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Chapter 1 Introduction

Throughout this paper, k is assumed to be an algebraically closed field of characteristic

0, and all vector spaces, algebras and Hopf algebras are assumed to be over k.

Hopf algebras, which naturally unify algebraic structures such as groups, Lie al-
gebras, and quantum groups, have become a central topic in modern mathematics and

mathematical physics.

In the finite-dimensional case, the linear dual of a Hopf algebra is again a Hopf
algebra, and the theory of integrals plays a crucial role in understanding its structure. For
instance, integrals in finite-dimensional Hopf algebras lead to elegant generalizations

of classical results such as Maschke’s theorem, which characterizes semisimplicity.

However, the situation becomes significantly more complex in the infinite-dimensional

setting. Two fundamental challenges arise:

1) Integral Theory in Infinite-Dimensions: While integrals in finite-dimensional
Hopf algebras are well understood and yield powerful results, there lacks a natural
definition in the infinite-dimensional case.

2) Dual Structures in Infinite-Dimensions: The linear dual of a finite-dimensional
Hopf algebra retains a Hopf algebra structure, but this property fails in general
for infinite-dimensional Hopf algebras. To address this, Heyneman and Sweedler
introduced the concept of the finite dual, which preserves the Hopf algebra struc-
ture under certain conditions. Nevertheless, the study of finite duals for general

infinite-dimensional Hopf algebras remains highly nontrivial.

To tackle the first problem, Lu, Wu, and Zhang [5] introduced homological inte-
grals for Artin-Schelter Gorenstein (AS-Gorenstein) Hopf algebras, providing a viable
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generalization of classical integrals in the infinite-dimensional setting. This framework
has proven particularly effective in the study of infinite-dimensional Hopf algebras with
low Gelfand-Kirillov dimension. Subsequently, Wu, Ding, and Liu [11] applied homo-
logical integral theory to classify affine prime regular Hopf algebras of GK-dimension

one, demonstrating the utility of this approach in structural classification.

Building on this classification, Li and Liu [4] further investigated the finite duals
of these Hopf algebras, explicitly determining their algebraic structure and construct-
ing non-degenerate Hopf pairings between the original Hopf algebras and certain Hopf
subalgebras of their finite duals. These results provide deeper insights into the duality

properties of infinite-dimensional Hopf algebras.

In this paper, we focus on the homological integrals of the certain Hopf subalgebras
constructed in [4]. By computing their left homological integrals, integral order and

integral minor, we investigate some interesting properties about unimodularity:

1) Unlike the case of affine prime regular Hopf algebra of GK-dimension one, com-
mutativity is not necessary for unimodularity in general.

2) Similar to the case of finite-dimensional Hopf algebras, for infinite-dimensional
Hopf algebras, unimodularity is generally independent of the unimodularity of its

dual space.



Chapter 2 Preliminary

2.1 Some basics about Hopf algebra

Definition 2.1. Let k be a field. A k-algebra (with unit) is a k-vector space A together
with two k-linear maps, multiplicationm : AQ A — A, andunitu : k — A, such that
the following diagrams are commutative:

a) associativity b) unit

ARAQRA ™% A A AR A <L AQk

rasn| - \\\\<g\\ [

AQA A k® A A

m n

The 1d denotes the identity mapping, and the n denotes the scalar multiplication.

Definition 2.2. For any k-space V and W, the twistmapt . V QW - W QV, is

given by 7(v @ w) = w @ v. Obviously, A is commutative < mer =mon A @ A.

The definition of a coalgebra is made by reversing the arrows in the diagrams in

Definition 2.1.

Definition 2.3. A k-coalgebra (with counit) is a k-vector space C together with two
k-linear maps, comultiplication A : C - C ® C and counit e . C — k, such that the

following diagrams are commutative:

a) coassociativity b) counit
c—2 .cecC c 2, cok

N sora o] N2 J e

C®C—>M®A CRCRC |k®C<—€®M cC®C

The two upper maps in b) are given by c — 1 @ ¢, and c — ¢ ® 1, forany c € C. We

say C is cocommutative if T o A = A.
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Definition 2.4. Let C be any coalgebra, and c € C.

a) c is called group-like if

Alc)=c®c and e(c)=1.

The set of group-like elements in C is denoted by G(C).
b) For g,h € G(C), c is called g, h-primitive if

Alc)=c®g+hQc.

The set of all g, h-primitive elements is denoted by P, ;,(C). The elements of

Py ((C) are simply called the primitive elements of C, denoted by P(C).

Definition 2.5. Let C and D be coalgebras, with comultiplication A and A, and
counits €. and €y, respectively. A coalgebra map f : C — D is a linear map, such

that Ap o f = (f @ f)Ac and e = € ° f, that means the following diagrams are

commutative:
c—1 _.p
cCRC Y D® D
c—..p
\ leD
€c
k

Similarly, we have the definition of algebra map.

Definition 2.6. 4 k-space B is a bialgebra if (B, m,u) is an algebra, (B, A,¢€) is a

coalgebra, and either of the following (equivalent) conditions holds:

a) A and e are algebra morphisms

b) m and u are coalgebra morphisms.

Theorem 2.7. Let C be a coalgebra and A an algebra. Then Hom (C, A) becomes an
algebra under the convolution product f+g(c) = me(f®g)(Ac),Vf,g € Hom(C, A),c €

C. The unit element in Hom (C, A) is ue.



2.1 Some basics about Hopf algebra

Let C be any coalgebra with comultiplication A : C — CQ®C. The sigma notation

for A is given as follows: for any ¢ € C, we write
Ac = (9] ® Cy.

