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1. Introduction

Throughout this paper, k denotes an algebraically closed field of characteristic 0, all 
vector spaces are over k. All algebras considered in this paper are noetherian and affine 
unless stated otherwise. The antipode of a Hopf algebra is assumed to be bijective.

✩ Supported by NSF of China 11722016.
E-mail address: gxliu@nju.edu.cn.
https://doi.org/10.1016/j.jalgebra.2019.12.003
0021-8693/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2019.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:gxliu@nju.edu.cn
https://doi.org/10.1016/j.jalgebra.2019.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2019.12.003&domain=pdf


580 G. Liu / Journal of Algebra 547 (2020) 579–667
1.1. Motivation

We are motivated by the following three seemingly irrelevant but indeed related phe-
nomenons. The first one is based on the next simple observation. It is well-known that 
the affine line A1 is a commutative algebraic group of dimension one. If we consider the 
infinite dimensional Taft algebra T (n, t, ξ) (see Subsection 2.3 for its definition), then 
we find that the affine line (here and the following we identify an affine variety with 
its coordinate algebra) is also a Hopf algebra in the braided tensor category Zn

Zn
YD of 

Yetter-Drinfeld modules of kZn. Intuitively,

�
�

�
�

�

∈ Zn

Zn
YD.

From this, a natural question is:

Can we realize other irreducible curves as Hopf algebras in Zn

Zn
YD? (1.1)

The curve satisfying this question has “near group” property: although itself may be not 
an algebraic group, it is a Hopf algebra in Zn

Zn
YD, which is a braided tensor category 

enriching the category of vector spaces. In order to answer this question, we need to 
give two remarks at first. Firstly, observe that above line is smooth and thus the infinite 
dimensional Taft algebra is regular, i.e. having finite global dimension. Secondly, it is 
harmless to assume that the action of Zn on the curve is faithful since otherwise one 
can take a smaller group Zm with m|n to substitute Zn. This assumption implies the 
infinite dimensional Taft algebra is prime. Put them together, the infinite dimensional 
Taft algebra is prime regular of Gelfand-Kirillov dimension (GK-dimension for short) 
one. Under this assumption, one can show that the affine line k[x] and the multiplicative 
group k[x±1] are the only smooth curves which can be realized as Hopf algebras in Zn

Zn
YD

(see Corollary 2.14). Therefore, the only left chance is to consider singular curves. We 
find that at least for some special curves the answer is “Yes”! As an illustration, consider 
the example T ({2, 3}, 1, ξ) (see Subsection 4.1) and from this example we find the cusp 
y2
1 = y3

2 is a Hopf algebra in Z6
Z6

YD. That is,

∈ Z6
Z6

YD.
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So above analysis tells us that we need to consider the structures of prime Hopf 
algebras of GK-dimension one which are not regular if we want to find the answer to 
question (1.1).

The second one is a wide range of recent researches and interest on the classification 
of Hopf algebras of finite GK-dimensions. See for instance [4,3,12,15,20,21,28–30,32]. To 
the author’s best knowledge, there are two different strategies to classify such Hopf al-
gebras. One line focuses on pointed versions, in particular about braidings (i.e. Nichols 
algebras). The first celebrated work in this line is the Rosso’s basic observation about the 
structure of Nichols algebras of finite GK-dimension with positive braiding (see [26, The-
orem 21]). Then the pointed Hopf algebra domains of finite GK-dimension with generic 
infinitesimal braiding were classified by Andruskiewitsch and Schneider [4, Theorem 
5.2] and Andruskiewitsch and Angiono [1, Theorem 1.1]. Recently, Andruskiewitsch-
Angiono-Heckenberger [3] conjectured that a Nichols algebra of diagonal type has finite 
GK-dimension if and only if the corresponding generalized root system is finite, and 
assuming the conjecture is true they classified a natural class of braided spaces whose 
Nichols algebra has finite GK-dimension [3, Theorem 1.10]. Another line focuses more 
on algebraic and homological properties of these Hopf algebras, which is motivated by 
noncommutative algebras and noncommutative algebraic geometry. Historically, Lu, Wu 
and Zhang initiated the program of classifying Hopf algebras of GK-dimension one [21]. 
Then the author found a new class of examples about prime regular Hopf algebras of 
GK-dimension one [20]. Brown and Zhang [12, Theorem 0.5] made further efforts in 
this direction and classified all prime regular Hopf algebras H of GK-dimension one 
under an extra hypothesis. In 2016, Wu, Ding and the author [32, Theorem 8.3] re-
moved this hypothesis and gave a complete classification of prime regular Hopf algebras 
of GK-dimension one. One interesting fact is that some non-pointed Hopf algebras of 
GK-dimension one were found in [32]. For Hopf algebras H of GK-dimension two, all 
known classification results are given under the condition of H being domains. In [15, 
Theorem 0.1], Goodearl and Zhang classified all Hopf algebras H of GK-dimension two 
which are domains and satisfy the condition Ext1H(k, k) �= 0. For those with vanishing 
Ext-groups, some interesting examples were constructed by Wang-Zhang-Zhuang [29, 
Section 2] and they conjectured these examples together with Hopf algebras given in 
[15] exhausted all Hopf algebra domains with GK-dimension two. In order to study Hopf 
algebras H of GK-dimensions three and four, a more restrictive condition was added: H
is connected, that is, the coradical of H is 1-dimensional. All connected Hopf algebras 
with GK-dimension three and four were classified by Zhuang in [35, Theorem 7.6] and 
Wang, Zhang and Zhuang [30, Theorem 0.3] respectively. See [10,34] for latest develop-
ments. So, as a natural development of this line we want to classify prime Hopf algebras 
of GK-dimension one without regularity.

The third one is to find new examples of non-pointed Hopf algebras. In the last 
two decades, there has been an essential progress in understanding the structures of 
pointed Hopf algebras by many experts, like Andruskiewitsch, Schneider, Heckenberger, 
and etc. See for example [5,16,17]. Comparing with pointed Hopf algebras, it seems that 
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we know little about non-pointed Hopf algebras. Inspired by our previous work [32] on 
the classification of prime regular Hopf algebras, which prompted us to find a series of 
new examples of non-pointed Hopf algebras, we expect to get more examples through 
classifying prime Hopf algebras of GK-dimension one without regularity.

1.2. Setting

As the research continues, we gradually realize that the condition “regular” is very 
delicate and strong. The situation becomes much worse if we just remove the regularity 
condition directly. In another word, we still need some ingredients from regularity at 
present. To get suitable ingredients, let’s go back to the question (1.1) and in such case 
the Hopf algebra has a natural projection to the group algebra kZn. The first question 
is: what is this natural number n? In the Taft algebra H case, it is not hard to see that 
this n is just the PI degree of H, that is, n =PI.deg(H). So roughly speaking n measures 
how far is a Hopf algebra from a commutative one. At the same time, the Hopf algebra 
who has a projection to kZn will have a 1-dimensional representation M with order n, 
that is M⊗n ∼= k. Putting them together, we form our first hypothesis about prime Hopf 
algebras of GK-dimension one:

(Hyp1): The Hopf algebra H has a 1-dimensional representation πH : H → k whose order 
is equal to PI.deg(H).

The second question is: where is the curve? It is not hard to see that the curve is 
exactly the coinvariant algebra under the projection to kZn. We will see that for each 
1-dimensional representation of H one has an analogue of coinvariant algebras which are 
called the invariant components with respect to this representation (see Subsection 2.2
for details). Due to the (Hyp1), our second hypothesis is:

(Hyp2): The invariant components with respect to πH are domains.

By definition, a Hopf algebra H we considered has two invariant components, that 
is the left invariant component H l

0,π and right invariant component Hr
0,π (see Defini-

tion 2.7). By Lemma 2.8, we see that H l
0,π is a domain if and only if Hr

0,π is a domain. 
So the (Hyp2) can be weakened to require that any one of two invariant components is 
a domain. But, in practice (Hyp2) is more convenient for us.

Regarding (Hyp1), actually, any noetherian affine Hopf algebra H has natural 
1-dimensional representations: the space of right (resp. left) homological integrals. The 
order of any one of these 1-dimensional modules is called the integral order (see Subsec-
tion 2.2 for related definitions) of H and we denote it by io(H), which is used widely in 
the regular case. So a plausible alternative of (Hyp1) is

(Hyp1)′ io(H) = PI.deg(H).
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Clearly, (Hyp1)′ is stronger than (Hyp1) and should be easier to use (Hyp1)′ instead 
of (Hyp1). But we will see that the (Hyp1)′ is not so good because it excludes some nice 
and natural examples (see Remark 4.2).

Note that all prime regular Hopf algebras of GK-dimension one satisfy both (Hyp1)′
and (Hyp2) automatically (see [21, Theorem 7.1]). Since we have examples which satisfy 
(Hyp1) and (Hyp2) while they are not regular (see, say, the example about the cusp 
given above), regularity is a really more stronger than (Hyp1) + (Hyp2) for prime Hopf 
algebras of GK-dimension one.

The main result of this paper is to give a classification of all prime Hopf algebras of 
GK-dimension one satisfying (Hyp1) + (Hyp2) (see Theorem 7.1). As byproducts, 1) a 
number of new Hopf algebras of GK-dimension one are found and some of them are not 
pointed, 2) we give a partial answer to a question posted in [12] (see [12, Question 7.3C]) 
and 3) question (1.1) is answered affirmatively and complete examples are provided.

1.3. Strategy and organization

In a word, the idea of this paper just is to build a “relative version” (i.e. with respect 
to any 1-dimensional representation rather than just the 1-dimensional representation 
of homological integrals) and extend the methods of [12,32] to our general setting. So 
the strategy of the proof of the main result is divided into two parts: the ideal case and 
the remaining case. However, we need to point out that the most significant difference 
between the regular Hopf algebras of GK-dimension one and our setting is: In the regular 
case, the invariant components are Dedekind domains (see [12, Theorem 2.5 (f)]) while 
in our case they are just required to be general domains! At the first glance, there is 
a huge distance between a general domain and a Dedekind domain. A contribution of 
this paper is to overcome this difficulty and prove that we can classify these domains 
under the requirement that they are the invariant components of prime Hopf algebra of 
GK-dimension one. To overcome this difficulty, a new concept called a fraction of natural 
number is introduced (see Definition 3.1).

As the first step to realize our idea, we construct a number of prime Hopf algebras 
of GK-dimension one which are called the “fraction versions” of known examples of 
prime regular Hopf algebras of GK-dimension one. Then we use the concepts so called 
representation minor, denoted as min(π), and representation order, denoted as ord(π), 
of a noetherian affine Hopf algebra H to deal with the ideal case, that is, the case 
either min(π) = 1 or ord(π) = min(π). In the ideal case, we proved that every prime 
Hopf algebras of GK-dimension one satisfying (Hyp1) + (Hyp2) must be isomorphic 
to either a known regular Hopf algebra given in [12, Section 3] or a fraction version of 
one of these regular Hopf algebras. Then, we consider the remaining case, that is the 
case ord(π) > min(π) > 1 (note that by definition min(π)| ord(π)). We show that for 
each prime Hopf algebra H of GK-dimension one in the remaining case one always can 
construct a Hopf subalgebra H̃ which lies in the ideal case. As one of difficult parts of this 
paper, we show that H̃ indeed determine the structure of H essentially and from which 
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we can not only get a complete classification of prime Hopf algebras of GK-dimension one 
satisfying (Hyp1) + (Hyp2) but also find a series of new examples of non-pointed Hopf 
algebras. At last, we give some applications of our results, in particular question (1.1) is 
solved and a partial solution to [12, Question 7.3C.] is given. Moreover, at the end of the 
paper we formulate a conjecture (see Conjecture 7.8) about the structure of a general 
prime Hopf algebra of GK-dimension one for further researches and considerations.

The paper is organized as follows. Necessary definitions, known examples and pre-
liminary results are collected in Section 2. In particular, in order to compare regular 
Hopf algebras and non-regular ones, the widely used tool called homological integral 
is recalled. The definition of a fraction of natural number, a fraction version of a Taft 
algebra and some combinatorial relations, which are crucial to the following analysis, 
will be given in Section 3. Section 4 is devoted to construct new examples of prime Hopf 
algebras of GK-dimension one which satisfy (Hyp1) and (Hyp2). We should point out 
that the proof of the example D(m, d, γ), which are not pointed in general, being a Hopf 
algebra is quite nontrivial. The properties of these new examples are also established in 
this section and in particular we show that they are pivotal Hopf algebras. The question 
about the classification of prime Hopf algebras of GK-dimension one satisfying (Hyp1) 
+ (Hyp2) in ideal cases is solved in Section 5, and Section 6 is designed to solve the same 
question in the remaining case. The main result is formulated in the last section and we 
end the paper with some consequences, questions and a conjecture on the structure of a 
general prime Hopf algebra of GK-dimension one.

Acknowledgments. The work started during my visit to Department of Mathematics, 
MIT. I would like thank, from the bottom of my heart, Professor Pavel Etingof for his 
heuristic discussion, encouragements and hospitality. The author also wants to thank 
Professor James Zhang for his continued help and support for the author, and in partic-
ular for showing him their examples of non-regular Hopf algebras given in Subsection 4.2. 
I appreciate Professors Ken Brown, Q.-S. Wu and D.-M Lu for useful communications 
and in particular thank Ken Brown for showing the author his nice slides on infinite di-
mensional Hopf algebras. At last, I would like thank the referee for his/her very valuable 
comments which improve the paper greatly.

2. Preliminaries

In this section we recall the basic definitions and properties about affine noetherian 
Hopf algebras for completeness and the convenience of the reader. About general back-
ground knowledge, the reader is referred to [24] for Hopf algebras, [22] for noetherian 
rings, [11,21,12,14] for exposition about noetherian Hopf algebras and [13] for general 
knowledge of tensor categories.

Usually we are working on left modules (resp. comodules). Let Aop denote the opposite 
algebra of A. Throughout, we use the symbols Δ, ε and S respectively, for the coproduct, 
counit and antipode of a Hopf algebra H, and the Sweedler’s notation for coproduct 
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Δ(h) =
∑

h1⊗h2 = h1⊗h2 = h′⊗h′′ (h ∈ H) will be used freely. Similarly, the coaction 
of left comodule M is denoted by δ(m) = m(−1) ⊗m(0) ∈ H ⊗M, for any m ∈ M .

2.1. Stuffs from ring theory and Homological integrals

In this paper, a ring R is called regular if it has finite global dimension, it is prime if 
0 is a prime ideal and it is affine if it is finitely generated.

• PI-degree. If Z is an Ore domain, then the rank of a Z-module M is defined to be 
the Q(Z)-dimension of Q(Z) ⊗Z M , where Q(Z) is the quotient division ring of Z. Let 
R be an algebra satisfying a polynomial identity (PI for short). The PI-degree of R is 
defined to be

PI-deg(R) = min{n|R ↪→ Mn(C) for some commutative ring C}

(see [22, Chapter 13]). If R is a prime PI ring with center Z, then the PI-degree of R
equals the square root of the rank of R over Z.

• Artin-Schelter condition. Recall that an algebra A is said to be augmented if there is 
an algebra morphism ε : A → k. Let (A, ε) be an augmented noetherian algebra. Then 
A is Artin-Schelter Gorenstein (AS-Gorenstein for short) if

(AS1) injdimAA = d < ∞,
(AS2) dimk ExtdA(Ak, AA) = 1 and dimk ExtiA(Ak, AA) = 0 for all i �= d,
(AS3) the right A-module versions of (AS1, AS2) hold.

The following result is the combination of [33, Theorem 0.1] and [33, Theorem 0.2 
(1)], which shows that a large number of Hopf algebras are AS-Gorenstein.

Lemma 2.1. Each affine noetherian PI Hopf algebra is AS-Gorenstein.

• Homological integral. The concept homological integral can be defined for an AS-
Gorenstein augmented algebra.

Definition 2.2. [12, Definition 1.3] Let (A, ε) be a noetherian augmented algebra and 
suppose that A is AS-Gorenstein of injective dimension d. Any non-zero element of the 
1-dimensional A-bimodule ExtdA(Ak, AA) is called a left homological integral of A. We 
write 

∫l

A
= ExtdA(Ak, AA). Any non-zero element in ExtdAop(kA, AA) is called a right 

homological integral of A. We write 
∫r

A
= ExtdAop(kA, AA). By abusing the language we 

also call 
∫l

A
and 

∫r

A
the left and the right homological integrals of A, respectively.

2.2. Relative version

Assuming that a Hopf algebra H has a 1-dimensional representation π : H → k, 
we give some results according to this π, most of them coming from [12, Section 2], 
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by using slightly different notations with [12]. Throughout this subsection, we fix this 
representation π.

• Winding automorphisms. We write Ξl
π for the left winding automorphism of H

associated to π, namely

Ξl
π(a) :=

∑
π(a1)a2 for a ∈ H.

Similarly we use Ξr
π for the right winding automorphism of H associated to π, that is,

Ξr
π(a) :=

∑
a1π(a2) for a ∈ H.

Let Gl
π and Gr

π be the subgroups of Autk-alg(H) generated by Ξl
π and Ξr

π, respectively. 
Define:

Gπ := Gl
π

⋂
Gr

π.

The following is some parts of [12, Proposition 2.1.].

Lemma 2.3. Let H l
0,π, H

r
0,π and H0,π be the subalgebra of invariants HGl

π , HGr
π and HGπ

respectively. Then we have

(1) H0,π = H l
0,π

⋂
Hr

0,π.
(2) Ξl

πΞr
π = Ξr

πΞl
π.

(3) Ξr
π ◦ S = S ◦ (Ξl

π)−1. Therefore, S(H l
0,π) ⊆ Hr

0,π and S(Hr
0,π) ⊆ H l

0,π.

• π-order and π-minor. With the same notions as above, the π-order (denoted as 
ord(π)) of H is defined by the order of the group Gl

π :

ord(π) := |Gl
π|. (2.1)

Lemma 2.4. We always have |Gl
π| = |Gr

π|.

Proof. This a direct consequence of Lemma 2.3 (3). �
By this lemma, the above definition is independent of the choice of Gl

π or Gr
π.

The π-minor (denoted by min(π)) of H is defined by

min(π) := |Gl
π/G

l
π ∩Gr

π|. (2.2)

Remark 2.5. In particular, if the 1-dimensional representation is given by the (right 
module structure) of left integrals, then the corresponding representation order and 
representation minor are called integral order and integral minor, denoted as

io(H) and im(H),
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respectively. Both the integral order and integral minor are used widely in [12,32]. There-
fore, we can consider a general 1-dimensional representation instead of homological 
integrals. Note that the notations io(H) and im(H) will be used freely in this paper 
too.

• Invariant components and strongly graded property. Let H be a prime Hopf alge-
bra of GK-dimension one. By a fundamental results of Small, Stafford and Warfield 
[27], a semiprime affine algebra of GK-dimension one is a finite module over its center. 
Therefore, it is PI and has finite PI-order. Now we assume that H satisfies the (Hyp1) 
(see Subsection 1.1) and thereby |Gl

π| = PI-deg(H) is finite, say n. Moreover, since Gl
π

is a cyclic group, its character group Ĝl
π := Homk-alg(kGl

π, k) is isomorphic to itself. 
Similarly, the character group Ĝr

π of Gr
π is isomorphic to Gr

π.
Fix a primitive nth root ζ of 1 in k, and define χ ∈ Ĝl

π and η ∈ Ĝr
π by setting

χ(Ξl
π) = ζ and η(Ξr

π) = ζ.

Thus Ĝl
π = {χi|0 � i � n − 1} and Ĝr

π = {ηj |0 � j � n − 1}.
For each 0 � i, j � n − 1, let

H l
i,π := {a ∈ H|Ξl

π(a) = χi(Ξl
π)a} and Hr

j,π := {a ∈ H|Ξr
π(a) = ηj(Ξr

π)a}.

The following lemma is [12, Theorem 2.5 (b)] (Note that for the part (b) of [12, 
Theorem 2.5] we don’t need the condition about regularity).

Lemma 2.6.

(1) H =
⊕

χi∈Ĝl
π

H l
i,π is strongly Ĝl

π-graded.

(2) H =
⊕

ηj∈Ĝr
π
Hr

j,π is strongly Ĝr
π-graded.

Definition 2.7. The subalgebra H l
0,π (resp. Hr

0,π) is called the left (resp. right) invariant 
component of H with respect to π.

Therefore, (Hyp2) just says that both H l
0,π and Hr

0,π are domains. In fact, these two 
algebras are closely related.

Lemma 2.8. Let H be a prime Hopf algebra of GK-dimension one. Then

(1) As algebras, we have H l
0,π

∼= (Hr
0,π)op.

(2) If moreover either H l
0,π or Hr

0,π is a domain, then both H l
0,π and Hr

0,π are commu-
tative domains and thus H l

0,π
∼= Hr

0,π.

Proof. By Lemma 2.3. (3), we have S(H l
0,π) ⊆ Hr

0,π and S(Hr
0,π) ⊆ H l

0,π. Now (1) is 
proved.
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For (2), it is harmless to assume that H l
0,π is a domain. By H is of GK-dimension one 

and H =
⊕

χi∈Ĝl
π

H l
i,π is strongly graded (see Lemma 2.6), H l

0,π has GK-dimension one 
too. Now it is well-known that a domain with GK-dimension one must be commutative 
(see for example [15, Lemma 4.5]). Therefore H l

0,π is commutative and H l
0,π

∼= Hr
0,π by 

(1). So Hr
0,π is a commutative domain too. �

By Lemma 2.3. (2), Ξl
πΞr

π = Ξr
πΞl

π, and thus H l
i,π is stable under the action of Gr

π. 
Consequently, the Ĝl

π- and Ĝr
π-gradings on H are compatible in the sense that

H l
i,π =

⊕
0�j�n−1

(H l
i,π ∩Hr

j,π) and Hr
j,π =

⊕
0�i�n−1

(H l
i,π ∩Hr

j,π)

for all i, j. Then H is a bigraded algebra:

H =
⊕

0�i,j�n−1
Hij,π, (2.3)

where Hij,π = H l
i,π ∩Hr

j,π. And we write H0,π := H00,π for convenience.
For later use, we collect some more properties about H which were proved in [12]

without the requirement about regularity. For details, see [12, Proposition 2.1 (c)(e)]
and [12, Lemma 6.3].

Lemma 2.9. Let H be a prime Hopf algebra of GK-dimensional one satisfying (Hyp1). 
Then

(1) Δ(H l
i,π) ⊆ H l

i,π ⊗H and Δ(Hr
j,π) ⊆ H ⊗Hr

j,π; thus H l
i,π is a right coideal of H and 

Hr
j,π is a left coideal of H for all 0 ≤ i, j ≤ n − 1.

(2) Ξr
π ◦ S = S ◦ (Ξl

π)−1, where (Ξl
π)−1 = Ξl

π◦S.
(3) S(H l

i,π) = Hr
−i,π and S(Hij,π) = H−j,−i,π.

(4) If i �= j, then ε(Hij,π) = 0.
(5) If i = j, then ε(Hii,π) �= 0.

Remark 2.10. (1) In the regular case, that is, H is a prime regular Hopf algebra of 
GK-dimension one, the set of all right homological integrals forms a 1-dimensional rep-
resentation whose order is equal to the PI.deg(H). In such case, the invariant components 
are called classical components by [12, Section 2].

(2) In the following of this paper, we will omit the notation π when the representation 
is clear from context. Therefore, say, sometimes we just write H0,π as H0 when there is 
no confusion about which representation we are considering.

The following result is the combination of some parts of [12, Proposition 5.1, Corollary 
5.1], which is very useful for us.
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Lemma 2.11. Let A be a k-algebra and let G be a finite abelian group of order n acting 
faithfully on A. So A is Ĝ-graded, A =

⊕
χ∈Ĝ Aχ. Assume that 1) this grading is strong 

and 2) the invariant component A0 is a commutative domain. Then we have

(a) Every non-zero homogeneous element is a regular element of A and PI.deg(A) ≤ n.
(b) There is an action � of Ĝ on A0 with the following property: For any χ ∈ Ĝ and 

a ∈ A0,

(χ � a)uχ = uχa (2.4)

where uχ is an arbitrary nonzero element belonging to Aχ.
(c) PI.deg(A) = n if and only if the action � is faithful.
(d) If PI.deg(A) = n, then A is prime.
(e) Let K < G be a subgroup Ĝ and let B be the subalgebra 

⊕
χ∈K Aχ. If PI.deg(A) = n, 

then B is prime with PI-degree |K|.

2.3. Known examples

The following examples appeared in [12,32] already and we recall them for complete-
ness.
• Connected algebraic groups of dimension one. It is well-known that there are precisely 
two connected algebraic groups of dimension one (see, say [18, Theorem 20.5]) over 
an algebraically closed field k. Therefore, there are precisely two commutative k-affine 
domains of GK-dimension one which admit a structure of Hopf algebra, namely H1 =
k[x] and H2 = k[x±1]. For H1, x is a primitive element, and for H2, x is a group-like 
element. Commutativity and cocommutativity imply that io(Hi) = im(Hi) = 1 for 
i = 1, 2.
• Infinite dihedral group algebra. Let D denote the infinite dihedral group 〈g, x|g2 =
1, gxg = x−1〉. Both g and x are group-like elements in the group algebra kD. By 
cocommutativity, im(kD) = 1. Using [21, Lemma 2.6], one sees that as a right H-module, ∫l

kD
∼= kD/〈x − 1, g + 1〉. This implies io(kD) = 2.

• Infinite dimensional Taft algebras. Let n and t be integers with n > 1 and 0 � t � n −1. 
Fix a primitive nth root ξ of 1. Let T = T (n, t, ξ) be the algebra generated by x and g
subject to the relations

gn = 1 and xg = ξgx.

Then T (n, t, ξ) is a Hopf algebra with coalgebra structure given by

Δ(g) = g ⊗ g, ε(g) = 1 and Δ(x) = x⊗ gt + 1 ⊗ x, ε(x) = 0,

and with
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S(g) = g−1 and S(x) = −xg−t.

As computed in [12, Subsection 3.3], we have 
∫l

T
∼= T/〈x, g − ξ−1〉, and the corre-

sponding homomorphism π yields left and right winding automorphisms

Ξl
π :

{
x �−→ x,

g �−→ ξ−1g,
and Ξr

π :
{
x �−→ ξ−tx,

g �−→ ξ−1g.

