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Abstract

The multiplier Hopf algebra extends the classic Hopf algebra structure to the sit-

uation where there is not necessarily an identity, and uses the Fourier transform to

construct its duality, solves the duality problem of a class of infinite-dimensional Hopf

algebras, and further develops the Pontryagin duality theorem. This thesis uses the

basic idea of the multiplier Hopf algebra theory to construct the dual of a class of

infinite-dimensional Hopf quasigroups, and obtains the concept of multiplier Hopf co-

quasigroups. On this basis, the properties and biduality theorem of infinite dimensional

Hopf quasigroups and multiplier Hopf coquasigroups are further discussed. Finally, as

an application of the Fourier transform, we consider the diagonal crossed product of

the infinite dimensional co Frobenius Hopf algebra, the relationship between the rep-

resentation category of the diagonal crossed product and the Yetter-Drinfeld category,

and the Drinfeld twist theory of multiplier Hopf algebras. This thesis is divided into

five chapters.

In Chapter 1, we provide the research background, motivation and main results.

In Chapter 2, we recall some basic concepts related to this thesis.

In Chapter 3, we first verifies that the integral is one-dimensional, and then uses

the integral to construct the dual of the infinite-dimensional Hopf quasigroup. This

dual has a structure similar to the multiplier Hopf algebra, but does not satisfy the

coassociativity. We call it multiplier Hopf coquasigroups. We also consider the case

where the underlying algebra is a ∗-algebra, and get a similar conclusion. At the end

of this chapter, we give our motivating example of the multiplier Hopf coquasigroup.

In Chapter 4, we first discuss the basic properties of multiplier Hopf coquasigroups,

such as the existence of local units, modular automorphism, and the uniqueness of

integrals et al. Secondly, similar to the classic multiplier Hopf algebra and algebraic

quantum group theory, we uses integrals and cointegrals to construct the duality of a

iv



H®�ÆÆ¬�ïÄ�w=©Á�^�

discrete multiplier Hopf coquasigroup, and prove that this duality is a Hopf quasigroup.

Finally, it is proved that the biduality theorem is valid for Hopf quasigroups and discrete

multiplier Hopf coquasigroups.

In Chapter 5, we use the techniques of the previous two chapters to discuss the

representation category of the diagonal crossed product of an infinite dimensional co

Frobenius Hopf algebra, and prove that the representation category of the diagonal

crossed product is isomorphic to its Yetter-Drinfeld category. The Drinfeld twist on

the multiplier Hopf algebra is also discussed, and the quasitriangular structure and

duality of the new multiplier Hopf algebra after the Drinfeld twist transformation are

verified.

Keywords: Multiplier Hopf coquasigroup; Hopf quasigroup; Drinfeld twist; integral;

Yetter-Drinfeld category; diagonal crossed product.
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Chapter 1 Introduction

§1.1 Background

Hopf algebras have important connections to quantum theory, Lie algebras, knot

and braid theory, operator algebras, and other areas of physics and mathematics. Since

V. G. Drinfel’d gave his lecture at the 1986 International Congress of Mathematicians

[15], Hopf algebras have been intensely studied in the last decades. Hopf algebras had

several generalizations, such as quantum groupoids, weak Hopf algebras, quasi-Hopf

algebras, multiplier Hopf algebras, Hopf (co)quasigroups, et al.

Multiplier Hopf algebras, introduced by A. Van Daele in [23], give a nice answer to

the dual of a class of infinite-dimensional Hopf algebras. Roughly speaking, an algebraic

quantum group is a multiplier Hopf ∗-algebra with a positive invariant functional (Haar

measure), the dual of an algebraic quantum group is also an algebraic quantum group,

and the dual of the dual is isomorphic to the original one, i.e., Pontryagin duality

holds. The non-degenerate faithful integrals play a key role in the dual. The theory

of multiplier Hopf algebra and algebraic quantum group was purely algebraic, and the

main technique is so-called Fourier transform.

Just as many Lie groups have an entirely algebraic description as commutative

Hopf algebras, J. Kim and S. Majid developed the corresponding theory of ’algebra-

ic quasigroups’ including the coordinate algebra k[S7] of the 7-sphere in [19]. They

defined the notion of a Hopf quasigroup and showed that a theory similar to that of

Hopf algebras was possible in this case. The first author in his following paper [18]

developed the integral theory for Hopf (co)quasigroups, Fourier transform, and showed

that a finite dimensional Hopf (co)quasigroup has a unique integration up to scalar

and an invertible antipode. The dual of a finite dimensional Hopf quasigroup is a Hopf

coquasigroup. Then a natural question arise: How about the dual of an infinite dimen-

sional Hopf quasigroup? This motivates the main object of this thesis: multiplier Hopf

coquasigroups, which can be considered as a generalization of multiplier Hopf algebras

and Hopf coquasigroups.

Fourier transform in multiplier Hopf algebra and multiplier Hopf coquasigroup is

a valuable tool to deal with infinite-dimensional case. Therefore, this thesis focus the

1



applications of Fourier transform on the dual of Hopf quasigroups and Hopf coquasi-

groups.

§1.2 Main results

In this subsection, some interesting results are listed.

For an infinite dimensional Hopf quasigroupH, the left faithful integral ϕ is unique

up to scalar.

Theorem 3.1.2 Let ϕ′ be another left faithful integral on H, then ϕ′ = λϕ for

some scalar λ ∈ k, i.e., the faithful left integral on H is unique up to scalar.

Use this faithful left integral, we construct the integral dual Ĥ = {ϕ(·h) |h ∈ H}.
under the assumption

ϕ
(
( ·h)h′

)
, ϕ
(
h′(h · )

)
∈ Ĥ, ∀h, h′ ∈ H,

we show that Ĥ has a structure similar to the multiplier Hopf algebra, i.e. multiplier

Hopf coquasigroup defined in Definition 3.2.11.

Theorem 3.2.12 Let (H,∆) be an infinite dimensional Hopf quasigroup with a

faithful integral ϕ and a bijective antipode S. Then under Assumption 3.2.3 the inte-

gral dual (Ĥ, ∆̂) is a regular multipler Hopf coquasigroup with a faithful integral.

Next, we consider the properties of a multiplier Hopf coquasigroup A. One of the

useful properties is the existence of local units:

Proposition 4.1.1 Let (A,∆) be a regular multiplier Hopf coquasigroup with a

non-zero integral ϕ. Given finite numbers of elements {a1, a2, · · · , an}, there exists an

element e ∈ A such that aie = ai = eai for all i.

Using the local units, we can get

A = span{(id⊗ ϕ)
(
∆(a)(1⊗ b)

)
| a, b ∈ A},

A = span{(id⊗ ϕ)
(
(1⊗ a)∆(b)

)
| a, b ∈ A},

where ’span’ means the linear span of a set of element. This is useful in the dual

2



construction of multiplier Hopf coquasigroup.

In order to construct the dual, we need the faithful left integrals. we show that

faithful left integrals is 1-dimensional.

Theorem 4.1.4 Let ϕ′ be another faithful left integral on (A,∆), then ϕ′ = λϕ

for some scalar λ ∈ k, i.e., the faithful left integral on A is unique up to scalar.

Using this kind of faithful left integrals, we construct the dual of discrete multiplier

Hopf coquasigroup, and get another main result:

Theorem 4.2.7 Let (A,∆) be a regular multiplier Hopf coquasigroup of discrete

type with a faithful left integral ϕ. Then (Â, ∆̂) is a Hopf quasigroup.

Then, we consider the biduality theorem of Hopf quasigroup and discrete multiplier

Hopf coquasigroup, and get the following two results:

Theorem 4.3.1 Let (H,∆) be a Hopf quasigroup, and (Ĥ, ∆̂) be the dual mutipli-

er Hopf coquasigroup of discrete type. For h ∈ H and f ∈ Ĥ, we set Γ(h)(f) = f(h).

Then Γ(h) ∈ ̂̂
H for all h ∈ H. Moreover, Γ is an isomorphism between the Hopf

quasigroups (H,∆) and (
̂̂
H,
̂̂
∆).

Theorem 4.3.2 Let (A,∆) be a discrete multiplier Hopf coquasigroup, and (Â, ∆̂)

be the dual Hopf quasigroup. For a ∈ A and w ∈ Â, we set Γ(a)(w) = w(a). Then

Γ(a) ∈ ̂̂A for all a ∈ A. Moreover, Γ is an isomorphism between the multiplier Hopf

coquasigroup (A,∆) and (
̂̂
A,
̂̂
∆).

In the last chapter, we apply the techniques introduced in multiplier Hopf algebra

and multiplier Hopf coquasigroup theories to some special cases. First, we construct the

diagonal crossed product
⊕

(α,β)∈G Ĥ ./ H(α, β) for an infinite dimensional coFrobenius

Hopf algebra H with α, β ∈ Aut(H).

Proposition 5.1.1 Let H be a coFrobenius Hopf algebra with its dual multiplier

Hopf algebra Ĥ. Then A =
⊕

(α,β)∈GA(α,β) =
⊕

(α,β)∈G Ĥ ./ H(α, β) is a quasitrian-

gular G-cograded multiplier Hopf algebra with the following strucrures:

• For any (α, β) ∈ G, A(α,β) has the multiplication given by

(p ./ h)(q ./ l) = p
(
α(h(1)) I q J S−1β(h(3))

)
./ h(2)l

for p, q ∈ Ĥ and h, l ∈ H.

3



• The comultiplication on A is given by:

∆(α,β),(γ,δ) : A(α,β)∗(γ,δ) −→M(A(α,β) ⊗A(γ,δ)),

∆(α,β),(γ,δ)(p ./ h) = ∆cop(p)(γ ⊗ γ−1βγ)∆(h).

• The counit εA on A(ι,ι) = D(H) is the counit on the Drinfel’d double of H.

• For any (α, β) ∈ G, the antipode is given by

S : A(α,β) −→ A(α,β)−1 ,

S(α,β)(p ./ h) = T (αβS(h)⊗ S−1(p)) in A(α,β)−1 = A(α−1,αβ−1α−1).

• A crossing action ξ : G −→ Aut(A) is given by

ξ
(γ,δ)
(α,β) : A(γ,δ) −→ A(α,β)∗(γ,δ)∗(α,β)−1 = A(αγα−1,αβ−1δγ−1βγα−1),

ξ
(γ,δ)
(α,β)(p ./ h) = p ◦ βα−1 ./ αγ−1β−1γ(h).

• A generalized R-matrix is given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G

ε ./ β−1(u)⊗ v ./ 1.

Then we consider the epresentation category of the diagonal crossed product, and

show it is isomorphic to the Yetter-Drinfeld category.

Theorem 5.1.5 For a coFrobenius Hopf algebra H,

HYDH(α, β) ∼= Ĥ./H(α,β)M. (1.1)

Theorem 5.1.7 For a coFrobenius Hopf algebra H and its G-cograded multipli-

er Hopf algebra A =
⊕

(α,β)∈G Ĥ ./ H(α, β), Rep(A) and YD(H) are isomorphic as

braided T -categories over G.

In the end, we consider Drinfeld twists of multiplier Hopf algebras, and determines

how the integral changes under a Drinfeld twist in multiplier Hopf algebras case.

4



Theorem 5.2.11 Let (A,∆) be a quasitriangular multiplier Hopf algebra with

generalized R-matrixR. Then (AJ ,∆J) is also quasitriangular, and the quasitriangular

structure given by

RJ = J−121 RJ.

Theorem 5.2.13 Let (A,∆) be a counimodular algebraic quantum group with a

non-zero left (resp. right) integral ϕ (resp. ψ) and J be a Drinfeld twist. Then the

elements ϕJ = uJ ⇀ ϕ and ψJ = ψ ↼ u−1J are non-zero left and right integrals on

(AJ ,∆J) respectively.

5



Chapter 2 Preliminaries

All spaces we considered are over a fixed field k. Let A be an (associative) algebra.

We do not assume that A has a unit, but we do require that the product, seen as a

bilinear form, is non-degenerated. This means that, whenever a ∈ A and ab = 0 for

all b ∈ A or ba = 0 for all b ∈ A, we must have that a = 0. Then we can consider the

multiplier algebraM(A) of A. Recall thatM(A) is characterized as the largest algebra

with identity containing A as an essential two-sided ideal. In particularly, we still have

that, whenever a ∈M(A) and ab = 0 for all b ∈ A or ba = 0 for all b ∈ A, again a = 0.

Furthermore, we consider the tensor algebra A⊗A. It is still non-degenerated and we

have its multiplier algebra M(A⊗ A). There are natural imbeddings

A⊗ A ⊆M(A)⊗M(A) ⊆M(A⊗ A).

In generally, when A has no identity, these two inclusions are stict. If A already has

an identity, the product is obviously non-degenerate and M(A) = A and M(A⊗A) =

A⊗A. More details about the concept of the multiplier algebra of an algebra, we refer

to [23].

Let A and B be non-degenerate algebras, if homomorphism f : A −→ M(B) is

non-degenerated (i.e., f(A)B = B and Bf(A) = B), then has a unique extension to a

homomorphism M(A) −→M(B), we also denote it f .

§2.1 Multiplier Hopf algebras

Now, we recall the definition of a multiplier Hopf algebra (see [23] for details).

A comultiplication on algebra A is a homomorphism ∆ : A −→ M(A ⊗ A) such that

∆(a)(1 ⊗ b) and (a ⊗ 1)∆(b) belong to A ⊗ A for all a, b ∈ A. We require ∆ to be

coassociative in the sense that

(a⊗ 1⊗ 1)(∆⊗ ι)(∆(b)(1⊗ c)) = (ι⊗∆)((a⊗ 1)∆(b))(1⊗ 1⊗ c)

for all a, b, c ∈ A (where ι denotes the identity map).

A pair (A,∆) of an algebra A with a non-degenerate product and a comultipli-

6



cation ∆ on A is called a multiplier Hopf algebra, if the linear map T1, T2 defined

by

T1(a⊗ b) = ∆(a)(1⊗ b), T2(a⊗ b) = (a⊗ 1)∆(b) (2.1)

are bijective.

The bijectivity of the above two maps is equivalent to the existence of a counit

and an antipode S satisfying (and defined by)

(ε⊗ ι)(∆(a)(1⊗ b)) = ab, m(S ⊗ ι)(∆(a)(1⊗ b)) = ε(a)b, (2.2)

(ι⊗ ε)((a⊗ 1)∆(b)) = ab, m(ι⊗ S)((a⊗ 1)∆(b)) = ε(b)a, (2.3)

where ε : A −→ k is a homomorphism, S : A −→M(A) is an anti-homomorphism and

m is the multiplication map, considered as a linear map from A⊗A to A and extended

to M(A)⊗ A and A⊗M(A).

A multiplier Hopf algebra (A,∆) is called regular if (A,∆cop) is also a multiplier

Hopf algebra, where ∆cop denotes the co-opposite comultiplication defined as ∆cop =

τ ◦∆ with τ the usual flip map from A⊗A to itself (and extended to M(A⊗A)). In

this case, ∆(a)(b⊗ 1), (1⊗ a)∆(b) ∈ A⊗A for all a, b ∈ A. By Proposition 2.9 in [24],

a multiplier Hopf algebra (A,∆) is regular if and only if the antipode S is bijective

from A to A.

Throughout this paper we freely use the coalgebra, Hopf algebra and multiplier

Hopf algebra terminology introduced in [4, 12, 21, 23, 24]. We will use the adapted

Sweedler notation (see [25]) for multiplier Hopf algebras, e.g., write a(1) ⊗ a(2)b for

∆(a)(1⊗ b) and ab(1) ⊗ b(2) for (a⊗ 1)∆(b).

§2.1.1 Algebraic quantum groups and their dualities

Assume in what follows that (A,∆) is a regular multiplier Hopf algebra. A linear

functional ϕ on A is called left invariant if (ι⊗ϕ)∆(a) = ϕ(a)1 in M(A) for all a ∈ A.
A non-zero left invariant functional ϕ is called a left integral on A. A right integral ψ

can be defined similarly.

In general, left and right integrals are unique up to a scalar if they exist. And if

a left integral ϕ exists, a right integral also exists, namely ϕ ◦ S. Although may be

7



different, left and right integrals are related. For a left integral ϕ, there is a unique

group-like element (modular element) δ ∈ M(A) such that ϕ(S(a)) = ϕ(aδ) for all

a ∈ A.

For an algebraic quantum group (A,∆) with integrals, define Â as the space of

linear functionals on A of the form ϕ(·a), where a ∈ A. Then Â can be made into a

regular multiplier Hopf algebra with a product(resp. coproduct ∆̂ on Â) dual to the

coproduct ∆ on A (resp. product of A). It is called the dual of (A,∆). The various

objects associated with (Â, ∆̂) are denoted as for (A,∆) but with a hat. However, we

use ε and S also for the counit and antipode on the dual. The dual (Â, ∆̂) also has

integrals, i.e., the dual is also an algebraic quantum group. A right integral ψ̂ on Â

is defined by ψ̂(ϕ(·a)) = ε(a) for all a ∈ A. Repeating the procedure, i.e., taking the

dual of (Â, ∆̂), we can get ̂̂A ∼= A (see Theorem (Biduality) 4.12 in [24]).

From Definition 1.5 in [6], an algebraic quantum group A is called counimodular,

if the dual multiplier Hopf algebra Â is unimodular integral, i.e., δ̂ = 1 in M(A). For

a counimodular algebraic quantum group, we have ϕ(ab) = ϕ(bS2(a)) for all a, b ∈ A
(see Proposition 1.6 in [6]).

Start with two regular multiplier Hopf algebras A and B together with a non-

degenerate bilinear map 〈·, ·〉 from A×B to K satisfying certain properties. The main

property is the comultiplication in A is dual to the product in B and vice versa. For

more details, see [13].

For a ∈ A and b ∈ B, we can define multipliers a I b, b J a ∈ M(B) and

b I a, a J b ∈ M(A) in the following way. For a′ ∈ A and b′ ∈ B, we have: (b I

a)a′ =
∑
〈a(2), b〉a(1)a′, (a I b)b′ =

∑
〈a, b(2)〉b(1)b′, (a J b)a′ =

∑
〈a(1), b〉a(2)a′ and

(b J a)b′ =
∑
〈a, b(1)〉b(2)b′. The regularity conditions on the dual paring 〈, 〉 say that

the multipliers b I a and a J b in M(A) (resp. a I b and b J a in M(B)) actually

belong to A (resp. B). For more details, see [8].

