
学校代码： 10284

分 类 号： O643.12

密 级： 公开

U D C： 544.4

学 号：502022210022

硕 士 学 位 论 文

论 文 题 目 On unimodularity

of infinite-dimensional

Hopf algebras

作 者 姓 名 刘子丰

专 业 名 称 基础数学

研 究 方 向 Hopf代数

导 师 姓 名 刘公祥教授

2025年 5月 7日



答辩委员会主席 丁南庆教授

评 阅 人 黄兆泳教授

王栓宏教授

论文答辩日期 2025年 5月 15日

研究生签名：

导师签名：



On unimodularity of
infinite-dimensional Hopf algebras

by

Zifeng Liu

Supervised by

Professor Gongxiang Liu

A dissertation submitted to

the graduate school of Nanjing University

in partial fulfilment of the requirements for the degree of

MASTER

in

Pure Mathematics

School of Mathematics

Nanjing University

May 7, 2025





南京大学研究生毕业论文中文摘要首页用纸

毕业论文题目： On unimodularity of infinite-dimensional Hopf alge-

bras

基础数学 专业 2022 级硕士生姓名： 刘子丰

指导教师（姓名、职称）： 刘公祥教授

摘 要

本文围绕幺模性 (unimodularity)的定义详细讨论了局部紧拓扑群上的 Haar
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ABSTRACT

This paper provides a detailed discussion on the definition of unimodularity, exam-

iningHaar integrals on locally compact topological groups, integrals in finite-dimensional

Hopf algebras, and homological integrals on AS-Gorenstein algebras. By computing
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Chapter 1 Introduction

Throughout this paper, 𝕜 is assumed to be an algebraically closed field of characteristic

0, and all vector spaces, algebras and Hopf algebras are assumed to be over 𝕜.

Hopf algebras, which naturally unify algebraic structures such as groups, Lie al-

gebras, and quantum groups, have become a central topic in modern mathematics and

mathematical physics.

In the finite-dimensional case, the linear dual of a Hopf algebra is again a Hopf

algebra, and the theory of integrals plays a crucial role in understanding its structure. For

instance, integrals in finite-dimensional Hopf algebras lead to elegant generalizations

of classical results such as Maschke’s theorem, which characterizes semisimplicity.

However, the situation becomes significantlymore complex in the infinite-dimensional

setting. Two fundamental challenges arise:

1) Integral Theory in Infinite-Dimensions: While integrals in finite-dimensional

Hopf algebras are well understood and yield powerful results, there lacks a natural

definition in the infinite-dimensional case.

2) Dual Structures in Infinite-Dimensions: The linear dual of a finite-dimensional

Hopf algebra retains a Hopf algebra structure, but this property fails in general

for infinite-dimensional Hopf algebras. To address this, Heyneman and Sweedler

introduced the concept of the finite dual, which preserves the Hopf algebra struc-

ture under certain conditions. Nevertheless, the study of finite duals for general

infinite-dimensional Hopf algebras remains highly nontrivial.

To tackle the first problem, Lu, Wu, and Zhang [5] introduced homological inte-

grals for Artin-Schelter Gorenstein (AS-Gorenstein) Hopf algebras, providing a viable
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Chapter 1 Introduction

generalization of classical integrals in the infinite-dimensional setting. This framework

has proven particularly effective in the study of infinite-dimensional Hopf algebras with

low Gelfand-Kirillov dimension. Subsequently, Wu, Ding, and Liu [11] applied homo-

logical integral theory to classify affine prime regular Hopf algebras of GK-dimension

one, demonstrating the utility of this approach in structural classification.

Building on this classification, Li and Liu [4] further investigated the finite duals

of these Hopf algebras, explicitly determining their algebraic structure and construct-

ing non-degenerate Hopf pairings between the original Hopf algebras and certain Hopf

subalgebras of their finite duals. These results provide deeper insights into the duality

properties of infinite-dimensional Hopf algebras.

In this paper, we focus on the homological integrals of the certain Hopf subalgebras

constructed in [4]. By computing their left homological integrals, integral order and

integral minor, we investigate some interesting properties about unimodularity：

1) Unlike the case of affine prime regular Hopf algebra of GK-dimension one, com-

mutativity is not necessary for unimodularity in general.

2) Similar to the case of finite-dimensional Hopf algebras, for infinite-dimensional

Hopf algebras, unimodularity is generally independent of the unimodularity of its

dual space.

2



Chapter 2 Preliminary

2.1 Some basics about Hopf algebra

Definition 2.1. Let 𝕜 be a field. A 𝕜-algebra (with unit) is a 𝕜-vector space 𝐴 together

with two 𝕜-linear maps, multiplication 𝑚 ∶ 𝐴 ⊗ 𝐴 → 𝐴, and unit 𝑢 ∶ 𝕜 → 𝐴, such that

the following diagrams are commutative:

a) associativity b) unit

𝐴 ⊗ 𝐴 ⊗ 𝐴 𝐴 ⊗ 𝐴

𝐴 ⊗ 𝐴 𝐴

𝑚⊗𝐼𝑑

𝐼𝑑⊗𝑚 𝑚

𝑚

𝐴 ⊗ 𝐴 𝐴 ⊗ 𝕜

𝕜 ⊗ 𝐴 𝐴

𝑚 𝜂

𝐼𝑑⊗𝑢

𝑢⊗𝐼𝑑

𝜂

The 𝐼𝑑 denotes the identity mapping, and the 𝜂 denotes the scalar multiplication.

Definition 2.2. For any 𝕜-space 𝑉 and 𝑊 , the twist map 𝜏 ∶ 𝑉 ⊗ 𝑊 → 𝑊 ⊗ 𝑉 , is

given by 𝜏(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣. Obviously, 𝐴 is commutative ⟺ 𝑚 ∘ 𝜏 = 𝑚 on 𝐴 ⊗ 𝐴.

The definition of a coalgebra is made by reversing the arrows in the diagrams in

Definition 2.1.

Definition 2.3. A 𝕜-coalgebra (with counit) is a 𝕜-vector space 𝐶 together with two

𝕜-linear maps, comultiplication Δ ∶ 𝐶 → 𝐶 ⊗ 𝐶 and counit 𝜖 ∶ 𝐶 → 𝕜, such that the

following diagrams are commutative:

a) coassociativity b) counit

𝐶 𝐶 ⊗ 𝐶

𝐶 ⊗ 𝐶 𝐶 ⊗ 𝐶 ⊗ 𝐶

Δ

Δ Δ⊗𝐼𝑑

𝐼𝑑⊗Δ

𝐶 𝐶 ⊗ 𝕜

𝕜 ⊗ 𝐶 𝐶 ⊗ 𝐶

⊗1𝑘

1𝑘⊗ Δ

𝜖⊗𝐼𝑑

𝐼𝑑⊗𝜖

The two upper maps in b) are given by 𝑐 ↦ 1 ⊗ 𝑐, and 𝑐 ↦ 𝑐 ⊗ 1, for any 𝑐 ∈ 𝐶 . We

say 𝐶 is cocommutative if 𝜏 ∘ Δ = Δ.

3



Chapter 2 Preliminary

Definition 2.4. Let 𝐶 be any coalgebra, and 𝑐 ∈ 𝐶 .

a) 𝑐 is called group-like if

Δ(𝑐) = 𝑐 ⊗ 𝑐 and 𝜖(𝑐) = 1.

The set of group-like elements in 𝐶 is denoted by 𝐺(𝐶).

b) For 𝑔, ℎ ∈ 𝐺(𝐶), 𝑐 is called 𝑔, ℎ-primitive if

Δ(𝑐) = 𝑐 ⊗ 𝑔 + ℎ ⊗ 𝑐.

The set of all 𝑔, ℎ-primitive elements is denoted by 𝑃𝑔,ℎ(𝐶). The elements of

𝑃1,1(𝐶) are simply called the primitive elements of 𝐶 , denoted by 𝑃 (𝐶).

Definition 2.5. Let 𝐶 and 𝐷 be coalgebras, with comultiplication Δ𝐶 and Δ𝐷, and

counits 𝜖𝐶 and 𝜖𝐷, respectively. A coalgebra map 𝑓 ∶ 𝐶 → 𝐷 is a linear map, such

that Δ𝐷 ∘ 𝑓 = (𝑓 ⊗ 𝑓)Δ𝐶 and 𝜖𝐶 = 𝜖𝐷 ∘ 𝑓 , that means the following diagrams are

commutative:

𝐶 𝐷

𝐶 ⊗ 𝐶 𝐷 ⊗ 𝐷

𝑓

Δ𝐶 Δ𝐷

𝑓⊗𝑓

𝐶 𝐷

𝕜

𝑓

𝜖𝐶
𝜖𝐷

Similarly, we have the definition of algebra map.

Definition 2.6. A 𝕜-space 𝐵 is a bialgebra if (𝐵, 𝑚, 𝑢) is an algebra, (𝐵, Δ, 𝜖) is a

coalgebra, and either of the following (equivalent) conditions holds:

a) Δ and 𝜖 are algebra morphisms

b) 𝑚 and 𝑢 are coalgebra morphisms.

Theorem 2.7. Let 𝐶 be a coalgebra and 𝐴 an algebra. Then Hom𝕜(𝐶, 𝐴) becomes an

algebra under the convolution product𝑓∗𝑔(𝑐) = 𝑚∘(𝑓⊗𝑔)(Δ𝑐), ∀𝑓 , 𝑔 ∈ Hom𝕜(𝐶, 𝐴), 𝑐 ∈

𝐶 . The unit element in Hom𝕜(𝐶, 𝐴) is 𝑢𝜖.
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2.1 Some basics about Hopf algebra

Let𝐶 be any coalgebra with comultiplicationΔ ∶ 𝐶 → 𝐶 ⊗𝐶 . The sigma notation

for Δ is given as follows: for any 𝑐 ∈ 𝐶 , we write

Δ𝑐 = 𝑐1 ⊗ 𝑐2.

