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Abstract

In this article, we first give the definitions of tensor category and quasi-Hopf

algebra, and then we prove the representation category of quasi-Hopf alge-

bras is a tensor category. Then we generalized the definitions of the order

and index which given by Yong-chang Zhu etc. (see cf. [32]). to the tensor

category, and we prove that the order and index of tensor category are two

invariants. Furthermore, we prove various divisibility and integrality results

for the two invariants about the representation category of semisimple Hopf

algebras. Finally, we prove our definitions about order and index are indeed

to generalize the definitions given by Yong-chang Zhu etc.(cf. [32]).

KEYWORDS : monoidal category, quasi-Hopf algebra, order, index, monoidal

equivalence.
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1 Introduction

We all know that tensor category is an important category in category the-

ory. In particular, the representation category of Hopf algebras and quasi-

Hopf algebras are also tensor category. In this article, we will introduce two

invariants in tensor category.

In Section 2, we first give the definintion of tensor category. Furthermore,

we give some examples of tensor category that we can make better sense of

the definitions.

In Section 3, this section is the most important part of our article. We

give the definitions of order and index in tensor category and we also prove

that the order and index is two invariants of tensor category. In Section

4, we study some good properties of order and index of the representation

of Hopf algebras. We define the notion of the order and the multiplicity

of a module and prove that the order of a module divides its multiplicity

times the dimension of the Hopf algebra. Furthermore, we study the in-

dex of imprimitivity, or briefly the index, of the matrix that represents the

left multiplication by a character with respect to the canonical basis that we

have in the character ring)the basis consisting of the irreducible characters.

The main result of this section is a precise formula for the index in terms of

central grouplike elements. Essentially, the result says that the eigenvalues

of the above matrix that have the same absolute value as the degree are

obtained by evaluating the character at certain central grouplike elements.

2 Preliminaries

Throughout the notes, for simplicity we will assume that the ground field k

is algebraically closed unless otherwise specified, even though in many cases

this assumption will not be needed.

2.1 Tensor category

Definition 2.1.1. A monoidal category is a quintuple (C,⊗, a, 1, ι) where

C is a category, ⊗ : C × C → C is a bifunctor called the tensor product a:

5



(• ⊗ •)⊗ • ∼ // • ⊗ (• ⊗ •) is a functorial isomorphism:

aX,Y,Z : (X ⊗ Y )⊗ Z ∼ // X ⊗ (Y ⊗ Z) , X, Y, Z ∈ C (1)

called the associativity constraint (or associativity isomorphism),1 ∈ C is an

object of C, and ι : 1 ⊗ 1 → 1 is an isomorphism, subject to the following

two axioms.

1. The pentagon axiom. The diagram

((W ⊗X)⊗ Y )⊗ Z
aW⊗X,Y,Z

tt

aW,X,Y ⊗IdZ

**
(W ⊗X)⊗ (Y ⊗ Z)

aW,X,Y⊗Z

��

(W ⊗ (X ⊗ Y ))⊗ Z
aW,X⊗Y,Z

��
W ⊗ (X ⊗ (Y ⊗ Z)) W ⊗ ((X ⊗ Y )⊗ Z)

IdW⊗aX,Y,Zoo

(2)

is commutative for all objects W,X, Y, Z ∈ C.

2. The unit axiom.The functors L1 and R1 of left and right multipli-

cation by 1 are equivalences C → C.

The pair (1, ι) is called the unit object of C.

We see that the set of isomorphism classes of objects in a small monoidal

category indeed has a natural structure of a monoid, with multiplication ⊗
and unit 1. Thus, in the categorical-algebraic dictionary, monoidal cate-

gories indeed correspond to monoids (which explains their name).

Notation. Let (C,⊗, a, 1, ι) be a monoidal category. Define the isomorphism

lX : 1⊗X → X by the formula

lX = L−11 ((ι⊗ Id) ◦ a−11,1,X),

and the isomorphism rX : X ⊗ 1→ X by the formula

rX = R−11 ((Id⊗ ι) ◦ aX,1,1.

This gives rise to functorial isomorphisms l : L1 → IdC and r : R1 → IdC .

These isomorphisms are called the unit constraints or unit isomorphisms.

6



They provide the categorical counterpart of the unit axiom 1X = X1 = X

of a monoid in the same sense as the associativity isomorphism provides the

categorical counterpart of the associativity equation.

Proposition 2.1.2. The“triangle” diagram

(X ⊗ 1)⊗ Y
aX,1,Y //

rX⊗IdY ''

X ⊗ (1⊗ Y )

IdX⊗lYww
X ⊗ Y

(3)

is commutative for all X,Y ∈ C. In particular, one has r1 = l1 = ι.

Example 2.1.3. The category Sets of sets is a monoidal category, where

the tensor product is the Cartesian product and the unit object is a one

element set; the structure morphisms a, ι, l, r are obvious.

Example 2.1.4. Any additive category is monoidal, with ⊗ being the direct

sum functor ⊕, and 1 being the zero object.

Example 2.1.5. Let k be any field. The category k −Vec of all k-vector

spaces is a monoidal category, where ⊗ = ⊗k, 1 = k, and the morphisms

a, ι, l, r are the obvious ones. The same is true about the category of finite

dimensional vector spaces over k, denoted by k−V ec. We will often drop k

from the notation when no confusion is possible.

More generally, if R is a commutative unital ring, then replacing k by

R we can define monoidal categories R−mod of R-modules and R-mod of

R-modules of finite type.

