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1.1. Motivation

We are motivated by the following three seemingly irrelevant but indeed related phe-
nomenons. The first one is based on the next simple observation. It is well-known that
the affine line A! is a commutative algebraic group of dimension one. If we consider the
infinite dimensional Taft algebra T'(n,t,£) (see Subsection 2.3 for its definition), then
we find that the affine line (here and the following we identify an affine variety with
its coordinate algebra) is also a Hopf algebra in the braided tensor category %:yi) of
Yetter-Drinfeld modules of kZ,,. Intuitively,

€5 yD.

From this, a natural question is:
Can we realize other irreducible curves as Hopf algebras in %:yp? (1.1)

The curve satisfying this question has “near group” property: although itself may be not
an algebraic group, it is a Hopf algebra in %:yD, which is a braided tensor category
enriching the category of vector spaces. In order to answer this question, we need to
give two remarks at first. Firstly, observe that above line is smooth and thus the infinite
dimensional Taft algebra is regular, i.e. having finite global dimension. Secondly, it is
harmless to assume that the action of Z, on the curve is faithful since otherwise one
can take a smaller group Z,, with m|n to substitute Z,. This assumption implies the
infinite dimensional Taft algebra is prime. Put them together, the infinite dimensional
Taft algebra is prime regular of Gelfand-Kirillov dimension (GK-dimension for short)
one. Under this assumption, one can show that the affine line k[z] and the multiplicative
group k[z*1] are the only smooth curves which can be realized as Hopf algebras in %:yp
(see Corollary 2.14). Therefore, the only left chance is to consider singular curves. We
find that at least for some special curves the answer is “Yes”! As an illustration, consider
the example T'({2,3},1,&) (see Subsection 4.1) and from this example we find the cusp
y3 = y3 is a Hopf algebra in %zjﬂ). That is,

€7 VD.
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So above analysis tells us that we need to consider the structures of prime Hopf
algebras of GK-dimension one which are not regular if we want to find the answer to
question (1.1).

The second one is a wide range of recent researches and interest on the classification
of Hopf algebras of finite GK-dimensions. See for instance [4,3,12,15,20,21,28-30,32]. To
the author’s best knowledge, there are two different strategies to classify such Hopf al-
gebras. One line focuses on pointed versions, in particular about braidings (i.e. Nichols
algebras). The first celebrated work in this line is the Rosso’s basic observation about the
structure of Nichols algebras of finite GK-dimension with positive braiding (see [26, The-
orem 21]). Then the pointed Hopf algebra domains of finite GK-dimension with generic
infinitesimal braiding were classified by Andruskiewitsch and Schneider [4, Theorem
5.2] and Andruskiewitsch and Angiono [1, Theorem 1.1]. Recently, Andruskiewitsch-
Angiono-Heckenberger [3] conjectured that a Nichols algebra of diagonal type has finite
GK-dimension if and only if the corresponding generalized root system is finite, and
assuming the conjecture is true they classified a natural class of braided spaces whose
Nichols algebra has finite GK-dimension [3, Theorem 1.10]. Another line focuses more
on algebraic and homological properties of these Hopf algebras, which is motivated by
noncommutative algebras and noncommutative algebraic geometry. Historically, Lu, Wu
and Zhang initiated the program of classifying Hopf algebras of GK-dimension one [21].
Then the author found a new class of examples about prime regular Hopf algebras of
GK-dimension one [20]. Brown and Zhang [12, Theorem 0.5] made further efforts in
this direction and classified all prime regular Hopf algebras H of GK-dimension one
under an extra hypothesis. In 2016, Wu, Ding and the author [32, Theorem 8.3] re-
moved this hypothesis and gave a complete classification of prime regular Hopf algebras
of GK-dimension one. One interesting fact is that some non-pointed Hopf algebras of
GK-dimension one were found in [32]. For Hopf algebras H of GK-dimension two, all
known classification results are given under the condition of H being domains. In [15,
Theorem 0.1], Goodearl and Zhang classified all Hopf algebras H of GK-dimension two
which are domains and satisfy the condition Ext} (k, k) # 0. For those with vanishing
Ext-groups, some interesting examples were constructed by Wang-Zhang-Zhuang [29,
Section 2] and they conjectured these examples together with Hopf algebras given in
[15] exhausted all Hopf algebra domains with GK-dimension two. In order to study Hopf
algebras H of GK-dimensions three and four, a more restrictive condition was added: H
is connected, that is, the coradical of H is 1-dimensional. All connected Hopf algebras
with GK-dimension three and four were classified by Zhuang in [35, Theorem 7.6] and
Wang, Zhang and Zhuang [30, Theorem 0.3] respectively. See [10,34] for latest develop-
ments. So, as a natural development of this line we want to classify prime Hopf algebras
of GK-dimension one without regularity.

The third one is to find new examples of non-pointed Hopf algebras. In the last
two decades, there has been an essential progress in understanding the structures of
pointed Hopf algebras by many experts, like Andruskiewitsch, Schneider, Heckenberger,
and etc. See for example [5,16,17]. Comparing with pointed Hopf algebras, it seems that
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we know little about non-pointed Hopf algebras. Inspired by our previous work [32] on
the classification of prime regular Hopf algebras, which prompted us to find a series of
new examples of non-pointed Hopf algebras, we expect to get more examples through
classifying prime Hopf algebras of GK-dimension one without regularity.

1.2. Setting

As the research continues, we gradually realize that the condition “regular” is very
delicate and strong. The situation becomes much worse if we just remove the regularity
condition directly. In another word, we still need some ingredients from regularity at
present. To get suitable ingredients, let’s go back to the question (1.1) and in such case
the Hopf algebra has a natural projection to the group algebra kZ,. The first question
is: what is this natural number n? In the Taft algebra H case, it is not hard to see that
this n is just the PI degree of H, that is, n =PIl.deg(H). So roughly speaking n measures
how far is a Hopf algebra from a commutative one. At the same time, the Hopf algebra
who has a projection to kZ, will have a 1-dimensional representation M with order n,
that is M®" = k. Putting them together, we form our first hypothesis about prime Hopf
algebras of GK-dimension one:

(Hypl): The Hopf algebra H has a 1-dimensional representation 7z : H — k whose order
is equal to Pl.deg(H).

The second question is: where is the curve? It is not hard to see that the curve is
exactly the coinvariant algebra under the projection to kZ,. We will see that for each
1-dimensional representation of H one has an analogue of coinvariant algebras which are
called the invariant components with respect to this representation (see Subsection 2.2
for details). Due to the (Hypl), our second hypothesis is:

(Hyp2): The invariant components with respect to 7y are domains.

By definition, a Hopf algebra H we considered has two invariant components, that
is the left invariant component Héﬂr and right invariant component Hg . (see Defini-
tion 2.7). By Lemma 2.8, we see that H(l)m is a domain if and only if Hjj . is a domain.
So the (Hyp2) can be weakened to require that any one of two invariant components is
a domain. But, in practice (Hyp2) is more convenient for us.

Regarding (Hypl), actually, any noetherian affine Hopf algebra H has natural
1-dimensional representations: the space of right (resp. left) homological integrals. The
order of any one of these 1-dimensional modules is called the integral order (see Subsec-
tion 2.2 for related definitions) of H and we denote it by io(H), which is used widely in
the regular case. So a plausible alternative of (Hypl) is

(Hypl)’ io(H) = Pl.deg(H).
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Clearly, (Hypl)’ is stronger than (Hypl) and should be easier to use (Hypl)’ instead
of (Hypl). But we will see that the (Hypl)’ is not so good because it excludes some nice
and natural examples (see Remark 4.2).

Note that all prime regular Hopf algebras of GK-dimension one satisfy both (Hypl)’
and (Hyp2) automatically (see [21, Theorem 7.1]). Since we have examples which satisfy
(Hypl) and (Hyp2) while they are not regular (see, say, the example about the cusp
given above), regularity is a really more stronger than (Hypl) + (Hyp2) for prime Hopf
algebras of GK-dimension one.

The main result of this paper is to give a classification of all prime Hopf algebras of
GK-dimension one satisfying (Hypl) + (Hyp2) (see Theorem 7.1). As byproducts, 1) a
number of new Hopf algebras of GK-dimension one are found and some of them are not
pointed, 2) we give a partial answer to a question posted in [12] (see [12, Question 7.3C])
and 3) question (1.1) is answered affirmatively and complete examples are provided.

1.8. Strategy and organization

In a word, the idea of this paper just is to build a “relative version” (i.e. with respect
to any l-dimensional representation rather than just the 1-dimensional representation
of homological integrals) and extend the methods of [12,32] to our general setting. So
the strategy of the proof of the main result is divided into two parts: the ideal case and
the remaining case. However, we need to point out that the most significant difference
between the regular Hopf algebras of GK-dimension one and our setting is: In the regular
case, the invariant components are Dedekind domains (see [12, Theorem 2.5 (f)]) while
in our case they are just required to be general domains! At the first glance, there is
a huge distance between a general domain and a Dedekind domain. A contribution of
this paper is to overcome this difficulty and prove that we can classify these domains
under the requirement that they are the invariant components of prime Hopf algebra of
GK-dimension one. To overcome this difficulty, a new concept called a fraction of natural
number is introduced (see Definition 3.1).

As the first step to realize our idea, we construct a number of prime Hopf algebras
of GK-dimension one which are called the “fraction versions” of known examples of
prime regular Hopf algebras of GK-dimension one. Then we use the concepts so called
representation minor, denoted as min(7), and representation order, denoted as ord(w),
of a noetherian affine Hopf algebra H to deal with the ideal case, that is, the case
either min(7) = 1 or ord(w) = min(7). In the ideal case, we proved that every prime
Hopf algebras of GK-dimension one satisfying (Hypl) + (Hyp2) must be isomorphic
to either a known regular Hopf algebra given in [12, Section 3] or a fraction version of
one of these regular Hopf algebras. Then, we consider the remaining case, that is the
case ord(m) > min(w) > 1 (note that by definition min(7)|ord(w)). We show that for
each prime Hopf algebra H of GK-dimension one in the remaining case one always can
construct a Hopf subalgebra H which lies in the ideal case. As one of difficult parts of this
paper, we show that H indeed determine the structure of H essentially and from which
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we can not only get a complete classification of prime Hopf algebras of GK-dimension one
satisfying (Hypl) + (Hyp2) but also find a series of new examples of non-pointed Hopf
algebras. At last, we give some applications of our results, in particular question (1.1) is
solved and a partial solution to [12, Question 7.3C.] is given. Moreover, at the end of the
paper we formulate a conjecture (see Conjecture 7.8) about the structure of a general
prime Hopf algebra of GK-dimension one for further researches and considerations.

The paper is organized as follows. Necessary definitions, known examples and pre-
liminary results are collected in Section 2. In particular, in order to compare regular
Hopf algebras and non-regular ones, the widely used tool called homological integral
is recalled. The definition of a fraction of natural number, a fraction version of a Taft
algebra and some combinatorial relations, which are crucial to the following analysis,
will be given in Section 3. Section 4 is devoted to construct new examples of prime Hopf
algebras of GK-dimension one which satisfy (Hypl) and (Hyp2). We should point out
that the proof of the example D(m, d, ), which are not pointed in general, being a Hopf
algebra is quite nontrivial. The properties of these new examples are also established in
this section and in particular we show that they are pivotal Hopf algebras. The question
about the classification of prime Hopf algebras of GK-dimension one satisfying (Hypl)
+ (Hyp2) in ideal cases is solved in Section 5, and Section 6 is designed to solve the same
question in the remaining case. The main result is formulated in the last section and we
end the paper with some consequences, questions and a conjecture on the structure of a
general prime Hopf algebra of GK-dimension one.

Acknowledgments. The work started during my visit to Department of Mathematics,
MIT. I would like thank, from the bottom of my heart, Professor Pavel Etingof for his
heuristic discussion, encouragements and hospitality. The author also wants to thank
Professor James Zhang for his continued help and support for the author, and in partic-
ular for showing him their examples of non-regular Hopf algebras given in Subsection 4.2.
I appreciate Professors Ken Brown, Q.-S. Wu and D.-M Lu for useful communications
and in particular thank Ken Brown for showing the author his nice slides on infinite di-
mensional Hopf algebras. At last, I would like thank the referee for his/her very valuable
comments which improve the paper greatly.

2. Preliminaries

In this section we recall the basic definitions and properties about affine noetherian
Hopf algebras for completeness and the convenience of the reader. About general back-
ground knowledge, the reader is referred to [24] for Hopf algebras, [22] for noetherian
rings, [11,21,12,14] for exposition about noetherian Hopf algebras and [13] for general
knowledge of tensor categories.

Usually we are working on left modules (resp. comodules). Let A°P denote the opposite
algebra of A. Throughout, we use the symbols A, e and S respectively, for the coproduct,
counit and antipode of a Hopf algebra H, and the Sweedler’s notation for coproduct



G. Liu / Journal of Algebra 547 (2020) 579-667 585

A(h) =3 h1®@hs =h1®ha =K @R (h € H) will be used freely. Similarly, the coaction
of left comodule M is denoted by 6(m) = m_1) ® m(yy € H® M, for any m € M.

2.1. Stuffs from ring theory and Homological integrals

In this paper, a ring R is called regular if it has finite global dimension, it is prime if
0 is a prime ideal and it is affine if it is finitely generated.

o Pl-degree. If Z is an Ore domain, then the rank of a Z-module M is defined to be
the Q(Z)-dimension of Q(Z) ®z M, where Q(Z) is the quotient division ring of Z. Let
R be an algebra satisfying a polynomial identity (PI for short). The PI-degree of R is
defined to be

PI-deg(R) = min{n|R — M, (C) for some commutative ring C'}

(see [22, Chapter 13]). If R is a prime PI ring with center Z, then the PI-degree of R
equals the square root of the rank of R over Z.

o Artin-Schelter condition. Recall that an algebra A is said to be augmented if there is
an algebra morphism e : A — k. Let (A, €) be an augmented noetherian algebra. Then
A is Artin-Schelter Gorenstein (AS-Gorenstein for short) if

(AS1) injdimaA =d < oo,
(AS2) dimy Ext% (4k, 4A4) =1 and dimy Ext’ (4k, 4A4) = 0 for all i # d,
(AS3) the right A-module versions of (AS1, AS2) hold.

The following result is the combination of [33, Theorem 0.1] and [33, Theorem 0.2
(1)], which shows that a large number of Hopf algebras are AS-Gorenstein.

Lemma 2.1. Fach affine noetherian PI Hopf algebra is AS-Gorenstein.

e Homological integral. The concept homological integral can be defined for an AS-
Gorenstein augmented algebra.

Definition 2.2. [12, Definition 1.3] Let (A,€) be a noetherian augmented algebra and
suppose that A is AS-Gorenstein of injective dimension d. Any non-zero element of the
1-dimensional A-bimodule Ext% (4k, 4A) is called a left homological integral of A. We
write fi‘ = Ext%(ak, 4A). Any non-zero element in Ext%.,(ka, A4) is called a right
homological integral of A. We write ITA = Ext‘i@(]k A, A4). By abusing the language we
also call fi‘ and f; the left and the right homological integrals of A, respectively.

2.2. Relative version

Assuming that a Hopf algebra H has a 1-dimensional representation = : H — Kk,
we give some results according to this m, most of them coming from [12, Section 2],
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by using slightly different notations with [12]. Throughout this subsection, we fix this
representation .

e Winding automorphisms. We write =L for the left winding automorphism of H
associated to m, namely

2l (a) = Zﬂ(al)ag fora € H.
Similarly we use = for the right winding automorphism of H associated to 7, that is,
Er(a) = Zam(az) fora € H.

Let GL and G7. be the subgroups of Auty as(H) generated by =% and Z7, respectively.
Define:

G = GL()Gr.
The following is some parts of [12, Proposition 2.1.].

Lemma 2.3. Let Hém, H{ . and Ho » be the subalgebra of invariants HGx ,HCE and HC~
respectively. Then we have

(1) HOJT = H(l),ﬂ' mHg,Tr'
(2) =lor _ arel

—re—gr T e

(3) ELoS=So (2

s

)~L. Therefore, S(H(lm) C Hg . and S(Hg ) € HY .

o m-order and m-minor. With the same notions as above, the m-order (denoted as
ord(m)) of H is defined by the order of the group G :

ord(rm) := |GL]. (2.1)
Lemma 2.4. We always have |GL| = |G™|.
Proof. This a direct consequence of Lemma 2.3 (3). O

By this lemma, the above definition is independent of the choice of G*. or GT.
The 7-minor (denoted by min(r)) of H is defined by

min(7) := |GL/GL NG| (2.2)

Remark 2.5. In particular, if the 1-dimensional representation is given by the (right
module structure) of left integrals, then the corresponding representation order and
representation minor are called integral order and integral minor, denoted as

io(H) and im(H),
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respectively. Both the integral order and integral minor are used widely in [12,32]. There-
fore, we can consider a general 1-dimensional representation instead of homological
integrals. Note that the notations io(H) and im(H) will be used freely in this paper
too.

e Invariant components and strongly graded property. Let H be a prime Hopf alge-
bra of GK-dimension one. By a fundamental results of Small, Stafford and Warfield
[27], a semiprime affine algebra of GK-dimension one is a finite module over its center.
Therefore, it is PI and has finite PI-order. Now we assume that H satisfies the (Hypl)
(see Subsection 1.1) and thereby |G| = Pl-deg(H) is finite, say n. Moreover, since GL
is a cyclic group, its character ' group Gl = Homy_ a1g(]kG ,k) is isomorphic to itself.
Similarly, the character group GT of G7 is isomorphic to G7.

Fix a primitive nth root ¢ of 1 in k, and define y € Gl and n € GT by setting

x(EL) =¢ and 7n(EL) = (.

Thus Gl = {x’ |O <
Y]

<n—1}andéi:{nj|0<j<n—1}.
For each 0 < n

i
<n-—1,let
Hj . :={a € H|E(a) = X'(E3)a} and H] . :={a € H|Z}(a) =1 (E})a}.

The following lemma is [12, Theorem 2.5 (b)] (Note that for the part (b) of [12
Theorem 2.5] we don’t need the condition about regularity).

Lemma 2.6.

(1) H=6 e HY . is strongly Gl -graded.
(2) H= @mec; HY . is strongly G;—gmded.

Definition 2.7. The subalgebra H(lL7T (resp. Hy ) is called the left (resp. right) invariant
component of H with respect to .

Therefore, (Hyp2) just says that both Hf . and Hf . are domains. In fact, these two
algebras are closely related.

Lemma 2.8. Let H be a prime Hopf algebra of GK-dimension one. Then

(1) As algebras, we have Hj , = (H{ )P
(2) If moreover either Hém or Hg . is a domain, then both Hém and Hy . are commu-
tative domains and thus H(l),7r EH) -

Proof. By Lemma 2.3. (3), we have S(H(l)m) C Hj, and S(Hj ) C H(l)m. Now (1) is
proved.
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For (2), it is harmless to assume that H[lm is a domain. By H is of GK-dimension one

and H = @Xiea
too. Now it is well-known that a domain with GK-dimension one must be commutative

Hf’7T is strongly graded (see Lemma 2.6), H(l),w has GK-dimension one

(see for example [15, Lemma 4.5]). Therefore H(l)ﬂr is commutative and Héy,r = Hj . by
(1). So Hj . is a commutative domain too. O

==

By Lemma 2.3. (2), ELE7 = 272!, and thus H/  is stable under the action of G7.

Consequently, the G - and é\;—gradings on H are compatible in the sense that

0<j<n—1 0<i<n—1

for all ¢,j. Then H is a bigraded algebra:

H= & Hijnx (2.3)

0<i,j<n—1

where H;j » = Hf,w N H .. And we write Ho r := Hoo,» for convenience.

For later use, we collect some more properties about H which were proved in [12]
without the requirement about regularity. For details, see [12, Proposition 2.1 (c¢)(e)]
and [12, Lemma 6.3].

Lemma 2.9. Let H be a prime Hopf algebra of GK-dimensional one satisfying (Hypl).
Then

(1) A(H,)C H! ,®H and A(H} ) € H®HY ; thus HY . is a right coideal of H and
H; . is a left coideal of H for all 0 <i,j <n—1.

(2) Zr oS =So(EL)L, where (EL)"1 =2 .
(3) S(H},)=H"; . and S(Hijx) = H_j_inr.
(4) Ifi#j, then e(H;j ) = 0.
(5) Ifi =j, then e(Hy; ) # 0.
Remark 2.10. (1) In the regular case, that is, H is a prime regular Hopf algebra of
GK-dimension one, the set of all right homological integrals forms a 1-dimensional rep-
resentation whose order is equal to the PI.deg(H ). In such case, the invariant components
are called classical components by [12, Section 2].

(2) In the following of this paper, we will omit the notation 7= when the representation
is clear from context. Therefore, say, sometimes we just write Hy r as Hy when there is

no confusion about which representation we are considering.

The following result is the combination of some parts of [12, Proposition 5.1, Corollary
5.1], which is very useful for us.
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Lemma 2.11. Let A be a k-algebra and let G be a finite abelian group of order n acting
faithfully on A. So A is G-graded, A = ®x€@ A,. Assume that 1) this grading is strong
and 2) the invariant component Aq is a commutative domain. Then we have

(a) Ewvery non-zero homogeneous element is a regular element of A and PI.deg(A) < n.