The subscripts 1 and 2 are symbolic, and do not indicate particular elements of 𝐶 , this

notation is analogous to the notation used in physics. In these note, we usually simplify

the notation by omitting parentheses. In particular, the coassociativity diagram gives

that

𝑐1 ⊗ 𝑐21 ⊗ 𝑐22 = 𝑐11 ⊗ 𝑐12 ⊗ 𝑐2,

this element is written as 𝑐1 ⊗ 𝑐2 ⊗ 𝑐3 = Δ2(𝑐).

Definition 2.8. Let (𝐻, 𝑚, 𝑢, Δ, 𝜖) be a bialgebra. Then 𝐻 is a Hopf algebra if there

exists an element 𝑆 ∈ Hom𝕜(𝐻, 𝐻), which is an inverse to 𝐼𝑑𝐻 under the convolution

∗. 𝑆 is called an antipode for 𝐻 . Note that in sigma notation, 𝑆 satisfies

∑(𝑆ℎ1)ℎ2 = 𝜖(ℎ)1𝐻 = ∑ ℎ1(𝑆ℎ2), ∀ℎ ∈ 𝐻.

We give some relevant examples of Hopf algebras.

Example 2.9. Let 𝐺 be a group and 𝕜 a field. Then 𝕜𝐺 becomes a Hopf algebra with

comultiplication, counit and antipode given by:

Δ(𝑔) = 𝑔 ⊗ 𝑔, 𝜖(𝑔) = 1, 𝑆(𝑔) = 𝑔−1,

for all 𝑔 ∈ 𝐺, extended linearly to all of 𝕜𝐺.

Example 2.10. Assume that 𝑐ℎ𝑎𝑟(𝕜) ≠ 2. Let 𝐻 be the algebra generated by 𝑐 and 𝑥

with relations:

𝑐2 = 1, 𝑥2 = 0, 𝑥𝑐 = −𝑐𝑥

5



Chapter 2 Preliminary

Then 𝐻 becomes a Hopf algebra with comultiplication, counit and antipode given by:

Δ(𝑐) = 𝑐 ⊗ 𝑐, Δ(𝑥) = 𝑐 ⊗ 𝑥 + 𝑥 ⊗ 1,

𝜖(𝑐) = 1, 𝜖(𝑥) = 0,

𝑆(𝑐) = 𝑐−1, 𝑆(𝑥) = −𝑐𝑥.

𝐻 is called Sweedler’s 4-dimensional Hopf algebra, and it was the first example of a

non-commutative and non-cocommutative Hopf algebra.

Definition 2.11. A map 𝑓 ∶ 𝐻 → 𝐾 of Hopf algebras is a Hopf morphism, if it is a

bialgebra morphism and 𝑓(𝑆𝐻ℎ) = 𝑆𝐾𝑓(ℎ), ∀ℎ ∈ 𝐻 .

Definition 2.12. Let 𝐻 be a Hopf algebra with multiplication 𝜇, comultiplication Δ,

counit 𝜖, antipode 𝑆, and unit 𝜂. A subspace 𝐼 ⊆ 𝐻 is called a Hopf ideal if:

a) 𝐼 is a two-sided ideal of 𝐻:

𝜇(𝐼 ⊗ 𝐻) ⊆ 𝐼 and 𝜇(𝐻 ⊗ 𝐼) ⊆ 𝐼.

b) 𝐼 is a coideal of 𝐻:

Δ(𝐼) ⊆ 𝐼 ⊗ 𝐻 + 𝐻 ⊗ 𝐼 and 𝜖(𝐼) = 0.

c) The antipode 𝑆 preserves 𝐼:

𝑆(𝐼) ⊆ 𝐼.

The quotient 𝐻/𝐼 then inherits a Hopf algebra structure from 𝐻 .

2.2 Finite duals for Hopf algebras

When studying an algebra structure, it is always effective to consider the linear

dual of it. It is known that when (𝐻, 𝑚, 𝑢, Δ, 𝜖, 𝑆) is a finite-dimensional Hopf algebra,

its linear dual (𝐻∗, Δ∗, 𝜖∗, 𝑚∗, 𝑢∗, 𝑆∗) is also a Hopf algebra and has the same dimension

as well as similar or dual properties with 𝐻 .

6



2.3 Gelfand-Kirillov dimension

However, the linear dual of an infinite-dimensional Hopf algebra fails to have Hopf

algebra structure in general because the algebra structure of a bialgebra may not intro-

duce a canonical coalgebra structure on its linear dual.

In [2], Heyneman and Sweedler described the finite dual of an infinite-dimensional

Hopf algebra 𝐻 , which is not defined on the entire dual space 𝐻∗, but on a certain sub-

space of it:

Definition 2.13. Let𝐻 be a Hopf algebra over 𝕜 and denote its dual space by𝐻∗. The

finite dual of 𝐻 is defined as

𝐻 ∘ ∶= {𝑓 ∈ 𝐻∗ ∣ 𝑓 vanishes on a cofinite ideal I }

It is well known that 𝐻 ∘ has a Hopf algebra structure naturally. Similar to the

finite-dimensional case, there are several relationships between 𝐻 and 𝐻 ∘. However,

for an infinite-dimensional Hopf algebra, its finite dual might be hard to be studied

easily. For examples and properties of the finite dual, we refer to Chapter 9 in [6].

2.3 Gelfand-Kirillov dimension

The Gelfand-Kirillov dimension, GK-dimension for short, becomes a powerful

tool to study noncommutative algebras, especially for those with infinite dimensions.

Definition 2.14. The Gelfand-Kirillov dimension (GK-dimension for short) of a 𝕜-

algebra 𝐴 is

GKdim(𝐴) = lim sup
𝑉

𝑑𝑉 (𝑛),

where the supremum is taken over all finite-dimensional subspaces 𝑉 of 𝐴 and

𝑑𝑉 (𝑛) = dim𝑘 (

𝑛

∑
𝑖=0

𝑉 𝑖
)

.

The GK-dimension can be viewed as a non-commutative analogue of the Krull

7
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dimension. In fact, for a finitely generated commutative algebra 𝐴, the GK-dimension

of 𝐴 equals its Krull dimension.

Example 2.15. GK-dimension of 𝕜[𝑥1, 𝑥2, ⋯ , 𝑥𝑛] = 𝑛.

2.4 Stuff from ring theory

In this paper, a ring R is called regular if it has finite global dimension, and it is

prime if 0 is a prime ideal.

• PI ring. Let 𝑅 be an associative ring (not necessarily commutative). If there exists a

nonzero polynomial 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) (with coefficients in 𝕜) such that for all 𝑛-tuples

(𝑟1, 𝑟2, ⋯ , 𝑟𝑛) ∈ 𝑅𝑛, 𝑓(𝑟1, 𝑟2, ⋯ , 𝑟𝑛) = 0, then 𝑅 is called a PI ring (Polynomial Iden-

tity Ring).

• Artin-Schelter condition. Recall that an algebra 𝐴 is said to be augmented if there

is an algebra morphism 𝜖 ∶ 𝐴 → 𝕜. Let (𝐴, 𝜖) be an augmented noetherian algebra.

Then 𝐴 is Artin-Schelter Gorenstein, we usually abbreviate to AS-Gorenstein, if

(AS1) injdim𝐴𝐴 = 𝑑 < ∞,

(AS2) dim𝕜 Ext𝑑𝐴(𝐴𝕜, 𝐴𝐴) = 1 and dim𝕜 Ext𝑖𝐴(𝐴𝕜, 𝐴𝐴) = 0 for all 𝑖 ≠ 𝑑,

(AS3) the right 𝐴-module versions of (AS1, AS2) hold.

8



Chapter 3 Integrals

In this chapter, we recall the basic definitions and related properties of Integrals on

locally compact topological groups, bialgebras, finite-dimensional Hopf algebras and

infinite-dimensional Hopf algebras. Throughout this chapter, we focus on unimodu-

larity of the objects above, and an the end of this chapter we raise a question about it

.

3.1 Haar integral on locally compact topological groups

In abstract harmonic analysis theory, the extension of Fourier analysis to compact

non-Abelian groups was made possible by the Peter-Weyl theorem. Crucially, the the-

orem revealed that the key requirement for Fourier representations is not the finiteness

of the group, but the existence of an invariant integral that assigns a finite volume to the

group. In this case Haar integral plays an important role in it.

In the case of non-abelian groups, it is necessary to distinguish left and right in-

variance. For instance, an integral on a topological group G is left invariant if

∫𝐺
𝑓(𝑎𝑥) 𝑑𝑥 = ∫𝐺

𝑓(𝑥) 𝑑𝑥

for all 𝑎 ∈ 𝐺.

Definition 3.1. Let G be a locally compact group, A left (resp.right) Haar measure on

G is a nonzero Radon measure 𝜇 on G satisfies 𝜇(xE)=𝜇(E) (resp. 𝜇(𝐸𝑥)=𝜇(𝐸)) for

every Borel set E ⊆ G and every x ∈ G.

Let C𝑐(𝐺) be the space of compactly supported continuous complex-valued functions

9



Chapter 3 Integrals

on G, the Haar integral for 𝑓 ∈ C𝑐(𝐺) is defined by

𝐼(𝑓) = ∫𝐺
𝑓𝑑𝜇.

