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Abstract. Let H be a finite-dimensional Hopf algebra and assume that both

H and H∗ are semisimple. The main result of this paper is to show that

representation dimension is an invariant under cleft extensions of H, that is,

rep.dim(A) = rep.dim(A#σH). Some of applications of this equality are also

given.

1. Introduction

Auslander introduced the concept of representation dimension of a finite-dimensi-
onal algebra in [2], which was a trial to give a reasonable way of measuring homo-
logically how far a finite-dimensional algebra is from being of finite representation
type. Recently, the interest in the representation dimension has revived, and many
interesting connections have been established with different problems in represen-
tation theory, as well as with other areas. For details see [9, 10, 11, 12, 15, 16, 17].
It was already proved by Auslander in [2] that a finite-dimensional algebra A is
representation-finite if and only if its representation dimension rep.dim A ≤ 2.

But in general, it is quite hard to compute the representation dimension or even
to control it. Also, we don’t know how to determine when two algebras have the
same representation dimensions. The main result of this paper is the following
conclusion:

Theorem 1.1. Assume that H is a semisimple cosemisimple finite-dimensional
Hopf algebra, then rep.dim(A) = rep.dim(A#σH).

Here we denote the representation dimension of a finite-dimension algebra A

by rep.dim(A). This result indeed implies that the representation dimension is an
invariant under cleft extensions for a semisimple cosemisimple finite-dimensional
Hopf algebra. As a byproduct of this theorem, we shall show that for a finite group
G over a field k with characteristic p, if it has only one Sylow p-subgroup P , then
rep.dim(kG) =rep.dim(kP ).

All preliminary notions and results that are relevant for our purpose are summa-
rized in Section 2. And, the proof of Theorem 1.1 and three applications are given
in Section 3.

2. Preliminaries

Throughout of the this paper, k denotes a field of any characteristic and all
algebras are finite-dimensional k-algebras. All modules are finitely generated left
modules. We freely use the results, notations, and conventions of [14] for Hopf
algebras.
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For a finite-dimensional algebra A, we denote by modA the category of finitely
generated A-modules. We denote by gl.dimA the global dimension of A and by
D := Homk(−, k) the standard duality between modA and modAop. If C is a
subcategory of modA, we sometimes write C ∈ C to express that C is an object of
C. We denote by addC the full subcategory having as objects the direct sums of
indecomposable summands of objects in C and, if M is a module, we abbreviate
add{M} as addM . Let C ∈ C, a map f : C → X is called a right C-approximation

of X, if HomA(−, C)
(−,f)−→ HomA(−,M) → 0 is exact in C, and, f is called a right

minimal C-approximation of M , if it is also right minimal, i.e., h ∈ EndA M is an
automorphism whenever fh = f (see [5, 7]).

We denote by GenM the full subcategory having as objects those modules X such
that there is an epimorphism M0 → X with M0 ∈ addM . Recall an A-module M is
called a generator (or a cogenerator) of modA if A ∈ addM (or D(Aop) ∈ addM).

The notion of representation dimension of an algebra was introduced in [2] by
Auslander, and we refer the reader to [2] for the original definition. We shall rather
use the following characterization, which also proved in [2].

Definition 2.1.The representation dimension rep.dimA of A is defined as
inf{gl.dimEnd(M) | M is a generator-cogenerator for mod A} if A is non-semisimple;
and rep.dimA = 1 if A is semisimple.

The following lemma is well-known in [4] for the calculation of global dimensions
for endomorphism algebras of modules which are generator-cogenerators.

Lemma 2.2. Let M be a generator-cogenerator of modA and n ≥ 3 be a natural
number, gl.dim(EndA M) ≤ n if and only if for each indecomposable A-modules X,
there is an exact sequence

0 → Mn−2 → · · · → M0 → X → 0 (2.1)

with Mi ∈ addM for i = 0, 1, · · · , n− 2, such that 0 → HomA(M, Mn−2) → · · · →
HomA(M, M0) → HomA(M, X) → 0 is exact. Such an exact sequence (2.1) is
called an (n− 2)-addM -resolution of X.

In this paper, we always assume that A#σH is an associative algebra. We
also need the following result, which indeed implies that every A#σH-module is
relatively projective over A.

Lemma 2.3. ([13, Lemma 2.1]) Let H be a semisimple Hopf algebra, A a
twisted H-module algebra and σ ∈ HomK(H ⊗ H, A) a 2-cocycle. Then for any
X ∈ mod A#σH, X is isomorphic to a direct summand of (A#σH) ⊗A X in
mod A#σH, denoted it by X | (A#σH)⊗A X for short.

3. Proof of Theorem 1.1 and applications

Before the proof of main conclusion, we need the following conclusions.
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Lemma 3.1. Let X, M ∈ mod A and X = X1 ⊕ X2 ∈ GenM . If X has an
n-addM -resolution: 0 → Mn

fn−→ Mn−1 → · · · → M0
f0−→ X → 0, then X1 has an

n-addM -resolution: 0 → M ′
n

f ′n−→ M ′
n−1 → · · · → M ′

0

f ′0−→ X1 → 0 .