So that Gl
π = 〈Ξl

π〉 and Gr
π = 〈Ξr

π〉 have order n. If gcd(n, t) = 1, then Gl
π ∩ Gr

π = {1}
and [12, Proposition 3.3] implies that there exists a primitive nth root η of 1 such that 
T (n, t, ξ) ∼= T (n, 1, η) as Hopf algebras. If gcd(n, t) �= 1, let m := n/gcd(n, t), then 
Gl

π ∩ Gr
π = 〈(Ξl

π)m〉. Thus we have io(T (n, t, ξ)) = n and im(T (n, t, ξ)) = m for any t. 
In particular, im(T (n, 0, ξ)) = 1, im(T (n, 1, ξ)) = n and im(T (n, t, ξ)) = m = n/t when 
t|n.
• Generalized Liu algebras (see [12, Subsection 3.4] for the terminology). Let n and ω
be positive integers. The generalized Liu algebra, denoted by B(n, ω, γ), is generated by 
x±1, g and y, subject to the relations⎧⎪⎪⎨⎪⎪⎩

xx−1 = x−1x = 1, xg = gx, xy = yx,

yg = γgy,

yn = 1 − xω = 1 − gn,

where γ is a primitive nth root of 1. The comultiplication, counit and antipode of 
B(n, ω, γ) are given by

Δ(x) = x⊗ x, Δ(g) = g ⊗ g, Δ(y) = y ⊗ g + 1 ⊗ y,

ε(x) = 1, ε(g) = 1, ε(y) = 0,

and

S(x) = x−1, S(g) = g−1 S(y) = −yg−1.

Let B := B(n, ω, γ). Using [21, Lemma 2.6], we get 
∫l

B
= B/〈y, x − 1, g − γ−1〉. The 

corresponding homomorphism π yields left and right winding automorphisms

Ξl
π :

⎧⎪⎪⎨⎪⎪⎩
x �−→ x,

g �−→ γ−1g,

y �−→ y,

and Ξr
π :

⎧⎪⎪⎨⎪⎪⎩
x �−→ x,

g �−→ γ−1g,

y �−→ γ−1y.

Clearly these automorphisms have order n and Gl
π∩Gr

π = {1}, whence io(B) = im(B) =
n.
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• The Hopf algebras D(m, d, γ). Let m, d be two natural numbers satisfying that (1 +m)d
is even and γ a primitive mth root of 1. Define

ω := md, ξ := √
γ.

As an algebra, D = D(m, d, γ) is generated by x±1, g±1, y, u0, u1, · · · , um−1, subject to 
the following relations

xx−1 = x−1x = 1, gg−1 = g−1g = 1, xg = gx,

xy = yx, yg = γgy, ym = 1 − xω = 1 − gm,

xui = uix
−1, yui = φiui+1 = ξxduiy, uig = γix−2dgui,

uiuj =

⎧⎪⎨⎪⎩
(−1)−jξ−jγ

j(j+1)
2 1

mx− 1+m
2 dφiφi+1 · · ·φm−2−jy

i+jg, i + j � m− 2,
(−1)−jξ−jγ

j(j+1)
2 1

mx− 1+m
2 dyi+jg, i + j = m− 1,

(−1)−jξ−jγ
j(j+1)

2 1
mx− 1+m

2 dφi · · ·φm−1φ0 · · ·φm−2−jy
i+j−mg, otherwise,

where φi = 1 − γ−i−1xd and 0 � i, j � m − 1.
The coproduct Δ, the counit ε and the antipode S of D(m, d, γ) are given by

Δ(x) = x⊗ x, Δ(g) = g ⊗ g, Δ(y) = y ⊗ g + 1 ⊗ y,

Δ(ui) =
m−1∑
j=0

γj(i−j)uj ⊗ x−jdgjui−j ;

ε(x) = ε(g) = ε(u0) = 1, ε(y) = ε(us) = 0;

S(x) = x−1, S(g) = g−1, S(y) = −yg−1,

S(ui) = (−1)iξ−iγ− i(i+1)
2 xid+ 3

2 (1−m)dgm−i−1ui,

for 0 ≤ i ≤ m − 1 and 1 � s � m − 1. Direct computation shows that 
∫l

D
= D/(y, x −

1, g − γ−1, u0 − ξ−1, u1, u2, · · · , um−1), and the left and right winding automorphisms 
are:

Ξl
π :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ x,

y �−→ y,

g �−→ γ−1g,

ui �−→ ξ−1ui,

and Ξr
π :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ x,

y �−→ γ−1y.

g �−→ γ−1g,

ui �−→ ξ−(2i+1)ui.

From these, we know that io(D) = 2m and im(D) = m.

Remark 2.12. In [32], the authors used the notation D(m, d, ξ) rather than D(m, d, γ)
used here. We will see that the notation D(m, d, γ) is more convenient for us.
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Up to an isomorphism of Hopf algebras, all of above examples form a complete list of 
prime regular Hopf algebras of GK-dimension one (see [32, Theorem 8.3.]).

Lemma 2.13. Let H be a prime regular Hopf algebra of GK-dimension one, then it is 
isomorphic to one of Hopf algebras listed above.

2.4. Yetter-Drinfeld modules

This subsection is just a preparation for the question (1.1) and will not be used in the 
proof of our main result. Let H be an arbitrary Hopf algebra. By definition, a left-left 
Yetter-Drinfeld module V over H is a left H-module and a left H-comodule such that

δ(h · v) = h1v(−1)S(h3) ⊗ h2 · v(0)

for h ∈ H, v ∈ V . The category of left-left Yetter-Drinfeld modules over H is denoted by 
H
HYD. It is a braided tensor category. In particular, when H = kG a group algebra, we 
denote this category by GGYD.

We briefly summarize results from [25], see also [23]. Let A be a Hopf algebra provided 
with Hopf algebra maps π : A → H. ι : H → A, such that πι = IdH . Let R = AcoH =
{a ∈ A|(∈ ⊗π)Δ(a) = a ⊗ 1}. Then R is a braided Hopf algebra in HHYD through

h · r := h1rS(h2),

r(−1) ⊗ r(0) := π(r1) ⊗ r2,

r1 ⊗ r2 := ϑ(r1) ⊗ r2

for r ∈ R, h ∈ H, Δ(r) = r1 ⊗ r2 denote the coproduct of r ∈ R in the category HHYD
and ϑ(a) := a1ιπ(S(a2)) for a ∈ A.

Conversely, let R be a Hopf algebra in HHYD. A construction discovered by Radford, 
and interpreted in terms of braided tensor categories by Majid, produces a Hopf algebra 
R#H through: As a vector space R#H = R ⊗H; if r#h := r ⊗ h, r ∈ R, h ∈ H, the 
multiplication and coproduct are given by

(r#h)(s#f) = r(h1 · s)#h2f,

Δ(r#h) = r1#(r2)(−1)h1 ⊗ (r2)(0)#h2.

The resulted Hopf algebra R#H is called the Radford’s biproduct or Majid’s bosoniza-
tion of R and H.

Now go back to the situation of π : A → H. ι : H → A such that πι = IdH . In such 
case we have A ∼= R#H and

r1 ⊗ r2 = r1(r2)(−1) ⊗ (r2)(0) (2.5)

for r ∈ R.
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With these preparations, we can set the question of (1.1) for smooth curves at first.

Corollary 2.14. The affine line and k[x±1] are the only irreducible smooth curves which 
can be realized as Hopf algebras in Zn

Zn
YD for some n.

Proof. Let C be an irreducible smooth curve which can be realized as a Hopf algebra 
in Zn

Zn
YD for some n. There is no harm to assume that the action of Zn on this curve 

(more precisely, on the coordinate algebra k[C] of this curve) is faithful. Therefore, the 
Radford’s biproduct

A := k[C]#kZn

constructed above is a Hopf algebra of GK-dimension one. We claim that it is prime and 
regular. Primeness is gotten from Lemma 2.11: Clearly

A =
n−1⊕
i=0

k[C]gi.

From this, A is a strongly Ẑn = 〈χ|χn = 1〉-graded algebra through χ(agi) = ξi for 
any a ∈ k[C] and 0 ≤ i ≤ n − 1. Therefore, the conditions 1) and 2) of Lemma 2.11
are fulfilled. By part (b) of Lemma 2.11, the action of Ẑn is just the adjoint action of 
Zn = 〈g|gn = 1〉 on k[C] which by definition is faithful. Therefore, PI.deg(A) = n by 
part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that A is prime 
now. Regularity is clear since the smoothness of C implies the regularity of k[C] and 
thus regularity of A. In one word, A is a prime regular Hopf algebra of GK-dimension 
one.

Therefore, the result is followed from above classification stated in Lemma 2.13 by 
checking it one by one. �
3. Fractions of a number

As a necessary ingredient to define new examples, we give the definition of a fraction of 
a natural number firstly in this section. Then we use it to “fracture” the Taft algebra and 
thus we get the fraction version of a Taft algebra. At last, some combinatorial identities 
are collected for the future analysis.

3.1. Fraction

Let m be a natural number and m1, m2, . . . , mθ be θ natural numbers. For each 
mi (1 ≤ i ≤ θ), we have many natural numbers a such that m|ami. Among of them, we 
take the smallest one and denote it by ei, that is, ei is the smallest natural number such 
that m|eimi. Define
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A := {a = (a1, . . . , aθ)|0 ≤ ai < ei, 1 ≤ i ≤ θ}.

With these notations, we give the definition of a fraction as follows.

Definition 3.1. We call m1, . . . , mθ is a fraction of m of length θ if the following conditions 
are satisfied:

(1) For each 1 ≤ i ≤ θ, ei is coprime to mi, i.e., (ei, mi) = 1;
(2) The production of ei is equal to m, that is, m = e1e2 · · · eθ;
(3) For any two elements a, b ∈ A, we have 

∑θ
i=1 aimi �≡

∑θ
i=1 bimi (mod m) if a �= b.

The set of all fractions of m of length θ is denoted by Fθ(m) and let F(m) :=⋃
θ Fθ(m), F =

⋃
m∈N F(m).

Remark 3.2. (1) Conditions (2) and (3) in this definition is equivalent to say that up 
to modulo m, each number 0 ≤ j ≤ m − 1 can be represented uniquely as a linear 
combination of m1, . . . , mθ with coefficients in A. That is, under basis m1, . . . , mθ, j has 
a coordinate and we denote this coordinate by (j1, . . . , jθ), i.e.,

j ≡ j1m1 + j2m2 + . . . + jθmθ (mod m).

Moreover, for any j ∈ Z it has a unique remainder j in Zm and thus we can define the 
coordinate for any integer accordingly, that is, ji := ji for 1 ≤ i ≤ θ. In the following of 
this paper, this expression will be used freely.

(2) For each 1 ≤ i ≤ θ, we call ei the exponent of mi with respect to m. Intuitively, it 
seems more natural to call these exponents e1, . . . , eθ a fraction of m due to the condition 
(2). However, there are as least two reasons forbidding us to do it. The first one is that 
we will meet mi’s rather than ei’s in the following analysis. The second reason is that 
the exponents can not determine mi’s uniquely. As an example, let m = 6, we see that 
both {2, 3} and {4, 3} have the same set of exponents.

(3) It is not hard to see that θ = 1 if and only if (m, m1) = 1.
(4) Usually, we use the notation such as m, m′ · · · to denote a fraction of m, that is, 

m, m′ ∈ F(m).

3.2. Fraction version of a Taft algebra

Now let m1, . . . , mθ be a fraction of m, m0 := (m1, . . . , mθ) greatest common divisor 
of m1, . . . , mθ and fix a primitive mth root of unity ξ. We want to define a Hopf algebra 
T (m1, . . . , mθ, ξ) as follows. As an algebra, it is generated by g, ym1 , . . . , ymθ

and subject 
to the following relations:

gm = 1, yeim = 0, ymi
ymj

= ymj
ymi

, ymi
g = ξ

mi
m0 gymi

, (3.1)

i
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for 1 ≤ i, j ≤ θ. The coproduct Δ, the counit ε and the antipode S of T (m1, . . . , mθ, ξ)
are given by

Δ(g) = g ⊗ g, Δ(ymi
) = 1 ⊗ ymi

+ ymi
⊗ gmi ,

ε(g) = 1, ε(ymi
) = 0,

S(g) = g−1, S(ymi
) = −ymi

g−mi

for 1 ≤ i ≤ θ.
Since (m0, m) = 1, if we take ξ′ := ξm0 in the above definition then it is not hard to 

see that ξ′ is still a primitive mth root of unity. So in (3.1) we can substitute the relation 
ymi

g = ξ
mi
m0 gymi

by a more convenient version

ymi
g = ξmigymi

, 1 ≤ i ≤ θ.

Lemma 3.3. The algebra T (m1, . . . , mθ, ξ) defined above is an m2-dimensional Hopf al-
gebra.

Proof. This is clear. We just point out that: The condition (1) of Definition 3.1 ensures 
that each yeimi

is a primitive element and the condition (2) of Definition 3.1 ensures that 
ymi

ymj
− ymj

ymi
is a skew-primitive element for all 1 ≤ i, j ≤ θ. �

Proposition 3.4. Let m′ be another natural number and m′ = {m′
1, . . . , m

′
θ′} be a fraction 

of m′. Then as Hopf algebras, T (m1, . . . , mθ, ξ) ∼= T (m′
1, . . . , m

′
θ, ξ

′) if and only if m =
m′, θ = θ′ and there exists x0 ∈ N which is relatively prime to m such that up to an 
order of m1, . . . , mθ we have m′

i ≡ mix0 (mod m) and ξ = ξ′ x0 .

Proof. The sufficiency of the proposition is clear. We only prove the necessity. Assume 
that we have an isomorphism of Hopf algebras

ϕ : T (m1, . . . ,mθ, ξ)
∼=−→ T (m′

1, . . . ,m
′
θ, ξ

′).

By this isomorphism, they have the same dimension and thus m = m′ according to 
Lemma 3.3. Comparing the number of nontrivial skew primitive elements, we know that 
θ = θ′. Up to an order of m1, . . . , mθ, there is no harm to assume that ϕ(ymi

) = ym′
i

for 1 ≤ i ≤ θ. (More precisely, we should take ϕ(ymi
) = ym′

i
+ c(1 − (g′)m′

i) at first. 
But through the relation ymi

g = ξmigymi
we have c = 0.) Since ϕ(g) is a group-like and 

generates all group-likes, ϕ(g) = g′ x0 for some x0 ∈ N and (x0, m) = 1. Due to

Δ(ϕ(ymi
)) = Δ(ym′

i
) = 1 ⊗ ym′

i
+ ym′

i
⊗ (g′)m

′
i

which equals to

(ϕ⊗ ϕ)(Δ(ymi
)) = 1 ⊗ ym′ + ym′ ⊗ (g′)mix0 .
i i
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Therefore, m′
i ≡ mix0 (mod m). By this, we can assume that (m′

1, . . . , m
′
θ) =

(m1, . . . , mθ)x0, that is, m′
0 = m0x0. So ϕ(ymi

g) = ϕ(ξ
mi
m0 gymi

) implies that

ξ
′ m′

i
m′

0
x0(g′)x0ym′

i
= ξ

mi
m0 (g′)x0ym′

i

which implies that ξ
mi
m0 = ξ′ x0

mi
m0 for all 1 ≤ i ≤ θ. Since by definition (m1

m0
, . . . , mθ

m0
) = 1, 

there exist c1, . . . , cθ such that 
∑θ

i=1 ci
mi

m0
= 1. Therefore,

ξ = ξ
∑θ

i=1 ci
mi
m0 = ξ′ x0

∑θ
i=1 ci

mi
m0 = ξ′ x0 . �

3.3. Some combinatorial identities

Firstly, we will rewrite some combinatorial identities appeared in [32, Section 3] in 
a suitable form for our purpose. Secondly, we prove some more identities which are 
not included in [32, Section 3]. Let m, d be two natural numbers. As before, let m =
{m1, . . . , mθ} ∈ F(m) be a fraction of m and ei the exponent of mi with respect to m
for 1 ≤ i ≤ θ. Let γ be a primitive mth root of unity. By definition, we know that

γi := γ−m2
i

is a primitive eith root of unity. For any j ∈ Z, the polynomial φmi,j is defined through

φmi,j := 1 − γ−mi(mi+j)xmid = 1 − γ−m2
i (1+ji)xmid = 1 − γ

(1+ji)
i xmid (3.2)

for any 1 ≤ i ≤ θ and the second equality is due to the (1) and (2) of the definition of 
the fraction. In the following of this subsection, we fix an 1 ≤ i ≤ θ.

Take j to be an arbitrary integer, define j̄ to be the unique element in {0, 1, . . . , ei−1}
satisfying j̄ ≡ j (mod ei). Then we have

φmi,j = φmi,j̄

since γei
i = 1.

With this observation, we can use

]s, t[mi

to denote the resulting polynomial by omitting all items from φmi,smi
to φmi,tmi

in

φmi,0φmi,mi
· · ·φmi,(ei−1)mi

,

that is
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]s, t[mi
=

⎧⎪⎪⎨⎪⎪⎩
φmi,(t̄+1)mi

· · ·φmi,(ei−1)mi
φmi,0 · · ·φmi,(s̄−1)mi

, if t̄ � s̄

1, if s̄ = t + 1
φmi,(t̄+1)mi

· · ·φmi,(s̄−1)mi
, if s � t̄ + 2.

(3.3)

For example, ]−1,−1[mi
= ]ei − 1, ei − 1[mi

= φmi,0φmi,mi
· · ·φmi,(ei−2)mi

.

Remark 3.5. For the case s̄ = t + 1, it seems that it is more natural to define ]s, t[mi

to be φmi,0φmi,mi
· · ·φmi,(ei−1)mi

, which equals to 1 − xeimid by Lemma 3.6 (2). In 
practice, it is more convenient for us to define it just to be 1 more or less due to the fact 
yeimi

= 1 − xeimid (see the definition of D(m, d, γ) in Subsection 4.4).

In practice, in particular to formulate the multiplication of our new examples of Hopf 
algebras, the next notation is also useful for us, which can be considered as the resulting 
polynomial (except the case s̄ = t̄ + 1) by preserving all items from φmi,smi

to φmi,tmi

in φmi,0φmi,mi
· · ·φmi,(ei−1)mi

.

[s, t]mi
:=

⎧⎪⎪⎨⎪⎪⎩
φmi,s̄mi

φmi,(s̄+1)mi
· · ·φmi,t̄mi

, if t̄ � s̄

1, if s̄ = t + 1
φmi,s̄mi

· · ·φmi,(ei−1)mi
φmi,0 · · ·φmi,t̄mi

, if s � t̄ + 2.
(3.4)

So, by definition, we have

[i,m− 2 − j]mi
= ]−1 − j, i− 1[mi

. (3.5)

Due to the equality (3.5), we just study equations with omitting items. The following 
formulas already were proved or already implicated in [32, Section 3] in different forms. 
So we just state them in our forms without proofs.

Lemma 3.6. With notions defined as above, we have

(1)
∑ei−1

j=0 ]j − 1, j − 1[mi
= ei.

(2) φmi,0φmi,mi
· · ·φmi,(ei−1)mi

= 1 − xeimid.
(3)

∑ei−1
j=0 γj

i ]j − 1, j − 1[mi
= eix

(ei−1)mid.
(4)

∑ei−1
j=0 γj

i ]j − 2, j − 1[mi
= 0.

(5) Fix k such that 1 � k � ei − 1 and let 1 � i′ � k. Then

ei−1∑
j=0

γi′j
i ]j − 1 − k, j − 1[mi

= 0.

(6) Let 0 ≤ t ≤ j + l ≤ ei − 1, 0 ≤ α ≤ ei − 1 − j − l. Then

(−1)α+tγ
(α+t)(α+t+1)

2 +t(j+l−t)
i

(
ei − 1 − t

α

) (
ei − 1 + t− j − l

α + t

)

γi γi
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=
(
j + l

t

)
γi

(
m− 1 − j − l

α

)
γi

.

We still need two more observations which were not included in [32, Section 3].

Lemma 3.7. With notations as above. Then

(1) For any eith root of unity ξ, we have

ei−1∑
j=0

ξj ]j − 1, j − 1[mi
�= 0.

(2) Let ξ be an eith root of unity. Then 
∑ei−1

j=0 ξj ]j − 2, j − 1[mi
= 0 if and only if 

ξ = γi.

Proof. (1) Otherwise, we assume that 
∑ei−1

j=0 ξj ]j − 1, j − 1[mi
= 0. From this, we know 

that ξ �= 1 by (3) of Lemma 3.6. By the definition of ]j − 1, j − 1[mi
, we know that

ei−1∑
j=0

ξj ]j − 1, j − 1[mi
−

ei−1∑
j=0

ξjγj
i x

mid ]j − 1, j − 1[mi

=
ei−1∑
j=0

ξj(1 − γj
i x

mid) ]j − 1, j − 1[mi

=
ei−1∑
j=0

ξjφmi,0φmi,mi
· · ·φmi,(ei−1)mi

=
ei−1∑
j=0

ξj(1 − xeimid)

= 0,

where the third equality is due to (2) of Lemma 3.6 and the last equality follows from 
ξ �= 1 being an eith root of unity. Therefore, 

∑ei−1
j=0 ξjγj

i x
mid ]j − 1, j − 1[mi

= 0 and 

thus 
∑ei−1

j=0 (γiξ)j ]j − 1, j − 1[mi
= 0. Repeat above process, we know that for any k

ei−1∑
j=0

(γk
i ξ)j ]j − 1, j − 1[mi

= 0.

Since ξ is an eith root of unity while γi is a primitive eith root of unity, there exists a 
k such that γk

i ξ = 1. But in this case 
∑ei−1

j=0 (γk
i ξ)j ]j − 1, j − 1[mi

= ei �= 0. That is a 
contradiction.

(2) “⇐” This is just the (4) of Lemma 3.6.
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“⇒” Before prove this part, we recall a formula (see [19, Proposition IV.2.7]) at first:

(a− z)(a− qz) · · · (a− qn−1z) =
n∑

l=0

(−1)l
(
n

l

)
q

q
l(l−1)

2 an−lzl,

where q is a nonzero element in k and any a ∈ k. From this,

]j − 2, j − 1[mi
= (1 − γj+1

i xmid)(1 − γj+2
i xmid) · · · (1 − γei+j−2

i xmid)

=
ei−2∑
l=0

(−1)l
(
ei − 2

l

)
γi

γ
l(l−1)

2
i (γj+1

i xmid)l

=
ei−2∑
l=0

(−1)l
(
ei − 2

l

)
γi

γ
l(l+1)

2 +lj

i xlmid.

So from this, we have

ei−1∑
j=0

ξj ]j − 2, j − 1[mi
=

ei−2∑
l=0

(−1)l
(
ei − 2

l

)
γi

γ
l(l+1)

2
i

ei−1∑
j=0

ξjγlj
i xlmid.

Therefore assumption implies that

ei−1∑
j=0

ξjγlj
i = 0

for all 0 � l � ei − 2. So we see that the only possibility is ξ = γi. �
4. More examples

In this section, we will introduce the fraction versions of infinite dimensional Taft 
algebras, generalized Liu algebras and the Hopf algebras D(m, d, γ), respectively. Some 
properties of them are listed. Most of these Hopf algebras, as far as we know, are new.

4.1. Fraction of infinite dimensional Taft algebra T (m, t, ξ)

(See also [6] for similar constructions.) Let m, t be two natural numbers and set 
n = mt. Let m = {m1, . . . , mθ} be a fraction of m and m0 = gcd(m1, . . . , mθ). So it is 
not hard to see that (m, m0) = 1. Now fix a primitive nth root of unity ξ satisfying

ξe1
m1
m0 = ξe2

m2
m0 = · · · = ξeθ

mθ
m0 .

Note that such ξ does not always exist (for example, taking m = 6, t = 2 and {4, 3} be 
a fraction of 6). If it exists, then we can define a Hopf algebra T (m, t, ξ) as follows. As 
an algebra, it is generated by g, ym1 , . . . , ymθ

and subject to the following relations:
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gn = 1, yeimi
= yejmj

, ymi
ymj

= ymj
ymi

, ymi
g = ξ

mi
m0 gymi

, (4.1)

for 1 ≤ i, j ≤ θ. The coproduct Δ, the counit ε and the antipode S of T (m, t, ξ) are 
given by

Δ(g) = g ⊗ g, Δ(ymi
) = 1 ⊗ ymi

+ ymi
⊗ gtmi ,

ε(g) = 1, ε(ymi
) = 0,

S(g) = g−1, S(ymi
) = −ymi

g−tmi

for 1 ≤ i ≤ θ.

Proposition 4.1. Let the k-algebra T = T ({m1, . . . , mθ}, t, ξ) be the algebra defined as 
above. Then

(1) The algebra T is a Hopf algebra of GK-dimension one, with center k[ye1tm1
].

(2) The algebra T is prime and PI-deg (T ) = n.
(3) The algebra T has a 1-dimensional representation whose order is n.

Proof. (1) Since the proof of T (m, t, ξ) being a Hopf algebra is routine, we leave it to 
the readers. (In fact, since for each 1 ≤ i ≤ θ the subalgebra generated by g, ymi

is just a 
generalized infinite dimensional Taft algebra, one can reduce the proof to just considering 
the mixed relation ymi

ymj
= ymj

ymi
and yeimi

= y
ej
mj for 1 ≤ i, j ≤ θ.) Through direct 

computations, one can see that the subalgebra k[ye1tm1
] ∼= k[x] is the center of T (m, t, ξ)

and T is finite module over k[ye1tm1
]. This means the GK-dimension of T (m, t, ξ) is one.

(2) We want to apply Lemma 2.11 to prove this result and we use similar argument 
developed in the proof of Corollary 2.14. At first, let T0 be the subalgebra generated by 
ym1 , . . . , ymθ

. Then clearly

T =
n−1⊕
i=0

T0g
i.

From this, T is a strongly Ẑn = 〈χ|χn = 1〉-graded algebra through χ(agi) = ξi for 
any a ∈ T0 and 0 ≤ i ≤ n − 1. Therefore, the conditions 1) and 2) of Lemma 2.11
are satisfied. By part (b) of Lemma 2.11, the action of Ẑn is just the adjoint action of 
Zn = 〈g|gn = 1〉 on T0 which by definition is faithful. Therefore, PI.deg(T ) = n by part 
(c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11 implies that T is prime now.

(3) By the definition of T (m, t, ξ), it has a 1-dimensional representation

π : T (m, t, ξ) → k, ymi
�→ 0, g �→ ξ (1 ≤ i ≤ θ).

It’s order is clear n. �
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Remark 4.2. We call the representation in Proposition 4.1 (3) a PI-degree representation
of T (m, t, ξ). Since ord(π) = n which is same as the PI-degree of T (m, t, ξ), the Hopf 
algebra T (m, t, ξ) satisfies the (Hyp1). At the same time, let {2, 5} be a fraction of 10
and consider the example T = T ({2, 5}, 3, ξ) where ξ is a primitive 30th root of unity. 
Applying [21, Lemma 2.6], we find that the right module structure of the left homological 
integrals is given by

l∫

T

= T/(ymi
(1 ≤ i ≤ θ), g − ξ10−7).