It is easy to see that the Haar integral associated to left (resp.right) Haar measure

is left (resp.right) invariant. Once we get a left Haar measure 𝜇 on group 𝐺, let ̃𝜇(𝐸) =

𝜇(𝐸−1), then ̃𝜇 is a right Haar measure on 𝐺. From this point of view, it is of little

importance whether one chooses to study left or right Haar measure.

For second countable groups, the existence of Haar measure was first proved by

Haar [1] and the uniqueness was first proved by von Neumann [7]. The first systematic

treatment of analysis on locally compact groups using Haar measure was given by Weil

[10], who showed that the countability assumptions were unnecessary :

Theorem 3.2. Every locally compact group G possesses a left Haar measure.

Theorem 3.3. If 𝜈 and 𝜇 are left Haar measures on G, there exists 𝑐 ∈ (0, ∞) such that

𝜇 =𝑐𝜈

Here we give some examples:

Example 3.4. 𝑑𝑥/|𝑥| is a Haar measure on the multiplicative group ℝ ⧵ {0}.

Example 3.5. 𝑑𝑥𝑑𝑦/(𝑥2 + 𝑦2) is a Haar measure on the multiplicative group ℂ ⧵ {0}.

Example 3.6. |𝑑𝑒𝑡𝑇 |−𝑛𝑑𝑇 is a left and right Haar measure on the group 𝐺𝐿(𝑛, ℝ),

where 𝑑𝑇 is Lebesgue measure on the vector space of all real 𝑛 × 𝑛 matrices.

Example 3.7. The ax+b group 𝐺 is the group of all affine transformation 𝑥 → 𝑎𝑥 + 𝑏

of ℝ with 𝑎 > 0 and 𝑏 ∈ ℝ. On 𝐺, 𝑑𝑎𝑑𝑏/𝑎2 is a left Haar measure and 𝑑𝑎𝑑𝑏/𝑎 is a right

Haar measure.

In Example 3.7, we find that the left Haar measure and the right Haar measure are

not necessarily the same. To investigate the extent to which the left Haar measure fails

to be right-invariant,modular function is defined.

Let G be a locally compact groupwith left Haarmeasure 𝜆. If, for 𝑥 ∈ 𝐺, we define

10



3.2 Integrals in finite-dimensional Hopf algebras

𝜆𝑥(𝐸) = 𝜆(𝐸𝑥), then 𝜆𝑥 is again a left Haar measure. By the uniqueness Theorem

3.3, there is a number Δ(𝑥) > 0 such that 𝜆𝑥 = Δ(𝑥)𝜆, and Δ(𝑥) is independent of

the original choice of 𝜆. The function Δ ∶ 𝐺 → (0, ∞) thus defined is called the

modular function of G.

G is called unimodular if Δ ≡ 1, that is, if left Haar measure is also right Haar

measure. Unimodularity is a useful property in a number of respects. ObviouslyAbelian

groups and discrete groups are unimodular, but many others are too. Here are some

classes of examples:

Proposition 3.8. If G is compact, then G is unimodular.

Proposition 3.9. If G/[G,G] is compact, then G is unimodular.

As a consequence of Proposition 3.9, one can see that every connected semi-simple

Lie group G is unimodular. More generally, one has the following result:

Proposition 3.10. Let G be a Lie group and 𝔤 the Lie algebra of G, then G is unimodular

if and only if

|𝑑𝑒𝑡 𝐴𝑑(𝑔)| = 1 for all 𝑔 ∈ 𝐺,

where Ad is the adjoint representation. If G is connected, this is equivalent to requiring

𝑡𝑟 𝑎𝑑(𝑋) = 0 for all 𝑋 ∈ 𝔤,

where ad is the adjoint representation of the 𝔤.

It follows easily from Proposition 3.10 that every connected nilpotent Lie group

and connected reductive Lie group is unimodular. The simplest example of a non-

unimodular group is the 𝑎𝑥 + 𝑏 group.

3.2 Integrals in finite-dimensional Hopf algebras

Before introducing integrals in finite-dimensional Hopf algebras, we recall the def-

inition of integrals for bialgebras.

11



Chapter 3 Integrals

Let 𝐻 be a bialgebra. Then its dual space 𝐻∗ has an algebra structure which is

dual to the coalgebra structure on 𝐻 . The multiplication is given by the convolution

product. To simplify notation, if ℎ∗, 𝑔∗ ∈ 𝐻∗ we will denote the product of ℎ∗, 𝑔∗ in

𝐻∗ by ℎ∗𝑔∗.

Definition 3.11. A map 𝑇 ∈ 𝐻∗ is called a left (resp.right) integral of the bialgebra

𝐻 if ℎ∗𝑇 = ℎ∗(1)𝑇 (resp.𝑇 ℎ∗ = ℎ∗(1)𝑇 ) for all ℎ∗ ∈ 𝐻∗. The set of left (resp.right)

integrals of H is denoted by ∫𝑙
𝐻 (resp.∫𝑟

𝐻 ) .

Following example is the motivating influence for the terminology ”integral”.

Example 3.12. Let G be a compact topological group, and let 𝐻 be the Hopf algebra

of continuous complex-valued representative functions; that is,

𝐻 = {𝑓 ∈ (ℂ𝐺)∘|𝑓 ∶ 𝐺 → ℂ 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}

Let 𝜇 denote Haar measure on G, and consider the Haar integral ∫𝐺 𝑓(𝑥)𝑑𝜇(𝑥). It fol-

lows that the map from 𝐻 to ℂ given by 𝑓 ↦ ∫𝐺 𝑓(𝑥)𝑑𝜇(𝑥) is an integral in the sense

of definition 3.11.

When 𝐻 is a finite-dimensional Hopf algebra, there is still another way to work

with integrals. We recall that there is an isomorphism of algebras 𝜙 ∶ 𝐻 → 𝐻∗∗

defined by

𝜙(ℎ)(ℎ∗) = ℎ∗(ℎ) for any ℎ ∈ 𝐻, ℎ∗ ∈ 𝐻∗.

Then it makes sense to talk about left integrals for the Hopf algebra 𝐻∗, these

being elements in 𝐻∗∗.

Since 𝜙 is bijective, there exists a nonzero element ℎ ∈ 𝐻 such that 𝜙(ℎ) ∈ 𝐻∗∗

is a left integral for 𝐻∗. As any element in 𝐻∗∗ is of the form 𝜙(𝑙) with 𝑙 ∈ 𝐻 , this

means that for any 𝑙 ∈ 𝐻 we have

𝜙(𝑙)𝜙(ℎ) = 𝜙(𝑙)(1𝐻∗)𝜙(ℎ).

12



3.2 Integrals in finite-dimensional Hopf algebras

But 𝜙(𝑙)𝜙(ℎ) = 𝜙(𝑙ℎ) (since 𝜙 is a morphism of algebras) and 𝜙(𝑙)(1𝐻∗) =

𝜙(𝑙)(𝜖) = 𝜖(𝑙), hence the condition that 𝜙(ℎ) is a left integral for 𝐻∗ is equivalent

to

𝑙ℎ = 𝜖(𝑙)ℎ for any 𝑙 ∈ 𝐻.

The above discussion gives the definition of integrals in finite-dimensional Hopf

algebras:

Definition 3.13. Let𝐻 be a finite-dimensional Hopf algebra. A left (resp.right) integral

in 𝐻 is an element 𝑡 ∈ 𝐻 for which ℎ𝑡 = 𝜖(ℎ)𝑡 (resp. 𝑡ℎ = 𝜖(ℎ)𝑡) for all ℎ ∈ 𝐻 .

Remark 3.14. Left integrals in 𝐻 are in fact left integrals for 𝐻∗.

Left and right integrals in finite-dimensional Hopf algebras were introduced by

Larson and Sweedler [3] where they established the existence and uniqueness in the

theorem of Section 2 of that paper:

Theorem 3.15. There exists nonzero left and right integral in any finite-dimensional

Hopf algebra,and moreover, the subspace they span has dimension 1, i.e.,

∫
𝑙

𝐻
≅ 𝕜 ≅ ∫

𝑟

𝐻
.

Similar to the case of Haar measure on locally compact topological group, we call

a Hopf algebra 𝐻 unimodular if

∫
𝑙

𝐻
= ∫

𝑟

𝐻
.

Example 3.16. Let 𝐺 be a finite group, then 𝑡 = ∑𝑔∈𝐺 𝑔 is a left (and right) integral in

Hopf algebra 𝕜𝐺, which means that 𝕜𝐺 is unimodular.

Example 3.17. Let 𝐻 denote Sweedler’s 4-dimensional Hopf algebra described in Ex-

ample 2.10 . Then 𝑥 + 𝑐𝑥 is a left integral in 𝐻 , and 𝑥 − 𝑐𝑥 is a right integral in 𝐻 ,

which means that 𝐻 is not an unimodular Hopf algebra.

13



Chapter 3 Integrals

An important application of integrals in finite-dimensional Hopf algebras is the

following result, proved by Larson and Sweedler, known as Maschke’s theorem:

Theorem 3.18. Let 𝐻 be a finite-dimensional Hopf algebra. Then 𝐻 is a semisimple

algebra if and only if 𝜖(∫𝑙
𝐻 ) ≠ 0.

Remark 3.19. If 𝐺 is finite group, and 𝐻 = 𝕜𝐺, then from example 3.16 we saw that

𝑡 = ∑𝑔∈𝐺 𝑔 is a left integral in 𝐻 . Then 𝜖(𝑡) = |𝐺|1𝕜, where |G| is the order of the

group 𝐺. Then theorem 3.18 shows that the Hopf algebra 𝕜𝐺 is semisimple if and only

if |𝐺|1𝕜 ≠ 0, hence if and only if 𝑐ℎ𝑎𝑟(𝕜) does not divide the order of the group𝐺. This

is the well-known Maschke’s theorem for groups.