We mention that 〈S(a), b〉 = 〈a, S(b)〉, 〈1M(A), b〉 = ε(b) and 〈a, 1M(B)〉 = ε(b).

Sometimes without confusion we denote the unit 1M(A) of M(A) by 1. We also use

bilinear forms on the tensor products in the following way

〈a⊗ a′, b⊗ b′〉 = 〈a, b〉〈a′, b′〉, 〈b⊗ a, a′ ⊗ b′〉 = 〈a′, b〉〈a, b′〉

8



for all a, a′ ∈ A and b, b′ ∈ B. These bilinear forms are non-degenerate and can be

extended in a natural way to the multiplier algebra at one side.

§2.1.2 Multiplier Hopf T -coalgebras and their quasitriangular structures

Let (A,∆) be a multiplier Hopf algebra and G a group with unit e. Assume that

there is a family of (non-trivial) subalgebras {Ap}p∈G of A so that

(1) A =
⊕

p∈GAp with ApAq = 0 whenever p, q ∈ G and p 6= q.

(2) ∆(Apq)(1⊗ Aq) = Ap ⊗ Aq and (Ap ⊗ 1)∆(Apq) = Ap ⊗ Aq for all p, q ∈ G.

Then (A,∆) is called a G-cograded multiplier Hopf algebra(see [?, 10]).

We extend the Sweedler notation for a comultiplication in the following way: for

any p, q ∈ G, a ∈ Apq and a′ ∈ Aq, we write

∆p,q(a)(1⊗ a′) = a(1,p) ⊗ a(2,q)a′.

Let A be a G-cograded multiplier Hopf algebra, then A has the form A =
⊕

p∈GAp.

Assume that there is a group homomorphism π : G −→ Aut(A). We call π an admis-

sible action of G on A if also the following requirements hold

(1) ∆(πp(a)) = (πp ⊗ πp)∆(a) for all a ∈ A.

(2) πp(Aq) = Aρp(q), where ρ is an action of the group G on itself.

(3) πρp(q) = πpqp−1 .

This means that the map π takes care of ρ not being the adjoint action. If ρ is the

adjoint action, π is called a crossing.

A group-cograded multiplier Hopf algebra A =
⊕

p∈GAp is said to be a multiplier

Hopf T -coalgebra provided it is endowed with a crossing π such that each πq preserves

the comultiplication and the counit, i.e., for all p, q, r ∈ G,

(πq ⊗ πq)∆p,r = ∆qpq−1,qrq−1πq, επq = ε,

and π is multiplicative in the sense that πpq = πpπq for all p, q ∈ G. It can be considered

as generalization of crossed Hopf G-coalgebra introduced in [?].
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Let A be a multiplier Hopf T -coalgebra, then we can construct a new regular mul-

tiplier Hopf algebra on A by deforming the comultiplication while the algebra structure

on A is kept (see Theorem 3.11 in [9]). The comultiplication deformation of A depends

on the crossing π in the following way: for all a ∈ A and a′ ∈ Aq,

∆̃(a)(1⊗ a′) = (πq−1 ⊗ ι)(∆(a)(1⊗ a′)).

Recall from [10], a G-cograded multiplier Hopf algebra with a crossing action π is

called quasitriangular if there is a multiplier R =
∑

p,q∈GRp,q with Rp,q ∈M(Ap ⊗Aq)
such that

(πp ⊗ πp)(R) = R, R∆(a) = (∆̃)cop(a)R,

(∆̃⊗ ι)(R) = R13R23, (ι⊗∆)(R) = R13R12.

for all p ∈ G and a ∈ A. Sometimes we call R a generalized R-matrix.

§2.2 Hopf (co)quasigroups

Recall from [19] a Hopf quasigroup is possibly non-associative but unital algbera

H equipped with algebra homomorphisms ∆ : H −→ H ⊗ H, ε : H −→ k forming a

coassociative coalgebra and a map S : H −→ H such that

m(id⊗m)(S ⊗ id⊗ id)(∆⊗ id) = ε⊗ id = m(id⊗m)(id⊗ S ⊗ id)(∆⊗ id),

m(m⊗ id)(id⊗ S ⊗ id)(id⊗∆) = id⊗ ε = m(m⊗ id)(id⊗ id⊗ S)(id⊗∆).

These two equations can be written more explicitly as: for all g, h ∈ H,

∑
S(h(1))(h(2)g) =

∑
h(1)
(
S(h(2))g

)
=
∑(

gS(h(1))
)
h(2) =

∑
(gh(1))S(h(2)) = ε(h)g,

where we write ∆h =
∑
h(1)⊗h(2) and for brevity, we shall omit the summation signs.

The Hopf quasigroup H is called flexible if

h(1)(gh(2)) = (h(1)g)h(2), ∀g, h ∈ H, (2.4)
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and alternative if also

h(1)(h(2)g) = (h(1)h(2))g, h(g(1)g(2)) = (hg(1))g(2), ∀g, h ∈ H. (2.5)

H is called Moufang if

h(1)
(
g(h(2)f)

)
=
(
(h(1)g)h(2)

)
f, ∀h, g, f ∈ H. (2.6)

It was proved that the antipode S is antimultiplicative and anticomultiplicative,

i.e., for all g, h ∈ H,

S(gh) = S(h)S(g), ∆(Sh) = S(h(2))⊗ S(h(1)).

Moreover, if H is cocommutative flexible Hopf quasigroup, then S2 = id and for all

g, h ∈ H,

h(1)
(
gS(h(2))

)
= (h(1)g)S(h(2)).

Dually, we can obtain a Hopf coquasigroup by reversing the arrows on each map

in Hopf quasigroup.

A Hopf coquasigroup is a unital associative algebra A equipped with counital

algebra homomorphism ∆ : A −→ A ⊗ A, ε : A −→ k and a linear map S : A −→ A

such that for all a ∈ A,

(m⊗ id)(S ⊗ id⊗ id)(id⊗∆)∆ = 1⊗ id = (m⊗ id)(id⊗ S ⊗ id)(id⊗∆)∆,

(id⊗m)(id⊗ S ⊗ id)(∆⊗ id)∆ = id⊗ 1 = (id⊗m)(id⊗ id⊗ S)(∆⊗ id)∆.

In other word,

S(a(1))a(2)(1) ⊗ a(2)(2) = 1⊗ a = a(1)S(a(2)(1))⊗ a(2)(2),

a(1)(1) ⊗ S(a(1)(2))a(2) = a⊗ 1 = a(1)(1) ⊗ a(1)(2)S(a(2)).

A Hopf coquasigroup is flexible if

a(1)a(2)(2) ⊗ a(2)(1) = a(1)(1)a(2) ⊗ a(1)(2), ∀a ∈ A, (2.7)
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and alternative if also

a(1)a(2)(1) ⊗ a(2)(2) = a(1)(1)a(1)(2) ⊗ a(2), (2.8)

a(1) ⊗ a(2)(1)a(2)(2) = a(1)(1) ⊗ a(1)(2)a(2), ∀a ∈ A. (2.9)

A is called Moufang if

a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2) ⊗ a(1)(1)(2) ⊗ a(2), ∀a ∈ A, (2.10)

The term ’counital’ here means

(id⊗ ε)∆ = id = (ε⊗ id)∆.

However, ∆ is not assumed to be coassociative.

It was shown in [19] Proposition 5.2 that: Let A be a Hopf coquasigroup, then

(1) m(S ⊗ id)∆ = µε = m(id⊗ S)∆.

(2) S is antimultiplicative S(ab) = S(b)S(a) for all a, b ∈ A.

(3) S is anticomultiplicative ∆S(a) = S(a(2))⊗ S(a(1)) for all a ∈ A.

Hence a Hopf coquasigroup is Hopf algebra iff it is coassociative.
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Chapter 3 Hopf quasigroups with faithful integrals

For an infinite dimensional Hopf quasigroup, if the faithful integral exists, then it

is unique up to scalar. Base on the faithful integrals, we construct the integral dual of

a class of infinite dimensional Hopf quasigroups, and show that the integral dual has a

similar structure to Hopf coquasigroup, which is a regular multiplier Hopf coquasigroup

with a faithful integral.

§3.1 Integrals on Hopf quasigroups

Let H be a finite dimensional Hopf quasigroup and H∗ = Hom(H, k) be the dual

space with natural Hopf coquasigruoup structure given by

〈ab, h〉 = 〈a, h(1)〉〈b, h(2)〉, 〈∆(a), h⊗ g〉 = 〈a, hg〉,

〈1, h〉 = ε(h), 〈a, 1〉 = ε(a), 〈S(a), h〉 = 〈a, S(h)〉.

Then there is a natural question: For an infinite dimensional Hopf quasigroup H, how

about its dual?

Recall from [18], a left (resp. right) integral on H is a nonzero element ϕ ∈ H∗

(resp. ψ ∈ H∗ ) such that

(id⊗ ϕ)∆(h) = ϕ(h)1H
(
resp.(ψ ⊗ id)∆(h) = ψ(h)1H

)
, ∀h ∈ H.

And from Lemma 3.3 in [18], we have that ϕ ◦ S is a right integral on H.

Lemma 3.1.1 [ [18], Lemma 3.4, 3.8] Let ϕ (resp. ψ) be a left (resp. right)

integral on H, then for h, g ∈ H

h(1)ϕ
(
h(2)S(g)

)
= ϕ

(
hS(g(1))

)
g(2), h(1)ϕ(gh(2)) = S(g(1))ϕ(g(2)h). (3.1)

ψ
(
S(g)h(1)

)
h(2) = ψ

(
S(g(2))h

)
g(1), ψ(g(1)h)g(2) = ψ(gh(1))S(h(2)). (3.2)

Proof From the proof of Lemma 3.4 and 3.8 in [18], we can easily check the above

equations also hold in infinite dimensional case. 2
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In the following, we will constuct the ’integral dual’ of a class of infinite dimensional

Hopf quasigroup. Let H be an infinite dimensional Hopf quasigroup with a bijective

antipode and a faithful left integral, i.e., ϕ(gh) = 0,∀h ∈ H ⇒ g = 0 and ϕ(gh) =

0,∀g ∈ H ⇒ h = 0.

First, we show that for the infinite dimensional Hopf quasigroup, the faithful left

integral is unique up to scalar.

Theorem 3.1.2 Let ϕ′ be another faithful left integral on H, then ϕ′ = λϕ for

some scalar λ ∈ k, i.e., the faithful left integral on H is unique up to scalar.

Proof From Lemma 3.1.1, we have h(1)ϕ(gh(2)) = S(g(1))ϕ(g(2)h) for all h, g ∈ H.

Apply ϕ′ to both expressions in this equation. Because ϕ′ ◦ S is a right integral, the

right hand side will give

ϕ′(Sg(1))ϕ(g(2)h) = ϕ(ϕ′S(g(1))g(2)h) = ϕ(ϕ′S(g)1H · h) = ϕ′S(g)ϕ(h).

For the left hand side,

ϕ′(h(1)ϕ(gh(2))) = ϕ′(h(1))ϕ(gh(2)) = ϕ(gϕ′(h(1))h(2)) = ϕ(gδh),

where δh = ϕ′(h(1))h(2). Therefore, ϕ′S(g)ϕ(h) = ϕ(gδh) for all h, g ∈ H.

We claim that there is an element δ ∈ H such that δh = ϕ(h)δ for all h ∈ H.

Indeed, for any h′ ∈ H

ϕ(gϕ(h′)δh) = ϕ(h′)ϕ(gδh) = ϕ(h′)ϕ′S(g)ϕ(h)

= ϕ(h)ϕ′S(g)ϕ(h′) = ϕ(h)ϕ(gδh′)

= ϕ(gϕ(h)δh′),

then ϕ(h′)δh = ϕ(h)δh′ for all h, h′ ∈ H, since ϕ is faithful. Choose an h′ ∈ H such

that ϕ(h′) = 1 and denote δ = δh′ , then δh = ϕ(h)δ.

If we apply ε, we get

ϕ(h)ε(δ) = ε(δh) = ε(ϕ′(h(1))h(2))

= ϕ′(h(1))ε(h(2)) = ϕ′(h(1)ε(h(2)))
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= ϕ′(h)

for all h ∈ H and with λ = ε(δ), we find the desired result. 2

Remark Similarly, the right faithful integral on H is unique up to scalar. How-

ever, it is a pity that the non-zero faithful integrals do not always exist in infinite

dimensional case, even for the special infinite dimensional Hopf algebra case.

Proposition 3.1.3 There is a unique group-like element δ ∈ H such that for all

h ∈ H

(1) (ϕ⊗ id)∆(h) = ϕ(h)δ.

(2) ϕS(a) = ϕ(aδ).

Furthermore, if the antipode S is bijective, then (id⊗ ψ)∆(h) = ψ(h)δ−1.

Proof From the proof of Proposition 3.1.2, ϕ(h)δ = δh = ϕ′(h(1))h(2) and ϕ′S(g)ϕ(h) =

ϕ(gδh), we take ϕ′ = ϕ and get a element δ ∈ H such that (ϕ⊗ id)∆(h) = ϕ(h)δ and

ϕS(h) = ϕ(hδ). This gives the first part of (1) and (2).

If we apply ε and ∆ on the first equation, we find ε(δ) = 1 and ∆(δ) = δ ⊗ δ. by
Proposition 4.2 (1) in [19] S(δ)δ = 1 = δS(δ), then S(δ) = δ−1. Hence δ is a group-like

element.

Because S flips the coproduct and if we let ψ = ϕ ◦ S, we get

(id⊗ ψ)∆(h) = S−1(S ⊗ ψ)∆(h) = S−1(S ⊗ ϕ ◦ S)∆(h)

= S−1(id⊗ ϕ)(S ⊗ S)∆(h) = S−1(id⊗ ϕ)∆cop(S(h))

= S−1(ϕ⊗ id)∆(S(h))
(1)
= S−1(ϕ(S(h))δ)

= ψ(h)δ−1.

This completes the proof. 2

Remark (1) The square S2 leaves the coproduct invariant, it follows that the

composition ϕ ◦ S2 of the faithful left integral ϕ with S2 will again a faithful left

integral. By the uniqueness of faithful left integrals, there is a number τ ∈ k such that

ϕ ◦ S2 = τϕ.
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(2) If we apply (2) in Proposition 3.1.3 twice, we get

ϕ
(
S2(a)

)
= ϕ

(
S(a)δ

)
= ϕ

(
S(δ−1a)

)
= ϕ

(
(δ−1a)δ

)
.

So ϕ
(
(δ−1a)δ

)
= τϕ(a).

§3.2 Integral dual

In this section, we will construct the dual of an infinite dimensional Hopf quasi-

group. This construction bases on the faithful integrals introduced in the last section.

Here, we also start with defining the following subspace of the dual space H∗.

Definition 3.2.1 Let ϕ be a faithful left integral on a Hopf quasigroup H. We

define Ĥ as the space of linear functionals on H of the form ϕ(·h) where h ∈ H, i.e.,

Ĥ = {ϕ(·h) |h ∈ H}.

Lemma 3.2.2 Let H be a Hopf quasigroup and ϕ (resp. ψ) be a left (resp. right)

integral on H. If a ∈ H, then there is a b ∈ H such that ϕ(ax) = ψ(xb) for all x ∈ H.

Similarly, given q ∈ H, we have p ∈ H so that ϕ(xp) = ψ(qx) for all x ∈ H.

Proof By the equations (3.1) in Lemma 3.1.1 and (3.2), we have for any h, x ∈ H,

(ψ ⊗ ϕ)
(
xq(1) ⊗ pS(q(2))

)
= ψ(xq(1))ϕ(pS(q(2))) = ϕ

(
pψ(xq(1))S(q(2))

)
(3.2)
= ϕ

(
pψ(x(1)q)x(2)

)
= ψ(x(1)q)ϕ

(
px(2)

)
= ψ

(
x(1)ϕ(px(2))q

) (3.1)
= ψ

(
S(p(1))ϕ(p(2)x)q

)
= ϕ(p(2)x)ψ

(
S(p(1))q

)
= ϕ

(
(ψ
(
S(p(1))q

)
p(2))x

)
= ϕ

(
(ψ ◦ S ⊗ id)

(
(S−1(q)⊗ 1)∆(p)

)
x
)
.

On the other hand, we also have

(ψ ⊗ ϕ)
(
xq(1) ⊗ pS(q(2))

)
= ψ(xq(1))ϕ(pS(q(2))) = ψ

(
x(q(1)ϕ

(
pS(q(2))

)
)
)

= ψ
(
x(id⊗ ϕ ◦ S)

(
∆(q)(1⊗ S−1(p))

))
.

By Theorem 4.5 in [27], Galois maps T1 : a⊗b 7→ ∆(a)(1⊗b) and T2 : a⊗b 7→ (a⊗1)∆(b)
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are bijective, then any element in H has the form (ψ◦S⊗id)
(
(S−1(q)⊗1)∆(p)

)
. Hence

the above calculation will give us the formula ϕ(ax) = ψ(xb) for all x ∈ H.

Similarly by computing (ψ⊗ϕ)
(
S(q(2))x⊗q(1)S(p)

)
, we get the second assertion. 2

Remark (1) In the proof of second part, we need Galois maps T3 : a⊗b 7→ ∆(a)(b⊗
1) and T4 : a⊗ b 7→ (1⊗ a)∆(b) are bijective, which follows the fact that the antipode

S is bijective, and T−13 : a⊗ b 7→ b(2) ⊗ S−1(b(1))a and T4 : a⊗ b 7→ bS−1(a(2))⊗ a(1).

(2) From Lemma 3.2.2, we get that

Ĥ = {ϕ(·h) |h ∈ H} = {ψ(h·) |h ∈ H}.

and {ϕ(h·) |h ∈ H} = {ψ(·h) |h ∈ H}.

In the following, we need the following assumption to construct the dual.

Assumption 3.2.3

ϕ
(
( ·h)h′

)
, ϕ
(
h′(h · )

)
∈ Ĥ, ∀h, h′ ∈ H. (3.3)

Remark Following this assumption, Proposition 3.2.3 (2) and 3.2.5, we have

{ϕ( ·h) | h ∈ H} = {ϕ(h · ) | h ∈ H}, ∀h, h′ ∈ H.

Therefore,

Ĥ = {ϕ(·h) |h ∈ H} = {ψ(h·) |h ∈ H} = {ϕ(h·) |h ∈ H} = {ψ(·h) |h ∈ H}

and ψ
(
(·h)h′

)
, ψ
(
h′(h·)

)
∈ Ĥ.

We start by making Ĥ into an algebra by dualizing the coproduct.

