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Abstract. We aim to study Morita theory for tensor triangulated categories.
For two finite tensor categories having no projective simple objects, we prove
that their stable equivalence induced by an exact k-linear monoidal functor
can be lifted to a tensor equivalence under some certain conditions.

1. Introduction

Our aim is to study tensor triangulated categories from a Hopf algebraic per-
spective. In recent years, there has been tremendous interest in developing tensor
triangulated categories (see [4, 5, 15, 16] and references therein). However, so far,
limited work has been done in Hopf algebraic fields.

Since all finite tensor categories are Frobenius categories [7], it follows that their
stable categories are in fact tensor triangulated categories. In particular, take
two finite dimensional Hopf algebras H and H ′ and consider their representation
categories H-mod and H ′-mod. A natural question is: If their stable categories
are equivalent as tensor triangulated categories, then what can we say about the
relations between H and H ′?

An important relation in Hopf algebras is gauge equivalence. Ng and Schauen-
burg showed in [17] that H and H ′ are gauge equivalent if and only if H-mod and
H ′-mod are k-linear monoidally equivalent. Nevertheless, it should be pointed out
that even if the stable categories of two finite-dimensional algebras are equivalent,
the corresponding algebraic structures may be quite different. That is, Morita the-
ory does not work. For example, it is easy to check that some block algebras are
not Morita equivalent, although they are stably equivalent [6].

Our main results states that, under some mild conditions, for Hopf algebras if
their stable equivalence is induced from an exact k-linear monoidal functor then
they are gauge equivalent. We describe this observation in the categorical language
as follows:
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Proposition 1.1. Let C and C′ be two non-semisimple finite tensor categories.
Suppose F : C → C′ is an exact k-linear monoidal functor inducing a stable equiva-
lence F : C → C′. If all simple objects in C and C′ are invertible, then F is a tensor
equivalence.

Theorem 1.2. Let C and C′ be two non-semisimple finite tensor categories having
no projective simple objects such that FPdim(C) = FPdim(C′). Suppose F : C → C′

is an exact k-linear monoidal functor inducing a stable equivalence F : C → C′,
then F is a tensor equivalence.

The present paper is built up as follows. Some definitions, notations and results
related to stable categories, tensor categories and Hopf algebras are presented in
Section 2. We devote Section 3 to give a proof to our main results: Proposition 1.1
and Theorem 1.2.

2. Preliminaries

Let k be an algebraically closed field throughout this paper. For any k-algebra
A, the category of finitely generated modules over A is denoted by A-mod. About
general background knowledge, the reader is referred to [3] for stable categories,
[14] for Hopf algebras and [8] for tensor categories.

2.1. Stable categories. Let C be a k-linear abelian category. The stable category
of C written as C is defined as follows: The objects of C are the same as those of C;
For any objects X,Y ∈ C, the morphisms from X to Y are given by the quotient
space

HomC(X,Y ) = HomC(X,Y )/P(X,Y ),

where P(X,Y ) is the subspace of HomC(X,Y ) consisting of homomorphisms which
factor through a projective object. We say two k-linear abelian categories C and C′

are stably equivalent, if C and C′ are k-linear equivalent.
For simplicity of presentations, we stipulate the following notations.

Notation 2.1. We use A-mod to denote the stable category of A-mod. Talking about
any stable categories C, the following notations are always used:

• For X,Y ∈ C, let f denote the morphism in the quotient space HomC(X,Y )
represented by f ∈ HomC(X,Y ). We use the diagram below to indicate
f = 0 :

f : X
i→ P

j→ Y,

where f = j ◦ i in HomC(X,Y ) and P is a projective object in C.
• Given a k-linear functor F : C → C′, if F transforms projective objects to
projective objects, then it induces a functor from C to C′:

F : C → C′, X �→ F (X), f �→ F (f),

where X ∈ C and f is a morphism in C.

Recall that an artin algebra A is said to be self-injective if it is injective as
an A-module. A great deal of mathematical effort in the representation theory of
algebras has been devoted to the study of self-injective algebras. The following
proposition tells us when a stable equivalence can be lifted to a Morita equivalence.
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Lemma 2.2 ([12, Proposition 2.5]). Let A and A′ be self-injective k-algebras hav-
ing no projective simple modules and F : A-mod → A′-mod be an exact functor.
Suppose F induces a stable equivalence F : A-mod → A′-mod. Then F is an
equivalence if and only if F maps any simple A-module to a simple A′-module.