Proof. We claim that if there exists an exact sequence: 0 → K0 → M0
f0−→ X → 0

in modA with f0 a right addM -approximation of X, then there exists an epi-
morphism f ′0 : M ′

0 → X1 in mod A, which is a right addM -approximation of
X1 and K ′

0(= Ker f ′) | K0. Because X1 ∈ GenM , there exists an epimorphism
f ′0 : M ′

0 → X1 in modA which is a minimal right addM -approximation of X1 by
([7], Proposition 4.2). So we have the following commutative diagram with exact
rows:

0 // K ′
0

s

²²

// M ′
0

α

²²

f ′0 // X1

i

²²

// 0

0 // K0

t

²²

// M0

β

²²

f0 // X

p

²²

// 0

0 // K ′
0

// M ′
0

f ′0 // X1
// 0

where pi = 1X1 . The minimality of f ′0 implies that βα is an isomorphism and hence
ts is also an isomorphism, which implies that s is a split monomorphism. The claim
is proved. Then by using induction on n, we get the assertion easily. ¤

Lemma 3.2. If there exists an exact sequence in mod A, 0 → N
f−→ E

g−→
M → 0 such that 0 → HomA(V, N)

f∗−→ HomA(V, E)
g∗−→ HomA(V, M) → 0 is ex-

act, then the sequence 0 → HomMn(A)(FV, FN)
(id⊗Af)∗−→ HomMn(A)(FV, FE)

(id⊗Ag)∗−→
HomMn(A)(FV, FM) → 0 is also exact, where F = Mn(A)⊗A −.

Proof. The result seems known and we give a short proof for safety. Notice that
FV ∼= V (n2) as right A-modules, and so we have an exact sequence 0 → HomA(FV, N)
f∗−→ HomA(FV, E)

g∗−→ HomA(FV, M) → 0. Since HomMn(A)(FV, F−) ∼= HomA(V, F−)
∼= HomA(FV,−), we have the following commutative diagram:

0 → HomMn(A)(FV, FN)

∼=
²²

(id⊗Af)∗ // HomMn(A)(FV, FE)

∼=
²²

(id⊗Ag)∗// HomMn(A)(FV, FM)

∼=
²²

0 → HomA(FV, N)
f∗ // HomA(FV, E)

g∗ // HomA(FV, M) → 0.

The exactness of lower row implies that the top row is exact. Thus we complete
our proof. ¤

As a consequence of Lemma 3.2, we get the following result which is crucial in
the proof of Theorem 1.1.

Proposition 3.3. For a finite-dimensional semisimple Hopf algebra H, a twisted
H-module algebra A, and a 2-cocycle σ ∈ Homk(H ⊗ H, A). Suppose that there

exists an exact sequence in mod A, 0 → N
f−→ E

g−→ M → 0 such that 0 →



4 JUXIANG SUN AND GONGXIANG LIU

HomA(V, N)
f∗→ HomA(V, E)

g∗→ HomA(V, M) → 0 is exact, then we have the
following exact sequence

0 → HomA#σH(GV, GN)
f ′−→ HomA#σH(GV, GE)

g′−→ HomA#σH(GV, GM) → 0

where G = A#σH ⊗A −, f ′ = (Gf)∗ and g′ = (Gg)∗ .

Proof. Since A#σH is a free right A-module, there exists an exact sequence in
modA#σH:

0 // A#σH ⊗A N
id⊗Af // A#σH ⊗A E

id⊗Ag // A#σH ⊗A M // 0 .

We need only to show that g′ = HomA#σH(A#σH ⊗A V, id ⊗ g) is an epimor-
phism. Indeed, for any nonzero homorphism ϕ ∈ HomA#σH(G(V ), G(M)), then
id ⊗ ϕ ∈ HomA#σH#H∗(A#σH#H∗ ⊗A#σH G(V ), A#σH#H∗ ⊗A#σH G(M)) ∼=
HomMn(A)(Mn(A)⊗AV, Mn(A)⊗AM) by noting A#σH#H∗ ∼= Mn(A) (see Section
9.4 in [14]). By Lemma 3.2, there exists a φ ∈ HomA#σH#H∗(A#σH#H∗ ⊗A#σH

G(V ), A#σH#H∗ ⊗A#σH G(E)), such that id⊗ ϕ = (id⊗A#σH#H∗ (id⊗ g))φ.
Let B = A#σH for short. Of course, now we have

id⊗B#H∗#H id⊗ ϕ = (id⊗B#H∗#H id⊗B#H∗ (id⊗ g))(id⊗B#H∗#H φ) (?).