The subscripts 1 and 2 are symbolic, and do not indicate particular elements of C, this
notation is analogous to the notation used in physics. In these note, we usually simplify
the notation by omitting parentheses. In particular, the coassociativity diagram gives

that
Cq ®C21 ®C22 = Cll ®C12 ®C2,

this element is written as ¢; @ ¢, ® c3 = A,(c).

Definition 2.8. Let (H,m,u, A, €) be a bialgebra. Then H is a Hopf algebra if there
exists an element S € Hom(H , H), which is an inverse to 1d ;; under the convolution

*. S is called an antipode for H. Note that in sigma notation, S satisfies
Y (Shphy =e(W)ly =Y h{(Shy).Vh € H.

We give some relevant examples of Hopf algebras.

Example 2.9. Let G be a group and k a field. Then kG becomes a Hopf algebra with

comultiplication, counit and antipode given by:

Ag)=g®g e@=1 S =g,

for all g € G, extended linearly to all of kG.

Example 2.10. Assume that char(k) # 2. Let H be the algebra generated by ¢ and x

with relations;
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Then H becomes a Hopf algebra with comultiplication, counit and antipode given by:

Alc)=c®c, AX)=c@R@x+xQ1,
e(c)=1, e(x)=0,

S)=c7l, Sx) = —cx.

H is called Sweedler’s 4-dimensional Hopf algebra, and it was the first example of a

non-commutative and non-cocommutative Hopf algebra.

Definition 2.11. A map f : H — K of Hopf algebras is a Hopf morphism, if it is a
bialgebra morphism and f(Syh) = S f(h),Vh € H.

Definition 2.12. Let H be a Hopf algebra with multiplication yu, comultiplication A,

counit e, antipode S, and unit n. A subspace I C H is called a Hopf ideal if:

a) 1 is a two-sided ideal of H :

ulIQ®H)CI and u(HI)CI.

b) 1 is a coideal of H :

AU)CI®H+HQ®I and e()=0.

¢) The antipode S preserves I :
S(I)CI.

The quotient H/I then inherits a Hopf algebra structure from H.

2.2 Finite duals for Hopf algebras

When studying an algebra structure, it is always effective to consider the linear
dual of it. It is known that when (H, m,u, A, €, S) is a finite-dimensional Hopf algebra,
its linear dual (H*, A", ¢*, m*, u*, S™) is also a Hopf algebra and has the same dimension

as well as similar or dual properties with H.
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However, the linear dual of an infinite-dimensional Hopf algebra fails to have Hopf
algebra structure in general because the algebra structure of a bialgebra may not intro-

duce a canonical coalgebra structure on its linear dual.

In[2], Heyneman and Sweedler described the finite dual of an infinite-dimensional
Hopf algebra H, which is not defined on the entire dual space H*, but on a certain sub-

space of it:

Definition 2.13. Let H be a Hopf algebra over k and denote its dual space by H*. The
finite dual of H is defined as

H° :={f € H" | f vanishes on a cofinite ideal I }

It is well known that H® has a Hopf algebra structure naturally. Similar to the
finite-dimensional case, there are several relationships between H and H°. However,
for an infinite-dimensional Hopf algebra, its finite dual might be hard to be studied

easily. For examples and properties of the finite dual, we refer to Chapter 9 in [6].

2.3 Gelfand-Kirillov dimension

The Gelfand-Kirillov dimension, GK-dimension for short, becomes a powerful

tool to study noncommutative algebras, especially for those with infinite dimensions.

Definition 2.14. The Gelfand-Kirillov dimension (GK-dimension for short) of a k-

algebra A is
GKdim(A) = lim sup dy,(n),
14

where the supremum is taken over all finite-dimensional subspaces V of A and

dy (n) = dim,, ( V’) :
i=0

The GK-dimension can be viewed as a non-commutative analogue of the Krull
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dimension. In fact, for a finitely generated commutative algebra A, the GK-dimension

of A equals its Krull dimension.

Example 2.15. GK-dimension of k[x, x,, --+, x,] = n.

2.4 Stuff from ring theory

In this paper, a ring R is called regular if it has finite global dimension, and it is
prime if O is a prime ideal.
e PIring. Let R be an associative ring (not necessarily commutative). If there exists a
nonzero polynomial f(x;, x,, ---, x,,) (with coefficients in k) such that for all n-tuples
(ri,ry, -+ ,r,) € R", f(ry,ry, -+, r,) =0, then R is called a PI ring (Polynomial Iden-
tity Ring).
e Artin-Schelter condition. Recall that an algebra A is said to be augmented if there
is an algebra morphism ¢ : A — k. Let (A, ¢) be an augmented noetherian algebra.
Then A is Artin-Schelter Gorenstein, we usually abbreviate to AS-Gorenstein, if
(AS1) injdim4A = d < o,
(AS2) dimy Exti(Alk, 4A) = 1 and dimy Ext’A(A[I«, 4A)=0foralli #d,
(AS?3) the right A-module versions of (AS1, AS2) hold.
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In this chapter, we recall the basic definitions and related properties of Integrals on
locally compact topological groups, bialgebras, finite-dimensional Hopf algebras and
infinite-dimensional Hopf algebras. Throughout this chapter, we focus on unimodu-

larity of the objects above, and an the end of this chapter we raise a question about it

3.1 Haar integral on locally compact topological groups

In abstract harmonic analysis theory, the extension of Fourier analysis to compact
non-Abelian groups was made possible by the Peter-Weyl theorem. Crucially, the the-
orem revealed that the key requirement for Fourier representations is not the finiteness
of the group, but the existence of an invariant integral that assigns a finite volume to the

group. In this case Haar integral plays an important role in it.