Therefore io(T ) = 10 which does not equal the PI-degree of T , which is 30. So, T (m, t, ξ)
only satisfies (Hyp1) rather than (Hyp1)′, that is, io(T ) �= PI.deg(T ) in general.

The PI-degree representation of T = T (m, t, ξ) given in Proposition 4.1 (3) yields the 
corresponding left and right winding automorphisms

Ξl
π :

{
ymi

�−→ ymi
,

g �−→ ξg,
and Ξr

π :
{
ymi

�−→ ξmitymi
,

g �−→ ξg,

for 1 ≤ i ≤ θ.
Using above expression of Ξl

π and Ξr
π, it is not difficult to find that

T l
i = k[ym1 , . . . , ymθ

]gi and T r
j = k[g−m1tym1 , . . . , g

−mθtymθ
]gj (4.2)

for all 0 ≤ i, j ≤ n − 1. Thus we have

T00 = k[ye1m1
] and Ti,i+jt = k[ye1m1

]yjgi (4.3)

for all 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1 where yj = yj1m1
· · · yjθmθ

(see (1) of Remark 3.2). 
Moreover, we can see that

Tij = 0 if i− j �≡ 0 (mod t)

for all 0 ≤ i, j ≤ n − 1.
As a concluding remark of this subsection, we want to differentiate these fractions of 

infinite dimensional Taft algebras.

Proposition 4.3. Keep above notations. Let m′ = {m′
1, . . . , m

′
θ′} be a fraction of another 

integer m′. Then T (m, t, ξ) ∼= T (m′, t′, ξ′) if and only if m = m′, θ = θ′, t = t′ and there 
exists x0 ∈ N which is relatively prime to n = mt such that up to an order of m1, . . . , mθ

we have m′
i ≡ mix0 (mod n) and ξ = ξ′ x0 .
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Proof. We denote the corresponding generators and numbers of T (m′, t′, ξ′) by adding 
the symbol ′ to that of T (m, t, ξ). The sufficiency is clear (for example, just take ϕ :
T (m, t, ξ) → T (m′, t′, ξ′) through g �→ g′ x0 , ymi

�→ y′m′
i

for 1 ≤ i ≤ θ. Then one can 
see that ϕ gives the desired isomorphism). We next prove the necessity. Assume that we 
have an isomorphism of Hopf algebras

ϕ : T (m, t, ξ)
∼=−→ T (m′, t′, ξ′).

By this isomorphism, they have the same number of group-like elements which implies 
that n = mt = m′t′ = n′ and ϕ(g) = (g′)x0 for some x0 ∈ N satisfying x0 and n
are coprime. Comparing the number of nontrivial skew primitive elements, we know 
that θ = θ′. Up to an order of m1, . . . , mθ, there is no harm to assume that ϕ(ymi

) =
ym′

i
for 1 ≤ i ≤ θ. (Just as the case of a fraction of a Taft algebra, one should take 

ϕ(ymi
) = ym′

i
+ ci(1 − (g′)m′

i) at the beginning for some ci ∈ k. Then through the 

relation ymi
g = ξ

mi
m0 gymi

we can find that ci = 0.) Since both yeimi
and ye

′
i

m′
i
are primitive, 

ei = e′i. Therefore m = e1 · · · eθ = e′1 · · · e′θ = m′ and thus t = t′. Then one can repeat 
the proof of Proposition 3.4 and get that m′

i ≡ mix0 (mod n) and ξ = ξ′ x0 . �
4.2. T (m, t, ξ) vs the Brown-Goodearl-Zhang’s example

In the paper of Goodearl and Zhang [15, Section 2], they found a new class of Hopf 
domains of GK-dimension two. From these Hopf domains, one can get some Hopf algebras 
of GK-dimension one through quotient method. In fact, through this way Brown and 
Zhang [12, Example 7.3] got the first example of a prime Hopf algebra of GK-dimension 
one which is not regular. Let’s recall their construction at first.

Example 4.4 (Brown-Goodearl-Zhang’s example). Let n, p0, p1, . . . , ps be positive integers 
and q ∈ k× with the following properties:

(a) s ≥ 2 and 1 < p1 < p2 < · · · < ps;
(b) p0|n and p0, p1, . . . , ps are pairwise relatively prime;
(c) q is a primitive lth root of unity, where l = (n/p0)p1p2 · · · ps.

Set mi = p−1
i

∏s
j=1 pj for i = 1, . . . , s. Let A be the subalgebra of k[y] generated by 

yi := ymi for i = 1, . . . , s. The k-algebra automorphism of k[y] sending y �→ qy restricts 
to an algebra automorphism of A, which is denoted by σ. There is a unique Hopf algebra 
structure on the Laurent polynomial ring B = A[x±1; σ] such that x is group-like and 
the yi are skew primitive, with

Δ(yi) = 1 ⊗ yi + yi ⊗ xmin

for i = 1, . . . , s. It is a PI Hopf domain of GK-dimension two, and is denoted by 
B(n, p0, p1, . . . , ps, q). Now let
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B(n, p0, p1, . . . , ps, q) := B(n, p0, p1, . . . , ps, q)/(xl − 1).

Then Brown-Zhang proved that the quotient Hopf algebra B(n, p0, p1, . . . , ps, q) is a 
prime Hopf algebra of GK-dimension one.

There is a close relationship between the Brown-Goodearl-Zhang’s example and the 
fractions of infinite dimensional Taft algebras.

Proposition 4.5. The Hopf algebra B(n, p0, p1, . . . , ps, q) is a fraction of an infinite di-
mensional Taft algebra, that is, B(n, p0, p1, . . . , ps, q) = T (m, t, ξ) for some m ∈ F , t ∈ N

and ξ a root of unity.

Proof. By definition of B = B(n, p0, p1, . . . , ps, q), we know that yi = ymi (we also use 
the same notation as B(n, p0, p1, . . . , ps, q)) and thus the following relation is satisfied

ypi

i = y
pj

j

for all 1 ≤ i, j ≤ s. At the same time, in B the group like element x satisfying the 
following relations

xl = 1, yix = qmixyi

for i = 1, . . . , s. By these observations, define

m′
i := p0mi, 1 ≤ i ≤ s.

Then it is tedious to show that m′
1, m

′
2, . . . , m

′
s is a fraction of m :=

∏s
i=1 pi. Moreover, 

let t := n/p0. Now we see that the Hopf algebra T ({m′
1, m

′
2, . . . , m

′
s}, t, q) is generated 

by ym′
1
, . . . , ym′

s
, g and satisfies the following relations

gl = 1, ypi

m′
i
= y

pj

m′
j
, ym′

i
ym′

j
= ym′

j
ym′

i
, ym′

i
g = q

m′
i

p0 gym′
i
= qmigym′

i
.

From this, there is an algebra epimorphism

f : T ({m′
1,m

′
2, . . . ,m

′
s}, n/p0, q) → B(n, p0, p1, . . . , ps, q), ym′

i
�→ yi, g �→ x

which is clear a Hopf epimorphism. Since both of them are prime of GK-dimension one, 
f must be an isomorphism. �

But not all fractions of infinite dimensional Taft algebras belong to the class of Brown-
Goodearl-Zhang’s examples.
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Example 4.6. Let 5, 12 be a fraction of 30 and ξ a primitive 30th root of unity. Then the 
corresponding T ({12, 5}, 1, ξ) is generated by y5, y12, g satisfying

y5
12 = y6

5 , y12y5 = y5y12, y12g = ξ12gy12, y5g = ξ5gy5, g30 = 1.

If there is an isomorphism between this Hopf algebra and a Brown-Goodearl-Zhang’s 
example

f : T ({12, 5}, 1, ξ)
∼=−→ B(n, p0, p1, . . . , ps, q),

then clearly s = 2 (by the number of non-trivial skew primitive elements) and l =
(n/p0)p1p2 = 30 (due to they have the same group of group-likes). Therefore, f(g) = xt

with (t, 30) = 1. By

Δ(y5) = 1 ⊗ y5 + g5 ⊗ y5, Δ(y12) = 1 ⊗ y12 + g12 ⊗ y12,

we know that np1 ≡ 5t, np2 ≡ 12t (mod 30). Since p1, p2 are factors of 30 and t is coprime 
to 30, p1 = 5 and thus n ≡ t (mod 30), p2 = 12. This contradicts to l = (n/p0)p1p2 = 30.

This example also shows that not every fraction version of infinite dimensional Taft 
algebra can be realized as a quotient of a Hopf domain of GK-dimension two.

4.3. Fraction of generalized Liu algebra B(m, ω, γ)

(See also [2]). Let m, ω be positive integers and m1, . . . , mθ a fraction of m. A fraction 
of a generalized Liu algebra, denoted by B(m, ω, γ) = B({m1, . . . , mθ}, ω, γ), is generated 
by x±1, g and ym1 , . . . , ymθ

, subject to the relations⎧⎪⎪⎨⎪⎪⎩
xx−1 = x−1x = 1, xg = gx, xymi

= ymi
x,

ymi
g = γmigymi

, ymi
ymj

= ymj
ymi

yeimi
= 1 − xω

eimi
m , gm = xω,

(4.4)

where γ is a primitive mth root of 1 and 1 ≤ i, j ≤ θ. The comultiplication, counit and 
antipode of B({m1, . . . , mθ}, ω, γ) are given by

Δ(x) = x⊗ x, Δ(g) = g ⊗ g, Δ(ymi
) = ymi

⊗ gmi + 1 ⊗ ymi
,

ε(x) = 1, ε(g) = 1, ε(ymi
) = 0,

and

S(x) = x−1, S(g) = g−1 S(ymi
) = −ymi

g−mi ,

for 1 ≤ i ≤ θ.
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Proposition 4.7. Let the k-algebra B = B({m1, . . . , mθ}, ω, γ) be defined as above. Then

(1) The algebra B is a Hopf algebra of GK-dimension one, with center k[x±1].
(2) The algebra B is prime and PI-deg (B) = m.
(3) The algebra B has a 1-dimensional representation whose order is m.
(4) io(B) = m.

Proof. (1) It is not hard to see that the center of B is k[x±1] and B is a free module 
over k[x±1] with finite rank. Actually, through a direct computation one can find that 
{yjgi|0 ≤ i, j ≤ m − 1} is a basis of B over k[x±1]. Here recall that the notion yj for 
arbitrary 1 ≤ j ≤ m − 1 is defined to be 

∏θ
i=1 y

ji
mi

if j ≡ j1m1 + . . . + jθmθ (mod m). 
Therefore, it has GK-dimension one. Similar to the case of T (m, t, ξ), we leave the task 
to the readers to check that B is a Hopf algebra. Actually, the same as the case of Taft 
algebras, since for each 1 ≤ i ≤ θ the subalgebra generated by x±1, g, ymi

is just a similar 
kind of generalized Liu algebra which may be not prime now, one can reduce the proof 
to just considering the mixed relation ymi

ymj
= ymj

ymi
and yeimi

= y
ej
mj for 1 ≤ i, j ≤ θ.

(2) As the case of T (m, t, ξ), we want to apply Lemma 2.11 to prove that B is prime 
with PI-degree m. At first, let B0 be the subalgebra generated by ym1 , . . . , ymθ

and x±1. 
Clearly, B0 is a domain and

B =
m−1⊕
i=0

B0g
i.

From this, B is a strongly Ẑm = 〈χ|χm = 1〉-graded algebra through χ(agi) = γi for 
any a ∈ B0 and 0 ≤ i ≤ m − 1. Therefore, the conditions 1) and 2) of Lemma 2.11
are fulfilled. By part (b) of Lemma 2.11, the action of Ẑm is just the adjoint action of 
Zm = 〈g|gm = 1〉 on B0 which by definition of a fraction of m is faithful. Therefore, 
PI.deg(B) = m by part (c) of Lemma 2.11. In addition, the part (d) of Lemma 2.11
implies that B is prime now.

(3) By the definition of B, it has a 1-dimensional representation

π : B → k, x �→ 1, ymi
�→ 0, g �→ γ (1 ≤ i ≤ θ).

It’s order is clear m.
(4) Using [21, Lemma 2.6], we have the right module structure of the left integrals is

l∫

B

= B/(x− 1, ymi
, g − γ−

∑θ
i=1 mi , 1 ≤ i ≤ θ).

Next, we want to show that 
∑θ

i=1 mi is coprime to m. Recall that in the definition of a 
fraction (see Definition 3.1), we ask that (mi, ei) = 1 and m|mimj for all 1 ≤ i, j ≤ θ. 
Thus
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(ei, ej) = 1, ei|mj

for all 1 ≤ i �= j ≤ θ. By (2) of Definition 3.1, m = e1 · · · eθ. On the contrary, assume 
that (

∑θ
i=1 mi, m) �= 1. Then there exists 1 ≤ i ≤ θ and a prime factor pi|ei such that 

pi|m and pi| 
∑θ

i=1 mi. Since ei|mj for all j �= i, pi|mj for all j �= i. Therefore, pi|mi

which is impossible since (mi, ei) = 1.
Therefore, we know that (

∑θ
i=1 mi, m) = 1 and thus γ−

∑θ
i=1 mi is still a primitive 

mth root of unity which implies that io(B) = m. �
We also call the 1-dimensional representation stated in (3) of Proposition 4.7 a PI-

degree representation of B = B({m1, . . . , mθ}, ω, γ). This PI-degree representation of B
yields the corresponding left and right winding automorphisms

Ξl
π :

⎧⎪⎪⎨⎪⎪⎩
x �−→ x,

ymi
�−→ ymi

,

g �−→ γg,

and Ξr
π :

⎧⎪⎪⎨⎪⎪⎩
x �−→ x,

ymi
�−→ γmiymi

,

g �−→ γg,

for 1 ≤ i ≤ θ.
Using above expression of Ξl

π and Ξr
π, it is not difficult to find that

Bl
i = k[x±1, ym1 , . . . , ymθ

]gi and Br
j = k[x±1, g−m1ym1 , . . . , g

−mθymθ
]gj (4.5)

for all 0 ≤ i, j ≤ m − 1. Thus we have

B00 = k[x±1] and Bi,i+j = k[x±1]yjgi (4.6)

for all 0 ≤ i, j ≤ m − 1 where yj = yj1m1
· · · yjθmθ

(see (1) of Remark 3.2) for j ≡ j1m1 +
· · · + jθmθ.

At the end of this subsection, we also want to consider when two fractions of gener-
alized Liu algebras are the same. To do that, let m′ ∈ N and {m′

1, . . . , m
′
θ′} a fraction 

of m′. As before, we denote the corresponding generators and numbers of B(m′, ω′, γ′)
by adding the symbol ′ to that of B(m, ω, γ).

Proposition 4.8. As Hopf algebras, if B(m, ω, γ) ∼= B(m′, ω′, γ′), then m = m′, θ = θ′

and up to an order of mi’s, ωmi = ω′m′
i for all 1 ≤ i ≤ θ.

Proof. Since they have the same PI-degrees, m = m′. We know the center of B(m, ω, γ)
is k[x±1] and thus ϕ(x) = x′ or ϕ(x) = (x′)−1. Also, as before, through comparing 
the nontrivial skew primitive elements, θ = θ′ and after a reordering the generators 
we can assume that ϕ(ymi

) = y′m′
i
. The relation yeimi

= 1 − xω
eimi
m implies that ei =

e′i and ϕ(x) = x′ since by assumption all ei, mi and m are positive, from which one 
has
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ω
eimi

m
= ω′ e

′
im

′
i

m′ .

Since m = m′ and ei = e′i, ωmi = ω′m′
i for all 1 ≤ i ≤ θ. �

The conditions in above proposition is only a necessary condition for B(m, ω, γ) ∼=
B(m′, ω′, γ′). To get a sufficient one, or an equivalent condition, we need the following 
observation.

Lemma 4.9. Any fraction of generalized Liu algebra B(m, ω, γ) is isomorphic to a unique 
B(m′, ω′, γ′) satisfying (m′

1, . . . , m
′
θ′) = 1.

Proof. We prove the existence at first and then prove the uniqueness. Take an arbitrary 
B(m, ω, γ). Let m0 = (m1, . . . , mθ). Above proposition suggests us to construct the 
following algebra

B({m1

m0
, . . . ,

mθ

m0
}, ωm0, γ

m2
0).

Clearly, {m1
m0

, . . . , mθ

m0
} is a fraction of m with length θ and (m1

m0
, . . . , mθ

m0
) = 1.

Claim 1: As Hopf algebras, B(m, ω, γ) ∼= B({m1
m0

, . . . , mθ

m0
}, ωm0, γm2

0).

Proof of the Claim 1. Since (m0, m) = 1, there exist a ∈ N, b ∈ Z such that am0+bm = 1. 
Define the following map

ϕ : B(m,ω, γ) −→ B({m1

m0
, . . . ,

mθ

m0
}, ωm0, γ

m2
0),

x �→ x′, g �→ (g′)a(x′)bω, ymi
�→ y′mi

m0
, (1 ≤ i ≤ θ).

Since

ϕ(gmi) = ϕ(g)mi = ((g′)a(x′)bω)mi = (g′)am0
mi
m0 (x′)bω

′ mi
m0

= (g′)am0
mi
m0 (g′)bm

mi
m0 = (g′)(am0+bm) mi

m0

= (g′)
mi
m0

and

ϕ(ymi
g) = ϕ(ymi

)ϕ(g) = y′mi
m0

(g′)a(x′)bω

= γam2
0

mi
m0 (g′)a(x′)bωy′mi

m0
= γmiϕ(g)ϕ(ymi

)

= ϕ(γmigymi
),

for all 1 ≤ i ≤ θ, it is not hard to prove that ϕ gives the desired isomorphism.
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Next, let’s show that uniqueness. To prove it, it is enough to built the following 
statement.

Claim 2: Let {m1, . . . , mθ} and {m′
1, . . . , m

′
θ} be two fractions of m with length θ sat-

isfying (m1, . . . , mθ) = (m′
1, . . . , m

′
θ) = 1. If B(m, ω, γ) is isomorphic to B(m′, ω′, γ′), 

then up to an order of mi’s we have mi = m′
i, ω = ω′ and γ = γ′ for 1 ≤ i ≤ θ.

Proof of Claim 2. By Proposition 4.8, ωmi = ω′m′
i. Since

(m1, . . . ,mθ) = (m′
1, . . . ,m

′
θ) = 1,

ω|ω′ and ω′|ω. Therefore ω = ω′ and thus mi = m′
i for all 1 ≤ i ≤ θ. From this, we 

know the isomorphism given in the proof of Proposition 4.8 must sent gmi to (g′)mi , i.e., 
keeping the notations used in the proof of Proposition 4.8, we have ϕ(gmi) = (g′)mi for 
all 1 ≤ i ≤ θ. Since (m1, . . . , mθ) = 1, there exist ai ∈ Z such that 

∑θ
i=1 aimi = 1. Thus

ϕ(g) = ϕ(g
∑θ

i=1 aimi) = (g′)
∑θ

i=1 aimi = g′.

This implies that

γmi = (γ′)mi

through using the relation ymi
g = γmigymi

. So,

γ = γ
∑θ

i=1 aimi = (γ′)
∑θ

i=1 aimi = γ′. �
Definition 4.10. We call the Hopf algebra B({m1

m0
, . . . , mθ

m0
}, ωm0, γm2

0) the basic form of 
B(m, ω, γ).

By this lemma, we can tell when two fractions of generalized Liu algebras are isomor-
phic now. Keeping notations before, let m, m′ ∈ N and {m1, . . . , mθ}, {m′

1, . . . , m
′
θ′} be 

fractions of m and m′ respectively. Let m0 := (m1, . . . , mθ) and m′
0 := (m′

1, . . . , m
′
θ′).

Proposition 4.11. Retain above notations. As Hopf algebras, B(m, ω, γ) ∼= B(m′, ω′, γ′)
if and only if m = m′, θ = θ′, ωm0 = ω′m′

0 and γm2
0 = γ′ (m′

0)
2 .

Proof. Note that B(m, ω, γ) ∼= B(m′, ω′, γ′) if and only if they have the same basic forms 
by above lemma. Now the condition listed in the proposition is clearly equivalent to say 
that the basic forms of them are same. �
4.4. Fraction of the Hopf algebra D(m, d, γ)

Let m, d be two natural numbers, m1, . . . , mθ a fraction of m satisfying the following 
two conditions:
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2|
θ∑

i=1
(mi − 1)(ei − 1) and 2|

θ∑
i=1

(ei − 1)mid. (4.7)

Let γ be a primitive mth root of unity and define

ξmi
:=

√
γmi , 1 ≤ i ≤ θ. (4.8)

That is, ξmi
is a primitive square root of γmi . Therefore in particular, one has

ξeimi
= −1 (4.9)

for all 1 ≤ i ≤ θ.
In order to give the definition of the Hopf algebra D(m, d, γ), we still need recall two 

notations introduced in Section 3:

]s, t[mi
=

⎧⎪⎪⎨⎪⎪⎩
φmi,(t̄+1)mi

· · ·φmi,(ei−1)mi
φmi,0 · · ·φmi,(s̄−1)mi

, if t̄ � s̄

1, if s̄ = t + 1
φmi,(t̄+1)mi

· · ·φmi,(s̄−1)mi
, if s � t̄ + 2.

(4.10)

and

[s, t]mi
:=

⎧⎪⎪⎨⎪⎪⎩
φmi,s̄mi

φmi,(s̄+1)mi
· · ·φmi,t̄mi

, if t̄ � s̄

1, if s̄ = t + 1
φmi,s̄mi

· · ·φmi,(ei−1)mi
φmi,0 · · ·φmi,t̄mi

, if s � t̄ + 2.
(4.11)

where φmi,j = 1 − γ−m2
i (ji+1)xmid for all 1 ≤ i ≤ θ. See (3.3) and (3.4) for details. Now 

we are in the position to give the definition of D(m, d, γ).
• As an algebra, D = D(m, d, γ) is generated by x±1, g±1, ym1 , . . . , ymθ

, u0, u1, · · · ,
um−1, subject to the following relations

xx−1 = x−1x = 1, gg−1 = g−1g = 1, xg = gx, xymi
= ymi

x (4.12)

ymi
ymk

= ymk
ymi

, ymi
g = γmigymi

, yeimi
= 1 − xeimid, gm = xmd, (4.13)

xuj = ujx
−1, ymi

uj = φmi,juj+mi
= ξmi

xmidujymi
ujg = γjx−2dguj , (4.14)

ujul = (−1)
∑θ

i=1 liγ
∑θ

i=1 m2
i

li(li+1)
2

1
m
x− 2+

∑θ
i=1(ei−1)mi

2 d (4.15)

θ∏
i=1

ξ−li
mi

[ji, ei − 2 − li]mi
yj+lg

for 1 ≤ i, k ≤ θ, and 0 ≤ j, l ≤ m − 1 and here for any integer n, n means remainder of 
division of n by m and as before n ≡

∑θ
i=1 nimi (mod m) by Remark 3.2.
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• The coproduct Δ, the counit ε and the antipode S of D(m, d, γ) are given by

Δ(x) = x⊗ x, Δ(g) = g ⊗ g, Δ(ymi
) = ymi

⊗ gmi + 1 ⊗ ymi
, (4.16)

Δ(uj) =
m−1∑
k=0

γk(j−k)uk ⊗ x−kdgkuj−k; (4.17)

ε(x) = ε(g) = ε(u0) = 1, ε(ymi
) = ε(us) = 0; (4.18)

S(x) = x−1, S(g) = g−1, S(ymi
) = −ymi

g−mi , (4.19)

S(uj) = (−1)
∑θ

i=1 jiγ−
∑θ

i=1 m2
i

ji(ji+1)
2 xb+

∑θ
i=1 jimidgm−1−(

∑θ
i=1 jimi)

θ∏
i=1

ξ−ji
mi

uj ,

(4.20)

for 1 ≤ i ≤ θ, 1 ≤ s ≤ m − 1 , 0 ≤ j ≤ m − 1 and b = (1 −m)d −
∑θ

i=1(ei−1)mi

2 d.
Before we prove that D(m, d, γ) is a Hopf algebra, which is highly nontrivial, we want 

to express the formula (4.15) and (4.20) in a more convenient way.
On one hand, we claim that we always have

(−1)−kei−jiξ−kei−ji
mi

γm2
i

(kei+ji)(kei+ji+1)
2 = (−1)−jiξ−ji

mi
γm2

i

ji(ji+1)
2 (4.21)

for any k ∈ Z. Indeed, to show this, it is enough to prove that

(−1)−keiξ−kei
mi

γm2
i

k2e2i +kei(2ji+1)
2 = 1.

Now, by definitions of mi, ei and ξmi
, we have

(−1)−keiξ−kei
mi

γm2
i

k2e2i +kei(2ji+1)
2 = (−1)−k(ei+1)γm2

i

k2e2i +kei(2ji+1)
2

= (−1)−k(ei+1)γm2
i

kei(kei+1)
2

= (−1)−k(ei+1)γ
miei

2 mik(kei+1)

= (−1)−k(ei+1)(−1)mik(kei+1),

which is equal to 1 though analyzing the odevities of k and ei. Therefore, if we define

us := us,

where s means the remainder of s modulo m, then the relation (4.15) can be replaced 
by

ujul = (−1)
∑θ

i=1 liγ
∑θ

i=1 m2
i

li(li+1)
2

1
x− 2+

∑θ
i=1(ei−1)mi

2 d
m
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θ∏
i=1

ξ−li
mi

[ji, ei − 2 − li]mi
yj+lg

= (−1)
∑θ

i=1 liγ
∑θ

i=1 m2
i

li(li+1)
2

1
m
x− 2+

∑θ
i=1(ei−1)mi

2 d

θ∏
i=1

ξ−li
mi

] − 1 − li, ji − 1[mi
yj+lg

= 1
m
x− 2+

∑θ
i=1(ei−1)mi

2 d
θ∏

i=1
(−1)liξ−li

mi
γm2

i
li(li+1)

2 ] − 1 − li, ji − 1[mi
yj+lg (4.22)

= 1
m
x− 2+

∑θ
i=1(ei−1)mi

2 d
θ∏

i=1
(−1)liξ−li

mi
γm2

i
li(li+1)

2 [ji, ei − 2 − li]mi
yj+lg

for all j, l ∈ Z, that is, we need not always ask that 0 ≤ j, l ≤ m − 1.
On other hand, since gm = xmd and (4.21), the definition about S(uj) still holds for 

any integer j, that is, (4.20) can be replaced in the following way:

S(uj) = (−1)
∑θ

i=1 ji

θ∏
i=1

ξ−ji
mi

γ−
∑θ

i=1 m2
i

ji(ji+1)
2 x

∑θ
i=1 jimidxbgm−1−(

∑θ
i=1 jimi)uj

= xbgm−1
θ∏

i=1
(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimiuj (4.23)

for all j ∈ Z.
We also need to give a bigrading on this algebra for the proof. Let ξ := √

γ and define 
the following two algebra automorphisms of D(m, d, γ):

Ξl
π :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ x,

ymi
�−→ ymi

,

g �−→ γg,

ui �−→ ξui,

and Ξr
π :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ x,

ymi
�−→ γmiymi

,

g �−→ γg,

uj �−→ ξ2j+1uj ,

for 1 ≤ i ≤ θ and 0 ≤ j ≤ m −1. It is straightforward to show that Ξl
π and Ξr

π are indeed 
algebra automorphisms of D(m, d, γ) and these automorphisms have order 2m by noting 
that ξ is a primitive 2mth root of 1. Define

Dl
i =

⎧⎨⎩k[x±1, ym1 , . . . , ymθ
]g

i
2 , i = even,∑m−1

s=0 k[x±1]g
i−1
2 us, i = odd,

and
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Dr
j =

⎧⎨⎩k[x±1, ym1g
−m1 , . . . , ymθ

g−mθ ]g
j
2 , j = even,∑m−1

s=0 k[x±1]gsu j−1
2 −s

, j = odd.