(b) There is an action > of G on Ay with the following property: For any x € G and
a € Ao,

(x> a)uy = uya (2.4)

where u, is an arbitrary nonzero element belonging to A,.
(c) Pl.deg(A) = n if and only if the action > is faithful.
(d) If Pl.deg(A) = n, then A is prime.
(e) Let K < G be a subgroup G and let B be the subalgebra &b
then B is prime with PI-degree |K]|.

vex Ax- If PLdeg(A) = n,

2.3. Known examples

The following examples appeared in [12,32] already and we recall them for complete-
ness.
o Connected algebraic groups of dimension one. It is well-known that there are precisely
two connected algebraic groups of dimension one (see, say [18, Theorem 20.5]) over
an algebraically closed field k. Therefore, there are precisely two commutative k-affine
domains of GK-dimension one which admit a structure of Hopf algebra, namely H; =
klz] and Hy = k[z*!]. For H;, z is a primitive element, and for Ho, = is a group-like
element. Commutativity and cocommutativity imply that io(H;) = im(H;) = 1 for
i=1,2.
o Infinite dihedral group algebra. Let D denote the infinite dihedral group (g,z|g?> =
1,grg = x~1). Both g and x are group-like elements in the group algebra kD. By
cocommutativity, im(kD) = 1. Using [21, Lemma 2.6], one sees that as a right H-module,
f]lkD =~ kD /(x — 1,9 + 1). This implies io(kD) = 2.
o Infinite dimensional Taft algebras. Let n and t be integers withn > 1and 0 <t < n—1.
Fix a primitive nth root £ of 1. Let T' = T'(n, t,£) be the algebra generated by x and g
subject to the relations

g"=1 and xzg=~Egx.
Then T'(n,t,£) is a Hopf algebra with coalgebra structure given by
Alg)=g@g, elg)=1 and Ax)=z@g" +1@z, (z) =0,

and with
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S(g) =g ' and S(z)=-xg"

As computed in [12, Subsection 3.3], we have flT ~ T/(z,g — &), and the corre-
sponding homomorphism 7 yields left and right winding automorphisms

L jr— e, . Jr— Tt
N and = :

(1]

g— <&y, g— &g

So that GL = (ZL) and G” = (Z7) have order n. If ged(n,t) = 1, then GL. N G7 = {1}
and [12, Proposition 3.3] implies that there exists a primitive nth root n of 1 such that
T(n,t,&) = T(n,1,n) as Hopf algebras. If ged(n,t) # 1, let m := n/ged(n,t), then
GL. N GT = ((EL)™). Thus we have io(T(n,t,£)) = n and im(T'(n,t,£)) = m for any t.
In particular, im(7T'(n,0,&)) = 1, im(T'(n, 1,£)) = n and im(T'(n,t,£)) = m = n/t when
t|n.

e Generalized Liu algebras (see [12, Subsection 3.4] for the terminology). Let n and w
be positive integers. The generalized Liu algebra, denoted by B(n,w,~), is generated by
xz*! g and y, subject to the relations

-1

Tr = (E71

x=1, xzg=gx, xy=yxz,

Yyg =19y,
yr=1—a¥=1-g"

where v is a primitive nth root of 1. The comultiplication, counit and antipode of
B(n,w,~y) are given by

Alz)=r@2, Alg)=g9g®g, AlyY)=y®g+1y,
6((5) = 17 E(g) = 17 E(y) = 07

and
Sx)y=a"", Slg)=g" Sk =-yg "

Let B := B(n,w,~). Using [21, Lemma 2.6], we get f; = B/{y,x —1,g —~y~1). The
corresponding homomorphism 7 yields left and right winding automorphisms

T, T,

[1]

=l _ _
Eriqgr—tg, and El:qgr——71g,
y—y, y— vy

Clearly these automorphisms have order n and GL NG” = {1}, whence io(B) = im(B) =
n.
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e The Hopf algebras D(m,d,y). Let m, d be two natural numbers satisfying that (1+m)d
is even and ~ a primitive mth root of 1. Define

wi=md, §:=./7.

As an algebra, D = D(m,d,~) is generated by %', g1y, ug, u1, -+ , um_1, subject to
the following relations

et =gl =1, gg'=glg=1, zg=gx,
Ty = yz, Y9 = Y9y y"r=1-a"=1-g",
Tu; =z, yu; = dpuis1 = Exuy,  wig =yl gu,,
(—1)_jf_j7j<j2+l) i by Gm—2—jy" g, t+j<m—2,
wiuj = § (—1)7IE Iy F Ly eyt itj=m-—1,

(1) iy Lp= g, g 1y gyt Mg, otherwise,

where ¢; =1 -~y "tz and 0 < 4,5 <m — 1.
The coproduct A, the counit € and the antipode S of D(m,d, ) are given by

Alr) =z, Alg)=9g®g, Aly) =y®g9+11y,
m—1
Alug) = Z V=D @ a I gIu,

j=0
e(r) = e(g) = e(uo) = 1, e(y) = e(us) = 0;
S)y=a"", S(g=g" Sy =-yg ",

S(Ul) _ (_1)1'571'77@xigpr%(lfm)dgmfiflui’

for0<i<m-—1and 1< s<m— 1. Direct computation shows that fll) =D/(y,x —

L,g— v Yuo— & up,ug, -+ ,Um_1), and the left and right winding automorphisms
are:
T— T, T— T,
-1
—Y, —_ — .
Eir Y y_l and E7 : Y 7_11/
g— 9 g—7 9,
u; — & My, u; — £~ Dy,

From these, we know that io(D) = 2m and im(D) = m.

Remark 2.12. In [32], the authors used the notation D(m,d,§) rather than D(m,d,~)
used here. We will see that the notation D(m,d,~) is more convenient for us.
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Up to an isomorphism of Hopf algebras, all of above examples form a complete list of
prime regular Hopf algebras of GK-dimension one (see [32, Theorem 8.3.]).

Lemma 2.13. Let H be a prime regular Hopf algebra of GK-dimension one, then it is
isomorphic to one of Hopf algebras listed above.

2.4. Yetter-Drinfeld modules

This subsection is just a preparation for the question (1.1) and will not be used in the
proof of our main result. Let H be an arbitrary Hopf algebra. By definition, a left-left
Yetter-Drinfeld module V over H is a left H-module and a left H-comodule such that

5(h . ’U) = hlv(_l)S(hg) ® ho - V(0)

for h € H,v € V. The category of left-left Yetter-Drinfeld modules over H is denoted by
HYD. It is a braided tensor category. In particular, when H = kG a group algebra, we
denote this category by gy’D.

We briefly summarize results from [25], see also [23]. Let A be a Hopf algebra provided
with Hopf algebra maps m: A — H..: H — A, such that 7o = Idy. Let R = A®H =
{a € A|(€ ®m)A(a) = a®1}. Then R is a braided Hopf algebra in YD through

h-r:= thS(hg),
r(—1) @ 1) = m(r1) @2,
rrerti=90r) @ry
for r € R, h € H, A(r) = r! ® r? denote the coproduct of r € R in the category YD
and ¥(a) := a1um(S(az)) for a € A.
Conversely, let R be a Hopf algebra in £YD. A construction discovered by Radford,
and interpreted in terms of braided tensor categories by Majid, produces a Hopf algebra

R#H through: As a vector space R#H = R® H; if r##h :=r ® h, r € R,h € H, the
multiplication and coproduct are given by

(r#th)(s#f) = r(hy - s)#ha f,
A(r#th) = r'#(r%) _1yh1 ® (r7) o) #ha.

The resulted Hopf algebra R#H is called the Radford’s biproduct or Majid’s bosoniza-
tion of R and H.

Now go back to the situation of 7: A — H.:: H — A such that mo = Idg. In such
case we have A & R#H and

r QT = 7"1(7"2)(—1) ® (Tz)(o) (2.5)

for r € R.
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With these preparations, we can set the question of (1.1) for smooth curves at first.

Corollary 2.14. The affine line and k[x*!] are the only irreducible smooth curves which
can be realized as Hopf algebras in %Z}JD for some n.

Proof. Let C' be an irreducible smooth curve which can be realized as a Hopf algebra
in %:yD for some n. There is no harm to assume that the action of Z,, on this curve
(more precisely, on the coordinate algebra k[C|] of this curve) is faithful. Therefore, the
Radford’s biproduct

A = K[C]#KZ,,

constructed above is a Hopf algebra of GK-dimension one. We claim that it is prime and
regular. Primeness is gotten from Lemma 2.11: Clearly

From this, A is a strongly Zn = {x|x™ = 1)-graded algebra through x(ag’) = & for
any a € k[C] and 0 < ¢ < n — 1. Therefore, the conditions 1) and 2) of Lemma 2.11
are fulfilled. By part (b) of Lemma 2.11, the action of Z; is just the adjoint action of
Z,, = (glg"™ = 1) on k[C] which by definition is faithful. Therefore, PL.deg(A) = n by
part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that A is prime
now. Regularity is clear since the smoothness of C' implies the regularity of k[C]| and
thus regularity of A. In one word, A is a prime regular Hopf algebra of GK-dimension
one.

Therefore, the result is followed from above classification stated in Lemma 2.13 by
checking it one by one. O

3. Fractions of a number

As a necessary ingredient to define new examples, we give the definition of a fraction of
a natural number firstly in this section. Then we use it to “fracture” the Taft algebra and
thus we get the fraction version of a Taft algebra. At last, some combinatorial identities
are collected for the future analysis.

3.1. Fraction

Let m be a natural number and mqy,mso,...,my be 6 natural numbers. For each
m; (1 < i< 0), we have many natural numbers a such that m|am;. Among of them, we
take the smallest one and denote it by e;, that is, e; is the smallest natural number such
that m|e;m;. Define
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A:={a=(a1,...,a9)|0<a; <e; 1<i<b}.
With these notations, we give the definition of a fraction as follows.

Definition 3.1. We call my, ..., my is a fraction of m of length 6 if the following conditions
are satisfied:

(1) For each 1 <i <0, e; is coprime to my, i.e., (e;,m;) = 1;
(2) The production of e; is equal to m, that is, m = ejes - - - ep;
(3) For any two elements a,b € A, we have Zle a;m; Z 2?21 bim; (modm) if a # b.

The set of all fractions of m of length 6 is denoted by Fyp(m) and let F(m) :=
UQFG(m)’ F = UmeN ‘F(m)

Remark 3.2. (1) Conditions (2) and (3) in this definition is equivalent to say that up
to modulo m, each number 0 < 57 < m — 1 can be represented uniquely as a linear
combination of mq, ..., my with coefficients in A. That is, under basis m1,...,mg, j has
a coordinate and we denote this coordinate by (ji,...,Js), i.e.,

J = jima + jama + ... + jomeg (mod m).

Moreover, for any j € Z it has a unique remainder j in Z,, and thus we can define the
coordinate for any integer accordingly, that is, j; := j, for 1 < i < 6. In the following of
this paper, this expression will be used freely.

(2) For each 1 <4 < 6, we call e; the exponent of m; with respect to m. Intuitively, it
seems more natural to call these exponents ey, ..., ey a fraction of m due to the condition
(2). However, there are as least two reasons forbidding us to do it. The first one is that
we will meet m;’s rather than e;’s in the following analysis. The second reason is that
the exponents can not determine m;’s uniquely. As an example, let m = 6, we see that
both {2,3} and {4, 3} have the same set of exponents.

(3) It is not hard to see that # =1 if and only if (m, m1) = 1.
(4) Usually, we use the notation such as m,m’--- to denote a fraction of m, that is,
m,m' € F(m).

3.2. Fraction version of a Taft algebra

Now let mq,...,my be a fraction of m, mg := (my,...,my) greatest common divisor
of my,...,my and fix a primitive mth root of unity £&. We want to define a Hopf algebra
T(mq,...,mp, &) as follows. As an algebra, it is generated by ¢, Ym,, - - -, Ym, and subject

to the following relations:

gm =1, yfﬁl =0, Ym;Ym; = Ym;Ym;s Ym; 9 = fmgymw (31)
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for 1 <i,7 < 6. The coproduct A, the counit € and the antipode S of T'(mq,...,ma,§)
are given by

Ag) =909, AWYm,) =1 Ym, + Ym, ® g™,
5(9) =1, 5(ymi) =0,
S@)=g"" SWm:)=—Ym:g~

my

for1 <i<@.

Since (mg,m) = 1, if we take & := ™ in the above definition then it is not hard to
see that & is still a primitive mth root of unity. So in (3.1) we can substitute the relation
Ym; 9 =& "o gYm,; Dy a more convenient version

Ymi9 =" GYm,, 100,

Lemma 3.3. The algebra T(my,...,mg,€) defined above is an m?-dimensional Hopf al-
gebra.

Proof. This is clear. We just point out that: The condition (1) of Definition 3.1 ensures
that each yy: is a primitive element and the condition (2) of Definition 3.1 ensures that
YmiYm; — Ym;Ym, is a skew-primitive element for all 1 <4, <60. O

Proposition 3.4. Let m’ be another natural number and m’ = {m}, ..., mj.} be a fraction
of m’. Then as Hopf algebras, T(mq,...,mg,§) 2 T(m},...,mp,&") if and only if m =
m/, 8 = 0" and there exists xqg € N which is relatively prime to m such that up to an
order of my,...,mg we have m;, = m;xo (mod m) and & = &' *°.

Proof. The sufficiency of the proposition is clear. We only prove the necessity. Assume
that we have an isomorphism of Hopf algebras

o: T(my,...,mg,§) =, T(mi,...,my,¢&).

By this isomorphism, they have the same dimension and thus m = m’ according to
Lemma 3.3. Comparing the number of nontrivial skew primitive elements, we know that
¢ = 0'. Up to an order of my,...,my, there is no harm to assume that ¢(ym,) = Ym/
for 1 < i < 0. (More precisely, we should take p(ym,;) = ym; + c(1 — (g')™) at first.
But through the relation y,,,g = £™ gym, we have ¢ = 0.) Since ¢(g) is a group-like and
generates all group-likes, ¢(g) = ¢’ *® for some xg € N and (xg, m) = 1. Due to

A(P(Ym,)) = AWYm;) =1 @ Yy + Yy @ (g')™
which equals to

(P © @) (A(Ym,) = 1O Yms + ymy @ (g)™7.
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Therefore, m, = m;zo (mod m). By this, we can assume that (m},...,mj) =

(m1,...,mg)xg, that is, my = mozo. S0 (Ym,9) = @(f%gymi) implies that

A
my

! —}Fx i
€ 0 O(g/)zoym; :é'mo (g/)zoym{i

33

which implies that §m_o = £'x“m_é for all 1 <1 < 6. Since by definition (%, cee %ﬁ) =1,
there exist ¢y, ..., cy such that Zle c; Z; = 1. Therefore,

5252?:1@% 25/9602?:1%2—3 :glwo. O
3.3. Some combinatorial identities

Firstly, we will rewrite some combinatorial identities appeared in [32, Section 3] in
a suitable form for our purpose. Secondly, we prove some more identities which are
not included in [32, Section 3]. Let m,d be two natural numbers. As before, let m =
{m,...,mg} € F(m) be a fraction of m and e; the exponent of m; with respect to m
for 1 <1i < 6. Let v be a primitive mth root of unity. By definition, we know that

is a primitive e;th root of unity. For any j € Z, the polynomial ¢,,, ; is defined through
Gy =1 — ,yfmi(mi+j)xmid —1_ ,yfmf(1+ji)l.mid —1_ ,yi(l+ji)xmid (3.2)

for any 1 < ¢ < 6 and the second equality is due to the (1) and (2) of the definition of
the fraction. In the following of this subsection, we fix an 1 <1 < 6.

Take j to be an arbitrary integer, define j to be the unique element in {0,1,...,e;—1}
satisfying j = j (mode;). Then we have

¢mi J = (b’mz ,5

since ;' = 1.
With this observation, we can use

185 t[ms
to denote the resulting polynomial by omitting all items from ¢, sm, t0 ¢y, 7, in

¢mi,0¢mi,mi T (bmi,(eifl)mﬂ

that is
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¢mi,(f+1)mi T ¢mi,(ei—1)mi¢mi70 T ¢mi,(§—1)mi7 if ¢ =8
Js,tlm, = 4 1, ifs=7+1 (3.3)
oy (F41)ms = Py (5-1)ma» ifs>t+2

For example, ]_]—7 _]-[ml - ]ei - ]-7 €; — ]'[ml = ¢mi,0¢mi,m,; e ¢mi,(ei—2)mi'

Remark 3.5. For the case § = t + 1, it seems that it is more natural to define s, [,
to be G, 00m;,m; = Pm,,(es—1)m,» Which equals to 1 — z¢™ by Lemma 3.6 (2). In
practice, it is more convenient for us to define it just to be 1 more or less due to the fact
y& =1—a%mi (see the definition of D(m,d,~) in Subsection 4.4).

In practice, in particular to formulate the multiplication of our new examples of Hopf
algebras, the next notation is also useful for us, which can be considered as the resulting
polynomial (except the case § =t 4 1) by preserving all items from ¢, sm, t0 Gpn, 7m,
N G, 0Pmsm; - ¢mi,(ei—1)m

¢mi;§mi ¢mi,('§+1)mi T (bm,-,fmia ift>s
[$; tlm, == {1, fs=1+1 (3.4)
d)miqgmi o ¢mi,(ei—1)7rL,-¢mi,0 ce ¢mi7{mi’ if 5> t+2.
So, by definition, we have
[i7m727j]mi:]71*j7i71[m¢- (35)

Due to the equality (3.5), we just study equations with omitting items. The following
formulas already were proved or already implicated in [32, Section 3] in different forms.
So we just state them in our forms without proofs.

Lemma 3.6. With notions defined as above, we have

(1 Z ] —Lj—1fm, =e.

(2> ¢m”0¢m"m’ ’ ¢mig (ei—1)ym; = 11—z

(3) X5y o 1= 1,j = 1m, = egzlei—Dmid,
(4)

()

e,mld

4) Y 15— 2,5 = 1m, =0.

5) Fix k such that 1 <k <e; —1 andlet1 <i <k. Then

67;71

> %=1 =k j—1m, =0.
7=0

(6) Let 0<t<j+1<e;—-1,0<a<e—1—j—1. Then

(—1)ott (odtottdl) yy(jp1—t) (€ — 1 — ¢ e —1+t—j—1
i e . a+t .
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(j+l> <m—1—j—l>
t Vi a Vi

We still need two more observations which were not included in [32, Section 3].

Lemma 3.7. With notations as above. Then

(1) For any e;th root of unity &, we have

eifl

j=0

(2) Let & be an e;th root of unity. Then ngOI €15 —2,5—1[m, = 0 if and only if
="

Proof. (1) Otherwise, we assume that Zj;ol €715 — 1,5 — 1[m, = 0. From this, we know
that £ # 1 by (3) of Lemma 3.6. By the definition of |j — 1,j — 1[,5,,, we know that

e;—1 e;—1

Z&’J—lj—l Z&””“ i = 1,5 = 1m,
= > G —rfa™N ]~ 1,5~ 1,

= Z gj(bml,o(brnl,mb : '(z)mi,(eifl)mi

=0

e;—1

— Z é—] LM d)

=]

)

where the third equality is due to (2) of Lemma 3. 6 and the last equality follows from
E#1 being an e;th root of unity. Therefore, Y7 o Eylamid j — 1,5 = 1[, = 0 and

thus Z ( 7€) )5 — 1,5 — 1[m, = 0. Repeat above process, we know that for any &

e;—1

ST (e 1= 1.5 = m, =0.

=0

Since £ is an e;th root of unity while ~; is a primitive e;th root of unity, there exists a
k such that 4¥¢ = 1. But in this case Zjl:_ol('yff)J li—1,7—1[m, = €; # 0. That is a
contradiction.

(2) “«<” This is just the (4) of Lemma 3.6.
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“=" Before prove this part, we recall a formula (see [19, Proposition IV.2.7]) at first:

= n —-1)
(a—2)(a—g2)-(a—q"t2) = Z<—1>Z(Z) SF e,

=0

where ¢ is a nonzero element in k and any a € k. From this,

17 =25 = Um, = (1= lam™ ) (1= 4 P2amd) o (1= 2med)
e;—2 1(1-1)

_ (e —2 3 (L midyL

-y (% )v S

! Vi

So from this, we have

€125 1l = 2 (- 1)1(2 ) - ol
l Yi

=0

Therefore assumption implies that

ei—l

Yy =0
=0

for all 0 <1 < e; — 2. So we see that the only possibility is £ = ;. O
4. More examples

In this section, we will introduce the fraction versions of infinite dimensional Taft
algebras, generalized Liu algebras and the Hopf algebras D(m,d, ), respectively. Some
properties of them are listed. Most of these Hopf algebras, as far as we know, are new.

4.1. Fraction of infinite dimensional Taft algebra T'(m,t,§)

(See also [6] for similar constructions.) Let m,t be two natural numbers and set
n = mt. Let m = {m1,...,my} be a fraction of m and mg = ged(my,...,my). So it is
not hard to see that (m,mg) = 1. Now fix a primitive nth root of unity £ satisfying

£E1TG = £ — ... = £%0mg

Note that such ¢ does not always exist (for example, taking m = 6, ¢t = 2 and {4, 3} be
a fraction of 6). If it exists, then we can define a Hopf algebra T'(m,t,£) as follows. As
an algebra, it is generated by g, ym,, - - -, Ym, and subject to the following relations:
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9" =1 Y, =Y YmiYmy = YmyYmes Ymid = E70 GYm,, (4.1)
for 1 < 4,5 < 6. The coproduct A, the counit ¢ and the antipode S of T(m,t,£) are
given by

Alg)=9®9, Aym,) =19 Ym, + ym, ® g™,
6(9) = 17 5(ynu) - Oa

S(g) = g_lv S(yml) = —Ym;9

—t’rni

for 1 <i<4.

Proposition 4.1. Let the k-algebra T = T({m1,...,mg},t,&) be the algebra defined as
above. Then

(1) The algebra T is a Hopf algebra of GK-dimension one, with center klygi!].
(2) The algebra T is prime and Pl-deg (T) = n.
(3) The algebra T has a 1-dimensional representation whose order is n.

Proof. (1) Since the proof of T(m,t,¢) being a Hopf algebra is routine, we leave it to

the readers. (In fact, since for each 1 < i < 6 the subalgebra generated by g, y,, is just a

generalized infinite dimensional Taft algebra, one can reduce the proof to just considering
€; —

the mixed relation Y, Ym; = Ym,;Ym, and y;: = yf,{j for 1 < 4,5 < 6.) Through direct

mi

computations, one can see that the subalgebra k[yc!] = k[z] is the center of T'(m,t,£)

elt

c1']. This means the GK-dimension of T'(m, t,§) is one.

and T is finite module over k[y
(2) We want to apply Lemma 2.11 to prove this result and we use similar argument
developed in the proof of Corollary 2.14. At first, let Tj be the subalgebra generated by

Yma»- -+ Ymy- Then clearly
n—1
T = @Togz.
i=0

From this, T is a strongly Z, = (x|x" = 1)-graded algebra through y(ag’) = &' for

any a € Ty and 0 < ¢ < n — 1. Therefore, the conditions 1) and 2) of Lemma 2.11

are satisfied. By part (b) of Lemma 2.11, the action of i; is just the adjoint action of

Zn, = {g|g"™ = 1) on Ty which by definition is faithful. Therefore, PI.deg(T) = n by part

(c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that 7" is prime now.
(3) By the definition of T'(m,t,£), it has a 1-dimensional representation

m: T(m,t,&) = K, ym, —0, g & (1<i<0).