In the case of non-abelian groups, it is necessary to distinguish left and right in-

variance. For instance, an integral on a topological group G is left invariant if

/f(ax)dx=/f(X)dx
G G

foralla € G.

Definition 3.1. Let G be a locally compact group, A left (resp.right) Haar measure on
G is a nonzero Radon measure u on G satisfies u(xE)=u(E) (resp. u(Ex)=u(E)) for
every Borel set E C G and every x € G.

Let C.(G) be the space of compactly supported continuous complex-valued functions
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on G, the Haar integral for f € C.(G) is defined by

I(f)=/fd/4-
G

It is easy to see that the Haar integral associated to left (resp.right) Haar measure
is left (resp.right) invariant. Once we get a left Haar measure i on group G, let ji(E) =
u(E™Y), then i is a right Haar measure on G. From this point of view, it is of little

importance whether one chooses to study left or right Haar measure.

For second countable groups, the existence of Haar measure was first proved by
Haar [1] and the uniqueness was first proved by von Neumann [7]. The first systematic
treatment of analysis on locally compact groups using Haar measure was given by Weil

[10], who showed that the countability assumptions were unnecessary :
Theorem 3.2. Every locally compact group G possesses a left Haar measure.

Theorem 3.3. If v and u are left Haar measures on G, there exists ¢ € (0, o0) such that

U =cv

Here we give some examples:
Example 3.4. dx/|x| is a Haar measure on the multiplicative group R \ {0}.
Example 3.5. dxdy/(x> + y*) is a Haar measure on the multiplicative group C \ {0}.

Example 3.6. |detT|™"dT is a left and right Haar measure on the group GL(n,R),

where dT is Lebesgue measure on the vector space of all real » X n matrices.

Example 3.7. The ax+b group G is the group of all affine transformation x — ax + b
of R witha > 0 and b € R. On G, dadbla® is a left Haar measure and dadb/a is a right

Haar measure.

In Example 3.7, we find that the left Haar measure and the right Haar measure are
not necessarily the same. To investigate the extent to which the left Haar measure fails

to be right-invariant, modular function is defined.

Let G be a locally compact group with left Haar measure A. If, for x € G, we define

10
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A(E) = A(Ex), then A, is again a left Haar measure. By the uniqueness Theorem
3.3, there is a number A(x) > O such that 1, = A(x)4, and A(x) is independent of
the original choice of A. The function A : G — (0, ) thus defined is called the

modular function of G.

G is called unimodular if A = 1, that is, if left Haar measure is also right Haar
measure. Unimodularity is a useful property in a number of respects. Obviously Abelian
groups and discrete groups are unimodular, but many others are too. Here are some

classes of examples:
Proposition 3.8. If G is compact, then G is unimodular.
Proposition 3.9. If G//G,G] is compact, then G is unimodular.

As a consequence of Proposition 3.9, one can see that every connected semi-simple

Lie group G is unimodular. More generally, one has the following result:

Proposition 3.10. Let G be a Lie group and g the Lie algebra of G, then G is unimodular
if and only if

|det Ad(g)| =1 forall g € G,

where Ad is the adjoint representation. If G is connected, this is equivalent to requiring

trad(X) =0 forall X € g,

where ad is the adjoint representation of the g.

It follows easily from Proposition 3.10 that every connected nilpotent Lie group
and connected reductive Lie group is unimodular. The simplest example of a non-

unimodular group is the ax + b group.

3.2 Integrals in finite-dimensional Hopf algebras

Before introducing integrals in finite-dimensional Hopf algebras, we recall the def-

inition of integrals for bialgebras.

11
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Let H be a bialgebra. Then its dual space H™ has an algebra structure which is
dual to the coalgebra structure on H. The multiplication is given by the convolution
product. To simplify notation, if 4%, g* € H™ we will denote the product of #*, g* in
H* by h*g*.

Definition 3.11. A map T € H" is called a left (vesp.right) integral of the bialgebra
H if i*T = h*()T (resp.Th* = h*(1)T) for all h* € H*. The set of left (resp.right)
integrals of H is denoted by [ Il{ (resp. [ I:, ).

Following example is the motivating influence for the terminology “integral”.

Example 3.12. Let G be a compact topological group, and let H be the Hopf algebra

of continuous complex-valued representative functions; that is,
H={fe€(CG)|f : G- Cis continuous}

Let 1 denote Haar measure on G, and consider the Haar integral / ¢ S (X)du(x). Tt fol-
lows that the map from H to C given by f — / ¢ J(X)du(x) is an integral in the sense
of definition 3.11.

When H is a finite-dimensional Hopf algebra, there is still another way to work
with integrals. We recall that there is an isomorphism of algebras ¢ : H — H™*
defined by

P(h)(h*) = h*(h) forany h € H,h* € H*.

Then it makes sense to talk about left integrals for the Hopf algebra H*, these

being elements in H **.

Since ¢ is bijective, there exists a nonzero element 2 € H such that ¢(h) € H**
is a left integral for H*. As any element in H** is of the form ¢(/) with [ € H, this

means that for any / € H we have
d(Dp(h) = (1)1 g )p(h).

12
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But ¢()¢p(h) = ¢(lh) (since ¢ is a morphism of algebras) and ¢(/)(1y+) =
¢()(e) = e(I), hence the condition that ¢(h) is a left integral for H™ is equivalent

to

lh=¢(l)h forany!/ € H.