Therefore

Dij := Dl
i ∩Dr

j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k[x±1]y j−i

2
g

i
2 , i, j = even,

k[x±1]g
i−1
2 u j−i

2
, i, j = odd,

0, otherwise.

(4.24)

Since 
∑

i,j Dij = D(m, d, γ), we have

D(m, d, γ) =
2m−1⊕
i,j=0

Dij (4.25)

which is a bigrading on D(m, d, γ) automatically.
Let D := D(m, d, γ), then D⊗D is graded naturally by inheriting the grading defined 

above. In particular, for any h ∈ D ⊗D, we use

h(s1,t1)⊗(s2,t2)

to denote the homogeneous part of h in Ds1,t1 ⊗Ds2,t2 . This notion will be used freely 
in the proof of the following desired proposition.

Proposition 4.12. The algebra D(m, d, γ) defined above is a Hopf algebra.

Proof. The proof is standard but not easy. We are aware that one can not apply the fact 
that the non-fraction version D(m, d, γ) (see Subsection 2.3) is already a Hopf algebra to 
simply the proof although we can do this in the proofs of Proposition 4.7 and 4.1. The 
reason is that if we consider the subalgebra generated by x±1, g, u0, . . . , um−1 together 
with a single ymi

(this is the case of D(m, d, γ)) then we can find that the other ymj
’s will 

be created naturally. So, one has to prove it step by step. Since the subalgebra generated 
by x±1, ym1 , . . . , ymθ

, g is just a fraction version of generalized Liu algebra B(m, ω, γ), 
which is a Hopf algebra already (by Proposition 4.7), we only need to verify the related 
relations in D(m, d, γ) where uj are involved.
• Step 1 (Δ and ε are algebra homomorphisms).

First of all, it is clear that ε is an algebra homomorphism. Since x and g are 
group-like elements, the verifications of Δ(x)Δ(ui) = Δ(ui)Δ(x−1) and Δ(ui)Δ(g) =
γiΔ(x−2d)Δ(g)Δ(ui) are simple and so they are omitted.
(1) The proof of Δ(φmi,j)Δ(umi+j) = Δ(ymi

)Δ(uj) = ξmi
Δ(xmid)Δ(uj)Δ(ymi

).
Define

γi := γ−m2
i
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for all 1 ≤ i ≤ θ.
By definition Δ(uj) =

∑m−1
k=0 γk(k−j)uk ⊗ x−kdgkuj−k for all 0 � j � m − 1, we have

Δ(φmi,j)Δ(umi+j) = (1 ⊗ 1 − γ1+ji
i xmid ⊗ xmid)

m−1∑
k=0

γk(j+mi−k)uk ⊗ x−kdgkuj+mi−k

=
m−1∑
k=0

γk(j+mi−k)uk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γ−m2
i (1+ji)+k(j+mi−k)xmiduk ⊗ xmid−kdgkuj+mi−k,

and

Δ(ymi
)Δ(uj) = (1 ⊗ ymi

+ ymi
⊗ gmi)(

m−1∑
k=0

γk(k−j)uk ⊗ x−kdgkuj−k)

=
m−1∑
k=0

γk(j−k)uk ⊗ x−kdgkγkmiφmi,j−kuj+mi−k

+
m−1∑
k=0

γk(j−k)φmi,kumi+k ⊗ x−kdgmi+kuj−k

=
m−1∑
k=0

γk(j−k)+kmiuk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γk(j−k)uk ⊗ γ−m2
i (ji+1−2ki)x(mi−k)dgkuj+mi−k

+
m−1∑
k=0

γk(j−k)umi+k ⊗ x−kdgmi+kuj−k

−
m−1∑
k=0

γk(j−k)−m2
i (1+ki)xmidumi+k ⊗ x−kdgmi+kuj−k

=
m−1∑
k=0

γk(j−k)+kmiuk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γk(j−k)−m2
i (ji+1−2ki)uk ⊗ x(mi−k)dgkuj+mi−k

+
m−1∑

γ(k−mi)(j−k+mi)uk ⊗ x−(k−mi)dgkuj+mi−k
k=0
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−
m−1∑
k=0

γ(k−mi)(j+mi−k)−m2
ikixmiduk ⊗ x−(k−mi)dgkuj+mi−k

=
m−1∑
k=0

γk(j+mi−k)uk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γ−m2
i (1+ji)+k(j+mi−k)xmiduk ⊗ xmid−kdgkuj+mi−k.

Here we use the following equalities

γ(k−mi)(j−k+mi) = γk(j−k)+kmi−mi(j−k)−m2
i = γk(j−k)+2kim

2
i−m2

i (1+ji),

and

γ(k−mi)(j+mi−k)−m2
iki = γ−m2

i (1+ji)+k(j+mi−k).

Hence Δ(φmi,j)Δ(umi+j) = Δ(ymi
)Δ(uj). Similarly,

ξmi
Δ(xmid)Δ(uj)Δ(ymi

)

= ξmi
(xmid ⊗ xmid)(

m−1∑
k=0

γk(j−k)uk ⊗ x−kdgkuj−k)(1 ⊗ ymi
+ ymi

⊗ gmi)

=
m−1∑
k=0

ξmi
γk(j−k)xmiduk ⊗ x(mi−k)dgkuj−kymi

+
m−1∑
k=0

ξmi
γk(j−k)xmidukymi

⊗ x(mi−k)dgkuj−kg
mi

=
m−1∑
k=0

γk(j−k)xmiduk ⊗ x−kdgkφmi,j−kuj+mi−k

+
m−1∑
k=0

γk(j−k)φmi,kuk+mi
⊗ γ(j−k)mix(−mi−k)dgk+miuj−k

=
m−1∑
k=0

γk(j−k)xmiduk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γk(j−k)−m2
i (1+ji−ki)xmiduk ⊗ x(−k+mi)dgkuj+mi−k

+
m−1∑

γ(k−mi)(j−k+mi)(1 − γ−m2
ikixmid)uk ⊗ γ(j−k+mi)mix−kdgkuj+mi−k
k=0
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=
m−1∑
k=0

γk(j−k)xmiduk ⊗ x−kdgkφmi,j−kuj+mi−k

+
m−1∑
k=0

γk(j−k)φmi,kuk+mi
⊗ γ(j−k)mix(−mi−k)dgk+miuj−k

=
m−1∑
k=0

γk(j−k)xmiduk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γk(j−k)−m2
i (1+ji−ki)xmiduk ⊗ x(−k+mi)dgkuj+mi−k

+
m−1∑
k=0

γk(j−k+mi)uk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γk(j−k)xmiduk ⊗ x−kdgkuj+mi−k

=
m−1∑
k=0

γk(j−k+mi)uk ⊗ x−kdgkuj+mi−k

−
m−1∑
k=0

γk(j−k)−m2
i (1+ji−ki)xmiduk ⊗ xmid−kdgkuj+mi−k

= Δ(φmi,j)Δ(umi+j).

(2) The proof of Δ(ujul) = Δ(uj)Δ(ul).
Direct computation shows that

Δ(uj)Δ(ul) =
m−1∑
s=0

γs(j−s)us ⊗ x−sdgsuj−s

m−1∑
t=0

γt(l−t)ut ⊗ x−tdgtul−t

=
m−1∑
t=0

m−1∑
s=0

γs(j−s)usγ
(t−s)(l−t+s)ut−s ⊗ x−sdgsuj−sx

−(t−s)dgt−sul−t+s

=
m−1∑
t=0

m−1∑
s=0

γ(t−s)(l−t+s)+(j−s)tusut−s ⊗ x−tdgtuj−sul−t+s.

By the bigrading given in (4.25), we can find that for each 0 � t � m − 1,

m−1∑
s=0

γ(t−s)(l−t+s)+(j−s)tusut−s ⊗ x−tdgtuj−sul−t+s ∈ D2,2+2t ⊗D2+2t,2+2(j+l),

where the suffixes in D2,2+2t ⊗D2+2t,2+2(j+l) are interpreted mod 2m.
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Using equation (4.22), we get that

usut−s = 1
m
xa

θ∏
i=1

(−1)(t−s)iξ−(t−s)i
mi

γm2
i

(t−s)i((t−s)i+1)
2 [si, ei − 2 − (t− s)i]mi

ytg

and

uj−sul−t+s = 1
m
xa

θ∏
i=1

(−1)(l−t+s)iξ−(l−t+s)i
mi

γm2
i

(l−t+s)i[(j−t+s)i+1]
2

[(j − s)i, ei − 2 − (l − t + s)i]mi
yj+l−tg

here and the following of this proof a = −2+
∑θ

i=1(ei−1)mi

2 d.
Using [19, Proposition IV.2.7], for each 1 ≤ i ≤ θ

[si, ei − 2 − (t− s)i]mi
= (1 − γs+1

i xmid)(1 − γs+2
i xmid) · · · (1 − γ

(ei−1−ti+si)
i xmid)

=
ei−1−ti∑
αi=0

(−1)αi

(
ei − 1 − ti

αi

)
γi

γ
αi(αi−1)

2
i (γs+1

i xmid)αi

=
ei−1−ti∑
αi=0

(−1)αi

(
ei − 1 − ti

αi

)
γi

γ
αi(αi+1)

2 +siαi

i xmidαi ,

and

[(j − s)i, ei − 2 − (l − t + s)i]mi

= (1 − γji−si+1
i xmid)(1 − γji−si+2

i xmid) · · · (1 − γ
ji−si+ei−1−(ji+li−ti)
i xmid)

=
ei−1−(ji+li−ti)∑

βi=0

(−1)βi

(
ei − 1 − (ji + li − ti)

βi

)
γi

γ
βi(βi−1)

2
i (γji−si+1

i xmid)βi

=
ei−1−(ji+li−ti)∑

βi=0

(−1)βi

(
ei − 1 − (ji + li − ti)

βi

)
γi

γ
βi(βi+1)

2 +(ji−si)βi

i xmidβi ,

where (ji + li − ti) is the remainder of ji + li − ti divided by ei.
Then for each 0 � t � m − 1,

Δ(uj)Δ(ul)(2,2+2t)⊗(2+2t,2+2(j+l)) (4.26)

=
m−1∑
s=0

γ(t−s)(l−t+s)+(j−s)tusut−s ⊗ x−tdgtuj−sul−t+s

=
m−1∑

γ(t−s)(l−t+s)+(j−s)t 1
m
xa

θ∏
(−1)(t−s)iξ−(t−s)i

mi
γm2

i
(t−s)i((t−s)i+1)

2

s=0 i=1
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[si, ei − 2 − (t− s)i]mi
ytg

⊗x−tdgt
1
m
xa

θ∏
i=1

(−1)(l−t+s)iξ−(l−t+s)i
mi

γm2
i

(l−t+s)i[(j−t+s)i+1]
2

[(j − s)i, ei − 2 − (l − t + s)i]mi
yj+l−tg

= [
m−1∑
s=0

γ(j−s)t−t(j+l−t) 1
m2

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2 [si, ei − 2 − (t− s)i]mi

⊗x−td
θ∏

i=1
[(j − s)i, ei − 2 − (l − t + s)i]mi

](xaytg ⊗ xayj+l−tg
t+1)

= [
m−1∑
s=0

γ(j−s)t−t(j+l−t) 1
m2

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2

ei−1−ti∑
αi=0

(−1)αi

(
ei − 1 − ti

αi

)
γi

γ
αi(αi+1)

2 +siαi

i

⊗
θ∏

k=1

ek−1−(jk+lk−tk)∑
βk=0

(−1)βk

(
ek − 1 − (jk + lk − tk)

βk

)
γk

γ
βk(βk+1)

2 +(jk−sk)βk

k (xmidαi ⊗ xmkdβk−td)](xaytg ⊗ xayj+l−tg
t+1)

= 1
m2

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2

θ∏
i,k=1

[
ei−1−ti∑
αi=0

ek−1−jk+lk−tk∑
βk=1

(−1)αi+βk

(
ei − 1 − ti

αi

)
γi

(
ek − 1 − (jk + lk − tk)

βk

)
γk

γ
αi(αi+1)

2
i γ

βk(βk+1)
2 +jkβk

k (xmidαi ⊗ xmkdβk−td)

γt(t−l)
m−1∑
s=0

γ−tsγ−m2
i siαi+m2

kskβk ](xaytg ⊗ xayj+l−tg
t+1). (4.27)

Meanwhile, ujul = 1
mxa

∏θ
i=1(−1)liξ−li

mi
γm2

i
li(li+1)

2 1
m [ji, ei − 2 − li]mi

yj+lg. By defini-
tion,

yj+l = yj1+l1
m1

yj2+l2
m2

· · · yjθ+lθ
mθ

where ji + li is the remainder of ji + li divided by ei for 1 ≤ i ≤ θ. Therefore,

Δ(yj+l) =
θ∏

(1 ⊗ ymi
+ ymi

⊗ gmi)ji+li
i=1
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=
θ∏

i=1

ji+li∑
ti=0

(
ji + li
ti

)
γi

(1 ⊗ ymi
)ji+li−ti(ymi

⊗ gmi)ti

=
θ∏

i=1

ji+li∑
ti=0

(
ji + li
ti

)
γi

ytimi
⊗ yji+li−ti

mi
gmiti

and

Δ([ji, ei − 2 − li]mi
)

= (1 ⊗ 1 − γji+1
i xmid ⊗ xmid) · · · (1 ⊗ 1 − γei−1+ji−ji+li

i xmid ⊗ xmid)

=
ei−1−ji+li∑

αi=0
(−1)αi

(
ei − 1 − ji + li

αi

)
γi

γ
αi(αi−1)

2
i (γji+1

i xmid ⊗ xmid)αi

=
ei−1−ji+li∑

αi=0
(−1)αi

(
ei − 1 − ji + li

αi

)
γi

γ
αi(αi+1)

2 +jiαi

i (xmidαi ⊗ xmidαi),

we get

Δ(ujul)

= 1
m

Δ(xa)
θ∏

i=1
(−1)liξ−li

mi
γm2

i
li(li+1)

2 Δ([ji, ei − 2 − li]mi
)Δ(yj+l)Δ(g)

= 1
m

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2

ei−1−ji+li∑
αi=0

(−1)αi

(
ei − 1 − ji + li

αi

)
γi

γ
αi(αi+1)

2 +jiαi

i

ji+li∑
ti=0

(
ji + li
ti

)
γi

(xa ⊗ xa)(xmidαi ⊗ xmidαi)(ytimi
⊗ yji+li−ti

mi
gmiti)](g ⊗ g)

= 1
m

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2

ji+li∑
ti=0

ei−1−ji+li∑
αi=0

(−1)αi

(
ei − 1 − ji + li

αi

)
γi

(
ji + li
ti

)
γi

γ
αi(αi+1)

2 +jiαi

i (xmidαi ⊗ xmidαi)(xaytimi
g ⊗ xayji+li−ti

mi
gmiti+1)].

Clearly, for each t satisfying 0 ≤ ti ≤ ji + li,

Δ(ujul)(2,2+2t)⊗(2+2t,2+2(j+l)) (4.28)

= 1
m

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2

ei−1−ji+li∑
αi=0

(−1)αi

(
ei − 1 − ji + li

αi

)
γi

(
ji + li
ti

)
γi

γ
αi(αi+1)

2 +jiαi

i (xmidαi ⊗ xmidαi)(xaytim ⊗ xayji+li−ti
m gmiti)](g ⊗ g).
i i
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By the graded structure of D ⊗D, Δ(ui)Δ(uj) = Δ(uiuj) if and only if

Δ(ui)Δ(uj)(2,2+2t)⊗(2+2t,2+2(j+l)) = 0 (4.29)

for all t satisfying there is an 1 ≤ i ≤ θ such that ji + li + 1 � ti � ei − 1 and

Δ(uiuj)(2,2+2t)⊗(2+2t,2+2(j+l)) = Δ(ui)Δ(uj)(2,2+2t)⊗(2+2t,2+2(j+l)) (4.30)

for all t satisfying 0 � ti � ji + li for all 1 ≤ i ≤ θ.
Now let’s go back to equation (4.27) in which there is an item

m−1∑
s=0

γ−tsγ−m2
i siαi+m2

kskβk (4.31)

=
θ∏

z=1

ez−1∑
sz=0

γ−tzszm
2
zγ−m2

i siαi+m2
kskβk

=
{∑ei−1

si=0 γ
−sim

2
i (αi+ti)

∑ek−1
sk=0 γ

−skm
2
m(βk−tk) ∏

z �=i,k

∑ez−1
sz=0 γ

−tzszm
2
z i �= k∑ei−1

si=0 γ
−m2

i si(ti+αi−βi)
∏

z �=i

∑ez−1
sz=0 γ

−tzszm
2
z i = k

Therefore, in order to make this equality (4.31) not zero, we must have{
αi = −ti, βk = tk i �= k

βi = αi + ti i = k

But in the expression of equality (4.27) one always have 0 ≤ αi ≤ ei − 1 − ti which 
implies that αi �= −ti. Thus, as a conclusion, in the equality (4.27) we can assume that

i = k, βi = αi + ti, (1 ≤ i ≤ θ).

So, the equality can be simplified as

1
m2

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2

θ∏
i=1

ei−1−ti∑
αi=0

ei−1−ji+li−ti∑
βi=0

(−1)αi+βi

(
ei − 1 − ti

αi

)
γi(

ei − 1 − (ji + li − ti)
βi

)
γi

γ
αi(αi+1)

2 +
βi(βi+1)

2 +jiβi

i (xmidαi ⊗ xmidβi−timid)

γt(t−l)
m−1∑
s=0

γ−tsγ−m2
i si(αi−βi)(xa

θ∏
i=1

ytimi
⊗ xa

θ∏
i=1

yji+li−ti
mi

gmiti)(g ⊗ g).

From this, we find the following fact: if ti ≥ ji + li + 1 for some i, then ei − 1 −
ji + li − ti = ti − 1 − ji + li. So, 0 ≤ βi ≤ ti − 1 − ji + li and thus 1 − ei ≤ βi −αi − ti ≤
−1 − ji + li which contradicts to βi = αi + ti. So the equation (4.29) is proved. Under 
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βi = αi + ti, we know that

θ∏
i=1

m−1∑
s=0

γ−tsγ−m2
i siαi+m2

ksiβi = e1e2 · · · eθ = m

and (4.27) can be simplified further

1
m

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2

θ∏
i=1

ei−1−ji+li∑
αi=0

(−1)ti
(
ei − 1 − ti

αi

)
γi(

ei − 1 − (ji + li − ti)
αi + ti

)
γi

γ
αi(αi+1)

2 +
(αi+ti)(αi+ti+1)

2 +ji(αi+ti)+ti(li−ti)
i

(xmidαi ⊗ xmidαi)(xaytimi
⊗ xayji+li−ti

mi
gmiti)(g ⊗ g).

Comparing with equation (4.28), to prove the desired equation (4.30) it is enough to 
show the following combinatorial identity

(−1)ti+αiγ
(αi+ti)(αi+ti+1)

2 +ti(ji+li−ti)
i

(
ei − 1 − ti

αi

)
γi

(
ei − 1 − (ji + li − ti)

αi + ti

)
γi

=
(
ei − 1 − ji + li

αi

)
γi

(
ji + li
ti

)
γi

which is true by (6) of Lemma 3.6.

• Step 2 (Coassociative and couint).
Indeed, for each 0 � j � m − 1

(Δ ⊗ Id)Δ(uj) = (Δ ⊗ Id)(
m−1∑
k=0

γk(j−k)uk ⊗ x−kdgkuj−k)

=
m−1∑
k=0

γk(j−k)(
m−1∑
s=0

γs(k−s)us ⊗ x−sdgsuk−s) ⊗ x−kdgkuj−k

=
m−1∑
k,s=0

γk(j−k)+s(k−s)us ⊗ x−sdgsuk−s ⊗ x−kdgkuj−k,

and

(Id⊗Δ)Δ(uj) = (Id⊗Δ)(
m−1∑
s=0

γs(j−s)us ⊗ x−sdgsuj−s)

=
m−1∑
s=0

γs(j−s)us ⊗ (
m−1∑
t=0

γt(j−s−t)x−sdgsut ⊗ x−sdgsx−tdgtuj−s−t)

=
m−1∑
s,t=0

γs(j−s)+t(j−s−t)us ⊗ x−sdgsut ⊗ x−(s+t)dg(s+t)uj−s−t.
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It is not hard to see that (Δ ⊗ Id)Δ(uj) = (Id⊗Δ)Δ(uj) for all 0 � j � m − 1. The 
verification of (ε ⊗ Id)Δ(uj) = (Id⊗ε)Δ(uj) = uj is easy and it is omitted.

• Step 3 (Antipode is an algebra anti-homomorphism).
Because x and g are group-like elements, we only check

S(uj+mi
)S(φmi,j) = S(uj)S(ymi

) = ξmi
S(ymi

)S(uj)S(xmid)

and

S(ujul) = S(ul)S(uj)

for 1 ≤ i ≤ θ and 1 ≤ j, l ≤ m − 1 here.
(1) The proof of S(uj+mi

)S(φmi,j) = S(uj)S(ymi
) = ξmi

S(ymi
)S(uj)S(xmid).

Clearly ujS(φmi,j) = φmi,juj for all i, j and thus

S(uj+mi
)S(φmi,j)

= xbgm−1
θ∏

i=1
(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimiuj

= φmi,jS(uj+mi
)

here and the following of this proof b = (1 −m)d −
∑θ

i=1(ei−1)mi

2 d.
Through direct calculation, we have

S(uj)S(ymi
)

= xbgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]uj · (−ymi
g−mi)

= −xbgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ](ξ−1
mi

γ−jmixmidymi
g−miuj)

= −xbgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ](ξ−1
mi

γ−m2
i (ji+1)xmidg−miymi

uj)

= xbgm−1(−1)j1+···+(ji+1)+···+jθξ−j1
m1

· · · ξ−(ji+1)
mi

· · · ξ−jθ
mθ

γ
j1(j1+1)

2
1

· · · γ
(ji+1)(j1+2)

2
i · · · γ

jθ(jθ+1)
2

θ

xj1m1d · · ·x(ji+1)mid · · ·xjθmθdg−j1m1 · · · g−(ji+1)mi · · · g−jθmθφmi,juj+mi

= φmi,jS(uj+mi
)

and
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ξmi
S(ymi

)S(uj)S(xmid)

= ξmi
(−ymi

g−mi)gm−1xb
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]ujx
−mid

= xbgm−1(−1)j1+···+(ji+1)+···+jθξ−j1
m1

· · · ξ−(ji+1)
mi

· · · ξ−jθ
mθ

γ
j1(j1+1)

2
1

· · · γ
(ji+1)(j1+2)

2
i · · · γ

jθ(jθ+1)
2

θ

xj1m1d · · ·x(ji+1)mid · · ·xjθmθdg−j1m1 · · · g−(ji+1)mi · · · g−jθmθφmi,juj+mi

= φmi,jS(uj+mi
).

(2) The proof of S(ujul) = S(ul)S(uj).
Define φmi,s := 1 − γsi+1

i x−mid for all s ∈ Z. Using this notion,

xmidφmi,s = xmid(1 − γsi+1
i x−mid)

= −γsi+1
i (1 − γ

(ei−si−2)+1
i xmid)

= −γsi+1
i φmi,ei−si−2.

And so

S(ujul) = S( 1
m
xa

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2 [ji, ei − 2 − li]mi

yj+lg)

= 1
m
g−1x−a

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2 (−ymi

g−mi)ji+liS([ji, ei − 2 − li]mi
)]

= 1
m
g−1x−a

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2 (−1)ji+liγm2

i
ji+li(ji+li−1)

2

S([ji, ei − 2 − li]mi
)yji+li

mi
g−miji+li ]

= 1
m
x−aγj+l

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2 (−1)ji+liγm2

i
ji+li(ji+li−1)

2

S([ji, ei − 2 − li]mi
)]yj+lg

−j+l−1

= 1
m
x−aγj+l

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2 (−1)ji+liγm2

i
ji+li(ji+li−1)

2

(−1)ei−1−ji+liγm2
i

(ei−1−ji+li)(ji+li−2ji−ei)
2

x−(ei−1−ji+li)mid[li, ei − 2 − ji]mi
]yj+lg

−j+l−1

= 1
m
x−aγj+l

θ∏
[(−1)liξ−li

mi
γm2

i
li(li+1)

2 γm2
i (j

2
i +jili−li)
i=1
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x−(ei−1−ji+li)mid[li, ei − 2 − ji]mi
]yj+lg

−j+l−1.

Here the last equality follows from

(−1)ei−1γm2
i

ji+li(ji+li−1)
2 γm2

i
(ei−1−ji+li)(ji+li−2ji−ei)

2

= γm2
i (j

2
i +jili−li).

Now let’s compute the other side.