It’s order is clear n. O
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Remark 4.2. We call the representation in Proposition 4.1 (3) a PI-degree representation
of T(m,t,£). Since ord(n) = n which is same as the PI-degree of T(m,t,£), the Hopf
algebra T'(m, t, ) satisfies the (Hypl). At the same time, let {2,5} be a fraction of 10
and consider the example T' = T'({2,5}, 3,&) where ¢ is a primitive 30th root of unity.
Applying [21, Lemma 2.6], we find that the right module structure of the left homological
integrals is given by

l
| =1/ 1 <i<og- g0,

Therefore io(T") = 10 which does not equal the PI-degree of T', which is 30. So, T'(m, t, )
only satisfies (Hypl) rather than (Hypl)’, that is, io(T") # PL.deg(T) in general.

The PI-degree representation of T = T'(m, t, ) given in Proposition 4.1 (3) yields the
corresponding left and right winding automorphisms

.:l . {ym, — ymw

r o, {ymL }—> gmitymi)
g+— &g,

and =7
g9 +— &g,

for 1 <i<4.
Using above expression of =L and =7 it is not difficult to find that

T = KYmys - Umelg’ and T =K[g™™  ypmys s g " Yy g’ (4.2)
for all 0 < ,j <n — 1. Thus we have
Too = klyst, ] and  Tyaqje = Kklyid Jy;9' (4.3)

forall 0 <i<n—1,0<j<m—1wherey; =yl -- -yl (see (1) of Remark 3.2).
Moreover, we can see that

forall 0 <i,j<n-—1.
As a concluding remark of this subsection, we want to differentiate these fractions of
infinite dimensional Taft algebras.

Proposition 4.3. Keep above notations. Let m’ = {m/,...,mp,} be a fraction of another
integer m’. Then T (m,t,£) ZT(m/,t',&') if and only if m =m', 0 =0, t =’ and there
exists g € N which is relatively prime to n = mt such that up to an order of my,...,mg
we have m; = m;zo (mod n) and § = &' 0.
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Proof. We denote the corresponding generators and numbers of T'(m/,t',£’) by adding
the symbol ’ to that of T'(m,t,&). The sufficiency is clear (for example, just take ¢ :
T(m,t,&) — T(m/,t',&') through g — ¢'*°, ypm, +— ¥y, for 1 < i < 6. Then one can
see that ¢ gives the desired isomorphism). We next prové the necessity. Assume that we
have an isomorphism of Hopf algebras

¢ T(m,t,€) = T(m',t',€").

By this isomorphism, they have the same number of group-like elements which implies
that n = mt = m't’ = n’ and p(g) = (¢')* for some zy € N satisfying zo and n
are coprime. Comparing the number of nontrivial skew primitive elements, we know
that # = 6'. Up to an order of my,...,my, there is no harm to assume that ¢©(ym,) =
Ym; for 1 < i < 0. (Just as the case of a fraction of a Taft algebra, one should take
O(Ym:) = Ym;, +ci(l — (¢/)™) at the beginning for some ¢; € k. Then through the
relation Y, g = §%0 9Ym, we can find that ¢; = 0.) Since both y5i and y:;;, are primitive,
e; = €}. Therefore m = e;---eg = €} ---ej = m’ and thus ¢ = t’. Then one can repeat
the proof of Proposition 3.4 and get that m} = m;z¢ (mod n) and £ =¢£'*°. O

4.2. T(m,t,&) vs the Brown-Goodearl-Zhang’s example

In the paper of Goodearl and Zhang [15, Section 2], they found a new class of Hopf
domains of GK-dimension two. From these Hopf domains, one can get some Hopf algebras
of GK-dimension one through quotient method. In fact, through this way Brown and
Zhang [12, Example 7.3] got the first example of a prime Hopf algebra of GK-dimension
one which is not regular. Let’s recall their construction at first.

Example 4.4 (Brown-Goodearl-Zhang’s example). Let n, po, p1, .. ., ps be positive integers
and g € k* with the following properties:

(a) s>2and 1 <py <pz <--- < pg;
(b) po|n and pg,p1,...,Dps are pairwise relatively prime;
(¢c) g is a primitive {th root of unity, where I = (n/po)p1ip2 - - ps-

Set m; = p;* Hj’:1 pj for i = 1,...,s. Let A be the subalgebra of k[y| generated by
y; == y™ for i =1,...,s. The k-algebra automorphism of k[y] sending y — qy restricts
to an algebra automorphism of A, which is denoted by o. There is a unique Hopf algebra
structure on the Laurent polynomial ring B = A[z™!; o] such that x is group-like and
the y; are skew primitive, with

Aly)) =1@y +y; @ ™"

for i = 1,...,s. It is a PI Hopf domain of GK-dimension two, and is denoted by
B(n’pf))plv -3 Ds, Q) Now let
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B(nvp07p17"'1pqu) = B(n1p07p17'~ wpqu)/(xl - 1)

Then Brown-Zhang proved that the quotient Hopf algebra B(n,po,p1,-..,ps,q) is a
prime Hopf algebra of GK-dimension one.

There is a close relationship between the Brown-Goodearl-Zhang’s example and the
fractions of infinite dimensional Taft algebras.

Proposition 4.5. The Hopf algebra B(n,po,p1,...,ps,q) is a fraction of an infinite di-
mensional Taft algebra, that is, B(n,po,p1,...,0s,q) = T(m,t,£) for somem € F,t € N

and & a root of unity.

Proof. By definition of B = B(n,po,p1,...,ps,q), we know that y; = y™ (we also use
the same notation as B(n,po,p1,---,Ds,¢)) and thus the following relation is satisfied

pi __ ,Pj
yil_yj

for all 1 < 4,5 < s. At the same time, in B the group like element x satisfying the
following relations

ot =1, yiz=q™ay
for ¢ = 1,...,s. By these observations, define

m, = pom;, 1<i<s.

Then it is tedious to show that mf,m},...,m/ is a fraction of m := []]_, p;. Moreover,
let t := n/pg. Now we see that the Hopf algebra T({m}, m},...,m.},t,q) is generated
by Ymss -+ Ym:, g and satisfies the following relations

=1y = yf’,{;, YmiYm!, = Y Ymls Ymig = 47 9Ym; = 4" Y-

From this, there is an algebra epimorphism

f: T({mll7m/277mls}7n/p07Q) %E(n7p0ap17"‘ap57q)v ym; =Y, g

which is clear a Hopf epimorphism. Since both of them are prime of GK-dimension one,
f must be an isomorphism. O

But not all fractions of infinite dimensional Taft algebras belong to the class of Brown-
Goodearl-Zhang’s examples.
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Example 4.6. Let 5,12 be a fraction of 30 and £ a primitive 30th root of unity. Then the
corresponding T'({12,5}, 1,€) is generated by s, y12, g satisfying

Yoo = Y5, Yi2ys = Ystrz, Y129 = Pgyi2, ysg =& gys, ¢°0 = 1.

If there is an isomorphism between this Hopf algebra and a Brown-Goodearl-Zhang’s
example

o

f: T({12,5},1,&) — B(n,p0,P1,---Ps,q),

then clearly s = 2 (by the number of non-trivial skew primitive elements) and [ =
(n/po)p1p2 = 30 (due to they have the same group of group-likes). Therefore, f(g) = z*
with (¢,30) = 1. By

Alys) =1Qys + 9" @ys,  Alyiz) =1@y12 + g @ y12,

we know that np; = 5¢, nps = 12t (mod 30). Since py, p2 are factors of 30 and ¢ is coprime
to 30, p1 = 5 and thus n = ¢ (mod 30), po = 12. This contradicts to [ = (n/pg)p1p2 = 30.

This example also shows that not every fraction version of infinite dimensional Taft
algebra can be realized as a quotient of a Hopf domain of GK-dimension two.

4.8. Fraction of generalized Liu algebra B(m,w, )

(See also [2]). Let m,w be positive integers and my, ..., my a fraction of m. A fraction
of a generalized Liu algebra, denoted by B(m,w,vy) = B({m1,...,mg},w,?), is generated
by 21 g and Y, , - .., Ym,, subject to the relations

v t=z"te =1, z9=g97, TYm, = Ym,7,

Ym;9 = ’Ymigymia Ym;Ym; = Ym;Ym; (44)

e;m,
W~ m

Yo =1—2%"m, g

— w
=X 5

where v is a primitive mth root of 1 and 1 <4,j < 6. The comultiplication, counit and
antipode of B({my,...,mp},w,~y) are given by

Alz)=z@z, Al =9®9, AlYm,) =Ym, @9™ + 1 Ym,,
e(x)=1, €eg)=1, e(ym,) =0,

and
Sy=2"" S)=9" SWm)=—Ym9g ™,

for 1 <i<4.
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Proposition 4.7. Let the k-algebra B = B({m1,...,mp},w,~) be defined as above. Then

(1) The algebra B is a Hopf algebra of GK-dimension one, with center k[zT!].
(2) The algebra B is prime and Pl-deg (B) = m.

(3) The algebra B has a 1-dimensional representation whose order is m.

(4) io(B) =m.

Proof. (1) It is not hard to see that the center of B is k[z*!] and B is a free module
over k[z*!] with finite rank. Actually, through a direct computation one can find that
{y;g'10 < i,j < m — 1} is a basis of B over k[z*!]. Here recall that the notion y; for
arbitrary 1 < j < m — 1 is defined to be Hle y{nl if j =jimy+ ...+ jeme (mod m).
Therefore, it has GK-dimension one. Similar to the case of T'(m,t,£), we leave the task
to the readers to check that B is a Hopf algebra. Actually, the same as the case of Taft
algebras, since for each 1 < i < 6 the subalgebra generated by %1, g, y,,, is just a similar
kind of generalized Liu algebra which may be not prime now, one can reduce the proof
to just considering the mixed relation ym,Ym; = Ym,;ym,; and y;i. = ym for1 <i,j<86.

(2) As the case of T'(m,t, &), we want to apply Lemma 2.11 to prove that B is prime
with PI-degree m. At first, let By be the subalgebra generated by ¥, , - - ., Ym, and z*!
Clearly, By is a domain and

m—1
B= QB Bog'.
1=0

From this, B is a strongly L = {x|x™ = 1)-graded algebra through x(ag’) = ~* for
any a € By and 0 < i < m — 1. Therefore, the conditions 1) and 2) of Lemma 2.11
are fulfilled. By part (b) of Lemma 2.11, the action of Z; is just the adjoint action of
Zp = {gl¢g™ = 1) on By which by definition of a fraction of m is faithful. Therefore,
Pl.deg(B) = m by part (c¢) of Lemma 2.11. In addition, the part (d) of Lemma 2.11
implies that B is prime now.

(3) By the definition of B, it has a 1-dimensional representation

7: B=k 21, yn —0, g~y (1<i<6).

It’s order is clear m.
(4) Using [21, Lemma 2.6], we have the right module structure of the left integrals is

l
J:B/(w—l, Ymiy g — " Zi=1 ™1 <0 < 6).
B

Next, we want to show that Zle m, is coprime to m. Recall that in the definition of a
fraction (see Definition 3.1), we ask that (m;,e;) = 1 and m|m;m; for all 1 <, < 6.
Thus
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(ei,ej) =1, eilm;

for all 1 < i # j < 6. By (2) of Definition 3.1, m = €1 ---ep. On the contrary, assume
that (Zle m;, m) # 1. Then there exists 1 <4 < 6 and a prime factor p;|e; such that
pi|m and pi|2f:1 m;. Since e;|lm; for all j # 4, p;|m; for all j # i. Therefore, p;|m;
which is impossible since (m;,e;) = 1.

Therefore, we know that (Zle m;,m) = 1 and thus vy~ Ylami s still a primitive
mth root of unity which implies that io(B) =m. O

We also call the 1-dimensional representation stated in (3) of Proposition 4.7 a PI-
degree representation of B = B({m1,...,mg},w,). This PI-degree representation of B
yields the corresponding left and right winding automorphisms

T —x, T — T,
=l . =T . p
Er i Y = Yy, and EL 0 Cyp Yy

gr—n9, gr—n9,

for 1 <i<4.

Using above expression of =L and =7, it is not difficult to find that
Bl = K[zF Yy, Um,lg'  and B = K[z g7 ™ Yoo 9 " Ymo g’ (4.5)
for all 0 < 4,5 < m — 1. Thus we have
Boo = klz*'] and By = k[zFy;¢° (4.6)

for all 0 <4,j < m —1 where y; =yt ---ylt_ (see (1) of Remark 3.2) for j = jim; +
ot jomg.

At the end of this subsection, we also want to consider when two fractions of gener-
alized Liu algebras are the same. To do that, let m’ € N and {m/,...,my } a fraction
of m’. As before, we denote the corresponding generators and numbers of B(m/,w’, ")
by adding the symbol ' to that of B(m,w,?).

Proposition 4.8. As Hopf algebras, if B(m,w,vy) = B(m/,w',7'), then m = m’,0 = ¢
and up to an order of m;’s, wm; = w'm} for all 1 <i <6.

Proof. Since they have the same Pl-degrees, m = m’. We know the center of B(m,w, )
is k[zT1] and thus ¢(x) = 2’ or ¢(z) = (2/)7!. Also, as before, through comparing
the nontrivial skew primitive elements, # = 6’ and after a reordering the generators
we can assume that ¢(ym,) = y,,,. The relation y5: = 1 — 275" implies that e; =
e} and ¢(x) = 2’ since by assumf)tion all e;,m; and m are positive, from which one
has
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e;m; e:m;
W— =W
m m

Since m =m’ and e; = €}, wm; =w'm} forall1 <i<d. O

The conditions in above proposition is only a necessary condition for B(m,w,vy) =
B(m/,w',~"). To get a sufficient one, or an equivalent condition, we need the following
observation.

Lemma 4.9. Any fraction of generalized Liu algebra B(m,w, ) is isomorphic to a unique
B(m/,w',%') satisfying (mf,...,mp) = 1.

Proof. We prove the existence at first and then prove the uniqueness. Take an arbitrary
B(m,w,v). Let mg = (mq,...,my). Above proposition suggests us to construct the
following algebra

mq
py& e mg
({m() ) }awm07’7 )
Clearly, %, cee %ﬁ} is a fraction of m with length 6 and (%, ce ;Z—i) =1.

. ~Y m m m2
Claim 1: As Hopf algebras, B(m,w,vy) = B({ﬁ, ce, m—ﬁ},wmg,fy 0).
Proof of the Claim 1. Since (mg, m) = 1, there exist a € N, b € Z such that amg+bm = 1.
Define the following map

my

¢ : B(m,w,y) — B( ,...,@},oﬂno,vm(%)7
mo

Mo

zr 2’ g () @), Y, = yme, (1< <0).
mq

Since
Plg™) = elg)™ = ((g)"(@)")™ = (g)"0 s (&) 0
= (g)""mh (g)" s = (g/)\ et
= (g)
and
#(Ym.9) = (Ym.)2(9) = y'mi (') ()"
= A0 (g) (2) Py ms = Y™ P(9)(Yims)

mo

= o(Y" 9Ym, ),

for all 1 <4 < 6, it is not hard to prove that ¢ gives the desired isomorphism.
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Next, let’s show that uniqueness. To prove it, it is enough to built the following
statement.

Claim 2: Let {ma,...,mp} and {m},...,mj} be two fractions of m with length 0 sat-
isfying (ma,...,mg) = (my,...,my) = 1. If B(m,w,~) is isomorphic to B(m/,w’,~'),
then up to an order of m;’s we have m; = ml, w=w' and vy =+ for 1 <i <4.

Proof of Claim 2. By Proposition 4.8, wm; = w'm}. Since

(m1,...,mg) = (my,...,mp) =1,
wl|w” and w'|w. Therefore w = w’ and thus m; = m/} for all 1 < ¢ < §. From this, we
know the isomorphism given in the proof of Proposition 4.8 must sent g™ to (g')™, i.e.,

keeping the notations used in the proof of Proposition 4.8, we have ¢(g™) = (¢')™ for
all 1 < i < 6. Since (mq,...,my) = 1, there exist a; € Z such that Ele a;m; = 1. Thus

o ;M 0 a.m
o(g) = p(g=imr ami) = (g)Sim ami = o,

This implies that

through using the relation y,,,g = ¥ gym,. So,
0 M O a;m;
y = s G = ()i T = g

Definition 4.10. We call the Hopf algebra B({;:t,..., ¢}, wmo, ~™5) the basic form of

777740

B(m,w,).

By this lemma, we can tell when two fractions of generalized Liu algebras are isomor-
phic now. Keeping notations before, let m,m’ € N and {m,...,mg}, {m},...,my } be
fractions of m and m/' respectively. Let mg := (m1,...,mg) and mg := (mf,...,mp,).

Proposition 4.11. Retain above notations. As Hopf algebras, B(m,w,vy) = B(m/,w’,v")

if and only if m=m’,0 =0', wmy = w'my, and A = A (m0)*

Proof. Note that B(m,w,v) = B(m/,«w’,~’) if and only if they have the same basic forms
by above lemma. Now the condition listed in the proposition is clearly equivalent to say
that the basic forms of them are same. O

4.4. Fraction of the Hopf algebra D(m,d, )

Let m,d be two natural numbers, m,...,my a fraction of m satisfying the following
two conditions:
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21> (mi—1)(e; —1) and Q\Z — 1)ymad (4.7)
Let v be a primitive mth root of unity and define

Em; == V/Y™,  1<i<0. (4.8)

That is, &, is a primitive square root of v™¢. Therefore in particular, one has

meo=—1 (4.9)
forall 1 <i<46.

In order to give the definition of the Hopf algebra D(m,d, ), we still need recall two
notations introduced in Section 3:

¢m1,(t+1 d)ml (ei—1)my; d)mq '¢mf;,(§—1)m“ ift > s
Is,tlm, = 4 1, ifs=7t+1  (4.10)
¢m1:,(f+1)m,- o ¢mi,(§fl)mia if s 2 E—'— 2.
and
¢mi,§mi¢m7¢,(§+1)mi e '¢mi,{mi7 ift >s
[$; t]m, == q 1, fs=1+1 (4.11)
¢mi,§mi T ¢mi7(ei71)mi¢mi70 t ¢mi,fmia ifs>t+2.

where ¢p,, j =1 — y=mi Uit gmid for all 1 < i < 6. See (3.3) and (3.4) for details. Now
we are in the position to give the definition of D(m,d, 7).

e As an algebra, D = D(m,d,~) is generated by 2%, ¢ v s Yy, Uos U, - -
Um—1, subject to the following relations

zrxt=ale=1, g9 '=g""g=1 zg=gT, TWm, =Ym,® (4.12)
Ym; Ymi = YmYm;>,  Ym; 9 = ,quzgym’” yfﬁ =1l-= xeimida g" = xmdv (4~13)
au; = YU = Gy jUgm, = @ Y, ujg =y e guy, (4.14)
L+ 1 2450 (es—1)my
wjuy = (—1)Zier ligXley mi S - d (4.15)
m
0
H Enti i €i — 2 = Lilm, Y5779
=1

for 1 <4,k <0,and 0 < 7,1 <m —1 and here for any integer n, @ means remainder of
division of n by m and as before n = Zle n;m; (mod m) by Remark 3.2.



610 G. Liu / Journal of Algebra 547 (2020) 579-667

e The coproduct A, the counit € and the antipode S of D(m,d,~) are given by

m—1
Auy) = Z PO Ry @ 2 ghu; g (4.17)
k=0
e(x) =€(g) = e(uo) =1, €(ym,) = €(us) = 0; (4.18)
S(x) = xila S(g) = 9717 S(ymi) = _ymigimi, (4.19)
- 0
S(u;) = (—1)Zf=1 i~ X mi LI bk Gimad gm—1= (S, Gimi) T1&7
i=1
(4.20)

£ : . _ S (ei—)my
or1<i<f,1<s<m-1,0<j<m—1andb=(1—-m)d—-==-F——d
Before we prove that D(m,d, ) is a Hopf algebra, which is highly nontrivial, we want
to express the formula (4.15) and (4.20) in a more convenient way.
On one hand, we claim that we always have

. (k€1+]L)(kE’L+]L+1) . . ]1(]1+1)
O e A A (4.21)

myg
for any k € Z. Indeed, to show this, it is enough to prove that

2 k2e?the;(24;+1)

( ) keg ke, m — =1
Now, by definitions of m;, e; and &,,,, we have

2 k2e?they (24;+1)
2

(_1)—]661 —kel,yml

2 k2e?they(24;+1)
i 2

(_1)—k(€i+1)7m1
( 1) k(el-&-l zkel(ke +1)
(=1~

)~

( 1 k(el—&-l( 1)mik(kei+1)

"
k(e;+1) 'Y L2 ‘mlk‘(k:e +1)

which is equal to 1 though analyzing the odevities of k and e;. Therefore, if we define
Us 1= Us,

where § means the remainder of s modulo m, then the relation (4.15) can be replaced
by

0 0 1,0 +1 2459 (e;—1)m;
ujup = (—]_)Zi=1 liryZ*:l m} =t lx =t d
m
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H Enliliinei — 2 = Lilm, Y5519

_ (_1)2 Z? ) mzl (1 +1) lx 2+Z?=1(26i71)m7;d
m
6
Hfmll] -1 li?jl 1[mlyﬁg
1=1

(4
1 2430 (ei=1)m,; 1 2l :
= —z 2 d H(_l)lz mlilryml 2 ] -1 = lza]z — l[mlymg (422)

m
1 2459 (ej—1)m; 1<e —Dm; 21 i+1)
— d
= ml‘ | I §m7 = e —2— li]miyj+lg

for all j,1 € Z, that is, we need not always ask that 0 < 5,1 <m — 1.
On other hand, since g™ = 2™% and (4.21), the definition about S(u;) still holds for
any integer j, that is, (4.20) can be replaced in the following way:

0 2J1(J1+1) (2
p— i 71L S PRALT d b m—1— m
S(uj) z 1 Ji I | g ry Zz 1 x2171 J @ xrg (Z’L 1 Ji ’) ]

6
; ; i (Gt o e
— xbgm_l H(_l)ﬁgn—qjiv—m?%szmq,dg—ﬁmluj (4.23)

for all j € Z.
We also need to give a bigrading on this algebra for the proof. Let § := /7 and define
the following two algebra automorphisms of D(m,d,):

T — x, T — x,
=t Ymi 7 Ymsy and =’ : Yma = V" Y,
" g— 9 " lg— 9,
u; — Euy, u; — E2

for1 <i<6fand0<j<m-—1.1It is straightforward to show that Eir and =7 are indeed
algebra automorphisms of D(m, d, ) and these automorphisms have order 2m by noting
that £ is a primitive 2mth root of 1. Define

3
+1 = .
ﬂ{[l‘ 7ymla'-~7ym9]92, 1 = even,

D! =
S ket T u,, i = odd,

and
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J
DT ]]:{[m:tl,ymlg_ml?'"7ymsg_m9}g27 j :even7
I ZT;Ol Ik[xil]gsu%_s, j = odd.
Therefore
]k['ril}yjfi g%a 1,) = even,
iZ1
Dij:=DiN D} =S k[z*g 2 uj_i, i,j=odd, (4.24)
2
0, otherwise.
Since >, ; Dy = D(m, d,v), we have
2m—1
D(m,d,v) = @ Dj (4.25)
1,7=0

which is a bigrading on D(m, d, ) automatically.
Let D := D(m,d,~y), then D® D is graded naturally by inheriting the grading defined
above. In particular, for any h € D ® D, we use

h’($1¢1)®(527t2)

to denote the homogeneous part of h in Dy, ; ® Dy, +,. This notion will be used freely
in the proof of the following desired proposition.

