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Abstract. The main aim of this paper is to give the classification of finite-

dimensional basic Hopf algebras according to their representation type. We
attach every finite-dimensional basic Hopf algebra H a natural number nH ,
which will help us to determine the representation type of H. The class of

finite-dimensional basic Hopf algebras of finite representation type are deter-
mined completely. All possible structure of tame basic Hopf algebras are given.
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1. Introduction

1.1. Throughout this paper k denotes an algebraically closed field. All spaces
are k-spaces. By an algebra we mean an associative algebra with identity element.
For an algebra A, JA denotes its Jacobson radical. We freely use the results, nota-
tion, and conventions of [49].

1.2. Classification of Hopf algebras is one of central problems of Hopf algebra
theory. The first celebrated result on this problem is now known as the following
Cartier-Kostant-Milnor-Moore theorem.

Theorem 1.1. A cocommutative Hopf algebra over an algebraically closed field
k of characteristic 0 is a semidirect product of a group algebra and the enveloping
algebra of a Lie algebra. In particular, a finite-dimensional cocommutative Hopf
algebra over k is a group algebra.
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1.3. In recent years, some substantial classification results in infinite-dimensional
case are given. All possible cotriangular Hopf algebras were determined [24], and a
class of pointed Hopf algebras with finite Gelfand-Kirillov dimension are classified
[2][5]. Lu, Wu and Zhang introduced the concept of homological integral, which
generalizes the usual integral defined for finite-dimensional Hopf algebras to a large
class of infinite-dimensional Hopf algebras, and use it to research particularly noe-
therian affine Hopf algebras of Gelfand-Kirillov dimension 1 [43]. Although these
results shed some light on the structure of infinite-dimensional Hopf algebras, it is
still very hard to handle infinite-dimensional Hopf algebras in general, and the clas-
sification of finite-dimensional Hopf algebras is more interest for us. We can use the
following diagrams to explain the general procedure to classify finite-dimensional
Hopf algebras.

Classification of fin.-dim.
Hopf algebra H

¡
¡µ

@
@R

semisimple (⇔ H = H/JH)

non-semisimple
¡

¡µ

@
@R

H/JH is a Hopf algebra

others

Over the last decade, under various assumption, considerable progress has been
made in classifying finite-dimensional Hopf algebras. To the author’s knowledge,
the classification of finite-dimensional Hopf algebras mainly consists of the following
four aspects:

(1) Classification of semisimple cosemisimple Hopf algebras;
(2) Classification of non-semisimple Hopf algebras;
(3) Classification of all Hopf algebras of a prescribed dimension;
(4) Classification of triangular Hopf algebras.

1.4. For (1), if the characteristic of k is 0, then we know that a Hopf algebra
is semisimple is equivalent to that it is cosemisimple by [39]. By a beautiful result
of Etingof and Gelaki [20], problems in positive characteristic can be reduced to
similar problems in characteristic 0. Therefore, we often consider the classifica-
tion of semisimple Hopf algebras over an algebraically closed field of characteristic
0. Some specially dimensional semisimple Hopf algebras, particularly for dimen-
sions p, p2, p3, pq, pq2 [22][30][45][46][52][53][65] and dimensions ≤ 60 [54], were
intensively studied. For example, semisimple Hopf algebras of dimension pq are
shown to be trivial. That is, they are isomorphic to group algebras or dual group
algebras. The class of semisimple Hopf algebras that are simple as Hopf algebras
are researched recently [27][28]. Under a systematic study of of fusion categories,
Etingof, Dikshych and Ostrik asked an interesting question (Question 8.45 in [25])
about the semisimple Hopf algebras: dose there exist a finite-dimensional semi-
simple Hopf algebra whose representation category is not group-theoretical? This
question was answered affirmatively by Nikshych [59]. But, the classification of
semisimple Hopf algebras is still a widely open question. We refer to the survey
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papers [1][50] for a more detailed exposition.

1.5. For (2), substantial results in this case are known for the class of pointed
Hopf algebras over an algebraically closed field of characteristic 0. There are two
different methods which were used to classify pointed Hopf algebras. One method
was formulated by N.Andruskiewitsch and H.-J.Schneider. They reduced the study
of pointed Hopf algebras to the study of Nichols algebras via bosonization given by
Radford [61] and Majid [44]. This method gets great success. One of most remark-
able properties of this method is that it allows Lie theory to enter into the picture
through quantum groups [7]. Many new examples about pointed Hopf algebras
were found through this way. It can also help us to give counterexamples for Ka-
plansky’s Conjecture 10. For details see [6][7][8][9][31][33][34][35] [36]. Recently,
Andruskiewitsch and Schneider have classified all finite-dimensional pointed Hopf
algebras whose group of group-like elements G(H) is abelian such that all prime
divisors of the order of G(H) are > 7. See [10].

Another method, mainly due to Pu Zhang and his co-workers, is to use quivers
and their representation theory. This method depends heavily on one of Cibils-
Rosso’s conclusions [14]. One of merits of this method is that it introduces the
combinatorial methods to enter into the field of the classification of pointed Hopf
algebras. By using this method, the classification of so called Monomial Hopf alge-
bras was gotten. Locally finite simple-pointed Hopf algebras can also be classified.
For details see [13][60].

1.6. For (3), the start point of this direction should be the following Y.Zhu’s
result [65].

Theorem 1.2. Let p be a prime number number and k an algebraically closed
field of characteristic 0. Then a Hopf algebra of dimension p over k is necessarily
semisimple and isomorphic to the group algebra of Zp.

By using [8] and [48], S-H. Ng [55] classified all Hopf algebras of dimension p2

and showed that they are the group algebras and the Taft algebras. For dimension
pq with p 6= q, a forklore conjecture says that such Hopf algebras are semisimple. If
it is true, the results given in Subsection 1.4 imply that Hopf algebras of dimension
pq, where p and q are distinct, are trivial. This conjecture was verified for some
particular values of p and q [4][12][23][56][57][58]. There are other classification
results in low dimension. All Hopf algebras of dimension ≤ 15 were classified and
the most recent in dimension 16 is [29]. See [29] and references therein.

1.7. For (4), the works of N.Andruskiewitsch, P.Etingof and S.Gelaki should be
considered the most important. P.Etingof and S.Gelaki indeed show that semisim-
ple triangular Hopf algebras are very closed to group algebras [21]. The structure
of minimal triangular Hopf algebras is also given [3].

There are some nice surveys about classification of finite-dimensional Hopf al-
gebras, see for instance [1].
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1.8. According to the fundamental theorem of Drozd [17], the category of
finite-dimensional algebras over k can be divided into disjoint classes of finite rep-
resentation, tame and wild algebras. This fact stimulates us to classify finite-
dimensional Hopf algebras through their representation type. In order to realize
this idea, we need add some conditions on the Hopf algebra H:

(1): We assume that H/JH is a quotient Hopf algebra. By the general proce-
dure to classify finite-dimensional Hopf algebras, this requirement is not strange.
Note that H satisfies this condition if and only if the coradical of the dual Hopf
algebra H∗ is a Hopf subalgebra of H∗.

(2): By 1.4, the classification of semisimple Hopf algebras is still a widely open
question. This suggests us that we should consider semisimple Hopf algebra H/JH

which can be described easily.
A good candidate satisfying these conditions is the class of basic Hopf algebras.