Proposition 3.2.4 For w,w′ ∈ Ĥ, we can define a linear functional ww′ on H by

the formula

(ww′)(h) = (w ⊗ w′)∆(h), ∀h ∈ H. (3.4)

Then ww′ ∈ Ĥ. This product on Ĥ ia associative and non-degenerate.
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Proof Let w,w′ ∈ Ĥ and assume that w′ = ϕ(·m) with m ∈ H. we have

(ww′)(h) = (w ⊗ ϕ(·m))∆(h) = (w ⊗ ϕ)
(
∆(h)(1⊗m)

)
= w

(
h(1)ϕ(h(2)m)

) (3.1)
= w

(
S−1

(
m(1)ϕ(hm(2))

))
= ϕ

(
h
(
wS−1(m(1))m(2)

))
We see that the product ww′ is well-defined as alinear functional on H and it has the

form ϕ(·g), where g = wS−1(m(1))m(2). So ww′ ∈ Ĥ. Therefore, we have defined a

product in Ĥ.

The associativity of this product in Ĥ is an consequence of the coassociativity of

∆ on H.

To prove that the product is non-degenerate, assume that ww′ = 0 for all w ∈ Ĥ.

From the above calculation, for any h ∈ H, 0 = (ww′)(h) = ϕ
(
h
(
wS−1(m(1))m(2)

))
,

then wS−1(m(1))m(2) = 0 because of the faithfulness of ϕ. This implies wS−1(m) = 0

for all w ∈ Ĥ, i.e., ϕ(S−1(m)h) = 0 for all h ∈ H. We conclude that S−1(m) = 0 then

m = 0, i.e., w′ = 0. Similarly, ww′ = 0 for all w′ ∈ Ĥ implies w = 0. 2

Remark Under the assumption, the elements of Ĥ can be expressed in four dif-

ferent forms. When we use these different forms in the definition of product in Ĥ, we

get the following useful expressions:

(1) wϕ(·a) = ϕ(·b) with b = wS−1(a(1))a(2); (2) wϕ(a·) = ϕ(c·) with c = wS(a(1))a(2).

(3) ψ(·a)w = ψ(·d) with d = a(1)wS(a(2)); (4) ψ(a·)w = ψ(e·) with e = a(1)wS
−1(a(2)).

Moreover, the multiplier algebra M(Ĥ) of Ĥ can be identified with the space H∗.

Indeed, for f ∈ H∗ and w ∈ Ĥ, fw,wf ∈ Ĥ; he counit ε, as a linear functional on

H, is in fact the unit in the multiplier algebra M(Ĥ); fw = 0 (resp. wf = 0) for all

w ∈ Ĥ implies f = 0.

Let us now define the comultiplication ∆̂ on Ĥ. Roughly speaking, the coproduct

is dual to the multiplication in H in the sense that

〈∆̂(w), x⊗ y〉 = 〈w, xy〉, ∀x, y ∈ H.
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Definition 3.2.5 Let w1, w2 ∈ Ĥ, then we put

〈(w1 ⊗ 1)∆̂(w2), x⊗ y〉 = 〈w1 ⊗ w2, x(1) ⊗ x(2)y〉 (3.5)

〈∆̂(w1)(1⊗ w2), x⊗ y〉 = 〈w1 ⊗ w2, xy(1) ⊗ y(2)〉 (3.6)

for all x, y ∈ H.

We will first show that the functionals in Definition 3.2.7 are well-defined and

again in Ĥ ⊗ Ĥ.

Lemma 3.2.6 (w1⊗1)∆̂(w2), ∆̂(w1)(1⊗w2) ∈ Ĥ⊗ Ĥ. These above two formulas

define ∆̂(w) as a multiplier in M(Ĥ ⊗ Ĥ) for all w ∈ Ĥ.

Proof Let w1 = ψ(a·) and w2 = ψ(b·), where a, b ∈ H. For any x, y ∈ H, we have

〈(w1 ⊗ 1)∆̂(w2), x⊗ y〉 = 〈w1 ⊗ w2, x(1) ⊗ x(2)y〉

= ψ(ax(1))ψ
(
b(x(2)y)

)
= ψ

(
b(ψ(ax(1))x(2)y)

)
(3.2)
= ψ

(
b(ψ(a(1)x)S−1(a(2))y)

)
= ψ(a(1)x)ψ

(
b(S−1(a(2))y)

)
=

(
ψ(a(1)·)⊗ ψ

(
b(S−1(a(2))·)

))
(x⊗ y).

By the assumption, we obtain that (w1 ⊗ 1)∆̂(w2) is a well-defined element in Ĥ ⊗ Ĥ.

It is similar for the ∆̂(w1)(1⊗ w2).

Using the fact that the product in Ĥ is dual to the coproduct in H and ∆ in H is

coassociative, it easily followings that
(
(w1 ⊗ 1)∆̂(w2)

)
(1⊗w3) = (w1 ⊗ 1)

(
∆̂(w2)(1⊗

w3)
)
. Therefore, ∆̂(w) is defined as a two-side multiplier in M(Ĥ ⊗ Ĥ). 2

Proposition 3.2.7 ∆̂ : Ĥ −→M(Ĥ ⊗ Ĥ) is an algebra homomorphism, and also

(1⊗ w1)∆̂(w2), ∆̂(w1)(w2 ⊗ 1) ∈ Ĥ ⊗ Ĥ.

Proof It is straightforward that ∆̂ is an algebra homomorphism, since for all

x, y ∈ H

〈∆̂(w1w2)(1⊗ w3), x⊗ y〉 = 〈w1w2 ⊗ w3, xy(1) ⊗ y(2)〉

= 〈w1, x(1)y(1)(1)〉〈w2, x(2)y(1)(2)〉〈w3, y(2)〉,

〈∆̂(w1)∆̂(w2)(1⊗ w3), x⊗ y〉 = 〈∆̂(w1)(f ⊗ g), x⊗ y〉 (∆̂(w2)(1⊗ w3) := f ⊗ g )
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= 〈∆̂(w1)(1⊗ g), x(1) ⊗ y〉〈f, x(2)〉

= 〈w1 ⊗ g, x(1)y(1) ⊗ y(2)〉〈f, x(2)〉

= 〈w1, x(1)y(1)〉〈f ⊗ g, x(2) ⊗ y(2)〉

= 〈w1, x(1)y(1)〉〈∆̂(w2)(1⊗ w3), x(2) ⊗ y(2)〉

= 〈w1, x(1)y(1)〉〈w2 ⊗ w3, x(2)y(2)(1) ⊗ y(2)(2)〉

= 〈w1, x(1)y(1)〉〈w2, x(2)y(2)(1)〉〈w3, y(2)(2)〉.

By the coassociativity of ∆ of H, we get ∆̂(w1w2)(1⊗ w3) = ∆̂(w1)∆̂(w2)(1⊗ w3) for

all w3 ∈ Ĥ. This implies ∆̂(w1w2) = ∆̂(w1)∆̂(w2).

With the bijective antipode, the proof of the second assertion is similar to the

proof of Lemma 3.2.8. 2

Let w ∈ Ĥ and assume w = ϕ(·a) with a ∈ H then. Define ε̂(w) = ϕ(a) = w(1H).

Then ε̂ is a counit on (Ĥ, ∆̂) as follows.

Proposition 3.2.8 ε̂ : Ĥ −→ k is an algebra homomorphism satisfying

(id⊗ ε̂)
(
(w1 ⊗ 1)∆̂(w2)

)
= w1w2 (3.7)

(ε̂⊗ id)
(
∆̂(w1)(1⊗ w2)

)
= w1w2 (3.8)

for all w1, w2 ∈ Ĥ.

Proof Firstly, let w1 = ϕ(a·) and w2 = ϕ(b·), then w1w2 = ϕ(c·) with c =

ϕ
(
aS(b(1))

)
b(2). Therefore, if ψ = ϕ ◦ S we have

ε̂(w1w2) = ϕ(c) = ϕ
(
aS(b(1))

)
ϕ(b(2))

= ϕ
(
aS(b(1)ϕ(b(2)))

)
= ϕ(a)ϕ(b)

= ε̂(w1)ε̂(w2).

Secondly, let w1 = ψ(a·) and w2 = ψ(b·), then we have

(w1 ⊗ 1)∆̂(w2) = ψ(a(1)·)⊗ ψ
(
b(S−1(a(2))·)

)
,

ψ(a·)ψ(b·) = ψ(a(1)·)ψ
(
bS−1(a(2))

)
.
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Hence,

(id⊗ ε̂)
(
(w1 ⊗ 1)∆̂(w2)

)
= ψ(a(1)·)ψ

(
b(S−1(a(2))1)

)
= ψ(a(1)·)ψ

(
bS−1(a(2))

)
= w1w2.

Finally, the second formula is proven in a similar way, in this case letting w1 =

ϕ(·a) and w2 = ϕ(·b). 2

Let Ŝ : Ĥ −→ Ĥ be the dual to the antipode of H, i.e., Ŝ(w) = w ◦ S. Then it is

easy to see that Ŝ(w) ∈ Ĥ, and we have the following property.

Proposition 3.2.9 Ŝ is antimultiplicative and coantimultiplicative such that

w′ ⊗ w = (m⊗ id)(id⊗ Ŝ ⊗ id)
(

(id⊗ ∆̂)
(
(w′ ⊗ 1)∆̂(w)

))
= (m⊗ id)(Ŝ ⊗ id⊗ id)

(
(id⊗ ∆̂)

(
∆̂(w)(Ŝ−1(w′)⊗ 1)

))
= (id⊗m)(id⊗ Ŝ ⊗ id)

(
(∆̂⊗ id)

(
∆̂(w′)(1⊗ w)

))
= (id⊗m)(id⊗ id⊗ Ŝ)

(
(∆̂⊗ id)

(
(1⊗ Ŝ−1(w))∆̂(w′)

))
.

Proof For w1, w2 ∈ Ĥ and any x ∈ H,

〈Ŝ(w1w2), x〉 = 〈w1w2, S(x)〉 = 〈w1, S(x2)〉〈w2, S(x1)〉

= 〈Ŝ(w1), x2〉〈Ŝ(w2), x1〉 = 〈Ŝ(w2)Ŝ(w1), x〉

This implies Ŝ is antimultiplicative.

〈∆̂Ŝ(w1)(1⊗ S(w2)), x⊗ y〉
(3.6)
= 〈Ŝ(w1)⊗ Ŝ(w2), xy(1) ⊗ y(2)〉

= 〈w1, S(xy(1))〉〈w2, S(y(2))〉

= 〈w1, S(y)(2)S(x)〉〈w2, S(y)(1)〉

= 〈w2 ⊗ w1, S(y)(1) ⊗ S(y)(2)S(x)〉
(3.5)
= 〈(w2 ⊗ 1)∆̂(w1), S(y)⊗ S(x)〉

= 〈(Ŝ ⊗ Ŝ)∆̂cop(w1)(1⊗ S(w2)), x⊗ y〉,
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We conclude Ŝ is coantimultiplicative.

Finally, we show w′ ⊗ w = (m ⊗ id)(id ⊗ Ŝ ⊗ id)
(

(id ⊗ ∆̂)
(
(w′ ⊗ 1)∆̂(w)

))
, the

other three formulas is similar.

〈(m⊗ id)(id⊗ Ŝ ⊗ id)
(

(id⊗ ∆̂)
(
(w′ ⊗ 1)∆̂(w)

))
, x⊗ y〉

(3.4)
= 〈(id⊗ ∆̂)

(
(w′ ⊗ 1)∆̂(w)

)
, x(1) ⊗ S(x(2))⊗ y〉

= 〈
(
(w′ ⊗ 1)∆̂(w)

)
, x(1) ⊗ S(x(2))y〉

(3.5)
= 〈w′ ⊗ w, x(1)(1) ⊗ x(1)(2)(S(x(2))y)〉

= 〈w′ ⊗ w, x⊗ y〉.

This completes the proof. 2

The equation in the Proposition 3.2.11 can be expressed by generalized Sweedler

notation as follows.

w′ ⊗ w = w′Ŝ(w(1))w(2)(1) ⊗ w(2)(2) = w′w(1)Ŝ(w(2)(1))⊗ w(2)(2)

= w′(1)(1) ⊗ Ŝ(w′(1)(2))w
′
(2)w = w′(1)(1) ⊗ w′(1)(2)Ŝ(w′(2))w.

As a consequence, the antipode Ŝ also satisfies

m(id⊗ Ŝ)
(
(w1 ⊗ 1)∆̂(w2)

)
= ε̂(w2)w1,

m(Ŝ ⊗ id)
(
∆̂(w1)(1⊗ w2)

)
= ε̂(w1)w2.

In fact, there is another way to prove.

〈m(id⊗ Ŝ)
(
(w1 ⊗ 1)∆̂(w2)

)
, x〉 = 〈(id⊗ Ŝ)

(
(w1 ⊗ 1)∆̂(w2)

)
, x(1) ⊗ x(2)〉

= 〈
(
(w1 ⊗ 1)∆̂(w2)

)
, x(1) ⊗ S(x(2))〉

(3.5)
= 〈w1 ⊗ w2), x(1)(1) ⊗ x(1)(2)S(x(2))〉

= 〈w1 ⊗ w2, x⊗ 1〉

= ε̂(w2)w1.

Let ψ be a right faithful integral on H. For w = ψ(a·) we set ϕ̂(w) = ε(a). Then
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we have the following result.

Proposition 3.2.10 ϕ̂ defined above is a faithful left integral on Ĥ.

Proof It is clear that ϕ̂ is non-zero. Assume w1 = ψ(a·) and w2 = ψ(b·) with

a, b ∈ H, then

(w1 ⊗ 1)∆̂(w2) = ψ(a(1)·)⊗ ψ
(
b(S−1(a(2))·)

)
.

Therefore, we have

(id⊗ ϕ̂)
(

(w1 ⊗ 1)∆̂(w2)
)

= ψ(a(1)·)⊗ ϕ̂ψ
(
b(S−1(a(2))·)

)
= ψ(a·)ε(b) = ϕ̂(w2)w1.

Next, we show that ϕ̂ is faithful. If w1, w2 ∈ Ĥ and assume w1 = ψ(a·) with

a ∈ H, we have w1w2 = ψ
(
a(1)w2S

−1(a(2)) ·
)
. Therefore, ϕ̂(w1w2) = w2S

−1(a). If this

is 0 for all a ∈ H, then w2 = 0, wile if this is 0 for all w2 then a = 0. This proves the

faithfulness of ϕ̂. 2

Now, we introduce an algebraic structure: multipler Hopf coquasigroup, general-

izing the ordinary Hopf coquasigroup to a nonunital case. Let A be an (associative) al-

gebra, may not has a unit, but the product, seen as a bilinear form, is non-degenerated.

Definition 3.2.11 A multipler Hopf coquasigroup is a nondegenerate associative

algebra A equipped with algebra homomorphisms ∆ : A −→ M(A ⊗ A)(coproduct),

ε : A −→ k(counit) and a linear map S : A −→ A (antipode) such that

(1) T1(a ⊗ b) = ∆(a)(1 ⊗ b) and T2(a ⊗ b) = (a ⊗ 1)∆(b) belong to A ⊗ A for any

a, b ∈ A.

(2) The counit satisfies (ε⊗ id)T1(a⊗ b) = ab = (id⊗ ε)T2(a⊗ b).

(3) S is antimultiplicative and anticomultiplicative such that for any a, b ∈ A

S(a(1))a(2)(1) ⊗ a(2)(2) = 1⊗ a = a(1)S(a(2)(1))⊗ a(2)(2), (3.9)

a(1)(1) ⊗ S(a(1)(2))a(2) = a⊗ 1 = a(1)(1) ⊗ a(1)(2)S(a(2)). (3.10)
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If the antipode S is bijective, then multipler Hopf coquasigroup (A,∆) is called regular.

Remark (1) In multipler Hopf coquasigroup (A,∆), T1 and T2 are bijective. If

(A,∆) is regular, then T3 and T4 are also. In fact, from (3) in Definition 3.2.11 we can

easily get

m(id⊗ S)
(
(a⊗ 1)∆(b)

)
= ε(b)a,

m(S ⊗ id)
(
∆(a)(1⊗ b)

)
= ε(a)b.

(2) The equation (3.9) and (3.10) make sense. Take (3.9) for example, (3.10) is

similar.

b⊗ ac = ba(1)S(a(2)(1))⊗ a(2)(2)c

= (m⊗ id)(id⊗ S ⊗ id)
(

(id⊗∆)
(
(b⊗ 1)∆(a)

)
(1⊗ 1⊗ c)

)
.

ba(1)⊗a(2) = (b⊗1)∆(a) ∈ A⊗A, and then a(2)(1)⊗a(2)(2)c ∈ A⊗A. Therefore, b⊗ac =

ba(1)S(a(2)(1))⊗a(2)(2)c holds for all b, c ∈ A. This implies a(1)S(a(2)(1))⊗a(2)(2) = 1⊗a.

b⊗ ac = S(a(1))a(2)(1)b⊗ a(2)(2)c = S(a(1))a(2)(1)x(1) ⊗ a(2)(2)x(2)y

= (m⊗ id)(S ⊗ id⊗ id)
(

(id⊗∆)
(
∆(a)(1⊗ x)

)
(1⊗ 1⊗ y)

)
,

where b ⊗ c = ∆(x)(1 ⊗ y). b ⊗ ac = S(a(1))a(2)(1)b ⊗ a(2)(2)c for all b, c ∈ A implies

1⊗ a = S(a(1))a(2)(1) ⊗ a(2)(2).

(3) The comultiplication may be not coassociative. Multipler Hopf coquasigroup

weakens the coassociativity of coproduct in multiplier Hopf algebra, while algebraic

quantum hypergroup in [7] weakens the homomorphism of coproduct. This is the main

difference.

Following Definition 3.2.11, we get the main result of this section.

Theorem 3.2.12 Let (H,∆) be an infinite dimensional Hopf quasigroup with a

faithful integral ϕ and a bijective antipode S. Then under Assumption 3.2.3 the inte-

gral dual (Ĥ, ∆̂) is a regular multipler Hopf coquasigroup with a faithful integral.
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Because (infinite dimensional) Hopf quasigroup (H,∆) has the unit 1H , then there

is a special element ϕ = ϕ(·1H) ∈ Ĥ such that for w ∈ Ĥ

(wϕ)(h) = (w ⊗ ϕ)∆(h) = ϕ(h)w(1) = ε̂(w)ϕ(h).