The above discussion gives the definition of integrals in finite-dimensional Hopf

algebras:

Definition 3.13. Let H be a finite-dimensional Hopf algebra. A left (vesp.right) integral
in H is an element t € H for which ht = e(h)t (resp. th = e(h)t) forall h € H.

Remark 3.14. Left integrals in H are in fact left integrals for H*.

Left and right integrals in finite-dimensional Hopf algebras were introduced by
Larson and Sweedler [3] where they established the existence and uniqueness in the

theorem of Section 2 of that paper:

Theorem 3.15. There exists nonzero left and right integral in any finite-dimensional

Hopf algebra,and moreover, the subspace they span has dimension 1, i.e.,

I r
/EU«E/.
H H

Similar to the case of Haar measure on locally compact topological group, we call

a Hopf algebra H unimodular if

fom

Example 3.16. Let G be a finite group, then 7 = )’ geG & 1s a left (and right) integral in

Hopf algebra kG, which means that kG is unimodular.

Example 3.17. Let H denote Sweedler’s 4-dimensional Hopf algebra described in Ex-
ample 2.10 . Then x + cx is a left integral in H, and x — cx is a right integral in H,

which means that H is not an unimodular Hopf algebra.

13
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An important application of integrals in finite-dimensional Hopf algebras is the

following result, proved by Larson and Sweedler, known as Maschke’s theorem:

Theorem 3.18. Let H be a finite-dimensional Hopf algebra. Then H is a semisimple
algebra if and only if e( [ Il{) # 0.

Remark 3.19. If G is finite group, and H = kG, then from example 3.16 we saw that
t = deG g is a left integral in H. Then e(t) = |G|1,, where |G| is the order of the
group G. Then theorem 3.18 shows that the Hopf algebra kG is semisimple if and only
if |G|1 # O, hence if and only if char(k) does not divide the order of the group G. This

is the well-known Maschke s theorem for groups.

Similarly to the modular function of a locally compact topological group, we make
some comments on the relationship between left and right integrals in finite-dimensional

Hopf algebras.

Let H be a finite-dimensional Hopf algebra, for any 0 # ¢t € | Il{, alsoth € [ Il{
for any 2 € H. Since f llq is one-dimensional, it follows that th = ay«(h)t, for some
ap+« € k. Moreover, clearly ay« € H* and so is a group-like element of H*. Finally,
if we had begun with some 0 # ¢’ € f;, then ht' = al_il*(h)t’. The element ay. € H*
constructed above is called the distinguished group-like element of H*. Since H is
finite-dimensional, we also have the distinguished group-like element of H =~ H™*,

denoted by ;. Clearly we have:

Theorem 3.20. H is unimodular < apy. =¢ < ay = 1.
Corollary 3.21. If H is semisimple, then H is unimodular.
Remark 3.22. The converse of Corollary 3.21 is false.

A classical result proved by Larson and Radford in [3] states that if H is of char-

acteristic 0, then
H is semisimple < H™ is semisimple.
One may ask whether H is unimodular is equivalent to H* is unimodular, unfortunately,

14
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this is false in general, but it can be true under additional conditions (see proposition 10

of [8]).

Similar to the case of Lie groups, there is a criterion (with respect to the adjoint

action) for unimodularity of finite-dimensional Hopf algebras:

Theorem 3.23. Leta > h = ), a;hS(ay) and h < a =Y, S(a,)ha, denote the left and
right adjoint action of H on itself respectively for a,h € H, let A be a non-zero left

integral in H and p be a non-zero left integral in H*, when dim(H)1 # 0, we have:
H is unimodular < p(A>1)#0
and

H* is unimodular < p(1 < A) #0

3.3 Homological integrals on AS-Gorenstein algebras

Integrals have been playing an important role in the studies of finite-dimensional
Hopf algebras. As a conditional generalization of integrals in infinite-dimensional
cases, Homological integral, first introduced in [5], has been widely used in the re-

search of infinite-dimensional Hopf algebras of low GK-dimensions.

Definition 3.24. Let (A, €) be a noetherian augmented algebra and suppose that A is
AS-Gorenstein of injective dimension d. Any non-zero element of the one-dimensional
A-bimodule Exti’l( 4k, 4A) is called a left homological integral of A. We write /,51 =
Extj( sk, 4 A). Any non-zero element in Extiop([k 4> Ay) is called a right homological

integral of A. Wewrite [, = Ext?,,(k4, A ). By abusing the language we also call | Ii

AP

and [ 1: the left and the right homological integrals of A respectively.

e Winding automorphisms. Let H be a Hopf algebra which has left homological inte-
grals /[ I[{ Letx : H — H/rann(/ I[J) be the canonical algebra homomorphism, where

rann(/ Il{) denotes the set of right annihilators of / ;I in H. We write 2. for the left

15
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winding automorphism of H associated to z, namely
Eﬁr(a) = Z n(ay)a, fora € H.
Similarly we use Z/. for the right winding automorphism of H associated to r, that is,

E (a) 1= Z ayn(a,) forae H.

Let G/ and G”. be the subgroups of Auty_,,(H) generated by 2 and 2", respec-

tively.

o Integral order and integral minor. With the same notions as above, the integral order

io(H) of H is defined by the order of the group G :
io(H) :=|G.|.

we always have |Gf,| = |G7|. So the above definition is independent of the choice of

Gﬁr or G,.. The integral minor of H, denoted by im(H), is defined by
im(H) :=|GL/G! nG"|.