That is, as an algebra, it is basic. This implies that H/JH is a Hopf algebra
automatically (see Lemma 1.1 in [32]). Since the field k is algebraically closed and
H/JH is a Hopf algebra, the condition “basic” implies that H/JH

∼= (kG)∗ for some
finite group G.

Before giving the classification of finite-dimensional basic Hopf algebras, we
should give an effective way to determine their representation type at first. This
is indeed what we will do in the next section. Explicitly, we can attach to every
finite-dimensional basic Hopf algebra H a natural number nH and prove that (i)
H is of finite representation type if and only if nH = 0 or nH = 1; (ii) if H is tame,
then nH = 2 and (iii) if nH ≥ 3, then H is wild.

The dual of a basic Hopf algebra is a pointed Hopf algebra, and vice versa.
So, all classification results on pointed Hopf algebras (some of them mentions in
subsection 1.5) can be applied by duality to basic Hopf algebras. But, I think, there
is no possibility to give structures of all basic Hopf algebras. Inspired by the case
of path algebras, it is quite natural to give the classification of finite-dimensional
basic Hopf algebras of finite representation type and tame type, and Section 3 and
Section 4 are devoted to classifying finite-dimensional basic Hopf algebras of finite
representation type and tame type respectively.

1.9. A finite-dimensional algebra A is said to be of finite representation type
provided there are finitely many non-isomorphic indecomposable A-modules. A is
of tame type or A is a tame algebra if A is not of finite representation type, whereas
for any dimension d > 0, there are finite number of A-k[T ]-bimodules Mi which
are free as right k[T ]-modules such that all but a finite number of indecomposable
A-modules of dimension d are isomorphic to Mi ⊗k[T ] k[T ]/(T − λ) for λ ∈ k. We
say that A is of wild type or A is a wild algebra if there is a finitely generated A-
k < X, Y >-bimodule B which is free as a right k < X, Y >-module such that the
functor B ⊗k<X,Y > − from mod-k < X, Y >, the category of finitely generated
k < X, Y >-modules, to mod-A, the category of finitely generated A-modules,
preserves indecomposability and reflects isomorphisms. See [18] for more details.
For other unexplained notations about representation theory of finite-dimensional
algebras in this paper, see [11][18].
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2. Representation type of basic Hopf algebras

In the rest of this paper, all algebras are assumed to be finite-dimensional.
In this section, the definition of the covering quiver ΓG(W ), introduced by Green
and Solberg [32], is given at first. Then we observe that we can associate to this
covering quiver ΓG(W ) a natural number nΓG(W ) , which can help us to determine
the representation type of the finite-dimensional algebra A whose Ext-quiver is
ΓG(W ). For a finite-dimensional basic Hopf algebra H, it is known that its Ext-
quiver is a covering quiver. So the above results can be applied to the case of
finite-dimensional basic Hopf algebras directly.

Definition 2.1. Let G be a finite group and let W = (w1, w2, . . . , wn) be a
sequence of elements of G. We say W is a weight sequence if, for each g ∈ G, the
sequences W and (gw1g

−1, gw2g
−1, . . . , gwng−1) are the same up to a permutation.

Define a quiver, denoted by ΓG(W ), as follows. The vertices of ΓG(W ) is the set
{vg}g∈G and the arrows are given by

{(ai, g) : vg−1 → vwig−1 |i = 1, 2, . . . , n, g ∈ G}.
We call this quiver the covering quiver (with respect to G and W ).

Example 2.1. (1): Let G =< g >, gn = 1 and W = (g). The corresponding
covering quiver is

•v1HHHHHj• vg

(a1, 1)

?• vg2

(a1, g
−1)

····• vgn−3
HHHY

• vgn−2

(a1, g
3)

6
• vgn−1

(a1, g
2)

´
´

´́3(a1, g)

We call such quiver a basic cycle of length n.
(2): Let G = K4 = {1, a, b, ab}, the Klein four group, and W = (1). Then the

corresponding covering quiver is

•1 ª, •a ª, •b ª, •ab ª
For a covering quiver ΓG(W ), define nΓG(W ) to be the length of W . For an

algebra A, it is Morita equivalent to a unique basic algebra B(A) and for this basic
algebra B(A), the Gabriel’s theorem says that there exists a unique quiver Q and
an admissible ideal I (i.e. JN ⊆ I ⊆ J2 where J is the ideal generated by all arrows
of Q) such that B(A) ∼= kQ/I. See [11]. This quiver is called the Ext-quiver of A.

It is known that for a finite quiver Q, the path algebra kQ is of finite represen-
tation type if and only if the underlying graph Q of Q is one of Dynkin diagrams:
An, Dn, E6, E7, E8, and is of tame type if and only if the underlying graph Q is
one of Euclidean diagrams: Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. For details, see [11][63]. These
facts will be used freely in the proof of the following conclusion.

Theorem 2.1. Let ΓG(W ) be a covering quiver, nΓG(W ) defined as the above
and assume A is an algebra with Ext-quiver ΓG(W ). Then

(i) A is of finite representation type if and only if nΓG(W ) = 0 or nΓG(W ) = 1;
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(ii) A is tame only if nΓG(W ) = 2;
(iii) If nΓG(W ) ≥ 3, then A is wild.

Proof. (i): “If part: ” When nΓG(W ) = 0, there is no any arrow in nΓG(W ).
This implies A is a semisimple algebra and so is of finite representation type. When
nΓG(W ) = 1, ΓG(W ) is a finite union of basic cycles. It is well known that a basic
algebra is Nakayama if and only if its Ext-quiver is An or a basic cycle. Thus the
basic algebra of A is a Nakayama algebra. Since every Nakayama algebra must be
of finite representation type ( [11], p. 197) and A is Morita equivalent to its basic
algebra, A is of finite representation type.

“Only if part: ” It is sufficient to prove that A is not of finite representation
type if nΓG(W ) ≥ 2. In order to prove this, it is enough to consider the case
nΓG(W ) = 2 (in fact, we will show later that if nΓG(W ) ≥ 3, then A is wild). We
denote the basic algebra of A by B(A). We need only to prove that B(A) is of
infinite representation type. By the Gabriel’s theorem, kΓG(W )/I ∼= B(A) for an
admissible ideal I. Denote the ideal generating all arrows in kΓG(W ) by J . By the
definition of admissible ideal, we have an algebra epimorphism

B(A) ³ kΓG(W )/J2.

Thus it is enough to prove that kΓG(W )/J2 is not of finite representation type.
Since the Jacobson radical of kΓG(W )/J2 is clearly 2-nilpotent, kΓG(W )/J2 is
stably equivalent to the following hereditary algebra (see Theorem 2.4 in Chapter
X in [11] ):

Λ =
(

kΓG(W )/J 0
J/J2 kΓG(W )/J

)

The Ext-quiver of Λ is indeed the separated quiver of ΓG(W ) (see the proof of
Theorem 2.6 in Chapter X of [11]).

Assume W = (w1, w2). If w1 = w2, we can find that the separated quiver of
ΓG(W ) is a disjoint union of quivers of following form:

•i -- • j′

This means Λ is not of finite representation type since clearly above quiver is a
Kronecher quiver which is not a Dynkin diagram (see also Theorem 2.6 in Chapter
X of [11]).

If w1 6= w2, ΓG(W )s must contain the following sub-quiver:

•
1

-¾ • j′1•j′2
?