This implies wϕ = ε̂(w)ϕ. We call ϕ a cointegral in (Ĥ, ∆̂).

Analogous to multiplier Hopf algebra case in [24], we say that a regular multiplier

Hopf coquasigroup with a faithful integral (A,∆) is of discrete type, if there is a non-

zero element ξ ∈ A so that aξ = ε(a)ξ for all a ∈ A.

Then we have the integral dual (Ĥ, ∆̂) of infinite dimensional Hopf quasigroup

(H,∆) is a multipler Hopf coquasigroup of discrete type.

§3.3 Multiplier Hopf coquasigroup: motivating example

In last section, we introduce the notion of multiplier Hopf coquasigroup, extending

Hopf coquasigroup to a nonunital case, and provided a interesting construction: the

integral dual of infinite dimensional Hopf quasigroups with integrals.

In the following, we firstly introduce the motivating example, where Assumption

4.3 naturally holds. And then we make some direct comments on multiplier Hopf co-

quasigroups.

Example 3.3.1 Let G be a infinite (IP) quasigroup with identity element e, by

definition u−1(uv) = v = (vu)u−1 for all u, v ∈ G. We have that the quasigroup algebra

kG is a Hopf quasigroup with the structure shown on the base element {u|u ∈ G}

∆(u) = u⊗ u, ε(u) = 1, S(u) = u−1.

The function δu, u ∈ G on kG is given by δu(v) = δu,v, where δu,v is the kronecker delta.

Then δe is the left and right integral on kG.

The integral dual k(G) = k̂G = {δe(·u)|u ∈ kG} = {δu−1|u ∈ kG} = {δe(u·)|u ∈
kG}. δe

(
(·u)v

)
= δv−1u−1 ∈ k(G) and δe

(
u(v·)

)
= δv−1u−1 ∈ k(G). Assumption

3.2.3 naturally holds. Then (k(G), ∆̂, ε̂, Ŝ) is a multipler Hopf coquasigroup with the

structure as follows.
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As an algebra, k(G) is a nondegenerate algebra with the product

δuδv = δu,vδv,

and 1 =
∑

u∈G δu is the unit in M(k(G)). The coproduct, counit and antipode are

given by

∆̂(δu) =
∑
v∈G

δv ⊗ δv−1u, ε̂(δu) = δu,e, Ŝ(δu) = δu−1 .

By the definition of ϕ̂, we get the left integral on k(G) is the function that maps

every δu to 1.

As in the theory of multiplier Hopf algebra in [23], we also can define a multiplier

Hopf ∗-coquasigroup (A,∆) over C, in which (A,∆) is a regular multiplier Hopf co-

quasigroup with the coproduct, counit and antipode compatible with the involution ∗.
i.e.,

(1) The comultiplication ∆ is also a ∗-homomorphism (i.e., ∆(a∗) = ∆(a)∗);

(2) ε(a∗) = ε(a), where (·) means the conjugation of complex numbers;

(3) S(S(a)∗)∗ = a.

Example 3.3.2 In Example 3.3.1 if k = C, then C(G) is a multiplier Hopf ∗-
coquasigroup.

Proposition 3.3.3 Let (A,∆) be a multipler Hopf (∗-)coquasigroup. Then (A,∆)

is a multiplier Hopf (∗-)algebra introduced, if and only if the comultiplication ∆ is coas-

sociative.

Proposition 3.3.4 If multipler Hopf coquasigroup (A,∆) has the unit 1, then

(A,∆) is the usual Hopf coquasigroup.

Following these two results, multipler Hopf coquasigroup can be considered as the

generalization of multiplier Hopf algebra and Hopf coquasigroup. Naturally, we can

define flexible, alternative and Moufang multipler Hopf coquasigroup.
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A multipler Hopf coquasigroup (A,∆) is called flexible if

a(1)a(2)(2) ⊗ a(2)(1) = a(1)(1)a(2) ⊗ a(1)(2), ∀a ∈ A, (3.11)

and alternative if also

a(1)a(2)(1) ⊗ a(2)(2) = a(1)(1)a(1)(2) ⊗ a(2), (3.12)

a(1) ⊗ a(2)(1)a(2)(2) = a(1)(1) ⊗ a(1)(2)a(2), ∀a ∈ A. (3.13)

A is called Moufang if

a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2) ⊗ a(1)(1)(2) ⊗ a(2), ∀a ∈ A, (3.14)

Remark (1) By ’cover technique’ introduced in [25], these four equations make

sense.

(2) From the dual, we can get that the integral dual (Ĥ, ∆̂) of infinite dimen-

sional flexible (resp. alternative, Moufang) Hopf quasigroup (H,∆) is a flexible (resp.

alternative, Moufang) multipler Hopf coquasigroup.
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Chapter 4 Multiplier Hopf coquasigroups

Let A be a multiplier Hopf coquasigroup introduced in last chapter. If the faithful

integrals exist, then they are unique up to scalar. For a multiplier Hopf coquasigroup

of discrete type A, its integral duality Â is a Hopf quasigroup, and the biduality ̂̂A is

isomorphic to the original A as multiplier Hopf coquasigroups. This biduality theorem

also holds for a class of Hopf quasigroups with faithful integrals.

§4.1 Integrals on a multiplier Hopf coquasigroup

Let (A,∆) be a regular multiplier Hopf coquasigroup with a faithful integral ϕ.

Just as in the case of algebraic quantum group (see Proposition 2.6 in [14]) or algebraic

quantum hypergroups (see Proposition 1.6 in [7]), we show that the multiplier Hopf

coquasigroup (A,∆) must have local units in the sense of the following proposition.

Proposition 4.1.1 Let (A,∆) be a regular multiplier Hopf coquasigroup with a

non-zero integral ϕ. Given finite numbers of elements {a1, a2, · · · , an}, there exists an

element e ∈ A such that aie = ai = eai for all i.

Proof It is similar to the proof of Proposition 1.6 in [7]. Set the linear space

V = {(aa1, aa2, · · · , aan, a1a, a2a, · · · , ana) | a ∈ A} ⊆ A2n.

Consider a linear functional on A2n that is zero on V . This means that we have

functionals wi and ρi on A for i = 1, 2, · · · , n, such that

n∑
i=1

wi(aai) +
n∑
i=1

ρi(aia) = 0 for all a ∈ A.

Then for all x, a ∈ A we have

x
( n∑
i=1

(wi ⊗ id)
(
∆(a)(ai ⊗ 1)

)
+

n∑
i=1

(ρi ⊗ id)
(
(ai ⊗ 1)∆(a)

))
=

n∑
i=1

(wi ⊗ id)
(
(1⊗ x)∆(a)(ai ⊗ 1)

)
+

n∑
i=1

(ρi ⊗ id)
(
(ai ⊗ 1)(1⊗ x)∆(a)

)
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= 0,

since (1 ⊗ x)∆(a) ∈ A ⊗ A. Because the product in A is nondegenerate, we have for

all a ∈ A that

n∑
i=1

(wi ⊗ id)
(
∆(a)(ai ⊗ 1)

)
+

n∑
i=1

(ρi ⊗ id)
(
(ai ⊗ 1)∆(a)

)
= 0.

Now applying ϕ on this expression, we get

ϕ(a)
( n∑
i=1

wi(ai) +
n∑
i=1

ρi(ai)
)

= 0 for all a ∈ A.

As integral ϕ is non-zero, we have

n∑
i=1

wi(ai) +
n∑
i=1

ρi(ai) = 0.

So any lieaner functional on A2n that is zero on the space V is also zero on the vec-

tor (a1, a2, · · · , an, a1, a2, · · · , an). Therefore (a1, a2, · · · , an, a1, a2, · · · , an) ∈ V . This

means that there exists an element e ∈ A such that aie = ai = eai for all i. 2

Recall from [7] that a linear functional f on A is called faithful if, for a ∈ A, we
must have a = 0 when either f(ab) = 0 for all b ∈ A or f(ba) = 0 for all b ∈ A. Then

under the faithfulness we can get the following result.

Lemma 4.1.2 Let (A,∆) be a multiplier Hopf coquasigroup. If f is a faithful

linear functional on A, then for any a ∈ A there is an element e ∈ A such that

a = (id⊗ f)
(
∆(a)(1⊗ e)

)
.

Proof Take a ∈ A and set V = {(id⊗ f)
(
∆(a)(1⊗ b)

)
| b ∈ A}, we need to show

a ∈ V . Suppose that a /∈ V , then there is on A a functional w ∈ A∗ such that w(a) 6= 0

while w|V = 0, i.e.,

0 = w
(

(id⊗ f)
(
∆(a)(1⊗ b)

))
= f

((
(w ⊗ id)∆(a)

)
b
)

for all b ∈ A.
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Observe that (w ⊗ id)∆(a) ∈ M(A) and not necessarily belongs to A. However,

we get f
((

(w ⊗ id)∆(a)
)
b′b′′
)

= 0 for all b′, b′′ ∈ A and by the faithfulness of f , we

must have
(
(w ⊗ id)∆(a)

)
b′ = 0 for all b′ ∈ A.

If we apply the counit, w(a)ε(b′) = 0 for all b′ ∈ A and hence w(a) = 0. This is a

contradiction. 2

Similarly we have for a regular multiplier Hopf coquasigroup (A,∆),

a ∈ {(id⊗ f)
(
(1⊗ b)∆(a)

)
| b ∈ A}

a ∈ {(f ⊗ id)
(
(b⊗ 1)∆(a)

)
| b ∈ A}

a ∈ {(f ⊗ id)
(
∆(a)(b⊗ 1)

)
| b ∈ A}

for any faithful f ∈ A∗. In particularly, when we assume that a left integral ϕ is

faithful, then

A = span{(id⊗ ϕ)
(
∆(a)(1⊗ b)

)
| a, b ∈ A},

A = span{(id⊗ ϕ)
(
(1⊗ a)∆(b)

)
| a, b ∈ A},

where ’span’ means the linear span of a set of element.

Next, we give some equations on the left and right integral.

Proposition 4.1.3 Let ϕ (resp. ψ) be a left (resp. right) integral on A, then for

a, b ∈ A

a(1)ϕ
(
a(2)S(b)

)
= ϕ

(
aS(b(1))

)
b(2), a(1)ϕ(ba(2)) = S(b(1))ϕ(b(2)a). (4.1)

ψ
(
S(a)b(1)

)
b(2) = ψ

(
S(a(2))b

)
a(1), ψ(a(1)b)a(2) = ψ(ab(1))S(b(2)). (4.2)

Proof We prove the first two equations on ϕ, and the others are similar.

a(1)ϕ
(
a(2)S(b)

) (2.5)
= a(1)

(
S(b(1)(2))b(2)

)
ϕ
(
a(2)S(b(1)(2))

)
=

(
a(1)S(b(1)(2))

)
b(2)ϕ

(
a(2)S(b(1)(2))

)
=

(
a(1)S(b(1))(1)

)
b(2)ϕ

(
a(2)S(b(1))(2)

)
=

(
aS(b(1))

)
(1)
b(2)ϕ

(
(aS(b(1)))(2)

)
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= ϕ
(
aS(b(1))

)
b(2),

and

a(1)ϕ(ba(2))
(2.4)
=

(
S(b(1))b(2)(1)

)
a(1)ϕ

(
b(2)(2)a(2)

)
= S(b(1))

(
b(2)(1)a(1)

)
ϕ
(
b(2)(2)a(2)

)
= S(b(1))

(
b(2)a

)
(1)
ϕ
(
(b(2)a)(2)

)
= S(b(1))ϕ(b(2)a).

This completes the proof. 2

Remark (1) Following Lemma 4.1.2, we can easily check that (3.1) and (3.2) make

sense.

(2) These formulas are useful in the following part. We take the first one for

example. When the antipode of (A,∆) is bijective, a(1)ϕ
(
a(2)S(b)

)
= ϕ

(
aS(b(1))

)
b(2) is

equivalent to

S(id⊗ ϕ)
(
∆(a)(1⊗ b)

)
= (id⊗ ϕ)

(
(1⊗ a)∆(b)

)
,

which is used to define the antipode in algebraic quantum hypergroup (see Definition

1.9 in [7]).

Set x = (id ⊗ ϕ)
(
∆(a)(1 ⊗ b)

)
and apply ε on the above equation, we have

ε
(
S(x)

)
= ϕ(ab) = ε(x). By Lemma 4.1.2 we get ε ◦ S = ε.

In the following, we will show the uniqueness of faithful left integrals.

Theorem 4.1.4 Let ϕ′ be another faithful left integral on (A,∆), then ϕ′ = λϕ

for some scalar λ ∈ k, i.e., the faithful left integral on A is unique up to scalar.

Proof From Proposition 4.1.3, we have a(1)ϕ(ba(2)) = S(b(1))ϕ(b(2)a) for all a, b ∈
A. Apply ϕ′ to both expressions in this equation. Because ϕ′ ◦ S is a right integral,

the right hand side will give

ϕ′S(b(1))ϕ(b(2)a) = ϕ(ϕ′S(b(1))b(2)a) = ϕ(ϕ′S(b)1M(A) · a) = ϕ′S(b)ϕ(a).

31



For the left hand side,

ϕ′(a(1)ϕ(ba(2))) = ϕ′(a(1))ϕ(ba(2)) = ϕ(bϕ′(a(1))a(2)) = ϕ(bδa),

where δa = ϕ′(a(1))a(2). Therefore, ϕ′S(b)ϕ(a) = ϕ(bδa) for all a, b ∈ H.

We claim that there is an element δ ∈ M(A) such that δa = ϕ(a)δ for all a ∈ A.
Indeed, for any a′ ∈ A

ϕ(bϕ(a′)δa) = ϕ(a′)ϕ(bδa) = ϕ(a′)ϕ′S(b)ϕ(a)

= ϕ(a)ϕ′S(b)ϕ(a′) = ϕ(a)ϕ(bδa′)

= ϕ(bϕ(a)δa′),

then ϕ(a′)δa = ϕ(a)δa′ for all a, a′ ∈ A, since ϕ is faithful. Choose an a′ ∈ A such that

ϕ(a′) = 1 and denote δ = δa′ , then δa = ϕ(a)δ.

If we apply ε, we get

ϕ(a)ε(δ) = ε(δa) = ε(ϕ′(a(1))a(2))

= ϕ′(a(1))ε(a(2)) = ϕ′(a(1)ε(a(2)))

= ϕ′(a)

for all a ∈ A and with λ = ε(δ), we find the desired result. 2

Remark (1) Similarly, the right faithful integral on A is unique up to scalar.

However, as in the special infinite dimensional Hopf algebra case, the non-zero faithful

integrals do not always exist in infinite dimensional case.

(2) The uniqueness of the faithful integral also provides the uniqueness of the an-

tipode as in [7].

Proposition 4.1.5 There is a unique invertible element δ ∈ M(A) such that for

all a ∈ A

(1) (ϕ⊗ id)∆(a) = ϕ(a)δ and (id⊗ ψ)∆(a) = ψ(a)δ−1.

(2) ϕS(a) = ϕ(aδ).
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Proof In the proof of Theorem 4.1.4, ϕ(a)δ = δa = ϕ′(a(1))a(2) and ϕ′S(b)ϕ(a) =

ϕ(bδa), we take ϕ′ = ϕ and get a element δ ∈ M(A) such that (ϕ ⊗ id)∆(a) = ϕ(a)δ

and ϕS(a) = ϕ(aδ). This gives the first part of (1) and (2).

If we apply ε on the first equation, we find ε(δ) = 1. Because S flips the coproduct

and if we let ψ = ϕ ◦ S, we get

(id⊗ ψ)∆(a) = S−1(S ⊗ ψ)∆(a) = S−1(S ⊗ ϕ ◦ S)∆(a)

= S−1(id⊗ ϕ)(S ⊗ S)∆(a) = S−1(id⊗ ϕ)∆cop(S(a))

= S−1(ϕ⊗ id)∆(S(a))
(1)
= S−1(ϕ(S(a))δ)

= ψ(a)S−1(δ).

It remains to show S−1(δ) = δ−1.

If we apply ϕ to the formula (3.2) ψ(a(1)b)a(2) = ψ(ab(1))S(b(2)), we get

ψ(b)ϕ(a) = ψ(ab(1))ϕS(b(2)) = ψ(ab(1)ψ(b(2))) = ψ(aψ(b)S−1(δ))

= ψ(b)ψ(aS−1(δ))

for all a, b ∈ A. Then ϕ(a) = ψ(aS−1(δ)) for all a ∈ A. Therefore, ϕ(a) = ϕS(aS−1(δ)) =

ϕ
(
aS−1(δ)δ

)
and so S−1(δ)δ = 1M(A). On the other hand, ψ(a) = ϕS(a) = ϕ(aδ) =

ψ(aδS−1(δ)) and so δS−1(δ) = 1M(A). Hence, δ is invertible and S−1(δ) = δ−1, equiva-

lently S(δ) = δ−1. 2

Remark (1) The square S2 leaves the coproduct invariant, it follows that the

composition ϕ ◦ S2 of the faithful left integral ϕ with S2 will again a faithful left

integral. By the uniqueness of faithful left integrals, there is a number τ ∈ k such that

ϕ ◦ S2 = τϕ.

(2) If we apply (2) in Proposition 4.1.3 twice, we get

ϕ
(
S2(a)

)
= ϕ

(
S(a)δ

)
= ϕ

(
S(δ−1a)

)
= ϕ

(
(δ−1a)δ

)
= ϕ

(
δ−1aδ

)
.

So ϕ
(
δ−1aδ

)
= τϕ(a).

(3) We call δ the modular element as in algebraic quantum group. Here we cannot

conclude that ∆(δ) = δ ⊗ δ due to lack of the coassociativity of ∆.
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Finally, just as in the algebraic quantum and algebraic quantum hypergroup case,

we will show the existence of the modular automorphism.

Proposition 4.1.6 (1) There is a unique automorphism σ of A such that ϕ(ab) =

ϕ
(
bσ(a)

)
for all a, b ∈ A. We also have ϕ

(
σ(a)

)
= ϕ(a) for all a ∈ A.

(2) Similarly, there is a unique automorphism σ′ of A satisfying ψ(ab) = ψ
(
bσ′(a)

)
for all a, b ∈ A. And also ψ

(
σ′(a)

)
= ψ(a) for all a ∈ A.