S(ul)S(uj) = gm−1xb
θ∏

i=1
[(−1)liξ−li

mi
γ−m2

i
li(li+1)

2 xlimidg−limi ]ul

gm−1xb
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]uj

= gm−1
θ∏

i=1
[(−1)li+jiξ−li−ji

mi
γ−m2

i [
li(li+1)

2 + ji(ji+1)
2 ]x(li−ji)midg−limi ]

ulg
m−1−

∑θ
i=1 jimiuj

= γ−l−lj
θ∏

i=1
[(−1)li+jiξ−li−ji

mi
γ−m2

i [
li(li+1)

2 + ji(ji+1)
2 ]x(li+ji)midg−limi−jimi ]

g−2x2duluj

= γ−l−lj
θ∏

i=1
[(−1)li+jiξ−li−ji

mi
γ−m2

i [
li(li+1)

2 + ji(ji+1)
2 ]x(li+ji)midg−limi−jimi ]

g−2x2d 1
m
xa

θ∏
i=1

(−1)jiξ−ji
mi

γm2
i

ji(ji+1)
2 [li, ei − 2 − ji]mi

yj+lg

= γ−l−lj 1
m

θ∏
i=1

[(−1)liξ−li−2ji
mi

γ−m2
i [

li(li+1)
2 ][li, ei − 2 − ji]mi

x(ei−1−(li+ji))mid

g−li+jimi ]g−2 1
m
x−ayj+lg

= 1
m

θ∏
i=1

[(−1)liξ−li−2ji
mi

γ−m2
i (

li(li+1)
2 )−limi−lijim

2
i+m2

i (li+ji)2+2(li+ji)mi

[li, ei − 2 − ji]mi
x(ei−1−(li+ji))mid]x−ayj+lg

−(j+l+1)

= 1
m
x−aγj+l

θ∏
i=1

[(−1)liξ−li
mi

γm2
i

li(li+1)
2 γm2

i (j
2
i +jili−li)

x−(ei−1−ji+li)mid[li, ei − 2 − ji]mi
]yj+lg

−j+l−1,
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where the fifth equality follows from

xa+2d = x− 2+
∑θ

i=1(ei−1)mi
2 d+2d = x−a−

∑θ
i=1(ei−1)mid

and the last equality is followed by

ξ−2ji
mi

γ−m2
i (

li(li+1)
2 )−limi−lijim

2
i+m2

i (li+ji)2+2(li+ji)mi

= γm2
i (

li(li+1)
2 )−miji−m2

i li(li+1)−limi−lijim
2
i+m2

i (li+ji)2+2(li+ji)mi

= γm2
i

li(li+1)
2 +m2

i (j
2
i +jili−li)+jimi+limi .

The proof is done.

• Step 4 ((S ∗ Id)(uj) = (Id ∗S)(uj) = ε(uj)).
In fact,

(S ∗ Id)(u0) =
m−1∑
j=0

S(γ−j2uj)x−jdgju−j

=
m−1∑
j=0

γ−j2gm−1xb
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]ujx
−jdgju−j

=
m−1∑
j=0

gm−1xb
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 ]uju−j

=
m−1∑
j=0

gm−1xb
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 ]

1
m
xa

θ∏
i=1

(−1)−jiξjimi
γm2

i
−ji(−ji+1)

2 [ji, ei − 2 − ji]mi
g

= 1
m
xa+bgm

θ∏
i=1

[
ei−1∑
ji=0

γji
i [ji, ei − 2 − ji]mi

]

= 1
m
x−

∑θ
i=0(ei−1)mid

θ∏
i=1

[
ei−1∑
ji=0

γji
i ]ji − 1, ji − 1[mi

]

= 1
m
x−

∑θ
i=0(ei−1)mid

θ∏
i=1

eix
(ei−1)mid (Lemma 3.6 (3))

= 1

= ε(u0).

And,
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(Id ∗S)(u0) =
m−1∑
j=0

γ−j2ujS(x−jdgju−j)

=
m−1∑
j=0

γ−j2ujS(u−j)S(gj)xjd

=
m−1∑
j=0

γ−j2ujg
m−1xb

θ∏
i=1

[(−1)−jiξjimi
γ−m2

i
−ji(−ji+1)

2 x−jimidgjimi ]u−jg
−jxjd

=
m−1∑
j=0

x(1−m)d+
∑θ

i=1(ei−1)mi
2 d

θ∏
i=1

[(−1)−jiξjimi
γ−m2

i
−ji(−ji+1)

2 γ−jimi ]gm−1uju−j

=
m−1∑
j=0

x(1−m)d+
∑θ

i=1(ei−1)mi
2 d

θ∏
i=1

[(−1)−jiξjimi
γ−m2

i
−ji(−ji+1)

2 γ−jimi ]gm−1

1
m
xa

θ∏
i=1

(−1)−jiξjimi
γm2

i
−ji(−ji+1)

2 [ji, ei − 2 − ji]mi
g

=
m−1∑
j=0

1
m

θ∏
i=1

ξ2ji
mi

γ−jimi ]ji − 1, ji − 1[mi

= 1
m

θ∏
i=1

ei−1∑
ji=0

]ji − 1, ji − 1[mi

= 1
m

θ∏
i=1

ei (Lemma 3.6 (1))

= 1

= ε(u0).

For 1 � j � m − 1,

(S ∗ Id)(uj)

=
m−1∑
k=0

γk(j−k)S(uk)x−kdgkuj−k

=
m−1∑
j=0

γk(j−k)gm−1xb
θ∏

i=1
[(−1)kiξ−ki

mi
γ−m2

i
ki(ki+1)

2 xkimidg−kimi ]ukx
−kdgkuj−k

=
m−1∑

γk(j−k)gm−1xb
θ∏

[(−1)kiξ−ki
mi

γ−m2
i

ki(ki+1)
2 γk2

im
2
i ]ukuj−k
k=0 i=1
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=
m−1∑
k=0

γk(j−k)gm−1xb
θ∏

i=1
[(−1)kiξ−ki

mi
γ−m2

i
ki(ki+1)

2 γk2
im

2
i ]

1
m
xa

θ∏
i=1

[(−1)ji−kiξ−ji+ki
mi

γm2
i

(ji−ki)(ji−ki+1)
2 [ki, ei − 2 − ji + ki]mi

]yjg

= 1
m
xa+b

m−1∑
k=0

θ∏
i=1

[(−1)jiξ−ji
mi

γm2
i

j2i +ji
2 +jimi−kim

2
i [ki, ei − 2 − ji + ki]mi

]yj

= 1
m
xa+b

θ∏
i=1

[(−1)jiξ−ji
mi

γm2
i

j2i +ji
2 +jimi ]yj

θ∏
i=1

[
ei−1∑
ki=0

γki
i ]ki − 1 − ji, ki − 1[mi

]

= 0 (Lemma 3.6 (5))

= ε(uj)

(Id ∗S)(uj)

=
m−1∑
k=0

γk(j−k)ukS(uj−k)g−kxkd

=
m−1∑
k=0

γk(j−k)ukg
m−1xb

θ∏
i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)
2

x(ji−ki)midg−(ji−ki)mi ]uj−kg
−kxkd

=
m−1∑
k=0

ukg
m−1xb

θ∏
i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)
2

xjimidg−jimi ]uj−k

=
m−1∑
k=0

γ−kgm−1x(1−m)d+
∑θ

i=1(ei−1)mi
2 d

θ∏
i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)
2

xjimidγ−kjimig−jimi ]ukuj−k

=
m−1∑
k=0

γ−kgm−1x(1−m)d+
∑θ

i=1(ei−1)mi
2 d

θ∏
i=1

[(−1)ji−kiξki−ji
mi

γ−m2
i

(ji−ki)(ji−ki+1)
2

xjimidγ−kjimig−jimi ]

1
m
xa

θ∏
[(−1)ji−kiξ−ji+ki

mi
γm2

i
(ji−ki)(ji−ki+1)

2 [ki, ei − 2 − ji + ki]mi
]yjg
i=1
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= 1
m
x−md

m−1∑
k=0

γ−k
θ∏

i=1
[ξ2(ki−ji)

mi
γ−kjimi+jimixjimidg−jimi [ki, ei − 2 − ji + ki]mi

]gmyj

= 1
m

θ∏
i=1

[ξ−2ji
mi

γjimixjimidg−jimi ]
θ∏

i=1
[
ei−1∑
ki=0

γkiji
i ]ki − 1 − ji, ki − 1]mi

]yj

= 0 (Lemma 3.6 (5))

= ε(uj).

By steps 1, 2, 3, 4, D(m, d, γ) is a Hopf algebra. �
Proposition 4.13. Under above notations, the Hopf algebra D(m, d, γ) has the following 
properties.

(1) The Hopf algebra D(m, d, γ) is prime with PI-degree 2m.
(2) The Hopf algebra D(m, d, γ) has a 1-dimensional representation whose order is 2m.
(3) The Hopf algebra D(m, d, γ) is not pointed and its coradical is not a Hopf subalgebra 

if m > 1.
(4) The Hopf algebra D(m, d, γ) is pivotal, that is, its representation category is a pivotal 

tensor category.

Proof. (1) Recall that the Hopf algebra D = D(m, d, γ) =
⊕2m

i=0 D
l
i is strongly 

Z2m-graded with

Dl
i =

⎧⎨⎩k[x±1, ym1 , . . . , ymθ
]g

i
2 , i = even,∑m−1

s=0 k[x±1]g
i−1
2 us, i = odd.

So the algebra D meets the initial condition of Lemma 2.11. Using the notation given in 
the Lemma 2.11, we find that

χ � ymi
= ξ−1

mi
x−midymi

for all 1 ≤ i ≤ θ. This indeed implies the action of Z2m on Dl
0 = k[x±1, ym1 , . . . , ymθ

] is 
faithful. Therefore, by (c) and (d) of Lemma 2.11, D is prime with PI-degree 2m.

(2) This 1-dimensional representation can be given through left homological integrals. 
In fact, the direct computation shows that the right module structure of left homological 
integrals is given by:

l∫

D

= D/(x− 1, ym1 , . . . , ymθ
, u1, . . . , um−1, u0 −

θ∏
i=1

ξ(ei−1)
mi

, g −
θ∏

i=1
γ−mi).

Through the relation that ξmi
=

√
γmi it is not hard to see that the io(D) = 2m.
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(3) Claim: The subspace Cm(d) spanned by {(x−dg)iuj |0 ≤ i, j ≤ m − 1} is a simple 
coalgebra.

Proof of this claim: One can apply similar method used in [31] to prove this statement. 
For completeness, we write the details out. Clearly, to show the result, it is sufficient to 
show that the k-linear dual C∗ := Homk(C, k) is a simple algebra where C = Cm(d). In 
fact, we will see that C∗ is the matrix algebra of order m. Denote by fij := ((x−dg)iuj)∗, 
that is, {fij |0 � i, j � m −1} is the dual basis of the basis {(x−dg)iuj |0 ≤ i, j ≤ m −1} of 
C. We prove this fact by two steps: firstly, we study the multiplication of the dual basis; 
secondly, we construct an algebra isomorphism from C∗ to the matrix algebra of order m.
Step 1. Since

(fi1,j1 ∗ fi2,j2)((x−dg)iuj)

= m(fi1,j1 ⊗ fi2,j2)(Δ((x−dg)iuj))

= m(fi1,j1 ⊗ fi2,j2)(
m−1∑
s=0

γs(j−s)(x−dg)ius ⊗ (x−dg)i+suj−s)

=
m−1∑
s=0

γs(j−s)fi1,j1((x−dg)ius)fi2,j2((x−dg)i+suj−s)

one can see that (fi1,j1 ∗ fi2,j2)((x−dg)iuj) �= 0 if and only if i1 = i, j1 = s, i2 = i + s and 
j2 = j−s for some 0 � s � m −1. This forces i1+j1 = i2, i = i1 and j = j1+j2. So we have

fi1,j1 ∗ fi2,j2 =
{
γj1j2fi1,j1+j2 , if i1 + j1 = i2,

0, otherwise.
(4.32)

Step 2. Set M = Mm(k) and let Eij be the matrix units (that is, the matrix with 1 is 
in the (i, j) entry and 0 elsewhere) for 0 � i, j � m − 1. Now we claim that

ϕ : C∗ → M,fij �→ γijEi,i+j

is an algebraic isomorphism (the index i +j in Ei+j is interpreted mod m). It is sufficient 
to verify that ϕ is an algebraic map. In fact,

ϕ(fi1,j1)ϕ(fi2,j2) = γi1j1Ei1,i1+j1γ
i2j2Ei2,i2+j2

=
{
γi1j1+i2j2Ei1,i2+j2 , if i1 + j1 = i2,

0, otherwise,

=
{
γi1j1+i2j2−i1(j1+j2)ϕ(fi1,j1+j2), if i1 + j1 = i2,

0, otherwise,

=
{
ϕ(fi1,j1+j2), if i1 + j1 = i2,

0, otherwise,
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= ϕ(fi1,j1 ∗ fi2,j2).

So ϕ is an algebraic map and the proof is completed.

Now it is not hard to see that the coradical of D equals to⊕
i∈Z, 0≤j≤m−1

xigj ⊕ (
⊕

i∈Z, 0≤j≤m−1

xigjCm(d)).

Since m > 1, it has a simple subcoalgebra Cm(d) with dimension m2 > 1. Therefore, 
D is not pointed. Its coradical is not a Hopf subalgebra since it is clear it is not closed 
under multiplication.

(4) It is well-known that a Hopf algebra H is pivotal if and only if the square of its 
antipode equals to a conjugation of a group-like element (see, say, the proof of [8, Prop. 
3.6]). Therefore, we only need to set the following formula for S2:

S2(h) = (g
∑θ

i=1 mixc)h(g
∑θ

i=1 mixc)−1, h ∈ D, (4.33)

where c = −
∑θ

i=1(ei+1)mid

2 . Note that by second equation of (4.7), 
∑θ

i=1(ei + 1)mid is 
always even. Our task is to prove above formula. Indeed, on one hand,

S2(uj) = S(xbgm−1
θ∏

i=1
(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimiuj)

= S(uj)
θ∏

i=1
(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 x−jimidgjimig1−mx−b

= xbgm−1
θ∏

i=1
ξ−2ji
mi

γ−m2
i ji(ji+1)xjimidg−jimiujx

−jimidgjimig1−mx−b

= x2bgm−1γ(1−m)j
θ∏

i=1
ξ−2ji
mi

γ−m2
i ji(ji+1)γj(jimi)x−2(1−m)dg1−muj

= x2b−2(1−m)d
θ∏

i=1
γ−m2

i jiuj ,

where recall that b = (1 −m)d −
∑θ

i=1(ei−1)mi

2 d.
On the other hand,

(g
∑θ

i=1 mixc)uj(g
∑θ

i=1 mixc)−1 = x2cx2d
∑θ

i=1 miγ−j
∑θ

i=1 miuj

= x2c+2d
∑θ

i=1 mi

θ∏
i=1

γ−m2
i jiuj .

Since
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2c + 2d
θ∑

i=1
mi = −

θ∑
i=1

(ei − 1)mid = 2b− 2(1 −m)d,

we have S2(uj) = (g
∑θ

i=1 mixc)uj(g
∑θ

i=1 mixc)−1.
So to show the formula (4.33), we only need to check it for ymi

for 1 ≤ i ≤ θ now. 
This is not hard. In fact,

S2(ymi
) = S(−ymi

g−mi)

= gmiymi
g−mi = γ−m2

i ymi

= γ−mi(m1+···+mθ)ymi

= (g
∑θ

i=1 mixc)ymi
(g

∑θ
i=1 mixc)−1

due to γmimj = 1 for i �= j and x commutes with ymi
.

Therefore, the representation category of D is pivotal. �
Remark 4.14.

(1) As a special case, through taking m = 1 one is not hard to see that the Hopf algebra 
D constructed above is just the infinite dihedral group algebra kD. This justifies the 
choice of the notation “D”.

(2) It is not hard to see the other new examples, i.e., T (m, t, ξ), B(m, ω, γ), are pivotal 
since they are pointed and thus the proof of this fact become easier. In fact, keep 
the notations above, we have

S2(h) = (
θ∏

i=1
gtmi)h(

θ∏
i=1

gtmi)−1

for h ∈ T (m, t, ξ) and

S2(h) = (
θ∏

i=1
gmi)h(

θ∏
i=1

gmi)−1

for h ∈ B(m, ω, γ).

Now let m′ ∈ N and {m′
1, . . . , m

′
θ′} a fraction of m′. As before, we need to compare 

different fractions of Hopf algebras D(m, d, γ). Also, we denote the greatest common 
divisors of {m1, . . . , mθ} and {m′

1, . . . , m
′
θ′} by m0 and m′

0 respectively. Parallel to case 
of generalized Liu algebras, we have the following observation.

Proposition 4.15. As Hopf algebras, D(m, d, γ) ∼= D(m′, d′, γ′) if and only if m = m′, θ =
θ′, dm0 = d′m′

0 and γm2
0 = (γ′)(m′

0)
2 .
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Proof. By Proposition 4.11, it enough to show that D(m, d, γ) ∼= D(m′, d′, γ′) if 
and only if their Hopf subalgebras B(m, md, γ) and B(m′, m′d′, γ′) are isomorphic. 
It is clear the isomorphism of D(m, d, γ) and D(m′, d′, γ′) will imply the isomor-
phism between B(m, md, γ) and B(m′, m′d′, γ′). Conversely, assume that B(m, md, γ) ∼=
B(m′, m′d′, γ′). By Proposition 6.11, D(m, d, γ) is determined by B(m, md, γ) entirely. 
Therefore, D(m, d, γ) ∼= D(m′, d′, γ′) too. �

At last, we point out the examples we constructed until now are not the same.

Proposition 4.16. If m > 1, the Hopf algebras T (m′, t, ξ), B(m′′, ω, γ′′) and D(m, d, γ)
are not isomorphic to each other.

Proof. Since m > 1, D(m, d, γ) is not pointed by Proposition 4.13 (3) while T (m′, t, ξ)
and B(m′′, ω, γ′′) are pointed. Therefore, D(m, d, γ) �∼= T (m′, t, ξ) and D(m, d, γ) �∼=
B(m′′, ω, γ′′). Comparing the number of group-likes, we know that T (m′, t, ξ) �∼=
B(m′′, ω, γ′′) either. �
5. Ideal cases

In this section, we always assume that H is a prime Hopf algebra of GK-dimension 
one satisfying (Hyp1) and (Hyp2). So by (Hyp1), H has a 1-dimensional representation

π : H −→ k

whose order equals to PI-deg(H). Recall that in the Subsection 2.2, we already gave the 
definition of π-order ord(π) and π-minor min(π). The aim of this section is to classify H
in the following two ideal cases:

min(π) = 1 or ord(π) = min(π).

If moreover assume that H is regular, then the main result of [12] is to classify H in 
ideal cases. Here we apply similar techniques to classify prime Hopf algebras which may 
be not regular.

5.1. Ideal case one: min(π) = 1

In this subsection, H is a prime Hopf algebra of GK-dimension one satisfying (Hyp1), 
(Hyp2) and min(π) = 1. Let PI.deg(H) = n > 1 (if = 1, then it is clear that H is 
commutative and thus H is the coordinate algebra of a connected algebraic group of 
dimension one). Recall that by the equation (2.3), H is an Zn-bigraded algebra

H =
n−1⊕
i,j=0

Hij,π.

Here and the following we write Hij,π just as Hij for simple.
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Lemma 5.1. Under above notations, the subalgebra H00 is a Hopf subalgebra which is 
isomorphic to either k[x] or k[x±1].

Proof. Since min(π) = 1, H l
0 = Hr

0 = H00. By (1) and (3) of Lemma 2.9, H00 is stable 
under the operations Δ and S. This implies that H00 is a Hopf subalgebra. By Lemma 2.8
and its proof, we know that H00 is a commutative domain of GK-dimension one. So H00
is the coordinate algebra of a connected algebraic group of dimension one. Thus it is 
isomorphic to either k[x] or k[x±1]. �

Therefore, we have a dichotomy on the structure of H now.

Definition 5.2. Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp1), 
(Hyp2) and min(π) = 1.

(a) We call H additive if H00 is the coordinate algebra of the additive group, that is, 
H00 = k[x].

(b) We call H multiplicative if H00 is the coordinate algebra of the multiplicative group, 
that is, H00 = k[x±1].

Remark 5.3. In both [12] and [32], the additive H was called primitive while the mul-
tiplicative H was called group-like. Here we used a slightly different terminology for 
intuition.

If we check the proof of the [12, Propositions 4.2, 4.3] carefully, then one can find that 
these propositions are still valid even we remove the requirement about regularity. So we 
state the following result, the same as [12, Propositions 4.2, 4.3], without proof.

Proposition 5.4. Let H be a prime Hopf algebra of GK-dimension one with PI-deg(H) =
n > 1 and satisfies (Hyp1), (Hyp2) and min(π) = 1. Then

(a) If H is additive, then H ∼= T (n, 0, ξ) of Subsection 2.3.
(b) If H is multiplicative, then H ∼= kD of Subsection 2.3.

In particular, such H must be regular.

5.2. Ideal case two: ord(π) = min(π)

In this subsection, H is a prime Hopf algebra of GK-dimension one satisfying (Hyp1), 
(Hyp2) and n := ord(π) = min(π) > 1 (n if = 1, then clearly H commutative by our 
(Hyp2)). Recall that we have the following bigrading

H =
n−1⊕

Hij .

i,j=0
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The following is some parts of [12, Proposition 5.2, Theorem 5.2], which are proved 
without the hypothesis on regularity and thus they are true in our case.

Lemma 5.5. Retain the notations above. Then

(a) The center of H equals to H0 := H00.
(b) The center of H is a Hopf subalgebra.

The statement (b) in this lemma also implies that we are in the same situation as 
ideal case one now: H is either additive or multiplicative. No matter what kind of H is, 
Hij is a free H0-module of rank one (see the analysis given in [12, page 287]), that is

H =
n−1⊕
i,j=0

Hij =
n−1⊕
i,j=0

H0uij =
n−1⊕
i,j=0

uijH0,

and the action of winding automorphism (relative to π) is given by

Ξl
π(uija) = ξiuija, and Ξr

π(uija) = ξjuija

for a ∈ H0 and ξ a primitive nth root of unity. Due to [12, Proposition 6.2], all these 
elements uij (0 ≤ i, j ≤ n − 1) are normal. Moreover, by [12, Lemma 6.2], they satisfy 
the following relation:

uijui′j′ = ξi
′j−ij′ui′j′uij . (5.1)

By Lemma 5.5, H00 is a normal Hopf subalgebra of H which implies that there is an 
exact sequence of Hopf algebras

k −→ H00 −→ H −→ H −→ k, (5.2)

where H = H/HH+
00 and by definition H+

00 = H00
⋂

Ker ε. As one of basic observations 
of this paper, we have the following result.

Lemma 5.6. As a Hopf algebra, H is isomorphic to a fraction version of a Taft algebra 
T (n1, . . . , nθ, ξ) for n1, . . . , nθ a fraction of n.

Proof. Denote the image of uij in H by vij for 0 ≤ i, j ≤ n − 1. Due to H is bigraded,

H =
n−1⊕
i,j=0

Hij =
n−1⊕
i,j=0

kvij .

Let g = v11. Then by (a), (b) and (e) of [12, Proposition 6.6], which are still true even 
H is not regular, these elements vij can be chosen to satisfy
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gn = 1, vii = gi, (0 ≤ i ≤ n− 1), vij = giv0(j−i), (0 ≤ i �= j ≤ n− 1)

and

vnij = 0, (0 ≤ i �= j ≤ n− 1).

Moreover, one can use (1), (4) and (5) of Lemma 2.9 and the axioms for a coproduct to 
show that g is group-like and

Δ(vij) = vii ⊗ vij + vij ⊗ vjj +
∑
s �=i,j

cijssvis ⊗ vsj = gi ⊗ vij + vij ⊗ gj +
∑
s �=i,j

cijssvis ⊗ vsj

for some cijss ∈ k and 0 ≤ i �= j ≤ n − 1 (see also [12, Lemma 6.5] for an explicit proof). 
Using this formula for coproduct, it is not hard to see that H is a pointed Hopf algebra 
with G(H) = {gi|0 ≤ i ≤ n − 1}.

Let H l

i :=
⊕n−1

j=0 Hij and then through inheriting the strongly graded property of H, 
we know that H =

⊕n−1
i=0 H

l

i is strongly graded. We want to consider the subalgebra 

H
l

0 =
⊕n−1

j=0 kv0j . For this, we take the following linear map

π′ : H −→ kG(H), vij �−→ δijvij .

At first, we prove that π′ is an algebraic map. For this, it is enough to show that

vijvkl = 0

for all i �= j with i + k ≡ j + l (mod n). Assume that this is not true, then vijvkl =
avi+k,j+l for some 0 �= a ∈ k, which is invertible by vii = gi for all 0 ≤ i ≤ n − 1. 
But this is impossible since vij is nilpotent. So, π′ is an algebraic map. In addition, the 
formula for the coproduct implies that π′ is also a coalgebra map. Therefore, π′ is a 
Hopf projection. Using the classical Radford’s biproduct (see Subsection 2.4), we have 
the following decomposition

H = H
l

0#kG(H).

By [7, Theorem 2], H l

0 is generated by skew primitive elements, say x1, . . . , xθ (we ask 
that θ is as small as possible). Moreover, by the proof of [7, Theorem 2] we know that 
gxig

−1 ∈ kxi for (1 ≤ i ≤ θ). So, equation (5.1) implies that up to a nonzero scalar xi

equals to a v0j for some j. In one word, we prove that the subalgebra H
l

0 is generated 
by v0n1 , . . . , v0nθ

which are skew primitive elements.

Claim: n1, . . . , nθ is a fraction of n.

Proof of the claim: Let ei be the exponent of ni for 1 ≤ i ≤ θ. We find that ei is the 
smallest number such vei0n = 0. Indeed, on one hand it is not hard to see that vei0n = 0
i i
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since by definition vei0ni
∈ H00 = k and v0ni

is nilpotent. On the other hand, assume 
that there is l < ei which is smallest such that vl0ni

= 0. Then

0 = Δ(v0ni
)l = (1 ⊗ v0ni

+ v0ni
⊗ gni)l =

l∑
k=0

(
l

k

)
ξn

2
i

vk0ni
⊗ gni(l−k)vl−k

0ni

which implies that 
(

l

k

)
ξn

2
i

= 0 for all 1 ≤ k ≤ l − 1 and thus ξn2
i must be a primitive 

lth root of unity. Now we consider the element v0,lni
which is not 1 by the definition of l

(explicitly, n � lni since l < ei). Thus the elements g′ := glni , x := v0,lni
generate a Hopf 

subalgebra satisfying

g′x = xg′, Δ(x) = 1 ⊗ x + x⊗ g′.