•
i2

?

•
i1

Here 1 is the identity element of G. If i1 = i2, ΓG(W )s is not a Dynkin
diagram and thus Λ is of infinite representation type. If it is not, ΓG(W )s contains
the following sub-quiver:
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•
1

-¾ • j′1•j′2
?

•
i2

¾•j′3

?

•
i1

- • j′4

If j′4 = j′l for l = 1, 2, 3, ΓG(W )s is not a Dynkin diagram and thus Λ is of
infinite representation type. If it is not, repeats above process and by the definition
of covering quiver, there exit it, is or j′t, j

′
s satisfying it = is or j′t = j′s. In a word,

ΓG(W )s is not a Dynkin diagram and thus Λ is of infinite representation type. A
celebrated result of H.Krause [38] states that two stably equivalent algebras have
the same representation type. Thus kΓG(W )/J2 is not of finite representation type
since Λ is so. Therefore B(A) is not of finite representation type.

Clearly, (ii) ⇔ (iii). So it is enough to prove (iii). Since nΓG(W ) ≥ 3, we assume
W = (w1, w2, w3, . . .). Just like analysis of the “Only if part” of (i), we consider the
separated quiver of kΓG(W )/J2. If w1 = w2, we have the following form sub-quiver
of ΓG(W )s:

•1 -- • j′1

6
•
j′2

It is clearly not a Euclidean diagram and thus kΓG(W )/J2 is a wild algebra.
If w1 6= w2, not loss generality, we can assume wi 6= wj for 1 ≤ i 6= j ≤ 3. This
implies ΓG(W )s contains the following sub-quiver

•
1

-

6
•
j′3

¾ •?

•
i11

j′1

¾ • i12
?

•
i21

•
j′2

-•i22

which is clearly not Euclidean diagram and thus kΓG(W )/J2 is a wild algebra.
Therefore B(A) and thus A is a wild algebra. ¤

The following conclusion (see Theorem 2.3 in [32]) states the importance of
covering quivers.

Lemma 2.2. Let H be a finite-dimensional basic Hopf algebra over k. Then
there exists a finite group G and a weight sequence W = (w1, w2, . . . , wn) of G,
such that H ∼= kΓG(W )/I for an admissible ideal I.

This result indeed tells us that the Ext-quiver of a basic Hopf algebra H must
be a covering quiver ΓG(W ). By this, define nH := nΓG(W ).
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Corollary 2.3. Let H be a finite-dimensional basic Hopf algebra and nH

defined as above. Then
(i) H is of finite representation type if and only if nH = 0 or nH = 1;
(ii) If H is tame, then nH = 2;
(iii) If nH ≥ 3, then H is of wild type.

We want to take this opportunity to give two applications of Theorem 2.1. The
first one is to give a new proof of Theorem 3.1 in [42]:

Corollary 2.4. [Theorem 3.1 in [42]] Let H be a finite-dimensional basic
Hopf algebra. Then H is of finite representation type if and only if it is a Nakayama
algebra.

Proof. It is enough to prove the necessity since every Nakayama algebra must
be of finite representation type. By the Theorem 2.1, we know that H is of finite
representation type if and only if nH = 0 or nH = 1. When nH = 0, there is no
arrow in ΓG(W ). This means H is semisimple and of course Nakayama. When
nH = 1, ΓG(W ) is a disjoint union of basic cycles and H is Nakayama too (see the
first paragraph of the proof of Theorem 2.1). ¤

The second one is to give an easy way to determine the representation type of
a kind of Dinfeld doubles. Consider the basic cycle of length n (Example 2.1 (1))
and we denote this quiver by Zn and by γm

i the path of length m starting at the
vertex ei (i = 1, . . . , n).

We consider the quotient algebra Γn,d := kZn/Jd with d|n. It is a Hopf algebra
with comultiplication ∆, counit ε and antipode defined as follows. We fix a primitive
d-th root of unity q.

∆(et) =
∑

j+l=t

ej ⊗ el, ∆(γ1
t ) =

∑

j+l=t

ej ⊗ γ1
l + qlγ1

j ⊗ el,

ε(et) = δt0, ε(γ1
t ) = 0, S(et) = e−t, S(γ1

t ) = −qt+1γ1
−t−1.

As a Hopf algebra, (Γn,d)∗cop is isomorphic to the generalized Taft algebra
Tnd(q) [37] which as an associative algebra is generated by two elements g and x
with relations

gn = 1, xd = 0, xg = qgx,

with comultiplication ∆, counit ε, and antipode S given by

∆(g) = g ⊗ g, ∆(x) = 1⊗ x + x⊗ g,

ε(g) = 1, ε(x) = 0,

S(g) = g−1, S(x) = −xg−1.

For details, see [19].
In [19], the authors studied the representation theory of the Drinfeld Double

D(Γn,d) and proved the following conclusion.

Lemma 2.5. [Theorem 2.25 in [19]] The Ext-quiver of D(Γn,d) has n2

d isolated
vertices which correspond to the simple projective modules, and n(d−1)

2 copies of the
quiver
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•©©*
b

•HHj
b©©¼b

•HHY
b . . .

...

···•©©¼b
•©©*

bHHY
b

HHj
b•

. . .

...

· ·
·

with 2n
d vertices and 4n

d arrows. The relations on this quiver are bb, bb and
bb− bb.

From this lemma, the authors of [19] find that D(Γn,d) is a special biserial alge-
bra and thus it is of finite representation type or tame type (see [19]). After listing
all indecomposable modules of D(Γn,d), they get that D(Γn,d) is a tame algebra.
Indeed, even without the complete list of indecomposable D(Γn,d)-modules, we also
can prove that it is tame now.

Corollary 2.6. D(Γn,d) is a tame algebra.

Proof. We have known that D(Γn,d) is a special biserial algebra and thus it
is tame or of finite representation type. Thus in order to prove that it is tame, it
is enough to show that it is not of finite representation type. Note that the above
quiver is a covering quiver ΓG(W ) by setting G =< g|g 2n

d = 1 > and W = (g, g−1),
and then nΓG(W ) = 2. Therefore, Theorem 2.1 gives us the desire conclusion. ¤

3. Classification of basic Hopf algebras of finite representation type

The classification of basic Hopf algebras of finite representation type indeed
has been given by the author (with F. Li) in [42]. In [42], the conclusion is given in
the language of pointed Hopf algebras. Note that the dual of pointed Hopf algebras
are basic ones. For our purpose, we rewrite the result out in the language of basic
Hopf algebras without proof (see Theorem 4.6 in [42]).

Theorem 3.1. Let H be a finite-dimensional basic Hopf algebra. Then
(i) H is semisimple if and only if H ∼= (kG)∗ for some finite group G;
(ii) Assume the characteristic of k is zero and H is not semisimple, then H

is of finite representation type if and only if H∗ ∼= A(α) for some group datum
α = (G, g, χ, µ);

(iii) Assume the characteristic of k is p and H is not semisimple, then H is of
finite representation type if and only if there exist two natural numbers n > 0, r ≥
0, a d0-th primitive root of unity q ∈ k with d0|n, and d = prd0 ≥ 2 such that

H∗ ∼= Cd(n)⊕ · · · ⊕ Cd(n)

as coalgebras and
H∗ ∼= Cd(n)#σk(G/N)
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as Hopf algebras, where G = G(H) and N = G(Cd(n)).

