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Abstract

In the study of the monoidal structure of a representation category of a Hopf
algebra H, one has to consider the decompositions of the tensor product of objects into
indecomposables. However, in general, very little is known about how a tensor product
of two indecomposables decomposes into a direct sum of indecomposables. One method
of addressing this problem is to consider the tensor product as the multiplication of the
Green ring r(H) of H, and to study the ring-theoretical properties of the Green ring.
In this paper, we study the Frobenius property of r(H) if H is of finite representation
type. This enables us to define a numerical invariant, namely, the Casimir number
of r(H). We show that this number is not zero if and only if the Green ring r(H)
is Jacobson semisimple and this number is not zero in a field K if and only if the
Green algebra r(H) ®7 K is semisimple. We compute the Casimir numbers of some
Green rings and describe their Jacobson radicals of those Green algebras. For the
Grothendieck ring of a fusion category, its Casimir number can be defined similarly.
This number is a positive integer and can be used to detect when a pivotal fusion
category is non-degenerate. In particular, if C is a spherical fusion category over the
field of complex numbers, its Casimir number and the Frobenius-Schur exponent share
the same prime factors. This may be thought of as another statement of the Cauchy
theorem for spherical fusion categories.

This paper is divided into five chapters.

In Chapter 1, main notations and preliminaries are stated.

In Chapter 2, we study the Green ring of a finite dimensional Hopf algebra by
means of bilinear forms. We show that the Green ring of a Hopf algebra of finite

representation type is a Frobenius algebra over Z with a dual basis associated to almost

iii
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split sequences. We next study some ring theoretic properties of the Green ring.

In Chapter 3, on the stable Green ring we define a new bilinear form which is more
accurate to determine the bi-Frobenius algebra structure on the stable Green ring. We
show that the complexified stable Green algebra is a group-like algebra, and hence a
bi-Frobenius algebra, if the bilinear form on the stable Green ring is non-degenerate.

In Chapter 4, we first consider the question of when the Green ring r(H), or the
Green algebra r(H) ®z K over a field K, is Jacobson semisimple. It turns out that
r(H) ®z K is Jacobson semisimple if and only if the Casimir number of r(H) is not
zero in K. For the Green ring r(H) itself, r(H) is Jacobson semisimple if and only if
the Casimir number of r(H) is not zero. Then we focus on the case where H = kG for
a cyclic group G of order p over a field k of characteristic p. In this case, the Casimir
number of kG is shown to be 2p?. This leads to a complete description of the Jacobson
radical of the Green algebra r(kG) ®z K over any field K.

In Chapter 5, we define the Casimir number and another two numerical invariants
of a fusion category C. These numerical invariants are all positive integers and admit
the property that the Grothendieck algebra Gr(C) ®z K over any field K is semisimple
if and only if any of these numbers is not zero in K. This means that all these numbers
have the same prime factors. If C is a Verlinde modular category of rank n + 1, its
Casimir number is calculated to be 2n + 4. It follows that the Grothendieck algebra
Gr(C) ®z K over a field K is semisimple if and only if 2n + 4 is a unit in K. This
is equivalent to saying that the (n + 1)-th Dickson polynomial E,,1(X) of the second
kind has no multiple factors in K[X]. If 2n + 4 is zero in K, the Jacobson radical of
Gr(C) ®z K is described explicitly in terms of generators. If moreover C is pivotal, one
obtains a criterion that C is non-degenerate if and only if the Casimir number of C is
not zero in k. For the case that C is a spherical fusion category over the field C of
complex numbers, the Casimir number and the Frobenius-Schur exponent of C share
the same prime factors. This may be thought of as another statement of the Cauchy

theorem for spherical fusion categories.

Keywords: Hopf algebra; Green ring; Frobenius algebra; Jacobson radical; Casimir
number; Bi-Frobenius algebra; Verlinde modular category; fusion category; Grothendieck

ring; Frobenius-Schur exponent.

v



CONTENTS

i =
Abstract

Chapter 1 Preliminaries

1.1 Bi-Frobenius algebras . . . . . . . .. ... L.
1.2 Auslander-Reiten theory . . . . . . . . ... ... ...

Chapter 2 The Green rings of Hopf algebras

2.1 Quantum traces . . . . . . . . . ...
2.2 Bilinear forms on Green rings . . . . . .. ... .. .. ...

2.3 Some ring theoretic properties of Green rings . . . . . . . . . ..

Chapter 3 The stable Green rings of Hopf algebras

3.1 The stable Green rings . . . . . . .. ... ... ...
3.2 Bi-Frobenius algebra structure . . . . . . . ... ...

3.3 Applications to Radford Hopf algebras . . . . . ... ... ...

Chapter 4 The Casimir numbers of Hopf algebras

4.1 Introduction . . . . . . . ..o
4.2 The Jacobson semisimplicity of Green rings. . . . . . . .. . ..

4.3 The Casimir number of a finite group . . . . . . . . .. ... ..

Chapter 5 The Casimir numbers of fusion categories

5.1 Introduction . . . . . . . ... o
5.2 Numerical invariants . . . . . . . ... ... L.
5.3 The Casimir numbers of Verlinde modular categories . . . . . .
5.4 Prime factors of Casimir numbers . . . . . . . . ... ... ...

5.5 Casimir numbers vs. Frobenius-Schur exponents . . . . . . . ..

REFERENCES

iii

10
20
28

37
37
42
45

50
50
52
95

66
66
68
74
83
88

92



B 5

vi

99



Chapter 1 Preliminaries

In this chapter, we first recall the definitions of a Frobenius algebra, a bi-Frobenius
algebra and a group-like algebra. After that we shall collect concepts and results from

the Auslander-Reiten theory which will be used in other chapters.

§1.1 Bi-Frobenius algebras

Frobenius algebras. Frobenius algebras occur in many different fields of math-
ematics, such as topological quantum field theory [1], Hopf algebras and quantum
Yang-Baxter equations [6,42]. In the following, the notion of a Frobenius algebra is
defined directly over a field k, although it can also be defined over a commutative ring
(e.g., [40,47]).

Let A be a finite dimensional k-algebra. We denote by the dual A* := Homy (A, k).
Then A* has a natural A-A-bimodule structure given by

(a — f —b)(c) = f(bca), for a,b,c € A, f e A".

Definition 1.1.1 (¢f. [17,18]) The pair (A, ¢) is called a Frobenius algebra provided
that ¢ € A* such that the right A-module morphism 04 : A — A*, a +— ¢ — a is
bijective; or equivalently, the left A-module morphism 460 : A — A*, a — a — ¢ is

bijective.

The linear form ¢ is called a Frobenius homomorphism. Moreover, A is a symmet-

ric algebra provided that A is isomorphic to A* as A-A-bimodules.

Remark 1.1.2 If (A, ¢) is a Frobenius algebra, then (a,b) := ¢(ab) for a,b € A, is
a non-degenerate associative bilinear form over A. Conversely, if A is equipped with
a non-degenerate associative bilinear form (—,—), then ¢ = (1,—) is a Frobenius
homomorphism of A [1, Proposition 1]. Accordingly, one of the equivalent definitions
of a Frobenius algebra is that A is Frobenius if and only if A is equipped with a non-

degenerate bilinear form (—, —) : A x A — k satisfying the associative (ab,c) = (a, bc),

1



for all a,b,c € A. Moreover, if the bilinear form is symmetric {a,b) = (b,a) for

a,be A, then A is a symmetric algebra.

We refer to [21,40,47] for the following basic properties of Frobenius algebras. The

k-linear map 64 given in Definition 1.1.1 induces the k-linear isomorphism
0:A® A M A g A* = Endy(A).

Hence there exists a unique element y . ; a; ® b; € A® A such that (31, a; ®b;) =
ids. The set {a;,b; | 1 < i < n} is called a pair of dual bases of (A, ). Moreover,
(A, ¢) is symmetric if and only if

=1 i=1

According to the map © given above, we have the following:

n n

T = Zai(b(bix) = Z%‘(bz‘,@, for z € A, (1.1)

i=1 =1

or equivalently,

T = i o(ra;)b; = Z(w, a;)b;, for x € A. (1.2)
i=1

=1

In fact, both of them is equivalent to

n

(,y) =Y () (b y) (1.3)

i=1

for all x,y € A (cf. [47]).

Example 1.1.3 Let H be a finite dimensional Hopf algebra over the field k. Let \ €
H* be a non-zero left integral and A € H a right integral such that A\(A) = 1. Then
(H,\) is a Frobenius algebra with a pair of dual bases {S(A1),Aa}, where A(A) =
YA ® Ay In a similar fashion, one can see that if v € H* is a non-zero right
integral, then there exists a left integral I' € H such that v(I') = 1. Then (H,7) is
a Frobenius algebra with a pair of dual bases {I'1,S(I'2)}, where A(I') = > T ® I'y
(cf. [17]). As shown in [{6] that H is symmetric if and only if H is unimodular and

the square of antipode is inner.



Let A be a Frobenius algebra over Z. The Casimir operator of A (see e.g. [47,
Section 3.1]) is the map ¢ from A to its center Z(A) defined by

cla) = Z bjaa; for a € A.
i=1

The map c is independent of the choice of a pair of dual bases {a;,b; | 1 < i < n},
because the dual bases depend only on the bilinear form (—, —), see [47, Section 1.2.2].
The element ¢(1) is called the Casimir element of A and it depends on (—, —) only
up to a central unit, see [47, Section 1.2.5]. The image Im ¢ of ¢ is an ideal of Z(A),
called the Casimir ideal of A. Tt does not depend on the choice of the bilinear form,
see [47, Section 3.2]. The intersection of Im ¢ and Z is an ideal of Z, thus a principal
ideal of Z generated by a non-negative integer. We call this integer the Casimir number
of A. Obviously, the Casimir number of A does not depend on the choice of the bilinear
form on A.

Any Z-algebra morphism ¢ : A — Z is called an augmentation of A. Suppose that
the Frobenius Z-algebra A has an augmentation €. Then any element t of A satisfying
at = e(a)t for all a € Ais called a left integral of A. Similarly, if ta = e(a)t for alla € R,
then t is called a right integral of A. All left integrals of A with respect to € form a
Z-module of rank one generated by Y | £(a;)b;. Similarly, all right integrals of A with
respect to ¢ form a Z-module of rank one generated by Y " | (b;)a;, see [47, Section
4.1]. If the set of left integrals of A coincides with the set of right ones, then A is called

unimodular.

Bi-Frobenius algebras. Let C' be a coalgebra over the field k. Then C' has a
natural structure of left and right C*-module under the left action f — ¢ =>" ¢ f(c2),
and the right action ¢ — f = > f(c1)cg, for any f € C* and ¢ € C with A(c) =
> 1 ®cy. Moreover, for any ¢ € C, the induced maps ¢ —: C* — C'and — ¢: C* —» C

are morphisms of right and left C*-modules respectively.

Definition 1.1.4 (cf. [21,23]) A Frobenius coalgebra is a pair (C,t) where C' is a finite
dimensional coalgebra and t € C' such that the morphism t —: C* — C, f 1t — f s

bijective; or equivalently, the morphism —t . C* — C, f— f —t is bijective.

3



The notion of a Frobenius coalgebra has a nice characterization that is analogue
to the characterizations of a Frobenius algebras [20, 22].

The concept of a bi-Frobenius algebra was introduced by Doi and Takeuchi in [23]
and further investigated in [20,22] as a natural generalized of finite dimensional Hopf

algebras.

Definition 1.1.5 (¢f. [22]) Let H be a finite dimensional algebra and coalgebra over
the field k, ¢ € H*, t € H. Define the map S by

S:H—H, S(x)=1t+ (x — ¢) = p(t1x)ts.
The quadruple (H, ¢,t,S) is called a bi-Frobenius algebra if the following hold:
(BF1) The counit € of the coalgebra H is an algebra morphism.
(BF2) The unity 1 is a group-like element of H.
(BF3) (H,¢) is a Frobenius algebra.
(BF4) (H,t) is a Frobenius coalgebra.

(BF5) S is an anti-algebra and anti-coalgebra morphism, i.e., S(ab) = S(b)S(a), S(1) =1
and A(S(a)) = S(az) ® S(ar), (S(a)) = e(a).

The map S given above is necessarily bijective [23], it is called the antipode of the
bi-Frobenius algebra H. It does not mean a convolution inverse of identity. This is
true in the particular situation of Hopf algebras. A pair of dual bases of (H, ¢,t,S) is
given by {S7!(t3),#1} [21]. Since H is necessary finite dimensional, the k-linear dual

H* is also an algebra and coalgebra. The comultiplication in H* is given by

A(f)(a®b) = f(ab),

for f € H* and a,b € H. It can be checked that (H*,t, ¢, S*) becomes a bi-Frobenius
algebra. We call it the dual bi-Frobenius algebra of H.

Example 1.1.6 Let H be a finite dimensional Hopf algebra. Choose the right integral
v € H* and the left integral T' € H such that v(I') = 1. Then (H,~,T',S) becomes a

bi- Frobenius algebra.



It is interesting to construct bi-Frobenius algebras that are not Hopf algebras.
Using known results on the existence of large Hadamard matrices, the author in [36]
constructed a class of bi-Frobenius algebras of arbitrarily large dimension satisfying

the additional condition

Sxid=1idx S =¢ (1.4)

and that are not Hopf algebras. This family of bi-Frobenius algebras satisfying the
condition (1.4) is also studied in [59]. There are many other approaches to construct
bi-Frobenius algebras that are not Hopf algebras, see e.g., [66,70]. As we shall see
that one of main results of this paper is that the stable Green algebras of certain finite

dimensional Hopf algebras are bi-Frobenius algebras that are not Hopf algebras.

Group-like algebras. The notion of a group-like algebra was introduced by Doi
in [20] generalizing the group algebra of a finite group and a scheme ring (Bose-Mesner

algebra) of a non-commutative association scheme.

Definition 1.1.7 Let (A, e,b,*) be a quadruple, where A is a finite dimensional al-
gebra over a field k with unit 1, € is an algebra morphism from A to k, the set
b = {b | i € I} is a k-basis of A such that 0 € I and by = 1, and * is an invo-
lution of the index set I. Then (A,e,b,*) is called a group-like algebra if the following
hold:

(G1) e(b;)) = e(bi=) #0 forallie 1.

k _ k* . . k
(G2) pi; = P for all i, j, k € I, where all p;; are the structure constants for b defined

(GS) p?j = (51‘7]‘*8(1)1‘) fOT’ all Z,] el.

Remark 1.1.8 (1) Let (A, e, b, x) be a group-like algebra. Then A becomes a coalgebra
with a comultiplication given by A(b;) = T}?)b‘ ® b;, see [20, Remark 3.2]. Let
¢ € A* such that ¢(b;) = do; and t = Y .., b;. Define the k-linear map S from
A to itself by S(b;) = by for any i € 1. Then (A, ¢,t,S) becomes a bi-Frobenius
algebra with a pair of dual bases {b;, % | i€ I}.