Proof (1) For any p, q, x ∈ A,

(ψ ⊗ ϕ)
(
xq(1) ⊗ pS(q(2))

)
= ψ(xq(1))ϕ(pS(q(2))) = ϕ

(
pψ(xq(1))S(q(2))

)
(4.2)
= ϕ

(
pψ(x(1)q)x(2)

)
= ψ(x(1)q)ϕ

(
px(2)

)
= ψ

(
x(1)ϕ(px(2))q

) (4.3)
= ψ

(
S(p(1))ϕ(p(2)x)q

)
= ϕ(p(2)x)ψ

(
S(p(1))q

)
= ϕ

(
(ψ
(
S(p(1))q

)
p(2))x

)
= ϕ

(
(ψ ◦ S ⊗ id)

(
(S−1(q)⊗ 1)∆(p)

)
x
)
.

On the other hand, we also have

(ψ ⊗ ϕ)
(
xq(1) ⊗ pS(q(2))

)
= ψ(xq(1))ϕ(pS(q(2))) = ψ

(
x(q(1)ϕ

(
pS(q(2))

)
)
)

= ψ
(
x(id⊗ ϕ ◦ S)

(
∆(q)(1⊗ S−1(p))

))
.

Now assume that ψ = ϕ◦S. then we have ψ◦S = τϕ and ψ(y) = ϕ(yδ) by Proposition

4.1.5 (2). Then the above calculation will give us

ϕ(ax) = ψ(xb) =
1

τ
ϕ ◦ S(xb)

=
1

τ
ϕ(xbδ) = ϕ

(
x(

1

τ
bδ)
)

= ϕ
(
xb
)

for all x ∈ A, where a = (ψ◦S⊗id)
(
(S−1(q)⊗1)∆(p), b′ = (id⊗ϕ◦S)

(
∆(q)(1⊗S−1(p))

)
and b = b′δ.

Because ϕ is faithful, the element b is uniquely determined by the element a. So

we can define σ(a) = b. Moreover, by Lemma 4.1.2 and its remark, all element in A

are of the form a above, the map σ is defined on all of A. The map σ is injective by
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the faithfulness of ϕ, it is also surjective because all element in A are also of the form

b above.

Take a, b, c ∈ A, then

ϕ
(
cσ(ab)

)
= ϕ

(
(ab)c

)
= ϕ(abc) = ϕ

(
a(bc)

)
= ϕ

(
(bc)σ(a)

)
= ϕ

(
b
(
cσ(a)

))
= ϕ

((
cσ(a)

)
σ(b)

)
= ϕ

(
c
(
σ(a)σ(b)

))
.

It follows from the faithfulness of ϕ that σ(ab) = σ(a)σ(b). So σ : A −→ A is an

algebraic homomorphism. Apply this result twice, we have

ϕ(ab) = ϕ
(
bσ(a)

)
= ϕ

(
σ(a)σ(b)

)
= ϕ

(
σ(ab)

)
for all a, b ∈ A.

By Proposition 4.1.1 A has local units, then A2 = A, so ϕ is σ-invariant.

(2) Using that ψ = ϕ ◦ S we can easily get the statement for ψ.

ψ(ab) = ϕS(ab) = ϕ
(
S(b)S(a)

)
= ϕ

(
σ−1S(a)S(b)

)
= ϕS

(
bS−1σ−1S(a)

)
= ψ

(
bS−1σ−1S(a)

)
.

Therefore, σ′ = S−1σ−1S. 2

Remark In the proof of Proposition 4.1.6, we have

ϕ
(

(ψ ◦ S ⊗ id)
(
(S−1(q)⊗ 1)∆(p)

)
x
)

= ψ
(
x(id⊗ ϕ ◦ S)

(
∆(q)(1⊗ S−1(p))

))
.

According to Lemma 4.1.2, we have that if a ∈ A then there is a b ∈ A such that

ϕ(ax) = ψ(xb) for all x ∈ A. This result will be used in the next section.

As in the algebraic quantum group and hypergroup cases, the automorphism σ and

σ′ are called the modular automorphisms of A associated with ϕ and ψ respectively.

There are some extra properties derived from the above proposition.

Proposition 4.1.7 With the notation of above, we have
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(1) σ′ = S−1σ−1S and σ′(a) = δσ(a)δ−1.

(2) σ(δ) = 1
τ
δ and σ′(δ) = 1

τ
δ

(3) The modular automorphisms σ and σ′ commute with each other.

(4) The modular automorphisms σ and σ′ commute with S2.

(5) For all a ∈ A, ∆
(
σ(a)

)
= (S2 ⊗ σ)∆(a) and ∆

(
σ′(a)

)
= (σ′ ⊗ S−2)∆(a).

Compared with algebraic quantum groups, ∆ on multiplier Hopf coquasigroup is

not necessarily coassociatve. This is a significant difference between the two objects.

Other than that, the proof is similar.

§4.2 Duality of discrete multiplier Hopf coquasigroups

In this section, we will construct the dual of (infinite dimensional) multiplier Hopf

coquasigroup of discrete type. The construction bases on the faithful integrals intro-

duced in the last section. Here, we also start with defining the following subspace of

the dual space A∗.

Definition 4.2.1 Let ϕ be a faithful left integral on a regular multiplier Hopf

coquasigroup (A,∆). We define Â as the space of linear functionals on A of the form

ϕ(·a) where a ∈ A, i.e.,

Â = {ϕ(·a) | a ∈ A}.

Because of Proposition 4.1.3 and the following remark, we have

Â = {ϕ(·a) | a ∈ A} = {ψ(a·) | a ∈ A} = {ϕ(a·) | a ∈ A} = {ψ(·a) | a ∈ A}.

Recall from [28] a regular multiplier Hopf coquasigroup (A,∆) with a faithful

integral ϕ is called of discrete type, if there is a non-zero element ξ ∈ A so that

aξ = ε(a)ξ for all a ∈ A.
The element ξ ia called a left cointegral. Similarly a right cointegral is a non-zero

element η ∈ A so that ηa = ε(a)η. The antipode will turn a left cointegral into a right

one and a right one into a left one.
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Following this definition, we conclude ϕ(ξ) 6= 0. (If not, 0 = ε(a)ϕ(ξ) = ϕ(aξ) for

all a ∈ A, then ξ = 0 by the faithfulness of ϕ. this is contradiction.)

We start by making a discrete multiplier Hopf coquasigroup (A,∆) into an unital

algebra by dualizing the coproduct.

Proposition 4.2.2 For w,w′ ∈ Â, we can define a linear functional ww′ on A by

the formula

(ww′)(x) = (w ⊗ w′)∆(x), ∀x ∈ A. (4.3)

Then ww′ ∈ Â. This product on Â is not necessarily associative, but has a unit.

Proof Let w,w′ ∈ Â and assume that w′ = ϕ(·a) with a ∈ A. we have

(ww′)(x) = (w ⊗ ϕ(·a))∆(x) = (w ⊗ ϕ)
(
∆(x)(1⊗ a)

)
= w

(
x(1)ϕ(x(2)a)

) (3.1)
= w

(
S−1

(
a(1)ϕ(xa(2))

))
= ϕ

(
x
(
(wS−1 ⊗ id)∆(a)

))
We see that the product ww′ is well-defined as a linear functional on A and it has the

form ϕ(·b), where b = (wS−1 ⊗ id)∆(a). So ww′ ∈ Â. Therefore, we have defined a

product in Â.

The associativity of this product in Â is a consequence of the coassociativity of ∆

on A, and A is not necessarily coassociative.

To prove that Â has a unit, assume that there is a cointegral ξ ∈ A so that

aξ = ε(a)ξ for all a ∈ A.

ϕ
(
· 1

ϕ(ξ)
ξ
)
(a) =

1

ϕ(ξ)
ϕ
(
aξ
)

=
1

ϕ(ξ)
ϕ
(
ε(a)ξ

)
= ε(a),

so ε = ϕ
(
· 1
ϕ(ξ)

ξ
)
∈ Â. 2

Remark (1) Under the assumption, the elements of Â can be expressed in four

different forms. When we use these different forms in the definition of product in Â,

we get the following useful expressions:
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(1) wϕ(·a) = ϕ(·b) with b = wS−1(a(1))a(2); (2) wϕ(a·) = ϕ(c·) with c = wS(a(1))a(2).

(3) ψ(·a)w = ψ(·d) with d = a(1)wS(a(2)); (4) ψ(a·)w = ψ(e·) with e = a(1)wS
−1(a(2)).

(2) The reason for being restricted to the discrete case is that there is no definition

of multiplier algebra M(A) for a non-associative algebra A.

Let us now define the comultiplication ∆̂ on the unital algebra Â. Roughly speak-

ing, the coproduct is dual to the multiplication in A in the sense that

〈∆̂(w), x⊗ y〉 = 〈w, xy〉, ∀x, y ∈ A.

We will first show that the above functional is well-defined and again in Â⊗ Â.

Proposition 4.2.3 Let w ∈ Â, then we have ∆̂(w) ∈ Â⊗Â and ∆̂ is coassociative.

Proof The unit 1Â = ε = ψ
(

1
ψS(ξ)

S(ξ) ·
)
∈ Â, and let w = ψ(b·). Then

〈∆̂(w), x⊗ y〉 = 〈(ε⊗ 1Â)∆̂(w), x⊗ y〉 = 〈ε⊗ w, x(1) ⊗ x(2)y〉

= 〈 1

ψS(ξ)
ψ
(
S(ξ) ·

)
⊗ ψ(b·), x(1) ⊗ x(2)y〉

=
1

ψS(ξ)
ψ
(
S(ξ)x(1)

)
ψ(bx(2)y) =

1

ψS(ξ)
ψ
(
bψ
(
S(ξ)x(1)

)
x(2)y

)
(4.2)
=

1

ψS(ξ)
ψ
(
bψ
(
S(ξ(2))x

)
ξ(1)y

)
= ψ

( 1

ψS(ξ)
S(ξ(2))x

)
ψ
(
bξ(1)y

)
= 〈ψ

( 1

ψS(ξ)
S(ξ(2)) ·

)
⊗ ψ

(
bξ(1) ·

)
, x⊗ y〉

Hence ∆̂(w) = ψ
(

1
ψS(ξ)

S(ξ(2)) ·
)
⊗ ψ

(
bξ(1) ·

)
∈ Â⊗ Â.

The coassociativity is a direct consequence of the product associativity in A. 2

Proposition 4.2.4 ∆̂ : Â −→ Â⊗ Â is an algebra homomorphism.

Proof It is straightforward that ∆̂ is an algebra homomorphism, since for all

x, y ∈ H

〈∆̂(w1w2), x⊗ y〉 = 〈w1w2, xy〉 = 〈w1 ⊗ w2,∆(xy)〉

= 〈w1, x(1)y(1)〉〈w2, x(2)y(2)〉

〈∆̂(w1)∆̂(w2), x⊗ y〉 = 〈∆̂(w1)⊗ ∆̂(w2), (x(1) ⊗ y(1))⊗ (x(2) ⊗ y(2))〉
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= 〈∆̂(w1), x(1) ⊗ y(1)〉〈⊗∆̂(w2), x(2) ⊗ y(2)〉

= 〈w1, x(1)y(1)〉〈w2, x(2)y(2)〉

This completes the proof. 2

Let w ∈ Â and assume w = ϕ(·a) with a ∈ A. Define ε̂(w) = ϕ(a) = w(1M(A)).

Then ε̂ is a counit on (Â, ∆̂) as follows.

Proposition 4.2.5 ε̂ : Â −→ k is an algebra homomorphism satisfying

(id⊗ ε̂)∆̂
(
w
)

= w = (ε̂⊗ id)∆̂
(
w
)

(4.4)

for all w ∈ Â.

Proof Firstly, let w1 = ϕ(a·) and w2 = ϕ(b·), then w1w2 = ϕ(c·) with c =

ϕ
(
aS(b(1))

)
b(2). Therefore, if ψ = ϕ ◦ S we have

ε̂(w1w2) = ϕ(c) = ϕ
(
aS(b(1))

)
ϕ(b(2))

= ϕ
(
aS(b(1)ϕ(b(2)))

)
= ϕ(a)ϕ(b)

= ε̂(w1)ε̂(w2).

Secondly, let w = ϕ(·a), then we have

〈∆̂(w), x⊗ y〉 = 〈∆̂(w)(1Â ⊗ ε), x⊗ y〉 = 〈w ⊗ ε, xy(1) ⊗ y(2)〉

= 〈ϕ(·a)⊗ ϕ
(
· 1

ϕ(ξ)
ξ
)
, xy(1) ⊗ y(2)〉

=
1

ϕ(ξ)
ϕ(xy(1)a)ϕ

(
y(2)ξ

)
=

1

ϕ(ξ)
ϕ
(
xy(1)ϕ

(
y(2)ξ

)
a
)

(3.1)
= ϕ

(
xS−1(ξ(1))ϕ

(
yξ(2)

)
a
)

= 〈ϕ
(
· 1

ϕ(ξ)
S−1(ξ(1))a

)
⊗ ϕ

(
· ξ(2)

)
, x⊗ y〉.

Hence ∆̂(w) = ϕ
(
· 1
ϕ(ξ)

S−1(ξ(1))a
)
⊗ ϕ

(
· ξ(2)

)
. Therefore,

(id⊗ ε̂)∆̂(w) = ϕ
(
· 1

ϕ(ξ)
S−1(ξ(1))a

)
ϕ
(
ξ(2)
)

= ϕ
(
· 1

ϕ(ξ)
S−1

(
ξ(1)ϕ(ξ(2))

)
a
)

= ϕ
(
· a
)
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= w.

Finally, from Proposition 4.2.3 ∆̂(ψ(b·)) = ψ
(

1
ψS(ξ)

S(ξ(2)) ·
)
⊗ ψ

(
bξ(1) ·

)
. Then

(ε̂ ⊗ id)∆̂(w) = ψ
(

1
ψS(ξ)

S(ξ(2))
)
ψ
(
bξ(1) ·

)
= 1

ψS(ξ)
ψ
(
bξ(1)ψ

(
S(ξ(2))

)
·
)

= ψ(b·). This

completes the proof. 2

Let Ŝ : Â −→ Â be the dual to the antipode of A, i.e., Ŝ(w) = w ◦ S. Then it is

easy to see that Ŝ(w) ∈ Â, and we have the following property.

Proposition 4.2.6 Ŝ is antimultiplicative and coantimultiplicative such that

m(id⊗m)(Ŝ ⊗ id⊗ id)(∆̂⊗ id) = ε̂⊗ id = m(id⊗m)(id⊗ Ŝ ⊗ id)(∆̂⊗ id),

m(m⊗ id)(id⊗ Ŝ ⊗ id)(id⊗ ∆̂) = id⊗ ε̂ = m(m⊗ id)(id⊗ id⊗ Ŝ)(id⊗ ∆̂).

Proof For w1, w2 ∈ Ĥ and any x ∈ H,

〈Ŝ(w1w2), x〉 = 〈w1w2, S(x)〉 = 〈w1, S(x(2))〉〈w2, S(x(1))〉

= 〈Ŝ(w1), x(2)〉〈Ŝ(w2), x(1)〉 = 〈Ŝ(w2)Ŝ(w1), x〉

This implies Ŝ is antimultiplicative.

〈∆̂Ŝ(w), x⊗ y〉 = 〈Ŝ(w), xy〉 = 〈w, S(xy)〉 = 〈w, S(y)S(x)〉

= 〈∆̂(w), S(y)⊗ S(x)〉 = 〈∆̂cop(w), S(x)⊗ S(y)〉

= 〈(Ŝ ⊗ Ŝ)∆̂cop(w), x⊗ y〉,

We conclude Ŝ is coantimultiplicative.

Finally, we show m(id⊗m)(Ŝ⊗ id⊗ id)(∆̂⊗ id) = ε̂⊗ id, the other three formulas

is similar.

〈m(id⊗m)(Ŝ ⊗ id⊗ id)(∆̂⊗ id)
(
w ⊗ w′

)
, x〉

= 〈(Ŝ ⊗ id⊗ id)(∆̂⊗ id)
(
w ⊗ w′

)
, (id⊗∆)∆(x)〉

= 〈(∆̂⊗ id)
(
w ⊗ w′

)
, (S ⊗ id⊗ id)(id⊗∆)∆(x)〉

= 〈w ⊗ w′, (m⊗ id)(S ⊗ id⊗ id)(id⊗∆)∆(x)〉

= 〈w ⊗ w′, 1M(A) ⊗ x〉
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= ε̂(w)w′(x).

This completes the proof. 2

From now, we get the one main result of this section.

Theorem 4.2.7 Let (A,∆) be a regular multiplier Hopf coquasigroup of discrete

type with a faithful left integral ϕ. Then (Â, ∆̂) is a Hopf quasigroup introduced in [19].

Let ψ be a right faithful integral on A. For w = ψ(a·) we set ϕ̂(w) = ε(a). Then

we have the following result.

Proposition 4.2.8 The functional ϕ̂ defined above is a faithful left integral on

Hopf quasigroup (Â, ∆̂).

Proof It is clear that ϕ̂ is non-zero. Assume w = ψ(b·), then by Proposition 4.2.3

∆̂(w) = ψ
( 1

ψS(ξ)
S(ξ(2)) ·

)
⊗ ψ

(
bξ(1) ·

)
.

Therefore, we have

(id⊗ ϕ̂)∆̂(w) = ψ
( 1

ψS(ξ)
S(ξ(2)) ·

)
ε
(
bξ(1)

)
= ψ

( 1

ψS(ξ)
S(ξ) ·

)
ε(b) = ϕ̂(w)1Â.

Next, we show that ϕ̂ is faithful. If w1, w2 ∈ Â and assume w1 = ψ(a·) with a ∈ A,
we have w1w2 = ψ

(
a(1)w2S

−1(a(2)) ·
)
. Therefore, ϕ̂(w1w2) = w2S

−1(a). If this is 0

for all a ∈ H, then w2 = 0, while if this is 0 for all w2 then a = 0. This proves the

faithfulness of ϕ̂. 2

If we set ψ̂ = ϕ̂ ◦ Ŝ as we do for the multiplier Hopf coquasigroup (A,∆), we find

that when w = ϕ(·a)

ψ̂(w) = ϕ̂ ◦ Ŝ(w) = ϕ̂(w ◦ S) = ϕ̂
(
ϕS(S−1(a)·)

)
= ε
(
S−1(a)

)
= ε(a).
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§4.3 Biduality

Recall from [28] that the integral dual Ĥ of an infinite dimensional Hopf quasigroup

H is a regular multiplier Hopf coquasigroup of discrete type. Specifically, let H be an

infinite dimensional Hopf quasigroup with a faithful left integral ϕ and Ĥ = ϕ(·H),

if ϕ(·H) = ϕ(H·) and ϕ
(
(·h)h′

)
, ϕ
(
h′(h·)

)
∈ Ĥ for all h, h′ ∈ H, then Ĥ is a regular

multiplier Hopf coquasigroup of discrete type.