Remark 3.2. (i) Here a group datum (for details, see [13]) over k is defined
to be a sequence α = (G, g, χ, µ) consisting of

(1) a finite group G, with an element g in its center,
(2) a one-dimensional k-representation χ of G,
(3) an element µ ∈ k such that µ = 0 if o(g) = o(χ(g)), and if µ 6= 0 then

χo(χ(g)) = 1.
For a group datum α = (G, g, χ, µ) over k, the corresponding Hopf algebra

A(α) was defined in [13], which is generated as an algebra by x and all h ∈ G with
relations

xd = µ(1− gd), xh = χ(h)hx, ∀ h ∈ G

where d = o(χ(g)). Its comultiplication ∆, counit ε, and antipode S are defined by

∆(x) = g ⊗ x + x⊗ 1, ε(x) = 0,

∆(h) = h⊗ h, ε(h) = 1 ∀ h ∈ G,

S(x) = −g−1x, S(h) = h−1, ∀ h ∈ G.

When d is a prime, the corresponding Hopf algebra A(α) appeared before [13] in
[16].

(ii) For any quiver Γ, we define Cd(Γ) := ⊕d−1
i=1 kΓ(i) for d ≥ 2, where Γ(i) is

the set of all paths of length i in Γ. We denote the basic cycle of length n (Example
2.1 (1)) by Zn and denote Cd(Zn) by Cd(n).

For more details about this theorem, see [42].

4. Classification of basic Hopf algebras of tame type

For the radically graded tame basic Hopf algebras, all possible structure are
determined in the author’s paper [41]. In this section, we determine the structure
of tame basic Hopf algebras (without the assumption of radical grading) completely.

We now give a short description of our method which is a kind of generalization
of the method used in [41]. Let H be a finite-dimensional basic Hopf algebra over
k. Then we have a Hopf epimorphism H ³ H/JH where JH is the Jacobson
radical of H. By a work of H.-J. Schneider (see [64]), we have H ∼= RH#σH/JH ,
where RH = {a ∈ H|(id ⊗ π)∆(a) = a ⊗ 1} and π : H → H/JH the canonical
epimorphism. We will show that RH is a local Frobenius algebra. By [40], we know
that H and RH have the same representation type. These results help us to reduce
the study of tame basic Hopf algebras to that of tame local Frobenius algebras.
Fortunately, we classify all tame local Frobenius algebras and show that there are
only ten classes of local algebras which are tame Frobenius (see Theorem 4.1). By
this, we find one possible structure given in [41] will not happen and the detail will
be given at the end of this section.

4.1. A complete list of tame local Frobenius algebras. Denote the char-
acteristic of k by chark. The main result of this subsection is the following.

Theorem 4.1. Let Λ be a tame local Frobenius algebra. If chark 6= 2, then
Λ ∼= k < x, y > /I where I is one of forms:

(1): I = (xm − yn, yx− axm, xy) for a ∈ k and m,n ≥ 2;
(2): I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;
(3): I = (x2 − (yx)m, y2, (xy)m + (yx)m) for m ≥ 1;
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(4): I = (x2 − (yx)m, y2 − (xy)m, (xy)m + (yx)m, (xy)mx) for m ≥ 1;
(5): I = (x2, y2, (xy)mx− (yx)my) for m ≥ 1;
(6): I = (x2 − (yx)m−1y − b(xy)m, y2, (xy)m − a(yx)m) for a, b ∈ k with

a 6= 0 and m ≥ 2;
(7): I = (x2 − (yx)m−1y − b(xy)m, y2 − (xy)m, (xy)m + (yx)m, (xy)mx)

for a, b ∈ k with a 6= 0 and m ≥ 2;
(8): I = (x2−(yx)m−1y−f(xy)m, y2−(xy)m−1x−e(xy)m, (xy)m−a(yx)m, (xy)mx)

for a, e, f ∈ k with a 6= 0 and m ≥ 2;
(9): I = (x2 − (yx)m, y2, (xy)mx− a(yx)my) for 0 6= a ∈ k and m ≥ 1;
(10): I = (x2 − (yx)m, y2 − (xy)m, (xy)mx − a(yx)my, (xy)m+1) for

0 6= a ∈ k and m ≥ 1.

We want to prove Theorem 4.1 now. Some preliminaries must be given at first.
It is easy to see that a local algebra is Frobenius if and only if the dimension of
its socle equals to one. In this section, Λ always denotes a local Frobenius algebra
and JΛ its Jacobson radical. Recall that for any self-injective algebra Λ, we always
have soc ΛΛ = socΛΛ (see [51]). This fact will be used frequently.

Any tame local algebra A must have a quiver of the form

&%

'$

6

x

•
&%

'$
?

y

We denote this quiver by Q. By the Gabriel’s Theorem, we know A ∼= k <
x, y > /I for some ideal J2 ⊆ I ⊆ JN where J is the ideal of k < x, y > generated
by x, y and N ≥ 2. Therefore, if A is Frobenius then dimkA ≥ 4.

For convention, we always denote the image of x, y in A by x, y too.

Proposition 4.2. All local algebras listed in Theorem 4.1 are tame local Frobe-
nius algebras.

Proof. By checking the dimension of the socle, it is easy to see that they are
Frobenius algebras. It is known that Λ and Λ/socΛ have the same representation
type. Now we can find all Λ/socΛ are images of maximal tame local algebras which
given by C. Ringel [62]. Thus they are tame or of finite representation type. But
it is known that k < x, y > /(x, y)2 is tame and clearly there is a natural algebra
epimorphism Λ ³ k < x, y > /(x, y)2 for any Λ in Theorem 4.1. Therefore, they
are all tame. ¤

Lemma 4.3. Let Λ = kQ/I be a local Frobenius algebra such that J2
Λ is generated

by x2 and y2. Then xy = 0 if and only if I = (xm − yn, yx − axm, xy) for
0 6= a ∈ k with m,n ≥ 2 or xy = yx = 0. Moreover, if xy = yx = 0, then
I = (xm − yn, xy, yx) for m,n ≥ 2.

Proof. It is enough to prove the necessity. By assumption, we have that Λ
is spanned by 1, x, x2, · · · , y, y2, · · · . We may write yx = xcw + ydz where w, z are
units in k[[x]] and k[[y]] respectively and c, d ≥ 2. Then 0 = xyx = xc+1w and then
xc+1 = 0. Since also xcy = 0, it follows that xc ∈ socΛ, the socle of Λ. Moreover,
0 = yxy = yd+1z and we deduce that yd+1 = 0. Since also xyd = 0, it follows that
yd ∈ socΛ. This shows that yx ∈ socΛ since socΛ is an ideal of Λ.
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Assume yx 6= 0 now. Let m,n be the maximal integers such that xm 6= 0, yn 6=
0 and xm+1 = 0, yn+1 = 0. Clearly, m,n ≥ 2 and xm, yn ∈ socΛ. By dimksocΛ =
1, there are a, b ∈ k with ab 6= 0 such that xm = ayn and yx = bxm. Let y′ = n

√
ay,

then xm = y′n. The last statement is clear and the lemma is proved. ¤

Lemma 4.4. Assume that chark 6= 2 and Λ is a 4-dimensional local Frobenius
algebra. Then Λ is isomorphic to one of the following algebras:

(1): kQ/(x2 − y2, yx− ax2, xy) for 0 6= a ∈ k;
(2): kQ/(x2, y2, xy − ayx) for 0 6= a ∈ k.