5



(2) A group-like algebra is not a Hopf algebra in general. If it is, it must be a group
algebra, see [36, Corollary 2]. Thus, a bi-Frobenius algebra coming from a group-

like algebra is not a Hopf algebra if the underlying algebra is not a group algebra.

Group-like algebras have some special properties (see e.g., [20]). Group-like al-
gebras of dimension 2 and 3 have been determined in [20]. For group-like algebras of
dimension 4, we refer to [21]. If a group-like algebra is also a Hopf algebra, then it
needs to be a group algebra [36, Corollary 2]. Because of this, a bi-Frobenius algebra
coming from a group-like algebra is not a Hopf algebra if the algebra itself is not a

group algebra.

§1.2 Auslander-Reiten theory

The aim of this section is to collect several results about Auslander-Reiten theory

which are needed in this paper. For these concepts, we refer to the textbooks [3,4].

Auslander-Reiten translate. Let A be a finite dimensional algebra over k and
A-mod (resp. mod-A) the finite dimensional left (resp. right) module category of A.
There are several ingredients that go into the topic of Auslander-Reiten translate of A-
mod. One is the functor D : A-mod — mod-A which is defined as DX = Homy (X, k),
for X € A-mod. We also want to use another functor Hom(—, A) : A-mod — mod-A.
If M is a left A-module, then Hom4 (M, A) is a right A-module given by (fa)(u) =
f(u)a for a € A, u € M and f € Homu (M, A).

Let M be in A-mod and Py £ M — 0 the projective cover of M. We denote by
Py 2 kerpy the projective cover of ker py. Then the sequence P, £ Py 2% M — 0
is called a minimal projective presentation of M. One can continue the process forever
and get what is called a minimal projective resolution, but we are only interested in
the P, and F, terms.

Applying the functor Homu(—, A) to Py £ Py, one obtains a right A-module
map pj : Homa(Fy, A) — Homy (P, A). The transpose of M is defined to be Tr(M) =
coker(p}) and the Auslander-Reiten translate of M is DTr(M), the dual of transpose
of left A-module M.



Almost split sequences. In this subsection we give an introduction to almost
split sequences, a special type of short exact sequences of modules which play a central
role in the representation theory of artin algebras.

Let X and Y be two A-modules. The morphism f : M — N is a split monomor-
phism if there exists ¢ : N — M such that go f = idy;, and f : M — N is a split
epimorphism if there exists g : N — M such that f o g =1dy.

In the following, we introduce some special morphisms, called left and right almost
split morphisms, which gives rise in a natural way to the notion of an almost split

sequence.

Definition 1.2.1 The map f : M — N is called left almost split if f is not a split
monomorphism and if there is g : M — X with g not a split monomorphism, then
there is h : N — X such that ho f = g. Dually, f: M — N 1is called right almost split
if [ is not split epimorphism and if there is g - Y — N with g not split epimorphism,
then there is h : Y — M such that foh =g.

We also need the notion of minimality.

Definition 1.2.2 The map f : M — N is called left minimal if for allh : N — N
with ho f = f, then h is an isomorphism. Dually, f : M — N is called right minimal
if for all h : M — M with foh = f, then h is an isomorphism.

Finally, we say that f : M — N is left minimal almost split if f is both left
minimal and left almost split. Similarly, we have the notion of right minimal almost

split.

Definition 1.2.3 A short exact sequence 0 — X Io M 5 Y =50 s called almost split

if s left minimal almost split and g is right minimal almost split.

The following proposition [4, Proposition 1.14, ChV] gives many equivalent con-

ditions for a short exact sequence to be almost split.

Proposition 1.2.4 The following are equivalent for a short exact sequence 0 — X ER
M35Y —0.

(1) The sequence is an almost split sequence.

7



(2) The morphism f is left minimal almost split.

(3) The morphism g is right minimal almost split.

(4) X is indecomposable and g is right almost split.

(5) Y is indecomposable and f is left almost split.

(6) X is isomorphic to DTrY and g is right almost split.

(7) Y is isomorphic to TrDX and f is left almost split.

We end with an introduction to the existence and uniqueness of almost split se-

quence.

Theorem 1.2.5 [4, Theoreml1.15, ChV] We have the following ezistence of almost

split sequence:

(1) If Y is an indecomposable non-projective module, then there is an almost split

sequence 0 - X - M —Y — 0.

(2) If X is an indecomposable non-injective module, then there is an almost split se-

quence 0 - X - M —Y — 0.

An almost split sequence is determined uniquely by either of its end terms in the

following sense (cf. [4, Theorem1.16, ChV]).

Theorem 1.2.6 The following are equivalent for two almost split sequences 0 — X EN
MY 50and0— X' 5 M Ly o,

(1) X = X,
2) Y =Y.

(3) The two sequences are isomorphic (i.e., there is a commutative diagram of the

following form with the vertical morphisms isomorphisms)

: )ff]\fglf :
0 x Loy 0.




Chapter 2 The Green rings of Hopf algebras

Let H be a finite dimensional Hopf algebra and H-mod the category of finite
dimensional (left) H-modules. In Section 2.1, we use quantum traces of morphisms
of H-modules to characterize when the trivial module k is a direct summand of the
decomposition of tensor product of any two indecomposable modules (see Theorem
2.1.7). Consequently, we answer the question raised by Cibils [16, Remark 5.8]. In
particular, we apply techniques from [35,73] to determine whether or not the trivial
module k appears in the decomposition of the tensor product X @ X* (resp. X* ® X)
for any indecomposable module X. Most results stated in this section are useful for

next sections.

In Section 2.2, we follow the approach of [8] and impose three bilinear forms on the
Green ring r( H) of the Hopf algebra H. One of them is the bilinear form determined by
([X],[Y]D1 = dimg Homy (X,Y). Another form is ([X],[Y])2 = dimy P(X,Y"), where
P(X,Y) is the space of morphisms from X to Y factoring through a projective module.
We show that the two forms are both non-degenerate and they are essentially the same
up to a unit. The third form is ([X],[Y])s = ([X],[Y])1 — ([X],[Y])2. The radical
of the form (—, —)3 contains the projective ideal P of r(H) generated by projective
H-modules. Under the assumption that H is of finite representation type, we prove
that the radical of the form (—, —)3 is equal to P if and only if there are no periodic

H-modules of even period.

In Section 2.3, we consider the form ([X],[Y]) := ([X],[Y*])1 on the Green ring
r(H) and use the form (—,—) to obtain some results about r(H). The form (—, —) is
associative and non-degenerate, and hence r(H) is a Frobenius algebra over Z if H is of
finite representation type. The dual basis of r(H) with respect to the form (—, —) can
be described partly by almost split sequences of H-modules. We use the form (—, —) to
give several one-sided ideals of 7(H) and these ideals provide a little more information
about the Jacobson radical and central primitive idempotents of r(H). It is known
that the Grothendieck ring Go(H) of H is a quotient ring of r(H). We describe this
quotient ring clearly: r(H)/P+ = Go(H), where P+ is orthogonal to the projective
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ideal P with respect to the form (—, —). This isomorphism will be used in next chapter

to characterize when the Jacobson radical of r(H) is equal to the intersection P NP+,

Throughout, H is an arbitrary finite dimensional Hopf algebra over an algebraical-
ly closed field k; all H-modules considered here are objects in H-mod, the category of
finite dimensional left H-modules. The tensor product ® stands for ®;. The notation
M| X®Y (resp. Mt X ®Y) means that M is (resp. is not) a direct summand of
X @Y. For the theory of Hopf algebras, we refer to [49,64].

§2.1 Quantum traces

In the study of the Green ring r(H) of a Hopf algebra H, one of difficult problems
is to determine whether or not the trivial module k appears in the decomposition of
tensor product X ®Y for indecomposable modules X and Y. This problem has already
been solved in the case of group algebras by Benson and Carlson [7, Theorem 2.1], in the
case of involutory Hopf algebras in terms of splitting trace modules [35], and in the case
of Hopf algebras with the square of antipode being inner [73, Theorem 2.4]. Motivated
by these works, in this section we shall make use of the notion of quantum traces to
solve the aforementioned problem for any finite dimension Hopf algebra. In particular,
we will look at the special case X ® X* (or X* ® X) for X being indecomposable, and
give various characterizations for k | X ® X* or not, which will be used in the next

section.

Recall that the Hom-space Homy(X,Y) is an H-module given by (hf)(z) =
Y hif(S(hg)z), for x € X, f € Homy(X,Y) and h € H with the comultiplica-
tion A(h) = > hy ® he. In the special case where Y is the trivial module k, then
X* := Homy (X, k) is an H-module given by (hf)(z) = f(S(h)x), for h € H, z € X
and f € X*. The evaluation of X is the morphism evy : X* ® X — k given by
evx(f ® z) = f(x). The coevaluation of X is the morphism coevy : k — X ® X*
defined by coevx (1) = Y. x; ®x}, where {z;} is a basis of X and {z}} is the dual basis
in X*.

The left quantum trace of € Hompy (X, X**) is defined to be the following com-
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position:

eV x*

Trk(0) : k 0% X @ x* 280 g X S (2.1)

Similarly, the right quantum trace of a morphism 6 € Hompy (X**, X) is defined to be
T (0) : k 29X x* @ x* DX X g X Ok (2.2)
Since Endy (k) = k, both Tr (0) and Tr% (0) are elements in k.

Remark 2.1.1 Applying the duality functor x to (2.1) and (2.2) respectively, one ob-
tains that Trk(0) = Tr. (%) and Tr%(0) = Trk. (6%).

Remark 2.1.2 Let P be a projective H-module.

(1) If H is not semisimple, then Trs(0) = 0 for any 0 € Homgy (P, P*). Otherwise,
the morphism coevp is a split monomorphism by (2.1). In this case, k | P® P*. It
follows that k is projective, and hence H is semisimple, a contradiction. Similarly,

if H is not semisimple, then Trit(0) = 0 for any 0 € Homy(P**, P).

(2) If H is involutory, i.e., S* = idy, then the map 0 : P — P** given by 0(z)(f) =
f(x) for x € P and f € P* is an H-module isomorphism. In this case, Trk(0) =
Tr(0=1) = dimy P. This implies that an involutory Hopf algebra over a field k
of characteristic 0 is semisimple (the converse is also true, see [41]). In case the
characteristic of k is p > 0 and H is not semisimple, then p | dimy P, giving a

result of Lorenz [46, Theorem 2.3 (b)].

Lemma 2.1.3 Let X be an indecomposable H-module.
(1) For any 0 € Homg(X, X**), if Trk(0) # 0, then 0 is an isomorphism.

(2) For any 0 € Homy(X**, X), if Tri(0) # 0, then 0 is an isomorphism.

Proof.We only prove Part (1) and the proof of Part (2) is similar. For any integer
m > 0, the m-th power of the duality functor * on X is denoted X*™. If {x;} is a
basis of X, we denote by {z™} the basis of X*™ dual to the basis {7 '} of X*™~1,

ie., (z;™, 2""") = 6;;. With these notations, we have the following: Let A be the
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transformation matrix of the morphism 6 € Homy (X, X**) with respect to the bases
{x;} and {z*}. It is clear that Tr%(f) = Tr(A), the usual trace of the matrix A. Since
H is a finite dimensional Hopf algebra, the order of S? is finite by Radford’s formula
on S* and the Nichols-Zéller Theorem. Suppose that S?" = idy. Then the map

Id : X*2n — X, Z)\zx;@" — Z/\lIz

is an H-module isomorphism and the transformation matrix of the map Id with respect
to the basis {z?"} of X*** and the basis {z;} of X is the identity matrix. Consider
the following composition:

0 sx 07 koK ¥2n—g2 072 x2n 1d
O X=>X" —> X" > ... X — X*" 5 X

Note that the matrix of the map © from X to itself with respect to the basis {z;} of
X is A". Since Endg(X) is local, the map O is either nilpotent or isomorphic. If O is
nilpotent, so is A", and hence A is nilpotent. This implies that Tr% (6) = Tr(A) = 0,

a contradiction. Thus, © is an isomorphism, and so is the map 6. 0

The following two canonical isomorphisms will be used later.

Lemma 2.1.4 [5, Lemma 2.1.6] For H-modules X,Y and Z, we have the following

canonical isomorphisms functorial in X, Y and Z:

(1) (I)X,Y,Z . HomH(X X Y;Z) — HomH(X,Z @ Y*), (I)va’z(Oé) = (Oé ®’ldy*) 9} (’LdX ®
coevy ).

(2) Uxyz: Hmy(X,Y®Z) - Hompg(Y*®X,Z), Uxyz(7) = (evy®idz)o(idy-R7).

The inverse maps of ®x y 7 and Uy y 7, respectively, are CID)}’IK 2(8) = (idz®evy)o
(8 @ idy) for f € Hompy(X,Z ® Y*), and ¥yl ,(6) = (idy ® 8) o (coevy ® idx)
for 6 € Hompy(Y* ® X,Z). The two canonical isomorphisms satisfy the following

properties.

Proposition 2.1.5 Let X be an indecomposable H-module. For any H-module Y, we
have the following:

Dy y+
(1) The canonical isomorphism Homg(Y ® X* k) —=—= Hompy (Y, X**) preserves

split epimorphisms.
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(2) The canonical isomorphism Hompy (Y, X) By, Hompy(X* @ Y, k) reflects split

epimorphisms.

Proof.(1) If the map a € Homy (Y ® X* k) is a split epimorphism, there is some 5 €
Homy (k, Y ® X*) such that o8 = idy. For the map 3, there is some v € Hompy(X,Y)
such that § = @ xy (7). Note that @y x« () oy € Hompy (X, X**). It follows that

Trg((q)yvx*’]k(a) 07) =evx+ o ((Pyx+ k() 0y) ®idx+) o coevy
= (Zd]k X evX*) o ((I)y,X*Jk(Oé) ® de*) 9] (’}/ X idx*) o (’Ld]k ® COGVX)
= Oy e 1 (Pyxe (@) 0 Py x v (7)

= o [ = idy.

Thus, @y, x+ x(a) 0y is an isomorphism by Lemma 2.1.3, and hence the map @y, x« i ()
is a split epimorphism.