Crudely speaking, io( H) is a measure of the commutativity of H and im(H) is a mea-

sure of the cocommutativity of H.

Homological integrals exist only for AS-Gorenstein Hopf algebras. Hence free
Hopf algebras (of at least two variables) and universal enveloping algebras of infinite-

dimensional Lie algebras do not have homological integrals.

When a Hopf algebra H is finite-dimensional, then homological integrals agree
with the classical integrals in the following way: the (classical) left integral is an H -

subbimodule of H; and it is identified with the left homological integral Hom g (k, H)

16
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via the natural homomorphism
Hompg(e, H) : Homyg(k, H) - Homy(H,H) = H.

The same holds for the right integral. Note that both [ i, and [ ;I are 1-dimensional
H-bimodules. As a left H-module, [ Ilj, =~ k, but as a right H-module, [ ;I may not be

isomorphic to k. A similar comment applies to / ;,

Definition 3.25. Let H be a Hopf algebra with [ ; and [;,. We say H is unimodular

if [ IIL, is isomorphic to k as H-bimodules.

The unimodular property means that
hx = xh = e(h)x

forallh € Handx € [ 111 When H is finite-dimensional, this definition agrees with

the classical definition.
Proposition 3.26. Suppose H is noetherian. The following are equivalent:

1. H is unimodular.
2./ Irf ~ k as H-bimodules.
3. f ;I = / ;I as H-bimodules.

4. io(H)=1.

Theorem 3.18 can be stated alternatively: a finite-dimensional Hopf algebra H
is semisimple (i.e., has global dimension 0) if and only if ( /},) # 0. The term e(/},)
makes sense in the infinite-dimensional case in the following way. The counite : H —

k induces an H-bimodule homomorphism, which is also denoted by e,
I

The original purpose for defining homological integral is to generalize Theorem

3.18 for infinite-dimensional Hopf algebras, especially noetherian affine PI Hopf alge-

17



Chapter 3 Integrals

bras. Then it is natural to ask if the condition e( / llq) # 0 stated above is equivalent to
H having finite global dimension. The answer is "No’ as Example 3.2 in [5] shows.

But there still exists an analogue of Corollary 3.21:
Theorem 3.27. If ¢( f ;I) # 0, then H is unimodular.

One important application of homological integral is to classify Hopf algebras of
GK-dimensional one. In Sections 6 and 7 of [5], an amount of effort has been made
to investigate the homological integrals and related homological properties of affine
prime regular Hopf algebras of GK-dimension one. In 2016, Wu, Ding and Liu [11]
gave a complete classification of affine prime regular Hopf algebras of GK-dimension

one, where previous work in [5] plays an important role in it.

One interesting property of prime regular Hopf algebras of GK-dimensional one
is:
Proposition 3.28. H is unimodular if and only if H is commutative.

This is an elegant and useful result that one may wish still work in general. How-

ever, our computation in Chapter 5 gives a negative answer.

18



Chapter 4 Some known examples

4.1 Affine prime regular Hopf algebra of GK-dimension one

In this section, we recall the classification result on affine prime regular Hopf al-

gebras of GK-dimension one given in [11] .

Lemma 4.1. Any prime regular Hopf algebra of GK-dimension one must be isomorphic
to one of the following:

1) Connected algebraic groups of dimension one: k[x] and k[x*'];

2) Infinite dihedral group algebra kD,

3) Infinite dimensional Taft algebras T, (n, v, &), where n, v are integers satisfying
0 < v < n-1,and¢ is a primitive nth root of 1;

4) Generalized Liu's algebras B(n, ®,y), where n, @ are positive integers and y is a
primitive nth root of 1;

5) The Hopfalgebras D(m, d, &), where m, d are positive integers satisfying (1+m)d

is even and ¢ is a primitive 2mth root of 1.

Detailed structures and left homological integrals (as a right module) of them are

recalled as follows:

Definition 4.2. It is well-known that there are precisely two commutative k-affine do-
mains of GK-dimension one which admit a structure of Hopf algebra, namely H, = k[x]
and H, = k[x*']. For H |, X is a primitive element, and for H,, x is a group-like ele-

ment.
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Chapter 4 Some known examples

Computation shows that

I
/ ~k and io(H;)=im(H;) =1 for i=1,2,
H

which implies that both k[x] and k[x*!] are unimodular.

Definition 4.3. Let D denote the infinite dihedral group

1

<gxlg?=1, gxg=x"1>.

Both g and x are group-like elements in the group algebra kD.

Computation shows that

/
/ ~kD/(x—-1,g+1) and io(kD) =2, im(kD) =1,
kD

which implies that kD is not unimodular.

Definition 4.4. Let n be a positive integer, 0 < v < n — 1, and & be a primitive nth root

of 1. As an algebra, T, (n,v, &) is generated by g and x with relations

g"=1 xg=4¢gx.