Proof. Let x, y be generators of JΛ. Since dimkΛ = 4 and Λ is Frobenius,
xy and yx belong to the socle of Λ.

(I): Assume xy = 0. If yx 6= 0, then y2 6= 0 and x2 6= 0 since dimksocΛ = 1.
Therefore, by above lemma, we can find m = 2, n = 2 since otherwise the dimension
of Λ will bigger than 4. Thus, Λ ∼= kQ/(x2 − y2, yx− ax2, xy) for 0 6= a ∈ k.

If yx = 0. In this case, we know that x2 = ay2 for 0 6= a ∈ k. Let u ∈ k
with u2 = −a, then, by chark 6= 2, X = x + uy, Y = x− uy are generators. And,
X2 = Y 2 = x2 + u2y2 = x2 − ay2 = 0, XY = Y X = x2 − u2y2 = x2 + ay2.
Therefore, Λ ∼= k < X, Y > /(X2, Y 2, XY − Y X) which is a special case of (2).

(II): Assume xy 6= 0 6= yx. Then xy = cyx for 0 6= c ∈ k. By dimksocΛ = 1,
we have x2 = axy and y2 = bxy. If a = b = 0, then Λ ∼= kQ/(x2, y2, xy − cyx).
Otherwise, no loss generality, assume a 6= 0. Let Y = x − ay, then xY = 0.
Therefore we are in case (I) again. ¤

Lemma 4.5. Let Λ be a local Frobenius algebra. Then
(i): If Λ is tame then dimkJ2

Λ/J3
Λ ≤ 2.

(ii): If chark 6= 2 and dimkJ2
Λ/J3

Λ ≤ 1 then dimkΛ = 4 or Λ is an algebra as
in Theorem 4.1 (1).

Proof. (i) If dimkJ2
Λ/J3

Λ ≥ 3, then there is a homomorphic image which is
wild (see (2.1) of [62] ). This implies Λ is wild which contradict the assumption
that Λ is tame.

(ii) Suppose now that dimkJ2
Λ/J3

Λ ≤ 1. Then the dimension must be 1, since
otherwise x, y would lie in socΛ and socΛ would not be simple. By this, we know
that dimkΛ/J3

Λ = 4.
Case (1): If Λ/J3

Λ is Frobenius, then by Lemma 4.4 we have

Λ/J3
Λ
∼= kQ/(x2 − y2, yx− ax2, xy) or Λ/J3

Λ
∼= kQ/(x2, y2, xy − ayx)

for a 6= 0.
If Λ/J3

Λ
∼= kQ/(x2 − y2, yx − ax2, xy), then xy, yx − ax2, x2 − y2 ∈ J3

Λ. By
xy ∈ J3

Λ, x2y, yxy, xy2, xyx ∈ J4
Λ. By x2−y2 ∈ J3

Λ, x3−xy2 ∈ J4
Λ and thus x3 ∈ J4

Λ.
Using x2− y2 ∈ J3

Λ again, we can find x3− y2x ∈ J4
Λ and thus y2x ∈ J4

Λ. Similarly,
by yx2 − ax3 ∈ J4

Λ and x2y − y3 ∈ J4
Λ, we have yx2, y3 ∈ J4

Λ. Therefore, J3
Λ ⊆ J4

Λ

and thus J3
Λ = 0. This implies dimkΛ = 4.

If Λ/J3
Λ
∼= kQ/(x2, y2, xy − ayx), we have x2, y2, xy − ayx ∈ J3

Λ. By this, it
is easy to show that xy2, x2y, yx2, y2x, x3, y3, xyx, yxy ∈ J4

Λ. Thus J3
Λ ⊆ J4

Λ

and so J3
Λ = 0. This also means that dimkΛ = 4.

Case (2): Assume now Λ/J3
Λ is not Frobenius. Therefore, dimksoc(Λ/J3

Λ) ≥ 2.
This implies x ∈ soc(Λ/J3

Λ) or y ∈ soc(Λ/J3
Λ). Not loss generality, assume x ∈

soc(Λ/J3
Λ). Thus we have x2, xy, yx ∈ J3

Λ. This means J2
Λ is generated by y2 and
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thus xy = uyl where u is a unit of k[[y]] and l ≥ 3. Let x′ = x−uyl−1 and we have
x′y = 0. By Lemma 4.3, we know that yx′ = 0 or I = (x′m − yn, yx′ − ax′m, x′y).

If I = (x′m − yn, yx′ − ax′m, x′y), the proof is done. In the case of yx′ = 0,
we write x′2 = vys for u a unit of k[[y]] and s ≥ 3. Thus x′3 = vysx′ = 0 and so
x′2 ∈ socΛ. Take m to be the maximal integer such that ym 6= 0 and ym+1 = 0.
Therefore, ym ∈ socΛ and thus x′2 = aym. Let y′ = λy. Take a suitable λ, we have
x′2 = y′m and Λ ∼= kQ/I for I = (x′2 − y′m, x′y′, y′x′). This is a special case of
Theorem 4.1 (1). ¤

The following lemma is given in [18] (page 84).

Lemma 4.6. Let A be a tame local algebra with the quiver Q, of dimension 5,
with J3 = 0. Then Λ ∼= kQ/L where L is one of the following ideals:

(1): (xy, yx);
(2): (yx− x2, xy);
(3): (yx− x2, xy − ay2) where a ∈ k and 0 6= a 6= 1;
(4): (x2, y2);
(5): (yx− x2, y2).

Lemma 4.7. Let Λ be a local Frobenius algebra such that xy and yx lie in J3
Λ.

Assume chark 6= 2, then dimkΛ = 4 or Λ is an algebra as in Theorem 4.1 (1).

Proof. By Lemma 4.4, we may assume dimkΛ > 4. The algebra has a basis
of the form

{1, x, . . . , xs, y, . . . , yt}.
If xy = 0, then by Lemma 4.3, Λ is of the form given in Theorem 4.1 (1).

We consider now the case when xy 6= 0 6= yx. Let p be as large as possible
such that xy and yx ∈ Jp

Λ. Clearly, p ≥ 3. Then one of them does not lie in Jp+1
Λ .

Write xy ≡ xpu + ypv and yx ≡ xpw + ypz (modulo Jp+1
Λ ) where u, v, w, z ∈ k.

We may replace x, y by x′, y′ where x′ = x− yp−1z and y′ = y − xp−1u. Then we
have new relations xy ≡ cyp and yx ≡ dxp for c, d ∈ k. Moreover, one of them,
c say, is non-zero. Now, Jp+1

Λ is generated by xp+1 and yp+1, and cyp+1 ≡ yxy ≡
dxpy ≡ dcxp−1yp ∈ Jp+2

Λ and already Jp+1
Λ = (xp+1).

If d 6= 0, then similarly xp+1 ∈ Jp+2
Λ and thus Jp+1

Λ = 0. So Jp
Λ ⊆ socΛ. We

assumed that 0 6= xy ∈ Jp
Λ and it follows that Jp

Λ = socΛ. We have xp = ayp for
0 6= a ∈ k and also xy = cyp and yx = dxp with cd 6= 0. Replace now x, y by
x′ = x− cyp−1 and y. Then x′y = 0 and thus we can use Lemma 4.3 again.