(2) If the map o € Hompy(X* ® Y,k) is a split epimorphism, there is some
B € Hompg(k, X* ® V) such that o o f = idy. Note that \I/;ley]k(oz) o Uy x~y(B) €
Homy (X**, X). It follows that

Trf}(‘ll;})m((a) o Uy x-v(5))
=evy o (idx+ ® (\I/ley]k((x) o Uy x+v(8))) o coevys
= (evx ®idy) o (idx- ® ‘Ijx_/,lx,k(a)) o (idx+ ® Yy x=y(8)) o (coevx- @ idy)
= Uy x (U5 (@) 0 U ke (P xe v (8))
= o [ =idy.
Thus, \If;’lXJk(a) o Wy xy (/) is an isomorphism by Lemma 2.1.3, and hence the map
\Ifilxﬂ((a) is a split epimorphism. O

As an immediate consequence of Proposition 2.1.5, we have the following result.
Corollary 2.1.6 Let X and Y be two indecomposable H-modules.
(1) Ifk | Y ® X*, then Y = X**.
(2) Ifk | X*®Y, thenY = X.
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Cibils in [16, Remark 5.8] raised the following question: when is the trivial module
a direct summand of the tensor product of two indecomposable modules over a finite
dimensional Hopf algebra? We are now ready to answer this question using quantum

traces.

Theorem 2.1.7 Let X and Y be two indecomposable H-modules.

(1) k | Y ® X* if and only if there are isomorphisms f : X — Y and g :Y — X**
such that Trk(go f) # 0.

(2) k | X*®Y if and only if there are isomorphisms f : X*™ =Y and g: Y — X

such that Tr(go f) # 0.

Proof.We only prove Part (1) and the same argument works for Part (2). If f: X — Y
and g : Y — X** are two isomorphisms such that Tr% (g o f) # 0, then

0+#Tri(go f) = evy- o (g ®idx+) o (f ®idx+) o coevy.

This implies that the map (f ® idx+) ocoevy : k = Y ® X* is a split monomorphism,
and hence k | Y ® X*. Conversely, if k | Y ® X*, there are maps o : k — Y ® X* and
B:Y ® X* — k such that f o a = id;. For the map «, by Lemma 2.1.4, there is a
map f: X — Y such that

a=Pyxy(f)=(f ®@idx+) o (idx ® coevy).
For the map 3, there is a map g : Y — X™** such that

B =07 1 (9) = (idx ® evx+) o (g ®idx-).
Thus, we have

Tri(go f) = evx- 0 (g ®idx+) o (f ® idx+) o coevy
= (idy @ evx+) o (g ®idx+) o (f @idx+) o (idy @ coevy)
= B o = Zd]k

It follows from Lemma 2.1.3 that the composition g o f is an isomorphism. Thus, f

and g are both isomorphisms. O
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Given two H-modules X and Y, one knows little in general about how to de-
compose the tensor product X ® Y into a direct sum of indecomposable modules.
However, there are still some rules that the decomposition should follow as shown in

the following.

Proposition 2.1.8 Let X,Y, M be H-modules with X and M indecomposable.
(1) fFk| M@M* and M | X QY, thenk | X @ X* and X | M @ Y*.

2) Ifk | M*®@M and M | Y @ X, thenk | X*® X and X | Y* ® M.

Proof.(1) We only prove Part (1) and the proof of Part (2) is similar. The conditions
k| M®@M*and M | X®Y imply that k | X ® Y ® M*. Suppose Y @ M* = . N; for
some indecomposable modules N;. Then there is an indecomposable module N; such
that k | X ® Nj. By Theorem 2.1.7 (1), we obtain X = N; = N*. It follows that
k|X®N=X®X"* Notethat k | M ® M* implies that M = M**. Then X = N;*
implies that X | (Y @ M*)* = M @ Y*, as desired. O

In the rest of this section, H will be a non-semisimple Hopf algebra. We shall take
another approach to characterize when the trivial module k appears in the decompo-
sition of the tensor product X* ® X (resp. X ® X*) for an indecomposable module
X. For the special case where the square of the antipode is inner, we refer to [35, 73].

Suppose
0—=7k - EZk—=0 (2.3)

is an almost split sequence ending at the trivial module k. Tensoring (over k) the
sequence (2.3) with an indecomposable module X, we obtain the following two short

exact sequences:

0o rk)®X = E®X Z29% x 0, (2.4)
0= Xor(k) - X ®E 2% x 0. (2.5)

We need the following lemma, its proof is straightforward if one applies Lemma

2.1.4.
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Lemma 2.1.9 For H-modules X and Y, the following diagrams are commutative:

Homu (Y, X © E)“ " Homu (Y, X) (2.6)

‘I’Y,X,El i‘IJY,XJk

Homy(X* ®Y, E) —Z> Homy(X* @ Y, k),

Homp (Y ® X, E) —Z> Homy(Y ® X, %) (2.7)
@Y,X,E\L i‘by,x,k

Homg (Y, E © X Y% Homp (v, X*).

Proposition 2.1.10 Let X be an indecomposable H-module. The following are equiv-

alent:
(1) ktX*®X

(2) The map Homy(X* ® X, E) 2% Homp(X* ® X, k) is surjective.

(3) The map Homy (X, X ® F) lidx&)., Homy (X, X) is surjective.

(4) The map X @ E X8 X s a split epimorphism.

O'®ldX*
oy

(5) The map E ® X* X* is a split epimorphism.

Proof.(1) < (2). If k{ X*® X, then for any o € Hompy (X* ® X, k), the map « is not
a split epimorphism. Since ¢ is right almost split from E to k, there is a map § from
X*® X to F such that 0 o 8 = «. This implies that o, is surjective. Conversely, if the
map o, is surjective, then k f X* ® X. Otherwise, by Theorem 2.1.7 (2), there is an
isomorphism # : X** — X such that Tri(#) = idy. For the map evy : X* @ X — k,
there is some § € Hompy (X*®X, F) such that 0o = evy since the map o, is surjective.
It follows that idy = Tr&(0) = evx o (idx- ® 0) o coevy- = g 0 o (idx+ ® 0) o coevy-.
We obtain that the map o is a split epimorphism, a contradiction to the fact that o is

right almost split.
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(2) & (3). According to the commutative diagram (2.6), we have the following

commutative diagram:

(idx ®0)+

Hompy (X, X ® E) Homp (X, X)
@X’X’Ei \L\I}X,X,]k

Hompy (X* ® X, F) —Z> Hompy(X* ® X, k).

It follows that o, is surjective if and only if (idy ® o), is surjective.

(3) & (4). If (idx ® o). is surjective, for the identity map idy, there is a map
a € Hompy (X, X ® E) such that (idx ® 0).(a) = idx, namely, (idx ® 0) oa = idx. It
follows that 1dx ®o is a split epimorphism. Conversely, if idx ®o is a split epimorphism,
there is @ € Homp (X, X® E) such that (idx ®0)oa = idx. For any f € Homp (X, X),
we have (idx ® o).(ao 5) = . It yields that the map (idx ® o), is surjective.

(2) < (5). Applying the commutative diagram (2.7), we have the following com-

mutative diagram:

Homy (X* ® X, F) —~ Homy (X* ® X, k)
q’X*,X,El Dx+ x k

Homy (X*, E ® X*2% Homy (X, X*).

Thus, o, is surjective if and only if (0 ® idx ), is surjective. If (o0 ®idy+), is surjective,
for the identity map idx~, there is @ € Hompy(X*, E ® X*) such that idx- = (0 ®
idx+)(a) = (6®idx+)oa. Thisimplies that c®idx~ is a split epimorphism. Conversely,
if 0 ® idy- is a split epimorphism, there is @ € Homy(X*, F ® X*) such that (o ®
idx+) oo =idx~. For any f € Homp(X*, X*), we obtain that (0 ® idx+).(avo ) = .
It follows that the map (o ® idx~ ), is surjective. U

Similarly, there are some equivalent conditions for k t X ® X*. However, we only

need the following characterization, which is useful in the study of the Green ring of
H.

Proposition 2.1.11 Let X be an indecomposable H-module. The following are equiv-

alent:
(1) kt X ®X*
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(2) The map F® X IBUX, X s a split epimorphism.

Proof.Let Y be indecomposable such that Y* = X (such a Y exists as the order of S?
is finite). Then kt X ® X* if and only if kt (Y*® Y)* if and only if k1 Y* ® Y. By
Proposition 2.1.10, this is precisely o ® idy+ is a split epimorphism, as desired. 0

Although we have characterized k 1 X* ® X and k t X ® X* respectively in the

previous two propositions, we still find the following characterizations of k | X* @ X

and k | X ® X* useful.

Proposition 2.1.12 Let X be an indecomposable H-module. The following are equiv-
alent:
(1) k| X*®X.

’idx@o‘

(2) The map X @ E —— X s right almost split.

Proof.If idx ® o is right almost split, it is not a split epimorphism. By Proposition
2.1.10, we have k | X* ® X. Conversely, if k | X* ® X, by Proposition 2.1.10, the
map idx ® o is not a split epimorphism. For any a € Homy (Y, X) which is not split
epimorphism, the map Wy, x (o) € Hompy (X* ® Y, k) is also not split epimorphism by
Proposition 2.1.5 (2). For the map Wy y (), there is a map § € Homy(X* ® Y, E)
such that
ooff= ‘IJY,X,Ik(Oé)

since o is right almost split. Note that ¥y ;(8) € Homy (Y, X ® E). We claim that
the map Uy 5(3) satisfies the relation (idx ® o) o Uy 5(8) = av, and hence idx ® o

is right almost split. In fact, the commutative diagram (2.6) states that
Uy xyo(idy ® o), =0, 0 Wy xp.
It follows that
Q= ‘Ij;/,lx,]k(a o) = (‘Ij;/,lx,]k °0.)(B)
= ((idx ® ), 0 Uy p)(B) = (idx ® 0) 0 Uyy ().

This completes the proof. O
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Similarly, we have the following result.

Proposition 2.1.13 Let X be an indecomposable H-module. The following are equiv-

alent:
(1) k| X®X*.

(2) The map F® X IBAX X s right almost split.

Proof.If the map o ® idy is right almost split, it is not a split epimorphism. By
Proposition 2.1.11, we obtain k | X ® X*. Conversely, if k | X ® X*, then X = X** by
Theorem 2.1.7 (1). To show that o ®idx is right almost split, we only need to show that
0 ® idx+ is right almost split. Note that k | X** @ X***. It follows from Proposition
2.1.11 that the map o ® idy+« is not a split epimorphism. For any a € Homg (Y, X**)
which is not a split epimorphism, by Proposition 2.1.5 (1), (IJ{,}X*’R((CM) € Homg (Y ®
X*, k) is also not a split epimorphism. We get a map 5 € Hompy (Y ® X*, F) such that

ogoff= (I)i_/,g(*,]k(a)

since the map o is right almost split. In the following, we shall verify that the map
Oy x- p(B) € Homp (Y, E @ X**) satisfies (0 ® idx«) o Py x+ () = «, and hence the
map o®1idx«« is right almost split. To this end, by replacing X with X* in commutative
diagram (2.7), we obtain that

@Y’X*’]k O O'* = (0‘ ® /idX**)* 9] ®Y,X*,E‘
Then
o= (I)Y,X*,]k(a © 6)
= (Pyx+x 0 0.)(0)

= ((0 @idx+). 0 Py x+ 5)(8)
= (0- ® ide) o @Y,X*,E(ﬁ)'

Remark 2.1.14 An indecomposable module satisfying one of the equivalent conditions

in Proposition 2.1.12 or in Proposition 2.1.13 1s called a splitting trace module, see

e.g., [26,85,75].
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§2.2 Bilinear forms on Green rings

As shown in [8], an approach to study the Green ring of a finite group is through
bilinear forms defined by dimensions of morphism spaces. In this section, we follow
the same approach and define similar bilinear forms on the Green ring r(H) of H. As
we shall see, these bilinear forms can be used to investigate some properties of r(H)
presented in the next section.

Let F'(H) be the free abelian group generated by isomorphism classes [X] of all H-
modules X. The group F(H) is in fact a ring with a multiplication given by the tensor
product [X][Y] = [X ® Y]. The Green ring (or the representation ring) r(H) of H is
defined to be the quotient ring of F'(H) modulo the relations [X & Y] = [X] + [Y], for
H-modules X, Y. The identity of the associative ring r(H) is represented by the trivial
module [k]. The set ind(H) consisting of isomorphism classes of all indecomposable
H-modules forms a Z-basis of r(H), see e.g., [13,19,39,43,65].

The Grothendieck ring Go(H) of H is the quotient ring of F'(H) modulo all short
exact sequences of H-modules, ie., [Y] = [X]+[Z]1f0 - X - Y - Z = 0
is exact. The Grothendieck ring Go(H) possesses a Z-basis given by isomorphism
classes of simple H-modules. Both r(H) and Go(H) are augmented Z-algebras with
the dimension augmentation. There is a natural ring epimorphism from r(H) to Go(H)
given by

p:r(H) — Go(H), [M]— > [M:V][V], (2.8)
\4

where [M : V] is the multiplicity of V' in the composition series of M and the sum
Z[v] runs over all non-isomorphic simple H-modules. If H is semisimple, the map ¢
is the identity map.

Let Z be an indecomposable H-module. If Z is non-projective, there is a unique
almost split sequence 0 - X — Y — Z — 0 ending at Z. We follow the notation
given in [4, Section 4, ChVI| and denote by dz the element [X] — [Y] + [Z] in r(H).
In case Z is projective, we define djz := [Z] — [radZ]. The following gives a weaker

condition for d;z) = [X] — [Y] + [Z] in r(H).

Proposition 2.2.1 Let Z be an indecomposable non-projective H-module. If 0 —

X =Y 3 Z = 0is a short exact sequence and the map o is only right almost split,
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we still have 6z = [X] — [Y] + [Z].

Proof.Since the sequence

0=-X—=Y 3270 (2.9)

is exact and the map « is right almost split, it follows from [4, Theorem 2.2, Chl] that
the middle term Y has a decomposition Y = Y] @ Y5 such that the restriction of «
to the summand Y], denoted «ly,, is right minimal, and the restriction of a to the

summand Y5 is zero. We obtain that |y, is both right minimal and right almost split.

a’|y1

By [4, Proposition 1.12, ChV], the sequence 0 — ker(aly,) = Y; —= Z — 0 is almost
split, where ¢ is the inclusion map. Thus, d;z] = [ker(aly;)] — [Y1] + [Z]. Meanwhile, it

is easy to see that the sequence

[ Ted @
0 ker(aly) @Y 2% vi @Y, & Z 50 (2.10)

is exact. Applying the short five lemma to the sequences (2.9) and (2.10), we obtain
that X = ker(a|y,) @ Y. In this case,

O1z) = [ker(aly,)] = [Vi] + [Z]
= [ker(aly,) @ Y3] — [V1 ® Yo] + [Z]
= [X] =Y+ 1],

as desired. 0

For any two H-modules X and Y, following [8,52, 72| we define
([X],[Y])1 := dimy Homg (X, Y).

Then, (—,—); extends to a Z-bilinear form on r(H). The following results can be
found from Proposition 4.1, Theorem 4.3 and Theorem 4.4 in [4, ChVI], so we omit

their proofs.