Similarly to the modular function of a locally compact topological group, we make

some comments on the relationship between left and right integrals in finite-dimensional

Hopf algebras.

Let 𝐻 be a finite-dimensional Hopf algebra, for any 0 ≠ 𝑡 ∈ ∫𝑙
𝐻 , also 𝑡ℎ ∈ ∫𝑙

𝐻

for any ℎ ∈ 𝐻 . Since ∫𝑙
𝐻 is one-dimensional, it follows that 𝑡ℎ = 𝛼𝐻∗(ℎ)𝑡, for some

𝛼𝐻∗ ∈ 𝕜. Moreover, clearly 𝛼𝐻∗ ∈ 𝐻∗ and so is a group-like element of 𝐻∗. Finally,

if we had begun with some 0 ≠ 𝑡′ ∈ ∫𝑟
𝐻 , then ℎ𝑡′ = 𝛼−1

𝐻∗(ℎ)𝑡′. The element 𝛼𝐻∗ ∈ 𝐻∗

constructed above is called the distinguished group-like element of 𝐻∗. Since 𝐻 is

finite-dimensional, we also have the distinguished group-like element of 𝐻 ≅ 𝐻∗∗,

denoted by 𝛼𝐻 . Clearly we have:

Theorem 3.20. 𝐻 is unimodular ⟺ 𝛼𝐻∗ = 𝜖 ⟺ 𝛼𝐻 = 1.

Corollary 3.21. If 𝐻 is semisimple, then 𝐻 is unimodular.

Remark 3.22. The converse of Corollary 3.21 is false.

A classical result proved by Larson and Radford in [3] states that if 𝐻 is of char-

acteristic 0, then

𝐻 is semisimple ⟺ 𝐻∗ is semisimple.

Onemay ask whether𝐻 is unimodular is equivalent to𝐻∗ is unimodular, unfortunately,

14



3.3 Homological integrals on AS-Gorenstein algebras

this is false in general, but it can be true under additional conditions (see proposition 10

of [8]).

Similar to the case of Lie groups, there is a criterion (with respect to the adjoint

action) for unimodularity of finite-dimensional Hopf algebras:

Theorem 3.23. Let 𝑎 ▹ ℎ = ∑ 𝑎1ℎ𝑆(𝑎2) and ℎ ◃ 𝑎 = ∑ 𝑆(𝑎1)ℎ𝑎2 denote the left and

right adjoint action of 𝐻 on itself respectively for 𝑎, ℎ ∈ 𝐻 , let Λ be a non-zero left

integral in 𝐻 and 𝑝 be a non-zero left integral in 𝐻∗, when dim(𝐻)1 ≠ 0, we have:

𝐻 is unimodular ⟺ 𝑝(Λ ▹ 1) ≠ 0

and

𝐻∗ is unimodular ⟺ 𝑝(1 ◃ Λ) ≠ 0

3.3 Homological integrals on AS-Gorenstein algebras

Integrals have been playing an important role in the studies of finite-dimensional

Hopf algebras. As a conditional generalization of integrals in infinite-dimensional

cases, Homological integral, first introduced in [5], has been widely used in the re-

search of infinite-dimensional Hopf algebras of low GK-dimensions.

Definition 3.24. Let (𝐴, 𝜖) be a noetherian augmented algebra and suppose that 𝐴 is

AS-Gorenstein of injective dimension 𝑑. Any non-zero element of the one-dimensional

𝐴-bimodule Ext𝑑𝐴(𝐴𝕜, 𝐴𝐴) is called a left homological integral of 𝐴. We write ∫𝑙
𝐴 =

Ext𝑑𝐴(𝐴𝕜,𝐴 𝐴). Any non-zero element in Ext𝑑𝐴𝑜𝑝(𝕜𝐴, 𝐴𝐴) is called a right homological

integral of 𝐴. We write ∫𝑟
𝐴 = Ext𝑑𝐴𝑜𝑝(𝕜𝐴, 𝐴𝐴). By abusing the language we also call ∫𝑙

𝐴

and ∫𝑟
𝐴 the left and the right homological integrals of 𝐴 respectively.

• Winding automorphisms. Let 𝐻 be a Hopf algebra which has left homological inte-

grals ∫𝑙
𝐻 . Let 𝜋 ∶ 𝐻 → 𝐻/r.ann(∫𝑙

𝐻 ) be the canonical algebra homomorphism, where

r.ann(∫𝑙
𝐻 ) denotes the set of right annihilators of ∫𝑙

𝐻 in 𝐻 . We write Ξ𝑙
𝜋 for the left

15



Chapter 3 Integrals

winding automorphism of 𝐻 associated to 𝜋, namely

Ξ𝑙
𝜋(𝑎) ∶= ∑ 𝜋(𝑎1)𝑎2 for 𝑎 ∈ 𝐻.

Similarly we use Ξ𝑟
𝜋 for the right winding automorphism of 𝐻 associated to 𝜋, that is,

Ξ𝑟
𝜋(𝑎) ∶= ∑ 𝑎1𝜋(𝑎2) for 𝑎 ∈ 𝐻.

Let 𝐺𝑙
𝜋 and 𝐺𝑟

𝜋 be the subgroups of Aut𝕜-alg(𝐻) generated by Ξ𝑙
𝜋 and Ξ𝑟

𝜋 , respec-

tively.

• Integral order and integral minor. With the same notions as above, the integral order

io(𝐻) of 𝐻 is defined by the order of the group 𝐺𝑙
𝜋 :

io(𝐻) ∶= |𝐺𝑙
𝜋|.

we always have |𝐺𝑙
𝜋| = |𝐺𝑟

𝜋|. So the above definition is independent of the choice of

𝐺𝑙
𝜋 or 𝐺𝑟

𝜋 . The integral minor of 𝐻 , denoted by im(𝐻), is defined by

im(𝐻) ∶= |𝐺𝑙
𝜋/𝐺𝑙

𝜋 ∩ 𝐺𝑟
𝜋|.

Crudely speaking, io(𝐻) is a measure of the commutativity of 𝐻 and im(𝐻) is a mea-

sure of the cocommutativity of 𝐻 .

Homological integrals exist only for AS-Gorenstein Hopf algebras. Hence free

Hopf algebras (of at least two variables) and universal enveloping algebras of infinite-

dimensional Lie algebras do not have homological integrals.

When a Hopf algebra 𝐻 is finite-dimensional, then homological integrals agree

with the classical integrals in the following way: the (classical) left integral is an 𝐻-

subbimodule of 𝐻 ; and it is identified with the left homological integral Hom𝐻 (𝕜, 𝐻)
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3.3 Homological integrals on AS-Gorenstein algebras

via the natural homomorphism

Hom𝐻 (𝜖, 𝐻) ∶ Hom𝐻 (𝕜, 𝐻) → Hom𝐻 (𝐻, 𝐻) ≅ 𝐻.

The same holds for the right integral. Note that both ∫𝑙
𝐻 and ∫𝑟

𝐻 are 1-dimensional

𝐻-bimodules. As a left 𝐻-module, ∫𝑙
𝐻 ≅ 𝕜, but as a right 𝐻-module, ∫𝑙

𝐻 may not be

isomorphic to 𝕜. A similar comment applies to ∫𝑟
𝐻 .

Definition 3.25. Let 𝐻 be a Hopf algebra with ∫𝑙
𝐻 and ∫𝑟

𝐻 . We say 𝐻 is unimodular

if ∫𝑙
𝐻 is isomorphic to 𝕜 as 𝐻-bimodules.

The unimodular property means that

ℎ𝑥 = 𝑥ℎ = 𝜖(ℎ)𝑥

for all ℎ ∈ 𝐻 and 𝑥 ∈ ∫𝑙
𝐻 . When 𝐻 is finite-dimensional, this definition agrees with

the classical definition.

Proposition 3.26. Suppose 𝐻 is noetherian. The following are equivalent:

1. 𝐻 is unimodular.

2. ∫𝑟
𝐻 ≅ 𝕜 as 𝐻-bimodules.

3. ∫𝑙
𝐻 ≅ ∫𝑟

𝐻 as 𝐻-bimodules.

4. io(𝐻) = 1.

Theorem 3.18 can be stated alternatively: a finite-dimensional Hopf algebra 𝐻

is semisimple (i.e., has global dimension 0) if and only if 𝜖(∫𝑙
𝐻 ) ≠ 0. The term 𝜖(∫𝑙

𝐻 )

makes sense in the infinite-dimensional case in the following way. The counit 𝜖 ∶ 𝐻 →

𝕜 induces an 𝐻-bimodule homomorphism, which is also denoted by 𝜖,

𝜖 ∶ ∫
𝑙

𝐻
= Ext𝑑𝐻 (𝐻𝕜, 𝐻𝐻) → Ext𝑑𝐻 (𝐻𝕜, 𝐻𝕜).

The original purpose for defining homological integral is to generalize Theorem

3.18 for infinite-dimensional Hopf algebras, especially noetherian affine PI Hopf alge-
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Chapter 3 Integrals

bras. Then it is natural to ask if the condition 𝜖(∫𝑙
𝐻 ) ≠ 0 stated above is equivalent to

𝐻 having finite global dimension. The answer is ’No’ as Example 3.2 in [5] shows.

But there still exists an analogue of Corollary 3.21:

Theorem 3.27. If 𝜖(∫𝑙
𝐻 ) ≠ 0, then H is unimodular.