(We need prove these two relations. The relation g′x = xg′ is clear. The proof of Δ(x) =
1 ⊗ x + x ⊗ g′ is given as follows: Lifting these v0j to H, we get the corresponding 
elements u0j for 0 ≤ j ≤ n − 1. Due to [12, Proposition 6.2], they are normal and 
thus ul

0ni
= f(x)u0,lni

for some 0 �= f(x) ∈ H00. By the claim in the proof of the next 
proposition, that is, Proposition 5.7, u0ni

is a skew primitive element. Using the fact that 
ξn

2
i is a primitive lth root of unity, ul

0ni
is still a skew primitive element. This implies 

that Δ(f(x)u0,lni
) and thus Δ(u0,lni

) ∈ H00⊗H0,lni
+H0,lni

⊗Hlni,lni
. Therefore, v0,lni

has to be skew-primitive.)
It is well known that a Hopf algebra satisfying above relations must be infinite di-

mensional (in fact, a infinite dimensional Taft algebra) which is a contradiction. Thus, 
ei is the smallest number such vei0ni

= 0.
Now, we want to show that (ei, ni) = 1. Otherwise, let di = (ei, ni) > 1. Therefore, 

we consider

Δ(v0ni
)

ei
di = (1 ⊗ v0ni

+ v0ni
⊗ gni)

ei
di .

By definition, ei/di is coprime to ni thus coprime to n2
i . This implies that ξn2

i is a 
primitive ei/dith root of unity. Therefore,

Δ(v0ni
)

ei
di = 1 ⊗ v

ei
di
0ni

+ gniei/di ⊗ v
ei
di
0ni

.

Since ei is the smallest number such vei0ni
= 0, v

ei
di
0ni

�= 0. This means that we go into 

the following situation again: Let g′ = gniei/di , x = v
ei/di

0ni
, then the Hopf subalgebra 

generated by g′, x is infinite dimensional. This is impossible.
Next, we need to prove the conditions (2) and (3) of a fraction (see Definition 3.1). 

Clearly, conditions (2) and (3) is equivalent to say that every v0t can be expressed as a 
product of v0n1 , . . . , v0,nθ

uniquely (up to the order of these v0,ni
’s due to the community 
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of them) for all 0 ≤ t ≤ n − 1. Since we already know that v0n1 , . . . , v0nθ
generate the 

whole algebra H
l

0, it is enough to prove the following two conclusion: 1) vl10n1
· · · vlθ0nθ

�= 0
for all 0 ≤ l1 ≤ e1 − 1, . . . , 0 ≤ lθ ≤ eθ − 1; 2) the elements in the set {vl10n1

· · · vlθ0nθ
|0 ≤

l1 ≤ e1 − 1, . . . , 0 ≤ lθ ≤ eθ − 1} are linear independent. Of course, 1) is just a necessary 
part of 2). However, we find that they help each other. To show them, we introduce the 
lexicographical order on A = {(l1, . . . , lθ)|0 ≤ l1 ≤ e1 − 1, . . . , 0 ≤ lθ ≤ eθ − 1} through

(l1, . . . , lθ) < (l′1, . . . , l′θ) ⇔ exists 1 ≤ i ≤ θ s.t. lj = l′j forj < i and li < l′i.

Now let S = {(s1, . . . , sθ) ∈ A|vs10n1
· · · vsθ0nθ

�= 0}. Clearly, S is nonempty due to v0ni
�=

0 for all 1 ≤ i ≤ θ. We prove that all elements {vs10n1
· · · vsθ0nθ

|(s1, . . . , sθ) ∈ S} are 
linearly independent firstly and then show that S = A. From this, 1) and 2) are proved 
clearly. In fact, assume we have a linear dependent relation among the elements in 
{vs10n1

· · · vsθ0nθ
|(s1, . . . , sθ) ∈ S}. Then there exists a linear combination

al1,...,lθv
l1
0n1

vl20n2
· · · vlθ0nθ

+ · · · = 0

with al1,...,lθ �= 0 and (l1, . . . , lθ) is as small as possible. Taking the coproduct to the above 
equality and one can get a smaller item involving in a linear dependent equation. That 
is a contradiction. Next, let’s show that S = A. Otherwise, there exists vl10n1

· · · vlθ0nθ
=

0 for some (l1, . . . , lθ) ∈ A. Then take (l1, . . . , lθ) as small as possible under above 
lexicographical order. Without loss generality, we can assume that l1 > 0. Then take a 
k1 such 0 ≤ k1 < l1. In the expression of Δ(vl10n1

· · · vlθ0nθ
) on can find the coefficient of 

the item vl1−k1
0n1

⊗ gk1n1vk1
0n1

vl20n2
· · · vlθ0nθ

is(
l1
k1

)
ξn

2
1

which is not zero since we already know that ξn2
1 is a primitive e1th root of unity. This 

implies that either vl1−k1
0n1

= 0 or vk1
0n1

vl20n2
· · · vlθ0nθ

= 0 by the linear independent relation 
we proved. But both of them are not possible. Therefore, S = A. So 1) and 2) are proved. 
The proof of the claim is done.

Let’s go back to prove this lemma. Until now, we have proved that the Hopf algebra 
H is generated by v0n1 , . . . , v0nθ

and g such that n1, . . . , nθ is a fraction of n and

gn = 1, v0ni
g = ξnigv0ni

, v0ni
v0nj

= v0nj
v0ni

, vei0ni
= 0

and g is group-like, v0ni
is a (1, gni)-skew primitive element for all 1 ≤ i, j ≤ θ. Therefore, 

we have a Hopf surjection

T (n1, . . . , nθ, ξ) −→ H, yni
�→ v0ni

, g �→ g, 1 ≤ i ≤ θ.

Comparing the dimension of them, we know that this surjection is a bijection. �
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With help of this lemma, we are in the position to give the main result of this sub-
section now.

Proposition 5.7. Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp1), 
(Hyp2) and n := ord(π) = min(π) > 1. Retain all above notations, then

(1) If H is additive, then it is isomorphic to a fraction version of an infinite dimensional 
Taft algebra T (n, 1, ξ) of Subsection 4.1.

(2) If H is multiplicative, then it is isomorphic to a fraction version of a generalized Liu 
algebra B(n, ω, γ) of Subsection 4.4.

Proof. Before we prove (1) and (2), we want to recall some basic facts, which are still valid 
in our case, on the coproduct from [12, Proposition 6.7]. The first fact is that g := u11 is 
a group-like element and uii can defined as uii := ui

11 (see (a) of [12, Proposition 6.7]). 
By (1) of Lemma 2.9, in general one has

Δ(uij) =
∑
s,t

Cij
st(uis ⊗ utj)

for Cij
st ∈ H00 ⊗ H00 and 0 ≤ i, j, s, t ≤ n − 1. The second fact is Cij

st = 0 when s �= t

(see (6.7.5) in the proof of [12, Proposition 6.7]). Therefore, the coproduct for uij can 
be written as

Δ(uij) = Cij
ii g

i ⊗ uij + Cij
jjuij ⊗ gj +

∑
s �=i,j

Cij
ssuis ⊗ usj (5.3)

for all 0 ≤ i, j ≤ n − 1. Now by Lemma 5.6 we can assume that H = T (n1, . . . , nθ, ξ). 
Then we get the following observation.

Claim. For all 1 ≤ i ≤ θ, the element u0ni
is a (1, gni)-skew primitive element.

Proof of the claim. By direct computation,

(Id⊗Δ)Δ(u0ni
)

= (Id⊗Δ)(C0ni
00 1 ⊗ u0ni

+ C0ni
nini

u0ni
⊗ gni +

∑
s �=0,ni

C0ni
ss u0s ⊗ usni

)

= (Id⊗Δ)(C0ni
00 )1 ⊗ (C0ni

00 1 ⊗ u0ni
+ C0ni

nini
u0ni

⊗ gni +
∑

s �=0,ni

C0ni
ss u0s ⊗ usni

)

+ (Id⊗Δ)(C0ni
nini

)u0ni
⊗ gni × gni +

∑
s �=0,ni

(Id⊗Δ)(C0ni
ss )u0s ⊗

[Csni
ss gs ⊗ usni

+ Csni
nini

usni
⊗ gni +

∑
t�=s,ni

Csni
tt ust ⊗ utni

]

and
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(Δ ⊗ Id)Δ(u0ni
)

= (Δ ⊗ Id)(C0ni
00 1 ⊗ u0ni

+ C0ni
nini

u0ni
⊗ gni +

∑
s �=0,ni

C0ni
ss u0s ⊗ usni

)

= (Δ ⊗ Id)(C0ni
00 )1 ⊗ 1 ⊗ u0ni

+ (Δ ⊗ Id)(C0ni
nini

)[C0ni
00 1 ⊗ u0ni

+ C0ni
nini

u0ni
⊗ gni +

∑
s �=0,ni

u0s ⊗ usni
] ⊗ gni

+
∑

s �=0,ni

(Δ ⊗ Id)(C0ni
ss )[C0s

001 ⊗ u0s + C0s
ssu0s ⊗ gs +

∑
t�=0,s

C0s
tt u0t ⊗ uts] ⊗ usni

.

By associativity, we get the following identities:

(Id⊗Δ)(C0ni
00 )(1 ⊗ C0ni

00 ) = (Δ ⊗ Id)(C0ni
00 )

(Id⊗Δ)(C0ni
00 )(1 ⊗ C0ni

nini
) = (Δ ⊗ Id)(C0ni

nini
)

(Id⊗Δ)(C0ni
nini

) = (Δ ⊗ Id)(C0ni
nini

)(C0ni
nini

⊗ 1)

(Id⊗Δ)(C0ni
00 )(1 ⊗ C0ni

ss ) = (Δ ⊗ Id)(C0ni
ss )(C0s

00 ⊗ 1) (5.4)

(Id⊗Δ)(C0ni
ss )(1 ⊗ Csni

ss ) = (Δ ⊗ Id)(C0ni
ss )(C0s

ss ⊗ 1) (5.5)

for s �= 0, ni. From the first three identities, we find that C0ni
00 = C0ni

nini
= 1 by using the 

same method given in [12, page 297]. This indeed implies that

C0t
00 = C0t

tt = 1

for all 0 ≤ t ≤ n − 1 since we have the same first three identities just through replacing 
ni by t.

Recall again the dichotomy of H00: either H00 = k[x] or H00 = k[x±1]. From this we 
know that C0ni

ss =
∑

k,l a
s,0,ni

kl xk ⊗ xl for s �= 0, ni and as,0,ni

kl ∈ k. We just prove our 
claim in the case H00 = k[x] since the other case can be proved similarly. By the image 
of u0ni

in H is a skew primitive element,

as,0,ni

00 = 0.

Since C0t
00 = C0t

tt = 1 for all 0 ≤ t ≤ n − 1, the equation (5.4) is simplified into

(1 ⊗ C0ni
ss ) = (Δ ⊗ Id)(C0ni

ss )

which implies that as,0,ni

kl = 0 if k �= 0. Similarly, the equation (5.5) implies that as,0,ni

0l =
0 if l �= 0. Thus, C0ni

ss = 0 for s �= 0, ni and u0ni
is a (1, gni)-skew primitive element for 

1 ≤ i ≤ θ. Moreover, we point out that through the same way given in [12, Theorem 6.7]
one can show that as an algebra the Hopf algebra H is generated by H00, g = u11 and 
u0ni

for 1 ≤ i ≤ θ.
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(1) Now H is additive with H00 = k[x]. We already know that g = u11 is group-like 
and thus gn is a group-like in H00 by the bigrading property. But the only group-like in 
H00 is 1 and thus

gn = 1.

Consider the element u0ni
for 1 ≤ i ≤ θ. Through the quantum binomial theorem, uei

0ni

is a primitive element now. This means there exists ci ∈ k such that uei
0ni

= cix. Since 
H is prime, ci �= 0. Therefore, through multiplying u0ni

by a suitable scalar one can 
assume that

uei
0ni

= x

for all 1 ≤ i ≤ θ. By equation (5.1), u0ni
u0nj

= u0nj
u0ni

for all 1 ≤ i, j ≤ θ. Therefore, 
we have a Hopf surjection

φ : T (n, 1, ξ) −→ H, x �→ x, yni
�→ u0ni

, g �→ g,

where n = {n1, . . . , nθ}. Since both of them are prime of GK-dimension one, φ is an 
isomorphism.

(2) Now H is multiplicative with H00 = k[x±1]. We already know that g = u11 is 
group-like and thus gn is a group-like element in H00 by the bigrading property. Since 
{xi|i ∈ Z} are all the group-likes in H00,

gn = xω

for some ω ≥ 0 (noting that we can replace x by x−1 if ω is negative). We claim that 
ω �= 0. If not, then as the proof of (1) we know that uei

0ni
is primitive in H00. Hence 

uei
0ni

= 0 which is impossible since H is prime.
Consider the element u0ni

for 1 ≤ i ≤ θ. Through the quantum binomial theorem, 
uei

0ni
is a (1, geini) = (1, xω

eini
n )-skew primitive element in H00. Therefore, after dividing 

if necessary by non-zero scalar,

uei
0ni

= 1 − xω
eini
n

for all 1 ≤ i ≤ θ. Also by equation (5.1), u0ni
u0nj

= u0nj
u0ni

for all 1 ≤ i, j ≤ θ. 
Therefore, we have a Hopf surjection

φ : B(n, ω, ξ) −→ H, x �→ x, yni
�→ u0ni

, g �→ g,

where n = {n1, . . . , nθ}. Since both of them are prime of GK-dimension one, φ is an 
isomorphism. �
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6. Remaining case

In the previous section, we already dealt with the ideal cases: the case min(π) = 1 and 
the case ord(π) = min(π) > 1. In this section, we want to deal with the remaining case: 
ord (π) > min(π) > 1. The main aim of this section is to classify prime Hopf algebras 
H of GK-dimension one in this remaining case. To realize this aim, we apply the similar 
idea used in [32], that is, we first construct a special Hopf subalgebra H̃, which can be 
classified by previous results, and then we show that H̃ determines the structure of H
entirely.

In this section, H is a prime Hopf algebra of GK-dimension one satisfying (Hyp1), 
(Hyp2) and n := ord (π) > m := min(π) > 1 unless stated otherwise. And as before, the 
1-dimensional representation in (Hyp1) is denoted by π. Recall that

H =
⊕

i,j∈Zn

Hij

is Zn-bigraded by (2.3).

6.1. The Hopf subalgebra H̃

By definition, we know that m|n and thus let t := n
m . We define the following subal-

gebra

H̃ :=
⊕

0≤i,j≤m−1
Hit,jt.

The following result is a collection of [32, Proposition 5.4, Lemma 5.5], which were proved 
in [32] without using the condition of regularity.

Lemma 6.1. Retain above notations.

(1) For every i, j with 1 � i, j � n − 1, Hij �= 0 if and only if i − j ≡ 0 (mod t) for all 
0 � i, j � n − 1.

(2) The algebra H̃ is a Hopf subalgebra of H.

The key observation of [32] and here is that Hopf subalgebra H̃ lives in an ideal case.

Proposition 6.2. For the Hopf algebra H̃, we have the following results.

(1) It is prime of GK-dimension one.
(2) It satisfies (Hyp1) and (Hyp2) through the restriction π|

H̃
of π to H̃.

(3) ord(π|
H̃

) = min(π|
H̃

) = m.
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Proof. (1) For each 0 ≤ i ≤ m − 1, let H̃ l
it :=

⊕
0≤j≤m−1 Hit,jt. By Lemma 6.1, we 

know that H̃ l
it = H l

it. Therefore H̃ =
⊕

0≤i≤m−1 H̃
l
it is strongly graded and H̃ l

0 is a 

commutative domain. Thus the Lemma 2.11 can be applied. As consequences, H̃ is 
prime with PI-degree m. Since H̃ l

0 = H l
0 is of GK-dimension one and H̃ is Zm-strongly 

graded, H̃ is of GK-dimension one.
(2) Denote the restriction of the actions of Ξl

π and Ξr
π to H̃ by Γl and Γr, respectively. 

Since H̃ =
⊕

0�i�m−1 H
l
it, we can see that for each 0 � i � m − 1 and any 0 �= x ∈ H l

it,

(Γl)m(x) = ξitmx = x

for ξ a primitive nth root of unity. This implies that the group 〈Γl〉 has order m and thus 
π|

H̃
is of order m. We already know that PI-deg(H̃) = m and the invariant component 

H̃ l
0 = H l

0 is a domain. So H̃ satisfies (Hyp1) and (Hyp2).
(3) Similarly, |〈Γr〉| = m. We claim that

〈Γl〉 ∩ 〈Γr〉 = 1.

In fact, if (Γl)i = (Γr)j for some 0 � i, j � m − 1. Choose 0 �= x ∈ Htt, we find

ξtix = (Γl)i(x) = (Γr)j(x) = ξtjx

which implies i = j. Let 0 �= y ∈ H0,t, then

y = (Γl)i(y) = (Γr)j(y) = ξtjy

forces j = 0. Thus we get i = j = 0, i.e., 〈Γl〉 ∩ 〈Γr〉 = 1. This implies that min(π|
H̃

) =
m. �
Corollary 6.3. As a Hopf algebra H̃ is isomorphic to either a faction version of infi-
nite dimensional Taft algebra T (m, 1, ξ) or a fraction version of generalized Liu algebra 
B(m, ω, γ).

Proof. This is a direct consequence of Propositions 5.7 and 6.2. �
This corollary implies that either H00 = k[x] (i.e. H ∼= T (m, 1, ξ)) or H00 = k[x±1]

(i.e. H ∼= B(m, ω, γ)) again. That is, we go back to a familiar situation that we have a 
dichotomy on H now.

Definition 6.4. We call H is additive (resp. multiplicative) if H00 = k[x] (resp. H00 =
k[x±1]).

We realize that the [32, Proposition 6.6] is also true in our case and we recall it as 
follows.
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Lemma 6.5. Every homogeneous component Hi,i+jt of H is a free H00-module of rank 
one on both sides for all 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1.

From this lemma, there is a generating set {ui,i+jt|0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1}
satisfying

u00 = 1 and Hi,i+jt = ui,i+jtH00 = H00ui,i+jt.

So, H can be written as

H =
⊕

0�i�n−1
0�j�m−1

H00ui,i+jt =
⊕

0�i�n−1
0�j�m−1

ui,i+jtH00. (6.1)

6.2. Additive case

If H is additive, H̃ = T (m, 1, ξ). Recall that n is the π-order and n = mt. We will 
prove H is isomorphic as a Hopf algebra to T (n, t, ζ), for ζ some primitive nth root of 
1. Recall that

H̃ = T (m, 1, ξ) = k〈g, ym1 , . . . , ymθ
|gm = 1, ymi

g = ξmigymi
, ymi

ymj
= ymj

ymi
,

yeimi
= yejmj

, 1 ≤ i, j ≤ θ〉,

here by Proposition 4.3 we assume that (m1, . . . , mθ) = 1 without loss of generality. Note 
that H =

⊕
0�i�n−1,0�j�m−1 Hi,i+jt, H̃ =

⊕
0�i,j�m−1 Hit,jt and Hit,jt = k[ye1m1

]yj−ig
i

(the index j − i is interpreted mod m). In particular, H00 = k[ye1m1
], H0,jt = k[ye1m1

]yj
and Htt = k[ye1m1

]g.
By Lemma 2.9 (5), ε(u11) �= 0. Multiplied with a suitable scalar, we can assume that 

ε(u11) = 1 throughout this subsection. The following results are parallel to [32, Lemma 
7.1, Propositions 7.2, 7.3]. Since the situation is changed, we write the details out.

Lemma 6.6. Let u := u11. Then H l
1 = H l

0u, H =
⊕

0�k�t−1 H̃uk and u is invertible.

Proof. By the bigraded structure of H, we have

H0,mitH11 ⊆ H1,1+mit, H0,(ei−1)mitH1,1+mit ⊆ H11,

which imply

H0,mitH0,(ei−1)mitH1,1+mit ⊆ H0,mitH11 ⊆ H1,1+mit,

for all 1 ≤ i ≤ θ.
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Since H0,mitH0,(ei−1)mit = yeimi
H00 is a maximal ideal of H00 = k[ye1m1

] = k[yeimi
] and 

H1,1+mit is a free H00-module of rank one (by Lemma 6.5), H0,mitH0,(ei−1)mitH1,1+mit

is a maximal H00-submodule of H1,1+mit. Thus

H0,mitH11 = H0,mitH0,(ei−1)mitH1,1+mit = yeimi
H1,1+mit or H0,mitH11 = H1,1+mit.

If H0,mitH11 = yeimi
H1,1+mit, then ymi

u11 = yeimi
α(yeimi

)u1,1+mit for some polynomial 
α(yeimi

) ∈ k[yeimi
]. So

ymi
(u11 − yei−1

mi
α(yeimi

)u1,1+mit) = 0.

Therefore, yeimi
(u11 − yei−1

mi
α(yeimi

)u1,1+mit) = 0. Note that each homogeneous Hi,i+jt is 
a torsion-free H00-module, so

u11 = yei−1
mi

α(yeimi
)u1,1+mit.

By assumption, ε(u11) = 1. But, by definition, ε(ymi
) = 0. This is impossible. So 

H0,mitH11 = H1,1+mit which implies that H0,mitu11 = H1,1+mit.
Since above i is arbitrary, that is 1 ≤ i ≤ θ, we can show that H0,jtu11 = H1,1+jt for 

0 � j � m − 1. Thus H l
1 = H l

0u11. Since H =
⊕

0�j�n−1 H
l
j is strongly graded, u11 is 

invertible and H l
j = H l

0u
j
11 for all 0 � j � n − 1. Let u := u11, then we have

H =
⊕

0�k�t−1

H̃uk. �

We are in a position to determine the structure of H now.

Lemma 6.7. With above notations, we have

ut = g, ymi
u = ζmiuymi

(1 ≤ i ≤ θ),

where ζ is a primitive nth root of 1.

Proof. For all 1 ≤ i ≤ θ, by H0,mitu = uH0,mit, there exists a polynomial βi(yeimi
) ∈

k[yeimi
] such that

ymi
u = uymi

βi(yeimi
).

Then

ymi
ut = utymi

β′
i(yeimi

)

for some polynomial β′
i(yeimi

) ∈ k[yeimi
] induced by β(yeimi

). Since ut is invertible and 
ut ∈ Ht,t = k[yeim ]g, ut = ag for 0 �= a ∈ k. By assumption, ε(u) = 1 and thus a = 1. 
i
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Therefore,

ut = g.

Since ymi
g = ξmigymi

, we have β′
i(yeimi

) = ξmi . Then it is easy to see that βi(yeimi
) =

ζi ∈ k with ζti = ξmi . By assumption, (m1, . . . , mθ) = 1 and thus there exists ζ ∈ k such 
that ζt = ξ and ζmi = ζi for all 1 ≤ i ≤ θ. Of course, ζn = 1.

The last job is to show that ζ is a primitive nth root of 1. Indeed, assume ζ is a 
primitive n′th root of 1. By definition, m|n′|n and n′ �= n. Therefore, it is not hard to 
see that

u′ := un′ ∈ C(H)

the center of H. Since gm = un = (u′) n
n′ = 1, we have orthogonal central idempotents 

1l :=
∑ n

n′ −1
j=0 ς−lj(u′)j for 0 ≤ l ≤ n

n′ − 1 and ς a primitive n
n′ th root of unity. This 

contradicts to the fact that H is prime. �
Lemma 6.8. The element u is a group-like element of H.

Proof. First of all Hr
0
∼= k[x] ∼= H l

0. Then Hr
0 ⊗ H l

0
∼= k[x, y] and the only invertible 

elements in Hr
0 ⊗ H l

0 are nonzero scalars in k. Since Δ(u) and u ⊗ u are invertible, 
Δ(u)(u ⊗ u)−1 is invertible (and hence a scalar). Thus u must be group-like by noting 
that ε(u) = 1. �

The next proposition follows from above lemmas directly.

Proposition 6.9. Let H be a prime regular Hopf algebra of GK-dimension one satisfying 
(Hyp1), (Hyp2) and ord(π) = n > min(π) = m > 1. If H is additive, then H is 
isomorphic as a Hopf algebra to a fraction version of infinite dimensional Taft algebra.

6.3. Multiplicative case

If H is multiplicative, then H̃ = B(m, ω, γ) for m = {m1, . . . , mθ} a fraction of m, γ
a primitive mth root of 1 and ω a positive integer. As usual, the generators of B(m, ω, γ)
are denoted by x±1, ym1 , . . . , ymθ

and g. By equation (4.6) and [32, Remark 6.3], we can 
assume that H̃ =

⊕
0�i,j�m−1 Hit,jt with

Hit,jt = k[x±1]yj−ig
i

(the index j − i is interpreted mod m). In particular, H00 = k[x±1], H0,jt = k[x±1]yj
and Ht,t = k[x±1]g.

Set uj := u1,1+jt(0 � j � m − 1) for convenience. By the structure of the bigrading 
of H, we have
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ymi
uj = φmi,jumi+j (6.2)

and

ujymi
= ϕmi,jumi+j (6.3)

for some polynomials φmi,j , ϕmi,j ∈ k[x±1] and 1 � i � θ, 0 ≤ j ≤ m − 1. With these 
notions and the equality yeimi

= 1 − xω
eimi
m , we find that

(1 − xω
eimi
m )uj = yeimi

uj = φmi,jφmi,mi+j · · ·φmi,(ei−1)mi+juj (6.4)

and

uj(1 − xω
eimi
m ) = ujy

ei
mi

= ϕmi,jϕmi,mi+j · · ·ϕmi,(ei−1)mi+juj , (6.5)

for 1 � i � θ and 0 ≤ j ≤ m − 1.

Lemma 6.10. There is no such H satisfying ord(π) = n > min(π) = m > 1 and n/m > 2.

Proof. Since ujH00 = H00uj , we have

ujx = αj(x±1)uj and ujx
−1 = βj(x±1)uj

for some αj(x±1), βj(x±1) ∈ k[x±1] for 0 ≤ j ≤ m − 1. From

uj = ujxx
−1 = αj(x±1)ujx

−1 = αj(x±1)βj(x±1)uj ,

we get αj(x±1)βj(x±1) = 1 and thus αj(x±1) = λjx
aj for some 0 �= λj ∈ k, 0 �=

aj ∈ Z. Note that ut
j ∈ Ht,(1+jt)t = k[x±1]yj̄tg, where j̄t ≡ jt (mod m). So we have 

ut
j = γj(x±1)yj̄tg for some γj(x±1) ∈ k[x±1]. Hence ut

j commutes with x. Applying 

ujx = λjx
ajuj to ut

jx = xut
j , we get λ

∑t−1
s=0 as

j

j = 1 and xat
j = x. If t is odd, aj = 1 and if 

t is even, then aj is either 1 or −1.
Now we consider the special case j = 0. By ε(xu0) = ε(u0x) �= 0, we find that λ0 = 1.
If a0 = 1, that is u0x = xu0, then we will see ujx = xuj for all 0 � j � m −1. In fact, 

for this, it is enough to show that umi
x = xumi

for all 1 ≤ i ≤ θ. Since

φmi,0xumi
= xφmi,0umi

= xymi
u0 = yxu0 = ymi

u0x = φmi,0umi
x,

we have umi
x = xumi

since H1,1+mit is a torsion-free H00-module. Then by the strongly 
graded structure ui,i+jt ∈ H l

i = (H l
1)i and x is commutative with H l

1, it is not hard to 
see that ui,i+jtx = xui,i+jt for all 0 � i � n − 1, 0 � j � m − 1. Therefore the center 
C(H) ⊇ H00 = k[x±1]. By [12, Lemma 5.2], C(H) ⊆ H0 and thus C(H) = H0 = k[x±1]. 
This implies that
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rankC(H)H = rankH00H = nm < n2,

which contradicts the fact: the PI-degree of H is n and equals the square root of the 
rank of H over C(H).