Lemma 2.2.2 The following hold in r(H):

(1) For any two indecomposable modules X and Z, ([X], 6171)1 = d[x],1z], where dix),(7]
18 equal to 1 if X = Z, and 0 otherwise.
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(2) For any x € r(H), x = 3 yneinacn (@ )1 [M].
(3) The set {0 | [M] € ind(H)} is linearly independent in r(H).

(4) H is of finite representation type if and only if {dpg | [M] € ind(H)} forms a
Z-basis of r(H).

(5) H s of finite representation type if and only if {dja | [M] € ind(H) and M not
projective} forms a Z-basis of ker ¢, where ¢ is the map given in (2.8).

Remark 2.2.3 [t follows from Lemma 2.2.2 (2) that the form (—, —); is non-degenerate
in the sense that given 0 # x € r(H), there is y € r(H) such that (z,y); # 0. If H is
of finite representation type, it can be seen from Lemma 2.2.2 that the set {[M], 0 |
(M| € ind(H)} forms a pair of dual bases of r(H) with respect to the form (—, —)1. In

this case, any x in r(H) can be written as follows: © =3¢ imacm ((M], £)10[01).

We use the non-degeneracy of the form (—, —); to give an equivalent condition for

H to be of finite representation type.

Proposition 2.2.4 A finite dimensional Hopf algebra H is of finite representation
type if and only if for any indecomposable module X, there are only finitely many
indecomposable modules M such that Homg (M, X) # 0.

Proof.For any indecomposable module X, if there are only finitely many indecompos-
able modules M such that Homp (M, X) # 0, then > 214y dimy Homp (M, X)dpar

is a finite sum. We have the following:

([M),[X]— Y dimy Hompy (M, X)6anh
[M]€ind(H)

— ([M],[X])1 — dimy Homy (M, X) = 0.

This implies that [X] = > e dimi Homy (M, X)d[a) by the non-degeneracy of
the form (—, —);. Thus, {0 | [M] € ind(H)} is a basis of 7(H), and hence H is of

Y

finite representation type by Lemma 2.2.2 (4). O
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Let P(X,Y) be the space of morphisms from X to Y which factor through a
projective module. By a similar way to [8], we define another bilinear form on r(H) as
follows:

((X], [Y])2 := dimi P(X,Y).

Let * denote the duality operator of r(H) induced by the duality functor: [X]* =
[X*]. Then * is an anti-automorphism of 7(H). Obviously, if S? of H is inner, then * is

an involution [46]. The forms (—, —); and (—, —)2 both have the following properties.

Proposition 2.2.5 Let X, Y and Z be H-modules.
(1) (X]IY] 2] = ([X], [2)Y])r and ([X], [Y][Z])1 = ([Y]'[X], [Z])1.

(2) ([(X]IY], [Z2])2 = ([X], [Z][Y]")2 and ([X], [Y][Z])2 = (Y]'[X], [Z])2.

Proof.(1) 1t follows from Lemma 2.1.4.

(2) If @ € Hompy (X ®Y, Z) factors through a projective module P, then ®x v z(«)
factors through the projective module P®Y™* by Lemma 2.1.4 (1). Thus, ®xy z(P(X®
Y,Z)) CP(X,Z®Y*). Conversely, for any 5 € P(X,Z ® Y*) which factors through
a projective module P, by Lemma 2.1.4 (1), the map CID}}KZ(ﬂ) factors through the
projective module P ® Y. We obtain that ®xyz(P(X ® Y,Z)) = P(X,Z @ Y*).
Similarly, Uxy z(P(X,Y ® Z)) = P(Y*® X, Z). We are done. O

Let 2 and Q7! denote the syzygy functor and cosyzygy functor of H-mod respec-
tively. Namely, QM is the kernel of the projective cover Py; — M, and Q~'M is the
cokernel of the injective envelope M — I,;. Denote by 5[*M] the image of dj5;) under
the duality operator * of r(H ). The following is a generalization of [8, Proposition 2.1]
to the case of the Green ring r(H). We omit the proof since it is similar to the proof

of [8, Proposition 2.1].

Lemma 2.2.6 Let M be an indecomposable H-module and Py the projective cover of

the trivial module k. The following hold in r(H):

(1) (Lu] = [ M]D)opy = O (1] — Q7' M]) = [M] and ([Pu] — [QM])0),; =
Op ([Pu] = [QM]) = [M]. Moreover, 0(p,)0[p, = 0/p, 0p] = 1.
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(2) (M6 = 8 [M] = [Pa ~[2M] and (M]6fy = 5 [M] = (L]~ [0 M). Thus
dip,) and dfp | are both central units of r(H).

The following explores a relation between the forms (—, —); and (—, —)2. We refer

to [8, Corollary 2.3] for a similar result for the Green ring of a finite group.

Proposition 2.2.7 Let X and Y be two H-modules.

(1) ([X],[Y])2 is equal to the multiplicity of Py in the direct sum decomposition of
Y*® X.

(2) (X1, [Y ]2 = ([X], [Y]orp)1 = ([X16p,, [Y D1

(3) ((X], YD = (X101, V)2 = (IXT, [Y]0p, )2

Proof.(1) For any non-zero morphism a € P(Y* ® X, k), if o factors through an
indecomposable projective module P, then a« = [ oy for some § : P — k and 7 :
Y*® X — P. Since (3 is surjective, P is the projective cover of k and hence P = P.
Note that rad Py is the unique maximal submodule of Py. The image of the morphism
v is either contained in rad Py or equal to P,. For the former case, « = oy =0, a
contradiction. Thus, the morphism + is surjective, and hence Py is a direct summand
of Y* ® X. Now, if « factors through a projective module P and P = P, P, for some
indecomposable projective modules P;. Then ow = ), 5; 0 ; for some §; : P, — k and
v Y*® X — P;. We have proved that ;0+; # 0 if and only if P; = Py. It follows that
dimy P(Y* ® X, k) is equal to the multiplicity of Py in the direct sum decomposition
of Y*® X, while dimy P(Y*® X, k) is equal to dimy P(X,Y’) by Proposition 2.2.5 (2),
as desired.

(2) Tt follows from Part (1) that ([X],[Y])2 = ([Y]*[X],dp,)1- By Proposition
2.2.5, we have

(YT [XT, o)1 = ([X], [Y10(pg)1 = ([X]6[p,101p, [Y 0[P )1
= ([X]0{p» [Y10[p0[p 01 = ([X]0{p, [Y]1-

(3) It follows from Part (2) and the fact that djp,)0fp | = 0/p0p) = 1. O
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Corollary 2.2.8 Let X be an indecomposable H-module and V' a simple H-module.
Then ([X], [V])2 = d(x1,py)-

Proof.1t follows from Proposition 2.2.7 that ([X], [V])s = ([X], [V]0(p,))1. By Lemma
2.2.6, ([X], [V]op)1 = ((X], [Pv])1 — ([X], [2V])1, which is equal to 1 if X = Py, and
0 otherwise. 0

Remark 2.2.9 Let H be of finite representation type. It follows from Proposition 2.2.7
(5) that the set {[M]0(p,), 0jar) | [M] € ind(H)} or {[M], 6an6fp, | [M] € ind(H)} forms
a pair of dual bases of r(H) with respect to the form (—,—)y. Hence the form (—, —)s

is the same as (—, —)1 up to a unit. Namely, (—, —)1 = (=0p,], —)2 = (—, _6FP]1(]>2'

For any two H-modules X and Y, we define

It follows from Proposition 2.2.7 that
((X], [YD)s = ((X], [Y](1 = 0p))1 = ([X](1 = &fp)s [Y]1-
Moreover, we have the following result.
Proposition 2.2.10 Let X and Y be two H-modules.
(1) If X is projective, then ([ X],[Y])s = 0.
(2) If X is indecomposable and non-projective, then

(IX] Y D)s = (XL YD+ (7' XL YD = DI VI{IQTX, V],
vl

where the sum Z[v] runs over all non-isomorphic simple H-modules and [Y : V]
is the multiplicity of V' in the composition series of Y. In particular, ([ X],[Y])s =
((X],[YD)1 if Y is simple.

Proof.(1) It follows from the fact that P(X,Y) = Homg(X,Y) if X is projective.
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(2) For any simple H-module V', on the one hand, ([X],[V])s = 0 by Corollary
2.2.8. On the other hand, ([X],[V])2 = ([X]d/p |, [V])1, which is equal to ([Ix] —

[Px]

[Q71X],[V])1 by Lemma 2.2.6. Tt follows that {[Ix], [V]); = ({271 X],[V])1. Now

(X1 [¥Ds = (IX](X = 0p), Y1
= ([X], D1 + Q7 X], Y]y — ([x], [Y ]
= (XL YD1+ (7 X, Y] = DY VI V)

as desired. 0

The left radical of the form (—, —)3 is the set {x € r(H) | (x,y)s =0 forall y €
r(H)}. This set is exactly the set {z € r(H) | 2(1 — §p,) = 0}. Similarly, the right
radical of the form (—,—)s is exactly the set {x € r(H) | (1 — djp,)) = 0}. The
left and right radicals of the form coincide since 0(p,10(p, | = 0{p,10[p) = 1. Note that
[P](1 = dip,)) = 0 for any projective module P. Thus, the projective ideal P of r(H)
generated by isomorphism classes of projective H-modules is contained in the radical
of the form. For further results about the radical of the form, we need the following

lemma.
Lemma 2.2.11 Let M and Z be two indecomposable H-modules.

(1) ([M],dz1)3 = djan 121 + Ojo-1011,12) — O(rasl 2]

—do-1:m191p,), M is not projective;
(2) o =
[topM]0[p,), M is projective.

Proof.(1) Note that ([M],d(z))s = ([M](1 — d{p,)), d(z))1- It follows that

([M](1 = &fp,), d1z)1 = ([M], 011 — ([Tar] = [ M, Sz
= ([M], 81201 + ([ M, 62901 — ([Taa), Oz

= O[m),1z] + O[o-1M],12) — Ol],12]-
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(2) Suppose M is not projective. For any indecomposable module X, we have

([X], 5[M] + (5[971M](5[pk]>1 = ([X], 5[M]>1 + <[X}5E}3]k], 5[9*1M]>1 by Proposition 2.2.7(2)
= ([X], 01 + ([Ix] — Q7' X], djg-1an)1
= Orx],(m] — Ojo-1x],[0-10m] + O[1x) [0-1M)

=0.

Thus, éjp = —dj0-1:10[p,) since the form (—, —); is non-degenerate. Now suppose M

is projective, for any indecomposable module X, we have

([XT, 0a0) — [topM]0p )1 = ([X], dpam)r — ([XT, [topM]0p )1
[XT, 0am)1 — ([X], [topM]),

(
(
5[X],[M] - 5[X},[M] by Corollary 2.2.8
0.

Thus, 5[M] = [tOpM](s[p]k]. O

Recall that an H-module M is called periodic of period n if Q"M = M for a

minimal natural number n (see e.g., [12]).

Theorem 2.2.12 Let H be of finite representation type. The radical of the form

(—,—)3 is equal to P if and only if there are no periodic modules of even period.

Proof.Note that the projective ideal P of r(H) is contained in the radical of the form
(—, —)s. If P is properly contained in the radical of the form (—, —)3, there exist some
indecomposable non-projective H-modules M such that >, Apg[M] is a non-zero
element in the radical of the form. For any indecomposable non-projective module Z,
by Lemma 2.2.11 (1), we have 0 = (3, Ann[M]. 0j0iz))s = Ajaiz) + Ajai+1z), for any
1 > 0. It follows that

Aiz] = (—=1)'A(z), for any i > 0.

This forces Ajz) = 0 if Z is a periodic module of odd period. However, 3, Anr[M] is
not zero, implying that there exists a periodic module M of even period with Ay # 0.

Conversely, suppose the radical of the form (—, —)3 is equal to P. We claim that
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the H-module category has no periodic modules of even period. Otherwise, if M is a
periodic module of even period 2s. It follows from Lemma 2.2.11 (2) that

2s 2s

> (1)1 = 0fpy) = > _(=1)(Sigian + Sji-1an) = 0.

i=1 i=1
Thus, 2281(—1)i5[QiM1 belongs to the radical of the form (—, —)3. Let S22, (=1)"0iqing =
>_; Aj[Pj] for some indecomposable projective modules P;. By Remark 2.2.3, [P can
be written as [Pj] = >~ cmacm (M1, [Pi])10(a. 1t follows that

2s

> (=1)'dain Z Y MM P8

i=1 i [M]eind(H)

Comparing the coefficient of djgip; in both two sides of the above equality, we obtain

that
(—1)" =) A dimy Hompy (M, P) = > \; dimy Ext, (M, P;) =0,
J J

a contradiction. O

82.3 Some ring theoretic properties of Green rings

In this section, we use an associative non-degenerate bilinear form to explore some
ring theoretic properties of the Green ring r(H) of H. We show that the Green ring
r(H) is a Frobenius algebra over Z if H is of finite representation type. We describe
the relation between the Green ring r(H) and the Grothendieck ring Go(H) of H. We
give several one-sided ideals of r(H ), which are useful to describe the Jacobson radical
and central primitive idempotents of r(H).

Note that the Z-bilinear form (—, —); is not associative in general. However, we

may modify it as follows:

(XL, [V]) = {[X], [Y]") = dimg, Hom (X, V™). 2.11)
Then (—, —) extends to a Z-bilinear form on r(H).
Lemma 2.3.1 For H-modules X,Y and Z, the form (—,—) satisfies the following:
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(2) ([X],[Y]) = ([Y]™,[X]). If S* (the square of antipode) is inner, then ([X],[Y]) =

Proof.(1) The associativity of the form follows from Lemma 2.1.4 (1), i.e.,
([X][Y], [2]) = dimx Homp (X ® Y, Z7)
= dimy Hompy (X, (Y ® Z)")
= ([X], [Y][2)).
(2) The k-linear isomorphism Hompg(X,Y™*) = Hompg(Y**, X*) following from

Lemma 2.1.4 (see also [46]) implies that ([X],[Y]) = ([Y]*™,[X]). If S? is inner, the
anti-automorphism * of r(H) is an involution. In this case, ([X], [Y]) = ([Y],[X]). O

The following result can be deduced directly from Lemma 2.2.2.

Lemma 2.3.2 The following hold in r(H):

(1) For any two indecomposable modules X and Z, (0, [X]) = 0(z),1x]-

(2) For any x € r(H), x = 3 yneinacn (O @) [M].
(3) The form (—,—) is non-degenerate.

As an immediate consequence we obtain the following Frobenius property of r(H ).

Proposition 2.3.3 Let H be of finite representation type. The Green ring r(H) is a

Frobenius Z-algebra. Moreover, r(H) is a symmetric Z-algebra if S* is inner.