One important application of homological integral is to classify Hopf algebras of

GK-dimensional one. In Sections 6 and 7 of [5], an amount of effort has been made

to investigate the homological integrals and related homological properties of affine

prime regular Hopf algebras of GK-dimension one. In 2016, Wu, Ding and Liu [11]

gave a complete classification of affine prime regular Hopf algebras of GK-dimension

one, where previous work in [5] plays an important role in it.

One interesting property of prime regular Hopf algebras of GK-dimensional one

is:

Proposition 3.28. 𝐻 is unimodular if and only if 𝐻 is commutative.

This is an elegant and useful result that one may wish still work in general. How-

ever, our computation in Chapter 5 gives a negative answer.
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4.1 Affine prime regular Hopf algebra of GK-dimension one

In this section, we recall the classification result on affine prime regular Hopf al-

gebras of GK-dimension one given in [11] .

Lemma 4.1. Any prime regular Hopf algebra of GK-dimension one must be isomorphic

to one of the following:

1) Connected algebraic groups of dimension one: 𝕜[𝑥] and 𝕜[𝑥±1];

2) Infinite dihedral group algebra 𝕜𝔻∞;

3) Infinite dimensional Taft algebras 𝑇∞(𝑛, 𝑣, 𝜉), where 𝑛, 𝑣 are integers satisfying

0 ⩽ 𝑣 ⩽ 𝑛 − 1, and 𝜉 is a primitive 𝑛th root of 1;

4) Generalized Liu’s algebras 𝐵(𝑛, 𝜔, 𝛾), where 𝑛, 𝜔 are positive integers and 𝛾 is a

primitive 𝑛th root of 1;

5) The Hopf algebras𝐷(𝑚, 𝑑, 𝜉), where𝑚, 𝑑 are positive integers satisfying (1+𝑚)𝑑

is even and 𝜉 is a primitive 2𝑚th root of 1.

Detailed structures and left homological integrals (as a right module) of them are

recalled as follows:

Definition 4.2. It is well-known that there are precisely two commutative 𝕜-affine do-

mains of GK-dimension one which admit a structure of Hopf algebra, namely𝐻1 = 𝕜[𝑥]

and 𝐻2 = 𝕜[𝑥±1]. For 𝐻1, x is a primitive element, and for 𝐻2, x is a group-like ele-

ment.
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Computation shows that

∫
𝑙

𝐻𝑖
≅ 𝕜 and io(𝐻𝑖) = im(𝐻𝑖) = 1 for 𝑖 = 1, 2,

which implies that both 𝕜[𝑥] and 𝕜[𝑥±1] are unimodular.

Definition 4.3. Let 𝔻 denote the infinite dihedral group

< 𝑔, 𝑥|𝑔2 = 1, 𝑔𝑥𝑔 = 𝑥−1 > .

Both g and x are group-like elements in the group algebra 𝕜𝔻.

Computation shows that

∫
𝑙

𝕜𝔻
≅ 𝕜𝔻/(𝑥 − 1, 𝑔 + 1) and io(𝕜𝔻) = 2, im(𝕜𝔻) = 1,

which implies that 𝕜𝔻 is not unimodular.

Definition 4.4. Let 𝑛 be a positive integer, 0 ⩽ 𝑣 ⩽ 𝑛 − 1, and 𝜉 be a primitive 𝑛th root

of 1. As an algebra, 𝑇∞(𝑛, 𝑣, 𝜉) is generated by 𝑔 and 𝑥 with relations

𝑔𝑛 = 1, 𝑥𝑔 = 𝜉𝑔𝑥.

Then 𝑇∞(𝑛, 𝑣, 𝜉) becomes a Hopf algebra with comultiplication, counit and antipode

given by

Δ(𝑔) = 𝑔 ⊗ 𝑔, Δ(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 𝑔𝑣, 𝜀(𝑔) = 1, 𝜀(𝑥) = 0,

𝑆(𝑔) = 𝑔𝑛−1, 𝑆(𝑥) = −𝜉−𝑣𝑔𝑛−𝑣𝑥.

Computation shows that

∫
𝑙

𝑇∞(𝑛,𝑣,𝜉)
≅ 𝑇∞(𝑛, 𝑣, 𝜉)/(𝑥, 𝑔 − 𝜉−1) and io(𝑇∞(𝑛, 𝑣, 𝜉)) = 𝑛, im(𝑇∞(𝑛, 𝑣, 𝜉)) = 𝑚,
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where 𝑚 = 𝑛
gcd(𝑛,𝑣) , which implies that 𝑇∞(𝑛, 𝑣, 𝜉) is not unimodular.

Definition 4.5. Let 𝑛 and 𝜔 be positive integers, and 𝛾 be a primitive 𝑛th root of 1. As

an algebra, 𝐵(𝑛, 𝜔, 𝛾) is generated by 𝑥±1, 𝑔 and 𝑦 with relations

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑥𝑥−1 = 𝑥−1𝑥 = 1, 𝑥𝑔 = 𝑔𝑥, 𝑥𝑦 = 𝑦𝑥,

𝑦𝑔 = 𝛾𝑔𝑦,

𝑦𝑛 = 1 − 𝑥𝜔 = 1 − 𝑔𝑛.

Then 𝐵(𝑛, 𝜔, 𝛾) becomes a Hopf algebra with comultiplication, counit and antipode

given by

Δ(𝑥) = 𝑥 ⊗ 𝑥, Δ(𝑔) = 𝑔 ⊗ 𝑔, Δ(𝑦) = 1 ⊗ 𝑦 + 𝑦 ⊗ 𝑔,

𝜀(𝑥) = 𝜀(𝑔) = 1, 𝜀(𝑦) = 0,

𝑆(𝑥) = 𝑥−1, 𝑆(𝑔) = 𝑔−1, 𝑆(𝑦) = −𝛾−1𝑔−1𝑦.

Computation shows that

∫
𝑙

𝐵(𝑛,𝜔,𝛾)
≅ 𝐵(𝑛, 𝜔, 𝛾)/(𝑦, 𝑥 − 1, 𝑔 − 𝛾−1) 𝑎𝑛𝑑 io(𝐵(𝑛, 𝜔, 𝛾)) = im(𝐵(𝑛, 𝜔, 𝛾)) = 𝑛,

which implies that 𝐵(𝑛, 𝜔, 𝛾) is not unimodular.

Definition 4.6. Let𝑚, 𝑑 be positive integers such that (1+𝑚)𝑑 is even and 𝜉 a primitive

2𝑚th root of unity. Define

𝜔 ∶= 𝑚𝑑, 𝛾 ∶= 𝜉2.
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Chapter 4 Some known examples

As an algebra, 𝐷(𝑚, 𝑑, 𝜉) is generated by 𝑥±1, 𝑔, 𝑦 and 𝑢0, 𝑢1, ⋯ , 𝑢𝑚−1 with relations

𝑥𝑥−1 = 𝑥−1𝑥 = 1, 𝑔𝑥 = 𝑥𝑔, 𝑦𝑥 = 𝑥𝑦,

𝑦𝑔 = 𝛾𝑔𝑦, 𝑦𝑚 = 1 − 𝑥𝜔 = 1 − 𝑔𝑚,

𝑢𝑖𝑥 = 𝑥−1𝑢𝑖, 𝑦𝑢𝑖 = 𝜙𝑖𝑢𝑖+1 = 𝜉𝑥𝑑𝑢𝑖𝑦, 𝑢𝑖𝑔 = 𝛾 𝑖𝑥−2𝑑𝑔𝑢𝑖,

𝑢𝑖𝑢𝑗 =

⎧⎪
⎪
⎨
⎪
⎪⎩

(−1)−𝑗𝜉−𝑗𝛾
𝑗(𝑗+1)

2 1
𝑚𝑥− 1+𝑚

2 𝑑𝜙𝑖𝜙𝑖+1 ⋯ 𝜙𝑚−2−𝑗𝑦𝑖+𝑗𝑔 (𝑖 + 𝑗 ⩽ 𝑚 − 2)

(−1)−𝑗𝜉−𝑗𝛾
𝑗(𝑗+1)

2 1
𝑚𝑥− 1+𝑚

2 𝑑𝑦𝑖+𝑗𝑔 (𝑖 + 𝑗 = 𝑚 − 1)

(−1)−𝑗𝜉−𝑗𝛾
𝑗(𝑗+1)

2 1
𝑚𝑥− 1+𝑚

2 𝑑𝜙𝑖 ⋯ 𝜙𝑚−1𝜙0 ⋯ 𝜙𝑚−2−𝑗𝑦𝑖+𝑗−𝑚𝑔 (𝑖 + 𝑗 ⩾ 𝑚)

where 𝜙𝑖 ∶= 1 − 𝛾−𝑖−1𝑥𝑑 and 𝑖, 𝑗 ∈ 𝑚.

Then 𝐷(𝑚, 𝑑, 𝜉) becomes a Hopf algebra with comultiplication, counit and the

antipode given by

Δ(𝑥) = 𝑥 ⊗ 𝑥, Δ(𝑔) = 𝑔 ⊗ 𝑔, Δ(𝑦) = 𝑦 ⊗ 𝑔 + 1 ⊗ 𝑦,

Δ(𝑢𝑖) = ∑𝑚−1
𝑗=0 𝛾𝑗(𝑖−𝑗)𝑢𝑗 ⊗ 𝑥−𝑗𝑑𝑔𝑗𝑢𝑖−𝑗 ;

𝜀(𝑥) = 𝜀(𝑔) = 𝜀(𝑢0) = 1, 𝜀(𝑦) = 𝜀(𝑢𝑙) = 0,

𝑆(𝑥) = 𝑥−1, 𝑆(𝑔) = 𝑔−1, 𝑆(𝑦) = −𝑦𝑔−1 = −𝛾−1𝑔−1𝑦,

𝑆(𝑢𝑖) = (−1)𝑖𝜉−𝑖𝛾− 𝑖(𝑖+1)
2 𝑥𝑖𝑑+ 3

2 (1−𝑚)𝑑𝑔𝑚−𝑖−1𝑢𝑖,

for 𝑖 ∈ 𝑚 and 1 ⩽ 𝑙 ⩽ 𝑚 − 1.