Example 2.1.6. Let G be a group. The category Repk(G) of all rep-

resentations of G over k is a monoidal category, with ⊗ being the tensor

product of representations : if for a representation V one denotes by ρV the

corresponding map G→ GL(V ), then

ρV⊗W (a) = ρV (a)⊗ IdW + IdV ⊗ ρW (a)

The unit object in this category is the trivial representation 1 = k. A

similar statement holds for the category Repk(G) of finite dimensional rep-

resentations of G. Again, we will drop the subscript k when no confusion is

possible.
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As we have explained, monoidal categories are a categorification of

monoids. Now we pass to categori

cation of morphisms between monoids, namely monoidal functors.

Definition 2.1.7. Let (C,⊗, 1, a, ι) and (C′,⊗′, a′, 1′) be two monoidal cat-

egories. A monoidal functor from C to C′ is a pair (F, J) where F : C → C′

is a functor, and J = {JX,Y : F (X)⊗ F (Y )
∼ // F (X ⊗ Y ) | X,Y ∈ C} is

a natural isomorphism, such that F (1) is isomorphic to 1′. and the diagram

(F (X)⊗′ F (Y ))⊗′ F (Z)
a′
F (X,F (Y ),F (Z))//

JX,Y ⊗′IdF (Z)

��

F (X)⊗′ (F (Y )⊗′ F (Z))

IdF (X)⊗′JY,Z

��
F (X ⊗ Y )⊗′ F (Z)

JX⊗Y,Z

��

F (X)⊗′ F (Y ⊗ Z)

JX,Y⊗Z

��
F ((X ⊗ Y )⊗ Z)

F (aX,Y,Z)
// F (X ⊗ (Y ⊗ Z))

(4)

is commutative for all X,Y, Z ∈ C (“the monoidal structure axiom”).

A monoidal functor F is said to be an equivalence of monoidal cate-

gories if it is an equivalence of ordinary categories.

Proposition 2.1.8. For any monoidal functor (F, J) : C → C′, the diagrams

1′ ⊗′ F (X)
l′
F (X) //

ϕ⊗′IdF (X)

��

F (X)

F (1)⊗′ F (X)
J1,X // F (1⊗X)

F (lX)

OO
(5)

and

F (X)⊗′ 1′
r′
F (X) //

IdF (X)⊗′ϕ
��

F (X)

F (X)⊗′ F (1)
JX,1 // F (X ⊗ 1)

F (rX)

OO
(6)

are commutative for all X ∈ C.

Proof. This follows by applying the pentagon axiom for the quadruple of
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objects X, 1, 1, Y . More specifically, we have the following diagram:

((X ⊗ 1)⊗ 1)⊗ Y
aX,1,1⊗Id //

rX⊗Id⊗Id ))

aX⊗1,1,Y

��

(X ⊗ (1⊗ 1))⊗ Y

(Id⊗ι)⊗Iduu

aX,1⊗1,Y

��

(X ⊗ 1)⊗ Y
aX,1,Y

��
X ⊗ (1⊗ Y )

(X ⊗ 1)⊗ (1⊗ Y )

rX⊗Id
55

aX,1,1⊗Y ))

X ⊗ ((1⊗ 1)⊗ Y )

Id⊗(ι⊗Id)

ii

Id⊗a1,1,Y

uu
X ⊗ (1⊗ (1⊗ Y ))

Id⊗l1⊗Y

OO

(7)

To prove the proposition, it suffices to establish the commutativity of the

bottom left triangle (as any object of C is isomorphic to one of the form

1⊗Y ).Since the outside pentagon is commutative (by the pentagon axiom),

it suffices to establish the commutativity of the other parts of the pentagon.

Now, the two quadrangles are commutative due to the functoriality of the

associativity isomorphisms, the commutativity of the upper triangle is the

definition of r, and the commutativity of the lower right triangle is the

definition of l.

The last statement is obtained by setting X = Y = 1 in (6).

Proposition in the above implies that a monoidal functor can be equiv-

alently defined as follows.

Definition 2.1.9. A monoidal functor C → C′ is a triple (F, J, ϕ) which

satisfies the monoidal structure axiom and above Proposition.

This is a more traditional definition of a monoidal functor.

Monoidal functors between two monoidal categories themselves form a

category. Namely, one has the following notion of a morphism (or natural

transformation) between two monoidal functors.

Definition 2.1.10. Let (C,⊗, 1, a, ι) and (C′,⊗′, 1′, a, ι) be two monoidal

categories, and (F 1, J1), (F 2, J2) two monoidal functors from C to C′. A

morphism (or a natural transformation) of monoidal functors η : (F 1, J1)→
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(F 2, J2) is a natural transformation η : F 1 → F 2 such that η1 is an isomor-

phism, and the diagram

F 1(X)⊗′ F 1(Y )
J1
X,Y //

ηX⊗′ηY
��

F 1(X ⊗ Y )

ηX⊗Y

��
F 2(X)⊗′ F 2(Y )

J2
X,Y // F 2(X ⊗ Y )

(8)

is commutative for all X,Y ∈ C.

Let us now give some examples of monoidal functors and natural trans-

formations.

Example 2.1.11. An important class of examples of monoidal functors

is forgetful functors (e.g. functors of “forgetting the structure”, from the

categories of groups, topological spaces, etc., to the category of sets).Such

functors have an obvious monoidal structure. An example important in these

notes is the forgetful functor RepG → Vec from the representation category

of a group to the category of vector spaces. More generally, if H ⊂ G is a

subgroup, then we have a forgetful (or restriction) functor RepG → VecH .