Proposition 4.12. The algebra D(m,d,~) defined above is a Hopf algebra.

Proof. The proof is standard but not easy. We are aware that one can not apply the fact
that the non-fraction version D(m,d,~) (see Subsection 2.3) is already a Hopf algebra to
simply the proof although we can do this in the proofs of Proposition 4.7 and 4.1. The
reason is that if we consider the subalgebra generated by z%!, g, ug, ..., um—_1 together
with a single ,,,, (this is the case of D(m, d,)) then we can find that the other y,,,’s will
be created naturally. So, one has to prove it step by step. Since the subalgebra generated
by 2 Yy, Yme, g is just a fraction version of generalized Liu algebra B(m,w, ),
which is a Hopf algebra already (by Proposition 4.7), we only need to verify the related
relations in D(m, d,~y) where u; are involved.

e Step 1 (A and € are algebra homomorphisms).

First of all, it is clear that e is an algebra homomorphism. Since x and g are
group-like elements, the verifications of A(z)A(u;) = A(u;)A(z™1) and A(u;)A(g) =
VA2 724 A(g)A(u;) are simple and so they are omitted.

(1) The proof of Alm, )A(tm,+5) = Alym)At) = Emy A@™ A () Ay, )

Define
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forall 1 <i<86.
By definition A(uj) = Y7 v** Dy, @ a2 Fghu,_y, for all 0 < j < m — 1, we have

m—1
A((bmi,j)A(umi—o—j) _ (1 ®1— ,Yi1+Jz‘xmid ® xmid) Z ,yk(J-i‘mi—k)uk ® x_kdgkuj+mi—k

k=0
m—1
= Z AROTm Ry @ o R gk,
k=0
m—1
MRS G —R) gmady @) gmid—kdghy
k=0

and
m—1
AYm)A(U;) = (18 Y, + Ym, ® g™ (D Y up @ 27 ghu; 1)
k=0
= AU Pue @ a g Gk,
+ Z 7k(jik)¢mi,kumi+k ® xikdgmﬂrku]‘_k

—m3 (ji+1=2k) . (mi k)dgkuj+mi7k

I
2

E(Gj—k)—m?(1+k; id —kd _mi+k
- E AROR k) iy g @ 3R g Ry
Z k(j—k)+km; —kd k
= ol (4 )+ mzuk RT g uj+mi7k

. 2
. Z ,yk:(J—k:)—mi (J¢+1—2’%)uk ® x(mi_k)dgkufrmﬁk
k=0
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m—1
_ § ,y(k—m,)(g—&-ml k) miklxm"duk@)m (k—m;)d K
k=0

-1

3

k(g i—k —kd k
ARy @ o R gy,

|
(]

E
I

0
—1
- Y
0

3

=~
Il

Here we use the following equalities
ry(k*mi)(j*k”rmi) — ryk(j*k)Jrkmi*mi(j*k)*mi =

and
v
Hence A(¢m,; ;) A(Um;+5) = A(Ym, )A(u;). Similarly,

Em, A@™ ) A () AYm, )

(k=—ms)(j+mi—k)—mZk; _ ,y*mf(1+jz‘)+k(j+mi*k)

9 Ujt+m;—k

2 Y. y PR . . —
—m; (1+5i)+k(i+m; k)xmlduk @ gmid kdgkuj+mi_k.

; k(j—k)+2k;m? —m3 (1+4:)

)

= &y (2™ @ 2™ ) (Y AUy @ 2T gk 1) (1@ Y, + Yo, @ g™)

k=0
m—1
— Z Emi,yk(]—k)xmiduk ® x(mi_k)dgkuj—kymi
k=0
m—1
+ gmi,yk(jfk)xmidukymi ® z(mifkr)dgkuj_kgmi
k=0
m—1
= > AUy @ a7k GR g, ik,
k=0
m—1
k=0

m—1
— E ,Yk(]—k)xmiduk ® -r_kdgkuj+mi7k
k=0
m—1
- v
=0

y 2 Y. . . — .
kE(j—k)—m; (14+75: k”)$m’du;€ ®Jf( k+m,,)dgkuj+mi_k

=

—1

3

>
Il
o

My

kd k
T g Ujtm;—k
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m—1
k(j—k) m;d —kd k
- Z IRy @ a7 G Gkt
k=0
m—1
k(j—k j—k)mg o (—mi—k)d k+m;
+ > AU, ki, @ AUy TR gty
k=0

m—1
k(i—k),mid —kd K
= E ARG=R) gmidy @ ek gk
k=0
—1

E(Gi—k)—m2(1+j;—k; id —k+m;)d k
_Z,Y(J )—m; (1+j ) pm uk®x( +m)guj+mi_k
k=0

+ Z ,yk(jfk%»mi)uk ® l,fkdgkuj_"_mi_k

k=0
m—1
_ Z ARG=kEm) ) iﬁ_kdgkuﬁmﬁk
k=0
m—1
_ 7k(j—k)—m?(um—ki)xmiduk @ gmid—hdghy
k=0
= A(¢mi7j)A(umi+j)'
(2) The proof of A(ujur) = Auj)A(ug).
Direct computation shows that
m—1 m—1
A(u])A(uZ) _ ,Ys(j*s)us ® mfsdgsuj_s Z ,yt(lft)ut ® xftdgtul_t
s=0 t=0
m—1m—1

3= 8)y () Uths),,

Il
g

. ® xfsdgsuj_sxf(tfs)dgtfsul_H_S

&
i
=
w
I
=

3
L
3
L

,y(t—s)(l—t-‘rs)-i-(j—s)t

—td t
UsUt—s QT g Uj—sUl—t+s-

~
[}
w

(=)

By the bigrading given in (4.25), we can find that for each 0 < ¢t < m — 1,
m—1
Z ,-y(tfs)(l7t+s)+(J*s)tusut_s ® xitdgtuj—sul—t-q—s c D272+2t ® D2+2t,2+2(j+l)a

s=0

where the suffixes in D3 2194 ® Dyyos242(;41) are interpreted mod 2m.
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Using equation (4.22), we get that

0
1 2 (=) ((t=8);+1)
t—5); ¢—(t—s) - .
UsUt—s = Em“ H(—l)( s)lﬁmﬁ é)”le 2 [siyei =2 — (t — 8)ilm, Ytg
i=1
and
1 a o (l t_,’_s (l t+s)> m?2 (I—t+s);[(F—t+s);+1]
Uj—sUl—t4+s = —T H g e 2
m 1
1=

(G = )i ei =2 = (L=t + 8)ilm: Y29

here and the following of this proof a = —wd.

Using [19, Proposition IV.2.7], for each 1 < <6

iy mi s mi e;i—1—t;+s:) m;
[8i7ei_2_(t_8)i]mi :(1—71_"!‘133 d)(l ,YZ+2 d)(l—"y( + )g} d)

?

e, —1—t; ai(ai—l)
fei—1—t;) il
> (—1)‘“(’ o ) v 2 (yttamed)e
v Vi

C)é,j:()

e;—1—t; o (ai+1)
(677 P ¢ ’

Oéi:()

and

[(j — S)i7€i —2— (l —t+ S)i]m
(1 ,YZJq si+1 2 d)(l _ ,Yqu‘,—sq‘,-i-?xmid) . (1 _ ,yji_si'f‘ei_1_(ji+li_ti)xmid)

%

e;—1—(ji+1li—ts) T i(Bi—1
Z (_1)[31: (61' —1- (]i +1; — ti)) 7? (62 )(,Yj,—s +1 Lt d)ﬁ
Yi

Bi=0 B
e;i—1—(gi+l;—t;) T T Y Bi(Bi+1) | .
e —1—=(Gi+1;—t; " +i=5)Bi m.ds,
— Z (_1)5@( (ﬁ )) ,yi 2 T Ld/817
Bi=0 ’ Vi

where (j; + I; — t;) is the remainder of j; + I; — ¢; divided by e;.
Then for each 0 <t <m —1,

Auy) A(ur) 2,2426)@(242¢,242(5+1)) (4.26)
m—1
= Z AU Ty 0y @ & gy gy
s=0
— 1 6 2 (4= ((t=9);+1)
_ ,Y(t s)(l—t+s)+ t%xaH (t s)i iy mZ = 2)illi=s)it )
s=0 i=1
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[siei —2— (t — 8)ilm, Yty

i

(2
—td tl aH (l t-‘ré (l t+s), 2(l—t+3)‘,[(127t+s)~+1]
—T m
i=1

[(.7 - S)i, e —2— (l —t+ S)i]mi Yiri—=9

m—1 6
Ve t( 1 gli(li-f—l)
=) AUt tm—H Vg iy (s, e — 2 — (t— 8)ilm,
s=0 =1
0
@r 16 — )iver =2 = (L~ t 4 8)ilm (@09 © 2 y=9")
1=1
m—1

21 (l;+1
—1; m-il(g )

(—1)lg by

Jom

1
s)t—t(j+l—t
2:73 Jt—t(j )W

Il
-

S 3

=0
;=0 Q;

0 erx—1—(jrt+lx—tr) P EEre——
g€k — 1= (ke + e — tr)
31 D SR C
Yk

a; (aiJrl)
2

+sia

~_
2
2

k=1 Br=0
Br(Bet+1) .
S+ (jr—sk)B dovs —
. 5 Jk—5k)Br (xmldal ® gMedbr td)](asaytg & xaymghq)
1 o m2 Ll +1) 6
_ 1 Lllgt)
m H 57”1 H

i,k=1

s

ei—1—t; ep—1—jr+lp—tx

a; =0 Br=1 @
ai(ai+1) ﬁk(5k+1)
’YZ‘ 2 ’Yk: +'7k6k( m;dao; ® xmkdﬁkftd)
m—1 2 ,
YDy sy gy, © 2y g ). (4.27)
s=0
. 1 o170 1 m2h£7+_1) 1 .
Meanwhile, uju; = Lz [;_;(—1)"& iy i ldirei =2 = lilm, yj379- By defini-
tion,
Yy =yl Tyl eyl e

where j; + [; is the remainder of j; + I; divided by e; for 1 < ¢ < 6. Therefore,

0

Alyz) = [ 1 & Y, + g, @ g™
=1
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0 jitli m
= H < v ‘ Z) (1 ® ymi)]iJrli*ti (ymi ® gmi)ti
] v

i=1t;=0 ti
0 ji+ly ———
= H (‘71 : lz) ® y]le —t; gmiti
i=1t;=0 v Vi
and
A([firei =2 = lilm,)
= (1 ®1— ,qu'i+1xm1:d ® xﬂ’h‘,d) o (1 ®1— ,ylel—l-i-ﬁ Jitli ml ® xmid)
e;i—1—7;+1 Bram—— ai(a;—1)
e —1—gi+ 1 g o
;=0 g Vi
ei—1—j;+1; _— (1)
= Z (—1)® (ei —1—gi+ Zi) %oz (a—2 D pjia (gmides @ gmadaiy,
a;=0 Qi Yi
we get

3

6
! a IRy = R
= —AEY) [TD8 €™ 5 Al e — 2 = ) Ay Al)
=1

0 ei—1—ji+l; -— a;(ai+1)
ol 2Ll (e —1—gi+ 1 i
I (EIRCTE D DRI ) I
v B

Jit+l; m
Z ( i ‘ z) (xa ®xa)(xmidai ®xmid0¢i)(yml ® yj Gili— gmiti)](g ® g)
Yi

t;=0 b
0 Jitli ei—1—j;i+1; - -
1 oty m2 LD e —1—gi+1; Ji + 1
S (IR DI DN CA
i ti=0 ;=0 Qi v\ b/,
WJF]":O": midao; midao; a,t Jitli—ti ymiti+1
’71' (x i z®$ Q ’L)(x y'nillg®x y'L ’Lg il )]'

Clearly, for each t satisfying 0 < ¢; < j; + [;,

A(ujur) (2,2420)@(242t,242(j+1)) (4.28)
o e;—1—ji+l; _ i
— i H[(_l)li ;l_i,ym?lz'(lLé+1) Z (—1)% <€i —1—-73;+ li) (]i + li>
e ;=0 & Vi ti Vi
cilaitl) oo
v 2 e g amiden (atyl @ 2yl g™ )] (g @ g).
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By the graded structure of D ® D, A(u;)A(u;) = A(u,u; ) if and only if
A(ui) Aug) 224200 2+2t,242(j+1) =0 (4.29)
for all ¢ satisfying there is an 1 <4 < such that j; +1; + 1 <t; <e; — 1 and

A(Uz‘uj)(2,2+2t)®(2+2t,2+2(j+l)) = A(“i)A(Uj)(2,2+2t)®(2+2t,2+2(j+l)) (430)

for all ¢ satisfying 0 <¢; < j; +1(; forall 1 <i <6.
Now let’s go back to equation (4.27) in which there is an item

m—1
2. 2
2 :,Y—ts,y—mislal-i-mkSkﬁk (4.31)
s=0
0 e,—1
_ H Z ,thzszmz,y*m?siai+mi5k5k
z=1s,=0
Zei_l —s;m? (a +t; ) Zek—l —Skm ﬁk tk) H Z _tzszmr-; 7 # k
_ si:(l)ry sx=0"7 L z;éz k sz—O’Y
- ei=l _ —mZs;(ti+a;—Bi) ezl | —tis.m? =
Zsi:() Y Hz;ﬁz Zs =07 i=k

Therefore, in order to make this equality (4.31) not zero, we must have

a; = —t;, Br =1 i #k
Bi=ai+t; i=k

But in the expression of equality (4.27) one always have 0 < «; < ¢; — 1 — t; which
implies that a; # —t;. Thus, as a conclusion, in the equality (4.27) we can assume that

So, the equality can be simplified as
0 ei—l—t;ei—1—jitli—t;

_i 2l(l+1) _ ;) ei—l—ti>
Iy X (),

=1 «a;=0

§>|)—‘
HE%

i

ei,l,m ai(a2j+1)+ﬁ,:<a5+1)+jiﬂi s
4
Vi

m—1

LD B B € Hy ® z° Hy”“ 9" ") (g ® g)-

s=0

From this, we find the following fact: if ¢; > j;, +1; + 1 for some ¢, then e; — 1 —
ji—‘rli—ti:ti—l—ji—f—li. So, 0 < B; §ti—1—ji+li and thus 1 —¢; < 8; —a; — t; <
—1 — j; + 1; which contradicts to 5; = a; + t;. So the equation (4.29) is proved. Under
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Bi = a; + t;, we know that

m—1

6
H ,yfts 7’”74 S; 0 “kaslﬁl =eijea:-€g =M
i=1 s=0

and (4.27) can be simplified further

0 ei—1—ji+l;

*H gt MH)H 5 (Dti(ei—l—ti)%

Y
a; =0 v

6 —1— 7(% iy - ti) PYAaz(aQ +1)+(ai+ti)(gi+ti+1) Tgi (it Fti(li—ts)
@i+ .

(l‘m"’dm ®xmidai)(m ym Rz yJ;—O—l —t; g )(g@g).

Comparing with equation (4.28), to prove the desired equation (4.30) it is enough to
show the following combinatorial identity

(aitti) (o +ti+1)

(1o G ( . ti) ( -G m)
& Yi @; + 1 Vi
fei—1—-gitl Ji + 1
- Qi i ti Vi
which is true by (6) of Lemma 3.6.
o Step 2 (Coassociative and couint).
Indeed, foreach 0 < j <m—1
m—1
(A@I)A() = (A@Td) (Y AV uy @ a  gbu; )
k=0
m—1 m—1
_ 'Yk j— k) 79(k s) Us @ T s gsukis) ®$_kdgkuj-7k
k=0 5=0
m—1 .
_ ,Yk(jfk)Jrs(kfs)us ® xfsdgsuk_s ® xfkdgkuj_k7
k,s=0
and
m—1 )
(OA)A(w) = 1dEA)( Y vUVu, @ 2~ g, )
s=0

Y@ (Y A e gty @ o gt gy )
— t=0

m—1

= >
s,t=0

(G—s)+t(j—s— t)us ® x—sdgsut ® £E_(S+t)dg(s+t)7.l,j,5,t.
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It is not hard to see that (A ® Id)A(u;) = (Id ®A)A(u;) for all 0 < j < m — 1. The
verification of (e ® Id)A(u;) = (Id ®€)A(u;) = u; is easy and it is omitted.

e Step 3 (Antipode is an algebra anti-homomorphism).
Because x and g are group-like elements, we only check

S(Ujtm)S(Dmij) = S(u;)S(Ym.) = &mS (Ym,)S (u;)S (™)
and
S(ujur) = S(u)S(uy)
for 1<i<Band1<j,l<m~—1 here.

(1) The proof Of S(uj+mi)s(¢mi1j) = S(UJ)S(yml) = §mlS(ym1)S(uJ)S(xde)
Clearly ©;S(¢m,;, ;) = ¢m, ju; for all 4,5 and thus

S(“jﬂni)s(qﬁmi,j)
. Gt -~
— gbgm1 H(_l)ﬁg;ﬂiw—m?%xﬁmmg—ﬁmmuj
= ¢mi7jS(uj+mi)

here and the following of this proof b = (1 — m)d — wd
Through direct calculation, we have

S(u;)S (Ym,)
0 ji (43 +1)
; S an22i(34 ;. . . . —m
=algm [ JI(=1)7 g, iy el g I - (g™
0 (J4;+1)
. . 24,0 . .
_ _xbgm—l H[(_l)h ;1{ —m? %x]imidg—]imi}(é—m},y—]mlxdeymig—miuj)
237G +1) _ )

— b m IH jfmf —m? Lﬂjjlm dg ﬁml}(fml ms (J1+1) m; dg mlymiuj)

P et Gt D)oot o e—i i1 G+
= gbg™ (71),]14’ +(Ja+1)+ +Je§m311 ngJ +1) ... mJQB’h

(ji+1)2(j1+2) jB(jg+1)
. -’yi .. -’yg

pihrmad (Gt )mad | xjemedgfhml . ,g*(]i+1)mi g TTeme ¢mj7juj+mi
= G, S (Ujtm,)

and
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gmls(yml)s(u])s(xmld)

6
= (=Ym,g~ " )g™ 2 [~ SR glimad gmiimayy g
. . . . . 41U+
b, m—1 oot Gt 1)+ o g — i+1 A
g™ (—1) (Fi+1) dogr ... (J ). &0y,
Gi+1)(G1+2) Jjg(ig+1)
2 2
. -/'Y/L .. .’)/0
lemld . gg(ji+1)mid . ;['jemsdgijlml e gf(ji‘i’l)mi . gfjé?mﬂd)m“juj_,'_mi
= ¢mi7jS(uj+mi)'

(2) The proof of S(uju;) = S(w)S(u;).
Define ¢y, s :==1— vfi“x’m’?d for all s € Z. Using this notion,

_ ,yls +1(1 o ,yl'(ei*Si*Q)“lemid)

_ s;i+1
== ¢mi;€i_5i_2'

21 (1;+1)

1 ot
S(ujul) = S(Exa H(_l)lz mli“y 2 [.71, e —2— ll]mlymg)

(4
1 4 Ce—l; om2litD —miNjat s QT
- Eg E ]‘_[[(_1)[Z mlilryml 2 (_ymig mz)jl+lls([¢7iﬂ e —2— ll]ml)]

=1
1 o L G
= — gt T~ gty T (i
m k3
=1

S([]Z, € —2— li]ml)y%j_l g_miji"rli]
1 a_j ) ) 241 +1) - 2 T GiFli—1)
= gyt I‘[ 1)l g—linm? B Tl m? LD

S(lirei — 2 = Ll )y 7T

1 _ g 20+ 7 20T Gi D)
= —a T JI(=D)gyme e (—1)7i iy
m
1 jl+l 72(6’ —1—gi+l; )(71+l —2j;—e4)
(-« "

7(5171 Jitli)m; d[l

irei =2 = Jilm Jyzrg 7!

j+-1 ?M mf ‘l~2+‘ilifli
I H gmlfy v (45 +3 )
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g et Imadly, e — 2 — il Jysg T

Here the last equality follows from
2 i+l (j7+l i) 2 (ej =13 +13) (3 +l; =245 —eq)
( 1) v—1,ym ’Ym'i 5

m? (i +iili—ls)

= 7

Now let’s compute the other side.
o 2153 41)
S(un)S(uy) = g1 Tl 1)l lem W glemad gty

g 1 bH ngm ~ m?ji(]%l)xjimidg—jimi]uj

_ ,m—1 l+1 i—Jin—m? MJrM lLi—ji)mid —l;m;
= g" [Il=Dtaeg iy il Jptimgemid g=tim]

— 1 — 0 y . .
U/lgm 1 Z'i:l JT'm’LUj

—l—l] H l+.71 —li—Ji _mf[w“rw]x(li*‘ji)mid _limi_jimi]
mi Y

g

-2, 2d
g ‘%

e e Litji g—li—jin—m2 AU 4 316D (4 ymid  —limg—jims
S [ (G0 VA St Fgllitigmidg ]

0

- 1 SRR 27;(i+1) .
g 23;2(1%33@ H(_l)h m]iz,ymi 2 [l“ e; — 2 — ji]miymg
=1
1 o 21l (1 +1) [
=yl ~ H[(_l)lifmi ~2jip—m [Lill+ D sy er—2 — ji]mix(eiflf(lﬁ»]i))mid
=1
—mﬂ% —2 1 —a
9 lg™ ™ g
(%
= i H[(_l)lig_li_zji’y_m?(li(lgrl))—limi—lijim?"rm?(li+ji)2+2(li+ji)mi
m;
=1

[l“ e; — 2 — ] } (ez—l [GE=D) +7i))m; d]m—a j+lg_(m+1)

1 _ . . 211 +1) 2052, 57 7.
= —a T [ID)g iy T

x_(ei_l_ji+li)mid[li7 e —2— ji]mi]ymg_j+l_1,



624 G. Liu / Journal of Algebra 547 (2020) 579-667

where the fifth equality follows from

0 1y
SR DM g o —a=30 (ei—1)mad

xa+2d _

€T €T

and the last equality is followed by

. l;
— 2§ o —mi (H

%)*li mi—lijim24+m2(Li+4:)2+2(Li+5:)m:
m;

_ rym?(w)_miji_m?li(li+1)_limi_lijim?+m?(li+ji)2+2(li+ji)mi

_ ,ymf M-ﬁ-m? (37 +7sli—Li)+jimi+limg .