Then T, (n, v, &) becomes a Hopf algebra with comultiplication, counit and antipode

given by

Algd=g®g AX)=1Qx+x®g"’ &g =1, &kx) =0,

S(g)=g"", St =-£"g""x.
Computation shows that

)
/ =T (m08/(x,g— 5_1) and io(T(n,0,¢&)) =n, Mm(T(n,v,&)) =m,
Too(n,u,f)

20



4.1 Affine prime regular Hopf algebra of GK-dimension one

where m = which implies that T (n, v, &) is not unimodular.

n
gcd(n,v)’
Definition 4.5. Let n and w be positive integers, and y be a primitive nth root of 1. As

an algebra, B(n, w,y) is generated by x*', g and y with relations

xxT=x"x=1, Xg = gx, Xy= yx,

Y& =178y,

Then B(n,w,y) becomes a Hopf algebra with comultiplication, counit and antipode

given by

AX)=x®x, A(g)=gQg AW=1Qy+y®g,
e(x)=¢€(g)=1, &(y)=0,

S =x"", S@=¢", S»W=-r"g"y.
Computation shows that

!
/ ~ B(n,0,7)(y,x —1,g—y™") and io(B(n,w,y)) = im(B(n,,y)) = n,
B(n,w,y)

which implies that B(n, ®, y) is not unimodular.

Definition 4.6. Let m, d be positive integers such that (1+m)d is even and & a primitive

2mth root of unity. Define
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Chapter 4 Some known examples

As an algebra, D(m, d, &) is generated by x*', g, y and uy, u,, - , u,,_, with relations
x T=xx=1, gX = Xg, yX = XY,

yg=ygy, Y'=1=-x"=1-g",
1

Ux =X U, yu = = éxduiyv ug = yix_ngui’
—je—j j(i+1)] _Hld i+j . .
=D&y 2 —x 2 "y by g (i+j<m=2)
LGRS Mmoo .
;=9 (=TT —xT Mg (i+j=m—1)
G+ | _Lem

i 1 47— . .
D7y 2 xT 1 Bg o Da YT (4 2 m)
where p; 1= 1— y %% andi,j € m.

Then D(m,d,&) becomes a Hopf algebra with comultiplication, counit and the
antipode given by

AX)=x®x, A(g)=g®g A=ryQ®g+1®y,
Ay = Z;-nz_ol y/ D, @ x gl
e(x) =€(g) =¢e(uy) =1, €(y)=¢€(u) =0,
S =x", S@=¢", SW=-yg' =—r""g7ly,
iGi+1)

S(u) = (=1)'& Y—szd+5(1—m)dgm—l—1u_

1°

foriemand1 <1 <m-1.

Computation shows that

1
/ gD(mad’é)/(y’x_15g_}/_17u0_5—]’u19u2""9um—1) and
D(m,d &)

io(D(m,d,&)) = 2m, im(D(m,d,&)) = m,

which implies that D(m, d, &) is not unimodular.

4.2 Non-degenerate Hopf pairing

For each Hopf algebra H listed in section 4.1 , [4] computes the finite duals H° of

them, which are given by generators and relations. Furthermore, they construct a special
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4.2 Non-degenerate Hopf pairing

kind of Hopf pairing (—, —) : H®* ® H — k by choosing certain Hopf subalgebra H *

of H". In this paper, we put our main interests on the H* for each Hopf algebra H.

Definition 4.7. Let H and H*® be Hopf algebras. A linear map (—,—) : H* @ H — k
is called a Hopf pairing (on H), if

@) (ffh)y =2 hay)) by, (D) (f hh') = X fay, W f) '),
(iii) (1, h) = e(h), iv) (f. 1) =e(f),
V) ([, S() =(S(f), h)

hold forall f,f' € H® and h,h' € H. Moreover, it is said to be non-degenerate, if

forany f € H® andany h € H,
(f,H) =0 implies f =0, and (H*, h) = 0 implies h = 0.

Clearly, the definition follows that there are linear maps
a«: H*—-> H*, f—(f,—-) and f: H— H®**, h— (— h).
Furthermore, we know by (ii) that for any f € H®,
M*(a(f) = ) a(fy) ® a(fp) € H* @ H*,

where M denotes the multiplication on H, and hence the image of « is in fact contained

in H°. As a conclusion, Definition follows that there are two maps of Hopf algebras
atH*—> H", f—(f,—) and f: H— H*, hw (- h),

which are both injective if and only if the Hopf pairing (—, —) is non-degenerate.

In [4], non-degenerate Hopf pairingon kD, T (1, v, &), B(n, @, y) and D(m,d, &)
are constructed as follows, respectively. (The certain relations of generators as well as

Hopf algebra structure are listed in Chapter 5)

Proposition 4.8. For each affine prime regular Hopf algebra H of GK-dimension one,
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Chapter 4 Some known examples

we can construct a Hopf algebra H® and a non-degenerate Hopf pairing (—,—)

H*®* ® H - k as follows. Specifically, keeping the notions used in [4], we have:

1) The evaluation (—, —) : (kD )* ® kD, — k is a non-degenerate Hopf pairing,

where

(kDy)* = K{{1E5. xE;|seN]

= k{(¢ - x)'Ej 1 k€2, seN} C (kD).

2) The evaluation (—,—) : T (n,0,&)* @T, (n,v,&) — kis a non-degenerate Hopf

pairing, where

To(nv,8* = k(@ EJE||j€n sEN, I €m}C Tynv,8),

and m = el

3) The evaluation (—,—) : B(n,w,y)* ® B(n,w,y) — k is a non-degenerate Hopf

pairing, where

B(n,w,y)* = Ik{q/{’yE;E{ |j€n, seN,len} C Bn,w,y),

4) The evaluation (—,—) : D(m,d,&)* ® D(m,d, &) — k is a non-degenerate Hopf

pairing, where

D(m,d,&)* = k(¢ ESE|, x| ESE||i€w, je€m s€N, | €m}C Dmd,& .
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Chapter 5 Homological integrals of H°

In this chapter, we list the Hopf algebra structure of H*® defined in section 4.2, and

compute [ ;, (as aright H*-module), io( H*), im(H *), respectively.