Proof.Note that r(H)" := Homg(r(H),Z) is a (r(H),r(H))-bimodule via (afb)(x) =
f(bza), for a,b,x € r(H) and f € r(H)". Since H is of finite representation type, the
form (—,—) is associative and non-degenerate with a pair of dual bases {4}, [M] |
[M] € ind(H)}. Thus, the map p from r(H) to r(H)" given by x — (—,z) is a left
r(H)-module isomorphism, and hence r(H) is a Frobenius Z-algebra. Moreover, if
the square of the antipode is inner, the bilinear form is symmetric and hence p is a

(r(H),r(H))-bimodule isomorphism. It follows that r(H) is a symmetric Z-algebra. O
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Remark 2.3.4 Let H be of finite representation type.

(1)

The Green ring r(H) is a Frobenius Z-algebra with a pair of dual bases {0}y, [M] |
[M] € ind(H)} with respect to the form (—,—). The equality of Lemma 2.3.2 (2)

1s now equivalent to the following equality:
xr = Z (z, [M])o(pyy, for x € r(H).
[M]€ind(H)

This means that the transformation matriz from the dual basis {o, | [M] €
ind(H)} to the standard basis ind(H) is an invertible integer matriz with entries

([X],[Y]) = dimx Homy (X, Y™) for [X],[Y] € ind(H).

If H is semisimple, then S* is inner [41] and Oy = [M]" = [M*]. In this case,
r(H) = Go(H) is symmetric (see Proposition 2.53.3) and semiprime [46] with a
pair of dual bases {[M*],[M] | [M] € ind(H)}. We refer to [72] for more details

i the semisimple case.

The bilinear form (—, —) can be used to describe the relation between the Green

ring 7(H) and the Grothendieck ring Go(H) of H. Let P+ be the subgroup of 7(H)
which is orthogonal to P with respect to the form (—,—). Then Pt is a two-sided
ideal of r(H).

Proposition 2.3.5 The Grothendieck ring Go(H) is isomorphic to the quotient ring

r(H

)/ P+

Proof.Observe that the natural morphism ¢ given in (2.8) is surjective. It is sufficient

to show that ker ¢ = P+ . Suppose > mjeimacm) A [M] € ker o, where each Ay € Z.
Then

) AmM vV =o.

[V] [M]eind(H)

Note that a short exact sequence tensoring over k with a projective module P is split.

It follows that [M][P] = > ,[M : V][V][P] holds in r(H), and hence

(> AugMLIPD=( Y Apg[M][P)K])

[M]€ind(H) [M]eind(H)
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=0 > AunlM:VVIPL [K)

[V] [M]eind(H)

= 0.

This implies that 3 cinacr A [M] € P+, Now, we assume 3 ncinay A [M] €
PL. Note that [Ply € P for any y € r(H) and [P] € P. We have

(Y AulMIPLy = Y AuglML[Ply) =o.

[M]€ind(H) [M)€ind(H)
This implies that >,/ cinacm Apn[M][P] = 0 as the form (—, —) is non-degenerate.
Replacing [M][P] by >, [M : V][V][P], we obtain the following equality:

Yo D AwmM:VVIP]=o. (2.12)

[V] [M]eind(H)

Note that P is a Go(H)-module under the action given by [V][P] = [V ® P] € P.
Moreover, the Go(H )-module P is faithful, see [46, Section 3.1]. It follows from (2.12)

that > D nemacn A M 2 V][V] =0, namely, 3~ cinacm A [M] € ker . O

Now we turn to the special element dyi), which plays an important role in the study
of the Green ring r(H). For any indecomposable module X, the elements [X], oy and

d1x) satisfy the following relations.

Theorem 2.3.6 Let X be an indecomposable H-module.

(1) k1 X* ® X if and only if [X]dpg = 0.

(2) k1 X ® X* if and only if §j9[X] = 0.

(3) k| X*® X if and only if [X]opg = dx1.

(4) k| X ® X* if and only if 6pq[X] = dx1.

Proof.If H is semisimple, then k | X*® X and k | X ® X*. In this case, Part (3) and

Part (4) hold obviously because ¢ = [k] and 6jx; = [X]. Assume H is not semisimple,
we only show Part (1) and Part (3) and the proofs of Part (2) and Part (4) are similar.
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(1) If k¥ X*® X, by Proposition 2.1.10, the map idx ®o is a split epimorphism. It
follows from (2.5) that [X ® E] = [X ® 7(k)] 4 [X], and hence [X]d;g = 0. Conversely,
if [X]dpg = 0, then 0 = (([X]dp)*, [X]) = (Jp, [X]*[X]). This means that k{ X* @ X.

(3) If k | X*®X, then the map idx®o is right almost split by Proposition 2.1.12. It
follows from (2.5) and Proposition 2.2.1 that d;x] = [X @7 (k)] = [X ® E]+ [ X] = [X]dy.
Conversely, if [X]dj = d(xj, then 1 = (d/x, [X]) = (([X]op)*, [X]) = (g, [X][X]). 1t
follows that k | X* ® X. O

As an application of Theorem 2.3.6, we are able to determine the multiplicity of
the trivial module k in the decomposition of the tensor product X ® X* and X* ® X
respectively. For the case where H is semisimple over the field k of characteristic 0,

this was done by Zhu [75, Lemma 1], see also [72, Proposition 2.1].

Corollary 2.3.7 Let X be an indecomposable H-module.
(1) The multiplicity of k in X* @ X is either 0 or 1.
(2) The multiplicity of k in X @ X* is either 0 or 1.

Proof.(1) We only prove Part (1), the proof of Part (2) is similar. Note that the
multiplicity of k in X* ® X is (dj, [X*][X]). By Theorem 2.3.6, we have

0, k{X*®X,
(07 [XTIXT) = (([X]0pg)", [X]) =
1, k| X*®X,

as desired. O

The following result can be deduced from Theorem 2.3.6.

Proposition 2.3.8 Let 0 - X — Y — Z — 0 be an almost split sequence of H -

modules.
(1) k| Z® Z* if and only if k | X @ X*.
(2) k| Z*® Z if and only if k | X* ® X.
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Proof.Applying the duality functor * to the almost split sequence 0 — X — Y —
Z — 0, we get the almost split sequence 0 — Z* — Y* — X* — 0, see [4, P144]. Note
that both Z and X* are indecomposable, see [4, Proposition 1.14, ChV]. This implies
that 6["2] = [x+-

(1) If k | Z® Z*, by Theorem 2.3.6, we have 0p[Z] = 0z). We claim that
k | X ®X*. Otherwise, k{ X ® X*, and hence k t X**® X*. This leads to [X*]dy) =0
by Theorem 2.3.6. However,

L= (0, [X7]) = (012, [X7]) = ([X7), d1z1) = ([(X7]0p, [2]) = 0,

a contradiction. Conversely, if k | X ® X*, then k | X* ® X*. This yields that
[X*]6pg = d1x+). We claim that k | Z ® Z*. Otherwise, dp[Z] = 0 by Theorem 2.3.6.
Then

1= (87, 12)) = (e, [2]) = (1X7), 6912) = 0,

a contradiction.
(2) Applying Part (1) to the almost split sequence 0 — Z* — Y* — X* — 0, we

may obtain the desired result. U

Denote by J, and J_ the subgroups of r(H) respectively as follows:
Ty = Z{0pn | [M] € ind(H) and k | M @ M"},

J- = Z{op | [M] € ind(H) and k | M* ® M}.

By Theorem 2.3.6, J (resp. J-) is a right (resp. left) ideal of r(H) generated by .
Moreover, we have J} = J_ and J* = J, by Proposition 2.3.8.
Now let P, and P_ denote the subgroups of r(H) as follows:

P, :=Z{[M] € ind(H) | kt M @ M*},

P_ = Z{[M] € ind(H) | kt M* ® M}.

Then P, and P_ both contain the ideal P of r(H). It follows from Proposition 2.1.8
that P, is a right ideal of r(H) and P_ is a left ideal of r(H). Obviously, P} = P-
and P* =P,.
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According to the associativity and non-degeneracy of the form (—,—), we have
P_x =0 if and only if (P_,z) = 0 if and only if (x, P_) = 0 since P_ = P**. Similarly,
2Py = 0if and only if (z, P, ) = 0 if and only if (P,,z) = 0. Thus, the right annihilator
r(P-) of P_ and left annihilator I(P;) of P can be expressed respectively as follows:

r(P-):={zer(H)| (z,y)=0forall y € P_},
(Py):={zer(H)|(y,x) =0 for all y € P, }.
The relations between these one-sided ideals of r(H) can be described as follows.

Proposition 2.3.9 Let H be of finite representation type.
(1) Jo = r(P.).

(2) T =1(P,).

Proof.1t is sufficient to prove Part (1) and the proof of Part (2) is similar. For any two
indecomposable modules X and Y satisfying k | X ® X* and k1 Y*® Y, by Theorem
2.3.6, we have

(Orx), YT) = (Opg [XT, [Y]) = (Y™ ]opq, [X]) = (0, [X]) = 0.
This implies that J, C r(P_). For any = € r(P-),

xr = Z (z, [M])d[y by Remark 2.3.4(1)
[M]€ind(H)

= Z (z, [M])d}y as x € r(P-).

k|M*@M
We have that z € J* = J,, and hence r(P_) C J,. O

In the following, we shall use these one-sided ideals to get information about the
Jacobson radical and central primitive idempotents of r(H). We first need the following

lemma.
Lemma 2.3.10 For any x € r(H), we have the following:
(1) If za* =0, then x € Py.
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(2) If a*x =0, then x € P_.

Proof.1t suffices to prove Part (1), the proof of Part (2) is similar. Suppose

T = Z )\[M][M]+ Z )\[M][M]a

k| M®M* KM @M*

where each Ajy € Z. By Theorem 2.1.7 (1) and Corollary 2.3.7, the coefficient of
the identity [k| in the linear expression of xz* with respect to the basis ind(H) is
Zlk\ MM /\[QM]. Thus, if zz* = 0, then A = 0 for any indecomposable module M
satisfying k | M @ M*. Hence © = 11 60+ A [M] € Ps. O

Proposition 2.3.11 Let H be of finite representation type. If the Green ring r(H) is
commutative, then the Jacobson radical J(r(H)) of r(H) is contained in Py NP-_.

Proof.Since r(H) is commutative and finitely generated as an algebra over Z, the
Jacobson radical J(r(H)) is equal to the nilradical of r(H). For any x € J(r(H)), let
xo = x and z;1; = x;x] for ¢ > 0. Then there exists some k such that z;, = 0. We

write

r= Y M+ D Aag[M]

k| M®M* KtM®M*

and
vo=axt = Y ppn[Ml+ D ppanM],

k|M@M* KM@M*
for all Ajpy and pppg in Z. As shown in the proof of Lemma 2.3.10, the coefficient
of [k] in @1 = xa* is ppg = 2oy en- Moy and the coefficient of [k] in zp = 7127 is
ZE{‘M@)M* :“[21\/1}' If ppg # 0, then Y 5 50 u[ZM] # 0, and hence x5 # 0. Repeating
this process, we obtain that z; # 0 for any ¢ > 0. This contradicts to the fact that
z, = 0. In view of this, ppg = 0, and hence z = 37,100+ A [M] € P Similarly, if
x € J(r(H)), then « € P_. We obtain that J(r(H)) C P, NP_. O

Now we are able to locate central primitive idempotents of r(H).

Proposition 2.3.12 Let e be a central primitive idempotent of r(H). Then either
ecP,NP_orl—eecP.NP_.
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Proof.1f e is a central primitive idempotent of r(H), so is e* since the duality operator
% is an anti-automorphism of r(H). It follows that e = e* or ee* = e*e = 0. If
ee* = e*e =0, by Lemma 2.3.10, e € P, and e € P_ as well. Now suppose e = e*, and

let

e= Y AwmM+ Y ApgMl.

K MoM* KM @M*
Comparing the coefficients of [k] in both sides of the equation ee* = e, we obtain that
D kMM )\fM] = Apg. This implies that Apg = 0 or 1 and Ay = 0 for all [M] satisfying
[M] # [k] and k | M ® M*. Hence e has the following reduced form

e=Awlkl+ D AugylM].
KM@ M*
In the meanwhile, if we write
€= Z fpan [M] + Z [ M.
k|M* @M KM* @M
Then the equation e*e = e yields that
e=pwlk+ D panM].
KM+ @M

Thus, ppg = Apg which is equal to 0 or 1. We conclude that e € P, NP_ if ppg =
/\[]k]zo, andl—e€P+ﬂ73_ if,u[]k]:/\[]k]zl. L]
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Chapter 3 The stable Green rings of Hopf

algebras

In [68,69] we studied the Green rings of finite dimensional pointed rank one Hopf
algebras of both nilpotent and non-nilpotent type respectively. One of the interesting
properties possessed by those Green rings is that the complexified stable Green alge-
bras are group-like algebras, and consequently bi-Frobenius algebras, introduced and
investigated by Doi and Takeuchi (cf. [20-23]). The notion of a bi-Frobenius algebra
is a natural generalization of a finite dimensional Hopf algebra, and possesses many
properties that a finite dimensional Hopf algebra does. However, to find more examples
of bi-Frobenius algebras, which are not Hopf algebras, is not easy at all.

As we shall see the stable Green rings of finite dimensional Hopf algebras may
provide interesting examples of group-like algebras and bi-Frobenius algebras in certain
circumstances. Moreover, these bi-Frobenius algebras are themselves transitive fusion
rings coming from (not necessary semisimple) stable categories. To do so, our principal
technical tools are the bilinear forms on the Green rings introduced in previous chapter,
see also [8,52,72]. More explicitly, we shall show that the bilinear form (—, —) on the
Green ring r(H) described in previous chapter could induce a bilinear form on the
stable Green ring of H. The induced form on the stable Green ring is associative, but
degenerate in general. We give some equivalent conditions for the non-degeneracy of the
form. If the form is non-degenerate, the complexified stable Green algebra is a group-
like algebra, and hence a bi-Frobenius algebra. Especially, we consider a special finite
dimensional pointed Hopf algebra of rank one, known as a Radford Hopf algebra. We
describe the bi-Frobenius algebra structure on the complexified stable Green algebra

of the Radford Hopf algebra from the polynomial point of view.

83.1 The stable Green rings

In this section, we use a bilinear form to study the stable Green ring of H. The

Green ring of the stable category H-mod of H is called the stable Green ring of H,
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denoted ry(H). As the stable category H-mod is a quotient category of H-mod, the
stable Green ring ry(H) is indeed a quotient ring of the Green ring r(H), namely,
rst(H) = r(H)/P as shown below. This isomorphism enables us to define a new form
[—, —]st on 7 (H) which is induced from the form (—,—) on r(H). The form [—, —] is
associative but degenerate in general. We determine the left and right radicals of the
form [—, —|s respectively, and give several equivalent conditions for the non-degeneracy
of the form. Under the assumption that H is of finite representation type, the Green
ring r(H) is commutative and the form [—, —]y is non-degenerate, we show that the
Jacobson radical of r(H) is equal to PNPL if and only if the Grothendieck ring Go(H)
is semiprime.