Suppose now that d = 0. Then yx ∈ Jp+1
Λ = (xp+1). Note that yx 6= 0 and

consequently yx = xmu for m ≥ p + 1, where u is a unit of k[[x]]. Replace y by
y′ = y − xm−1u, then y′x = 0. We also can use Lemma 4.3 again. ¤

Lemma 4.8. Let Λ be a local Frobenius algebra such that yx− x2 and xy lie in
J3

Λ. Then Λ ∼= kQ/(xm − yn, yx− axm, xy) for 0 6= a ∈ k.

Proof. Claim: JΛ does not have generators x′, y′ with (x′y′) and (y′x′) lying
in J3

Λ. This claim was proved in [18] (see Lemma III.7 of [18]).
We have that x3 ≡ xyx (modulo J4

Λ). But xyx ∈ J4
Λ and thus x3 ∈ J4

Λ. So J3
Λ

is generated by y3. So we may have xy = ysu where u is a unit in k[[y]] and s ≥ 3.
Let x′ = x− ys−1u, then we have x′y = 0. By the claim, yx′ 6= 0 and thus Lemma
4.3 is applied. ¤
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Lemma 4.9. Let Λ be a local Frobenius algebra such that yx− x2 and xy− ay2

lie in J3
Λ where 0 6= a 6= 1. Then dimkΛ = 4.

Proof. By assumption, we have x3 ≡ xyx ≡ ay2x ≡ ayx2 ≡ ax3 (modulo J4
Λ)

and x2y ≡ axy2 ≡ a2y3 ≡ ayxy ≡ ax2y (modulo J4
Λ). Since a 6= 1, x3 ∈ J4

Λ and
x2y ∈ J4

Λ. Since a 6= 0, it follows that all the other monomials occurring lie in J4
Λ.

This means that J3
Λ ⊆ J4

Λ and thus J3
Λ = 0. So, J2

Λ ⊆ socΛ. By Λ is Frobenius,
dimkΛ = 4. ¤

Lemma 4.10. Let Λ be a local Frobenius algebra such that x2 and y2 lie in J3
Λ.

Assume chark 6= 2, then Λ is isomorphic to one of algebras in Theorem 4.1.

Proof. By Lemma 4.4 and Lemma 4.5, we can assume that dimkΛ > 4 and
dimkJ2

Λ/J3
Λ = 2. Thus xy and yx are generators of J2

Λ which are independent.
Case (1): Assume x2 and y2 lie in socΛ. Let m ≥ 1 be the integer such that

(xy)m 6= 0 and (xy)m+1 = 0. We claim that socΛ = ((xy)m) or socΛ = ((xy)mx).
Indeed, since y2 ∈ socΛ, we always have (xy)my = 0. Thus if (xy)mx = 0 then
0 6= (xy)m ∈ socΛ. By dimksocΛ = 1, socΛ = ((xy)m). Otherwise, (xy)mx 6= 0.
By (xy)m+1 = 0 and (xy)mx2 = 0, socΛ = ((xy)mx). Thus the claim is proved.

If socΛ = ((xy)m), then there exists 0 6= a ∈ k such that (yx)m = a(xy)m.
By x2 and y2 lie in socΛ, we have x2 = b(xy)m and y2 = c(xy)m for b, c ∈ k.
If a 6= −1, let d = b

1+a , e = c
1+a and x′ = x − dy(xy)m−1, y′ = y − e(xy)m−1y,

then we have x′2 = 0 and y′2 = 0. Thus it is isomorphic to the one of algebras in
Theorem 4.1 (2). If a = −1, then consider b, c. If b = c = 0, it is isomorphic to the
one of algebras in Theorem 4.1 (2). If one of b, c is zero while the other is not zero,
say b 6= 0 and c = 0. Let x′ = λx and y′ = µy for λ, µ ∈ k. By suitable choice of
λ, µ, we can assume x′2 = (x′y′)m and y′2 = 0. Thus the algebra has the form as
in Theorem 4.1 (3). Similarly, if bc 6= 0 then we can show the algebra has the form
as in Theorem 4.1 (4).

If socΛ = ((xy)mx), then there exists 0 6= a ∈ k such that (yx)my = a(xy)mx.
By x2 and y2 lie in socΛ, we have x2 = b(xy)mx and y2 = cy(xy)m for b, c ∈ k.
Let x′ = b(xy)m − x and y′ = c(yx)m − y. Then we can find x′2 = 0 and y′2 = 0.
Moreover, clearly we can take a to be 1. Thus the algebra has the form as in
Theorem 4.1 (5).

Case (2): Otherwise, choose n, l such that x2 ∈ Jn
Λ − Jn+1

Λ and y2 ∈ J l
Λ with

l ≥ n. Take also n as large as possible with respect to these conditions.
Claim: Jn+1

Λ ⊆ socΛ. This claim was proved in [18] (see Lemma III.10 of [18]).
Now we consider two possibilities: socΛ is an even power of JΛ or socΛ is an odd
power of JΛ.

(i) If socΛ is an even power of JΛ, then socΛ = J2m
Λ . By the hypothesis at

the beginning, Jn
Λ 6⊆ socΛ. So Jn+1

Λ 6= 0 and thus Jn+1
Λ = socΛ. Therefore,

n + 1 = 2m. Clearly, socΛ = ((xy)m) and (yx)m = a(xy)m for 0 6= a ∈ k.
Then x2 = c(xy)m−1x + d(yx)m−1y + f(xy)m and (c, d) 6= (0, 0). Without loss
of generality, we can assume c = 0 since otherwise we can replace x by x′ =
x− c(xy)m−1.

Now consider y2. By the hypothesis, the element lies in soc2Λ. If y2 ∈ socΛ,
then we show similarly as in Case (1) that Λ is an algebra in Theorem 4.1 (6), (7).
Otherwise, y2 = a(xy)m−1x + b(yx)m−1y + e(xy)m and (a, b) 6= (0, 0). Similarly,
we can assume b = 0. Thus a 6= 0.
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We have now x2 = d(yx)m−1y + f(xy)m and y2 = a(xy)m−1x + e(xy)m. Let
x′ = λx and y′ = µy. By a suitable choice of λ, µ, we can assume a = 1 = d. This
is an algebra in Theorem 4.1 (8).

(ii) Otherwise, socΛ is an odd power of JΛ. Similarly, we have socΛ = Jn+1
Λ =

((xy)mx) and (xy)mx = a(yx)my for a 6= 0. By assumption, x2 = b(xy)m +
c(yx)m + f(xy)mx. As before, we can assume b = 0. Also, we consider y2. If
y2 ∈ socΛ, then by the discussion of Case (1), the algebra is isomorphic to one of
algebras in Theorem 4.1 (9). If not, we have y2 = d(xy)m + e(yx)m + g(xy)mx for
d, e, g ∈ k. Similarly, we can assume that e = 0 and d 6= 0. As in Case (1), we also
can assume f = g = 0. So now we have x2 = c(yx)m and y2 = d(xy)m. Similarly,
let x′ = λx and y′ = µy and choose suitable λ, µ, we may assume c = d = 1. Thus
it is an algebra in Theorem 4.1 (10). ¤

Lemma 4.11. There is no local Frobenius algebra Λ such that Λ/J3
Λ satisfies

Lemma 4.6 (5).