The proof is done.
o Step 4 ((S *1Id)(u;) = (Id «S)(u;) = €(u;)).

In fact,
m—1
(S *1d)(uo) = > S(y7 uy)a~ g u_
7=0
m—1 0 o
-y y gl H[(_l)jng;bz_‘w—m?Mxjimidg—jimi]ujx—jdgju_j
j=0 i=1
m—_1 o G (sl
=3 o T ey g
§=0 i=1
m—1

270G +1)
2

6
S [ (GRSt

]

7=0 1=1
I - —ji i o2 D i
pr [T e == e =2 = jilmg
i=1
1 0 eifl )
= e g [ 'l ei =2 = Gilm]
i=1 j;=0
1 . 0 e;—1 )
= —x Zizo(ei_l)mid H[Z ’Yll}]l - 17.71 - 1[7717]
m i=1 ;=0
1 0 4
— —p~ Zi=olei—1)mid H eil«(efl)mid (Lemma 3.6 (3))
m i=1
=1
= €e(ug).

And,
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m—1
-2 n .
(1d%S)(uo) = > v u;S(z77g7u_y)
§=0
m—1 5
= 3w )S(g e
7=0
e ji (—gi+1)
y 2 —9i(—34 . . . .
= ~ -5* Us gm 1 bH _mifx_jimidg]imi}uijg—]mjd
7=0
— 1—m)dy Si= 1(e5 Lizi(ei—my g 2 =4 (=3t 1
— 1‘( m)d+ H fmif,yfgimi]gmf wu_j
7=0
= 1o m m2 i ait )
= :L‘(l m)d+ = ldH - i%»}/_]imi]gm—l
7=0
1 o (—di+1)
m2 =i 11 .
E‘ral_‘[( ) Jlgjl 7 ¢ [jlael_Q_]i]mig
e
m—1 1 0
= > —TL&my i = 1i = 1m,
7=0 m =1
1 0 e;—1
1=135;=0
1 %
=—11e (Lemma 3.6 (1))
m -
=1
=1
= €(uo)
For1 <y -1
(S *1d)(u;)
m—1

’yk(j_k)S(uk)m_kdgkuj,k

L IM

m—1
2 k;(k;+1) S s —
— ,yk(j k) m 1 bH —mj =i mk,,mldg k’m’]UkJJ kdgkujfk;
Jj=0
m-1 ki (ki+1)
_ K(G=k) gm—1b m? B g2y ,
- Y gml Y }uku]—k

£
Il
<
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m-1 k;(k;4+1)
k(i—k) gm—1,.b m?2 BBt 2,2
YR H )HiE iy 3 k]
k=0
1 a o ks _]-‘rk mz(Jrk )(Jlfk +1) R
el ) LGS Dt 5 [kiy € =2 = i+ Kilm, 9
=1
m—1 6 +
2JZ Ji
s H ngmzz,y +jimi—kim i[kiyeq — 2 — gi + Kilm, v
k=0 1=1
patb JI i m”ﬁlﬂlml] )
£m1 Yj
e;—1
H E 71 jl?kl_l[mi]
1=1 k;=0
=0 (Lemma 3.6 (5))
= e(uy)
(Id %S) (u;)
m—1
k(j—k —k, .kd
=D YV PuS(uyr)g e
k=0
e Gi—ki)(Gi—ki+1)
. 2 Gy G — ks
_ ’Yk(j k: m 1 bH '—ki frzi_ji’y_mi i
k=0
iy Gimk) Gi—ki+1)
_ P i —m2Uim k)i mRiTl)
= upg™ 2 TJI(=1) Rk Ty 2
k=0 i
mjimidg_jimi]ujik
m—1 Z?Zl(ei_l)m'i 0 . . 2 (Ji—ki)(Gg—ki+1)
= »y—kgm—lm(l—m)d'*'fdﬂ[ 1)],,—k,; f’;—h,}/—mif
k=0 =1
xjimid,y_kjimig_jimi]ukuj_k
iy ( Gi—ki) Gy =k +1)
_ —k, m—1_(1—m)d+ £l Za=1.01" O g Gi—ki cki—ji —m2 iRk
= Y "g ( ) H i J ~ i 2
k=0
jimid . —kjim; ,—jim;
.Tj ~y J g J ]
1 o Gi—ki) (G —ki+1)
a ji—ki ¢ —jithi o mi ImRTI=N :
oo [Tl(—1)oeheg itk 2 [kisei = 2 = ji + Kilm,]y;9
=1
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= o Z v H Gl Iy TR g i g I ey ey — 2 — i+ Kilm, 19"

0 g 1_1
i=1 i=1 k =0

0 (Lemma 3.6 (5))
= 8(Uj).
By steps 1, 2, 3, 4, D(m, d,~) is a Hopf algebra. O

Proposition 4.13. Under above notations, the Hopf algebra D(m,d,~y) has the following
properties.

(1) The Hopf algebra D(m,d,~) is prime with PI-degree 2m.

(2) The Hopf algebra D(m,d,~) has a 1-dimensional representation whose order is 2m.

(3) The Hopf algebra D(m,d,~) is not pointed and its coradical is not a Hopf subalgebra
ifm> 1.

(4) The Hopf algebra D(m,d, ) is pivotal, that is, its representation category is a pivotal
tensor category.

Proof. (1) Recall that the Hopf algebra D = D(m,d,v) = @2m D! is strongly
Ziom-graded with

3
+1 = .
}k[l’ yYmas - - 7ym9]92, 1 = even,
i—1

Dl =
ST Kat g 2 e, = odd.

So the algebra D meets the initial condition of Lemma 2.11. Using the notation given in
the Lemma 2.11, we find that

5—1 —m;d

XPYm; = §m; T Ym;

for all 1 < i < . This indeed implies the action of Za,, on D) = K[z g,y ., Yrm,] 18
faithful. Therefore, by (c) and (d) of Lemma 2.11, D is prime with PI-degree 2m.

(2) This 1-dimensional representation can be given through left homological integrals.
In fact, the direct computation shows that the right module structure of left homological
integrals is given by:

L 0
J:D/<x_1’y’m17"'7y’m9ﬂu15'"7um717u0_H (61_1)39 H’y mi .
D i=1

Through the relation that &,,, = /7™ it is not hard to see that the io(D) = 2m.
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(3) Claim: The subspace Cp,(d) spanned by {(z~%g)"u;|0 < 1i,7 < m — 1} is a simple
coalgebra.

Proof of this claim: One can apply similar method used in [31] to prove this statement.
For completeness, we write the details out. Clearly, to show the result, it is sufficient to
show that the k-linear dual C* := Homy (C, k) is a simple algebra where C = C,,(d). In
fact, we will see that C* is the matrix algebra of order m. Denote by f;; := ((x~%g)u;)*,
that is, {f;;]0 < i,j < m—1} is the dual basis of the basis {(z~%g)"u;|0 < i,j < m—1} of
C. We prove this fact by two steps: firstly, we study the multiplication of the dual basis;
secondly, we construct an algebra isomorphism from C* to the matrix algebra of order m.
Step 1. Since

(fihjl*fngjQ)((x g) J)
:m(fi17j1®fi2;j2)( ((l‘ g) ))

m—1
- m(fil,jl ® fi2,_]2 Z ’Y CC g) u‘? ® ("E g)l+suj—s)
s=0
m—1
= 3 0 £y (@) ) fiy g (2 g) o)
s=0

one can see that (f;, j, * fi, j»)((x7%g)%u;) # 0 if and only if 41 = 4,51 = 8,4 =i+ s and
jo = j—sfor some 0 < s < m—1. This forces i1+j1 = i2,% = 91 and j = j1+Jj2. So we have

V2 firgidies i 41 =2,

(4.32)
0, otherwise.

fi1,j1 *fimjz = {

Step 2. Set M = M,,(k) and let E;; be the matrix units (that is, the matrix with 1 is
in the (i, j) entry and 0 elsewhere) for 0 < i,7 < m — 1. Now we claim that

@ : c*r — M, fij — ’}/ijEZ',iJrj

is an algebraic isomorphism (the index ¢+ j in F, ; is interpreted mod m). It is sufficient
to verify that ¢ is an algebraic map. In fact,

@(fil,]d) f12732

i1J1 . .
E11a11+317 Elzﬂz-‘r]z

Zl]lerhEh,zz-Hw ifil +j1 — 7;2’

0, otherwise,

v
{ 11]1-‘1—12]2 21(]1+j2)90<fi1,j1+j2)7 if iy + j1 = 4o,

0, otherwise,

f'Ll ]1+]2 ifz.1 +j1 = 1o,

0, otherwise,
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= Sp(fil,jl * fh,jz)'

So ¢ is an algebraic map and the proof is completed.

Now it is not hard to see that the coradical of D equals to

P el P dCu).

i€Z, 0<j<m—1 i€Z, 0<j<m—1

Since m > 1, it has a simple subcoalgebra C,(d) with dimension m? > 1. Therefore,
D is not pointed. Its coradical is not a Hopf subalgebra since it is clear it is not closed
under multiplication.

(4) Tt is well-known that a Hopf algebra H is pivotal if and only if the square of its
antipode equals to a conjugation of a group-like element (see, say, the proof of [8, Prop.
3.6]). Therefore, we only need to set the following formula for S?:

S2(h) = (g%1= ™iaC) (g% ™at) Y, he D, (4.33)

0 . -
where ¢ = —M. Note that by second equation of (4.7), Zle

always even. Our task is to prove above formula. Indeed, on one hand,

(e; + 1)myd is

—mj 7“(]§+ )xJimidg*Jz’miuj)

2
S (uy) = S(atg™ (17600
i=1

*mf“(j{’”xﬁimid jims d—m. —b

g g z

0
= S(u) [L-17"€6

i=1

4
_ C9i —m2i (i o d — i imad i 1—mm —
:xbgm 1 | Igmsz,}, mljz(Jr&-l)xJLmidg ]szuj:L. Jimzdgjbmlgl m o b
=1

0
_ .20 o m—1_/(1—m)j —27; —m? ji(4i+1 1(jim;) . —2(1—m)d 1—m
— g2 gm Ly (Lmms T g2y~ Gt D) pitiema) =20 -midgL=m,,
=1
0
2.
— x2b—2(1—m)d H ’Y_m'i]lu]‘,

i=1

9 (e 1)m,
where recall that b= (1 — m)d — Md
On the other hand,
(gZ?zl mtmc)uj (ngzl mixc)_l = x2cx2d Z?:l mLfy_J Z?:l mi U

0
_ _2c+2d ?7 m; 77?1?]1
=X Y H"}/ Uj.
=1

Since
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6 6
2c+2d» mi=— (e;— )mid = 2b—2(1 — m)d,

i=1 =1

we have S?(u;) = (ngzl mi:zzc)uj(gzs?:l mige)=L
So to show the formula (4.33), we only need to check it for y,,, for 1 <4 < 6 now.
This is not hard. In fact,

S*(Ym,) = S(—Ym,g~ ™)

) s —m?
=9""Ym, 9" =7 " Y,

—m;(mi+--+me)

=7 Ym,;

= (ngzl m‘xc)yml (ngzl m‘xc)_l

due to 4™ =1 for i # j and  commutes with y,,,.
Therefore, the representation category of D is pivotal. O

Remark 4.14.

(1) As a special case, through taking m = 1 one is not hard to see that the Hopf algebra
D constructed above is just the infinite dihedral group algebra KkID. This justifies the
choice of the notation “D”.

(2) It is not hard to see the other new examples, i.e., T'(m,t,&), B(m,w,), are pivotal
since they are pointed and thus the proof of this fact become easier. In fact, keep
the notations above, we have

0 0
S*(h) = (g n( L™
i=1 =1
for h € T(m,t,£) and
0 0
S*(h)=(Tg™) (o™
i=1 i=1
for h € B(m,w, 7).
Now let m’ € N and {m/,...,mj } a fraction of m’. As before, we need to compare

different fractions of Hopf algebras D(m,d,~). Also, we denote the greatest common
divisors of {m1,...,mg} and {m/,...,mp, } by mo and my, respectively. Parallel to case
of generalized Liu algebras, we have the following observation.

Proposition 4.15. As Hopf algebras, D(m, d,~) = D(m/,d’,~") if and only if m = m/, 0 =
2

0, dmo = d'mj, and fymg = (7/)<ms> ]
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Proof. By Proposition 4.11, it enough to show that D(m,d,~) D(m/,d',«") if

>~
') are isomorphic.

and only if their Hopf subalgebras B(m,md,~v) and B(m/,m'd,~
It is clear the isomorphism of D(m,d,v) and D(m/,d’,+") will imply the isomor-
phism between B(m,md,~) and B(m/,m’d’,~"). Conversely, assume that B(m,md, y) =
B(m/,m'd’,~"). By Proposition 6.11, D(m,d,~) is determined by B(m,md,~) entirely.
Therefore, D(m,d,~) = D(m/,d',+') too. O

At last, we point out the examples we constructed until now are not the same.

Proposition 4.16. If m > 1, the Hopf algebras T(m/,t,&), B(m”,w,~") and D(m,d,~)
are not isomorphic to each other.

Proof. Since m > 1, D(m,d,~) is not pointed by Proposition 4.13 (3) while T(m/, ¢, &)
and B(m”,w,y”) are pointed. Therefore, D(m,d,vy) % T(m/,t,£) and D(m,d,v) #
B(m”,w,~"”). Comparing the number of group-likes, we know that T(m/,t,&) 2
B(m”,w,~") either. O

5. Ideal cases

In this section, we always assume that H is a prime Hopf algebra of GK-dimension
one satisfying (Hypl) and (Hyp2). So by (Hypl), H has a 1-dimensional representation

m:H—k

whose order equals to PI-deg(H). Recall that in the Subsection 2.2, we already gave the
definition of m-order ord(w) and m-minor min(7). The aim of this section is to classify H
in the following two ideal cases:

min(7) = 1 or ord(7) = min(7).

If moreover assume that H is regular, then the main result of [12] is to classify H in
ideal cases. Here we apply similar techniques to classify prime Hopf algebras which may
be not regular.

5.1. Ideal case one: min(m) =1

In this subsection, H is a prime Hopf algebra of GK-dimension one satisfying (Hyp1),
(Hyp2) and min(7) = 1. Let Pl.deg(H) = n > 1 (if = 1, then it is clear that H is
commutative and thus H is the coordinate algebra of a connected algebraic group of
dimension one). Recall that by the equation (2.3), H is an Z,-bigraded algebra

n—1
H= P Hijr
1,7=0

Here and the following we write H;; » just as H;; for simple.
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Lemma 5.1. Under above notations, the subalgebra Hyy is a Hopf subalgebra which is
isomorphic to either klx] or kjz*1].

Proof. Since min(w) = 1, HY = Hj = Hgo. By (1) and (3) of Lemma 2.9, Hyg is stable
under the operations A and S. This implies that Hy is a Hopf subalgebra. By Lemma 2.8
and its proof, we know that Hyg is a commutative domain of GK-dimension one. So Hyg
is the coordinate algebra of a connected algebraic group of dimension one. Thus it is
isomorphic to either k[z] or k[z*!]. O

Therefore, we have a dichotomy on the structure of H now.

Definition 5.2. Let H be a prime Hopf algebra of GK-dimension one satisfying (Hypl),
(Hyp2) and min(7) = 1.

(a) We call H additive if Hyg is the coordinate algebra of the additive group, that is,
H()O = ]k[x]

(b) We call H multiplicative if Hyg is the coordinate algebra of the multiplicative group,
that iS7 HOO = ]k[xil}.

Remark 5.3. In both [12] and [32], the additive H was called primitive while the mul-
tiplicative H was called group-like. Here we used a slightly different terminology for
intuition.

If we check the proof of the [12, Propositions 4.2, 4.3] carefully, then one can find that
these propositions are still valid even we remove the requirement about regularity. So we
state the following result, the same as [12, Propositions 4.2, 4.3], without proof.

Proposition 5.4. Let H be a prime Hopf algebra of GK-dimension one with PI-deg(H) =
n > 1 and satisfies (Hyp1), (Hyp2) and min(n) = 1. Then

(a) If H is additive, then H = T(n,0,&) of Subsection 2.5.
(b) If H is multiplicative, then H = KD of Subsection 2.5.

In particular, such H must be regular.
5.2. Ideal case two: ord(mw) = min(m)
In this subsection, H is a prime Hopf algebra of GK-dimension one satisfying (Hypl),

(Hyp2) and n := ord(m) = min(n) > 1 (n if = 1, then clearly H commutative by our
(Hyp2)). Recall that we have the following bigrading

n—1
H= @ Hij.

4,J=0
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The following is some parts of [12, Proposition 5.2, Theorem 5.2], which are proved
without the hypothesis on regularity and thus they are true in our case.

Lemma 5.5. Retain the notations above. Then

(a) The center of H equals to Hy := Hyg.
(b) The center of H is a Hopf subalgebra.

The statement (b) in this lemma also implies that we are in the same situation as
ideal case one now: H is either additive or multiplicative. No matter what kind of H is,
H;; is a free Hyp-module of rank one (see the analysis given in [12, page 287]), that is

n—1 n—1 n—1
= G = ) Hou = D) vt
,7=0 4,5=0 ,j=0
and the action of winding automorphism (relative to ) is given by
—1 i _ i
= (uija) = v a, and = (uija) = uija

for a € Hy and ¢ a primitive nth root of unity. Due to [12, Proposition 6.2], all these
elements u;; (0 < 4,7 < n — 1) are normal. Moreover, by [12, Lemma 6.2], they satisfy
the following relation:

wigtige = &7 g . (5.1)

By Lemma 5.5, Hyg is a normal Hopf subalgebra of H which implies that there is an
exact sequence of Hopf algebras

k — Hopo — H — H — k, (5.2)

where H = H/H H, and by definition Hg, = Hoo[)Kere. As one of basic observations
of this paper, we have the following result.

Lemma 5.6. As a Hopf algebra, H is isomorphic to a fraction version of a Taft algebra
T(ny,...,ng,&) forny,...,ng a fraction of n.

Proof. Denote the image of u;; in H by v;; for 0 <i,j <n — 1. Due to H is bigraded,

n—1 n—1
H= P Hy= P k.
,§=0 4,j=0

Let g = v11. Then by (a), (b) and (e) of [12, Proposition 6.6], which are still true even
H is not regular, these elements v;; can be chosen to satisfy
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9" =1, vi=g", 0<i<n—1), vy=gvy— 0<i#j<n-—1)
and

V=0, (0<i#j<n—1).

Moreover, one can use (1), (4) and (5) of Lemma 2.9 and the axioms for a coproduct to
show that g is group-like and

A(viz) = vi; ® vij + vy @ vj; + Z s ® Vg =g Qi + vy ® g7 + Z Hvis @ vy
s, Py
for some ¢, € k and 0 < i # j <n — 1 (see also [12, Lemma 6.5] for an explicit proof).
Using this formula for coproduct, it is not hard to see that H is a pointed Hopf algebra
with G(H) = {¢'|0 <i <n—1}.
Let Fﬁ = EB;L:_Ol ﬁij and then through inheriting the strongly graded property of H,
we know that H = @?;01 Fﬁ is strongly graded. We want to consider the subalgebra

Fé = @;:01 kuvy;. For this, we take the following linear map
7' H — kG(H), vij — 6;;0ij.
At first, we prove that 7’ is an algebraic map. For this, it is enough to show that
ViV, = 0

for all ¢ # j with i + k = j + 1 (mod n). Assume that this is not true, then v;juy =
avitk, j+1 for some 0 # a € k, which is invertible by v;; = ¢* for all 0 < i < n — 1.
But this is impossible since v;; is nilpotent. So, 7" is an algebraic map. In addition, the
formula for the coproduct implies that 7’ is also a coalgebra map. Therefore, 7’ is a
Hopf projection. Using the classical Radford’s biproduct (see Subsection 2.4), we have
the following decomposition

H = Hy#kG(H).

By [7, Theorem 2], ﬁé is generated by skew primitive elements, say z1,...,zs (we ask
that 6 is as small as possible). Moreover, by the proof of [7, Theorem 2] we know that
gr;g~! € ka; for (1 <i < 0). So, equation (5.1) implies that up to a nonzero scalar z;
equals to a vg; for some j. In one word, we prove that the subalgebra ﬁé is generated
by vonys - .-, Von, Which are skew primitive elements.

Claim: nq,...,ng is a fraction of n.

Proof of the claim: Let e; be the exponent of n; for 1 < ¢ < 6. We find that e; is the
smallest number such vg;, = 0. Indeed, on one hand it is not hard to see that vg;, =0
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since by definition vg}, € Hy = k and Vpp, is nilpotent. On the other hand, assume

g

that there is [ < e; which is smallest such that véni = 0. Then

l
N I dr 1o
0= A(Uom)l = (1 @ Von,; + Von, @ g I)l = Z <k> Ugni ®g i k)vénf
k=0 e?

which implies that ( : ) =0foralll <k<I[-—1 and thus f”? must be a primitive

2
é’ﬂi
lth root of unity. Now we consider the element vg ;,,, which is not 1 by the definition of [

(explicitly, n { In; since | < e;). Thus the elements ¢’ := ¢'™, x := vy 1, generate a Hopf
subalgebra satisfying

Jr=z¢, Alx)=10zr+21(g.

(We need prove these two relations. The relation ¢’z = xg’ is clear. The proof of A(z) =
1®x+z® g is given as follows: Lifting these vg; to H, we get the corresponding
elements ug; for 0 < j < n — 1. Due to [12, Proposition 6.2], they are normal and
thus ub, = f(z)uo,m, for some 0 # f(z) € Hoo. By the claim in the proof of the next
proposition, that is, Proposition 5.7, ug,, is a skew primitive element. Using the fact that
5"? is a primitive [th root of unity, ufmi is still a skew primitive element. This implies
that A(f(z)uo,mm,) and thus A(ug ;) € Hoo @ Hoin, + Ho in; @ Hin, in;- Therefore, vg i,
has to be skew-primitive.)

It is well known that a Hopf algebra satisfying above relations must be infinite di-
mensional (in fact, a infinite dimensional Taft algebra) which is a contradiction. Thus,
e; is the smallest number such vg;, = 0.