2.2. Tensor categories. We have the following basic properties about tensor cat-
egories.

Lemma 2.3 ([7, Propositon 2.3]). Any projective object in a tensor category is also
injective.

Lemma 2.4 ([11, Corollary 2, p.441]). Let P be a projective object in a tensor
category C. Then P ⊗X and X ⊗ P are both projective for any object X ∈ C.

It is known that a tensor equivalence is a k-linear monoidal equivalence. Here
we state the relations between tensor equivalences and gauge equivalences in the
case of Hopf algebras:

Lemma 2.5 ([17, Theorem 2.2]). Let H and H ′ be finite-dimensional Hopf algebras
over k. If H-mod and H ′-mod are tensor equivalent, then H is gauge equivalent to
H ′ as Hopf algebras.

An important technical tool in the study of tensor categories is Frobenius-Perron
dimensions. Due to [8, Proposition 4.5.4], one can define the Frobenius-Perron di-
mensions of objects in a tensor category C. To be specific, for each object X ∈ C,
FPdim(X) is the largest positive eigenvalue of the matrix of left or right multipli-
cation by X. Furthermore, FPdim is the unique additive and multiplicative map
which takes positive values on all simple objects of C. Here is a lemma which we
will need later.

Lemma 2.6 ([8, Proposition 4.5.7]). Let C and C′ be finite tensor categories. If
F : C → C′ is an exact k-linear monoidal functor, then FPdim(F (X)) = FPdim(X)
for any X ∈ C.

Let {Li}i∈I be the set of isomorphic classes of simple objects of C, and Pi denotes
the projective cover of Li for each i.

Definition 2.7 ([8, Definition 6.1.6]). Let C be a finite tensor category. Then the
Frobenius-Perron dimension of C is defined by

FPdim(C) :=
∑
i∈I

FPdim(Li) FPdim(Pi).

For a finite dimensional Hopf algebra H, it is easy to see FPdim(H-mod) =
dimk(H), which can be found in [8, Example 6.1.9].

2.3. Tensor triangulated categories. In retrospect, all finite tensor categories
are Frobenius categories by Lemma 2.3. Meanwhile the stable categories of Frobe-
nius categories are triangulated categories [9, Theorem 2.6].

According to [15], a tensor [monoidal] triangulated category is a triangulated
category having a monoidal structure [13, Chapter VII]

⊗ : C × C → C
and a unit object 1 ∈ C, such that the bifunctor−⊗− is exact in each variable. Then
the stable categories of finite tensor categories are naturally tensor triangulated
categories.
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Two tensor triangulated categories C and C′ are said to be tensor triangulated
equivalent if there is a monoidal functor making C and C′ be triangulated equivalent.
Our aim in this paper is to show that a tensor equivalence can be recovered by a
stable equivalence as a special form of tensor triangulated equivalences. Note that a
stable equivalence induced by an exact k-linear monoidal functor is clearly a tensor
triangulated equivalence.

3. Main results

In the begining, we turn to mention the relation between the Chevalley property
and the existence of simple projective objects. A Hopf algebra is said to have
the Chevalley property, if the tensor product of two simple modules is semisimple.
Generally, let us say a tensor category has the Chevalley property if the category of
semisimple objects is a tensor subcategory [1, Definition 4.1].

The following lemma is contributed to simplify the assumptions of our results.

Lemma 3.1. Let C be a non-semisimple finite tensor category with the Chevalley
property. Then C has no simple projective objects.

Proof. Otherwise, let L be a simple projective object in C. Since L⊗L∗ is semisim-
ple, 1 is a direct summand of it. Moreover, Lemma 2.4 tells us that L ⊗ L∗ is
projective as L is projective. This implies 1 is also projective, then C is semisimple
by [8, Corollary 4.2.13], a contradiction. �

A direct consequence of this lemma is:

Corollary 3.2. Let H be a finite-dimensional non-semisimple Hopf algebra with
the Chevalley property. Then H-mod has no simple projective modules.