Proof. Suppose such algebra exists.
Claim: J3

Λ = (xyx) ⊆ socΛ. We have that J3
Λ is generated by xyx and yxy by

the given relations. Moreover, modulo J4
Λ we have that xyx ≡ x3 ≡ yxx ≡ y2x ≡ 0

and therefore J3
Λ = (yxy). This implies J4

Λ = ((yx)2) ⊆ yJ4
Λ ⊆ J5

Λ. Thus J4
Λ = 0 as

required.
We claim yxy must be zero now. Otherwise, assume yxy 6= 0 and thus J3

Λ =
(yxy) = socΛ. Since J4

Λ = 0, we know xyx = 0 and xy2 = 0. This means xy ∈ socΛ.
Clearly, xy 6= 0 since otherwise yxy = 0. Since dimksocΛ = 1, there exists non-
zero c ∈ k such that xy = cyxy. So we have xy = cyxy = c2y2xy = 0. It’s a
contradiction. This means yxy = 0 and thus J3

Λ = 0 and J2
Λ ⊆ socΛ. Therefor socΛ

is not simple, which is absurd. ¤

Proof of Theorem 4.1: Since Λ is tame, dimkJ2
Λ/J3

Λ ≤ 2 by Lemma 4.5.
If dimkJ2

Λ/J3
Λ = 1, Lemma 4.5 shows that Λ is one of algebras of this list.

If dimkJ2
Λ/J3

Λ = 2, then dimkΛ/J3
Λ = 5. This means that Λ/J3

Λ satisfies the
conditions of Lemma 4.6. Therefore, Lemma 4.7-4.11 give our desired conclusion.

4.2. Tame basic Hopf algebras. The main aim of this subsection is to
describe the structure of tame basic Hopf algebras (see Theorem 4.15).

Let H be a basic Hopf algebra and JH is its Jacobson radical. Recall H/JH
∼=

(kG)∗ for some finite group G. In this section, we always assume chark 6= 2 and
chark - |G|. Thus kG is always semisimple.

Denote H/JH by H. Now we have a Hopf algebra epimorphism

H ³ H.

By a result which given by H.-J. Schneider [64], there is an algebra RH such
that

H ∼= RH#σH.

Lemma 4.12. RH is a local algebra.

Proof. For any finite-dimensional algebra A, we write grA = A/JA⊕JA/J2
A⊕

· · · . By [61] and [44], there is an algebra RgrH , which is a graded braided Hopf
algebra in H

H
YD, such that grH ∼= RgrH#H. Hence RgrH is Frobenius by [26] and

is local since the degree 0 part is k. Thus RgrH is a local Frobenius algebra.
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By Blattner-Montgomery Duality Theorem (see Section 9.4 in [49]), we have

(RH#σH)#(H)∗ ∼= Mn(RH),

(RgrH#H)#(H)∗ ∼= Mn(RgrH)
where n = dimkH. Note that (H)∗ is a group algebra now, thus we have J(RH#σH)#(H)∗ =
(JRH#σH)#(H)∗. This means we have the following isomorphism

grMn(RH) ∼= (gr(RH#σH))#(H)∗.

Thus,

Mn(grRH) ∼= grMn(RH) ∼= (grH)#(H)∗ ∼= (RgrH#H)#(H)∗ ∼= Mn(RgrH).

So we have Mn(grRH) ∼= Mn(RgrH) and thus grRH
∼= RgrH . By RgrH is local,

grRH and thus RH is local. ¤

Lemma 4.13. RH is a Frobenius algebra.

Proof. By the Lemma 4.12, it is enough to show that RH is self-injective
since any basic self-injective algebra must be Frobenius. By Blattner-Montgomery
Duality Theorem, we need only show H#(H)∗ is self-injective. Let P be a projective
H#(H)∗-module, we need to show that P is also injective.

For H#(H)∗-modules M, N , let i : M ↪→ N and h : M → P be two H#(H)∗-
module morphisms such that i is injective. In order to prove that P is injective
as an H#(H)∗-module, it is enough to find an f̃ ∈ HomH#(H)∗(N, P ) satisfying

h = f̃ i. It is known that H#(H)∗ is a free H-module. Thus P is also a projective
H-module. By H is Frobenius, P is injective as an H-module. Thus there exists
an H-morphism f such that h = fi. Define f̃(n) =

∑
S(t1) · f(t2 · n) for n ∈ N ,

where t is a non-zero right integral with ε(t) = 1. Then f̃ is H#(H)∗-linear by [15]
and satisfies h = f̃ i. ¤

The following lemma is proved in [40] (see Theorem 2.6 in [40]).

Lemma 4.14. Let A be a finite-dimensional algebra and H a finite-dimensional
Hopf algebra. If H and H∗ are semisimple, then A#σH and A have the same
representation type.

The next conclusion will give us all possible structures of tame basic Hopf
algebras.

Theorem 4.15. Let H be a basic Hopf algebra. Assume chark 6= 2 and
dimkH/JH is invertible in k, then H is tame if and only if H ∼= k < x, y >
/I#σ(kG)∗ for some finite group G and some ideal I which is one of the following
forms:

(1): I = (xm − yn, yx− axm, xy) for a ∈ k and m,n ≥ 2;
(2): I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;
(3): I = (x2 − (yx)m, y2, (xy)m + (yx)m, ) for m ≥ 1;
(4): I = (x2 − (yx)m, y2 − (xy)m, (xy)m + (yx)m, (xy)mx) for m ≥ 1;
(5): I = (x2, y2, (xy)mx− a(yx)my) for 0 6= a ∈ k and m ≥ 1;
(6): I = (x2 − (yx)m−1y − b(xy)m, y2, (xy)m − a(yx)m) for a, b ∈ k with

a 6= 0 and m ≥ 2;
(7): I = (x2 − (yx)m−1y − b(xy)m, y2 − (xy)m, (xy)m + (yx)m, (xy)mx)

for a, b ∈ k with a 6= 0 and m ≥ 2;
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(8): I = (x2−(yx)m−1y−f(xy)m, y2−(xy)m−1x−e(xy)m, (xy)m−a(yx)m, (xy)mx)
for a, e f ∈ k with a 6= 0 and m ≥ 2;

(9): I = (x2 − (yx)m, y2, (xy)mx− a(yx)my) for 0 6= a ∈ k and m ≥ 1;
(10): I = (x2 − (yx)m, y2 − (xy)m, (xy)mx − a(yx)my, (xy)m+1) for

0 6= a ∈ k and m ≥ 1.

Proof. “Only if part: ” On one hand, by Lemma 4.12, Lemma 4.13 and
Lemma 4.14, RH is a tame local Frobenius algebra. On the other hand, H/JH is
a commutative semisimple Hopf algebra and thus H/JH

∼= (kG)∗ for some finite
group. Therefore, by Theorem 4.1 and H ∼= RH#σH/JH , we get the desired
conclusion.

“If part: ” By Proposition 4.2, we know that k < x, y > /I is a tame algebra.
So the sufficiency is gotten from Lemma 4.14. ¤

Remark 4.16. (1) In order to apply Lemma 4.14, we need kG to be semisimple
and thus the hypothesis chark - |G|, posed at the beginning of this subsection, is
needed. Note that at the end of proof of Lemma 4.13, this hypothesis was also used
to guarantee the existence of the right integral t satisfying ε(t) = 1.