Now, we want to show that (e;,n;) = 1. Otherwise, let d; = (e;,n;) > 1. Therefore,
we consider

A(Uom)?Z = (1 ® von, + von, ® gni)ﬁ-

By definition, e;/d; is coprime to n; thus coprime to n?. This implies that 5"? is a
primitive e;/d;th root of unity. Therefore,

e

Avo,) % =1® vy + g™

&

eq
ei/d; d;
® /UOTLi N

P

Since e; is the smallest number such vg;, = 0, v(ﬁi # 0. This means that we go into
the following situation again: Let ¢/ = g™¢/% gz = vgg/i % then the Hopf subalgebra
generated by ¢', x is infinite dimensional. This is impossible.

Next, we need to prove the conditions (2) and (3) of a fraction (see Definition 3.1).
Clearly, conditions (2) and (3) is equivalent to say that every vg; can be expressed as a
product of vop, ;- - ., Vo n, uniquely (up to the order of these vg ,,’s due to the community
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of them) for all 0 <t < n—1. Since we already know that vgy,, .. Uom, generate the
whole algebra H, o it is enough to prove the following two conclusion: 1) Uom . v(me #0
forall 0 <13 <e; —1,...,0 <lyp < ey —1; 2) the elements in the set {v Oy vOn9|0 <
l1 <ep—1,...,0 <ly <eg—1} are linear independent. Of course, 1) is just a necessary
part of 2). However, we find that they help each other. To show them, we introduce the
lexicographical order on A = {(l1,...,0p)|0 <13 <e; —1,...,0 <ly < ey — 1} through

(I, lg) < (I, 1) & exists 1 < i <O s.t. Iy =1 forj <iandl; <.

Now let S = {(s1,...,580) € Alvgy,, - vos, 7 0}. Clearly, S is nonempty due to vo,, #
0foral 1 <i< 9. We prove that all elements {vg},, ---vgs,l(s1,...,50) € S} are
linearly independent firstly and then show that S = A. From this, 1) and 2) are proved
clearly. In fact, assume we have a linear dependent relation among the elements in

{V0n, **Vomel (515 - -+ 89) € S}. Then there exists a linear combination
by 02 lo —
aiy,... ZGUOnIUOnZ ! vOng o= 0

with a;, .1, # 0and (I1,...,lp) is as small as possible. Taking the coproduct to the above
equality and one can get a smaller item involving in a linear dependent equation That

is a contradiction. Next, let’s show that S = A. Otherwise, there exists v0n . vffne =
0 for some (l1,...,lp) € A. Then take (I1,...,lp) as small as possible under above

lexicographical order. Without loss generality, we can assume that {; > 0. Then take a

k1 such 0 < k1 < [1. In the expression of A(qun1 . véen ) on can find the coefficient of

11 m lo

the item vy ® gklmvomvér‘;m © Uy, 18

which is not zero since we already know that §"§ is a primitive e;th root of unity. This
implies that either Uélnjkl =0or U(’;}hvéﬁm végne = 0 by the linear independent relation
we proved. But both of them are not possible. Therefore, S = A. So 1) and 2) are proved.
The proof of the claim is done.

Let’s go back to prove this lemma. Until now, we have proved that the Hopf algebra

H is generated by vgn,, - .- ,Von, and g such that ni,...,ng is a fraction of n and

n ng — [ —
9" =1, von,g=E&" guon,, Von;Von; = Von;Von;, Von, = 0

and g is group-like, vy, is a (1, g"*)-skew primitive element for all 1 <4, j < 6. Therefore,
we have a Hopf surjection

T(nl,...,ng,f)—>ﬁ, Yn; > Vonygy §— ¢, 1 <i0<6.

Comparing the dimension of them, we know that this surjection is a bijection. O
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With help of this lemma, we are in the position to give the main result of this sub-
section now.

Proposition 5.7. Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp1),
(Hyp2) and n := ord(w) = min(w) > 1. Retain all above notations, then

(1) If H is additive, then it is isomorphic to a fraction version of an infinite dimensional
Taft algebra T'(n,1,&) of Subsection /j.1.

(2) If H is multiplicative, then it is isomorphic to a fraction version of a generalized Liu
algebra B(n,w,~) of Subsection 4./.

Proof. Before we prove (1) and (2), we want to recall some basic facts, which are still valid
in our case, on the coproduct from [12, Proposition 6.7]. The first fact is that g := uq; is
a group-like element and u;; can defined as u;; := ui, (see (a) of [12, Proposition 6.7]).
By (1) of Lemma 2.9, in general one has

Aluig) =Y C(uis @ )
s,t
for CZ{ € Hyo ® Hop and 0 < 4,7,8,t < n — 1. The second fact is C;% =0 when s # t

(see (6.7.5) in the proof of [12, Proposition 6.7]). Therefore, the coproduct for u,;; can
be written as

A(u”) = C’ffgl duij + C;zu” & gj + Z C’;{;uis ® Us; (53)
oy
for all 0 < i,j < mn — 1. Now by Lemma 5.6 we can assume that H = T'(ny,...,ng,£).

Then we get the following observation.
Claim. For all 1 <i < 0, the element ugn, s a (1, g™ )-skew primitive element.

Proof of the claim. By direct computation,

(Id @A) A(uon, )

= (Id ®A)(C(%“1 & Uon, + Cg:lﬁi“Om ®g" + Z Cliugs ® tgn,)
s#0,m;
= ([A@A)(CHi)1 @ (Cop 1 @ ton, + Cog o, @ g™ + Y Cugs @ Un,)
s#£0,n;
+ (Id @A) (CY™ Juon, ® g™ x g™ + > (Id@A)(CU)ugs @
s#0,n;
(C579° ® usn, + Crtsn, @ g™ + Z Gt tust © ten,]

t#s,mn;

and
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(A @ Id)A(uon,)

= (A@Id)(CO1 ® ugn, + CR% ton, @ g™ + Y Colugs ® tgn,)
s#0,n;

= (A ®1d)(Cop) 1 ® 1@ ugn, + (A @ 1d)(CR7% )[CO6 1 @ uon,

+ O on, ® g™+ D Uos @ Ugn,] @ g™
s#0,n;

+ ) (AR IA)(CU)[COL @ uos + Coiuns @ g° + Y Cotior @ turs] @ tgn,.
s#0,n; t#0,s

By associativity, we get the following identities:

(Id @A) (CH) (1@ CHy) = (A @1d)(Coe)

Id®@A)(Cor ) (1@ Cm ) = (A ®1d)(Co% )

Id@A)(CY% ) = (A®IA)(CI% ) (Co™ @ 1)

(Id @A) (CHr (1 @ COM) = (A ®1d)(CY)(CHs @ 1) (5.4)
(Id®A)(C) (1 ® C:™) = (A @ Id)(C2)(C% © 1) (5.5)

for s # 0,n;. From the first three identities, we find that ng” Comi = 1 by using the

nin;

same method given in [12, page 297]. This indeed implies that
COO - Ctott - 1

for all 0 <t < n — 1 since we have the same first three identities just through replacing
n; by t.

Recall again the dichotomy of Hog: either Hyg = k[z] or Hog = k[z*!]. From this we
know that OO = 7, apy DMk @zl for s # 0,n; and aj™ € k. We just prove our
claim in the case Hyg = ]k[x] since the other case can be proved similarly. By the image
of gy, in H is a skew primitive element,

s,0,m; __
agy - = 0.

Since C3f = Cpf =1 for all 0 < ¢t < n — 1, the equation (5.4) is simplified into

(16 Co) = (A @ Td)(Co)
which implies that a}) 015 — 0 if k # 0. Similarly, the equation (5.5) implies that ag) Oni
0 if [ # 0. Thus, CO’“ =0 for s # 0,n; and ugy,, is a (1, g™ )-skew primitive element for
1 <4 < 6. Moreover, we point out that through the same way given in [12, Theorem 6.7]
one can show that as an algebra the Hopf algebra H is generated by Hyg,g = u11 and
Ugp, for 1 <4< 0.
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(1) Now H is additive with Hypg = k[z]. We already know that g = w11 is group-like
and thus g™ is a group-like in Hyg by the bigrading property. But the only group-like in
Hyg is 1 and thus

g"=1.

Consider the element ug,, for 1 < i < . Through the quantum binomial theorem, ugm
is a primitive element now. This means there exists ¢; € k such that ug, = c;z. Since
H is prime, ¢; # 0. Therefore, through multiplying wug,, by a suitable scalar one can
assume that

€i
Ugp, =T

for all 1 <4 < 6. By equation (5.1), Uon,Uon; = Uon,;Uon, for all 1 <i,j < 6. Therefore,
we have a Hopf surjection

¢>¢ T(E,lag)HHv T =z, yni'_)uOnm g—g,

where n = {ni,...,ng}. Since both of them are prime of GK-dimension one, ¢ is an
isomorphism.

(2) Now H is multiplicative with Hog = k[z*!]. We already know that g = uy; is
group-like and thus g™ is a group-like element in Hyg by the bigrading property. Since
{x%]i € Z} are all the group-likes in Hyo,

for some w > 0 (noting that we can replace z by 7! if w is negative). We claim that
w # 0. If not, then as the proof of (1) we know that ug;, is primitive in Hgo. Hence
ug,,, = 0 which is impossible since H is prime.

Consider the element wug,, for 1 < i < §. Through the quantum binomial theorem,
ugy, is a (1,9%™) = (1, xw%)—skew primitive element in Hgo. Therefore, after dividing
if necessary by non-zero scalar,

U’(e)fm =1- xwe"—:l
for all 1 <4 < 6. Also by equation (5.1), Uon,Uon; = Uon,Uon, for all 1 < 4,5 < 6.
Therefore, we have a Hopf surjection

(rb: B(ﬂawag)g)Ha =T, Yn;, = Uon;,, 9+ 9,

where n = {ni,...,ng}. Since both of them are prime of GK-dimension one, ¢ is an
isomorphism. O
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6. Remaining case

In the previous section, we already dealt with the ideal cases: the case min(7) = 1 and
the case ord(m) = min(7) > 1. In this section, we want to deal with the remaining case:
ord (m) > min(7) > 1. The main aim of this section is to classify prime Hopf algebras
H of GK-dimension one in this remaining case. To realize this aim, we apply the similar
idea used in [32], that is, we first construct a special Hopf subalgebra H , which can be
classified by previous results, and then we show that H determines the structure of H
entirely.

In this section, H is a prime Hopf algebra of GK-dimension one satisfying (Hypl),
(Hyp2) and n := ord (w) > m := min(7) > 1 unless stated otherwise. And as before, the
1-dimensional representation in (Hypl) is denoted by m. Recall that

H= & Hy

1,J€Zn

is Zy-bigraded by (2.3).
6.1. The Hopf subalgebra H

By definition, we know that m|n and thus let ¢ := . We define the following subal-
gebra

ﬁ = @ Hit,jt~

0<é,j<m—1

The following result is a collection of [32, Proposition 5.4, Lemma 5.5], which were proved
in [32] without using the condition of regularity.

Lemma 6.1. Retain above notations.
(1) For every i,j with 1 <i,j <n—1, Hj; #0 if and only if i —j = 0 (mod t) for all
0<i,j<n—1.
(2) The algebra H is a Hopf subalgebra of H.
The key observation of [32] and here is that Hopf subalgebra H lives in an ideal case.
Proposition 6.2. For the Hopf algebra E[, we have the following results.
(1) It is prime of GK-dimension one.

(2) It satisfies (Hyp1) and (Hyp2) through the restriction |z of T to H.
(3) ord(m|z) = min(n|z) = m.
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Proof. (1) For each 0 < i < m — 1, let Hl, := @0<J<m 1 Hit j+. By Lemma 6.1, we
know that H!, = H!, Therefore H = Do<icm-  H!

(2

., is strongly graded and Ho is a

commutative domain. Thus the Lemma 2.11 can be applied. As consequences, H is
prime with PI-degree m. Since H, = H}! is of GK-dimension one and HisZ m-strongly
graded, H is of GK-dimension one.

(2) Denote the restriction of the actions of =L and =" to H by I and I'", respectlvely
Since H = Docicm-_1 H},, we can see that for each 0<i<m-—1andany0#x € H,,

it
(T)"(2) = €z = x

for ¢ a primitive nth root of unity. This implies that the group (I') has order m and thus
7|7 is of order m. We already know that PI- deg(H) = m and the invariant component
H(l) = H} is a domain. So H satisfies (Hyp1) and (Hyp2).

(3) Similarly, |(I'")| = m. We claim that

ThH NIy =1.
In fact, if (T'*)? = (I'")? for some 0 < 4,7 < m — 1. Choose 0 # = € Hy, we find
i = (1) () = (I (0) = €'
which implies ¢ = j. Let 0 # y € Hy, then
y= ") (y) =" (y) =€y

forces j = 0. Thus we get i = j = 0, i.e., (I') N (I'") = 1. This implies that min(r|;) =
m. 0O

Corollary 6.3. As a Hopf algebra H is isomorphic to either a faction version of infi-
nite dimensional Taft algebra T(m,1,&) or a fraction version of generalized Liu algebra
B(m,w,).

Proof. This is a direct consequence of Propositions 5.7 and 6.2. O

This corollary implies that either Hoy = k[z] (i.e. H = T(m,1,£)) or Hog = k[z*!]
(i.e. H = B(m,w,7)) again. That is, we go back to a familiar situation that we have a
dichotomy on H now.

Definition 6.4. We call H is additive (resp. multiplicative) if Hoy = k[z] (resp. Hop =
k[z*1]).

We realize that the [32, Proposition 6.6] is also true in our case and we recall it as
follows.
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Lemma 6.5. Every homogeneous component H; ;i of H is a free Hog-module of rank
one on both sides for all0 <i<n—1and0<j<m—1.

From this lemma, there is a generating set {u;;+;+/0 <i<n—-1, 0<j<m-—1}
satisfying

ugo =1 and H; 50 = Ui ivjeHoo = HoolUs,itjt-

So, H can be written as

H = @ Hoowiivje = @ Ui i+5tHoo- (6.1)
0<i<n—1 0<i<n—1
0<j<m—1 0<j<m—1

6.2. Additive case

If H is additive, H = T(m,1,£). Recall that n is the m-order and n = m¢. We will
prove H is isomorphic as a Hopf algebra to T'(n,t,(), for ¢ some primitive nth root of
1. Recall that

H = T(m7 175) = ]k<gﬂym17 . 'aymg|gm = 17ym19 = émlgymﬂymlymj - ymjymia
Yy = Y, 1 <4,5 <0),

here by Proposition 4.3 we assume that (mq,...,mg) = 1 without loss of generality. Note

that H = @ocicn1.0<jcm—1 Hiitjts H = @ogi jem—1 Hitje and Hijo = Klyst lyj-ig"
(the index j — i is interpreted mod m). In particular, Hoo = kys! |, Hoj: = klygt, |y,
and Hy; = Ik[yiil]g.

By Lemma 2.9 (5), e(u11) # 0. Multiplied with a suitable scalar, we can assume that
€(u11) = 1 throughout this subsection. The following results are parallel to [32, Lemma
7.1, Propositions 7.2, 7.3]. Since the situation is changed, we write the details out.
Lemma 6.6. Let u := uyy. Then H{ = H(l)u, H = @ng@_l Hu* and u is invertible.
Proof. By the bigraded structure of H, we have

HomeH11 C© Higvmits  Hoe;—1)ymitH114mt © Hig,
which imply

Hom;tHo,(e;—1ymstH1,14mit © HomgeH1r © Hi14mge,

forall 1 <i<6.
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Since Hom,tHo,(e;—1)ym,t = Ysi, Hoo is a maximal ideal of Hoo = K[yt | = klys: | and
Hi 14m,: is a free Hyp-module of rank one (by Lemma 6.5), Hom;tHo,(e;~1ymst H1,14m;t
is a maximal Hyo-submodule of Hy 14pm;¢+. Thus

€4 _
Ho.mtH1i1 = Hom;tHo,(e;—1ym; e H1,14mit = Yo, H1,14mge 08 Ho e H11 = Hi14mt-

If HomieH11 = ygi, Higpmge, then g, uin = yii a(ysi Jut,14m,¢ for some polynomial
a(yy,) € Ky, . So

Ym, (W11 — yﬁfla(yfrii)ul,wmit) =0.

Therefore, yg: (w11 — yf,;’:la(yf,;i)uljl_s_mit) = 0. Note that each homogeneous H; ;4 is
a torsion-free Hyp-module, so

e;—1 e
u1r = Ypi (Y ) UL 14t

By assumption, e(uj;) = 1. But, by definition, €(y,,,) = 0. This is impossible. So
Ho pm,+H11 = Hi 14m,;: which implies that Ho y,cu11 = Hi14m,¢-

Since above i is arbitrary, that is 1 < ¢ < 6, we can show that Hg jiu11 = Hy 145 for
0<j<m-—1 Thus H = Hluy;. Since H = @Ogjgnfl Hjl is strongly graded, wqq is
invertible and HJI = Hjul, for all 0 < j < n—1. Let u := uy1, then we have

H = @ Hu*. O

0<k<t—1

We are in a position to determine the structure of H now.
Lemma 6.7. With above notations, we have
ut = 9, Ym,u= Cmiuymi (1 << 9)7

where  is a primitive nth root of 1.

Proof. For all 1 < i < 0, by Hom,tu = wHom,:, there exists a polynomial 3;(ysi ) €
klyy:,] such that

Ym, U = uymzﬁl(yfﬁl)
Then
ymiut = utymiﬂ;(yfrzl)

for some polynomial 3;(y5i ) € k[yg ] induced by B(ysi ). Since u' is invertible and
u' € Hyy = Kklyi lg, u' = ag for 0 # a € k. By assumption, €(u) = 1 and thus a = 1.
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Therefore,

u’ =g.

Since Ym,g9 = ™ gYm,, we have Bi(yyi.) = ™. Then it is easy to see that B;(ys: ) =
¢ € k with ¢! = ¢™i. By assumption, (m1,...,mp) = 1 and thus there exists ¢ € k such
that ¢t = ¢ and (™ = (; for all 1 < i < 0. Of course, (" = 1.

The last job is to show that ¢ is a primitive nth root of 1. Indeed, assume ( is a
primitive n'th root of 1. By definition, m|n’|n and n’ # n. Therefore, it is not hard to
see that

W =u" € C(H)

the center of H. Since g™ = u” = (v/)»" = 1, we have orthogonal central idempotents

o1 . . e . . :
L= ¢ bUu) for 0 <1 < - — 1 and ¢ a primitive -th root of unity. This

contradicts to the fact that H is prime. O
Lemma 6.8. The element u is a group-like element of H.

Proof. First of all Hj = k[z] & H}. Then H} ® H} = k[z,y] and the only invertible
elements in H§ ® H| are nonzero scalars in k. Since A(u) and u ® u are invertible,
A(u)(u ® u)~! is invertible (and hence a scalar). Thus u must be group-like by noting
that e(u) =1. O

The next proposition follows from above lemmas directly.

Proposition 6.9. Let H be a prime reqular Hopf algebra of GK-dimension one satisfying
(Hyp1), (Hyp2) and ord(m) = n > min(n) = m > 1. If H is additive, then H s
isomorphic as a Hopf algebra to a fraction version of infinite dimensional Taft algebra.

6.3. Multiplicative case

If H is multiplicative, then H = B(m,w,v) for m = {my,...,mg} a fraction of m, v
a primitive mth root of 1 and w a positive integer. As usual, the generators of B(m,w, )
are denoted by 2%, ¥, ..., Ym, and g. By equation (4.6) and [32, Remark 6.3], we can
assume that H = @Ogi,jgmfl Hit j+ with

Hi e = }k[fil]yj—igi

(the index j — 4 is interpreted mod m). In particular, Hoo = k[z*1], Ho j; = k[zt!]y;
and Hy, = k[z*]g.

Set u; 1= u1,145:(0 < 7 < m — 1) for convenience. By the structure of the bigrading
of H, we have
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Ym,;Uj = ¢mi1jumi+j (62)
and
UiYm; = Pm;,jUm;+j (63)

for some polynomials ¢, j, Pm,.; € k[zt!] and 1 <i <0, 0 <j <m— 1. With these

notions and the equality y;; =1 — x =, we find that

e;my

(1 =27 Juj = ypi w5 = iy, i Pmsmits = Prs(es—1)miti Uy (6.4)
and
uj(l - xw%) = ijf,;i = Pm;,iPmimi+i " Pmy,(ei—1)m;+5iUjs (65)

forl<i<fand0<j<m-—1.
Lemma 6.10. There is no such H satisfying ord(r) = n > min(7) =m > 1 and n/m > 2.
Proof. Since u;Hoo = Hoou;, we have
wjr = oj(zYu; and  wzt = B (aFuy
for some a;(z*1), B;(z*1) € k[zt!] for 0 < j < m — 1. From
uj = wjre”t = (a7 uja ! = oy (@) (w

we get aj(zF!)B;(xF) = 1 and thus a;(zt!) = \;j2% for some 0 # \; € k,0 #
aj € Z. Note that u’ € Hy (111 = k[z*']yj9, where jt = jt (mod m). So we have
uf = 'yj(a:il)yﬁg for some 7;(xz*!) € ]k[xil]. Hence
ujr = \jx%u; to uir = ruf, we get \; =09 g and 7% = z. If ¢ is odd, a; =1 and if
t is even, then a; is either 1 or —1.

Now we consider the special case j = 0. By e(zug) = e(upz) # 0, we find that \g = 1.
If ap = 1, that is ugpzr = zug, then we will see ujz = zu; for all 0 < j < m —1. In fact,

commutes with z. Applying

for this, it is enough to show that wu,,,z = zu,,, for all 1 <4 < 6. Since

Om; 0TUm; = TPm,; 0Um; = TYm,; U0 = YTU) = Ym, U0T = P, 0Um, T,

we have U, = Tuy,, since Hy 14m,: is a torsion-free Hyp-module. Then by the strongly
graded structure u; ;4 € H! = (H{)" and z is commutative with H!, it is not hard to
see that u; 44T = Tu; 45 for all 0 < i < n —1,0 < j < m — 1. Therefore the center
C(H) 2 Hyo = k[z*!]. By [12, Lemma 5.2], C(H) C Hy and thus C(H) = Hy = k[z*!].
This implies that
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ranke gy H = rankg,, H = nm < n?,

which contradicts the fact: the PI-degree of H is n and equals the square root of the
rank of H over C(H).