Computation shows that

∫
𝑙

𝐷(𝑚,𝑑,𝜉)
≅ 𝐷(𝑚, 𝑑, 𝜉)/(𝑦, 𝑥 − 1, 𝑔 − 𝛾−1, 𝑢0 − 𝜉−1, 𝑢1, 𝑢2, ⋯ , 𝑢𝑚−1) and

io(𝐷(𝑚, 𝑑, 𝜉)) = 2𝑚, im(𝐷(𝑚, 𝑑, 𝜉)) = 𝑚,

which implies that 𝐷(𝑚, 𝑑, 𝜉) is not unimodular.

4.2 Non-degenerate Hopf pairing

For each Hopf algebra 𝐻 listed in section 4.1 , [4] computes the finite duals 𝐻 ∘ of

them, which are given by generators and relations. Furthermore, they construct a special

22



4.2 Non-degenerate Hopf pairing

kind of Hopf pairing ⟨−, −⟩ ∶ 𝐻• ⊗ 𝐻 → 𝕜 by choosing certain Hopf subalgebra 𝐻•

of 𝐻 ∘. In this paper, we put our main interests on the 𝐻• for each Hopf algebra 𝐻 .

Definition 4.7. Let𝐻 and𝐻• be Hopf algebras. A linear map ⟨−, −⟩ ∶ 𝐻• ⊗ 𝐻 → 𝕜

is called a Hopf pairing (on 𝐻), if

(i) ⟨𝑓𝑓 ′, ℎ⟩ = ∑⟨𝑓, ℎ(1)⟩⟨𝑓 ′, ℎ(2)⟩, (ii) ⟨𝑓 , ℎℎ′⟩ = ∑⟨𝑓(1), ℎ⟩⟨𝑓(2), ℎ′⟩,

(iii) ⟨1, ℎ⟩ = 𝜀(ℎ), (iv) ⟨𝑓 , 1⟩ = 𝜀(𝑓),

(v) ⟨𝑓 , 𝑆(ℎ)⟩ = ⟨𝑆(𝑓), ℎ⟩

hold for all 𝑓, 𝑓 ′ ∈ 𝐻• and ℎ, ℎ′ ∈ 𝐻 . Moreover, it is said to be non-degenerate, if

for any 𝑓 ∈ 𝐻• and any ℎ ∈ 𝐻 ,

⟨𝑓 , 𝐻⟩ = 0 implies 𝑓 = 0, and ⟨𝐻•, ℎ⟩ = 0 implies ℎ = 0.

Clearly, the definition follows that there are linear maps

𝛼 ∶ 𝐻• → 𝐻∗, 𝑓 ↦ ⟨𝑓 , −⟩ and 𝛽 ∶ 𝐻 → 𝐻•∗, ℎ ↦ ⟨−, ℎ⟩.

Furthermore, we know by (ii) that for any 𝑓 ∈ 𝐻•,

𝑀∗(𝛼(𝑓)) = ∑ 𝛼(𝑓(1)) ⊗ 𝛼(𝑓(2)) ∈ 𝐻∗ ⊗ 𝐻∗,

where 𝑀 denotes the multiplication on𝐻 , and hence the image of 𝛼 is in fact contained

in 𝐻 ∘. As a conclusion, Definition follows that there are two maps of Hopf algebras

𝛼 ∶ 𝐻• → 𝐻 ∘, 𝑓 ↦ ⟨𝑓 , −⟩ and 𝛽 ∶ 𝐻 → 𝐻•∘, ℎ ↦ ⟨−, ℎ⟩,

which are both injective if and only if the Hopf pairing ⟨−, −⟩ is non-degenerate.

In [4], non-degenerate Hopf pairing on 𝕜𝔻∞, 𝑇∞(𝑛, 𝑣, 𝜉), 𝐵(𝑛, 𝜔, 𝛾) and𝐷(𝑚, 𝑑, 𝜉)

are constructed as follows, respectively. (The certain relations of generators as well as

Hopf algebra structure are listed in Chapter 5)

Proposition 4.8. For each affine prime regular Hopf algebra𝐻 of GK-dimension one,
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Chapter 4 Some known examples

we can construct a Hopf algebra 𝐻• and a non-degenerate Hopf pairing ⟨−, −⟩ ∶

𝐻• ⊗ 𝐻 → 𝕜 as follows. Specifically, keeping the notions used in [4], we have:

1) The evaluation ⟨−, −⟩ ∶ (𝕜𝔻∞)• ⊗ 𝕜𝔻∞ → 𝕜 is a non-degenerate Hopf pairing,

where

(𝕜𝔻∞)• = 𝕜{𝜁1𝐸𝑠
2, 𝜒1𝐸𝑠

2 ∣ 𝑠 ∈ ℕ}

= 𝕜{(𝜁1 − 𝜒1)𝑘𝐸𝑠
2 ∣ 𝑘 ∈ 2, 𝑠 ∈ ℕ} ⊆ (𝕜𝔻∞)∘.

2) The evaluation ⟨−, −⟩ ∶ 𝑇∞(𝑛, 𝑣, 𝜉)• ⊗𝑇∞(𝑛, 𝑣, 𝜉) → 𝕜 is a non-degenerate Hopf

pairing, where

𝑇∞(𝑛, 𝑣, 𝜉)• = 𝕜{𝜔𝑗𝐸𝑠
2𝐸𝑙

1 ∣ 𝑗 ∈ 𝑛, 𝑠 ∈ ℕ, 𝑙 ∈ 𝑚} ⊆ 𝑇∞(𝑛, 𝑣, 𝜉)∘,

and 𝑚 = 𝑛
gcd(𝑛,𝑣) .

3) The evaluation ⟨−, −⟩ ∶ 𝐵(𝑛, 𝜔, 𝛾)• ⊗ 𝐵(𝑛, 𝜔, 𝛾) → 𝕜 is a non-degenerate Hopf

pairing, where

𝐵(𝑛, 𝜔, 𝛾)• = 𝕜{𝜓 𝑗
1,𝛾𝐸𝑠

2𝐸𝑙
1 ∣ 𝑗 ∈ 𝑛, 𝑠 ∈ ℕ, 𝑙 ∈ 𝑛} ⊆ 𝐵(𝑛, 𝜔, 𝛾)∘,

4) The evaluation ⟨−, −⟩ ∶ 𝐷(𝑚, 𝑑, 𝜉)• ⊗ 𝐷(𝑚, 𝑑, 𝜉) → 𝕜 is a non-degenerate Hopf

pairing, where

𝐷(𝑚, 𝑑, 𝜉)• = 𝕜{𝜁 𝑗
1,𝛾𝐸𝑠

2𝐸𝑙
1, 𝜒 𝑗

1,𝛾𝐸𝑠
2𝐸𝑙

1 ∣ 𝑖 ∈ 𝜔, 𝑗 ∈ 𝑚, 𝑠 ∈ ℕ, 𝑙 ∈ 𝑚} ⊆ 𝐷(𝑚, 𝑑, 𝜉)∘.
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Chapter 5 Homological integrals of 𝐻•

In this chapter, we list the Hopf algebra structure of 𝐻• defined in section 4.2, and

compute ∫𝑙
𝐻• (as a right 𝐻•-module), io(𝐻•), im(𝐻•), respectively.

5.1 Preparations

First, we should verify that all 𝐻• are AS-Gorenstein so that they do have homo-

logical integrals. There is a key observation in [4]:

Proposition 5.1. For affine prime regular Hopf algebras𝐻 of GK-dimension one, con-

sider Hopf algebras 𝐻• constructed in Proposition 4.8. We have

1) All the Hopf algebras 𝐻• have GK-dimension one.

2) All the Hopf algebras 𝐻• are noetherian.

3) TheHopf algebra (𝕜𝔻∞)• is regular while 𝑇∞(𝑛, 𝑣, 𝜉)•,𝐵(𝑛, 𝜔, 𝛾)• and𝐷(𝑚, 𝑑, 𝜉)•

are not when 𝑛, 𝑚 ⩾ 2.

[9] proved that all affine algebras of GK-dimension one are PI, and [12] proved

that all noetherian PI Hopf algebras are AS-Gorenstein. As a result, all 𝐻• do have

homological integrals.

The following lemma provides a useful method to calculate homological integrals.

Lemma 5.2. Let 𝐻 be an AS-Gorenstein Hopf algebra and let 𝑥 be a normal non-

zero-divisor of 𝐻 such that (𝑥) is a Hopf ideal of 𝐻 . Suppose that 𝜏 is the algebra

automorphism of 𝐻 such that 𝑥ℎ = 𝜏(ℎ)𝑥 for all ℎ ∈ 𝐻 .

1. 𝐻′ ∶= 𝐻/(𝑥) is an AS-Gorenstein Hopf algebra.
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Chapter 5 Homological integrals of 𝐻•

2. ∫𝑙
𝐻 ≅ (∫𝑙

𝐻′)𝜏−1
as right 𝐻-modules.

3. If 𝑥 is central, then ∫𝑙
𝐻 ≅ ∫𝑙

𝐻′ .

