Z(C)) dim(Y )2

�= 0.

Note that dZ(C) is the determinant of the matrix of left multiplication by the Casimir element∑
Y∈Irr(Z(C)) YY ∗. It follows that

∑
Y∈Irr(Z(C)) YY ∗ is an invertible element in Gr(Z(C)) ⊗Z

K. Note that the forgetful tensor functor F : Z(C) → C induces an algebra homomorphism
f : Gr(Z(C)) ⊗Z K → Gr(C) ⊗Z K whose image is contained in the center of Gr(C) ⊗Z K.
In particular, from the proof of [14, Lemma 3.1] we may see that

f

⎛⎝ ∑
Y∈Irr(Z(C))

YY ∗
⎞⎠=

∑
i,j∈I

XiXjXi∗Xj∗ .

Thus,
∑

i,j∈I XiXjXi∗Xj∗ is a central invertible element in Gr(C) ⊗Z K. This together with
Lemma 4.1 shows that cV �= 0 for any simple Gr(C) ⊗Z K-module V . We conclude that
Gr(C) ⊗Z K is semisimple by [7, Theorem 7.2.6], and hence dC �= 0 in K by Proposition
2.2. This gives the desired result that dC �= 0 in Z[ξN ]/p.

We are now ready to state the relationship between the determinant dC and the
Frobenius–Schur exponent N of C.

THEOREM 4.3. Let C be a spherical fusion category over C. The determinant dC and
the Frobenius–Schur exponent N of C have the same prime factors.

Proof. For the Casimir number mC , there is some a ∈ Gr(C) such that
∑

i∈I XiaXi∗ =
mC . Applying dim to this equality, we have dim(C) dim(a) = mC in Z[ξN ]. Note that
(N) and (dim(C)) are two principal ideals of Z[ξN ] having the same prime ideal fac-
tors (see [1, Theorem 3.9]). If p | N for a prime number p, then there exists a prime
ideal factor p of (N) such that p∩ Z = (p). In this case, p is also a prime ideal factor
of (dim(C)). Moreover, (dim(C)) ∩ Z ⊆ p∩ Z = (p). It follows from mC = dim(C) dim(a)
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12 THE CASIMIR NUMBER AND THE DETERMINANT OF A FUSION CATEGORY

that mC ∈ (dim(C)) ∩ Z ⊆ (p), and hence p | mC , or equivalently p | dC . Conversely, if
p � N for a prime p, we need to show that p � dC . Let p be a prime ideal of Z[ξN ] such
that p∩ Z = (p). Then (N)� p since p � N . This implies that (dim(C))� p. Especially,
0 �= dim(C) ∈ Z[ξN ]/p. It follows from Theorem 4.2 that dC �= 0 in Z[ξN ]/p. In other words,
dC /∈ p∩ Z = (p) and hence p � dC .

REMARK 4.4. Let (N) and (dim(C)) be principal ideals of Z[ξN ] generated by N and
dim(C), respectively. The statement of [1, Theorem 3.9] that (N) and (dim(C)) have the
same prime ideal factors is called the Cauchy theorem for a spherical fusion category.
Indeed, applying this to the case C = Rep(G) for a finite group G, we obtain the classical
Cauchy theorem for finite groups: dim(C) = |G| and N = exp(G) have the same prime fac-
tors. Now, Theorem 4.3 shows that the determinant dC (or equivalently, the Casimir number
mC) and the Frobenius–Schur exponent N of C have the same prime factors. This may be
thought of as an integer version of the Cauchy theorem for spherical fusion categories.
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