Still more generally, if f : H → G is a group homomorphism, then we have

the pullback functor f∗ : RepG → RepH . All these functors are monoidal.

Example 2.1.12. Let f : H → G be a homomorphism of groups. Then any

H–graded vector space is naturally G-graded (by pushforward of grading).

Thus we have a natural monoidal functor f∗ : VecH → VecG. If G is the

trivial group, then f∗ is just the forgetful functor VecH → Vec.

Example 2.1.13. Let S be a monoid, and C = V ecS , and IdC the identity

functor of C. It is easy to see that morphisms η : IdC → IdC correspond

to homomorphisms of monoids: η : S → k (where k is equipped with the

multiplication operation). In particular, η(s) may be 0 for some s, so η does

not have to be an isomorphism.

2.2 Quasi-Hopf algebra

In this section we recall some definitions and results and fix notation. Through-

out, k will be a fixed field and all algebras, linear spaces etc. will be over
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k unadorned ⊗ means ⊗k. For coalgebras and Hopf algebras we shall use∑
-natation: ∆(h) =

∑
h1 ⊗ h2,etc.

Definition 2.2.1. Let H be a k-algebra, ∆ : H → H ⊗ H, ε : H → k

two algebra homomorphisms. H is called a quasi-bialgebra if there exists an

invertible Φ ∈ H ⊗H ⊗H such that, for all elements h ∈ H, we have :

(1.2.1) (I ⊗∆)(∆(h)) = Φ(∆⊗ I)Φ−1,

(1.2.2) (I ⊗ I ⊗∆)(Φ)(∆⊗ I ⊗ I)(Φ) = (1⊗Φ)(I ⊗∆⊗ I)(Φ)(Φ⊗ 1),

(1.2.3) (ε⊗ I)(∆(h)) = 1⊗ h and (I ⊗ ε)(∆(h)) = h⊗ 1,

(1.2.4) (I ⊗ ε⊗ I)(Φ) = 1⊗ 1⊗ 1,

where I = idH . The map ∆ is called the coproduct or the comultipli-

cation and ε the counit. H is called a quasi-Hopf algebra if, moreover, there

exist an anti-autormorphism S of the algebra H and elements α and β of H

such that, for all h ∈ H, we have :

(1.2.5)
∑
S(h1)αh2 = ε(h)α and

∑
h1βS(h2) = ε(h)β,

(1.2.6)
∑
X1βS(X2)αX3 = 1 and

∑
S(x1)αx2βS(x3) = 1,

where Φ =
∑
X1 ⊗ X2 ⊗ X3, Φ−1 = x1 ⊗ x2 ⊗ x3 (formal notation),

and we used the
∑

-notation: ∆(h) =
∑
h1 ⊗ h2. In this case, S is called

the antipode of H.

Notation. Every Hopf algebra with bijective antipode is a quasi-Hopf algebra

with Φ = 1⊗ 1⊗ 1 and α = β = 1.

Now we suppose that (H,∆, ε,Φ) is a quasi-bialgebra. If U , V , W are

left H-modules, define aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ) by

aU,V,W ((u⊗ v)⊗ w) = Φ · (u⊗ (v ⊗ w))

Then the category H-mod of left H-modules becomes a tensor category

with tensor product ⊗ given via ∆, associativity constraints aU,V,W , unit k

as a trivial H-module and the usual left and right unit constraints.

Now we give an example of non-trivial quasi-Hopf algebra:

Example 2.2.2. Let D(k[G]) be the Drinfel’d double of the Hopf algebra

k[G] of a finite group G and {eg}g∈G be the dual basis of the basis {g}g∈G of

k[G]. Suppose given a normalized 3-cocycle on the group G, i.e., a function

ω : G×G×G→ k\{0} such that
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ω(x, y, z)ω(tx, y, z)−1ω(t, xy, z)ω(t, x, yz)−1ω(t, x, y) = 1

for all t, x, y, z ∈ G, and such that ω(x, y, z) = 1 whenever x, y, orz = 1.

Consider a finite-dimensional vector spaceDω(G) with a basis {egx}(g,x)∈G×G.

Define a product on Dω(G) by

(egx)(ehy) = δg,xhx−1θ(g, x, y)eg(xy)

where θ(g, x, y) = ω(g, x, y)ω(x, y, xy−1gxy)ω(x, x−1gx, y)−1. It is easy to

check that this product is associative and has the element 1 =
∑

g∈G eg1 as

a left and right unit. Then we define ∆ : Dω(G) → Dω(G) ⊗ Dω(G) and

ε : Dω(G)→ k by

∆(egx) =
∑
uv=g

γ(x, u, v)eux⊗ ex and ε(egx) = δg,1

where γ(x, u, v) = ω(u, v, x)ω(x, x−1ux, x−1vx)ω(u, x, x−1vx)−1. Set

also

Φ =
∑

x,y,z∈G
ω(x, y, z)−1ex ⊗ ey ⊗ ez

α = 1, and β =
∑

g∈G ω(g, g−1, g)eg. we define an anti-automorphism S of

the algebra Dω(G) by

S(egx) = θ(g−1, x, x−1)γ(x, g, g−1)ex−1gxx
−1

Then (Dω(G),∆, ε,Φ, α, β) is a quasi-Hopf algebra in the sense of Def-

inition 1.2.1.

3 The order and index of tensor category

In this section we always assume that C is a tensor product. Now we will

introduce the most important concepts of my article.