We end this section by listing the well-known quantum binomial coefficients for a

parameter 𝑞 ∈ 𝕜∗, which is defined as

(
𝑙
𝑘)𝑞

∶=
𝑙!𝑞

𝑘!𝑞(𝑙 − 𝑘)!𝑞

for integers 𝑙 ⩾ 𝑘 ⩾ 0, where 𝑙!𝑞 ∶= 1𝑞2𝑞 ⋯ 𝑙𝑞 and 𝑙𝑞 ∶= 1 + 𝑞 + ⋯ + 𝑞𝑙−1.

5.2 (𝕜𝔻∞)•

As an algebra, (𝕜𝔻∞)• is generated by 𝜁1, 𝜒1, 𝐸2 with relations

𝜁1𝜁1 = 𝜁1, 𝜒1𝜒1 = 𝜒1, 𝜁1𝜒1 = 𝜒1𝜁1 = 0, 𝜁1 + 𝜒1 = (𝜁1 − 𝜒1)2 = 1,

𝐸2𝜁1 = 𝜁1𝐸2, 𝐸2𝜒1 = 𝜒1𝐸2.

Then (𝕜𝔻∞)• becomes a Hopf algebra with comultiplication, counit and antipode given

by

Δ(𝜁1) = 𝜁1 ⊗ 𝜁1 + 𝜒1 ⊗ 𝜒1, Δ(𝜒1) = 𝜁1 ⊗ 𝜒1 + 𝜒1 ⊗ 𝜁1,

Δ(𝐸2) = (𝜁1 − 𝜒1) ⊗ 𝐸2 + 𝐸2 ⊗ 1,

𝜀(𝜁1) = 1, 𝜀(𝜒1) = 𝜀(𝐸2) = 0,

𝑆(𝜁1) = 𝜁1, 𝑆(𝜒1) = 𝜒1, 𝑆(𝐸2) = −(𝜁1 − 𝜒1)𝐸2.

Note that𝐸2 is normal, central, and (𝐸2) is a Hopf ideal of (𝕜𝔻∞)• , then by lemma

5.2, we have

∫
𝑙

(𝕜𝔻∞)•
≅ ∫

𝑙

(𝕜𝔻∞)•/(𝐸2)
≅ ∫

𝑙

𝕜ℤ2
,

since 𝕜ℤ2 is of finite dimensional, it is unimodular for homological integrals,that is,
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5.3 𝑇∞(𝑛, 𝑣, 𝜉)•

∫𝑙
𝕜ℤ2

≅ 𝕜 as 𝕜ℤ2-bimodule. Hence as a right 𝐻-module,

∫
𝑙

(𝕜𝔻∞)•
≅ (𝕜𝔻∞)•/(𝐸2, 𝜁1 − 𝜒1 − 1),

the corresponding homomorphism 𝜋 yields left and right winding automorphisms

Ξ𝑙
𝜋 = Ξ𝑟

𝜋 = Id(𝕜𝔻∞)• ,

So that 𝐺𝑙
𝜋 and 𝐺𝑟

𝜋 have order 1, hence

io((𝕜𝔻∞)•) = im((𝕜𝔻∞)•) = 1,

which implies that 𝕜𝔻∞)• is unimodular.

5.3 𝑇∞(𝑛, 𝑣, 𝜉)•

As an algebra, 𝑇∞(𝑛, 𝑣, 𝜉)• is generated by 𝜔, 𝐸1, 𝐸2 with relations

𝜔𝑛 = 1, 𝐸𝑚
1 = 0,

𝐸2𝜔 = 𝜔𝐸2, 𝐸1𝜔 = 𝜉𝑣𝜔𝐸1, 𝐸1𝐸2 = 𝐸2𝐸1.

where 𝑛 is a positive integer, 0 ⩽ 𝑣 ⩽ 𝑛 − 1, and 𝜉 is a primitive 𝑛th root of 1 and

𝑚 = 𝑛
gcd(𝑛,𝑣) .

Then, 𝑇∞(𝑛, 𝑣, 𝜉)• becomes a Hopf algebra with comultiplication, counit and an-
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Chapter 5 Homological integrals of 𝐻•

tipode given by

Δ(𝜔) = 𝜔 ⊗ 𝜔, Δ(𝐸1) = 1 ⊗ 𝐸1 + 𝐸1 ⊗ 𝜔,

Δ(𝐸2) = 1 ⊗ 𝐸2 + 𝐸2 ⊗ 𝜔𝑚 +
𝑚−1

∑
𝑘=1

𝐸[𝑘]
1 ⊗ 𝜔𝑘𝐸[𝑚−𝑘]

1 ,

𝜀(𝜔) = 1, 𝜀(𝐸1) = 𝜀(𝐸2) = 0,

𝑆(𝜔) = 𝜔𝑛−1, 𝑆(𝐸1) = −𝜉−𝑣𝜔𝑛−1𝐸1, 𝑆(𝐸2) = −𝐸2.

where 𝐸[𝑘]
1 ∶= 1

𝑘!𝜉𝑣
𝐸𝑘

1 for 1 ⩽ 𝑘 ⩽ 𝑚 − 1.

To compute the left homological integral of 𝑇∞(𝑛, 𝑣, 𝜉)• , recall that for a Hopf

algebra 𝐻 , homological integral is a one-dimensional 𝐻-bimodule, we denote the gen-

erator by 𝑥, then

𝑥ℎ = 𝑎ℎ𝑥,

where 𝑎ℎ ∈ 𝕜 for all ℎ ∈ 𝐻 .

So when an element ℎ′ ∈ 𝐻 is nilpotent, it is obvious that 𝑎ℎ′= 0, in this point of

view, we have

∫
𝑙

𝐻
≅ ∫

𝑙

𝐻/(ℎ′)
.

Hence, since 𝐸1 is nilpotent in 𝑇∞(𝑛, 𝑣, 𝜉)•, we have

∫
𝑙

𝑇∞(𝑛,𝑣,𝜉)•
≅ ∫

𝑙

𝑇∞(𝑛,𝑣,𝜉)•/(𝐸1)
,

Then in 𝑇∞(𝑛, 𝑣, 𝜉)•/(𝐸1), 𝐸2 is normal, central and (𝐸2) becomes exactly a Hopf

ideal in 𝑇∞(𝑛, 𝑣, 𝜉)•/(𝐸1), then similar to the computations in (𝕜𝔻∞)•, we have

∫
𝑙

𝑇∞(𝑛,𝑣,𝜉)•/(𝐸1)
≅ ∫

𝑙

𝑇∞(𝑛,𝑣,𝜉)•/(𝐸1,𝐸2)
≅ ∫

𝑙

𝕜ℤ𝕟
≅ 𝕜 ≅ 𝑇∞(𝑛, 𝑣, 𝜉)•/(𝐸2, 𝐸1, 𝜔 − 1),
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5.4 𝐵(𝑛, 𝜔, 𝛾)•

the corresponding homomorphism 𝜋 yields left and right winding automorphisms

Ξ𝑙
𝜋 = Ξ𝑟

𝜋 = Id𝑇∞(𝑛,𝑣,𝜉)• ,

which implies that

io(𝑇∞(𝑛, 𝑣, 𝜉)•)) = im((𝑇∞(𝑛, 𝑣, 𝜉)•) = 1,

hence 𝑇∞(𝑛, 𝑣, 𝜉)• is unimodular.

Remark 5.3. As a special case, the connected algebraic groups of dimension one𝐻1 =

𝕜[𝑥] is equal to 𝑇∞(1, 0, 1). Therefore, (𝕜[𝑥])• is unimodular.

5.4 𝐵(𝑛, 𝜔, 𝛾)•

As an algebra, 𝐵(𝑛, 𝜔, 𝛾)• is generated by 𝜓1,𝛾 , 𝐸1 and 𝐸2 with relations

𝜓1,𝛾𝜓1,𝛾 = 𝜓1,𝛾2 , 𝜓1,1 = 𝜓𝑛
1,𝛾 = 1, 𝐸𝑛

1 = 0,

𝐸2𝜓1,𝛾 = 𝜓1,𝛾𝐸2, 𝐸1𝜓1,𝛾 = 𝛾𝜓1,𝛾𝐸1, 𝐸1𝐸2 = 𝐸2𝐸1 + 1
𝑛𝐸1.

where 𝑛 and 𝜔 are positive integers, and 𝛾 be a primitive 𝑛th root of 1.

Then 𝐵(𝑛, 𝜔, 𝛾)• becomes a Hopf algebra with comultiplication, counit and an-

tipode given by

Δ(𝐸1) = 1 ⊗ 𝐸1 + 𝐸1 ⊗ 𝜓1,𝛾 , Δ(𝜓1,𝛾 ) = 𝜓1,𝛾 ⊗ 𝜓1,𝛾 ,

Δ(𝐸2) = 1 ⊗ 𝐸2 + 𝐸2 ⊗ 1 −
𝑛−1

∑
𝑘=1

𝐸[𝑘]
1 ⊗ 𝜓𝑘

1,𝛾𝐸[𝑛−𝑘]
1 ,

𝜀(𝜓1,𝛾 ) = 1, 𝜀(𝐸1) = 𝜀(𝐸2) = 0,

𝑆(𝐸1) = −𝛾𝑛−1𝜓𝑛−1
1,𝛾 𝐸1, 𝑆(𝐸2) = −𝐸2, 𝑆(𝜓1,𝛾 ) = 𝜓1,𝛾−1

where 𝐸[𝑘]
1 ∶= 1

𝑘!𝛾
𝐸𝑘

1 for 1 ⩽ 𝑘 ⩽ 𝑛 − 1.
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Chapter 5 Homological integrals of 𝐻•

Notice that 𝐸1 is nilpotent, then same to the case of 𝑇∞(𝑛, 𝑣, 𝜉)•, we have

∫
𝑙

𝐵(𝑛,𝜔,𝛾)•
≅ ∫

𝑙

𝐵(𝑛,𝜔,𝛾)•/(𝐸1)
,

then the rest computations are exactly the same as the case of 𝑇∞(𝑛, 𝑣, 𝜉)•. As a result,

we have

∫
𝑙

𝐵(𝑛,𝜔,𝛾)•
≅ 𝕜 ≅ 𝐵(𝑛, 𝜔, 𝛾)•/(𝐸1, 𝐸2, 𝜔 − 1),

and

io(𝐵(𝑛, 𝜔, 𝛾)•)) = im((𝐵(𝑛, 𝜔, 𝛾)•) = 1,

which implies that 𝐵(𝑛, 𝜔, 𝛾)• is unimodular.