If a0 = −1, that is u0x = x−1u0, we can deduce that ui,i+jtx = x−1ui,i+jt for all 
0 � i � n − 1, 0 � j � m − 1 by using the parallel proof of the case a0 = 1. For s ∈ N, 
let zs := xs + x−s. Define k[zs|s ≥ 0] to be the subalgebra of k[x±1] generated by all 
zs. Note that k[x±1] has rank 2 over k[zs|s � 1]. Thus C(H) ⊇ k[zs|s ≥ 0]. Using [12, 
Lemma 5.2] again, we have C(H) = k[zs|s ≥ 0]. Hence

rankC(H)H = 2nm �= n2

since n/m > 2 by assumption. This contradicts the fact that the PI-degH = n again.
Combining these two cases, we get the desired result. �
We turn now to consider the case: ord(π) = 2 min(π) = 2m. In this case, t = 2. As 

discussed in the proof of Lemma 6.10, if such H exists then the following relations

ujx = x−1uj (0 � i � m− 1) (6.6)

hold in H. Using these relations and (6.5), we have

ϕmi,jϕmi,mi+j · · ·ϕmi,(ei−1)mi+j = 1 − x−ω
eimi
m , (6.7)

for all 1 ≤ i ≤ θ and 0 ≤ j ≤ m − 1. To determine the structure of H, we need to give 
some harmless assumptions on the choice of uj (0 � j � m − 1) and φmi,j :

(1) We assume ε(u0) = 1.

(2) For each 1 ≤ i ≤ θ, let ξi,s := e
2sπi

ω
eimi
m and thus 1 − xω

eimi
m = Πs∈Si

(1 − ξi,sx), where 
Si := {0, 1, · · · , ω eimi

m − 1}. Since

φmi,j · · ·φmi,(ei−1)mi+j = yeimi
= 1 − xω

eimi
m ,

there is no harm to assume that

φmi,tmi+j = Πs∈Si,j,t
(1 − ξi,sx),

where Si,j,t is a subset of Si.
(3) By the strongly graded structure of H, the equality H l

2 = H l
0g and the fact that g

is invertible in H, we can take uk,k+2j such that

uk,k+2j =
{
g

k−1
2 uj if k is odd,

yjg
k
2 if k is even,

for all 2 � k � 2m − 1.
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In the rest of this section, we always make these assumptions.
We still need two notations, which appeared in the proof of Proposition 4.12. For a 

polynomial f =
∑

aix
bi ∈ k[x±1], we denote by f̄ the polynomial 

∑
aix

−bi . Then by 
(6.6), we have fui = uif̄ and uif = f̄ui for all 0 � i � m − 1. For any h ∈ H ⊗H, we 
use

h(s1,t1)⊗(s2,t2)

to denote the homogeneous part of h in Hs1,t1 ⊗Hs2,t2 . Both these notations will be used 
frequently in the proof of the next proposition.

Proposition 6.11. Keep the notations above. Let H be a prime Hopf algebra of GK-
dimension one satisfying (Hyp1) and (Hyp2). Assume that H̃ = B(m, ω, γ) and ord(π) =
2 min(π) > 2, then we have

(1) m|ω, 2| 
∑θ

i=1(mi − 1)(ei − 1), 2| 
∑θ

i=1(ei − 1)mi
ω
m .

(2) As a Hopf algebra,

H ∼= D(m, d, γ)

constructed as in Subsection 4.4 where d = ω
m .

Proof. We divide the proof into several steps.

Claim 1. We have m|ω and for 1 ≤ i ≤ θ, 0 ≤ j ≤ m − 1, ymi
uj = φmi,jumi+j =

ξmi
xdmiujymi

for d = ω
m and some ξmi

∈ k satisfying ξeimi
= −1.

Proof of Claim 1: By associativity of the multiplication, we have many equalities:

ymi
ujy

ei−1
mi

= φmi,jϕmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+ju0

= ϕmi,jφmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+ju0

· · ·
= ϕmi,jϕmi,mi+jϕmi,2mi+j · · ·φmi,(ei−1)mi+ju0,

which imply that

φmi,smi+jϕmi,tmi+j = ϕmi,smi+jφmi,tmi+j (6.8)

for all 0 ≤ s, t ≤ ei − 1. Using associativity again, we have

yeimi
ujy

ei(ei−1)
mi

= (1 − xω
eimi
m )uj(1 − xω

eimi
m )ei−1

= −xω
eimi
m (1 − x−ω

eimi
m )eiuj
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= −xω
eimi
m (ϕmi,jϕmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+j)eiuj

= (φmi,jϕmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+j)eiuj

= (ϕmi,jφmi,mi+jϕmi,2mi+j · · ·ϕmi,(ei−1)mi+j)eiuj

· · ·

= (ϕmi,jϕmi,mi+jϕmi,2mi+j · · ·φmi,(ei−1)mi+j)eiuj ,

where the fourth “=”, for example, is gotten in the following way: We multiply uj by 
one ymi

from left side at first, then multiply it with yei−1
mi

from right side, then continue 
the procedures above. From these equalities, we have

φei
mi,smi+j = −xω

eimi
m ϕei

mi,smi+j

for all 0 ≤ s ≤ ei − 1. This implies that

ei|ω
eimi

m
.

So, m|ωmi for all 1 ≤ i ≤ θ. Since m is coprime to (m1, . . . , mθ), we have

m|ω.

So φmi,smi+j = ξmi,smi+jx
dmiϕmi,smi+j where d = ω

m and ξmi,smi+j ∈ k satisfying 
ξeimi,smi+j = −1. We next want to prove that ξmi,smi+j does not depend on the number 
smi + j. In fact, by equation (6.8), we can see ξmi,smi+j = ξmi,tmi+j for all 0 ≤ s, t ≤
ei−1, and so we can write it through ξmi,j . Now consider for any 1 ≤ i′ ≤ θ, by definition 
we have φmi′ ,0umi′ = ymi′u0. Therefore

ymi
ymi′u0 = φmi′ ,0ymi

umi′

= φmi′ ,0ξmi,mi′x
midumi′ ymi

,

and

ymi
ymi′u0 = ymi′ ymi

u0

= ξmi,0x
midymi′u0ymi

= φmi′ ,0ξmi,0x
midumi′ ymi

.

So, ξmi,0 = ξmi,mi′ which indeed tells us that ξmi,j does depend on j (due to j is 
generated by these mi′ ’s) and so we write it as ξmi

. �
In the following of the proof, d is fixed to be the number ω/m.

Claim 2. We have ujg = λjx
−2dguj for λj = ±γj and 0 ≤ j ≤ m − 1.
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Proof of Claim 2: Since g is invertible in H, ujg = ψjguj for some invertible ψj ∈ k[x±1]. 
Then ujg

m = ψm
j gmuj yields ψm

j = x−2ω. So ψj = λjx
−2d for λj ∈ k with λm

j = 1. Our 
last task is to show that λj = ±γj . To show this, we need a preparation, that is, we need 
to show that ujul �= 0 for all j, l. Otherwise, assume that there exist j0, l0 ∈ {0, . . . , m −1}
such that uj0ul0 = 0. Using Claim 1, we can find that uj0ul ≡ 0 and ujul0 ≡ 0 for all j, l. 
Let (uj0) and (ul0) be the ideals generated by uj0 and ul0 respectively. Then it is not 
hard to find that (uj0)(ul0) = 0 which contradicts H being prime. So we always have

ujul �= 0 (6.9)

for all 0 ≤ j, l � m − 1.
Applying this observation, we have 0 �= u2

j ∈ H2,2+4j = k[x±1]y2jg, u2
jg = ψjψjgu

2
j =

γ2jgu2
j . Thus ψj = ±γjx−2d which implies that λj = ±γj . The proof is ended. �

We can say more about λj at this stage. By 0 �= ujulg = γj+lgujul, we know that 
ψj = γjx−2d for all j or ψj = −γjx−2d for all j. So

λj = γj or λj = −γj (6.10)

for all 0 ≤ j ≤ m − 1. In fact, we will show that ψj = γjx−2d for all j later.

Claim 3. For each 0 � j � m − 1, there are fjl, hjl ∈ k[x±1] with hjl monic such that

Δ(uj) =
m−1∑
k=0

fjkuk ⊗ hjkg
kuj−k, (6.11)

where the following j − k is interpreted mod m.

Proof of Claim 3: Since uj ∈ H1,1+2j , Δ(uj) ∈ H l
1 ⊗Hr

1+2j by Lemma 2.9. Noting that 
H l

1 =
⊕m−1

k=0 H00uk and Hr
1+2j =

⊕m−1
s=0 H00g

suj−s, we can write

Δ(uj) =
∑

0≤k,s≤m−1

F j
ks(uk ⊗ gsuj−s),

where F j
ks ∈ H00 ⊗H00. Then we divide the proof into two steps.

• Step 1 (Δ(uj) =
∑

0≤k�m−1 F
j
kk(uk ⊗ gkuj−k)).

Recall that ujg = λjx
−2dguj , where λj is either γj for all j or −γj for all j. The 

equations

Δ(ujg) = Δ(uj)Δ(g) =
∑

0≤k,s≤m−1

F j
ks(uk ⊗ gsuj−s)(g ⊗ g)

=
∑

0≤k,s≤m−1

F j
ks(λkx

−2dguk ⊗ λj−sx
−2dgs+1uj−s)

=
∑

0≤k,s≤m−1

λkλj−s(x−2dg ⊗ x−2dg)F j
ks(uk ⊗ gsuk−s)
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and

Δ(λjx
−2dguj) = λj(x−2dg ⊗ x−2dg)

∑
0≤k,s≤m−1

F j
ks(uk ⊗ gsuj−s)

=
∑

0≤k,s≤m−1

λj(x−2dg ⊗ x−2dg)F j
ks(uk ⊗ gsuj−s)

imply that λj = λkλj−s for all k, s. If λj = −γj for all j, then we have −γj = λj =
λkλj−s = γk+j−s. This implies k = s ±m/2. Applying (ε ⊗ Id) to Δ(uj),

(ε⊗ Id)Δ(uj) = (ε⊗ Id)(F j
0, m/2)g

m/2uj−m/2 �= uj ,

which is absurd. If λj = γj for all j, then γj = λj = λkλj−s = γk+j−s. This implies 
k = s (which is compatible with the equality (ε ⊗ Id)Δ(uj) = uj). So we get F j

ks �= 0
only if k = s and λj = γj for all j. Thus we have Δ(uj) =

∑
0≤k≤m−1 F

j
kk(uk ⊗ gkuj−k)

for all j.
• Step 2 (There exist fjk, hjk ∈ H00 with hjk monic such that F j

kk = fjk ⊗ hjk for 
0 ≤ j, k ≤ m − 1).

We replace F j
kk by F j

k for convenience. Since

(Δ ⊗ Id)Δ(uj) = (Δ ⊗ Id)(
∑

0≤k≤m−1

F j
k (uk ⊗ gkuj−k))

=
∑

0≤k≤m−1

(Δ ⊗ Id)(F j
k )(

∑
0≤s≤m−1

F k
s (us ⊗ gsuk−s) ⊗ gkuj−k)

=
∑

0≤k,s�m−1

(Δ ⊗ Id)(F j
k )(F k

s ⊗ 1)(us ⊗ gsuk−s ⊗ gkuj−k)

and

(Id⊗Δ)Δ(uj) = (Id⊗Δ)(
∑

0≤k≤m−1

F j
k (uk ⊗ gkuj−k))

=
∑

0≤k≤m−1

(Id⊗Δ)(F j
k )(uk ⊗ (

∑
0≤s≤m−1

F j−k
s (gkus ⊗ gk+suj−k−s))

=
∑

0≤k,s�m−1

(Id⊗Δ)(F j
s )(1 ⊗ F j−s

k−s )(us ⊗ gsuk−s ⊗ gkuj−k),

we have

(Δ ⊗ Id)(F j
k )(F k

s ⊗ 1) = (Id⊗Δ)(F j
s )(1 ⊗ F j−s

k−s ) (6.12)

for all 0 ≤ j, k, s ≤ m − 1.
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Begin with the case j = k = s = 0. Let F 0
0 =

∑
p,q kpqx

p ⊗ xq. Comparing equation

(Δ ⊗ Id)(F 0
0 )(F 0

0 ⊗ 1) = (
∑
p,q

kpqx
p ⊗ xp ⊗ xq)(

∑
p′,q′

kp′q′x
p′ ⊗ xq′ ⊗ 1)

= (
∑

p,q,p′,q′

kpqkp′q′x
p+p′ ⊗ xp+q′ ⊗ xq)

and equation

(Id⊗Δ)(F 0
0 )(1 ⊗ F 0

0 ) = (
∑
p,q

kpqx
p ⊗ xq ⊗ xq)(

∑
p′,q′

kp′q′1 ⊗ xp′ ⊗ xq′)

= (
∑

p,q,p′,q′

kpqkp′q′x
p ⊗ xq+p′ ⊗ xq+q′),

one can see that p = q = 0 by comparing the degrees of x in these two expressions. 
Then F 0

0 = 1 ⊗ 1 by applying (ε ⊗ Id)Δ to u0. Next, consider the case k = s = 0. Write 
F j

0 =
∑

p,q kpqx
p ⊗ xq. Similarly, we have F j

0 = xaj ⊗ 1 for some aj ∈ Z by the equation

(Δ ⊗ Id)(F j
0 )(F 0

0 ⊗ 1) = (Id⊗Δ)(F j
0 )(1 ⊗ F j

0 ).

Finally, write F j
k =

∑
p,q kpqx

p ⊗ xq and consider the case s = 0. Let F j
0 = xaj ⊗ 1 and 

F k
0 = xak ⊗ 1. The equation

(
∑
p,q

kpqx
p+ak ⊗ xp ⊗ xq) = (Δ ⊗ Id)(F j

k )(F k
0 ⊗ 1)

= (Id⊗Δ)(F j
0 )(1 ⊗ F j

k ) = (
∑
p,q

kpqx
aj ⊗ xp ⊗ xq)

shows that p = aj − ak, that is, F j
k = xcjk ⊗ βjk some cjk ∈ Z, βjk ∈ H00.

By steps 1 and 2, F j
k can be written as fjk ⊗ hjk with hjk monic after multiplying 

suitable scalar, where fjk, hjk ∈ k[x±1]. That is,

Δ(uj) =
m−1∑
k=0

fjkuk ⊗ hjkg
kuj−k,

where fjk, hjk ∈ k[x±1] with hjk monic. �
Since λj = γj for all j has been shown above, we can improve Claim 2 as

Claim 2 ′. We have ujg = γjx−2dguj for 0 ≤ j ≤ m − 1.

By Claim 2′, we have a unified formula in H: For all s ∈ Z,

ujg
s = γjsx−2sdgsuj . (6.13)
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Claim 4. We have φmi,j = 1 − γ−mi(mi+j)xmid = 1 − γ−m2
i (1+ji)xmid for 1 ≤ i ≤ θ and 

0 ≤ j ≤ m − 1.

Proof of Claim 4: By Claim 3, there are polynomials f0j , h0j , such that

Δ(u0) = u0 ⊗ u0 + f01u1 ⊗ h01gum−1 + · · · + f0,m−1um−1 ⊗ h0,m−1g
m−1u1.

Firstly, we will show φmi,0 = 1 − γ−m2
i xmid by considering the equations

Δ(ymi
u0)11⊗(1,1+2mi) = Δ(ξmi

xmidu0ymi
)11⊗(1,1+2mi) = Δ(φmi,0umi

)11⊗(1,1+2mi).

Direct computations show that

Δ(ymi
u0)11⊗(1,1+2mi)

= u0 ⊗ ymi
u0 + ymi

f0,(ei−1)mi
u(ei−1)mi

⊗ gmih0,(ei−1)mi
g(ei−1)miu−(ei−1)mi

= u0 ⊗ φmi,0umi
+ f0,(ei−1)mi

φmi,(ei−1)mi
u0 ⊗ xeimidh0,(ei−1)mi

u−(ei−1)mi
,

Δ(ξmi
xmidu0ymi

)11⊗(1,1+2mi) = ξmi
xmidu0 ⊗ xmidu0ymi

+ ξmi
xmidf0,(ei−1)mi

u(ei−1)mi
ymi

⊗ xmidh0,(ei−1)mi
g(ei−1)miu−(ei−1)mi

gmi

= xmidu0 ⊗ φmi,0umi
+ f0,(ei−1)mi

φmi,(ei−1)mi
u0 ⊗ γm2

i x(ei−1)midh0,(ei−1)mi
u−(ei−1)mi

.

Owing to Δ(ymi
u0)11⊗(1,1+2mi) = Δ(ξmi

xmidu0ymi
)11⊗(1,1+2mi),

(1 − xmid)u0 ⊗ φmi,0umi

+ f0,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ (xmid − γm2
i )x(ei−1)midh0,(ei−1)mi

u−(ei−1)mi

= 0.

Thus we can assume φmi,0 = c0(xmid−γm2
i )x(ei−1)midh0,(ei−1)mi

for some 0 �= c0 ∈ k. 
Then 1 − xmid = −c−1

0 f0,(ei−1)mi
φmi,(ei−1)mi

. Therefore,

Δ(ymi
u0)11⊗(1,1+2mi)

= u0 ⊗ φmi,0umi
− c0(1 − xmid)u0 ⊗

1
c0

xmidφmi,0

xmid − γm2
i

u−(ei−1)mi

= u0 ⊗ (1 − xmid

xmid − γm2
i

)φmi,0u−(ei−1)mi
+ xmidu0 ⊗

xmidφmi,0

xmid − γm2
i

u−(ei−1)mi

= u0 ⊗− γm2
i

xmid − γm2
i

φmi,0u−(ei−1)mi
+ xmidu0 ⊗

xmidφmi,0

xmid − γm2
i

u−(ei−1)mi
,

where φmi,0

xmid−γm2
i

is understood as c0x(ei−1)mih0,(ei−1)mi
. Note that Δ(ymi

u0)11⊗(1,1+2mi)

= Δ(φmi,0umi
)11⊗(1,1+2mi) = Δ(φmi,0)(fmi,0u0 ⊗umi

). From which, we get φmi,0 = 1 +
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cxmid for some c ∈ k. Then it is not hard to see that fmi,0 = 1, h0,(ei−1)mi
= x−(ei−1)mid

and c = −γ−m2
i . So φmi,0 = 1 − γ−m2

i xmid.
Secondly, we want to determine φmi,j for 0 ≤ j ≤ m −1. We note that we always have 

hj0 = fjj = 1 due to (ε ⊗ Id)Δ(uj) = uj . To determine φmi,j , we will prove the fact

fj0 = 1 (6.14)

for all 0 � j � m − 1 at the same time. We proceed by induction. We already know that 
f00 = h00 = fmi0 = 1. Assume that fj,0 = 1 now. We consider the case j+mi. Similarly, 
direct computations show that

Δ(ymi
uj)11⊗(1,1+2j+2mi)

= u0 ⊗ ymi
uj + ymi

fj,(ei−1)mi
u(ei−1)mi

⊗ gmihj,(ei−1)mi
g(ei−1)miumi+j

= u0 ⊗ φmi,jumi+j + fj,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ xeimidhj,(ei−1)mi
umi+j ,

Δ(ξmi
xmidujymi

)11⊗(1,1+2j+2mi)

= ξmi
xmidu0 ⊗ xmidujymi

+ ξmi
xmidfj,(ei−1)mi

u(ei−1)mi
ymi

⊗ xmidhj,(ei−1)mi
g(ei−1)miuj+mi

gmi

= xmidu0 ⊗ φmi,jumi+j + fj,(ei−1)mi
φmi,(ei−1)mi

u0

⊗ γmi(j+mi)x(ei−1)midhj,(ei−1)mi
uj+mi

.

By Δ(ymi
uj)11⊗(1,1+2j+2mi) = Δ(ξmi

xmidujymi
)11⊗(1,1+2j+2mi),

(1 − xmid)u0 ⊗ φmi,jumi+j

+ fj,(ei−1)mi
φmi,(ei−1)mi

u0 ⊗ (xmid − γmi(mi+j))x(ei−1)midhj,(ei−1)mi
uj+mi

= 0.

Thus we can assume φmi,j = cj(xmid − γmi(mi+j))x(ei−1)midhj,(ei−1)mi
for some 0 �=

cj ∈ k. Then 1 − xmid = −c−1
j fj,(ei−1)mi

φmi,(ei−1)mi
. Therefore

Δ(ymi
uj)11⊗(1,1+2j+2mi)

= u0 ⊗ φmi,jumi+j − cj(1 − xmid)u0 ⊗
1
cj

xmid

xmid − γmi(mi+j)φmi,jumi+j

= u0 ⊗
−γmi(mi+j)

xmid − γmi(mi+j)φmi,jumi+j + xmidu0 ⊗
xmid

xmid − γmi(mi+j)φmi,jumi+j .

Note that Δ(ymi
uj)11⊗(1,1+2j+2mi) = Δ(φmi,jumi+j)11⊗(1,1+2j+2mi) = Δ(φmi,j)×

(fmi+j,0u0 ⊗ hmi+j,0umi+j). Comparing the first components of

Δ(ymi
uj)11⊗(1,1+2j+2mi) and Δ(φmi,jumi+j)11⊗(1,1+2j+2mi),
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we get φmi,j = 1 − γ−mi(mi+j)xmid similarly. And it is not hard to see that fmi+j,0 = 1. 
Since here i is arbitrary and m1, . . . , mθ generate 0, 1, . . . , m − 1, we prove that fj,0 =
hj,0 = 1 at the same time for all 0 ≤ j ≤ m − 1. �
Claim 5. The coproduct of H is given by

Δ(uj) =
m−1∑
k=0

γk(j−k)uk ⊗ x−kdgkuj−k

for 0 ≤ j � m − 1.

Proof of Claim 5: By Claim 3, Δ(uj) =
∑m−1

k=0 fjkuk ⊗ hjkg
kuj−k. So, to show this 

claim, it is enough to determine the explicit form of every fjk and hjk. By (6.14) and 
the sentence before it, fj,0 = hj,0 = 1 for all 0 ≤ j ≤ m − 1. We will prove that 
fjk = γk(j−k) and hjk = x−kd for all 0 � j, k � m − 1 by induction. So it is enough to 
show that fj,k+mi

= γ(k+mi)(j−k−mi) and hj,k+mi
= x−(k+mi)d for all 1 ≤ i ≤ θ under 

the hypothesis of fjk = γk(j−k) and hjk = x−kd. In fact, for 1 ≤ i ≤ θ,

Δ(ymi
uj)(1,1+2k+2mi)⊗(1+2k+2mi,1+2j+2mi)

= ymi
fjkuk ⊗ gmihjkg

kuj−k + fj,k+mi
uk+mi

⊗ ymi
hj,k+mi

gk+miuj−k−mi

= fjkymi
uk ⊗ hjkg

k+miuj−k + fj,k+mi
uk+mi

⊗ γ(k+mi)mihj,k+mi
gk+miymi

uj−k−mi
,

Δ(ξmi
xmidujymi

)(1,1+2k+2mi)⊗(1+2k+2mi,1+2j+2mi)

= ξmi
xmidfjkukymi

⊗ xmidhjkg
kuj−kg

mi

+ ξmi
xmidfj,k+mi

uk+mi
⊗ xmidhj,k+mi

gk+miuj−k−mi
ymi

= fjkymi
uk ⊗ γ(j−k)mix−midhjkg

mi+kuj−k

+ xmidfj,k+mi
uk+mi

⊗ hj,k+mi
gk+miymi

uj−k−mi
.

Since they are equal,

fjkymi
uk ⊗ (1 − γ(j−k)mix−mid)hjkg

mi+kuj−k

= (xmid − γ(k+mi)mi)fj,k+mi
uk+mi

⊗ hj,k+mi
gk+miymi

uj−k−mi
.

Using induction and the expression of φmi,k, we have

γk(j−k)(1 − γ−mi(mi+k)xmid)uk+mi
⊗ (1 − γ(j−k)mix−mid)x−kdgmi+kuj−k

= γk(j−k)(1 − γ−mi(mi+k)xmid)uk+mi
⊗ (xmid − γ(j−k)mi)x−(k+mi)dgmi+kuj−k

= (xmid − γ(k+mi)mi)fj,k+mi
uk+mi

⊗ (1 − γ−(j−k)mixmid)hj,k+mi
gk+miuj−k.

This implies that hj,k+mi
= x−(k+mi)d and

fj,k+mi
= γk(j−k)−m2

i−mik+mij−mik = γ(k+mi)(j−k−mi). �
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Claim 6. For 0 � j, l � m − 1, the multiplication between uj and ul satisfies that

ujul = 1
m
xa

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2 [ji, ei − 2 − li]mi

yj+lg

for some a ∈ Z and where [−, −]mi
is defined as (3.4) and j + l is interpreted mod m.

Proof of Claim 6: We need to consider the relation between u2
0 and ujum−j for all 

1 � j � m − 1 at first. We remark that as before for any k ∈ Z we write uk := uk

where k is the remainder of k dividing by m. Thus uj = uj1m1+...+jθmθ
and um−j =

u(e1−j1)m1+...+(eθ−jθ)mθ
.

By definition, xmidφmi,smi
= −γ−m2

i (s+1)φmi,(ei−s−2)mi
for all s. Then

ye1m1
ye2m2

· · · yeθmθ
u2

0

= ξe1−j1
m1

ξe2−j2
m2

· · · ξeθ−jθ
mθ

x(e1−j1)m1d+...+(eθ−jθ)mθdyju0ym−ju0

=
θ∏

i=1
[ξei−ji

mi
x(ei−ji)midφmi,0 · · ·φmi,(ji−1)mi

]uj

θ∏
i=1

[φmi,0 · · ·φmi,(ei−ji−1)mi
]um−j

=
θ∏

i=1
[ξei−ji

mi
x(ei−ji)midφmi,0 · · ·φmi,(ji−1)mi

φmi,0 · · ·φmi,(ei−ji−1)mi
]ujum−j

=
θ∏

i=1
[(−1)ei−jiξei−ji

mi
γ−m2

i
(ei−ji)(ei−ji+1)

2 φmi,0 · · ·φmi,(ei−2)mi
φmi,(ji−1)mi

]ujum−j .