(2) By a conclusion of Radford or Majid (see [61][44]), if Λ is a braided Hopf
algebra in (kG)∗

(kG)∗YD for some finite group G, then we can form the bosonization
Λ × (kG)∗ which is a Hopf algebra. For a tame local Frobenius algebra A, above
theorem dose not imply the existence of finite group G satisfying A is a braided
Hopf algebra in (kG)∗

(kG)∗YD.

Problem 4.1. For a tame local Frobenius algebra A, give an effective method
to determine that whether there is a finite group G satisfying A is a braided Hopf
algebra in (kG)∗

(kG)∗YD. If such a G exists, then find all of them.

A similar problem was given in [41] ([41], Problem 5.1). For a tame local
radically graded Frobenius algebra, this problem has been solved by the author
with his co-workers. The details will appear elsewhere.

Example 4.1. (Tensor products of Taft algebras) Let Tn2(q), Tm2(q′)
be two Taft algebras. Direct computation shows that

Tn2(q)⊗k Tm2(q′) ∼= k < x, y > /I#k(Zn × Zm)

where I = (xn, ym, xy− yx). Thus by Theorem 4.15, Tn2(q)⊗k Tm2(q′) is tame if
and only if m = n = 2.

Example 4.2. (Book Algebras) Let q be a n-th primitive root of unity and
m a positive integer satisfying (m,n) = 1. Let H = h(q, m) = k < y, x, g >
/(xn, yn, gn − 1, gx− qxg, gy− qmyg, xy− yx) and with comultiplication, antipode
and counit given by

∆(x) = x⊗ g + 1⊗ x, ∆(y) = y ⊗ 1 + gm ⊗ y, ∆(g) = g ⊗ g

S(x) = −xg−1, S(y) = −g−my, S(g) = g−1, ε(x) = ε(y) = 0, ε(g) = 1.

It is a Hopf algebra and called book algebra. As in [41], we have

h(q, m) ∼= k < x, y > /I#kZn

where I = (xn, yn, xy − qmyx). Thus by Theorem 4.15, h(q, m) is tame if and
only if n = 2. In this case, q must equal to −1 and m = 1. Thus only h(−1, 1) is
tame and the others are all wild.
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Example 4.3. (The dual of Frobenius-Lusztig kernel) Let p be an odd
number and q a p-th primitive root of unity. By definition, the Frobenius-Lusztig
kernel uq(sl2) is an associative algebra generated by E, F,K with relations

Kp = 1, Ep = 0, F p = 0, KE = q2EK, KF = q−2FK, EF−FE =
K −Kp−1

q − q−1
.

Its comultiplication, counit and antipode are defined by

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1, ∆(K) = K ⊗K;

ε(E) = ε(F ) = 0, ε(K) = 1;
S(E) = −q2K−1E, S(F ) = −KF, S(K) = K−1.

It is a pointed Hopf algebra and thus uq(sl2)∗ is a basic Hopf algebra. We now give
the Hopf structure of uq(sl2)∗ explicitly.

It is known that uq(sl2) has a basis {KlEiF j |0 ≤ l, i, j ≤ p − 1} and thus
dimkuq(sl2) = p3. We denote by (KlEiF j)∗ the element of uq(sl2)∗ which sent
KlEiF j to 1 and the other element in the above basis to 0.

Let

a =
p−1∑

i=0

qi(Ki)∗ +
p−1∑

i=0

qi(KiEF )∗, b =
p−1∑

i=0

qi(KiE)∗,

c =
p−1∑

i=0

q−i(KiF )∗, d =
p−1∑

i=0

q−i(Ki)∗.

By direct computations, the following relations hold.

ba = qab, db = qbd, ca = qac. dc = qcd, bc = cb,

ad− da = (q−1 − q)bc, da− qbc = 1, dp = 1, cp = bp = 0.

For example, let us check the relation bc = cb and the other relations can be
checked similarly. By definition, bc =

∑
i,j qi−j(KiE)∗(KjF )∗. In order to make

(KiE)∗(KjF )∗(KlEmFn) 6= 0, we must have m = n = 1. But

∆(KlEF ) = Kl−1 ⊗KlEF + q2Kl−1E ⊗Kl+1F + KlF ⊗KlE + KlEF ⊗Kl.

This implies if (KiE)∗(KjF )∗ 6= 0 then j = i + 2. Thus

bc =
∑

i,j

qi−j(KiE)∗(KjF )∗ =
p−1∑

l=0

q−2q2(KlEF )∗ =
p−1∑

l=0

(KlEF )∗.

Similarly, we can show cb =
∑p−1

l=0 (KlEF )∗ also.
By da − qbc = 1 and dp = 1, we have a = d−1(1 + qbc). It is straightforward

to show that the algebra, which is generated by a, b, c, d with above relations, has
dimension p3. Thus algebra is just uq(sl2)∗. The comultiplication, counit and the
antipode are given as follows.

∆(a) = a⊗ a + b⊗ c, ∆(b) = a⊗ b + b⊗ d;

∆(c) = c⊗ a + d⊗ c, ∆(d) = c⊗ b + d⊗ d;
ε(a) = ε(d) = 1, ε(b) = ε(c) = 0;

S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.

Clearly, Juq(sl2)∗ = (b, c) and uq(sl2)∗/(b, c) ∼= kZp. Thus

uq(sl2)∗ ∼= Ruq(sl2)∗#σkZp
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where by definition Ruq(sl2)∗ = {x ∈ uq(sl2)∗|(id ⊗ π)∆(x) = x ⊗ 1}. Here
π : uq(sl2)∗ → uq(sl2)∗/(b, c) is the canonical map. Thus it is easy to see that
dc, d−1b ∈ Ruq(sl2)∗ which generate Ruq(sl2)∗ and satisfy the following relations

(dc)p = 0, (d−1b)p = 0, dc · d−1b = q2(d−1b) · dc.

Denote dc by x and d−1b by y, we have

Ruq(sl2)∗
∼= k < x, y > /I

where I = (xp, yp, xy − q2yx) which is not an algebra in Theorem 4.1. Thus, by
Theorem 4.15, uq(sl2)∗ is wild.

At last, I want to take this chance to give an addendum to [41]. In Section 3
of [41], we give the following conclusion (see Theorem 4.1 in [41]).

“Let Λ be a tame local graded Frobenius algebra. If chark 6= 2, then Λ ∼= k <
x, y > /I where I is one of forms:

(1): I = (x2 − y2, yx− ax2, xy) for 0 6= a ∈ k;
(2): I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;
(3): I = (xn − yn, xy, yx) for n ≥ 2;
(4): I = (x2, y2, (xy)mx− (yx)my) for m ≥ 1;
(5): I = (yx− x2, y2).”

By the Lemma 4.11, we know that the case (5) of above conclusion will not
appear. Thus the better form of Theorem 4.1 of [41] is the following.

Theorem Let Λ be a tame local graded Frobenius algebra. If chark 6= 2, then
Λ ∼= k < x, y > /I where I is one of forms:

(1): I = (x2 − y2, yx− ax2, xy) for 0 6= a ∈ k;
(2): I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;
(3): I = (xn − yn, xy, yx) for n ≥ 2;
(4): I = (x2, y2, (xy)mx− (yx)my) for m ≥ 1.
Of course, Theorem 5.4 of [41] should be changed accordingly. That is, delete

the case (5) of Theorem 5.4 in [41].
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