It is easy to see that a tensor category in which every simple object is invertible
(in the sense of [8, Definition 2.11.1]) has the Chevalley property by [8, Proposition
4.12.4]. With this observation, we are in a position to show our first main conclusion
now:

Proof of Proposition 1.1. We claim F maps simple objects to simple objects. Ac-
tually, for any simple object L ∈ C, we have:

F (L∗)⊗ F (L) ∼= F (L∗ ⊗ L) ∼= F (k) ∼= k

then

length(F (L∗))length(F (L)) ≤ length(F (L∗)⊗ F (L)) = length(k) = 1,

where length(-) denotes the length of the Jordan-Hölder series. Hence length(F (L))
= 1, that is, F (L) is a simple object.

Since C and C′ are finite, we may assume C ∼= A-mod, C′ ∼= A′-mod as k-linear
abelian categories, where A and A′ are finite-dimensional k-algebras. In addition,
as C and C′ are tensor categories, A and A′ also can be self-injective according to
Lemma 2.3. Moreover, C and C′ have no projective simple objects by Lemma 3.1.
As a result, F is a k-linear equivalence by Lemma 2.2. Consequently it is a tensor
equivalence. �

Note that a Hopf algebraH is basic if and only if every simple object in the tensor
category of finite-dimensional H-modules is invertible. So the following conclusion
is directly obtained.
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Corollary 3.3. Let H and H ′ be finite-dimensional non-semisimple basic Hopf
algebras. Suppose F : H-mod → H ′-mod is an exact k-linear monoidal functor
inducing a stable equivalence F : H-mod → H ′-mod. Then H and H ′ are gauge
equivalent.

To prove our second main results, we need several lemmas. First, let us make
some basic observations.

Lemma 3.4. Let C be a non-semisimple finite Frobenius k-linear abelian category.

(1) Let f : X → Y be an epimorphism in C. If f = 0 in C, then f has the
following form:

f : X
i→ P (Y )

p
� Y,

where (P (Y ), p) is a projective cover of Y and f = p ◦ i.
(2) Let g : X → Y be a monomorphism in C. If g = 0 in C, then g has the

following form:

g : X
i′� I(X)

p′

→ Y,

where (I(X), i′) is an injective hull of X and g = p′ ◦ i′.

Proof. (1) According to f = 0 in C, we can find a projective object P such that
f = β ◦ α, where

f : X
α→ P

β
� Y.

Moreover, since f is an epimorphism, so is β. By the universal property
of projective cover, there exists an epimorphism h : P � P (Y ) such that
p ◦ h = β.

As a result, we have:

f : X
hα→ P (Y )

p
� Y.

(2) We omit the proof, which is similar to (1).
�

Next result is a categorical version of a result in representation theory of artin
algebras.

Lemma 3.5 ([3, cf. Proposition 1.1, p.336]). Let C and C′ be two non-semisimple
finite k-linear abelian categories and F : C → C′ be a k-linear functor inducing a
stable equivalence F : C → C′. Then F gives a one to one correspondence between
the isoclasses of indecomposable non-projective objects in C and C′.

Proof. For the reason that C and C′ are finite k-linear abelian categories, we can
assume C ∼= A-mod, C′ ∼= A′-mod as k-linear abelian categories, where A and
A′ are finite-dimensional k-algebras. For any A-module X, we have the result
that P(X,X) ⊆ radEndA(X) if and only if X has no non-zero projective direct
summand (see [2, Proposition 2.5]). It follows that EndA(X) is local if and only
if EndA′(X ′) is local where F (X) ∼= X ′ ⊕ P ′ satisfying that X ′ has no non-zero
projective direct summand and P ′ is projective. That is, X is indecomposable if
only if X ′ is indecomposable.

Hence we have the following one to one correspondence{
Isoclasses of indecomposable
non-projective A-modules

}
Φ ��

{
Isoclasses of indecomposable
non-projective A′-modules

}
Ψ

�� .
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Specifically, for any indecomposable non-projective A-module X, we define Φ(X) =
X ′ satisfying that F (X) ∼= X ′ ⊕ P ′ for some projective A′-module P ′. Conversely,
for any indecomposable non-projective A′-module Y ′, we define Ψ(Y ′) = Y satis-
fying that F (Y ) ∼= Y ′ ⊕Q′ for some projective A′-module Q′. It is directly to see
Φ and Ψ are well-defined by Krull-Schmidt Theorem. Moreover, Φ ◦ Ψ = id and
Ψ ◦ Φ = id. The proof is completed. �

Under the assumption of Lemma 3.5, there is a pair of mutually inverse maps
still denoted by Φ and Ψ{

Isoclasses of indecomposable
non-projective objects in C

}
Φ ��

{
Isoclasses of indecomposable
non-projective objects in C′

}
Ψ

�� .