3.1 Order

Definition 3.1.1. For any V ∈ Ob(C), we define:

ord(V ) := min{n | I is the direct summand of V ⊗m}.
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Proposition 3.1.2. If F : C → D is a monoidal equivalence, then we have

ord(V) = ord(F(V)), i.e. , Order is an invariant of tensor equivalence.

Proof. Firstly, we proof ord(F(V)) ≤ ord(V).

From the definition of monoidal equivalence, for any V ∈ C, we have F (V ⊗m) '
(F (V ))⊗m. If ord(V ) := m, so there is W ∈ C such that V ⊗m ' I ⊕W , and

then we have

(F (V ))⊗m ' F (V ⊗m) ' F (I ⊕W ) ' F (I)⊕ F (W ) ' I ′ ⊕ F (W ).

From this, ord(F(V)) ≤ ord(V).

Secondly, we proof ord(V) ≤ ord(F(V)). There is a monoidal equivalence

G : D → C such that FG ≈ 1D, GF ≈ 1C . If ord(V ) := n, we have

F (V ⊗n) ' I ′ ⊕ U ,

V ⊗n ' G((F (V ))⊗n) ' G(I ′)⊕G(U) ' I ⊕G(U).

so ord(V ) ≤ ord(F (V )).

From the above, we know that ord(V ) = ord(F (V )).

3.2 Index

In this subsection, we further let any tensor category be the semisimple

tensor category. we assume that {Vi}ni=1 are all the simple objects of C.

Definition 3.2.1. K0(C) :=
⊕n

i=1 ZVi.

Notation. • If we define Vi ·Vj := [Vi⊗Vj ], then it is obvious that K0(C)
is a ring.

• If F : C → D is a monoidal equivalence, then F induces a ring isomor-

phism from K0(C) to K0(D).

As C is semisimple, for V ∈ C, then we have

V · Vj =
n∑
i=1

aijVi,

aij is the multiplicity of Vi in the decomposition of V ⊗ Vj into simple

objects-clearly a nonnegative integer. We let A be the matrix (aij)n×n. For
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convenience, we let A be a indecomposable matrix (see definition 3.0.7),

and from Perron-Frobenius theorem (see Thm. 3.0.11 and Thm. 3.0.12).

we have :

Definition 3.2.2. We define the index of V by

ind(V ) :=| {µ | µ is an eigenvalue of A with | µ |= λ} |,

where λ is the biggest eigenvalue of A.

Proposition 3.2.3. If F : C → D is a monoidal equivalence, then we have

ind(V ) = ind(F (V )). i.e. Index is an invariant of tensor equivalence.

Proof. If we let

V · (V1, · · · , Vn) = (V1, · · · , Vn)A, A = (aij)n×n.

F (V ) · (F (V1), · · · , F (Vn)) = (F (V1), · · ·F (Vn))B, B = (bij)n⊗n

we just need to prove that A = B. For Vj , (1 ≤ j ≤ n) , we have

F (V ⊗ Vj) = F (a1jV1 + · · ·+ anjVn) = a1jF (V1) + · · ·+ anjF (Vn).

F (V )⊗ F (Vj) = b1jF (V1) + · · ·+ bnjF (Vn).

As F (V ⊗ Vj) ' F (V )⊗F (Vj), and K0(C) ' K0(D). so we get aij = bij for

all 1 ≤ i, j ≤ n. i.e. A = B.

4 Some properties in representation category of

semisimple Hopf algebras

We know that the representation category of Hopf algebras is absolutely

tensor category. In this section we will research the representation category

of semisimple Hopf algebras.

In this part, we assume from now on that K is an algebraically closed field

of characteristic zero and that H is a semisimple Hopf algebra over K with

an integral Λ satisfying ε(Λ) = 1. Firstly, we let (V ⊗m)H := {v ∈ V ⊗m |
h · v = ε(h)v}.
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Definition 4.0.4. Suppose that V is an H-module. The smallest natural

number m such that V ⊗m contains a nonzero invariant subspace (V ⊗m)H is

called the order of V and is denoted by ord(V ). If m is the order of V , then

the dimension of this invariant subspace is called the multiplicity of V and

is denoted by mult(V ) := dim((V ⊗m)H).

Notation. It is easy to see that this definition is equivalent to the order

which we defined in the above section.

The notion of the order of a module generalizes the notion of the order

of an element in the theory of finite groups. To see this, let G be a finite

group and consider the ring KG of functions on G, which is isomorphic to

the dual group ring K[G]∗. Since this is a commutative Hopf algebra, all

its simple modules are one-dimensional, and their characters are given by

evaluating a function at a fixed element of the group. This sets up a one-

to-one correspondence between the elements of the group and the simple

KG-module under which the product of two group elements corresponds

to the tensor product of the modules. Since all these modules are one-

dimensional, a tensor power contains a nonzero invariant subspace if and

only if it is trivial, which means that the corresponding element of the group

is the unit element. Therefore, the order of the module in the sense of the

above definition coincides with the order of the element in the sense of group

theory. In the case of a general semisimple Hopf algebra H, we see by the

same reasoning that, if V is one-dimensional, and therefore determined by

its character γ : H → K, the order of V in the sense of the above definition

coincides with the order of γ in the group G(H∗) of grouplike elements of

the dual Hopf algebra H∗.