Since B#H∗#H ∼= B ⊗ (H∗#H) (see also Section 9.4 in [14]), B|B#H∗#H as a
B-B-bimodule. Thus,

B#σH∗#H ⊗B G(V ) = G(V )⊕ V ′,

B#σH∗#H ⊗B G(E) = G(E)⊕ E′,

B#σH∗#H ⊗B G(M) = G(M)⊕M ′,

for some B-modules V ′, E′,M ′. Hence

id⊗B#H∗#H id⊗ ϕ =

(
ϕ 0
0 ϕ′

)
, id⊗B#H∗#H φ =

(
φ1 ∗
∗ φ2

)
,

id⊗B#H∗#H id⊗B#H∗ (id⊗ g) =

(
id⊗ g 0

0 ∗

)
,

where ϕ′ ∈ HomB(V ′,M ′), φ1 ∈ HomB(G(V ), G(E)), and φ2 ∈ HomB(V ′, E′).
Thus, by the equality (?) we have that ϕ = (id⊗g)φ1, and we obtain our claim. ¤

Proof of Theorem 1.1. By ([13], Proposition 2.2), the assertion holds provided
either rep.dim(A) or rep.dim(A#σH) is at most two.

Now suppose that rep.dim(A)= n(> 2) and M is a generator-cogenerator for
mod A such that gl.dim(EndA M) = n. Also, for short, we take B = A#σH. By
A ⊕ D(Aop) ∈ addM , we have B ∼= B ⊗A A ∈ add(B ⊗A M), and D(Bop) ∼=
B ⊗A D(Aop) ∈ add(B ⊗A M). So B ⊗A M is a generator-cogenerator for mod
B. Let X ∈ mod B be any indecomposable module. Then by Lemma 2.2, as an
A-module X has an (n− 2)- addM -resolution:

0 → Mn−2
fn−2−→ Mn−3 → · · · → M0

f0−→ X → 0. (3.1)
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By Proposition 3.3, the following sequence is an (n− 2)- add(B ⊗A M)-resolution
for B ⊗A X:

0 → B ⊗A Mn−2
id⊗Afn−2−→ · · · → B ⊗A M0

id⊗Af0−→ B ⊗A X → 0. (3.2)

By Lemma 2.3 and Lemma 3.1, X has an (n−2)-add(B⊗A M)-resolution. Thus
by Lemma 2.2, we have that rep.dim B ≤ gl.dimEndB(B ⊗ M) ≤ rep.dim(A).
From the above steps, we have that rep.dim( B#H∗) ≤ rep.dimB. By Blattner-
Montgomery Duality Theorem (see Section 9.4 in [14]), B#H∗ = (A#σH)#H∗ ∼=
Mn(A) and A is Morita equivalent to Mn(A), we have that

rep.dim(A) = rep.dim(Mn(A)) = rep.dim(B#H∗) ≤ rep.dimB ≤ rep.dim(A).

Thus, we have rep.dim(A)=rep.dim B. The theorem is proved. ¤

Remark 3.4. At the first glance, it seems that A#σH is isomorphic to a direct
sum of copies of AAA as A-A-bimodule and thus our result will be trivial. But
this is far from true. Actually, we even do not have A|A#σH as A-A-bimodules.
For example, let H ′ be any finite-dimensional Hopf algebra which is not of finite
representation type (e.g. uq(sl2)). Assume that we have H ′|(H ′#(H ′)∗) as H ′-H ′-
bimodules. Using Blattner-Montgomery Duality Theorem again, (H ′#(H ′)∗) is a
simple algebra and thus of finite representation type. But this will imply H ′ is of
finite representation type too (see Chapter VI, Lemma 3.1 (a) in [6]) which is a
contradiction.

Let H be a Hopf algebra. Recall A ⊂ B is called a (right) H-extension, if B

is a right H-comodule algebra with structure map ρ satisfying BcoH = A. Here
BcoH is defined as the subcomodule {b ∈ B : ρ(b) = b ⊗ 1}. An H-extension
A ⊂ B is called H-cleft if there exists a right H-comodule map γ : H → B which is
convolution invertible. Doi and Takeuchi proved that A ⊂ B is H-cleft if and only
if B ∼= A#σH (Theorem 7.2.2 in [14]). This indeed imply the following result.

Corollary 3.5. Let H be a simisimple cosemisimple Hopf algebra and A ⊂ B

be H-cleft, then rep.dimA = rep.dimB.

Let k be a field of characteristic p. Let G be a finite group and N ⊂ G a normal
subgroup of G. So we may write kG = kN#σk(G/N), a crossed product of kN

with the quotient group algebra k(G/N). Since clearly k(G/N) is semisimple when
N is a normal Sylow p-subgroup, we have the following corollary.

Corollary 3.6. If P is a normal Sylow p-subgroup of of G, then rep.dim(kG) =
rep.dim(kP ).

Remark 3.7. One direction in Corollary 3.6, that is, rep.dim(kG) ≥ rep.dim(kP )
is indeed a special case of Proposition 4.1 in [18]. Our method, relied heavily on
the speciality of crossed product, is quite different from that used in [18]. In fact,
we do not know how to show Proposition 3.3 by applying the methods developed
in [18] only.
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