5.1 Preparations

First, we should verify that all H*® are AS-Gorenstein so that they do have homo-

logical integrals. There is a key observation in [4]:

Proposition 5.1. For affine prime regular Hopf algebras H of GK-dimension one, con-

sider Hopf algebras H*® constructed in Proposition 4.8. We have

1) All the Hopf algebras H*® have GK-dimension one.
2) All the Hopf algebras H® are noetherian.
3) The Hopfalgebra (kD ,)*® is regular while T (n, v, &), B(n,w,y)® and D(m, d, &)°

are not when n,m > 2.

[9] proved that all affine algebras of GK-dimension one are PI, and [12] proved
that all noetherian PI Hopf algebras are AS-Gorenstein. As a result, all H* do have

homological integrals.

The following lemma provides a useful method to calculate homological integrals.

Lemma 5.2. Let H be an AS-Gorenstein Hopf algebra and let x be a normal non-
zero-divisor of H such that (x) is a Hopf ideal of H. Suppose that t is the algebra
automorphism of H such that xh = =(h)x for all h € H.

1. H' := H/(x) is an AS-Gorenstein Hopf algebra.
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Chapter 5 Homological integrals of H*®

2./ llq ~(f ;I,)T_l as right H-modules.

3. If x is central, then /Il{ e /;I,

We end this section by listing the well-known quantum binomial coefficients for a

parameter g € k*, which is defined as

<1> l!q
k q k!q(l—k)!q

for integers / > k > 0, where /!, :=1,2, -l and [, :=1+q+ - +¢q

-1
q .

52 (kD,)*

As an algebra, (kD_,)® is generated by ¢;, y,, E, with relations

GO =¢. nn=x Gn=nd=0 G+n=C-rn’*=1,

E)ly =8By, By = 0 Es.

Then (kD _,)* becomes a Hopf algebra with comultiplication, counit and antipode given
by

ACD =R+ ®x, A =8® 11+ 11 Q&
AE)) = —x®E,+E,®1,
5(C1)= I, 5()(1)=5(E2)=0,

SCD=¢, S =x, SEY=—-( —x)E,.

Note that E, is normal, central, and (E,) is a Hopfideal of (kD_,)® , then by lemma

5.2, we have

l / I
/<ku3>oo)' - /@«Doo)-/(Ez) - <[kzz’

since kZ, is of finite dimensional, it is unimodular for homological integrals,that is,
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53 T.(nv,¢)"

/uiz ~ k as kZ,-bimodule. Hence as a right H -module,
2

!
/( = (kDo) /(E, &y — 21— D),

kDg)*

the corresponding homomorphism 7z yields left and right winding automorphisms

I
[1]

;;. = Id(kDoo)°’

So that G/ and G”, have order 1, hence

i0o((kD,,)*) = im((kD,)°®) = 1,

which implies that kD )* is unimodular.

53 T (nv,&°

As an algebra, T, (n, v, £)® is generated by w, E,, E, with relations

o"=1, E/'"=0,

Ezw = C()Ez, El(l) = fva)El, E1E2 = E2E1

where #n is a positive integer, 0 < v < n — 1, and £ is a primitive nth root of 1 and

m= n
T ged(mp)”

Then, T, (n, v, £)* becomes a Hopf algebra with comultiplication, counit and an-
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Chapter 5 Homological integrals of H*®

tipode given by

Aw)=0Q@w, AE)=1QFE,+E, Quw,

m—1
AME)=1Q@E+E®o"+ Y E @ E"™",
k=1

ew)=1, e(E|) =¢(E,) =0,

S@) =", S(E)=-¢"0""E|, S(E)=-E,

where E{k] = k'LEf forl <k<m-—1.
.glj

To compute the left homological integral of T, (n, v, &)® , recall that for a Hopf
algebra H, homological integral is a one-dimensional H -bimodule, we denote the gen-

erator by x, then

xh = ayx,

where a, € kforall h € H.

So when an element 4’ € H is nilpotent, it is obvious that a;,= 0, in this point of

! i
/H B /H/(h’)-

Hence, since E is nilpotent in 7 (n, v, £)®, we have

o=
Tl J T v o) (E)

Then in T, (n, v, £)*/(E,), E, is normal, central and (E,) becomes exactly a Hopf

view, we have

ideal in T (n, v, £)*/(E,), then similar to the computations in (kD_,)°®, we have

12

/l
TDO (n,U,é)./(El)

) /
/ ~ / k=T, (nv,E)NE2, El,0—1),
TOO k n

(n’U’é)./(El ’EZ)
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54 B(n,w,y)*

the corresponding homomorphism 7 yields left and right winding automorphisms
z = IdToo(n,U,é)"

which implies that

10T (n,0,6)*) = IM(To(n,0,9)°) = 1,

hence T, (n, v, £)* is unimodular.

Remark 5.3. As a special case, the connected algebraic groups of dimension one H| =

k[x] is equal to T (1,0, 1). Therefore, (k[x])* is unimodular.

54 Bn,w,y)*

As an algebra, B(n, w,y)® is generated by v, E; and E, with relations

WiV, = Wi Vi =wi, =1 Ef =0,

1
EZWl,y = WL},EQ, Elwl,}/ = ywl,yEla E1E2 — E2E1 + ;El

where n and w are positive integers, and y be a primitive nth root of 1.