If ap = —1, that is upx = 2 'ug, we can deduce that Ui it jt T = x_lui’iﬂ»t for all
0<i<n—1, 0<j<m—1 by using the parallel proof of the case ag = 1. For s € N,
let zg := 2% + 7. Define k[z4|s > 0] to be the subalgebra of k[z*!] generated by all
zs. Note that k[z*1] has rank 2 over k[zs|s > 1]. Thus C(H) 2 k[zs|s > 0]. Using [12,
Lemma 5.2] again, we have C'(H) = k[zs|s > 0]. Hence

ranko gy H = 2nm # n?

since n/m > 2 by assumption. This contradicts the fact that the PI-degH = n again.
Combining these two cases, we get the desired result. O

We turn now to consider the case: ord(r) = 2min(7) = 2m. In this case, t = 2. As
discussed in the proof of Lemma 6.10, if such H exists then the following relations

wjz =z tu; (0<i<m-—1) (6.6)

hold in H. Using these relations and (6.5), we have

e;m;

Pmi,iPmimi+i " Pma,(ei—1)mi+j = l—a % m ) (67)

forall 1 <i<#and 0 <j<m— 1. To determine the structure of H, we need to give
some harmless assumptions on the choice of u; (0 < j < m —1) and ¢, ;:

(1) We assume €(ug) = 1.
257 X

(2) Foreach 1 <i <6, let & :=e“ m and thus 1 — ¥ Tmt = Mes, (1 =& sx), where
Si:={0,1,-- ,w&m — 1} Since

€;myg

d)mi’j T ¢miv(ei_l)mi+j = yfe?“lu =1—a¥",
there is no harm to assume that
¢mi7tmi+j = HSESi,j‘t(l - §i7sx)v

where S; ;; is a subset of S;.
(3) By the strongly graded structure of H, the equality H) = H}g and the fact that g
is invertible in H, we can take uy rp42; such that

g7 u; ifk is odd,
Uk k+2j = -k
ygz if k£ is even,

forall 2 <k <2m — 1.
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In the rest of this section, we always make these assumptions.

We still need two notations, which appeared in the proof of Proposition 4.12. For a
polynomial f = Y a;2% € k[z*'], we denote by f the polynomial 3 a;z~%. Then by
(6.6), we have fu; = u;f and u;f = fu; forall 0 <i <m — 1. For any h € H ® H, we
use

h(31,t1)®(327t2)

to denote the homogeneous part of h in H,, +, ® Hy, +,. Both these notations will be used

frequently in the proof of the next proposition.

Proposition 6.11. Keep the notations above. Let H be a prime Hopf algebra of GK-
dimension one satisfying (Hyp1) and (Hyp2). Assume that H = B(m,w,~) and ord(w) =
2min(w) > 2, then we have

(1) mlw, 2|50 (m; —1)(ei —1), 2|30 (e — 1)my; <.
(2) As a Hopf algebra,

H = D(m,d,~)
constructed as in Subsection /.4 where d = .

Proof. We divide the proof into several steps.

Claim 1. We have m|w and for 1 < i < 6,0 < j < m —1, Y, Uj = P, jUmitj =
&, 2™ U Y, for d = = and some §m, € k satisfying &i = —1.

Proof of Claim 1: By associativity of the multiplication, we have many equalities:

e, —1 __
Ym; Wi, = Pmai,jPrmimitiPms,2miti " Py (ei—1)mi+i U0

= SDmi,j(bmi,miJrj(pmi,Qerj © Pmy, (e —1)m;+5 U0

= Pmi,iPmimi+jPmi 2mi+j ¢mia(ei71)mi+.ju07

which imply that

¢mixsmi+j<pmi7tmi+j = <pmusmi+j¢mi7t’mi+j (68)

for all 0 < s,t < e; — 1. Using associativity again, we have

iy e;m;

yz;iujyf,—ifei_l) =(1- v Juj(1—a® )ei_1

&M eim;

= —a S (L -0 ey
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e
=—Tr ™ (Sami»jgomi7mi+j90mi’2mi+j T Somiy(ei_l)mi‘i‘j) ‘U
j— . . e e . . €5 .
= (¢mi,j¢mi,mi+j(pmi,2mi+J Somiv(ei_l)mi"r]) U

(‘Pmi,j¢mi,mi+j90mi,2mi+j T ‘Pmi,(eifl)miJrj)ei’u,j

€;
= (gpm'ingpmi7m'i+jg0m'i12mi+j e ¢mi,(€i*1)mi+j) Uss

where the fourth “=”, for example, is gotten in the following way: We multiply u; by
one Y, from left side at first, then multiply it with y,‘i;i_l from right side, then continue
the procedures above. From these equalities, we have

e;mg

¢reri1i,sm7:+j = -z Lpi;i,smﬂrj
for all 0 < s < e; — 1. This implies that
€iMm;
eilw
m

So, m|wm,; for all 1 <4 < 6. Since m is coprime to (my,...,my), we have

mlw.
So Gy smiti = gmi,smijwdmiQDmi,STﬂHrj where d = ﬁ and &m, sm,+5 € k satisfying
576,; smid) = —1. We next want to prove that &, ¢m,+; does not depend on the number

sm; + j. In fact, by equation (6.8), we can see &, smi+j = &my tmi+j for all 0 < s,t <
e; —1, and so we can write it through &,, ;. Now consider for any 1 <14’ < 6, by definition
we have ¢, 0Um, = Ym, uo- Therefore

Ym; Ym,;, Yo = qj)mi/,Oymiumi/

— m;d
- d)mi’ ,Ogmi,mi/ T umjl ymL bl

and

Ym;Ym,; U0 = Ym, Ym,; U0
= gmi,Oxmidymi/UOymi
= ¢)mi/,0§mi,0xmidumi/ymi-
S0, &m0 = &mi,m, which indeed tells us that &, ; does depend on j (due to j is

generated by these m;’s) and so we write it as &,,. O
In the following of the proof, d is fixed to be the number w/m.

Claim 2. We have ujg = \jx~2lgu; for \j = +v9 and 0 < j <m — 1.
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Proof of Claim 2: Since g is invertible in H, ujg = 1;gu; for some invertible 9; € k[z*!].
Then u;g™ = g™ u; yields ¢ = 272, So ¢; = A\jz~ 24 for \; € k with AT'=1. Our
last task is to show that A; = £v7. To show this, we need a preparation, that is, we need
to show that wju; # 0 for all j, . Otherwise, assume that there exist jo,lo € {0,...,m—1}
such that u;,u;, = 0. Using Claim 1, we can find that u;,u; = 0 and u;u;, = 0 for all j, [.
Let (uj,) and (u,) be the ideals generated by wuj, and w;, respectively. Then it is not
hard to find that (uj,)(u;,) = 0 which contradicts H being prime. So we always have

ujup # 0 (6.9)

forall 0 <jl<m—1.

Applying this observation, we have 0 # uf € Hy 2145 = k[zH ]y 9, ufg = wjz/}_jguf =
v* gu3. Thus 1h; = £y7z~2¢ which implies that A; = +77. The proof is ended. 0O

We can say more about A; at this stage. By 0 # ujug = v/ guju;, we know that
;=972 for all j or ¢p; = —y7z 2% for all j. So

Nj=97 or \j=—7 (6.10)

for all 0 < j < m — 1. In fact, we will show that ¢; = y72=2¢ for all j later.

Claim 3. For each 0 < j < m — 1, there are fj;, hj € k[x*Y] with h;; monic such that

=

m—

Aluy) = Firue @ hjrg*u;_, (6.11)
k=0

where the following j — k is interpreted mod m.

Proof of Claim 3: Since u; € Hy 1425, A(u;) € Hi @ Hi,; by Lemma 2.9. Noting that
H! = @Zl:_ol Hoouy, and Hi 5; = @2;_01 Hypg’uj—s, we can write

Alu) = > Fl(u®g°u; ),
0<k,s<m—1

where F’ ,g s € Hop ® Hyg. Then we divide the proof into two steps.

o Step 1 (A(us) = D p<k<m—1 Fiy(ug @ ghuj 1)) ' '
Recall that ujg = \jz~2%gu;, where \; is either 47 for all j or —47 for all j. The

equations
Alujg) = Aw)A(g) = Y Fl(ur@g°u;_)(g®g)
0<k,s<m—1
= > Pl Mgu oo g )
0<k,s<m—1

Z ANedj—s(z™ g @ 27249 F] (up ® g ui—s)
0<k,s<m—1
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and

A()\j(ﬂ_ng’U,j) = )\j($_2dg ® iU_ng) Z F]gs(Uk 024 gSUj,s)
0<k,s<m—1

= Y NeMgea ) F] (u©g'u;)
0<k,s<m—1

imply that \; = A\gAj_s for all k,s. If \; = —+J for all j, then we have —y7 = \; =
AeAj_s = yRTI=5. This implies k = s &= m/2. Applying (e ® Id) to A(u;),

(e@Id)A(u;) = (e® Id)(Fg, m/Q)gm/zujfm/Q # Uy,

which is absurd. If \; = 47 for all j, then 7/ = \; = A5 = ¥¥77 75, This implies
k = s (which is compatible with the equality (e ® Id)A(u;) = u;). So we get FJ_ # 0
only if k = s and \; = 77 for all j. Thus we have A(u;) = > qcpem_1 F,gk(uk ® gFuj_)
for all j. -
o Step 2 (There exist fji, hjr € Hoo with hj; monic such that ng = fjr ® hj for
0<jk<m—1).

We replace F ng by F; 1}7 for convenience. Since

(AI)A(u,) = (ARId)( > Fl(ur @ g*u;x))

0<k<m—1

= Y AI)FD( > Flus®g'ur—s) @ gru;x)
0<k<m-—1 0<s<m—1

= Y (AQI)(F])(FF@1)(us @ g°up—s @ g"u; )
0<k,s<m—1

and

0<k<m-—1
= > @A) FD)we( Y, Fe*u, @ e )
0<k<m—1 0<s<m-—1
= Y (e F)A© FZ)(u ® g ur—s © ghuj_p),
0<k,s<m—1
we have
(A @ )(E))(FF 1) = ([deA)(F) (1o F=) (6.12)

forall 0 < j,k,s <m—1.
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Begin with the case j = k = s = 0. Let F)) = Zp q kpgx? ® 2. Comparing equation

(AR (EF)(FS @1) = (O kpga? @ 2? @ 29) kaxp @z ®1)

p,q

= ( Z kqup,q,xp-‘rp s ® 29)

P,q,p’,q’

and equation

(@A) F)(1® FY) = (O kpga? @27 @ 29)(D_ kyyl @2 @a?)

P,q p'.q
/ ’
— ( E kqup,q/xp ® xqﬂ? ® xq+q )7
P,q,p",q’

one can see that p = ¢ = 0 by comparing the degrees of = in these two expressions.
Then F = 1® 1 by applying (¢ ® Id)A to ug. Next, consider the case k = s = 0. Write
Fy =3, , kpg? ® x%. Similarly, we have Fj = 2% ® 1 for some a; € Z by the equation

(A@Id)(F))(F®1) = (IdoA)(F)(1 o F).

Finally, write F,g =>4 Fpgx? ® 29 and consider the case s = 0. Let F] = 2% ®1 and
F} = 2% ® 1. The equation

Zk PP @ 2P @ 27) = (AR TA)(F])(FF @ 1)

= ([ARA)(F)(1 @ FL) = (D kpgz™ @ 2P @ 2)

shows that p = a; — ai, that is, F,ﬁ = x%* @ B some c¢ji € Z, B € Hoyp.
By steps 1 and 2, F} can be written as fj; ® hji with hj;, monic after multiplying
suitable scalar, where fji, hj, € Jk[a:il]. That is,

m—1

Alug) =D fiwur @ hjrgFu;,
k=0

where fji, hji € k[z*!] with hjr monic. O
Since A; =47 for all j has been shown above, we can improve Claim 2 as

Claim 2'. We have ujg = 'yjac_zdguj for0<j<m-—1.
By Claim 2’, we have a unified formula in H: For all s € 7Z,

u;g® = ’yjsx_QSdgsu]. (6.13)
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Claim 4. We have ¢, j =1 — ymmilmiti)gmid — 1 _ 'y_m?(l"’ji):rmid for1<i<0 and
0<3j<m—1.

Proof of Claim 4: By Claim 3, there are polynomials fy;, ho;, such that
Alug) = up @ ug + forur @ ho1gUm—1+ -+ fom—1Um—1 @ hom-19" "u;.
Firstly, we will show ¢, 0 =1 — v’mgxmid by considering the equations

A(ymiu0)11®(1,1+2mi) = A(fmifmiduoymi)11@(1,1+2mi) = A(¢mi,0umi)11®(1,1+2mi)'

Direct computations show that

A(ymiu0)11®(1,1+2mi)
= U0 ® Yoy U0 + Y fo. (e 1ymit(es—1yms @ G0, (es - 1yms 9 U (0, 1yms
= U0 ® P, 0Um, + fo,(er—1)m; Prmss(es—1)mi %0 @ T g (0, 1)m U (- 1)ms
A&, 2™ MUY, ) 1101, 142m) = Eme @™ MU0 @ 2™ MUY,

(ei—1)m;

+ gmixmidfo,(ei—l)miu(ei—l)miquz 0y xmidho,(ei—l)mig u—(ei—l)migmi

. 2 - .
- mm1,du0 &® (bmi,Oumi + fO,(eifl)mi(bmi,(eifl)min ® Vm’ x(61 1)Tmbdho,(eifl)miuf(eifl)mi-
Owing to A(ymiu0)11®(1,1+2mi) = A(&m9Cm"'duoymi)11<§<>(1,1+2mi),

(1= 2™y @ G, 0lm,

+ fO,(eifl)mi¢mi,(ei71)miu0 & (xmid - ’sz )x(eiil)midho,(eifl)miuf(eifl)mi
=0.

Thus we can assume ¢p,, o = co(z™d—ym )gle=Dmidpy o for some 0 # ¢ € k.

Then 1 — 24 = _CalfO,(el-fl)mi(bmi,(el-fl)mi' Therefore,
A(Ym,u0)110(1,1+2m;)

=up ® ¢mi,0umi - CO(]- - xmid)uo ® — 3 U—(e;—1)m;

m;d m;d
T d T (bm 0
=u®((l - ——= 0U_(ei—1ym, + XU @ —————5U_ (¢, —1)m,
0 ( pmid _ ’Ym? )(bml,() (ei—1)m; 0 pmid _ »ym? (ei—1)m;
2
2 id
_ ’yml m;d xm ¢mi70
=u ® *Wﬁﬁmi,ou—(ei—l)mi + 27 U ® Wu—(ei—l)mw
¢mi,0

where —"— is understood as cozlei—bmi ho,(e;—1)m, - Note that A(ym,u0)110(1,142m.)

i —y "

= A(m;,0Um; ) 110(1,142m:) = A(Pm;,0)(frm, 0% ® U, ). From which, we get ¢, 0 = 1+
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cx™i for some ¢ € k. Then it is not hard to see that fo,, o = 1, ho,(e;—1ym; = g (ei=Dmid

2 2
and ¢ = —y ™. S0 ¢y, 0 = 1 — 4~ Mig™id,

Secondly, we want to determine ¢,,, ; for 0 < j < m—1. We note that we always have
hjo = fj; =1 due to (¢ ® Id)A(u;) = u;. To determine ¢,y, ;, we will prove the fact

fro=1 (6.14)

for all 0 < j < m —1 at the same time. We proceed by induction. We already know that
foo = hoo = fm,0 = 1. Assume that f; o = 1 now. We consider the case j+m;. Similarly,
direct computations show that

A(ymiuj>11®(1,1+2j+2mi)

=u® Ym,; Uj + Ym, fj,(ei—l)miu(ei—l)m,¢ & gmi hj,(eqy—l)mig(ei_l)mi Um;+j
= U0 @ Py, jUmitj T Ji(ei=1)m; Pmi,(e;—1)m; U0 @ IEimidhjv(ei—l)miumﬁj:
A&, 2™ U Y, ) 110(1,142j+2ms)

= fmixmiduo ® xm’idujymi + gmix"“dfj,(ei—1)miu(€i—1)m1ymi

® zmidh]‘,(ei—l)mig(Eiil)mi Uj—&-mqygmi

= xmiduo ® ¢mi;jumi+j + fj,(eifl)mi¢mi,(ei71)miu0

R i T I R

By A(ymiuj)11®(1,1+2j+2mi) = A(£MixMidujymi)11®(1,1+2j+2mi)a

(1= 2™ Yo @ b, jtim, 15
+ fj,(ei—l)mi¢mi,(6i—1)miu0 ® (xmid . ’Ymi(miJrj))‘T(ei71)midhj,(ei—1)miuj+m,;

=0.

o — o (pmid _ ami(Mmgtg e;—1)m;dy, .
Thus we can assume ¢, ; = ¢;j(z i (mits))g(ei=1) hj (e;~1)m, for some 0 #

¢j € k. Then 1 — gmid = *Cflfj,(ei—l)miQﬁmi,(ei—l)mi- Therefore

A(ymiuj)11®(171+2j+2mi)
1 xmid

— ) . (1 — pmid il ) )
= U0 @ Gy tim,+j — ¢5(1 = 2™ Do @ c; wmid — ymi(mitd) P tm+j
J

—A (ms+3) Lmid

mid __ ,ymi (m;

— ) ) mid ) )
Ug @ x )(bmiyjumﬂrj +x Up @ - +5) ¢mi7.]umi+]'

mqd _ ,yml(m.ﬁm

Note that A(yYm,uj)nie@112j+2m:) = APmijtmiti)iioi2jt2zm) = AlPm, ;) %
(frmi+5,0U0 @ R, 45,0Um,+;). Comparing the first components of

A(ymUj)11@(1,1+2j+2mi) and A(¢mi 7jumi+]')11®(171+2j+2mi)’
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we get o, j =1— ymilmiti)gmid gimilarly. And it is not hard to see that fmiti0 = 1.
Since here 7 is arbitrary and my, ..., mg generate 0,1,...,m — 1, we prove that f;o =
hjo =1 at the same time forall 0 < j <m —1. O

Claim 5. The coproduct of H is given by

m—1

k(3—Fk)

—kd K
Y U, T "G Uj—k

k=0
for0<j<m-—1.

Proof of Claim 5: By Claim 3, A(u;) = ZZL:_Ol firur @ hjrghuj_i. So, to show this
claim, it is enough to determine the explicit form of every fj; and hj,. By (6.14) and
the sentence before it, fjo = hjo = 1 for all 0 < j < m — 1. We will prove that
fir = 7*U=%) and hj, = x4 for all 0 < j, k < m — 1 by induction. So it is enough to
show that fjjim, = yE+FmIU=k=m) and by gy, = 2~ *+m)d for all 1 < i < 0 under
the hypothesis of fjx = Y*U~%) and h;j, = 27 In fact, for 1 <i <0,

A(Ym; uj)(1,1+2k:+2mi)®(1+2k+2mi,1+2j+2mi)

i k k4+m;
= Ym, ikt @ 97 hing Uj—k + [ ktm Uktm; © YmPjktma g U —k—m,

,y(k"rmi)

_ k+m; ; ktmi
= firYmiuk @ kg " Tk 4 fi kfms Uktm, @ TG kerma 9 Y UG —k—my

m;d
A(Em, 2™ U Y, ) (1,142k+2m) @ (14 2k+2ms 1425 42m.)

id k i
=&, 2" firurYm, @ 2" hirg ui g™

+ fmixm fj7k+miuk+m7‘, @™ h]}k-‘rmig o Uj—k—m; Ym;
j—k)m; .—m;d i+k
_ fjkymiuk ®’7(] )ml‘r m; hjkgmr‘r i

+ ™ fj7k+miuk+mi ® hj7k+m¢g mlymiuj—k—mi .

Since they are equal,

Firymst ® (1 — U= RImigmmadyp g gmithy,

d k N k4m;
= (xml - ’Y( +ml)ml)fj7k+miuk+mi ® hj7k?+mig mlymiuj—k—mi'

Using induction and the expression of ¢, r, we have

,yk(j—k)(l _ ,y—mi(mi+k)xmid)uk+mi ® (1 _ ’y(j_k)mi{L‘_mid).%'_kdgmi-‘rkuj‘,k

’)/k(J k)( ,Y—mi(mi-i-k)xmjd)uk_’_mi ® (l,mj,d o ,y(j—k)mj)m—(k—&-mi)dgmi-&-kuj_k

= (gmid — ylktmams) D gm0

Jikm; Uk+m, ® (1 - 'Yi(jik)mixm

ThlS anhes that hj,k-‘rm,; = gjf(k‘i'mi)d and

k(j—k)— m —m;k+m;j—m;k (k+m71)(j—k—mi). O

Jiktm; =7 =7
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Claim 6. For 0 < j,1 < m — 1, the multiplication between u; and w; satisfies that

7. 2l i (L +1)
(—D)lg iy i ei — 2 = Lilm,Yj+19
1

a

(4
1
Ujup = —T
m j—

K2

for some a € Z and where [—, =), is defined as (3.4) and j + 1 is interpreted mod m.