And by Theorem 4.7 the integral dual ̂̂H of the regular multiplier Hopf coquasi-

group of discrete type Ĥ is Hopf quasigroup. Then, how is the relation between H and̂̂
H? Similarly, for a discrete multiplier Hopf coquasigroup A, Â is a Hopf quasigroup,

the relation of A and ̂̂A is what we care about. This is the content of the following

theorem (biduality theorem).

Theorem 4.3.1 Let (H,∆) be a Hopf quasigroup, and (Ĥ, ∆̂) be the dual mutipli-

er Hopf coquasigroup of discrete type. For h ∈ H and f ∈ Ĥ, we set Γ(h)(f) = f(h).

Then Γ(h) ∈ ̂̂
H for all h ∈ H. Moreover, Γ is an isomorphism between the Hopf

quasigroups (H,∆) and (
̂̂
H,
̂̂
∆).

Proof For h ∈ H, first we show that Γ(h), as a linear functional on Ĥ, is in ̂̂H.

Indeed, let f = ϕ
(
·S(h)

)
and take any f ′ ∈ Ĥ. By Proposition 4.4 in [28], f ′f = ϕ(·h′)

where h′ = f ′(h(2))S(h(1)). Therefore,

ψ̂(f ′f) = ε(h′) = f ′(h) = Γ(h)(f ′).

So Γ(h) = ψ̂(·f) and Γ(h) ∈ ̂̂H.

It is clear that Γ is bijective between the linear space H and ̂̂H because of the

bijection of the antipode. Γ respects the multiplication and comultiplication is straight-

forward because in both case the product is dual to the coproduct and vice versa. For

details,

〈Γ(hh′), f〉 = 〈f, hh′〉 = 〈∆̂(f), h⊗ h′〉

= 〈(Γ⊗ Γ)(h⊗ h′), ∆̂(f)〉 = 〈Γ(h)Γ(h′), ∆̂(f)〉,

〈 ̂̂∆Γ(h), f ⊗ f ′〉 = 〈Γ(h), ff ′〉 = 〈ff ′, h〉

= 〈f ⊗ f ′,∆(h)〉 = 〈(Γ⊗ Γ)∆(h), f ⊗ f ′〉.
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Hence, Γ is an isomorphism between H and ̂̂H. 2

Similarly, we can get another isomorphism.

Theorem 4.3.2 Let (A,∆) be a discrete multiplier Hopf coquasigroup, and (Â, ∆̂)

be the dual Hopf quasigroup. For a ∈ A and w ∈ Â, we set Γ(a)(w) = w(a). Then

Γ(a) ∈ ̂̂A for all a ∈ A. Moreover, Γ is an isomorphism between the multiplier Hopf

coquasigroup (A,∆) and (
̂̂
A,
̂̂
∆).

As in the cases of algebraic quantum group and algebraic quantum group hyper-

group, all the results also hold for ( flexible (resp. alternative, Moufang)) multiplier

Hopf (∗-) coquasigroups. At the end of this section, we return to our motivating ex-

ample of multipler Hopf coquasigroups.

Example 4.3.3 Let G be a infinite (IP) quasigroup with identity element e, by

definition u−1(uv) = v = (vu)u−1 for all u, v ∈ G. The quasigroup algebra kG has a

natrual Hopf quasigroup structure. δe is the left and right integral on kG. The integral

dual k(G) introduced in [28] is a multipler Hopf coquasigroup of discrete type with the

structure as follows.

As an algebra, k(G) is a nondegenerate algebra with the product

δuδv = δu,vδv,

and 1 =
∑

u∈G δu is the unit in M(k(G)). The coproduct, counit and antipode are

given by

∆̂(δu) =
∑
v∈G

δv ⊗ δv−1u, ε̂(δu) = δu,e, Ŝ(δu) = δu−1 .

The left integral ϕ̂ and right integral ψ̂ on k(G) is the function that maps every δu to

1. δe is the left and right cointegral in k(G).

Now, we construct the dual of k(G) as introduced in Section 4. Then

k̂(G) = {ϕ̂(·δu) | u ∈ G}.
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The element ϕ̂(·δu) = ψ̂(·δu) maps δu to 1 and maps δv(v 6= u) to 0.

By Theorem 4.3.2, kG ∼= k̂(G) as Hopf quasigroups. The isomorphism Γ : kG −→
k̂(G) is given by

Γ(u) = ψ̂
(
· ϕ
(
· S(u)

))
= ψ̂

(
· δe
(
· u−1

))
= ψ̂

(
· δu
)
.

So if we identify ψ̂(·δu) with u, then k̂(G) = kG.

By Theorem 4.3.3, k(G) ∼= k̂G as multiplier Hopf coquasigroups. The isomorphism

Γ : k(G) −→ k̂G is given by

Γ(δu) =
̂̂
ψ
(
· ϕ̂
(
· S(δu)

))
= δe

(
· ϕ̂
(
· δu−1

))
= δe

(
· u−1

)
= u.

So k̂G = k(G).
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Chapter 5 Some special cases

In this chapter, we apply the techniques introduced in multiplier Hopf algebra and

multiplier Hopf coquasigroup theories to some special cases and get some interesting

results.

§5.1 Diagonal crossed products

For an infinite dimensional coFrobenius Hopf algebra H with α, β ∈ Aut(H), the

diagonal crossed product
⊕

(α,β)∈G Ĥ ./ H(α, β) is a quasitriangular multiplier Hopf

T -coalgebra. And its unital representation category is isomorphic to the generalized

Yetter-Drinfeld category YD(H) introduced in [20] as braided T -categories.

§5.1.1 (α, β)-quantum double

Let H be a Hopf algebra, and α, β ∈ AutHopf (H). Denote G = AutHopf (H) ×
AutHopf (H), a group with multiplication

(α, β) ∗ (γ, δ) = (αγ, δγ−1βγ), (5.1.1)

The unit is (ι, ι) and (α, β)−1 = (α−1, αβ−1α−1).

Recall from [20], an (α, β)-Yetter-Drinfel’d module over H is a vector space M ,

such thatM is a left H-module (with notation h⊗m 7→ h ·m) and a right H-comodule

(with notation M → M ⊗ H,m 7→ m(0) ⊗ m(1)) with the following compatibility

condition:

(h ·m)(0) ⊗ (h ·m)(1) = h(2) ·m(0) ⊗ β(h(3))m(1)αS
−1(h(1)). (5.1.2)

We denote by HYDH(α, β) the category of (α, β)-Yetter-Drinfel’d modules, morphism

being the H-linear H-colinear maps.

If H is "finite-dimensional", then

HYDH(α, β) ∼= H∗./H(α,β)M,

where H∗ ./ H(α, β) is the diagonal crossed product, whose product is given by: for
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all p, q ∈ H∗ and h, l ∈ H,

(p ./ h)(q ./ l) = p
(
α(h(1)) I q J S−1β(h(3))

)
./ h(2)l. (5.1.3)

One main question naturally arises: Does this isomorphism also hold for some "infinite-

dimensional" Hopf algebras?

For this question, we need to construct the diagonal crossed products of infinite-

dimensional Hopf algebras, which is a multiplier Hopf algebra rather than the usual

Hopf algebra. Let H be a coFrobenius Hopf algebra with a left integral ϕ, then by [34]

Ĥ = ϕ(·H) is a regular multiplier Hopf algebra with integrals.

In the following proposition, we will show that the diagonal crossed product (5.1.3)

also holds for infinite-dimensional coFrobenius Hopf algebra.

Proposition 5.1.1 Let H be a coFrobenius Hopf algebra with its dual multiplier

Hopf algebra Ĥ. Then A =
⊕

(α,β)∈GA(α,β) =
⊕

(α,β)∈G Ĥ ./ H(α, β) is a quasitrian-

gular G-cograded multiplier Hopf algebra with the following strucrures:

• For any (α, β) ∈ G, A(α,β) has the multiplication given by

(p ./ h)(q ./ l) = p
(
α(h(1)) I q J S−1β(h(3))

)
./ h(2)l

for p, q ∈ Ĥ and h, l ∈ H.

• The comultiplication on A is given by:

∆(α,β),(γ,δ) : A(α,β)∗(γ,δ) −→M(A(α,β) ⊗A(γ,δ)),

∆(α,β),(γ,δ)(p ./ h) = ∆cop(p)(γ ⊗ γ−1βγ)∆(h).

• The counit εA on A(ι,ι) = D(H) is the counit on the Drinfel’d double of H.

• For any (α, β) ∈ G, the antipode is given by

S : A(α,β) −→ A(α,β)−1 ,

S(α,β)(p ./ h) = T (αβS(h)⊗ S−1(p)) in A(α,β)−1 = A(α−1,αβ−1α−1).
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• A crossing action ξ : G −→ Aut(A) is given by

ξ
(γ,δ)
(α,β) : A(γ,δ) −→ A(α,β)∗(γ,δ)∗(α,β)−1 = A(αγα−1,αβ−1δγ−1βγα−1),

ξ
(γ,δ)
(α,β)(p ./ h) = p ◦ βα−1 ./ αγ−1β−1γ(h).

• A generalized R-matrix is given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G

ε ./ β−1(u)⊗ v ./ 1.

Example 5.1.2 Let C be an infinite cyclic group with generator c and let m be

a positive integer. Let i ∈ N , the set of natural integers and λ ∈ C such that λi is

a primitive mth root of 1. Let B be the algebra with generators c and X satisfying

relations: cX = λXc and Xm = 0. Then B is a Hopf algebra with the structure

given by ∆(c) = c ⊗ c, ∆(X) = ci ⊗X + X ⊗ 1, ε(c) = 1, ε(X) = 0, S(c) = c−1 and

S(X) = −c−iX.

In [ [8], 2.2.1], the authors constructed the dual of infinite dimensional Hopf algebra

B, which is a multiplier Hopf algebra A = B̂ with the linear basis {ωp,0Y l | p ∈ Z, l ∈
N, l < m}. For the details, the multiplier Hopf structure on A is given by the formula

ωp,qωk,l = δp−k,il(
l+q
q )−iωk,l+q,

∆(ωp,0) =
∑
k∈Z

ωk,0 ⊗ ωp−k,0, ∆(Y ) = D ⊗ Y + Y ⊗ 1,

ε(ωp,0) = δp,0, ε(Y ) = 0,

S(ωp,0) = ω−p,0, S(Y ) = −D−1Y,

where D =
∑

j∈Z
jωj,0 and Y =

∑
s∈Z

sωs,1. Notice that DY = Y D, Y m = 0 and

Dωk,0 = kωk,0 = ωk,0D.

Then by Proposition 5.1.1 we can construct a G-cograded multiplier Hopf algebra

DT (H) with the multiplier Hopf structure as follows: The product in A(α,β) is given

by

(1⊗ c)(ωk,0 ⊗ 1) = ωk,0 ⊗ c, (1⊗X)(ωk,0 ⊗ 1) = ωk−i,0 ⊗X,

(1⊗ c)(Y ⊗ 1) = −1Y ⊗ c, (1⊗X)(Y ⊗ 1) = −α−11⊗ ci + Y ⊗X + β−1D ⊗ 1.

47



The comultiplication, counit in A(ι,ι), antipode are given by

∆(α,β),(λ,γ)(ωp,0 ⊗ c) =
∑
k∈Z

(ωp−k,0 ⊗ c)⊗ (ωk,0 ⊗ c),

∆(α,β),(λ,γ)(ωp,0 ⊗X) =
∑
k∈Z

(ωp−k,0 ⊗ ci)⊗ (ωk,0 ⊗ α−1X)

+
∑
k∈Z

(ωp−k,0 ⊗ γ−1X)⊗ (ωk,0 ⊗ 1),

∆(α,β),(λ,γ)(Y ⊗ c) = (Y ⊗ c)⊗ (D ⊗ c) + (1⊗ c)⊗ (Y ⊗ c),

∆(α,β),(λ,γ)(Y ⊗X) = (Y ⊗ ci)⊗ (D ⊗ α−1X) + (Y ⊗ γ−1X)⊗ (D ⊗ 1)

+(1⊗ ci)⊗ (Y ⊗ α−1X) + (1⊗ γ−1X)⊗ (Y ⊗ 1),

ε(ωp,0Y
l ⊗ cnXs) = δp,0 δl,0 δs,0, S(α,β)(ωk,0 ⊗ c) = ω−k,0 ⊗ c−1,

S(α,β)(ωk,0 ⊗X) = −β−1α−1ω−i−k,0 ⊗ c−iX,

S(α,β)(Y ⊗ c) = −
∑
p∈Z

1−pωp+i,0Y ⊗ c−1, and

S(α,β)(Y ⊗X) = α−11⊗ c−i + β−1α−1
∑
p∈Z

−pωp+i,0Y ⊗ c−iX − β−1
∑
p∈Z

−pωp,0 ⊗ 1.

We can check that u⊗v =
∑

k,l c
kX l⊗ωk,l. Then by Theorem 5.1.4, the R-matrix

is given by

R =
∑

(α,β),(λ,γ)∈G(K×)

∑
j∈Z,l<m

αl(1⊗ cjX l)⊗ (ωj,l ⊗ 1).

§5.1.2 Representation category of the diagonal crossed product

In the following, we will consider the properties of the representation category

Ĥ./H(α,β)M of unital Ĥ ./ H(α, β)-modules.

Proposition 5.1.3 IfM ∈ HYDH(α, β), thenM ∈ Ĥ./H(α,β)M with the structure

(p ./ h) ·m = p((h ·m)(1))(h ·m)(0).

Proof It is straightforward to check that (p ./ h) ·
(
(q ./ l) ·m

)
=
(
(p ./ h)(q ./
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l)
)
·m. In fact,

(p ./ h) ·
(
(q ./ l) ·m

)
= (p ./ h) ·

(
q((l ·m)(1))(q · l)(0)

)
= (p ./ h) ·

(
q(β(l(3))m(1)αS

−1(l(1)))l(2) ·m(0)

)
= q

(
β(l(3))m(1)αS

−1(l(1))
)
p
(
(hl(2) ·m(0))(1)

)
(hl(2) ·m(0))(0)

= q
(
β(l(5))m(2)αS

−1(l(1))
)
p
(
β(h(3)l(4))m(1)αS

−1(h(1)l(2))
)
(h(2)l(3)) ·m(0),

and

(
(p ./ h)(q ./ l)

)
·m

=
(
〈q(1), S−1β(h(3))〉〈q(3), α(h(1))〉(pq(2) ./ h(2)l)

)
·m

= 〈q(1), S−1β(h(3))〉〈q(3), α(h(1))〉(pq(2))((h(2)l ·m)(1))⊗ (h(2)l ·m)(0)

= 〈q(1), S−1β(h(5))〉〈q(3), α(h(1))〉(pq(2))
(
β(h(4)l(3))m(1)αS

−1(h(2)l(1))
)
(h(3)l(2)) ·m(0)

= 〈q(1), S−1β(h(7))〉〈q(3), α(h(1))〉〈p, β(h(5)l(4))m(1)αS
−1(h(3)l(2))〉

〈q(2), β(h(6)l(5))m(2)αS
−1(h(2)l(1))〉(h(4)l(3)) ·m(0)

= 〈q, β(l(5))m(2)αS
−1(l(1))〉〈p, β(h(3)l(4))m(1)αS

−1(h(1)l(2))〉(h(2)l(3)) ·m(0).

�

Recall from Lemma 11 in [34], If M is a left unital Ĥ-module, then

ρ : M −→M ⊗H,

m 7→
∑

S−1(ϕ(1)) ·m⊗ t(·ϕ(2)) = v ·m⊗ u

gives the H-comodule structure on M . Following this lemma, we get the following

proposition.

Proposition 5.1.4 If M ∈ Ĥ./H(α,β)M, then M ∈ HYDH(α, β) with structures

h ·m = (ε ./ h) ·m,

m 7→ m(0) ⊗m(1) = (S−1(ϕ(1)) ./ 1) ·m⊗ t(·ϕ(2)).
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Proof Here we treat Ĥ and H as subalgebras of Ĥ ./ H(α, β) in the usual way,

then it is easy to get M is an H-module and H-comodule.

To show M ∈ HYDH(α, β), i.e., ρ(h ·m) = h(2) ·m(0) ⊗ β(h(3))m(1)αS
−1(h(1)), it

is enough to verify that

(S−1(ϕ(1)) ./ h)⊗ t(·ϕ(2)) = (ε ./ h(2))(S
−1(ϕ(1)) ./ 1)⊗ β(h(3))t(·ϕ(2))αS

−1(h(1)).

Viewing Ĥ ./ H(α, β)⊗H as a subspace of Hom(Ĥ, (Ĥ ./ H)(α, β)) in a natural way,

we only need to check that

p ./ h
(3.5)
= (S−1(ϕ(1)) ./ h)t(pϕ(2))

= (ε ./ h(2))(S
−1(ϕ(1)) ./ 1)〈p, β(h(3))t(·ϕ(2))αS

−1(h(1))〉

holds for any p ∈ Ĥ. Indeed, for any p′ ∈ Ĥ,

(p′ ./ h(2))(S
−1(ϕ(1)) ./ 1)〈p, β(h(3))t(·ϕ(2))αS

−1(h(1))〉

= (p′ ./ h(2))(S
−1(ϕ(1)) ./ 1)〈p, β(h(3))t(·ϕ(2))αS

−1(h(1))〉

= (p′ ./ h(2))(p(2) ./ 1)〈p(1), β(h(3))〉〈p(3), αS−1(h(1))〉

= 〈p(1), β(h(5))〉〈p(3), αS−1(h(1))〉〈p(2), S−1β(h(4))〉〈p(4), α(h(1))〉(p′p(3) ./ h(3))

= p′p ./ h.

This completes the proof. �

Next, we get the main result of this section, generalizing the conclusion in [20]

and giving an answer to the question introduced in Section 1.

Theorem 5.1.5 For a coFrobenius Hopf algebra H,

HYDH(α, β) ∼= Ĥ./H(α,β)M. (5.1.1)

Proof The correspondence easily follows from Proposition 5.1.1 and 5.1.2. Let

f : M → N be a morphism in HYDH(α, β), i.e., f is a module and comodule map.
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Then in Ĥ./H(α,β)M,

(f ⊗ ι)ρ(m) = f
(
(S−1(ϕ(1)) ./ 1) ·m

)
⊗ t(·ϕ(2))

ρ(f(m)) = (S−1(ϕ(1)) ./ 1) · f(m)⊗ t(·ϕ(2)).