By φmi,0 · · ·φmi,(ei−2)mi
φmi,(ei−1)mi

= 1 − xeimid (see Lemma 3.6 (2)), we have

φm1,(e1−1)m1 · · ·φmθ,(eθ−1)mθ
ye1m1

· · · yeθθ u2
0

=
θ∏

i=1
[(−1)ei−jiξei−ji

mi
γ−m2

i
(ei−ji)(ei−ji+1)

2 (1 − xeimed)φmi,(ji−1)mi
]ujum−j .

Due to yeimi
= 1 − xeimid, we get a desired formula

θ∏
i=1

[φmi,(ei−1)mi
]u2

0 =
θ∏

i=1
[(−1)ei−jiξei−ji

mi
γ−m2

i
(ei−ji)(ei−ji+1)

2 φmi,(ji−1)mi
]ujum−j .

(6.15)

Since u2
0, ujum−j ∈ H22 = k[x±1]g, we may assume u2

0 = α0g, ujum−j = αjg for some 
α0, αj ∈ k[x±1] for all 1 � j � m − 1.

Then Equation (6.15) implies α0 = α
∏θ

i=1[φmi,0 · · ·φmi,(ei−2)mi
] for some α ∈ k[x±1]. 

We claim α is invertible. Indeed, by
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θ∏
i=1

[φmi,(ei−1)mi
]α0 =

θ∏
i=1

[(−1)ei−jiξei−ji
mi

γ−m2
i

(ei−ji)(ei−ji+1)
2 φmi,(ji−1)mi

]αj ,

we have

αj =
θ∏

i=1
[(−1)ji−eiξji−ei

mi
γm2

i
(ei−ji)(ei−ji+1)

2 ]ji − 1, ji − 1[mi
]α.

Then

H11 ·H11 +
m−1∑
j=1

H1,1+2j ·H1,1+2(m−j) ⊆ αH22.

By the strong grading of H,

H22 = H11 ·H11 +
m−1∑
j=1

H1,1+2j ·H1,1+2(m−j),

which shows that α must be invertible. Since ε(α0) = 1, ε(φmi,0 · · ·φmi,(ei−2)mi
) = ei and 

m = e1 · · · eθ, we may assume α0 = 1
mxa

∏θ
i=1[φmi,0 · · ·φmi,(ei−2)mi

] for some integer a. 
Thus

ujum−j = 1
m
xa

θ∏
i=1

[(−1)ji−eiξji−ei
mi

γm2
i

(ei−ji)(ei−ji+1)
2 ]ji − 1, ji − 1[mi

] g.

Now

yjylu
2
0

=
θ∏

i=1
ξlimi

xlimidyju0ylu0

=
θ∏

i=1
[ξlimi

xlimidφmi,0φmi,mi
· · ·φmi,(ji−1)mi

]uj

θ∏
i=1

[φmi,0φmi,mi
· · ·φmi,(li−1)mi

]ul

=
θ∏

i=1
[ξlimi

xlimidφmi,0 · · ·φmi,(ji−1)mi
φmi,0 · · ·φmi,(li−1)mi

]ujul

=
θ∏

i=1
[(−1)liξlimi

γ−m2
i

li(li+1)
2 φmi,0 · · ·φmi,(ji−1)mi

φmi,(ei−2)mi
· · ·φmi,(ei−1−li)mi

]ujul

For each 1 ≤ i ≤ θ, we find that
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φmi,0 · · ·φmi,(ji−1)mi
φmi,(ei−2)mi

· · ·φmi,(ei−1−li)mi

=

⎧⎪⎪⎨⎪⎪⎩
φmi,0 · · ·φmi,(ji−1)mi

φmi,(ei−1−li)mi
· · ·φmi,(ei−2)mi

, if ji + li ≤ ei − 2
φmi,0 · · ·φmi,(ei−2)mi

, if ji + li = ei − 1
φmi,0 · · ·φmi,(ji−1)mi

φmi,(ei−1−li)mi
· · ·φmi,(ei−1)mi

, if ji + li ≥ ei.

Using the same method to compute ujum−j given above and the notations introduced 
in equations (3.3) and (3.4), we have a unified expression:

ujul = 1
m
xa

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2 [ji, ei − 2 − li]mi

yj+lg

= 1
m
xa

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2 ] − 1 − li, ji − 1[mi

yj+lg

for all 0 ≤ j, l ≤ m − 1. �
Claim 7. We have ξ2

mi
= γmi , a = −2+

∑θ
i=1(ei−1)mi

2 d and

S(uj) = xbgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]uj

for 0 � j � m − 1 and b = (1 −m)d −
∑θ

i=1(ei−1)mi

2 d.

Proof of Claim 7: By Lemma 2.9 (3), S(Hij) = H−j,−i and thus S(u0) = hgm−1u0 for 
some h ∈ k[x±1]. Combining

S(ymi
u0) = S(u0)S(ymi

) = hgm−1u0(−ymi
g−mi) = −ξ−1

mi
x−midhgm−1ymi

u0g
−mi

= −ξ−1
mi

γ−m2
i xmidhgm−1−miymi

u0 = −ξ−1
mi

γ−m2
i xmidhgm−1−miφmi,0umi

with

S(ymi
u0) = S(φmi,0umi

) = S(umi
)S(φmi,0) = φmi,0S(umi

),

we get S(umi
) = −ξ−1

mi
γ−m2

i xmidhgm−1−miumi
. The computation above tells us that we 

can prove that

S(uj) = hgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]uj

by induction. In fact, in order to prove above formula for the antipode it is enough to 
show that it is still valid for j +mi for all 1 ≤ i ≤ θ under assumption that it is true for 
j. By combining
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S(ymi
uj)

= S(uj)S(ymi
)

= hgm−1
θ∏

s=1
[(−1)jsξ−js

ms
γ−m2

s
js(js+1)

2 xjsmsdg−jsms ]uj(−ymi
g−mi)

= −ξ−1
mi

x−midhgm−1
θ∏

s=1
[(−1)jsξ−js

ms
γ−m2

s
js(js+1)

2 xjsmsdg−jsms ]ymi
ujg

−mi

= −ξ−1
mi

x−midhgm−1
θ∏

s=1
[(−1)jsξ−js

ms
γ−m2

s
js(js+1)

2 xjsmsdg−jsms ]ymi
γ−m2

i jix2midg−miuj

= −ξ−1
mi

xmidhgm−1
θ∏

s=1
[(−1)jsξ−js

ms
γ−m2

s
js(js+1)

2 xjsmsdg−jsms ]γ−m2
i (ji+1)g−miymi

uj

= −ξ−1
mi

xmidhgm−1
θ∏

s=1
[(−1)jsξ−js

ms
γ−m2

s
js(js+1)

2 xjsmsdg−jsms ]γ−m2
i (ji+1)g−miφmi,juj+mi

with

S(ymi
uj) = S(φmi,juj+mi

) = S(uj+mi
)S(φmi,j) = φmi,jS(uj+mi

),

we find that

S(uj+mi
)

= hgm−1
θ∏

s=1
[(−1)(j+mi)sξ−(j+mi)s

ms
γ−m2

s
(j+mi)s((j+mi)s+1)

2 x(j+mi)smsdg−(j+mi)sms ]uj .

In order to determine the relationship between ξ and γ, we consider the equality 
(Id ∗S)(umi

) = 0. By computation,

(Id ∗S)(umi
)

=
m−1∑
j=0

γj(mi−j)ujS(x−jdgjumi−j)

=
m−1∑
j=0

γj(mi−j)ujhg
m−1

θ∏
s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s

(mi−j)s((mi−j)s+1)
2

x(mi−j)smsdg−(mi−j)sms ]umi−jg
−jxjd

=
m−1∑
j=0

γ−j(mi−j)hujg
m−1

θ∏
s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s

(mi−j)s((mi−j)s+1)
2

x(mi−j)smsdg−(mi−j)sms ]γ(mi−j)jxjdg−jumi−j
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=
m−1∑
j=0

hujg
m−1

θ∏
s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s

(mi−j)s((mi−j)s+1)
2 ]

xmidg−miumi−j

=
m−1∑
j=0

θ∏
s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s

(mi−j)s((mi−j)s+1)
2 ]

hx−midγj(−1−mi)x−2(m−1−mi)dgm−1−miujumi−j

=
m−1∑
j=0

θ∏
s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s

(mi−j)s((mi−j)s+1)
2 ]

γj(−1−mi)x(−2m+2+mi)dhgm−1−miujumi−j

=
m−1∑
j=0

θ∏
s=1

[(−1)(mi−j)sξ−(mi−j)s
ms

γ−m2
s

(mi−j)s((mi−j)s+1)
2 ]γj(−1−mi)x(−2m+2+mi)dhgm−1−mi

1
m
xa

θ∏
s=1

(−1)(mi−j)iξ−(mi−j)s
ms

γm2
s

(mi−j)s((mi−j)s+1)
2 [js, es − 2 − (mi − j)s]ms

ymi
g

= 1
m
γmix(−2m+2+mi)d+ahgm−miymi

m−1∑
j=0

θ∏
s=1

[ξ−2(mi−j)s
ms

γj(−1−mi)[js, es − 2 − (mi − j)s]ms
]

= 1
m
γmiξ−2

mi
x(−2m+2+mi)d+ahgm−miymi

θ∏
s=1,s �=i

[
es−1∑
js=0

ξ2js
ms

γ−jsms ]js − 1, js − 1[ms
]
ei−1∑
ji=0

ξ2ji
mi

γ−jimi(1+mi)]ji − 2, ji − 1[mi

where Equation (6.13) is used. By Lemma 3.7 (1), each 
∑es−1

js=0 ξ
2js
ms

γ−jsms ]js − 1, js −
1[ms

�= 0. Thus

(Id ∗S)(ui) = 0 ⇔
ei−1∑
ji=0

ξ2ji
mi

γ−jimi(1+mi)]ji − 2, ji − 1[mi
= 0.

This forces ξ2
mi

= γmi by Lemma 3.7 (2).
Next, we will determine the expression of h and a through considering the equations

(S ∗ Id)(u0) = (Id ∗S)(u0) = 1.

Indeed,
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(S ∗ Id)(u0)

=
m−1∑
j=0

S(γ−j2uj)x−jdgju−j

=
m−1∑
j=0

γ−j2hgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]ujx
−jdgju−j

= hgm−1
m−1∑
j=0

θ∏
i=1

[(−1)jiξ−ji
mi

γ−m2
i

ji(ji+1)
2 ]uju−j

= hgm−1
m−1∑
j=0

θ∏
i=1

[(−1)jiξ−ji
mi

γ−m2
i

ji(ji+1)
2 ] 1

m
xa

θ∏
i=1

[(−1)(−j)iξ−(−j)i
mi

γm2
i

(−j)i((−j)i+1)
2 ]ji − l, ji − 1[mi

]g

= 1
m
xahgm

m−1∑
j=0

θ∏
i=1

[(−1)eiξ−ei
mi

γ−m2
i (

ei(ei+1)
2 −ji)]ji − l, ji − 1[mi

]

= 1
m
xahgm(−1)

∑θ
i=1(mi−1)(ei+1)

θ∏
i=1

ei−1∑
ji=0

γ−m2
i ji ]ji − l, ji − 1[mi

= 1
m
xahgm(−1)

∑θ
i=1(mi−1)(ei+1)

θ∏
i=1

eix
(ei−1)mid ( by Lemma 3.6 (3))

= (−1)
∑θ

i=1(mi−1)(ei+1)xa+
∑θ

i=1(ei−1)mid+mdh,

(Id ∗S)(u0)

=
m−1∑
j=0

γ−j2ujS(x−jdgju−j)

=
m−1∑
j=0

γ−j2ujS(u−j)g−jxjd

=
m−1∑
j=0

γ−j2ujhg
m−1

θ∏
i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)
2 x(−j)imidg−(−j)imi ]u−jg

−jxjd

=
m−1∑
j=0

uj

θ∏
i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)
2 ]hgm−1u−j

= x(2−2m)dhgm−1
m−1∑

γ−j
θ∏

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)
2 ]uju−j
j=0 i=1
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=
m−1∑
j=0

uj

θ∏
i=1

[(−1)(−j)iξ−(−j)i
mi

γ−m2
i

(−j)i((−j)i+1)
2 ]hgm−1u−j

= x(2−2m)dhgm−1
m−1∑
j=0

γ−j
θ∏

i=1
[(−1)(−j)iξ−(−j)i

mi
γ−m2

i
(−j)i((−j)i+1)

2 ]

1
m
xa

θ∏
i=1

[(−1)(−j)iξ−(−j)i
mi

γm2
i

(−j)i((−j)i+1)
2 ]ji − l, ji − 1[mi

]g

= 1
m
x(2−m)d+ah

m−1∑
j=0

γ−j
θ∏

i=1
ξ−2(−j)i
mi

]ji − l, ji − 1[mi
]

= x(2−m)d+ah ( by Lemma 3.6 (1)).

So, (S∗Id)(u0) = (Id ∗S)(u0) = 1 implies h = x−a−
∑θ

i=1(ei−1)mid−md(−1)
∑θ

i=1(mi−1)(ei−1)

= x(2−m)d+a. Thus

a = −d−
∑θ

i=1(ei − 1)mid

2 and 2|
θ∑

i=1
(mi − 1)(ei − 1), 2|

θ∑
i=1

(ei − 1)mid.

And h = x(1−m)d−
∑θ

i=1(ei−1)mid

2 . Therefore, for 0 � j � m − 1,

S(uj) = xbgm−1
θ∏

i=1
[(−1)jiξ−ji

mi
γ−m2

i
ji(ji+1)

2 xjimidg−jimi ]uj

for b = (1 −m)d −
∑θ

i=1(ei−1)mi

2 d. �
From Claim 7, we know that a = −d −

∑θ
i=1(ei−1)mid

2 and we can improve Claim 6 as 
the following form:

Claim 6 ′. For 0 � j, l � m − 1, the multiplication between uj and ul satisfies that

ujul = 1
m
x−d−

∑θ
i=1(ei−1)mid

2

θ∏
i=1

(−1)liξ−li
mi

γm2
i

li(li+1)
2 [ji, ei − 2 − li]mi

yj+lg

where j + l is interpreted mod m.

We can prove Proposition 6.11 now. The statement (1) is gotten from Claim 1 and the 
proof of Claim 7. For (2), by Claims 1, 2′, 3, 4, 5, 6′ and 7, we have a natural surjective 
Hopf homomorphism

f : D(m, d, γ) → H, x �→ x, ymi
�→ ymi

, g �→ g, uj �→ uj

for 1 ≤ i ≤ θ and 0 ≤ j ≤ m − 1. It is not hard to see that f |Dst
: Dst → Hst is an 

isomorphism of k[x±1]-modules for 0 � s, t � 2m − 1. So f is an isomorphism.
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7. Main results and consequences

We conclude this paper by giving the classification of prime Hopf algebras of GK-
dimension one satisfying (Hyp1), (Hyp2) and some consequences.

7.1. Main result

The main result of this paper can be stated as follows.

Theorem 7.1. Let H be a prime Hopf algebra of GK-dimension one which satisfies (Hyp1) 
and (Hyp2). Then H is isomorphic to one of Hopf algebras constructed in Section 4.

Proof. Let π : H → k be the canonical 1-dimensional representation of H which exits by 
(Hyp1). If PI-deg(H) = 1, then it is easy to see that H is commutative and thus H ∼= k[x]
or k[x±1]. So, we assume that n := PI-deg(H) > 1 in the following analysis. If min(π) =
1, then H is isomorphic to either a T (n, 0, ξ) or kD by Proposition 5.4. If ord(π) =
min(π), then H is isomorphic to either a T (n, 1, ξ) or a B(n, ω, γ) by Proposition 5.7. 
The last case is n = ord(π) > m := min(π) > 1. In such case, using Corollary 6.3, H is 
either additive or multiplicative. If, moreover, H is additive then H is isomorphic to a 
T (m, t, ξ) by Proposition 6.9 for t = n

m and if H is multiplicative then it is isomorphic 
to a D(m, d, γ) by Proposition 6.11. �
Remark 7.2. (1) All prime Hopf algebras of GK-dimension one which are regular are 
special cases of their fraction versions. For example, the infinite dimensional Taft algebra 
T (n, t, ξ) is isomorphic to T (n, t, ξ) where n = {1} is a fraction of n of length 1 (that is, 
θ = 1 by previous notation).

(2) By Proposition 4.13, we know that D(m, d, γ) is not a pointed Hopf algebra if 
m �= 1. Thus we get more examples of non-pointed Hopf algebras of GK-dimension one.

(3) In [12, Question 7.3C.], the authors asked that what other Hopf algebras can be 
included if the regularity hypothesis is dropped. So our result gives a partial answer to 
this question.

7.2. Question (1.1)

As an application, we can give the answer to question (1.1) now. We give the following 
definition at first.

Definition 7.3. We call an irreducible algebraic curve C a fraction line if there is a 
natural number m and a fraction m1, . . . , mθ of m such that it’s coordinate algebra k[C]
is isomorphic to k[ym1 , . . . , ymθ

]/(yeimi
− y

ej
mj , 1 ≤ i �= j ≤ θ).

The answer to question (1.1) is given as follows.



G. Liu / Journal of Algebra 547 (2020) 579–667 663
Proposition 7.4. Assume C is an irreducible algebraic curve over k which can be realized 
as a Hopf algebra in Zn

Zn
YD where n is as small as possible. Then C is either an algebraic 

group or a fraction line.

Proof. If n = 1, then k[C] is a Hopf algebra and thus C is an algebraic group of dimension 
one. Now assume n > 1. By assumption, Zn acts on k[C] faithfully. Using Lemma 2.11
and the argument developed in the proof of Corollary 2.14, the Hopf algebra k[C]#kZn

(the Radford’s biproduct) is a prime Hopf algebra of GK-dimension one with PI-degree 
n. It is known that kZn has a 1-dimensional representation of order n:

kZn = k〈g|gn = 1〉 −→ k, g �→ ξ

for a primitive nth root of unity ξ. Through the canonical projection k[C]#kZn → kZn

we get a 1-dimensional representation π of H := k[C]#kZn of order n =PI-deg(H). 
Therefore, H satisfies (Hyp1). Also, by the definition of the Radford’s biproduct we 
know that the right invariant component Hr

0 of π is exactly the domain k[C]. Therefore, 
H satisfies (Hyp2) too. The classification result, that is Theorem 7.1, can be applied 
now. One can check the proposition case by case. �
7.3. The hypothesis

We point out that our final aim is to classify all prime Hopf algebras of GK-dimension 
one. So, as a natural step, we want to consider the question about the Hypothesis (Hyp1) 
and (Hyp2) listed in the introduction.

• The Hypothesis (Hyp1). Let H be a prime Hopf algebra of GK-dimension one, does 
H satisfy (Hyp1) automatically? It is a pity that this is not true as we have the following 
counterexample.

Example 7.5. Let n be a natural number. As an algebra, Λ(n) is generated by X1, . . . , Xn

and g subject to the following relations:

X2
i = X2

j , XiXj = −XjXi, g2 = 1, −gXi = Xig

for all 1 ≤ i �= j ≤ n. The coproduct, counit and the antipode are given by

Δ(Xi) = 1 ⊗Xi + Xi ⊗ g, Δ(g) = g ⊗ g,

ε(Xi) = 0, ε(g) = 1

S(Xi) = −Xig, S(g) = g−1

for all 1 ≤ i ≤ n. By the following lemma, we know that Λ(n) is a prime Hopf algebra of 
GK-dimension one when n is odd. Moreover, if n = 2m + 1, then the PI-degree of Λ(n)
is 2m+1.
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Now let

π : Λ(n) → k

be a 1-dimensional representation of Λ(n). Since g2 = 1, π(g) = 1 or π(g) = −1. From 
the relation −gXi = Xig, we get π(Xi) = 0 for all 1 ≤ i ≤ n. This implies that 
ord(π) = 1 or ord(π) = 2. In general, we find that PI-deg(Λ(n)) > ord(π) and the 
difference PI-deg(H) − ord(π) can be very large.

Lemma 7.6. Keep the notations and operations used in above example. Then

(1) The algebra Λ(n) is a Hopf algebra of GK-dimension one.
(2) The algebra Λ(n) is prime if and only if n is odd.
(3) If n = 2m + 1 is an odd, then PI-deg (Λ(n)) = 2m+1.

Proof. (1) is clear.
(2) If n is even, then we consider the element g

∏n
i=1 Xi. Direct computation shows 

that this element belongs to the center C(Λ(n)). Also we know that Xn
1 lives in the 

center too. Thus

Xn
1 − ag

n∏
i=1

Xi ∈ C(Λ(n))

for any a ∈ k. Now, (Xn
1 −ag

∏n
i=1 Xi)(Xn

1 +ag
∏n

i=1 Xi) = X2n
1 −a2(−1)

n(n+1)
2

∏n
i=1 X

2
i

= X2n
1 −a2(−1)

n(n+1)
2 X2n

1 . Taking a such that a2(−1)
n(n+1)

2 = 1, we see that the central 
element Xn

1 − ag
∏n

i=1 Xi has nontrivial zero divisor and thus Λ(n) is not prime.
So the left task is to show that Λ(n) is prime when n is odd. To prove this, we give the 

following two facts about the algebra Λ(n): 1) The center of Λ(n) is k[X2
1 ] (= k[X2

i ] for 
1 ≤ i ≤ n); 2) Λ(n) is a free module over its center with basis {gl

∏n
i=1 X

ji
i |0 ≤ l ≤ 1, 0 ≤

ji ≤ 1}. Both of these two facts can be gotten through the following observation easily: 
As an algebra, one has Λ(n) ∼= U(n)#kZ2 where U(n) = U(n)/(X2

i −X2
j |1 ≤ i �= j ≤ n)

and U(n) is the enveloping algebra of the commutative Lie superalgebra of dimension n
with degree one basis {Xi|1 ≤ i ≤ n}.

From above two facts about Λ(n), every monomial generated by g and Xi (1 ≤ i ≤ n) 
is not a zero divisor and in fact regular. Now to show the result, assume that I, J be two 
nontrivial ideals of Λ(n) satisfying IJ = 0. We will show that I contains a monomial 
and thus get a contradiction. For this, through setting deg(g) = 0 and deg(Xi) = 1
we find that Λ(n) is a graded algebra. Let a and b be two nonzero element of I and J
respectively. Since Λ(n) is Z-graded which is an order group, we can assume that both 
a and b are homogeneous elements through ab = 0. In particular, we can take a to be a 
nonzero homogeneous element. For simple, we assume that a has degree one (for other 
degrees one can prove the result using the same way as degree one). So,
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a =
n∑

i=1
aiXi +

n∑
i=1

a′igXi,

for ai, a′i ∈ k. Now a′ := X1a + aX1 = 2a1X
2
1 − 2 

∑
i�=1 a

′
igX1Xi. For any i �= 1, 

we have a′′ := Xia
′ + a′Xi = 4a1X

2
1Xi − 4a′igX1X

2
i and continue this process a′′′ :=

Xja
′′ + a′′Xj = −8a′igX1X

2
i Xj ∈ I for any j �= 1, i (such j exists unless n = 1. But in 

case n = 1, Λ(n) is clear prime). This implies that we have a monomial in I if a′i �= 0 for 
i �= 1. We next consider the case a′i ≡ 0 for all i �= 1. Looking back the element a′′, we 
can assume that a1 = 0 too. Repeat above precess through substituting X1 by other Xj

and we can assume all aj = 0 and a′t = 0 with t �= j. That’s impossible since 0 �= a and 
in one word we must have a monomial in I.

(3) By the proof of the part (2), we know that Λ(n) is a free module over its center 
with basis {gl

∏n
i=1 X

ji
i |0 ≤ l ≤ 1, 0 ≤ ji ≤ 1} and so the rank of Λ(n) over its center is 

2n+1 = 22(m+1). Therefore, PI-deg(Λ(n)) =
√

22(m+1) = 2m+1. �
• The Hypothesis (Hyp2). We next want to consider the question about the second 

hypothesis (Hyp2): Let H be a prime Hopf algebra of GK-dimension one, does H has a 
one-dimensional representation π : H → k such its invariant components are domains? 
This is also not true in general. In fact, by Example 7.5, we find that the left invariant 
component must contains the subalgebra generated by Xi (1 ≤ i ≤ n) for any one-
dimensional representation and thus it is not a domain (if it is, it must be commutative 
by the proof of Lemma 2.8).

• Relation between (Hyp1) and (Hyp2). In the introduction, (Hyp2) is built on (Hyp1), 
i.e., they used the same one-dimensional representation. However, it is clear we can 
consider (Hyp1) and (Hyp2) individually, that is, for each hypothesis we consider a 
one-dimensional representation which may be different. Until now, we still don’t know 
the exactly relationship between (Hyp1) and (Hyp2) for a prime Hopf algebra of GK-
dimension one. So, we formulate the following question for further considerations.

Question 7.7.

(1) Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp1), does H
satisfy (Hyp2) automatically?

(2) Let H be a prime Hopf algebra of GK-dimension one satisfying (Hyp2), does H
satisfy (Hyp1) automatically?

7.4. A conjecture

From all examples stated in this paper, it seems that prime Hopf algebras of GK-
dimension one exist widely. However, we still can find some common points about them. 
Among of these points, we formulate a conjecture on the structure of prime Hopf algebras 
of GK-dimension in the following way.
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Conjecture 7.8. Let H be a prime Hopf of GK-dimension one. Then we have an exact 
sequence of Hopf algebras:

k −→ alg.gp −→ H −→ f.d. Hopf −→ k, (7.1)

where “alg.gp” denotes the coordinate algebra of a connected algebraic group of dimension 
one and “f.d. Hopf” means a finite-dimensional Hopf algebra.

It is not hard to see that all examples given in this paper always satisfy above con-
jecture.

Remark 7.9. Recently, professor Ken Brown showed the author one of his slides in which 
he introduced the definition so called commutative-by-finite as follows: A Hopf algebra is 
commutative-by-finite if it is a finite (left or right) module over a commutative normal 
Hopf subalgebra. See [9] for more details. So our Conjecture 7.8 just says that every prime 
Hopf algebra of GK-dimension one should be a commutative-by-finite Hopf algebra.
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