To proceed further, we will need some properties of symmetric polyno-

mials. Consider the polynomial ring Q[x1, x2, . . . , xn] in n variables. Recall

that, for a nonnegative integer k, the k-th elementary symmetric polynomial

ek = ek(x1, . . . , xn) is defined as

ek(x1, . . . , xn) :=
∑

i1<i2<...<ik

xi1xi2 . . . xik

In particular, we have e0 = 1, e1 = x1 + x2 + . . . + xn, en = x1x2 . . . xn,

and ek = 0 for k > n. The fundamental theorem on symmetric polyno-
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mials asserts that every symmetric polynomial with integer coefficients can

be expressed as a polynomial with integer coefficients in the elementary

symmetric polynomials. This holds in particular for the power sums

sk = sk(x1, . . . , xn) :=
n∑
i=1

xki

Conversely, the power sums have the property that every symmetric poly-

nomial can be expressed as a polynomial with rational coefficients in the

power sums. The polynomials that achieve this for the elementary symmet-

ric polynomials are the so-called (fractional) Newton polynomials Qn, which

are defined via the following n× n-determinant:

Qn(x1, . . . , xn) :=
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 1 0 0 . . . 0

x2 x1 2 0 . . . 0

x3 x2 x1 3 . . . 0
...

...
...

... . . .
...

xn−1 xn−2 xn−3 xn−4 . . . n− 1

xn xn−1 xn−2 xn−3 . . . x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The polynomials Q1, . . . , Qn−1, which involve only fewer variables, can of

course also be considered as elements of Q[x1, x2, . . . , xn]. The formula that

expresses the elementary symmetric polynomials in terms of the power sums

is known as Newton’s formula (cf. [18] , P. 110) :

Lemma 4.0.5. For n ≥ 1 and j = 1, . . . , n, we have ej = (−1)jQj(s1, s2, . . . , sn).

With the help of this formula, we can now prove the following theorem:

Theorem 4.0.6. The order of a nonzero H-module V is a finite number.

It is not larger than dim(H) and divides dim(H)mult(V ).

Proof. Firstly, for any ϕ ∈ H∗, the trace of the left multiplication

Lϕ : H∗ → H∗, ψ 7→ ϕψ

is nϕ(Λ), where n = dim(H). Let χ ∈ H∗ be the character of V , and

let λ1, λ2, . . . , λn be the not necessarily distinct eigenvalues of Lχ. If m :=

ord(V ) ≤ n, we have for k = 1, . . . ,m− 1 that

sk(λ1, . . . , λn) = tr(Lχk) = nχk(Λ) = 0
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since V ⊗k does not contain a nonzero invariant subspace. For k = m, we

get similarly that sm(λ1, . . . , λn) = nmult(V ). By Newton’s formula, we

therefore have

em(λ1, . . . , λn) =
1

m!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 . . . 0

0 0 2 0 . . . 0

0 0 0 3 . . . 0
...

...
...

...
...

0 0 0 0 . . . m− 1

sm 0 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)m−1

m
sm(λ1, . . . , λn)

Now note that the eigenvalues λ1, . . . , λn, and therefore the elementary sym-

metric functions ekλ1, . . . , λn, are algebraic integers. To see this, consider

the left multiplication by χ not on the whole dual Hopf algebra H∗, but

only on the character ring Ch(H), Its matrix representation with respec-

t to the basis consisting of the irreducible characters has integer entries,

and therefore the Cayley-Hamilton theorem implies that it satisfies a monic

polynomial with integer coefficients, namely its characteristic polynomial.

Evaluating this on the unit of the character ring, we see that χ itself satis-

fies this polynomial, and therefore also Lχ satisfies this polynomial. Since

λ1, . . . , λn are roots of this polynomial, they must be algebraic integers. This

shows that the fraction

nmult(V )

m
=

1

m
sm(λ1, . . . , λn) = (−1)m−1em(λ1, . . . , λn)

is an algebraic integer, which therefore must be an integer (cf. [18], P.91).

This proves the divisibility assertion.

It still remains to be shown that the order is finite and bounded by

n. So suppose that this is not the case. The reasoning above then shows

that the power sums s1, . . . , sn of the eigenvalues are zero, and therefore,

by Newton’s formula, the elementary symmetric functions e1, . . . , en of the

eigenvalues are zero. From this, we conclude as follows that all eigenvalues

λ1, . . . , λn are zero: First, we have en(λ1, . . . , λn) = λ1λ2 . . . λn = 0, which

implies that λi = 0 for some i. Considering the next elementary symmetric

function, we have

en−1(λ1, . . . , λn) = λ1 · . . . · λi−1λi+1 · . . . · λn = 0

17



since all the other summands in the definition of en−1 vanish. This implies

that we have λj = 0 for another j 6= i. Proceeding in this way, we arrive at

the assertion that all eigenvalues of Lχ are zero. But this is not the case,

as a nonzero integral of H∗ is an eigenvector for Lχ corresponding to the

eigenvalue dim(V ).

Suppose that χ1, . . . , χk are the distinct irreducible characters of the

semisimple Hopf algebra H under consideration, and that V1, . . . , Vk are

simpleH-modules of dimension n1, . . . , nk corresponding to these characters.

We can assume that V1 = K, the base field considered as a trivial H-module,

with character χ1 = ε, the counit. If V is an arbitrary H-module with

character χ, we have already used in the proof of Theorem (3.0.1) that the

matrix representation of the left multiplication by χ on the character ring

Ch(H) with respect to the basis χ1, . . . , χk has nonnegative integer entries:

If

χχj =
k∑
i=1

aijχi

then aij is just the multiplicity of Vi in the decomposition of V ⊗ Vj into

simple modules clearly a nonnegative integer.