Proof of Claim 6: We need to consider the relation between u2 and wju,,_; for all
1 <j<m-—1 at first. We remark that as before for any k € Z we write up := u

|

where k is the remainder of k dividing by m. Thus u; = %j m,+.. +jeme and Upy—;

Uler—jr)mi+...+(eg—jo)mo )
By definition, xmid(bmi,smi = —’y‘mi(s‘*l)qui’(ei,s,mmi for all s. Then

€1 ,e2 eg ,,2
ymlymg e ymguo

_ 561 J1 62 J2 .. ,gee*jax(el*jl)mldJru.+(€e*j9)m9dyju0ym P
me -

6
[gml_hm(ﬂ_ﬁ)midd)miﬂ o (bmi,(ji*l)mi]uj H[¢mi,0 T d)mi,(ei*ji*l)mi]um*j
=1

|
VE“’

@
Il
-

id
[ge, —Jiglei=gi)mi Dm0 (bm“ i—1)m; Gmi0 .¢mi7(5i7ji71)mi}ujum7j

|
::]cb

.
Il

e i o2 (ei—di)(ei—di+1)
[(_1>eZ 7 f,;i J“y i 2 m;,0 (bm“ (ei—2)m; (bm“ '—1)ml]ujum g

|
.E%

@
Il
—

BY @m0 P (es—2)ms P (es—1ym; = 1 — x¢™id (see Lemma 3.6 (2)), we have

el eg, 2
¢m1,(el—1)m1 T d)me,(eg—l)meyml “Yo Ug

mg

: 2 (e;—di)(e;—g;+1)
= H 91—31 "7_ ﬁf}/_mi 2 (1 — J)ei’med)¢m. (j.fl)m.]ujum—j

Due to y& =1 —z%™i% we get a desired formula

% 0
2 — i rei—gi o — 2 (ej—ij)(ei—ji+1)
[0, ccimvymJui = TTI(=1)= g5 iy > Drns, (s —1ym | U Um—j -

i=1 i=1
(6.15)
Since uZ, ujum—; € Hay = klzF!]g, we may assume u3 = apg, ujum,—; = a;g for some
g, € k[zF forall 1 < j <m — 1.
Then Equation (6.15) implies ag = ozH?:l[qu“o “+ Gy (es—2)m; ] for some a € K[zt
We claim « is invertible. Indeed, by
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0 0
e i o2 (ei—di)(ei—di+1)
[Tém. cc-vymJao = JJI(=D) g5 7y 2 P (= 1)ms |5
i=1 i=1
we have
0 (ei=di)(ei =3 +1)
Y. e e 2(ej—J34)(ei—J4 . .
a; = [JI(=1)7 g ey 2 lii = 1, Ji = 1m, e
i=1
Then
m—1
Hyy - Hip + Z Hyjapo5 - Hiji2(m—j) © oz,
j=1
By the strong grading of H,
m—1
Hyy = Hiy - Hiy + | Hingoj - Higom—y),
j=1

which shows that a must be invertible. Since €(ag) = 1, €(¢m;,0 - P, (e;—2)m,;) = €; and
m=ej - eg, We may assume qg = %xa Hf:1[¢mi70 P, (ei—2)m,) for some integer a.
Thus

0
1 i 2 (e;j—gi)(ei—di+1) . | .
Wity = —a (=17 g™ =2 = 1= 1l ] 9.

i=1

Now
Yi yzu(z)

= H§ 2l iy gy

I
, .
s |

I

6
i limid
[ nlzlx i ¢mi;0¢mi;mi : ¢mz,(h*1 )ym; u] H ¢mi70¢mi7mi U d)miy(li*l)mi]ul
=1

=1
0
l; lim;d
= H[ m; T T 0 ‘Z)mh(yﬁl (Dm0 '(bmi,(lﬁl)mi}ujul
=1
0 i ¢l 21 Lyl +1) + )
= H[(_l) ) mﬂ qu“ '¢mi7(ji*1)mi¢mi,(ei*2)mi t (bmi,(ei*l*li)mi}ujul

©
Il
=

For each 1 < i < 6, we find that
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(bmi,O e ¢m1,(j,—l)m7 ¢m,j7(e,j—2)m7j e (bmi,(ei—l—li)mi
¢mi,0 e (bmi,(jifl)mi(bmi,(eiflfli)mi e ¢mi,(ei72)mi7 if .7’L + ll S €; — 2
Dm0 Py, (ei—2)mis ifj;+1li=e —1
d)m,',,O e ¢m¢,(ji—1)mi¢m¢,(ei—1—li)mi e d)mi,(ei—l)mia if .71 + lz Z €.

Using the same method to compute u;u,—; given above and the notations introduced
in equations (3.3) and (3.4), we have a unified expression:

1 e—li m2 it
Ujup = Ewa H(_l)llfmlihym Uirei = 2 = Lilm,Yj+19
i=1
1 a ’ i ¢—1;  m2Llitl) -
= E.’E H(—l) ‘ mi“}/ ¢ 2 ] -1- li)ji - 1[mzy]+lg
i=1

foral0<jl<m-—1. 0O

. ; 2450 (ei—1)m;
Claim 7. We have &2, =~™, a = —Md and
2P q" 1 ]1 i 7m27]’(“+1) Jimid —jim;
S(uy) = H V€l almidg =i,

foro<ji<m—1 andb:(l—m)d—wd.
Proof of Claim 7: By Lemma 2.9 (3), S(H;;) = H_; _; and thus S(ug) = hg™ ‘ug for
some h € k[z*!]. Combining

S(Ymiuo) = S(10)S(Ym,) = hg™  uo(—Ym, g~ ™) = =& a T g™y g™

= gyl ey g = g by g T G
with
S(Ym, o) = S(dm, 0tm,) = S(tm,)S(dm,0) = Pm. 05 (Um, ),
we get S(um,;) = —5,;}7*m?xmidhgm*1’mi U, . The computation above tells us that we

can prove that

2343 (3;+1)

S(Uj 7hgm IH jlé' ]1 —m; 7xj-;midgfjimi]uj

by induction. In fact, in order to prove above formula for the antipode it is enough to
show that it is still valid for j +m; for all 1 <4 < 6 under assumption that it is true for
j. By combining
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S(ymiuj>
= S(UJ)S(ymz)

_ c s o 2ds(Us+D) —j —m;
hg™ [0 & 0ey ™m0 aemed g I Juy (— g, ™™

2 Js(ds+1)

0
e T il ) ([ D i e

_ =1, —m;dy , m—1 Jog—jon—m2isUstD) 5o 4 —jom, —m2j;, 2m;d, —m;
= —Lata ™ g H[(—l) ey T g e d gy g mid g Ty

_ 1 M dhgm 1 H 5wl‘jsmsdg—jsms],y—m?(ji+1)g_m77ym,u]'

1

—1,.m;dy, m—1 s o—js o —m2islstD) msd —Jsm —mj (ji+1) ,—m
- _ mix 3 hg H[(_l)ﬁsé‘mjss,y s 5 :L.Js s g 7 s],-y (Jt ) ’L¢m1,]uj+m1
s=1

with
SWmiug) = S(Dm, jtjtm,) = S(Uj4m,)S(Pm, 5) = Gmi 3 S (Ujtm,),
we find that
S(wjtm,)
— pgm! ﬁ[(fl)mmi)s nzgﬂmi)wfmf:‘%;wz<j+mi>smsdgf<j+mi>sms]uj,
s=1

In order to determine the relationship between £ and v, we consider the equality
(Id %S) (tm,;) = 0. By computation,

(Id +5) ()

3

AL _j)ujS(x_jdgjumi,j)

<
I
o

3
L

2 (mi—4)s((m;—4)s+1)
s 2

0
,Yj(mi _j)ujhgm_l H [(_1)(mi—j)s§;EMi—j)s,y—m

7=0 s=1
m;—7)smsd —(m;—7)sms jd
p(mi=7) g~ (mi=9) | T
m—1 0 ) N
_ ,_ij(mifj)ﬁujgmfl H[( )ml 7). g (ml ])s 2 iz )s(mi—g)atl)
j=0 s=1

m(mi_j)smsdg_(mi_j)sms]ry(mi _j)jmjdg_juml_
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m—1 6
N — R (s —i _m2mi—i)s((mi—j)s+1)
= hujgm 1H[(_1)(m1 j)sgmgml J)Sfy s 2 ]
7=0 s=1
A
m—1 6 ) ]
_ H[(—1>(m1_3)35_(7”‘_])'5'}/_"73 (mi*J)s((gfu‘*J)sﬁ'l)]
ms
j=0 s=1
Ex—m, ,yj( 1—-m;) —2(m 1— m1)dgm 1— mlu]uml J
m—1 6 ) .
_ H[(_1)(mi_j)5§_(mi_j)sfy_mi:’(mz‘_J)s((;"i—J)s‘Fl)]
ms
j=0 s=1
,yj(flfmi)x(72m+2+mi)dﬁgmflfmiujuw“_j
el 5 (my=i)s (my—5)at1)
i—J)s i—J)s A T Je T I j(—1-m;) .(— i)dp m—1—m;
_ H (m —7) mgm 7) v m? 5 ],Y]( 1 m)x( 2m+2+m;) hgm 1-m
j=0 s=1
1 o m? )s (( )s+1)
UL S R m;—j ml s .
—at [J (1) meig, fmmdagm [sr € =2 = (i = §)sJm. Ym. g
s=1
— %'7 ix(—2m+2+mi)d+aﬁgm—miymi
m—1 6
H Q(ml J)g 9=l m1)[] ves — 2= (m; — j)slm.]
7j=0 s=1
_ i,}/ Qx(72m+2+mi)d+aﬁgm7m,;ymi
0 es—1 e;—1
H [Z gfrgsvihmﬂjs - 17js - [m;] Z §2j1 i 1+m1)]¢7 -2 .71 - 1[
s=1,s#1 js=0 7i=0

where Equation (6.13) is used. By Lemma 3.7 (1), each > 7°_, 52357 Jsmslje — 1,45 —
1sn. # 0. Thus

e;—1
(1d%8)(u;) = 0 6 Y €¥iq~mlma]g, — 9 j, — 1, =0,
ji=0

This forces 2, =™ by Lemma 3.7 (2).
Next, we will determine the expression of i and a through considering the equations

(S *1d)(ug) = (Id *S)(ug) = 1.

Indeed,
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(S *1d)(ug)
m—1 ,
= Sy uy)zT g u
§=0
e ji (G +1)
m2 3l . . L
- ,Y—J hg™~ 1H iTx]immdg—.]imi]ujx—Jngu_j
7=0
m—1 R
m 1 H ?Jz(J£+ )]ujuij
j=0 i=1
el m2dilitl) 1
m 1 H mj === ]_xa
j=0 i=1 m
o 2 (=) (=) +1)
— i) e—(—7) 2 73)i8=3)sm 1) ., .
H[(i]‘)( J)lgmg J)lﬁyml 2 ].71 - l?jl - ]-[ml]g
=1
el m2(cileitD)
= —xahgm ST g™ O 0] — 1, i — 1w,
=0 =1
6 e;—1
1 B i
— Exah m( 1)ZL 1(mi—1)(e;+1) ]1 ZO,Y m?2 ]l j —1,j; — 1[
? Ji=

0
1
= —x“hgm(—l)zltl(m'i_l)(ei"'l) H ez®~YUmid by Lemma 3.6 (3))
m i=1

= (—1) Tl (D (eitD) gat X (ei—Dmidtmdy,

(Id %S) (ug)
m—1

= Y ui ST uy)
=0
m—1 -

=3 S )g e
=0
m—1 6

2 (=9)i((=4);i+1)

-2 Voe—(—7q);  —m2i= i\ —d)iTD) —i)am; —(—7)im; 5 a4
_ 77] ujhgmfl H[(il)(ij)lgmg J)z,.y i 3 I'( J)i -Ldg (=) l]u—jg j.TJd

m—1 6

NN » N2 (G (=0) )
— 2 2m)dhgm 1 Z,y JH[( )( ])157715 J)w mj 2 UjU_j
§j=0 i=1
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m—1 0
(=) ((=5)i+1)
wy JTI(=1) g, eymt CRHGRER gty
j=0 4=l
_ m-l 0 , , 2 (=) (=i +1)
= z(2-2m)dp m—1 Z . H[(_l)(_])ié’;g_])ir}/_mi%]
§=0 i=1
1 o 2 (=) ((=3);+1)
—a* H[(q)“ﬂifgﬁﬂwmi T i L= g

m—1 (4
1 _ , ,
= — p@=m)dta] I Hf,f(_])i]ji =1, Ji = 1m,]
- E ;
=0 i=1

— p(2-m)d+a}, (by Lemma 3.6 (1)).

So, (SxId)(up) = (Id %S)(up) = 1 implies h = x_“_2f=1(ei_l)mid_m‘i(—1)Z?=1(m'i_1)(ei_1)
= g(2=m)dta Thyg

0 6 0
a=—d— 2zl 5 Jm and 2| Z(ml —1)(e; — 1), 2 Z(ei — 1)myd.
i=1 i=1
And h = p(1-m)d—= g e . Therefore, for 0 < j < m — 1,
S( — gm 1 H ?7ji(j§+l)xjimidg*jimi]uj

fOTb:(l—m)d—Md. O

9 (e —1)m,
From Claim 7, we know that a = —d — M and we can improve Claim 6 as

the following form:

Claim 6'. For 0 < j,l < m — 1, the multiplication between u; and w; satisfies that

0
1 Y0 (e;—1)m;d 21 (L +1>
. —d—=2=1i T T li g—lj oy o=
Ul = > [T(-Dke ey [ir €i — 2 = lilm,yj+19
=1

where j + 1 is interpreted mod m.

We can prove Proposition 6.11 now. The statement (1) is gotten from Claim 1 and the
proof of Claim 7. For (2), by Claims 1, 2/, 3, 4, 5, 6’ and 7, we have a natural surjective
Hopf homomorphism

f: D(madvv)_)Hv T T, Ym; 7 Ymyy 92 G, ’Lle—>’LLj

for 1 <i¢<@and 0 <j<m—1. It is not hard to see that f|p,, : Dst — Hs is an
isomorphism of k[z¥!]-modules for 0 < s, < 2m — 1. So f is an isomorphism.
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7. Main results and consequences

We conclude this paper by giving the classification of prime Hopf algebras of GK-
dimension one satisfying (Hyp1), (Hyp2) and some consequences.

7.1. Main result

The main result of this paper can be stated as follows.

Theorem 7.1. Let H be a prime Hopf algebra of GK-dimension one which satisfies (Hyp1)
and (Hyp2). Then H is isomorphic to one of Hopf algebras constructed in Section 4.

Proof. Let m: H — k be the canonical 1-dimensional representation of H which exits by
(Hypl). If PI-deg(H) = 1, then it is easy to see that H is commutative and thus H & k|x]
or k[z*1]. So, we assume that n := Pl-deg(H) > 1 in the following analysis. If min(r) =
1, then H is isomorphic to either a T'(n,0,&) or kDD by Proposition 5.4. If ord(w) =
min(7), then H is isomorphic to either a T'(n,1,£) or a B(n,w,~) by Proposition 5.7.
The last case is n = ord(m) > m := min(m) > 1. In such case, using Corollary 6.3, H is
either additive or multiplicative. If, moreover, H is additive then H is isomorphic to a
T'(m,t,&) by Proposition 6.9 for ¢t = = and if H is multiplicative then it is isomorphic
to a D(m,d,~) by Proposition 6.11. O

Remark 7.2. (1) All prime Hopf algebras of GK-dimension one which are regular are
special cases of their fraction versions. For example, the infinite dimensional Taft algebra
T(n,t,£) is isomorphic to T'(n,t,&) where n = {1} is a fraction of n of length 1 (that is,
6 = 1 by previous notation).

(2) By Proposition 4.13, we know that D(m,d, ) is not a pointed Hopf algebra if
m # 1. Thus we get more examples of non-pointed Hopf algebras of GK-dimension one.

(3) In [12, Question 7.3C.], the authors asked that what other Hopf algebras can be
included if the regularity hypothesis is dropped. So our result gives a partial answer to
this question.

7.2. Question (1.1)

As an application, we can give the answer to question (1.1) now. We give the following
definition at first.

Definition 7.3. We call an irreducible algebraic curve C' a fraction line if there is a
natural number m and a fraction my, ..., mg of m such that it’s coordinate algebra k[C]
is isomorphic to K[Ym,, -, Ymol/ (Y% —ym,, 1 <i#j<0).

The answer to question (1.1) is given as follows.
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Proposition 7.4. Assume C' is an irreducible algebraic curve over k which can be realized
as a Hopf algebra in %:yD where n is as small as possible. Then C' is either an algebraic
group or a fraction line.

Proof. If n = 1, then k[C] is a Hopf algebra and thus C'is an algebraic group of dimension
one. Now assume n > 1. By assumption, Z,, acts on k[C] faithfully. Using Lemma 2.11
and the argument developed in the proof of Corollary 2.14, the Hopf algebra k[C|#KZ,
(the Radford’s biproduct) is a prime Hopf algebra of GK-dimension one with PI-degree
n. It is known that kZ,, has a 1-dimensional representation of order n:

kZ, =k{glg"=1) — Lk, g—¢

for a primitive nth root of unity . Through the canonical projection k[C|#KkZ,, — kZ,
we get a l-dimensional representation 7w of H := Kk[C|#KkZ, of order n =PI-deg(H).
Therefore, H satisfies (Hypl). Also, by the definition of the Radford’s biproduct we
know that the right invariant component H{ of 7 is exactly the domain k[C]. Therefore,
H satisfies (Hyp2) too. The classification result, that is Theorem 7.1, can be applied
now. One can check the proposition case by case. O

7.3. The hypothesis

We point out that our final aim is to classify all prime Hopf algebras of GK-dimension
one. So, as a natural step, we want to consider the question about the Hypothesis (Hypl)
and (Hyp2) listed in the introduction.

e The Hypothesis (Hyp1). Let H be a prime Hopf algebra of GK-dimension one, does
H satisty (Hypl) automatically? It is a pity that this is not true as we have the following
counterexample.

Example 7.5. Let n be a natural number. As an algebra, A(n) is generated by X1, ..., X,
and ¢ subject to the following relations:

XP=X;, X;X;=-X;X;, =1, —9X; =X,y
for all 1 <14 # j < n. The coproduct, counit and the antipode are given by

AX)=10X;+X;®g, Alg)=9®y,
e(X;)=0, elg)=1
S(X;) =-Xig, S(g)=g"

for all 1 < i < n. By the following lemma, we know that A(n) is a prime Hopf algebra of

GK-dimension one when n is odd. Moreover, if n = 2m + 1, then the PI-degree of A(n)
is 2m L,
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Now let
m:An) =k

be a 1-dimensional representation of A(n). Since g = 1, (g) = 1 or m(g) = —1. From
the relation —gX; = X,g, we get w(X;) = 0 for all 1 < ¢ < n. This implies that
ord(m) = 1 or ord(m) = 2. In general, we find that PI-deg(A(n)) > ord(m) and the
difference PI-deg(H) — ord(n) can be very large.

Lemma 7.6. Keep the notations and operations used in above example. Then

(1) The algebra A(n) is a Hopf algebra of GK-dimension one.
(2) The algebra A(n) is prime if and only if n is odd.
(3) If n=2m+1 is an odd, then Pl-deg (A(n)) = 2m+1.

Proof. (1) is clear.

(2) If n is even, then we consider the element g[];_, X;. Direct computation shows
that this element belongs to the center C'(A(n)). Also we know that X7 lives in the
center too. Thus

Xp —ag ][ Xi € C(A(n))

=1

ﬂ(n+1)

for any a € k. Now, (X7 —ag [}, Xi) (X7 +ag [, Xi) = X{"—a*(—1)
= X" —a?(-1)" =2 n(nﬂ) X27_ Taking a such that a2(—1)"""
element X7 — ag []\_; X; has nontrivial zero divisor and thus A(n) is not prime.

Hz 1 X2
= 1, we see that the central

So the left task is to show that A(n) is prime when n is odd. To prove this, we give the
following two facts about the algebra A(n): 1) The center of A(n) is k[X?] (= k[X?] for
1 <i < n);2) A(n) is a free module over its center with basis {g' [\, X/o<1<1,0<
ji < 1}. Both of these two facts can be gotten through the following observation easily:
As an algebra, one has A(n) = U(n)#kZs where U(n) = U(n)/(X? fij\l <i#j<n)
and U(n) is the enveloping algebra of the commutative Lie superalgebra of dimension n
with degree one basis {X;|1 < i <n}.

From above two facts about A(n), every monomial generated by g and X; (1 < i <mn)

is not a zero divisor and in fact regular. Now to show the result, assume that I, J be two
nontrivial ideals of A(n) satisfying IJ = 0. We will show that I contains a monomial
and thus get a contradiction. For this, through setting deg(g) = 0 and deg(X;) = 1
we find that A(n) is a graded algebra. Let a and b be two nonzero element of I and J
respectively. Since A(n) is Z-graded which is an order group, we can assume that both
a and b are homogeneous elements through ab = 0. In particular, we can take a to be a
nonzero homogeneous element. For simple, we assume that a has degree one (for other
degrees one can prove the result using the same way as degree one). So,
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n n
a = ZaiXi + Z a;gXZ-,
=1 =1

for a;,a} € k. Now a' := Xja + aX; = 201 X7 — 22#1 a,gX1X;. For any i # 1,
we have o’ := X;a' + d'X; = 4a; X} X; — 4algX1X? and continue this process a” :=
Xja" +a"X; = —8algX1X?X; €I for any j # 1,i (such j exists unless n = 1. But in
case n = 1, A(n) is clear prime). This implies that we have a monomial in I if a # 0 for
i # 1. We next consider the case a} = 0 for all ¢ # 1. Looking back the element a”, we
can assume that a; = 0 too. Repeat above precess through substituting X; by other X
and we can assume all a; = 0 and a} = 0 with ¢ # j. That’s impossible since 0 # a and
in one word we must have a monomial in I.

(3) By the proof of the part (2), we know that A(n) is a free module over its center
with basis {g' [T\, X710 <1<1,0 <7 <1} and so the rank of A(n) over its center is
27+l = 92(m+1) Therefore, PI-deg(A(n)) = v22(m+1) = om+l

e The Hypothesis (Hyp2). We next want to consider the question about the second
hypothesis (Hyp2): Let H be a prime Hopf algebra of GK-dimension one, does H has a
one-dimensional representation 7 : H — k such its invariant components are domains?
This is also not true in general. In fact, by Example 7.5, we find that the left invariant
component must contains the subalgebra generated by X; (1 < i < n) for any one-
dimensional representation and thus it is not a domain (if it is, it must be commutative
by the proof of Lemma 2.8).

e Relation between (Hypl1) and (Hyp2). In the introduction, (Hyp2) is built on (Hypl),
i.e., they used the same one-dimensional representation. However, it is clear we can
consider (Hypl) and (Hyp2) individually, that is, for each hypothesis we consider a
one-dimensional representation which may be different. Until now, we still don’t know
the exactly relationship between (Hypl) and (Hyp2) for a prime Hopf algebra of GK-
dimension one. So, we formulate the following question for further considerations.

Question 7.7.

(1) Let H be a prime Hopf algebra of GK-dimension one satisfying (Hypl), does H
satisfy (Hyp2) automatically?

(2) Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp2), does H
satisfy (Hypl) automatically?

7.4. A conjecture

From all examples stated in this paper, it seems that prime Hopf algebras of GK-
dimension one exist widely. However, we still can find some common points about them.
Among of these points, we formulate a conjecture on the structure of prime Hopf algebras
of GK-dimension in the following way.
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Conjecture 7.8. Let H be a prime Hopf of GK-dimension one. Then we have an ezxact
sequence of Hopf algebras:

k — alg.gp — H — f.d. Hopf — k, (7.1)

where “alg.gp” denotes the coordinate algebra of a connected algebraic group of dimension
one and “f.d. Hopf” means a finite-dimensional Hopf algebra.

It is not hard to see that all examples given in this paper always satisfy above con-
jecture.

Remark 7.9. Recently, professor Ken Brown showed the author one of his slides in which
he introduced the definition so called commutative-by-finite as follows: A Hopf algebra is
commutative-by-finite if it is a finite (left or right) module over a commutative normal
Hopf subalgebra. See [9] for more details. So our Conjecture 7.8 just says that every prime
Hopf algebra of GK-dimension one should be a commutative-by-finite Hopf algebra.
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