Recall that the stable category H-mod has the same objects as H-mod does, and

the space of morphisms from X to Y in H-mod is the quotient space
Hom,(X,Y) := Homy(X,Y)/P(X,Y),

where P(X,Y) is the subspace of Hompg(X,Y) consisting of morphisms factoring
through projective modules. The stable category H-mod is a triangulated [37] monoidal

category with the monoidal structure stemming from that of H-mod.

Proposition 3.1.1 The stable category H-mod is semisimple if and only if any inde-

composable H-module is either simple or projective.

Proof.If any indecomposable H-module is either simple or projective, using the same
method as [2, Theorem 2.7], one is able to prove that H-mod is semisimple. Conversely,
suppose that H-mod is semisimple. Note that all simple objects of H-mod are those
non-projective indecomposable H-modules. If H-mod has an indecomposable object
M which is neither simple nor projective, then the indecomposable H-modules M and
SocM are two simple objects in H-mod. Since the inclusion map SocM — M induces

a surjective map M* — (SocM)*, it follows from Proposition 2.2.10 (2) that
dimy Hom  (M™, (SocM)*) = (M*, (SocM)*)3 = (M*, (SocM)*); # 0.

This means that M* = (SocM)* in H-mod, so is an isomorphism in H-mod [62, Ch

IIT,Lemma 4.3], a contradiction. O
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The Green ring of the stable category H-mod is called the stable Green ring of H,
denoted 74 (H). Obviously, the stable Green ring ry(H) admits a Z-basis consisting
of all isomorphism classes of indecomposable non-projective H-modules. As the stable
category H-mod is a quotient category of H-mod, the stale Green ring r(H) can be

regarded as the quotient ring of the Green ring r(H).

Proposition 3.1.2 The stable Green ring ry(H) is isomorphic to the quotient Ting

r(H)/P.

Proof.The canonical functor F' from H-mod to H-mod given by F(M) = M and
F(¢) = ¢, for ¢ € Hompy (M, N) with the canonical image ¢ € Hom(M, N), is a full
dense tensor functor. Such a functor induces a ring epimorphism f from r(H) to rg(H)
such that f(?) = 0. Hence there is a unique ring epimorphism f from r(H)/P to 74 (H)
such that f(Z) = f(x), for any x € r(H) with the canonical image = € r(H)/P. For
any two H-modules M and N without nonzero projective direct summands, it follows
from [62, Ch III,Lemma 4.3] that M = N in H-mod if and only if M = N in H-mod.
From this we conclude that rg(H) is isomorphic to r(H) /P, since there is a one to one
correspondence between the indecomposable objects in H-mod and the non-projective

indecomposable objects in H-mod. 0
We identify r(H)/P with ry(H) and denote T the element in ry(H) for any
x € r(H). Since (47, z) = 0 for any z € P, the linear functional (J;, —) on r(H)

induces a linear functional on r4(H). Using this functional, we define a form on ry(H)

as follows:
@, Ylst == (0, 2y), for z,y € r(H). (3.1)

It is obvious that the form [—, —|4 is associative and *-symmetric: [Z,7]s = [7*, T s

The left radical of the form [—, —|4 is the subgroup of ry(H) consisting of T €
rst(H) such that [Z,7]s = 0 for all § € ry(H). The right radical of the form [—, —|4 is
defined similarly. The form [—, —|4 is non-degenerate if and only if the left radical (or
equivalently, the right radical) of the form [—, —] is zero.
Proposition 3.1.3 The left radical of the form [—, —|s is equal to Py /P and the right
radical of the form [—, —|s is equal to P_/P.
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Proof.We only consider the left radical of the form [—, —]y. For x,y € r(H), if x € Py,
then zy € Py since P, is a right ideal of r(H). It follows that [z,7]s = (J, zy) =0,
and hence T belongs to the left radical of the form [—, —]. Conversely, we suppose
that T belongs to the left radical of the form [—, =]y for @ = 7, cinacm An[M]. The
inverse of * under the composition is denoted *. For any [M] € ind(H), by Theorem

2.3.6, we have

el * * Jokk Ok * 07 Ik T M ® M*7
0= [z, [M]]s = (0, 2[M]") = ([M]™ o1, 2) = (0 [M])", @) =
/\[M}, k | M M*.
This implies that @ = 31,00 Apn[M] € P O
Now let J be the subgroup of r(H) as follows:
J = Z{op | [M] € ind(H) and M not projective}.

Then J, and J_ are both contained in J. If H is of finite representation type, then
J is nothing but ker ¢ (= P1) by Lemma 2.2.2 (5). We are now ready to characterize

the non-degeneracy of the form [—, —] using Proposition 3.1.3.

Proposition 3.1.4 The following statements are equivalent:
(1) The form [—, —]s is non-degenerate.

(2) Py =P_=P.

3) I =J-=J.

4) J is an ideal of r(H) generated by the central element ong, the left annihilator [(J
(K]
and right annihilator r(J) of J are both equal to P.

Proof.1t can be seen from Proposition 3.1.3 that Part (1) and Part (2) are equivalent.
The equality P, = P is equivalent to saying that k 1 M ® M* if and only if M is
projective, or equivalently, k | M @ M* if and only if M is not projective, this is
precisely J, = J. Similarly, P_ =P if and only if J_ = 7.

(1) = (4) If the form [—, —|4 is non-degenerate, then J, = J- = J. It follows
from Theorem 2.3.6 that dpy is a central element of r(H) and J is an ideal of r(H)
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generated by dpj. Observe that J, = J_ = J implying that J* = J* = J, = J.
This deduces that the left and right annihilators of J coincide: [(J) = r(J). Let
I:=1J)=r(J). We claim that I = P. The inclusion P C I is obvious. We denote
Te ={T €rq(H) | [T,1]a =0} and T ={z € r(H) | T € Ts}. Then I C T since
Jz =0 if and only if (J,z) = 0. Now [ is an ideal of r(H) satisfying P C I C T. So
I/P is an ideal of r4(H) contained in T/P = Ty. However, Ty contains no nonzero
ideals of ry(H) since the form [—, —|4 is non-degenerate. This implies that I = P.
(4) = (1) If [5,Z]s = 0 for any y € r(H), then [z*,7*]¢ = 0 since the form is
#-symmetric. We have 0 = [Z*, 7]y = (35, 2"y") = ((xd9)", y") for any y € r(H).
Thus, 2dpg = 0, so € [(J) = P, and hence 7 = 0. Similarly, if [7, 7], = 0 for any
y €r(H), then T = 0. O

Remark 3.1.5 If the form [—,—|q is non-degenerate, then J, = J implies that k |
M ® M* for any indecomposable non-projective module M. It deduces that M = M™**

by Theorem 2.1.7 (1). In this case, the operator x on rg(H) is an involution.

Under certain assumptions we are able to obtain further information about the

Jacobson radical of 7(H) described as follows.

Theorem 3.1.6 Let H be of finite representation type such that the Green ring r(H)
is commutative and the form [—, —|s on rs(H) is non-degenerate. Then the Jacobson

radical J(r(H)) of r(H) is equal to P NP+ if and only if Go(H) is semiprime.

Proof1f J(r(H)) = PNPL, it is obvious that Go(H) is semiprime, since r(H)/P+ =
Go(H) and the Jacobson radical J(r(H)) is the nilradical of r(H). Conversely, the
non-degeneracy of the form [—, —|y on ry(H) shows that P, = P_ = P. This implies
that J(r(H)) C P by Proposition 2.3.11. If Go(H) is semiprime, then the isomorphism
Go(H) = r(H)/P* implies that J(r(H)) C P+, so we obtain that J(r(H)) C PN PL.
The inclusion P NP+ C J(r(H)) is obvious, since any element of P NP+ has square

zero which can be deduced from the non-degeneracy of the form (—, —). UJ

Remark 3.1.7 The map ¢ : v(H) — Go(H) given in (2.8) restricting to the ideal P
gives rise to the Cartan map ¢|lp : P — Go(H), whose kernel is exactly ker(p|p) =

41



PNkerp=PNP.

Example 3.1.8 If H is a finite dimensional pointed Hopf algebra of rank one (e.q.,
Taft algebras [14], generalized Taft algebras [44] and Radford Hopf algebras [69]), then
Go(H) is semiprime and the form [—,—|s on rg(H) is non-degenerate since Py =
P_ = P. It follows that J(r(H)) = P NP+ = ker(p|p), which is a principal ideal,
see [68,69] for details.

§3.2 Bi-Frobenius algebra structure

In this section, we always assume that H is a finite dimensional non-semisimple
Hopf algebra of finite representation type and the form [—, —]y on 7y (H) is non-
degenerate. In this case, we show that the complexified stable Green algebra Ry (H) :=
C ®z rs(H) admits a group-like algebra structure, hence it is a bi-Frobenius algebra.

Let {[X;] | ¢ € I} be the set of all non-projective indecomposable modules in
ind(H). By definition 0 € I since [Xj] := [k] is not projective. Note that X is not
projective if and only if X* is not projective. Thus, the duality functor * of H-mod
induces an involution (see Remark 3.1.5) on the index set I defined by [X;:] := [X/]

for any 7 € L.

Proposition 3.2.1 The stable Green ring r(H) is a transitive fusion ring with respect

to the basis {[X;] | i € T}.

Proof.1t is straightforward to verify that ry(H) satisfies the conditions of a fusion
ring given in [28, Definition 3.1.7], where the group homomorphism 7 from ry(H) to
Z is determined by 7(T) = ([, z) for any T € ry(H). The stable Green ring ry(H) is
transitive ( [28, Definition 3.3.1]): for any ¢, j € L, there exist k, [ € I such that [X;][X]
and [X][X;] contain [X,] with a nonzero coefficient. In fact, we have k | X; ® X
since P, = P_ = P. This implies that X; | X; ® X7 ® X;. Then we may find an
indecomposable non-projective module Xy in X7® X; such that X; | X;®X}. Similarly,

Xi | X; ® X7 ® Xj, then there exists some X; in X; ® X7 such that X; [ X; @ X;. O

42



Remark 3.2.2 The stable Green ring ro(H) is a fusion ring under the condition that
the form [—,—|q on rg(H) is non-degenerate. However, the stable category H-mod
is mot necessary semisimple by Proposition 3.1.1. A typical example is that the stable
category of any Taft algebra of dimension n* for n > 2 is not semisimple, while the

stable Green ring of the Taft algebra is a fusion ring.

The fact that r(H) is a transitive fusion ring enables us to define the Frobenius-

Perron dimension of [X;] for any i € I. Let FPdim([X;]) be the maximal nonnegative
eigenvalue of the matrix of the left multiplication by m with respect to the basis
{[Xi] | i € I} of ro(H). Then FPdim([X;]) is called the Frobenius-Perron dimension
of [X;]. Extending FPdim linearly from the basis {[X;] | i € I} of ry(H) to Ry (H),
we obtain a functional FPdim : Ry (H) — C. The functional FPdim has the following

properties, see Proposition 3.3.4, Proposition 3.3.6 and Proposition 3.3.9 in [28].

Proposition 3.2.3 For any ¢ € I, we have the following:

(1) FPdim([X]]) > 1.

(2) The functional FPdim : Ry(H) — C is a ring homomorphism.

(3) FPdim([X;)) = FPdim([X-)).

Let z; := FPdim([X;])[X;] for any ¢ € I. Then b = {z; | i € I} is a basis of
Ry (H).

Theorem 3.2.4 The quadruple (Ry(H), FPdim,b,x) is a group-like algebra.

Proof.We need to verify the conditions (G1)-(G3) given in Definition 1.1.7. The

condition (G1) is obvious. To verify the condition (G2), we have

z; = FPdim([X;])([X;])" = FPAim([X+])[Xi] = 4+ (3.2)
Now for 7,7 € I, we suppose that

TiT; = prjxk, (3.3)

kel
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where pfj € C. On the one hand, applying the duality operator * to the equality (3.3)
and using (3.2), we obtain that zj.x; = Y., plzs-. On the other hand, we have
TjeTie = D e pé»*i*xl. It follows that pfj = pf;* for any 7,7,k € 1. Now we verify the
condition (G3):

Therefore, the condition (G3) is satisfied. O

As noted in Remark 1.1.8, a group-like algebra is a bi-Frobenius algebra. Now
let us look at the bi-Frobenius algebra structure induced from the group-like algebra

structure on Ry (H). The integral ¢ is given by ¢(x;) = do;, for i € 1. Equivalently,

1, i=0,

¢([Xz]) =
0, 7#0.

The set {z;, #ﬁ;(w-) | i € I} forms a pair of dual bases of (R (H), ¢). This is equivalent
to saying that {[X;], [X]

i € I} is a pair of dual bases of R (H) with respect to the
integral ¢. From the observation above, we conclude that the integral ¢ is nothing but
the map determined by the form [—, —|s, namely, ¢(Z) = [T, 1]y for T € Ry (H).

The stable Green algebra Ry (H) is a coalgebra with the counit given by FPdim,
and the comultiplication A defined by A(z;) =

1

FPdim([X;])
fori el Let t =, = > .o FPdim([X;])[X;]. Then t is an integral of Ry (H)
associated to the counit FPdim. Now (Rs(H),t) becomes a Frobenius coalgebra.

Define a map S : Ry(H) — Ry (H) by S(x;) = @+, that is, S([X;]) = [X+] for i € L.

1 .
Fham(z) Li © Ti, O equivalently,

A([X3]) = [Xi] ® [Xi],

i€l

The map S is exactly the duality operator x on Ry (H). It is an anti-algebra and anti-
coalgebra morphism, so is an antipode of Ry (H). Now the quadruple (Ry(H), ¢,t,S)

forms a bi-Frobenius algebra which is in general not a Hopf algebra.
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§3.3 Applications to Radford Hopf algebras

In this section, we apply results obtained in previous section to the stable Green
ring of a Radford Hopf algebra. In this case, the bilinear form [—, —] is non-degenerate,
and hence the complexified stable Green algebra admits a bi-Frobenius algebra struc-
ture. We describe this structure in detail from the point of view of polynomials.

Given two integers m > 1 and n > 1. Let w be a primitive mn-th root of unity

and H an algebra generated by ¢ and y subject to relations

g =1 yg=w"gy, y* =g" - 1.

Then H is a Hopf algebra whose comultiplication A, counit e, and antipode S are

given respectively by
Aly)=y®g+1ey, cly) =0, S(y) = —yg ",

Ng)=g®g, e(g)=1, S(g) =g "

The Hopf algebra H is called a Radford Hopf algebra, which was introduced by Radford
[57] so as to give an example of Hopf algebra whose Jacobson radical is not a Hopf
ideal.