Definition 4.0.7. The k × k-matrix A = (aij)i,j=1,...,k is called decompos-

able if it is possible to find a decomposition Ik = M ∪N of Ik = {1, . . . , k}
into disjoint nonempty sets M and N such that aij = 0 whenever i ∈ M
and jN , otherwise, it is called indecomposable.

Notation. Any power Am of a decomposable matrix is still decomposable,

since its matrix elements are

k∑
i1,...,im−1

aii1ai1i2 . . . aim−1j

and these are zero whenever i ∈M and j ∈ N .

Suppose that V is an H-module. The set of all elements of H that act

on V identically as zero is called the annihilator of V . This is obviously a

two-sided ideal, but not necessarily a Hopf ideal. But if we denote by J the

intersection of the annihilators of all the tensor powers V ⊗m of V, including
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the trivial module K for m = 0, we get the largest Hopf ideal contained in

the annihilator:

Lemma 4.0.8. J is a Hopf ideal of H. Every other Hopf ideal of H that is

contained in the annihilator of V is contained in J .

For a proof of this lemma, we refer to (cf [30] Thm. 1, p. 125). Note

that the usage of the notion of a Hopf algebra in [30] differs from our usage.

To adopt the proof, one has to use the fact that in a finite-dimensional Hopf

algebra a bi-ideal is a Hopf ideal(see cf [31] Lem. 6, p. 331).

Notation. A a simple H-module can be embedded into a tensor power of V

if and only if it is annihilated by J , this also shows that if a simple module

can be embedded into a tensor power of V , its dual can also be embedded

into a tensor power of V .

Now, let as before χ be the character and I be the annihilator of V, and

denote by A the matrix representation of the left multiplication by χ on the

character ring Ch(H) with respect to the basis consisting of the irreducible

characters χ1, . . . , χk.

Proposition 4.0.9. The following statements are equivalent:

1. I does not contain a nonzero Hopf ideal.

2. A is indecomposable.

Proof. The statement is correct if V is zero, even if H is one-dimensional,

so let us assume that V is nonzero. We first show that the first statement

implies the second. Let us assume that A is decomposable, and choose a

corresponding decomposition Ik = M ∪N . Since we saw above that powers

of a decomposable matrix are still decomposable, we then have for i ∈ M
and j ∈ N that Vi never appears as a direct summand of V ⊗m ⊗ Vj . On

the other hand, it follows from the above lemma that the intersection of

the annihilators of the tensor powers of V are zero, which means that every

simple module appears as a constituent of some V ⊗m. Suppose now that

Vi appears as a constituent of V ⊗r and that V ∗j appears as a constituent of

V ⊗s, which means that there are injective H-linear maps from Vi to V ⊗r and

from V ∗j to V ⊗s, which we indicate by hooked arrows. By Schur’s lemma,
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the trivial module K appears as a constituent of V ∗j ⊗ Vj :

K ↪→ V ∗j ⊗ Vj ↪→ V ⊗s ⊗ Vj

This implies that Vi appears as a constituent of V ⊗(r+s) ⊗ Vj :

Vi ↪→ V ⊗r ⊗K ↪→ V ⊗r ⊗ V ⊗s ⊗ Vj = V ⊗(r+s) ⊗ Vj

We have therefore reached a contradiction.

Let us next prove that the second statement implies the first; so assume

that A is indecomposable. Define the sets

M := {i ≤ k | Vi cannot be embedded into V ⊗m for any m}

N := {j ≤ k | Vj can be embedded into V ⊗m for some m}

If j ∈ N , choose m such that Vj can be embedded into V ⊗m. Vi then

appears in V ⊗Vj with multiplicity aij , and therefore Vi appears in V ⊗(m+1)

at least with multiplicity aij . Therefore, if i ∈M , we have aij = 0. Since A is

indecomposable and N is not empty, as it contains the indices corresponding

to the simple constituents of the nonzero module V , M must be empty. This

means that every simple module appears as a constituent of some tensor

power of V , and therefore the intersection of the annihilators of all these

tensor powers must be zero. But by the preceding lemma, this is the largest

Hopf ideal contained in I, and the assertion follows.

We can now prove that the order of a module is bounded by the dimen-

sion of the character ring:

Corollary 4.0.10. For a nonzero H-module V , we have :

ord(V ) ≤ dim(Ch(H)).

Proof. As above, let J be the intersection of the annihilators of all the tensor

powers of V . Since this is a Hopf ideal, H/J is a Hopf algebra, and V can

also be considered as a module over this algebra. If χ′ denotes the character

of V as a module over H/J , then the matrix A that represents the left

multiplication by χ′ with respect to the basis consisting of the irreducible

characters of H/J is, by the preceding proposition, indecomposable. If l :=
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dim(Ch(H/J)) ≤ dim(Ch(H)), then one of the powers A,A2, . . . , Al has a

nonzero (1, 1)-component (cf.[19], P. 397). If Am is this matrix, this means

that V ⊗m ⊗K contains the trivial module with nonzero multiplicity, i.e. ,

V ⊗m contains a nonzero invariant submodule.

For the following, we need to recall the main result of the theory of non-

negative matrices, namely the Perron-Frobenius theorem (cf. [19], P.398).

We divide the theorem into two parts, the first part saying the following:

Theorem 4.0.11. (Part 1) Suppose that A is an indecomposable square

matrix with nonnegative real entries. Then A has a positive eigenvalue λ,

called the Perron- Frobenius eigenvalue, with the property that | µ |≤ λ for

every other eigenvalue µ. The algebraic multiplicity of λ is one, i.e. λ is a

simple root of the characteristic polynomial. The corresponding eigenvector,

which is therefore unique up to scalar multiples, can be chosen to have

positive components. Such an eigenvector is then called a Perron-Frobenius

eigenvector.