Remark 5.4. As a special case, the connected algebraic groups of dimension one𝐻2 =

𝕜[𝑥±1] is equal to 𝐵(1, 0, 1). Therefore, (𝕜[𝑥±1])• is unimodular.

5.5 𝐷(𝑚, 𝑑, 𝜉)•

As an algebra, 𝐷(𝑚, 𝑑, 𝜉)• is generated by 𝜁1,𝛾 , 𝜒1,𝛾 , 𝐸1, 𝐸2 with relations

𝜁1,𝛾𝜁1,𝛾 = 𝜁1,𝛾2 , 𝜒1,𝛾𝜒1,𝛾 = 𝜒1,𝛾2 ,

𝜁1,𝛾𝜒1,𝛾 = 𝜒1,𝛾𝜁1,𝛾 = 0, 𝜁1,1 + 𝜒1,1 = 1, 𝐸𝑚
1 = 1

(1 − 𝛾)𝑚 𝜒1,1,

𝐸2𝜁1,𝛾 = 𝜁1,𝛾𝐸2, 𝐸1𝜁1,𝛾 = 𝛾𝜁1,𝛾𝐸1,

𝐸2𝜒1,𝛾 = 𝜒1,𝛾𝐸2, 𝐸1𝜒1,𝛾 = 𝛾𝜒1,𝛾𝐸1,

𝐸1𝐸2 = 𝐸2𝐸1 + 1
𝑚𝜁1,1𝐸1,

where 𝑚, 𝑑 are positive integers such that (1 + 𝑚)𝑑 is even and 𝜉 a primitive 2𝑚th root

of unity, 𝛾 = 𝜉2.

Then, 𝐷(𝑚, 𝑑, 𝜉)• becomes a Hopf algebra with comultiplication, counit and an-
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tipode given by

Δ(𝐸1) = 1 ⊗ 𝐸1 + 𝐸1 ⊗ (𝜁1,𝛾 + 𝜉𝜒1,𝛾 ),

Δ(𝐸2) = (𝜁1,1 − 𝜒1,1) ⊗ 𝐸2 + 𝐸2 ⊗ 1 −
𝑚−1

∑
𝑘=1

(𝜁1,1 − 𝜒1,1)𝐸[𝑘]
1 ⊗ (𝜁1,𝛾 + 𝜉𝜒1,𝛾 )−𝑚+𝑘𝐸[𝑚−𝑘]

1 ,

Δ(𝜁1,𝛾 ) = 𝜁1,𝛾 ⊗ 𝜁1,𝛾

Δ(𝜒1,𝛾 ) = 𝜁1,𝛾 ⊗ 𝜒1,𝛾 − 𝜃0

𝑚−1

∑
𝑘=1

𝜃1 ⋯ 𝜃𝑘−1𝜁1,𝛾𝐸[𝑘]
1 ⊗ 𝜉𝑘𝜒𝑘+1

1,𝛾 𝐸[𝑚−𝑘]
1 + 𝜒1,𝛾 ⊗ 𝜁1,𝛾−1

− 𝜃0

𝑚−1

∑
𝑘=1

𝛾−(𝑚−𝑘)𝜃1 ⋯ 𝜃𝑚−𝑘−1𝜒1,𝛾𝐸[𝑘]
1 ⊗ 𝜁𝑘+1

1,𝛾 𝐸[𝑚−𝑘]
1 ,

𝜀(𝐸1) = 𝜀(𝐸2) = 0, 𝜀(𝜁1,𝛾 ) = 1, 𝜀(𝜒1,𝛾 ) = 0,

𝑆(𝐸1) = −𝛾−1(𝜁1,𝛾−1 + 𝜉−1𝜒1,𝛾−1)𝐸1,

𝑆(𝐸2) = −𝜁1,1𝐸2 + 𝜒1,1𝐸2 + 1 − 𝑚
2𝑚 𝜒1,1, 𝑆(𝜁1,𝛾 ) = 𝜁1,𝛾−1 , 𝑆(𝜒1,𝛾 ) = 𝛾−1𝜒1,𝛾−1 ,

where 𝐸[𝑘]
1 ∶= 1

𝑘!𝛾
𝐸𝑘

1 , and 𝜃0 = 1−𝛾
1/𝑚 , 𝜃𝑘 = 1−𝛾𝑘+1

1−𝛾𝑘 (1 ⩽ 𝑘 ⩽ 𝑚 − 1), we remark that

(𝜁1,𝛾 + 𝜉𝜒1,𝛾 )𝑚 = 1.

To compute homological integral of 𝐷(𝑚, 𝑑, 𝜉)•, notice that 𝐸1 is a normal non-

zero-divisor and (𝐸1) is a hopf ideal of 𝐷(𝑚, 𝑑, 𝜉)•, then by lemma 5.2, we have

∫
𝑙

𝐷(𝑚,𝑑,𝜉)•
≅ (∫

𝑙

𝐷(𝑚,𝑑,𝜉)•/(𝐸1)
)𝜏−1 ,

where

𝜏 ∶

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝐸1 ⟼ 𝐸1,

𝐸2 ⟼ 𝐸2 + 1
𝑚𝜁1,1,

𝜁1,𝛾 ⟼ 𝛾𝜁1,𝛾 ,

𝜒1,𝛾 ⟼ 𝛾𝜒1,𝛾 ,

is the algebra automorphsim of𝐷(𝑚, 𝑑, 𝜉)• such that𝐸1ℎ = 𝜏(ℎ)𝐸1 for allℎ ∈ 𝐷(𝑚, 𝑑, 𝜉)•.
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then similar to the computations in 𝑇∞(𝑛, 𝑣, 𝜉)•, we have

∫
𝑙

𝐷(𝑚,𝑑,𝜉)•/(𝐸1)
≅ 𝕜 ≅ 𝐷(𝑚, 𝑑, 𝜉)•/(𝐸1, 𝐸2, 𝜒1,𝛾 , 𝜁1,𝛾 − 1),

thus

∫
𝑙

𝐷(𝑚,𝑑,𝜉)•
≅ (𝐷(𝑚, 𝑑, 𝜉)•/(𝐸1, 𝐸2, 𝜒1,𝛾 , 𝜁1,𝛾 − 1))𝜏−1

≅ 𝐷(𝑚, 𝑑, 𝜉)•/(𝐸1, 𝐸2 + 1
𝑚, 𝜒1,𝛾 , 𝜁1,𝛾 − 𝛾−1).

The corresponding homomorphism 𝜋 yields left and right winding automorphisms

Ξ𝑙
𝜋 ∶

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝐸1 ⟼ 𝐸1,

𝐸2 ⟼ 𝐸2 − 1
𝑚 ,

𝜁1,𝛾 ⟼ 𝛾−1𝜁1,𝛾 ,

𝜒1,𝛾 ⟼ 𝛾−1𝜒1,𝛾 ,

and Ξ𝑟
𝜋 ∶

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝐸1 ⟼ 𝛾−1𝐸1,

𝐸2 ⟼ 𝐸2 − 𝜁1,𝛾 −𝜒1,𝛾
𝑚 ,

𝜁1,𝛾 ⟼ 𝛾−1𝜁1,𝛾 ,

𝜒1,𝛾 ⟼ 𝛾𝜒1,𝛾 ,

which implies that

io(𝐷(𝑚, 𝑑, 𝜉)•) = im(𝐷(𝑚, 𝑑, 𝜉)•) = ∞,

hence 𝐷(𝑚, 𝑑, 𝜉)• is not unimodular.

5.6 Conclusions

From the computations above, we find that 𝑇∞(𝑛, 𝑣, 𝜉)• and 𝐵(𝑛, 𝜔, 𝛾)• are uni-

modular while they are non-commutative, which gives a negative answer to the ques-

tion raised at the end of Chapter 3, this observation may implies that commutativity

may not be the crucial key to indicate unimodularity, which is much similar to the case

of the Haar measure on locally compact group where Lie groups that are close to being

Abelian (i.e., nilpotent) or far from being Abelian (i.e., semisimple) are unimodular.

Furthermore, for𝐻 listed in Section 4.1, once we identify𝐻• as some kind of dual
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space of 𝐻 , then we find that whether 𝐻 is unimodular is equivalent to its dual space

is unimodular remains negative in infinite-dimensional cases. And these four pairs of

examples demonstrate that for AS-Gorenstien Hopf algebra 𝐻 , all three scenarios are

possible:

1) Both 𝐻 and its dual space are unimodular.

2) 𝐻 is unimodular while its dual space is not.

3) Neither 𝐻 nor its dual space is unimodular.

5.7 Further questions

(a) Is there a similar criterion (with respect to the adjoint action) for unimodularity

of infinite-dimensional AS-Gorenstein Hopf algebras?

(b) Are there any other similar or dual properties between the homological integrals

of 𝐻 and 𝐻•?
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