Using the above lemma, we have the following result.

Lemma 3.6. Let C and C′ be non-semisimple finite Frobenius k-linear abelian
categories. Suppose a k-linear functor F : C → C′ induces a stable equivalence
between C and C′.

(1) For any indecomposable non-projective object X ∈ C and any simple object
L′∈C′, we have L′ is a quotient object of Φ(X) if and only if HomC′(Φ(X), L′)
�= 0.

(2) For any indecomposable non-projective object Y ′ ∈ C′ and any simple object
L ∈ C, we have L is a subobject of Ψ(Y ′) if and only if HomC(L,Ψ(Y ′)) �= 0.

Proof. (1) “Only if” part: We claim the epimorphism f : Φ(X) → L′ satisfies
f �= 0, which would follow that HomC′(Φ(X), L′) �= 0. First, we note that
L′ must be non-projective as Φ(X) is indecomposable and non-projective.
Assume on the contrary that f has the following form:

f : Φ(X)
i→ P (L′)

j
� L′,

where P (L′) can be chosen as a projective cover of L′ by Lemma 3.4 (1).
Let us consider the following commuting diagram:

Φ(X) P (L′) Coker(i)

L′ N

i t

j β

α

where (Coker(i), t) is the cokernel of i and (β, α) is the pushout of (j, t).
There are two cases which may happen:

(i) If N = 0, then we have an epimorphism:

P (L′) � Coker(i)⊕ L′,

which follows another epimorphism:

P (L′) = P (P (L′)) � P (Coker(i))⊕ P (L′),

where P (P (L′)) and P (Coker(i)) denote projective covers of P (L′) and
Coker(i) respectively. Thus, Coker(i) = 0 and consequently P (L′) is
a direct summand of Φ(X), which contradicts to the fact that Φ(X)
is indecomposable and non-projective.
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(ii) If N �= 0, since α ◦ f = α ◦ j ◦ i = β ◦ t ◦ i = 0, we find α = 0. This
leads to a contradiction that N = Im(α).

In conclusion, f �= 0 and thus HomC′(Φ(X), L′) �= 0.
“If” part: Conversely, HomC′(Φ(X), L′) �= 0 makes HomC′(Φ(X), L′) �=

0 which deduces that L′ is a quotient object of Φ(X).
(2) The proof of this result is dual to that given above by using pullback instead

and so is omitted.
�

Corollary 3.7. Let C and C′ be non-semisimple finite Frobenius k-linear abelian
categories having no projective simple objects. Suppose a k-linear functor F : C →
C′ induces a stable equivalence between C and C′. For two simple objects L ∈ C and
L′ ∈ C′, L is a subobject of Ψ(L′) if and only if L′ is a quotient object of Φ(L).

Proof. Since F induces a stable equivalence, we have

HomC(L,Ψ(L′)) ∼= HomC′(F (L), F (Ψ(L′)))

∼= HomC′(Φ(L),Φ(Ψ(L′))) ∼= HomC′(Φ(L), L′).

Therefore HomC(L,Ψ(L′)) �= 0 if and only if HomC′(Φ(L), L′) �= 0. The conclusion
is obtained by Lemma 3.6. �

Let C and C′ be non-semisimple finite Frobenius k-linear abelian categories hav-
ing no projective simple objects. Let {Li}i∈I and {L′

j}j∈J be the isoclasses of

simple objects in C and C′ respectively. We introduce the following notation

Ji = {j ∈ J | L′
j is a quotient object of Φ(Li)} (i ∈ I).

Corollary 3.8. Let C and C′ be non-semisimple finite Frobenius k-linear abelian
categories having no projective simple objects. Suppose a k-linear functor F : C →
C′ induces a stable equivalence between C and C′. Then J =

⋃
i∈I

Ji.

Proof. It is suffices to prove J ⊂
⋃
i∈I

Ji. Indeed, let L
′
j be a simple object in C′ and

suppose that Li is a simple subobject of Ψ(L′
j). Therefore L′

j is a simple quotient
object of Φ(Li) by Corollary 3.7. In other words, j ∈ Ji for some i ∈ I. �

With the help of the preceding lemmas, we can now prove the following result.