Now we can the index of A, to be

ind(A) :=| {µ | µ is an eigenvalue of A with | µ |= λ} |

the number of eigenvalues for which the above inequality is actually an

equality. If ζ ∈ C is a primitive ind(A)-th root of unity, then the second

part of the Perron-Frobenius theorem can be formulated in the following

way :

Theorem 4.0.12. (Part 2) There is a diagonal matrix D whose diagonal

entries are ind(A)-th roots of unity such that DAD−1 = ζA.

In particular, since A is similar to ζA, ζµ is an eigenvalue of A whenever

µ is, showing that the eigenvalues µ of A that satisfy | µ |= λ are exactly

the numbers of the form µ = ζmλ. Furthermore, if x is an eigenvector

of D corresponding to the eigenvalue ζm, then Ax is an eigenvector of D

corresponding to the eigenvalue ζm+1, so that A shifts the eigenspaces of D

around cyclicly, although, since it is not necessarily invertible, it does not

always induce an isomorphism between these eigenspaces.

21



Suppose now that V is an H-module with character χ. We have already

seen in the above Lemma that the annihilator of V contains a unique largest

Hopf ideal J , namely the intersection of the annihilators of the tensor pow-

ers of V . As in the above Corollary, we consider V as a module over the

quotient Hopf algebra H/J, and it follows from the above Proposition that

the matrix representation A of the left multiplication by the character of V

on the character ring Ch(H/J) with respect to the basis that consists of the

irreducible characters of H/J is indecomposable.

Notation. If V is an H-module, then V is a faithful G(H/J)-module : If

g ∈ G(H/J) is a grouplike element of the quotient Hopf algebra H/J that

acts as the identity on V , then it also acts as the identity on every tensor

power of V , which implies that g − 1 ∈ J/J , so that g = 1.

We now consider the subgroup of G(H/J) consisting of those elements

that act on V as a scalar multiple of the identity:

Definition 4.0.13. GV := {g ∈ G(H/J) | ∃ξ ∈ K,∀v ∈ V : g.v = ξv}

Using this group, we can give the following formula for the index :

Theorem 4.0.14. The group GV is cyclic and contained in the center

Z(H/J) of H/J . Its order is equal to the index of A:

ind(A) =| GV |

Proof. As before, by replacing H by H/J , we can assume that J is zero.

For g ∈ GV , there is by definition a unique scalar ξ ∈ K such that g.v = ξv

for every v ∈ V . In this way, we get a group homomorphism :

GV → K×, g 7→ ξ

into the group of nonzero elements K× of K, which, as we saw above, is

injective. This shows that GV is isomorphic to a finite subgroup of K× and

therefore cyclic. To see that it is central, note that, for g ∈ GV and h ∈ H,

the elements gh and hg act in the same way on every tensor power of V , so

that gh− hg ∈ J and therefore gh = hg.

It remains to show the index formula. Using a bar to denote the character
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of the dual module, we have the identity :

k∑
i=1

χχi ⊗ χi =
i∑
i=1

χi ⊗ χiχ

(cf. [20],P. 211). Evaluating the second tensorand on an element g ∈ GV
that acts on V by multiplication with ξ ∈ K, we get

χ

k∑
i=1

χi(g
−1)χi = ξdim(V )

k∑
i=1

χi(g
−1)χi

which means that
∑k

i=1 χi(g
−1)χi is an eigenvector for the left multiplication

by χ corresponding to the eigenvalue ξdim(V ). Obviously, the absolute value

of this eigenvalue is dim(V ), so that, if ζ is the primitive ind(A)-th root of

unity appearing in the second part of the Perron-Frobenius theorem, the

discussion there shows that ξ is a power of ζ. Since ξ and g have the same

order, the order of g divides ind(A), and if we choose for g a generator of

the cyclic group GV , we get that | GV | divides ind(A).

The more difficult part is to establish the converse. For this, let χ′ ∈
Ch(H) be an eigenvector for the left multiplication by χ corresponding to

the eigenvalue ζdim(V ). Note that χ′ is not necessarily the character of any

module. By the Perron-Frobenius theorem, such an eigenvector is unique up

to scalar multiples. Now, for any χ′′ ∈ Ch(H), χ′χ′′ is also an eigenvector

corresponding to this eigenvalue, and therefore there is a number γ(χ′′) ∈ K
such that χ′χ′′ = γ(χ′′)χ′. It is clear that

γ : Ch(H)→ K

is an algebra homomorphism. Since Ch(H) is semisimple (cf. [21], P.55),

this shows that Kχ′ is a one-dimensional two-sided ideal of Ch(H); in par-

ticular, χ′ is central and we have

ζdim(V )χ′ = χχ′ = χ′χ = γ(χ)χ′

so that γ(χ) = ζdim(V ). Raising this equation to the m-th power, we get

γ(χm) = ζmdim(V ⊗m). By decomposing V ⊗m into simple modules, we get

an equation of the form χm =
∑k

i=1 kiχi for some nonnegative integers ki.
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Applying γ, this equation becomes

k∑
i=1

ζmdim(V ⊗m) = γ(χm) =
k∑
i=1

kiγ(χi)

Since χiχ
′ = γ(χi)χ

′, we have that γ(χi) is an eigenvalue of the left multi-

plication by χi. But we know that the absolute value of γ(χi) is bounded

by ni = dim(Vi). The above equality can therefore only hold if we have

ζmkini = kiγ(χi) for all i = 1, . . . , k. This shows that we have γ(χi) = ζmni

if ki 6= 0, i.e. , if Vi appears as a constituent of V ⊗m. In particular, the num-

bers m for which Vi appears as a constituent of V ⊗m cannot be arbitrary,

but can only appear in an ind(A)-arithmetic progression.