Then B(n,w,y)® becomes a Hopf algebra with comultiplication, counit and an-

tipode given by

AEN)=1QE +E Qv Alyy,)=w1, vy,
n—1

AE)=1®E+E®1-Y E eyl B,
k=1

ewy,) =1, e(E))=e(Ey) =0,

S(Ep) = —y"""W{ 'Ey, S(Ey) =—Ey S(wi,) =y,

where Egk] = kl,E{‘ forl <k<n-1.
Y
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Chapter 5 Homological integrals of H*®

Notice that E, is nilpotent, then same to the case of 7 (n, v, £)°, we have

)
B(n,w,y)*® B B(n,w,y)*/(E})

then the rest computations are exactly the same as the case of T (n, v, £)°. As a result,

we have

I}
/ ~ k= B(n,w,y)*/(E|, Ey,0 — 1),
B(n,w,y)*®

and
io(B(n, w,7)*)) = im((B(n,w,y)*) = 1,

which implies that B(n, w, y)® is unimodular.

Remark 5.4. As a special case, the connected algebraic groups of dimension one H, =

k[x*'] is equal to B(1,0, 1). Therefore, (k[x*'1)* is unimodular.

55 D(m,d,&)*

As an algebra, D(m, d, £)* is generated by ¢ 1ys X1,p» E1, E, with relations

Cl,yz:l,y = C],yza /Y],y/%/l,y = ,}’1’7,2,

1
gl,y)(l,y = /},],yé‘],y = 07 gl,l + /Y],] = 1’ E;n = (1 _ y)mk/l,l,

Ey, =6,E), EG, =v,E
Eyxiy,=x1,E» Eixiy, =vx,kEi

1
E\E, = EE| + ;Cl,lEl,

where m, d are positive integers such that (1 + m)d is even and £ a primitive 2mth root

of unity, y = 2.

Then, D(m, d, £)* becomes a Hopf algebra with comultiplication, counit and an-
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55 D@m,d,&)*

tipode given by

AEN)=1Q E|+E| ®({;, +&x1,)

m—1
k — —k
AE) =~ 0D ®Es+ Ex® 1= Y Gy =21 0E " ® (G, +&20,) " E"™,
k=1
A =¢,®8,
m—1
k —k
ACn)=¢1,® 11, — 0 Z 0 - 9k—1§1,yE£ '® §k)(ﬁj1E£m it X1y ® &y,
k=1
m—1
—(m— k —k
-6, Z v (m k)gl Hm—k—l}fl,YEE I ® Clk’legm ],
k=1

E(El) = S(E2) = 0’ E(Cl,y) = 1’ E(Xl,y) = 09

S(E) ==y 1 + €y, -)E,

1—-m _
S(Ey)) ==Ci1Ey+ 111 Ey + eV RE SC1) =C1-1 Sy =7 a1
k+1
where EY) := L Ef, and 0 = £L, 6, = S (1 < k < m = 1), we remark that
Y

Gy +eén,)" =1

To compute homological integral of D(m, d, £)®, notice that E; is a normal non-

zero-divisor and (E) is a hopf ideal of D(m, d, £)*, then by lemma 5.2, we have

/ I}
-1
/ (f .
D(m,d &) D(m,d,&)*/(E)

-

12

where

E,— E,,
1
Ey— Ey +—{4 5,

gl,y U yCl,ya

ALy T YV X1y

is the algebra automorphsim of D(m, d, £)°® suchthat E\h = t(h)E, forallh € D(m,d, £)°.
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Chapter 5 Homological integrals of H*®

then similar to the computations in T (n, v, £)°, we have

I
/ gkgD(m’d’g)‘/(El’E2$xl,y’CI,y_ 1)’
D(m,d.£)*/(Ey)

thus

/

-1

/ E(D(m’daf)./(E]aEZaxl,yagl,y - 1))T
D(m,d E)*®

o 1 _
= D(m,d, &) NE, Ey + —., 1, €1y =7 h.

The corresponding homomorphism 7 yields left and right winding automorphisms

El —> El’ El —> j/_lEl,
Ey,— E,— 1, E, > E, — S M1,
El - m and = : 4 m
T =r
gl’y — y_lé/]’ya C],y — y_lgl’y’
-1
\/1/1,7/ Y )(l,y’ K)(1,7/ — 7)(1,1/,
which implies that

io(D(m,d,£)") =im(D(m,d,£)") = oo,

hence D(m, d, &)° is not unimodular.

5.6 Conclusions

From the computations above, we find that T (n, v, ¢)* and B(n, w,y)® are uni-

modular while they are non-commutative, which gives a negative answer to the ques-

tion raised at the end of Chapter 3, this observation may implies that commutativity

may not be the crucial key to indicate unimodularity, which is much similar to the case

of the Haar measure on locally compact group where Lie groups that are close to being

Abelian (i.e., nilpotent) or far from being Abelian (i.e., semisimple) are unimodular.

Furthermore, for H listed in Section 4.1, once we identify H*® as some kind of dual
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5.7 Further questions

space of H, then we find that whether H is unimodular is equivalent to its dual space
is unimodular remains negative in infinite-dimensional cases. And these four pairs of
examples demonstrate that for AS-Gorenstien Hopf algebra H, all three scenarios are

possible:

1) Both H and its dual space are unimodular.
2) H is unimodular while its dual space is not.

3) Neither H nor its dual space is unimodular.

5.7 Further questions

(a) Is there a similar criterion (with respect to the adjoint action) for unimodularity
of infinite-dimensional AS-Gorenstein Hopf algebras?
(b) Are there any other similar or dual properties between the homological integrals

of H and H*?
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