(f⊗ι)ρ(m) = ρ(f(m)) implies f is a Ĥ ./ 1-module map, and so a HYDH(α, β)-module

map. We define a functor F(α,β) : HYDH(α, β) −→ Ĥ./H(α,β)M as follows,

F(α,β)(M) = M, and F(α,β)(f) = f.

Conversely, if f : M → N be a morphism in Ĥ./H(α,β)M, then

(f ⊗ ι)ρ(m) = f
(
(S−1(ϕ(1)) ./ 1) ·m

)
⊗ t(·ϕ(2))

= (S−1(ϕ(1)) ./ 1) · f(m)⊗ t(·ϕ(2))

= ρ(f(m)).

This shows that f is a H-comodule map. Then we similarly define a functor G(α,β) :

Ĥ./H(α,β)M−→ HYDH(α, β) by

G(α,β)(M) = M, and G(α,β)(f) = f.

From above, F and G preserve the morphisms from each other. Also F(α,β)G(α,β) =

1(α,β) andG(α,β)F(α,β) = 1(α,β). We have established the equivalence between HYDH(α, β)

and Ĥ./H(α,β)M. �

When α = β = ι, then Ĥ ./ H(ι, ι) = D(H) the quantum double of a coFrobenius

Hopf algebra. Then we have the following corollary, which is the main result in [34].

Corollary 5.1.6 For a coFrobenius Hopf algebra H, HYDH ∼= Ĥ./HM.

Let YD(H) be the disjoint union of HYDH(α, β) for every (α, β) ∈ G. Then

following Section 3 in [20] or [31, 32] (H is a special multiplier Hopf algebra), we have

HYDH is a braided T -category with the structures as follows

• Tensor product: if V ∈ HYDH(α, β) and W ∈ HYDH(γ, δ) with α, β, γ, δ ∈
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Aut(H), then V ⊗W ∈ HYDH(αγ, δγ−1βγ), with the structures as follows:

h · (v ⊗ w) = γ(h(1)) · v ⊗ γ−1βγ(h(2)) · w,

v ⊗ w 7→ (v ⊗ w)(0) ⊗ (v ⊗ w)(1) = (v(0) ⊗ w(0))⊗ w(1)v(1)

for all v ∈ V,w ∈ W .

• Crossed functor: Let W ∈ HYDH(γ, δ), define ξ(α,β)(W ) = (α,β)W = W as vector

space, with structures: for all a, a′ ∈ A and w ∈ W

a ⇀ w = γ−1βγα−1(a) · w,

w 7→ w<0> ⊗ w<1> = w(0) ⊗ αβ−1(w(1)).

Then (α,β)W ∈ HYDH((α, β)#(γ, δ)#(α, β)−1) = HYDH(αγα−1, αβ−1δγ−1βγα−1).

The functor ξ(α,β) acts as identity on morphisms.

• Braiding: If V ∈ HYDH(α, β), and W ∈ HYDH(γ, δ). Take VW = (α,β)W , define

a map CV,W : V ⊗W −→ VW ⊗ V by

C(α,β),(γ,δ)(v ⊗ w) = w(0) ⊗ β−1(w(1)) · v

for all v ∈ V and w ∈ W .

Following from Theorem 5.1.3, we obtain the following result, generalizing Theo-

rem 3.10 in [20].

Theorem 5.1.7 For a coFrobenius Hopf algebra H and its G-cograded multiplier

Hopf algebra A =
⊕

(α,β)∈G Ĥ ./ H(α, β), Rep(A) and YD(H) are isomorphic as

braided T -categories over G.

§5.2 Notes on Drinfeld twists of multiplier Hopf algebras

This section determines how the integral changes under a Drinfeld twist in multi-

plier Hopf algebras case. For a multiplier Hopf algebra A with a Drinfeld twist J , we

construct a new multiplier Hopf algebra AJ . Furthermore, if A is quasitriangular, then
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AJ is also. Finally, for a counimodular algebraic quantum group A, AJ is an algebraic

quantum group, and as an application we give the integral formula of HJ , where H is

an infinite dimensional counimodular coFrobenius Hopf algebra.

§5.2.1 Drinfeld twists for multiplier Hopf algebras

In [2], the properties of Drinfeld twist for finite-dimensional Hopf algebras were

studied. For a given Hopf algebra or quasitriangular Hopf algebra, one gets another

such structure by twisting it with a Drinfeld twist, and the authors also determine how

the integral of the dual to finite-dimensional unimodular Hopf algebra changes under

a twist (see Theorem 3.4 in [2]).

However, the following question remains open:

(Q1) Does [ [2], Theorem 3.4] remains valid for any infinite-dimensional Hopf

algebras or any multiplier Hopf algebras?

To answer the question (Q1), we first define a twist of a multiplier Hopf algebra as

follows. Let (A,∆) be a regular multiplier Hopf algebra. We first generalize the Drin-

feld twist to the multiplier Hopf algebra case, and then construct some new multiplier

Hopf algebras by this twist.

Definition 5.2.1 A twist of a regular multiplier Hopf algebra A is an invertible

element J ∈M(A⊗ A), which satisfies

(∆⊗ ι)(J)(J ⊗ 1) = (ι⊗∆)(J)(1⊗ J). (5.2.2)

Remark (1) Taking the inverse of (5.2.2), we can get the equivalent equation:

(J−1 ⊗ 1)(∆⊗ ι)(J−1) = (1⊗ J−1)(ι⊗∆)(J−1).

Let R be a quasitriangular structure for a regular multiplier Hopf algebra (A,∆) (the

definition will be recalled in Section 3), then following Proposition 3 in [34], we can get

that R−1 is a Drinfeld twist.

(2) Applying (ι ⊗ ε ⊗ ι) to the equation (2.1), one sees that as in the Hopf case

c = (ε⊗ ι)(J) = (ι⊗ ε)(J) is a non-zero scalar for the twist J . One can always replace
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J by c−1J to normalize the twist in such a way that

(ε⊗ ι)(J) = (ι⊗ ε)(J) = 1. (5.2.3)

In the following, we will always assume that J is normalized in this way.

(3) Let x ∈ M(A) be an invertible element such that ε(x) = 1. If J is a twist of

A, then so is Jx := ∆(x)J(x−1 ⊗ x−1). Indeed, it is similar to the one in Hopf algebra

case except that we should take the (unique) extension for the homomorphism ι ⊗∆

and ∆⊗ι from A⊗A toM(A⊗A). The twists J and Jx are said to be gauge equivalent.

Example 5.2.2 (1) Let A and B be regular multiplier Hopf algebras and 〈A,B〉
be a multiplier Hopf algebra pairing. Let W ∈ M(A ⊗ B) be the canonical element

defined in Definintion 4.1 in [8]. Then it is straightforward to check that

J = W14 = (ι⊗ ι⊗ τ)(ι⊗ τ ⊗ ι)(W ⊗ 1⊗ 1)

is a twist for the multiplier Hopf algebra Aop ⊗ B. Indeed, (∆ ⊗ ι)(J)(J ⊗ 1) =

W14W16W36 = (ι⊗∆)(J)(1⊗ J). Moreover, if A is an algebraic quantum group, Â is

its dual, and W ∈ M(Â ⊗ A) be the canonical element, then J = W14 is a twist for

multiplier Hopf algebra Âop ⊗ A.

(2) Let G be an infinite group. Denote by B = kG the group algebra and by

A = k(G) the classic multiplier Hopf algebra. Then 〈k(G), kG〉 is a multiplier Hopf

algebra pairing, and

J =
∑
g∈G

(δg ⊗ e)⊗ (1⊗ g)

is a twist for multiplier Hopf algebra k(G)op ⊗ kG, where e is the unit of group and

1 =
∑

g∈G δg ∈M(A).

(3) Let H be a coFrobenius Hopf algebra with a left integral ϕ and A = ϕ(·H)

be the dual multiplier Hopf algebra. a left cointegral t ∈ H satisfying ϕ(t) = 1. Then

following from Lemma 9 in [34] the element J =
∑

(ϕ(·t(2))⊗ 1)⊗ (ε⊗ t(1)) is a twist

for multiplier Hopf algebra Aop ⊗H.

(4) Let H be a Hopf algebra with a twist J , and A be a multiplier Hopf algebra.
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Then H ⊗ A is a multiplier Hopf algebra with the product, coproduct, counit and

antipode as follows.

(h⊗ a)(h′ ⊗ a′) = hh′ ⊗ aa′, ∆(h⊗ a) = (ι⊗ τ ⊗ ι)(∆(h)⊗∆(a)),

ε(h⊗ a) = ε(h)ε(a), S(h⊗ a) = S(h)⊗ S(a).

In this case, there is a twist J13 on H ⊗ A, where J13 = (ι⊗ τ ⊗ ι)(J ⊗ 1⊗ 1).

Furthermore, suppose that J(1⊗a), (1⊗a)J ∈M(A)⊗A and J(a⊗1), (a⊗1)J ∈
A⊗M(A) for all a ∈ A. At this time, so is J−1 and we call J the Drinfeld twist for A.

We denote (a⊗ 1)J = aJ (1) ⊗ J (2) and J(a⊗ 1) = J (1)a⊗ J (2) in A⊗M(A).

Remark here the above assumptions are reasonable. Take the nontrival Example

5.2.2 (1) for example, the canonical elementsW in many specific examples (e.g. Exam-

ple 5.2.2 (2) and Example 4.9 in [8]) satisfy the conditionW (1⊗b), (1⊗b)W ∈M(A)⊗B
and W (a ⊗ 1), (a ⊗ 1)W ∈ A ⊗M(B) for all a ∈ A and b ∈ B, Hence the above as-

sumption holds.

Under the above assumption, we can define a multiplier QJ = S(J (1))J (2) ∈M(A)

by

QJa = m(S ⊗ ι)(J(1⊗ a)) ∈ A,

aQJ = m(S ⊗ ι)(J(S−1(a)⊗ 1)) ∈ A

for all a ∈ A. This multiplier QJ is invertible with the inverse Q−1J = J−(1)S(J−(2)).

Indeed, for any a, b ∈ A

aQ−1J QJb = aJ−(1)S(J−(2))S(J (1))J (2)b

= aJ−(1)S(J (1)J−(2))J (2)b

= aJ ′(1)J−(1)S(J (1)J−(2))ε(J ′(2))J (2)b

= aJ ′(1)J−(1)S(J
′(2)
(1) J

(1)J−(2))J
′(2)
(2) J

(2)b

= aJ
(1)
(1)J

′(1)J−(1)S(J
(1)
(2)J

′(2)J−(2))J (2)b

= aJ
(1)
(1)S(J

(1)
(2) )J

(2)b
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= ab

and similarly aQ−1J QJb = ab.

The element QJ satisfies

∆(QJ) = (S ⊗ S)(J−121 )(QJ ⊗QJ)J−1, (5.2.4)

where J−121 = τJ−1. These equations make sense because of the extension of (anti-)

homomorphism (see Proposition A.5 in [23]).

By the Drinfeld twist J , we can get a new multiplier Hopf algebra as follows,

which generalizes the result in [2], and gives a positive answer to the question in the

beginning of this section.

Proposition 5.2.3 Let (A,∆) be a regular multiplier Hopf algebra. Then (AJ ,∆J)

is also a regular multiplier Hopf algebra with the same algebra structure and counit as

(A,∆), and the comultiplication and antipode are given by

∆J(a) = J−1∆(a)J,

SJ(a) = Q−1J S(a)QJ

for all a ∈ A.

Proof It is sufficient to check the equivalent definition, i.e., equations (2.2) and

(2.3). Firstly, it is easy to check that ∆J is a homomorphism and SJ is a bijective

anti-homomorphism. In the following, we only check (2.2) and (2.3) is similar.

(ε⊗ ι)(∆J(a)(1⊗ b)) = (ε⊗ ι)(J−1∆(a)J(1⊗ b))

= (ε⊗ ι)(J−1)(ε⊗ ι)(∆(a)(ε⊗ ι)(J)b

= ab,

where the second equation holds because ε ia a homomorphism.

m(SJ ⊗ ι)(∆J(a)(1⊗ b)) = m(SJ ⊗ ι)(J−1∆(a)J(1⊗ b))

= m(SJ ⊗ ι)(J−(1)a(1)J ′(1) ⊗ J−(2)a(2)J ′(2)b)
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= Q−1J S(J−(1)a(1)J
′(1))QJJ

−(2)a(2)J
′(2)b

= Q−1J S(J ′(1))S(a(1))S(J−(1))QJJ
−(2)a(2)J

′(2)b

= ε(a)b.

The equation J−1∆(a)J(1 ⊗ b) = J−(1)a(1)J
′(1) ⊗ J−(2)a(2)J

′(2)b makes sense, since

J(1⊗ b) ∈ A⊗A and denote it as J ′(1) ⊗ J ′(2)b, and then ∆(a)(J ′(1) ⊗ J ′(2)b) ∈ A⊗A
by the "cover" technique shown in [25]. 2

Remark The regular multiplier Hopf algebra AJ admits the Drinfeld twist J−1,

because (∆J ⊗ ι)(J−1)(J−1 ⊗ 1) = (ι ⊗ ∆J)(J−1)(1 ⊗ J−1) is equivalent to (5.2.2).

It follows from Proposition 5.2.4 that the regular multiplier Hopf algebra (AJ)J
−1 is

canonically isomorphic to A.

Proposition 5.2.4 Let J be a Drinfeld twist for multiplier Hopf algebra A. Then

for any a, b ∈ A

aS(J (1))J
(2)
(1) ⊗ bJ

(2)
(2) = (a⊗ b)(QJ ⊗ 1)J−1,

aJ−(1)S(J
−(2)
(1) )⊗ bS(J

−(2)
(2) ) = (aQ−1J ⊗ b)(S ⊗ S)(J).

Proof We only check the first equation, and the second one is similar.

(
aS(J (1))J

(2)
(1) ⊗ bJ

(2)
(2)

)
J = aS(J (1))J

(2)
(1) J̄

(1) ⊗ bJ (2)
(2) J̄

(2)

(5.2.2)
= aS(J

(1)
(1) J̄

(1))J
(1)
(2) J̄

(2) ⊗ bJ (2)

= aS(J̄ (1))S(J
(1)
(1) )J

(1)
(2) J̄

(2) ⊗ bJ (2)

= aS(J̄ (1))J̄ (2) ⊗ b

= aQJ ⊗ b,

so
(
aS(J (1))J

(2)
(1)⊗bJ

(2)
(2)

)
J = aQJ⊗b for any a, b ∈ A. From the nondegenerate property

of the product, we have
(
S(J (1))J

(2)
(1) ⊗ J

(2)
(2)

)
J = QJ ⊗ 1, by multiplier J−1 from the

right side, we get the assertion. 2

Recall from [11], let A be a regular multiplier Hopf algebra, an algebra X is called
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an A-module algebra if X is a unital A-module (we denote the A-action by ., then

A . X = X) and a . (xx′) = (a(1) . x)(a(2) . x
′) for any a ∈ A and x, x′ ∈ X. In the

following, we consider two kind of AJ -module algebras and their relations.

Proposition 5.2.5 Let A be a regular multiplier Hopf algebra with a Drinfeld

twist J , and X an A-module algebra (not necessarily with unit). Then there exists an

AJ -module algebra X?, which has the same K-module structure as A and the action

of AJ on X? is that of A on X. The product of X? is defined by

x ? y = m(J . (x⊗ y)) (5.2.5)

for any x, y ∈ X.

Proof First it is easy to show the product is well-defined. Then we check the

associativity of this new product as follows: for all x, y, z ∈ X,

(x ? y) ? z = m(J . (x⊗ y)) ? z = m(J . (m(J . (x⊗ y))⊗ z))

= m(m⊗ ι)
(
(∆⊗ ι)(J)(J ⊗ 1) . (x⊗ y ⊗ z)

)
= m(ι⊗m)

(
(ι⊗∆)(J)(1⊗ J) . (x⊗ y ⊗ z)

)
= m(J . (x⊗m(J . (y ⊗ z)))

= x ? (y ? z).

Finally, we need to prove that the product in A? is compatible with the multiplier

Hopf algebra structure of AJ . For all a ∈ AJ and x, y ∈ X,

a . (x ? y) = m(∆(a)J . (x⊗ y)) = m(J∆J(a) . (x⊗ y))

= m(J . (aJ(1) . x⊗ aJ(2) . y)) = (aJ(1) . x) ? (aJ(2) . y),

where ∆J(a)(1⊗ b) = aJ(1) ⊗ aJ(2)b. 2

We recall from [3] that an (X, Y )-bimodule is a left X-module and a right Y -

module V satisfying the compatibility condition: for x ∈ X, y ∈ Y and v ∈ V , (x ·
v) · y = x · (v · y). Now, we consider a unital (X, Y )-bimodule V (i.e., X · V = V and

V ·Y = V ), where X and Y are A-module algebras and V is also a left unital A-module.
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Compatibility between the structure of A and the (X, Y )-bimodule structure lead to

the following covariance requirement.

Definition 5.2.6 Let A be a regular multiplier Hopf algebra, and X, Y be A-

module algebras. A left A-module (X, Y )-bimodule (or A,XMY -module) is an (X, Y )-

bimodule V , which is also a unital left A-module such that for any a ∈ A, x ∈ X,

y ∈ Y and v ∈ V ,

a . (x · v) = (a(1) . x) · (a(2) . v), (5.2.6)

a . (v · y) = (a(1) . v) · (a(2) . y). (5.2.7)

An algebra E is a left A- module (X, Y )-bimodule algebra (or A,XMY -algebra), if E

is an A,XMY -module and also an A-module algebra.

Proposition 5.2.7 Let A be a regular multiplier Hopf algebra with a Drinfeld

twist J , X and Y be A-module algebras. Given a A,XMY -module V, there exists an

AJ ,X?
MY?-module V?. The module V? = V as vector spaces and the left action of AJ

on V? is that of A on V . The X? and Y? action on V? are respectively given by

x ? v = · ◦ J . (x⊗ v), (5.2.8)

v ? y = · ◦ J . (v ⊗ y). (5.2.9)

If V = E is further an A,XMY -algebra, then E? is an AJ ,X?
MY?-algebra with the

product given in Proposition 5.2.5.