Since J , the intersection of the annihilators of all the tensor powers of

V , is zero, every simple module Vi appears as a constituent of some tensor

power V ⊗mi , and we therefore have γ(χi) = ζmini for some number mi,

which is unique modulo ind(A). Note that we can assume that mi = 1

whenever Vi is a constituent of V . Now define

g :=

k∑
i=1

ζmiei

where ei ∈ Z(H) is the centrally primitive idempotent corresponding to Vi.

This is obviously a central element of order ind(A) that satisfies γ(χi) =

χi(g) for all i = 1, . . . , k. We claim that g is grouplike. For this, note that

by construction g acts on V ⊗m by multiplication with ζm. This implies that

both ∆(g) and g⊗ g act on V ⊗m⊗V ⊗l by multiplication with ζm+l, so that

∆(g) − g ⊗ g annihilates this module. Now the annihilator of the H ⊗ H-

module V ⊗m ⊗ V ⊗l is the sum I1 ⊗H +H ⊗ I2, where I1 is the annihilator

of V ⊗m and I2 is the annihilator of V ⊗l. This shows that the intersection of

all these annihilators is zero, so that in particular ∆(g)− g⊗ g = 0, i.e. g is

grouplike. Since g acts on V by multiplication with ζ we have that g is an

element of GV of the order ind(A), so that conversely ind(A) divide | GV |.
Furthermore, this shows that g generates GV .

Notation. This proof also shows what the diagonal matrix D that appears in

the second part of the Perron-Frobenius theorem is in the present case : In

24



the situation and with the notation of the proof, we have D = diag(ζm1 , . . . ,

ζmk), so that D is the matrix representation of the map

Ch(H)→ Ch(H), ϕ 7→ (g → ϕ)

with respect to the basis consisting of the irreducible characters. Here, the

action appearing in this expression is defined by (g → ϕ)(h) = ϕ(hg). This

holds since we have g → χ = ζχ and therefore

g → (χϕ) = (g → χ)(g → ϕ) = ζχ(g → ϕ)

If V is simple, then every central grouplike element of H/J , i.e. , every

grouplike element that is central in H/J , acts on V by multiplication with

a scalar. Therefore, GV = G(H/J) ∩ Z(H/J) is exactly the set of central

grouplike elements, and we get the following corollary:

Corollary 4.0.15. Suppose that V is simple. Then the group G(H/J) ∩
Z(H/J) of central grouplike elements of H/J is cyclic, and its order is equal

to the index of A:

ind(A) =| G(H/J) ∩ Z(H/J) |

As another consequence, we record the following relation between the

three invariants that we have studied:

Proposition 4.0.16. ind(A) divides exp(H) and ord(V ).

Proof. As before, let J be the largest Hopf ideal contained in the annihilator

of V . That ind(A) = exp(GV ) divedes exp(H) follows from the fact that

the exponent of Hopf subalgebras and quotients divide the exponent of the

larger object. To see that ind(A) divides ord(V ), note first that the order

of V as a module over H is the same as its order as a module over H/J ,

which implies that we can, as before, assume that J is zero. By the second

part of the Perron-Frobenius theorem, we now have a diagonal matrix D

such that DAD−1 = ζA, where ζ is a primitive ind(A)-th root of unity. If

m is the order of V , we know, for every irreducible character χi at least

mult(V ) times, which shows that the diagonal entries of Am are all strictly

positive integers. By comparing the diagonal components on both sides of

the equation DAmD−1 = ζmAm, we see that ζm = 1, which shows that

ind(A) divides m = ord(V ).
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Now, we have the follow important proposition which will state that

the order and index in this section are indeed special situation of tensor

category.

Proposition 4.0.17. The order and index for semisimple Hopf algebra are

equivalent to the definition of tensor category.

Proof. Firstly, we have state that the representation category is obvious

tensor category. Let C := Rep(H), then the unit object I in C is indeed field

k. If m is the smallest number such that (V ⊗m)H 6= 0, it means that k is

the direct summand of V ⊗m. So we have prove that Order is equivalent to

the definition of tensor category. Secondly,

K0(C) ' Ch(H), via Vi 7→ χi.

Vi is any simple H-module with χi the corresponding character, it is obvi-

ously isomorphism of ring. From the definition of index, we can easily get

that the Index is also equivalent to the definition of tensor category.

5 Examples

In this section, we will use the order to prove a simple proposition.

Proposition 5.0.18. Rep(k[Zn]) is not tensor equivalent to Rep(k[Zn+1]).

Proof. Let V be a simple k[Zn]-module and g is a generator of k[Zn]. It is

easy to see that V is one-dimensional. If V := kv, then g · v = ζv, from

gn = 1, we have ζn = 1 i.e. ζ is a n-th primitive root of unit. So we can

easily get ord(V ) = ord(ζ) = n. If

F : Rep(k[Zn])→ Rep(k[Zn+1])

is an equivalence of tensor category, then for simple k[Zn]-module, F (V ) is

also a simple k[Zn+1]-module. So we have ord(F (V )) = n + 1, ord(V ) 6=
ord(F (V )). It is a contradiction.
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