Proof of Theorem 1.2. Let {Li}i∈I and {L′
j}j∈J be the set of isoclasses of simple

objects in C and C′ respectively, where I and J are finite sets. Moreover, we use Pi

(resp. P ′
j) to represent a projective cover of each simple object Li (resp. L

′
j).

The trick of the proof is to show F maps simple objects to simple objects. For
any simple object Li, we have F (Li) ∼= Φ(Li) ⊕ Q′

i for some projective object Q′
i

by Lemma 3.5. In addition, as F is an exact functor, there is an epimorphism
F (Pi) � P (Φ(Li)) for any i ∈ I, where P (Φ(Li)) denotes a projective cover of
Φ(Li).
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Consequently, we can get the following formula:

FPdim(C) =
∑
i∈I

FPdim(Li) FPdim(Pi) =
∑
i∈I

FPdim(F (Li)) FPdim(F (Pi))

=
∑
i∈I

FPdim(Φ(Li)⊕Q′
i) FPdim(F (Pi))

≥
∑
i∈I

FPdim(Φ(Li)) FPdim(P (Φ(Li)))

≥
∑
i∈I

(
∑
j∈Ji

FPdim(L′
j))(

∑
j∈Ji

FPdim(P ′
j))

≥
∑
j∈J

FPdim(L′
j) FPdim(P ′

j) (by Corollary 3.8)

= FPdim(C′).

By the condition that FPdim(C) = FPdim(C′), all the “≥” above are in fact equal-
ities. Due to∑

i∈I

FPdim(Φ(Li)⊕Q′
i) FPdim(F (Pi)) =

∑
i∈I

FPdim(Φ(Li)) FPdim(P (Φ(Li))),

we can deduce that Q′
i = 0 for any i ∈ I. Moreover, by∑

i∈I

(
∑
j∈Ji

FPdim(L′
j))(

∑
j∈Ji

FPdim(P ′
j)) =

∑
j∈J

FPdim(L′
j) FPdim(P ′

j),

it is clear that each Ji has just one element for i ∈ I. Without loss of generality,
let Ji = {ϕ(i)} where ϕ : I → J is a surjection given by Corollary 3.8. At last,∑

i∈I

FPdim(L′
ϕ(i)) FPdim(P ′

ϕ(i)) =
∑
j∈J

FPdim(L′
j) FPdim(P ′

j)

=
∑
i∈I

FPdim(Φ(Li)) FPdim(P (Φ(Li))),

it follows that FPdim(Φ(Li)) = FPdim(L′
ϕ(i)) for i ∈ I. Hence F (Li) ∼= Φ(Li) ∼=

L′
ϕ(i) for any i ∈ I.

Since C and C′ are finite, using the same method used in proof of Proposition
1.1, we can assume C ∼= A-mod, C′ ∼= A′-mod as k-linear abelian categories, where
A and A′ are finite-dimensional self-injective k-algebras. By Lemma 2.2, F is a
k-linear equivalence. Consequently it is a tensor equivalence. �

It is direct to see the following corollary.

Corollary 3.9. Let H and H ′ be finite-dimensional non-semisimple Hopf algebras
having no simple projective modules such that dimk(H) = dimk(H

′). If an exact
k-linear monoidal functor F : H-mod → H ′-mod induces a stable equivalence F :
H-mod → H ′-mod, then H and H ′ are gauge equivalent.

Proof. By FPdim(H-mod) = dimk(H) we can get the conclusion. �

Remark 3.10. We end this section by pointing out that: The condition “the functor
F is monoidal” can not be removed in Theorem 1.2. Let us illustrate it with an
example. Consider the n2-dimensional Taft algebras Tn2(ω1) and Tn2(ω2), where
ω1 and ω2 are primitive n-th roots of unity. [10, Corollary 3.3] tells us that Tn2(ω1)
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and Tn2(ω2) are gauge equivalent if and only if ω1 = ω2. As the fact that Tn2(ω1)
and Tn2(ω2) are isomorphic as algebras, they are Morita equivalent inducing a
functor from Tn2(ω1)-mod to Tn2(ω2)-mod. This functor satisfies the assumptions
of Theorem 1.2, except that F is a monoidal functor when ω1 �= ω2.
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