The Green ring and the stable Green ring of the Radford Hopf algebra H can be
presented by generators and relations. Let Z[Y, Z, X1, X, -+ , X;_1] be a polynomial
ring over Z in variables Y, Z, X1, Xo, -+, X;n_1. The Green ring r(H) of H is isomor-
phic to the quotient ring of Z[Y, Z, X1, Xs, -+, X;—1] modulo the ideal generated by
the elements from (3.4) to (3.6) (see [69, Theorem 8.2]):

Yr—1, 14+Y - 2)E(Y,Z), YX, — Xy, ZX, —2X4, (3.4)
X} —n/ 71X, for 1 <j<m—1, (3.5)
X" —n" 21 +Y + -+ Y HE(Y, Z), (3.6)

where F,(Y,Z) is a Dickson polynomial (of the second type) defined recursively by
Y, Z2) =1, F2(Y,Z) = Z and Fy(Y,Z) = ZF, 1 (Y, Z) = YF, (Y, Z) for k > 3.
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More precisely, the polynomial Fy(y, z) can be expressed as follows (see [14, Lemma

3.11]):
A - (s
=0 !

The Grothendieck ring G (H ) is isomorphic to the quotient of Z[Y, X1, Xo, - -+ |, X}, 1]
modulo the ideal generated by Y — 1,V X; — X1, X{ —n/~'X; for 1 <j <m —1 and
Xm—pm Y1 +Y + -+ Y"1 (see [69, Corollary 8.3]).

The stable Green ring ry(H) of H is isomorphic to the stable Green ring of a
Taft algebra of dimension n? (see [69, Section 7]), while the latter is isomorphic to the
quotient ring Z[Y, Z]/I, where [ is an ideal of Z[Y, Z] generated by Y™ —1 and F,,(Y, Z)
(see [68, Proposition 6.1]).

The form [—, —|s on r4(H) is non-degenerate (see Example 3.1.8). As shown in
previous section, there is a bi-Frobenius algebra structure on the complexified stable
Green algebra C @z ry(H) = C[Y, Z]/I. In the following, we shall describe the bi-
Frobenius algebra structure on C[Y, Z]/I using a new basis rather than the canonical
basis consisting of indecomposable non-projective H-modules. We need the following

inverse version of Dickson polynomials.

Lemma 3.3.1 [68, Lemma 6.4] For any j > 1, we have
(3]

: | j+1—2k
7 =3 | | Y R v 2)

— \k J+1—k

Denote by y‘2’ the image of Y*Z7 under the natural map C[Y, Z] — C[Y, Z]/I.
Then the set {y'27 |0 <i <n—1,0<j <n—2} forms a basis of C[Y, Z]/I. By
Lemma 3.3.1, the following equation holds in C[Y, Z]/I:

(4] AN
y'r =) g E .. TEF o ak(y, 2).

. Y
—~\k j+1—k

Thus, {y'F;j(y,2) | 0 <i<n—-1,1<j <n-—1}is a basis of C[Y,Z]/I. In the
following, we shall use this basis to describe the bi-Frobenius algebra structure on the

algebra C[Y, Z]/I. Following from [68, Remark 4.4 (3)] we have
min{j,l}—1

Y Ey 2y Fily.2) = ) v Faa(y,2), (3.7)
t:C(jrl)
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where ((j,1) =0if j+l—1<n,and ((j,))=j+l—nif j+1—-1>n.
Define the following two maps ¢ : C[Y, Z]/I — C by
. 7r
€(yle(y,z)) = Fj(172COS g)
and A : C[Y, Z)/I — C[Y, Z)/1 & C[Y, Z]/1 by
1

A(?JiFj(%Z)) = m
J ’ n

Y'Fi(y,2) @ y'Fi(y, 2).

Then both € and A are well-defined since F,(1,2cos T) = 0 (see [69, Theorem 7.3]).
Moreover, it is straightforward to check that (A ® id)A = (id® A)A and (id®@e)A =
id = (e ® id)A. Hence (C[Y, Z]/1, A, ¢) is a coalgebra.

Define the linear map ¢ : C[Y, Z]/I — C by
| L i=0,j=1,
oy Fi(y,2)) =

0, otherwise.

Then (C[Y, Z]/I, ¢) is a Frobenius algebra and
{y'Fi(y,2),y" " Fi(y,2) | 0<i<n—1,1<j<n—1}
forms a pair of dual bases of C[Y, Z]/I with respect to the integral ¢.
Denote by t =37 Z" | Fy(1,2cos D)y Fj(y, 2). Then

n—1 1
=Y th®@h=) > yFy.2) @y FQy,>)
i=0 j=1

Define the linear map S : C[Y, Z]/I — C[Y, Z]/I by

n—1 n—1

=D St f)ta =Y > Sy Fily, 2) )y Fily, 2).

=0 j=1

We have the following result.

Theorem 3.3.2 The quadruple (C[Y, Z]/I,¢,t,S) is a bi-Frobenius algebra.

Proof.To prove that (C[Y, Z]|/1, ¢,t,5) is a bi-Frobenius algebra, we only need to show
that A(1) = 1 ® 1, the counit ¢ is an algebra morphism and the map S is an anti-

algebra as well as anti-coalgebra automorphism according to [22, Lemma 1.2]. Indeed,
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the former two conclusions are obviously true. By the definition of S and the equality
(3.7), we have

n—1 n—1

S Fi(y.2) = Y > o' Fi(y, 2)y" Fily, )y Fi(y. 2)

=0 j=1
n—1n—1 min{ji}—-1

:ZZ¢ Z Y (Y, 2))y (g, 2).

i=0 j=1  t=C(jl)

By the definition of ¢, we have ¢(y" ™ Fj;_1_9(y,z)) = 1 if and only if 4,5 and ¢
satisfy n | i+ k+tand j+ 1 —1— 2t = 1. Note that ¢ < min{j,(} — 1. The equality
j+1—1—2t =1 implies that j = [. In this case, t =1l —1landn |i+k+1— 1.
It follows that S(y*F(y,2)) = y**"'F(y,2) and S maps the basis to its dual basis,
hence the map S is bijective. In particular, S(1) = 1 and

mln{] }—-1

S Fi(y, 2)y* Fi(y, = (Y. ™y, 2)
t=C(j5,)
min{j,l}—1

_ Z yl—(i+/€+t)—(j+l_1_2t)Fj+l—1—2t(y7Z)
tZC(Jvl)

=y "y, 2)y' T Ry, 2)
= S(y'Fi(y, 2))S(y" Fuly, 2)).
We conclude that S is an anti-algebra map since C[Y, Z]/I is a commutative algebra.
In addition,
(e0 S)(y'Fily, 2)) = ey F(y, 2)) = e(y' F(y, 2))
and

(Ao S) (Y Fi(y, 2) = Ay ™ F(y, 2))

1

_ 1—z’—jF, 1—i—jF.
—Fj(1,2cosg)y iy, 2) @y iy, 2)

= ((S®5) 0 A™)(y' Fi(y, 2)).
It follows that S is an anti-coalgebra map on C[Y, Z]/I.
Remark 3.3.3 Note that {y27 | 0 < i < n—1,0 < j < n—2} is a basis of

ClY, Z]/I. Using this basis we are able to describe the bi-Frobenius algebra structure
n (C[Y, Z]/1,¢,t,S) as follows:
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i 141 [J +1-2k i i
*AWF) = 2is k iz Y F-aw(y, 2) © Yy F(y, 2);

<.

j%, 2|jandn|i+%,

° O(y's) =

N[,

0, otherwise;

o t=3100 X0 Fi(1,2co8 1)y Fi(y, 2);

i 1Z] ] 1 i
o S(y'2) =22 i J;ZrlTikyk IFji1-0k(y, 2).
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Chapter 4 The Casimir numbers of Hopf

algebras

This chapter deals with the question of when the Green ring r(H), or the Green
algebra r(H) ®z K over a field K, is Jacobson semisimple (namely, has zero Jacobson
radical). It turns out that r(H) ®z K is Jacobson semisimple if and only if the Casimir
number of 7(H) is not zero in K. For the Green ring r(H) itself, r(H) is Jacobson
semisimple if and only if the Casimir number of 7(H) is not zero. Then we focus on
the cases where H = kG for a cyclic group G of order p over a field k of characteristic
p. In this case, the Casimir number is computed. This leads to a complete description

of the Jacobson radical of the Green algebra r(kG) ®z K over any field K.

84.1 Introduction

The Green ring of a finite group, or more generally, the Green ring of a Hopf
algebra, has attracted much attention when it was realized that the Green ring provides
one context for studying the problem of decomposing a tensor product into a direct
sum of indecomposables (see e.g. [8,14,19,34,39,71]). After J.A. Green [33] first showed
that the Green ring has no nonzero nilpotent elements for any cyclic p-group over a field
of characteristic p, much subsequent works have centered on the nilpotency problem,
that is, whether or not the Green ring possesses nonzero nilpotent elements.

The nilpotency problem has been completely solved for the Green ring of a finite
group. It was shown that when the base field is of characteristic p, the Green ring
of a finite group G contains nonzero nilpotent elements unless the Sylow p-subgroups
of G are cyclic or elementary abelian 2-groups (see [7,33,74]). For the Green ring of
a Hopf algebra, if H is a finite dimensional pointed Hopf algebra of rank one, then
all nilpotent elements of the Green ring of H form a principal ideal, which is nothing
but the Jacobson radical of the Green ring (see [68, Theorem 5.4] and [69, Theorem
6.3]). The proofs given for the above results were heavily computational, and neither

explained properties of nilpotent elements, nor indicated a criterion for detecting them.
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Let H be a finite dimensional Hopf algebra over an algebraically closed field k. If H
is of finite representation type, then the Green ring r(H) of H is a Frobenius algebra
over the ring Z of integers with the bilinear form given by dimensions of morphism
spaces, see Proposition 2.3.3. The pair of dual bases associated with this bilinear form
is the set consisting of isomorphism classes of indecomposable objects [X] together
with (5[*)(}, an element in 7(H) related to the almost split sequence ending with X (if X
is not projective). The Casimir operator of r(H) is the map ¢ from r(H) to its center
given by

clz) = Y [X]adly,

[X]€ind(H)
where ind(H) is the set of all isomorphism classes of indecomposable H-modules. The
intersection of the image of ¢ and Z is a principal ideal of Z generated by a non-negative
integer and this integer is called the Casimir number of r(H).

In this chapter, the Casimir number of r(H) is used to determine whether or
not the Green ring r(H), or the Green algebra r(H) ®z K over a field K, is Jacobson
semisimple (namely, has zero Jacobson radical). It turns out that r(H)®z K is Jacobson
semisimple if and only if the Casimir number of (H) is not zero in K, see Theorem 4.2.1
below. In the special case when the Green ring r(H) is a group ring ZG, the Casimir
number is exactly the order of G. This recovers the classical Maschke’s theorem which
states that ZG @z K = KG is Jacobson semisimple if and only if the order of G is not
zero in K. In view of this, Theorem 4.2.1 can be regarded as a version of Maschke’s
theorem for the Green ring case.

For the Green ring r(H) itself, »(H) is Jacobson semisimple if and only if the
Casimir number of r(H) is not zero, see Theorem 4.2.5 below. If the Green ring r(H)
is commutative, then the Jacobson radical of r(H) is the set of all nilpotent elements
of r(H). As a consequence, Theorem 4.2.5 gives a characterization of a commutative
Green ring without nonzero nilpotent elements. In particular, this characterization
works for the Green ring of a finite group of finite representation type.

In general, it is difficult to calculate the Casimir number of the Green ring r(H ).
We only focus on the case H = kG, where G is a cyclic group of order p and k is
an algebraically closed field of characteristic p. By a straightforward computation, we

find that the Casimir number of r(kG) is 2p?. This shows that the Green ring r(kG)
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is Jacobson semisimple, which is a result of J.A. Green [33]. Moreover, r(kG) ®z K is
Jacobson semisimple if and only if the characteristic of K is not equal to 2 or p. In
the case where K is of characteristic 2 or p, we use the factorization of the Dickson
polynomials to describe the Jacobson radical of r(kG) ®z K explicitly.

This chapter is organized as follows. In Section 4.2, we describe the Casimir num-
ber of r(H) and use it to determine when r(H), or r(H) ®z K, is Jacobson semisimple.
In Section 4.3, by applying the results obtained in Section 4.2 to the Green ring of
a finite group G, we describe the Jacobson radical of the Green algebra r(kG) ®z K
completely.

Throughout this chapter, H is a finite dimensional Hopf algebra which is of finite
representation type over an algebraically closed field k. The letters Z,Q,C stand
respectively for the ring of integers, the field of rationals, and the field of complex
numbers. For a prime number p, the symbol F, stands for the finite field consisting of

p elements.

84.2 The Jacobson semisimplicity of Green rings

Recall that for any indecomposable H-module Z, if Z is not projective, there
exists a unique almost split sequence 0 — X — Y — Z — 0 with the ending term
Z, we denote by dz the element [X] — [Y] + [Z] in r(H); if Z is projective, we write
0171 = [Z] — [radZ], where radZ is the radical of Z.

For any [X] € ind(H), denote by 4}y, the image of Jjx) under the dual operator *
of r(H). Since H is of finite representation type, the Green ring r(H) is a Frobenius
algebra over Z, and all notions for Frobenius Z-algebras make sense for »(H). More
precisely, the Casimir operator of r(H) is the map ¢ from r(H) to its center Z(r(H))
given by

clw)= Y [X]aby for x € r(H).
[X]€ind(H)

The Casimir element of r(H) is ¢(1) = 3~ x)cina(c)[X]0]x)- In particular,
dimy (¢(1)) = dimy H.
The Casimir number of r(H) is defined to be the non-negative integer m satisfying
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Z NIme = (m). This number is an invariant of H-module category under tensor
equivalence because it does not depend on the choice of a bilinear form on r(H). From
this number one is able to determine when r(H), or the algebra r(H) ®7 K over a field

K is Jacobson semisimple.

Theorem 4.2.1 The Green algebra r(H) ®z K over a field K is Jacobson semisimple

if and only if the Casimir number of r(H) is not zero in K.