Proof First, we need to check that the two actions on V? are well-defined, i.e.,

(xx′) ? v = x ? (x′ ? v) and v ? (yy′) = (v ? y) ? y′. Here we only check the first equation,

the second one is similar.

(xx′) ? v = (m(J . (x⊗ y))) ? v

= · ◦ J . (m(J . (x⊗ y))⊗ v),

= · ◦ (m⊗ ι)
(

(∆⊗ ι)(J)(J ⊗ 1) . (x⊗ x′ ⊗ v)
)

= · ◦ (ι⊗ ·)
(

(ι⊗∆)(J)(1⊗ J) . (x⊗ x′ ⊗ v)
)

= · ◦ J .
(
x⊗ · ◦ J . (x′ ⊗ v)

)
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= · ◦ J .
(
x⊗ x′ ? v

)
= x ? (x′ ? v).

Then we check the compatibility between the left AJ -action and the left X?-action.

For any a ∈ AJ , x ∈ X and v ∈ V ,

a . (x ? v) = a .
(
· ◦J . (x⊗ v)

)
= · ◦ (∆(a)J) . (x⊗ v)

= · ◦ (J∆J(a)) . (x⊗ v) = · ◦ J . ◦∆J(a) . (x⊗ v)

= (aJ(1) . x) ? (aJ(2) . v).

Compatibility between the left AJ -action and the right Y?-action is similar.

Finally, if V = E is an A-module algebra, then by Proposition 5.2.5, E? is AJ -

module algebra. Combining the above result, we can easily get E? is an AJ ,X?
MY?-

algebra. 2

Remark The equations (5.2.8) and (5.2.9) are well-defined. Indeed, for e.g.

(5.2.8), because X and V are unital A-modules, there exists ai, bj ∈ A, xi ∈ X and

vi ∈ V such that x =
∑

i ai . xi and v =
∑

j bj . vj. Then

· ◦ J . (x⊗ v) =
∑
i,j

· ◦ J(ai ⊗ bj) . (xi ⊗ vj) =
∑
i,j

(J (1)ai . xi) · (J (2)bj . vj),

where
∑

i,j J
(1)ai ⊗ J (2)bj ∈ A ⊗ A. Therefore the equation (5.2.8) is reasonable, and

(5.2.9) is similar.

Given a unital A-bimodule V , we can consider the adjoint action: for a ∈ A and

v ∈ V , a I v = a(1) · v · S(a(2)) := a(1)vS(a(2)). In the following, we will consider the

algebra isomorphism between algebra X and X?.

Proposition 5.2.8 Consider a regular multiplier Hopf algebra A and an A-

bimodule X that is also an algebra (not necessarily with unit). If for all a ∈ A

and x, x′ ∈ X, the "generalized associativity" conditions

(xx′)a = x(x′a), (xa)x′ = x(ax′), a(xx′) = (ax)x′,
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hold, then the adjoint action makes X an A-module algebra. Given a twist J of the

regular multiplier Hopf algebra A, the twist deformed algebra X? is isomorphic to X

via the map

DJ : X? −→ X,

x 7→ DJ(x) := (J (1) I x)J (2).

Proof Firstly, we check that X is an A-module algebra, i.e., a I (xx′) = (a(1) I

x)(a(2) I x′). Indeed,

(a(1) I x)(a(2) I x′) =
(
a(1)xS(a(2))

)(
a(3)x

′S(a(4))
)

= a(1)

((
xS(a(2))

)(
a(3)x

′S(a(4))
))

= a(1)

(
x
[
S(a(2))

(
a(3)x

′S(a(4))
)])

= a(1)

(
x
[
S(a(2))a(3)

(
x′S(a(4))

)])
= a(1)

(
x
(
x′S(a(2))

))
= a(1)

(
xx′
)
S(a(2))

= a I (xx′).

Then, we need to show that DJ is an isomorphism. Obviously DJ is a K-linear

map. It is also an algebra homomorphism, since for x, x′ ∈ X,

DJ(x ? x′)

= DJ

(
(J (1) I x)(J (2) I x′)

)
= J̄ (1) I

(
(J (1) I x)(J (2) I x′)

)
J̄ (2)

=
(

(J̄
(1)
(1)J

(1) I x)(J̄
(1)
(2)J

(2) I x′)
)
J̄ (2) (5.2.2)

= (J̄ (1) I x)(J̄
(2)
(1)J

(1) I x′)J̄
(2)
(2)J

(2)

= (J̄ (1) I x)
(
J̄
(2)
(1) I (J (1) I x′)

)
J̄
(2)
(2)J

(2) = (J̄ (1) I x)
(
J̄
(2)
(1) (J

(1) I x′)S(J̄
(2)
(2) )
)
J̄
(2)
(3)J

(2)

= (J̄ (1) I x)J̄ (2)(J (1) I x′)J (2) = DJ(x)DJ(x′).

Finally, we need to check that if DJ is invertible. In fact, for x ∈ X, the inverse

is given by D−1J (x) = J (1)xJ−(1)S(J (2)J−(2)) = J (1)xQ−1J S(J (2)). 2

Remark Using (5.2.2) we can easily get that

DJ(x) = (J (1) I x)J (2) = J
(1)
(1)xS(J

(1)
(2) )J

(2)
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= J (1)J (−1)xS(J
(2)
(1)J

′(1)J (−2))J
(2)
(2)J

′(2)

= J (−1)xS(J (−2))QJ ,

and DJ−1(x) = D−1J (x).

Example 5.2.9 Given a unital left A-module algebra X (not necessarily with

unit), we consider the smash product A#X. By definition as a vector space A#X =

A⊗X, and the product is given by (a#x)(a′#x′) = a(a′(1) ·x)#a′(2)x
′, which we simply

rewrite as

axa′x′ = a(a′(1) · x)a′(2)x
′.

The algebra A#X is an A-module algebra with the action a I (xa′) = (a(1) · x)(a(2) I

a′). The right A-module structure is given by (xa)a′ = x(aa′). Then by the above

proposition we can get that deformed algebra (A#X)? is isomorphic to A#X.

In the hypotheses of Proposition 5.2.8, the algebra X has an AJ -module algebra

structure given by the AJ -adjoint action: for a ∈ AJ and x ∈ X,

a IJ x := aJ(1)xS
J(aJ(2)). (5.2.10)

We denote this AJ -module algebra by (X,IJ), then we have the following result, which

generalizes Theorem 3.10 in [3].

Theorem 5.2.10 The algebra isomorphismDJ : X? −→ X is also an isomorphism

between the AJ -module algebras (X?,I) and (X,IJ), i.e., DJ intertwines AJ -action

I and IJ : for any a ∈ AJ and x ∈ X,

DJ(a I x) = a IJ DJ(x). (5.2.11)

Proof For any a ∈ AJ and x ∈ X,

DJ(a I x) = J (−1)(a I x)S(J (−2))QJ

= J (−1)a(1)xS(a(2))S(J (−2))QJ

= J (−1)a(1)J
(1)J ′−(1)xS(J (−2)a(2)J

(2)J ′−(2))QJ
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= aJ(1)J
′−(1)xS(aJ(2)J

′−(2))QJ = aJ(1)J
′−(1)xS(J ′−(2))S(aJ(2))QJ

= aJ(1)J
′−(1)xS(J ′−(2))QJQ

−1
J S(aJ(2))QJ

= aJ(1)DJ(x)SJ(aJ(2))

= a IJ DJ(x).

This completes the proof. 2

§5.2.2 Quasitriangular structure and integral under a twist

Recall from [34], a regular multiplier Hopf algebra (A,∆) is called quasitriangular

if there exists an invertible multiplier R in M(A⊗ A) which is subject to

(1) (∆⊗ ι)(R) = R13R23, (ι⊗∆)(R) = R13R12,

(2) R∆(a) = ∆cop(a)R for all a ∈ A,

(3) (ι⊗ ε)(R) = 1 = (ε⊗ ι)(R).

Let (A,∆) be a multiplier Hopf algebra. By Proposition 5.2.1.4, we get (AJ ,∆J)

is also a multiplier Hopf algebra. When (A,∆) is quasitriangular, how about (AJ ,∆J)?

Theorem 5.2.11 Let (A,∆) be a quasitriangular multiplier Hopf algebra with

generalized R-matrixR. Then (AJ ,∆J) is also quasitriangular, and the quasitriangular

structure given by

RJ = J−121 RJ.

Proof It is sufficient to check the equation (1), (2) and (3) in the definition of

quasitriangular. Firstly, we check RJ∆J(a) = (∆J)cop(a)RJ . In fact,

RJ∆J(a) = J−121 RJJ−1∆(a)J = J−121 R∆(a)J,

(∆J)cop(a)RJ = τ(J−1∆(a)J)J−121 RJ = J−121 ∆cop(a)J21J
−1
21 RJ

= J−121 ∆cop(a)RJ.

Because (A,∆) is quasitriangular, R∆(a) = ∆cop(a)R, then the equation holds.

Secondly, by the extension of homomorphism ε, it is easy to check that (ι ⊗
ε)(RJ) = 1 = (ε⊗ ι)(RJ).
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Finally, we need to check (∆J ⊗ ι)RJ = RJ13RJ23 and (ι⊗∆J)RJ = RJ13RJ12.

Here, we only show the proof of the first equation, and the second one is similar to

verify.

For any x ⊗ y ∈ A ⊗ A, x ⊗ y =
∑

i ∆
J(ai)(1 ⊗ bi) because of Proposition 5.2.3.

Thus

(∆J ⊗ ι)(RJ)(x⊗ y ⊗ z)

= (∆J ⊗ ι)(RJ)(
∑
i

∆J(ai)(1⊗ bi)⊗ z) =
∑
i

(∆J ⊗ ι)(RJ(ai ⊗ z))(1⊗ bi ⊗ 1)

=
∑
i

(J−1 ⊗ 1)(∆⊗ ι)(J−121 RJ(ai ⊗ z))(J ⊗ 1)(1⊗ bi ⊗ 1)

=
∑
i

(J−1 ⊗ 1)(∆⊗ ι)(J−121 )(∆⊗ ι)(R)(∆⊗ ι)(J(ai ⊗ z))(J ⊗ 1)(1⊗ bi ⊗ 1)

=
∑
i

(J−1 ⊗ 1)(∆⊗ ι)(J−121 )R13R23(∆⊗ ι)(J)(∆⊗ ι)(ai ⊗ z)(J ⊗ 1)(1⊗ bi ⊗ 1)

=
∑
i

(J−1 ⊗ 1)(∆⊗ ι)(J−121 )R13R23(∆⊗ ι)(J)(J ⊗ 1)

(J−1 ⊗ 1)(∆⊗ ι)(ai ⊗ z)(J ⊗ 1)(1⊗ bi ⊗ 1)

=
∑
i

(J−1 ⊗ 1)(∆⊗ ι)(J−121 )R13R23(ι⊗∆)(J)(1⊗ J)(J−1∆(ai)J ⊗ 1)(1⊗ bi ⊗ z)

= (J̇−(1)J
−(2)
(1) ⊗ J̇

−(2)J
−(2)
(2) ⊗ J

−(1))R13R23(ι⊗∆)(J)(1⊗ J)(x⊗ y ⊗ z)

= J̇−(1)J
−(2)
(1) R

(1)J ′(1)x⊗ J̇−(2)J−(2)(2) R
′(1)J

′(2)
(1) J̇

′(1)y ⊗ J−(1)R(2)R′(2)J ′(2)(2) J̇
′(2)z

= J−(2)J̇
−(1)
(2) R

(1)J ′(1)x⊗ J̇−(2)R′(1)J ′(2)(1) J̇
′(1)y ⊗ J−(1)J̇−(1)(1) R

(2)R′(2)J ′(2)(2) J̇
′(2)z

= J−(2)J̇
−(1)
(2) R

(1)J ′(1)x⊗ J̇−(2)J ′(2)(2) R
′(1)J̇ ′(1)y ⊗ J−(1)J̇−(1)(1) R

(2)J
′(2)
(1) R

′(2)J̇ ′(2)z

= J−(2)R(1)J̇
−(1)
(1) J ′(1)x⊗ J̇−(2)J ′(2)(2) R

′(1)J̇ ′(1)y ⊗ J−(1)R(2)J̇
−(1)
(2) J

′(2)
(1) R

′(2)J̇ ′(2)z

= J−(2)R(1)J (1)x⊗ J̇−(2)R′(1)J̇ ′(1)y ⊗ J−(1)R(2)J (2)J ′−(1)R′(2)J̇ ′(2)z

= RJ13RJ23(x⊗ y ⊗ z),

where the penultimate equation holds because of (∆⊗ι)(J−1)(ι⊗∆)(J) = (J⊗1)(1⊗J).

2

From Theorem 5.2.6 and Proposition 2.6 in [10], we can easily get the following

result.
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Proposition 5.2.12 Let (A,∆) be a quasitriangular multiplier Hopf algebra and

J a twist. Then for all a ∈ A

(SJ)4(a) = gag−1,

where g = µS(µ)−1 and µ = SJ(RJ (2))RJ (1).

Because the integral play an important role in the Pontryagin duality, then the

following queation naturally arise:

(Q2) For a regular multiplier Hopf algebra (A,∆) with an integral, does (AJ ,∆J)

also admits a integral?

Before answering this question, we first consider a multiplier uJ = Q−1J S(QJ) in

M(A). By equation (5.2.4), we have

∆(uJ) = ∆(Q−1J S(QJ)) = J(Q−1J S(QJ)⊗Q−1J S(QJ))(S2 ⊗ S2)(J−1)

= J(uJ ⊗ uJ)(S2 ⊗ S2)(J−1).

Theorem 5.2.13 Let (A,∆) be a counimodular algebraic quantum group with a

non-zero left (resp. right) integral ϕ (resp. ψ) and J be a Drinfeld twist. Then the

elements ϕJ = uJ ⇀ ϕ and ψJ = ψ ↼ u−1J are non-zero left and right integrals on

(AJ ,∆J) respectively.

Proof We need to check that (ι⊗ϕJ)∆J(a) = ϕJ(a)1, equivalently S(ι⊗ϕJ)∆J(a) =

ϕJ(a)1. In deed, for any x ∈ A, there exists b ∈ A such that x = S(b). Thus

S(ι⊗ ϕJ)(∆J(a))x = S(ι⊗ uJ ⇀ ϕ)(J−1∆(a)J)x

= S(ι⊗ ϕ)(J−1∆(a)J(1⊗ uJ))S(b) = S(ι⊗ ϕ)((b⊗ 1)J−1∆(a)J(1⊗ uJ))

= S(ι⊗ ϕ)(bJ−(1)a(1)J̇
(1) ⊗ J−(2)a(2)J̇ (2)uJ) = S(bJ−(1)a(1)J̇

(1))ϕ(J−(2)a(2)J̇
(2)uJ)

= S(J̇ (1))S(a(1))S(J−(1))S(b)ϕ(a(2)J̇
(2)uJS

2(J−(2)))

(1)
= S(J̇ (1))J̇

(2)
(1)uJ (1)S

2(J
−(2)
(1) )S(J−(1))S(b)ϕ(aJ̇

(2)
(2)uJ (2)S

2(J
−(2)
(2) ))

= (ι⊗ ϕ)
(

(1⊗ a)
(
S(J̇ (1))J̇

(2)
(1) ⊗ J̇

(2)
(2)

)
∆(uJ)

(
(S ⊗ S)(bJ−(1)S(J

−(2)
(1) )⊗ S(J

−(2)
(2) ))

))
(2)
= (ι⊗ ϕ)

(
(1⊗ a)

(
(QJ ⊗ 1)J−1

)
∆(uJ)

(
(S ⊗ S)((bQJ−1 ⊗ 1)(S ⊗ S)(J))

))
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= (ι⊗ ϕ)
(

(1⊗ a)
(
(QJ ⊗ 1)J−1

)
(J(uJ ⊗ uJ)(S2 ⊗ S2)(J−1))(

(S2 ⊗ S2)(J)(S(QJ−1)⊗ 1)(S(b)⊗ 1)
))

= (ι⊗ ϕ)
(

(1⊗ a)(QJ ⊗ 1)(uJ ⊗ uJ)(S(QJ−1)⊗ 1)(S(b)⊗ 1)
))

= (ι⊗ ϕ)
(

(1⊗ a)(1⊗ uJ)(S(b)⊗ 1)
))

= ϕJ(a)x,

where equation (1) holds because S(ι⊗ϕ)(∆(a)(1⊗ b)) = (ι⊗ϕ)((1⊗ a)∆(b)) and (2)

holds because of Proposition 2.4. 2

Note that Theorem 5.2.13 contains an answer to the question (Q) in Introduction.

Following Theorem 5.2.13 we can easily get the follwing result in the Hopf algebra case.

Corollary 5.2.14 Let (H,∆) be an infinite-dimensional counimodular coFrobe-

nius Hopf algebra. ϕ (resp. ψ) is the non-zero left (resp. right) integral on H and

J ∈ H ⊗ H is a twist. Then the elements ϕJ = uJ ⇀ ϕ and ψJ = ψ ↼ u−1J are

non-zero left and right integrals on (HJ ,∆J) respectively.

Example 5.2.15 Let G be an (infinite) abelian group, let kG be its group algebra

with coefficients in a field k, and let k(G) be the dual multiplier Hopf algebra. Then

D(G) = k(G)cop ./ kG is the Drinfeld double with the quasitriangular multiplier Hopf

algebra structure as follows. For any g, h, p, q ∈ G,

(δg ./ p)(δh ./ q) = δgδphp−1 ./ pq, ε(δg ./ p) = δg,e,

∆(δg ./ p) =
∑
s∈G

(δs−1g ./ p)⊗ (δs ./ p), S(δg ./ p) = δp−1g−1p ./ p
−1,

R =
∑
g∈G

(1 ./ g)⊗ (δg ./ e).

In this case, the Drinfeld twist J = R−1 =
∑

g∈G(1 ./ g) ⊗ (δg−1 ./ e), where 1 =∑
g∈G δg. By Theorem 5.2.2.1 the quasitriangular structure in D(G)J is given by

RJ = J−121 RJ =
∑
g∈G

(δg ./ e)⊗ (1 ./ g).
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Since QJ = S(J (1))J (2) =
∑

g∈G δg ./ g
−1, uJ = Q−1J S(QJ) = 1 ./ e, by Theorem

5.2.3 the left and right integrals on (D(G)J ,∆J) are given by ϕJ = ψJ = f ⊗ δe, where
f maps every δg, g ∈ G to 1.
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