Proof.1f K =T, then the algebra r(H)®zF, is separable (namely, Jacobson semisim-
ple) if and only if (p) 2 Imc N Z, see [47, Proposition 6]. If K = Q, then r(H) ®z Q
is separable if and only if Imc = Z(r(H)) by Higman’s theorem [38, Theorem 1],
or equivalently, ¢(x) = 1 for some = € r(H) ®z Q. This is equivalent to saying that
c(mx) = m, where m is a positive integer such that ma € r(H). Precisely, ZNIm ¢ # 0.
For a general field K, since Q (resp. F,) is a perfect field, any field extension Q C K
(resp. F, C K) is separable. This implies that r(H) ®z K is Jacobson semisimple if
and only if r(H) ®z Q (resp. r(H) ®zF,) is Jacobson semisimple. We have completed
the proof. O

If ZNIme = (m), then there exists some = € r(H) such that ¢(z) = m. Applying

dimension to this equality, we have
m = dimy(c(z)) = dimg(x) dimg(c(1)) = dimy (z) dimy H. (4.1)

It means that the Casimir number m of r(H) is divisible by dimy H. This is a result

of [47, Proposition 22(a)]. In particular, we have the following corollary:

Corollary 4.2.2 If a prime p divides the dimension of H, then r(H) ®z K is not

Jacobson semisimple for any field K of characteristic p.

Remark 4.2.3 Let G be a finite group and C the discrete tensor category associated
to G. Namely, the set of objects of C is G, the tensor functor is given by g @ h = gh
for g,h € G, and Home(g,h) = id, if g = h, and 0 if g # h. The Green ring of C is
the group ring ZG, and Z NImc = (m), where m is the order of G. It follows from
Theorem 4.2.1 that ZG ®z K = KG is Jacobson semisimple if and only if m is not
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zero in K. This is exactly the well-known Maschke’s theorem. From this point of view,

Theorem 4.2.1 can be viewed as the Green ring version of Maschke’s theorem.

An interesting result is that the Casimir number of r(H) can also be used to
determine when the Green ring r(H) is Jacobson semisimple. To see this, we need the

following lemma.

Lemma 4.2.4 Let J(r(H)) be the Jacobson radical of r(H) and pr(H) the ideal of
r(H) generated by a prime p.

(1) We have (J(r(H))™ C pr(H) for some integer n.

(2) If ZNImc = (m) and ptm, then J(r(H)) C pr(H).

Proof.(1) The ring isomorphism r(H)/pr(H) = r(H) ®z F, shows that the quotient
r(H)/pr(H) is a finite ring. So the Jacobson radical J(r(H)/pr(H)) of r(H)/pr(H)
is nilpotent [48, Proposition IV.7]. The canonical ring epimorphism = : r(H) —
r(H)/pr(H) yields that «(J(r(H))) C J(r(H)/pr(H)), so w(J(r(H))) is nilpotent.
Thus, there exists a positive integer n such that (J(r(H)))" is contained in the kernel
of m, namely, (J(r(H)))" C pr(H).

(2) If the prime p satisfies p t m, then r(H) ®z F, is Jacobson semisimple by
Theorem 4.2.1. In this case, n(J(r(H))) C J(r(H)/pr(H)) = 0. This implies that
J(r(H)) € pr(H). a

Theorem 4.2.5 The Green ring r(H) is Jacobson semisimple if and only if the Casimir

number of r(H) is not zero.

Proof.Assume that the Jacobson radical J(r(H)) of r(H) is zero. Consider the fi-
nite dimensional algebra r(H) ®z Q over Q. We first show that the Jacobson radi-
cal J(r(H) ®z Q) of r(H) ®z Q is zero. For any = € J(r(H) ®z Q), there exists a
nonzero integer n such that nx € r(H) N J(r(H) ®z Q). For any y,z € r(H), we
have y(nx)z € r(H) N J(r(H) ®z Q). Since J(r(H) ®z Q) is nilpotent, 1 — y(nz)z
is invertible in r(H). This means that nz € J(r(H)) = 0, and hence x = 0. Now
J(r(H) ®z Q) = 0 and the algebra r(H) ®z Q is Jacobson semisimple, it follows from
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Theorem 4.2.1 that the Casimir number of r(H) is not zero in @, so it is a nonzero
integer. Conversely, if the Casimir number of r(H) is m # 0, then the set  consisting
of all primes p such that p t m is an infinite set. For any = € J(r(H)), we may write
T =d ) yjeimde) Mx)[X], where d € Z and all integer coefficients A(x) are coprime. By
Lemma 4.2.4 (2) we have J(r(H)) C pr(H) for all p € Q. It follows that p | d for all
p € Q. Thus, d = 0, and hence x = 0. 0

If the Green ring r(H) is commutative, then the Jacobson radical of r(H) is
the set of all nilpotent elements of r(H). As a consequence, Theorem 4.2.5 gives a
characterization of a commutative Green ring without nonzero nilpotent elements. In
particular, if H is a finite group of finite representation type, then the Green ring r(H)
is commutative. In this case, the Green ring r(H) has no nonzero nilpotent elements

if and only if the Casimir number of r(H) is not zero.

84.3 The Casimir number of a finite group

In this section we determine the Casimir number of the Green ring of a finite
group, and then use it to describe the Jacobson radical of the Green algebra over a
field K.

From now on p is an odd prime, k is an algebraically closed field of characteristic p,
and G is a cyclic group of order p. The group algebra kG is isomorphic to the quotient
of the polynomial algebra k[X] modulo the ideal (X? — 1) generated by X? — 1 or
(X —1)7:

kG = Kk[X]/(X? —1) = k[X]/(X - 1)",

where the latter is a commutative Nakayama local algebra over k. Let M; = k[X]/(X —
1) for i =1,---,p. Then {My, My,--- , M,} is a complete set of indecomposable kG-
modules up to isomorphism [4, ChV, Section 4]. Here, each M; is self-dual since M; is
the unique indecomposable module of dimension ¢ up to isomorphism. Note that M;
is the trivial kG-module.

We follow from [4, ChV, Section 4] and present almost split sequences of kG-

modules as follows. The almost split sequence ending with the trivial module M;
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is
0—>M1—>M2—)M1—>0,

and the almost split sequence ending with M; is
00— M, - M,y &M,y — M; —0for 1 <z <p.
Note that the sequence
0—> M, — My®@ M, — M; =0

is also an almost split sequence ending with M; for 1 < i < p (see [4, ChV, Theorem
4.7]). The uniqueness of an almost split sequence shows that My @ M; = M; 1 & M; 4
for 1 < i < p. We also have My ® M, = 2M,,. This leads to the product [M][M;] =
[M;_1] + [M;44] for 1 < i < p, and [Ms][M,] = 2[M,] in the Green ring r(kG) of kG.
The product [M;|[M;] in r(kG) can be described as follows.

Lemma 4.3.1 For 1 <1,5 <p, we have

(1) Ifi+j <p, then [M;][M;] = St MGy o).

t=0

(2) Ifi+j>p+1, then [M][M;] = (i + 5 — p)[M) + S M o).

t=i+j—p

Proof.This can be proved by induction on i + j, or see [68, Proposition 4.2] for a

similar result. O

Let Z[Xs, -+, X,] be a polynomial ring over Z with variables X,---, X, and I
the ideal of Z[Xs,- -, X,] generated by

X2 X3—1,X0X5 — X4 — X, - - yXoXp 1 — X)) — X0, Xo X)) — 2X

-

We have
r(kG) =2 Z[ Xy, -+, X,)/1,

where the isomorphism is given by [M;] + X; for i = 2,3,--- ,p (see [4, ChV, Propo-

sition 4.11]). Actually, the Green ring r(kG) is isomorphic to a polynomial ring over
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Z with one variable modulo a relation. To see this, we recall the Dickson polynomials

of the second kind defined recursively as follows:
EO(X) = 1, El(X) = X, and Ez—l—l(X) = XEZ(X) — Ez—l(X> for ¢ Z 1. (42)

Then FE,(X) can be written explicitly as

for n > 0 (see e.g. [13, Eq.(1.2)]).

Proposition 4.3.2 We have r(kG) = Z[X]/((X — 2)E,_1(X)).

Proof.Consider the following ring epimorphism

U L[Xy, - Xyl = ZIX] /(X = 2)Epa (X)),

g(XQ’ T 7Xp) = g(El(X)7 e ’Ep—l(X))‘
By (4.2) we have (1) = 0. This induces a ring epimorphism ¢ from Z[X,,--- , X,]/I
to Z[X]/((X —2)E,_1(X)) such that the following diagram is commutative:

ZUXs -, X, —= Z[X]/((X = 2)E,-1(X))

(R
Z[Xo, -, X,)/1, '
where 7 is the canonical ring epimorphism. Define another ring morphism ¢ from Z[X]
to Z[Xs, -, X,]/1 by ¢(f(X)) = f(X,). By induction on 7 one is able to check that
E;_1(X,) = X; holds in Z[Xs, - - , Xp)/I for i =2,3,--- ,p. Thus, ¢ is surjective. In

particular,

P((X = 2)E, 1 (X)) = (Xo = 2)E)p1(X2) = (X2 — 2)X, = 0.

Hence ¢ induces a ring epimorphism % from Z[X]/((X —2)E,_1(X)) to Z[Xa, - - - , X,|/I

such that the following diagram is commutative:

ZIX]/(X = 2)Epa(X))

Now it is straightforward to check that ¢ o @ = id and B o 1) = id, as desired. OJ
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The almost split sequences of kG-modules are useful to calculate dimensions of
morphism spaces. We illustrate it here, although it is not closely related to the topic

of this section. According to the notion of djs, we have

2 — [Ma], =1
Opas) = 4§ 2[My] = [Mi] — [M ], 1< < p;
[My] = [Mp], i=p.
In particular, we have 6y, = Opagy)[M;] for 1 < 7@ < p and 6y, [M,) = 0. This gives

the following relation between the bases {0z, | 1 <4 < p} and {[M;] | 1 < i < p} of
r(kG):

O[ay) 2 -1 [M;]
Sam) -1 2 -1 [Mo)]
O[A, 1] -1 2 -1 [Mp—1]
A -1 1 (M)
Note that
-1
2 -1 11 1 1
-1 2 -1 1 2 2 2
1 2 -1 12 - p—1 p—1
11 12 - p=1 p

whose (i, j)-entry is min{i, j}. We have

P

(M) = (M), [M;) 6 =Y dimy Homgee (M;, M;)oar,)

j=1 j=1

since the dual operator x on r(kG) is the identity map. It follows that
dimy Homy(M;, M;) = min{3, j}.

The Casimir operator ¢ of r(kG) is given by

p p

c(x) = Z[Mi]xérMﬂ = Z[Mi]xé[Mi] = zc(1) for x € r(kG)

i=1 i=1
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since r(kG) is commutative. To determine the Casimir number of r(kG), we need to

describe the Casimir element ¢(1) of r(kG).

Lemma 4.3.3 The Casimir element c(1) = [M,] +2> 7 (—=1)" (p — i)[M;].

Proof.Firstly, it is straightforward to check (by Lemma 4.3.1) that

p—1 p—1

- 2 ~p+1 = 2
> ) =Z(—2 —)[Maia] = ) [M]]
i=1 i=1 i=ptL

Using this equality we have:

(1) = g[MimMi] — djun, Z[M] + (M(04,] — (M)
= [M] + 5[M1](ji;[MiJ2 + i_l [Mi]?)
= [M] + 200, ji::[Mz]Q
= (M) + 200 Z(’%l — i) [Myi]
= [M,] +2(2 [ M) Z<Z%1 — i) [Mai ]
— (M) +2 Z(Zil — i)(2[Mai] — [Mai] — [Mai2])
= (M) +2 é—w—wp i)

The proof is completed. 0

Note that {0z | t = 1,2,---,p} and {[M,] | t = 1,2,---,p} form dual bases
of 7(kG). For any = € r(kG), c(z) has the form c(z) = >~} (0, c(x))[M,]. Thus,
the coefficient of [M,] in the linear expression of c(x) is (djar,), c()). Next, we need to

compute (O, c(x)) for 1 <t < p.
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p+1

Lemma 4.3.4 Ifz =" \[Mj], then (O}, c()) = 32,21 (20 — D)Agi1.

Proof.By Lemma 4.3.3 we have

c(x) = c(Vx = ([M] + 2 Z(—l)H(p —O)[Mi]) Y N[M,

1

s
I

—
<

= Z]A pl +2 Z i)A; [ M) [M]]
—ZM 42 2 (R ROV TARS LY

where the last equality follows from Lemma 4.3.1 (2) with some p; € Z. Then

(O, € Z])\ +2 Z — )i +j—p)A

z+j p+1
—ZM DD DI Ty
Jj=1i=p+1—j
J
- ZM )Y R)EA,.
=1 k=1
Note that
’ . 0, 217
S -kk=4 " Y
k=1 T 2 ’]
Thus,
ptl
p p p 3
(Opas, s (@) = > 4N Z =Y =3 Dra
j=1 2j,j=1 i=1
We have completed the proof. O

To describe (djar,), c(x)) for 1 < ¢ < p — 1, we need some preparations. The left

multiplication by [M,] with respect to the basis {[M;], [Ma],--- , [M,]} corresponds to
a matrix M;. That is,
[M] [M]
[Ms] [Mo]
(M| | =M
(M) (M)
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then M, can be written explicitly as follows:
M;=E; +Eg;11 +Ezpp0+ -

+Eoi 1+ Es +Eypn -0
+E3;i o+ By +Es; +---

If we denote by E; ; the square matrix of order p with (7, j)-entry 1, and 0 otherwise,

+ Ep—t,p—l
+ Ep7t+1,p72

+ Ep—t+27p—3

4. (4.3)
+E 1 +E o+ Eo3+ -+ E 1,
+tE,, +(t—1DE,_1,+(t—2)E, 2, + -+ E, 111,
_ZZES+T 1,t4+r— s+zt+]—_3 p—s+1,p-
s=1 r=1
Lemma 4.3.5 Ifx =377 \;[M;], then
t
(B c(@) = 2(p — 1) > _(=1)"id; + 2t Z D™ (p — i)\
=1 i=t+1

for1 <t<p-1

Proof.Let [Mi][M;] = 377 Nj;[M,] for Nj; € Z. For 1 <i,j,t < p — 1, the associa-
tivity of the form (—, —) over r(H) together with the commutativity of r(kG) shows
that

Nij = @y, [MEIMG]) = (Opan [M], [M)[M])
= O [My], [Mi][Mi]) = (91ary), [M][Mi))
= Nj.

Consequently, we have:

M) +22p:<—1) -
— )23 (1)

ijfl

+2Z

2,7=1

— )N [M;][M;]  (for some py € Z)
) p — i)\ ZNt M)
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p—1

= uo[M,] + 2 Z (=1 (p— i) \;NL[M,]  (for some py € Z)

irjt=1
p—1
= o[ M) +2 ) (=1)H(p— i)\ NA[M,] by (4.4).
irjt=1
Thus,
-1
(6[Mt]7 Z _Z/\Ntz for 1<t<p-1.

Let ﬁt be the submatrix of Mt obtained by deleting the p-th column and row. By

(4.3) we have Mt ZS 1 Eqir—1t4r—s. The matrix Mt is symmetric and
(5[]\/14 =2 Z - Z )\ thl
1,j=1
p—1
o )
=2(M Ao o A M|
(=1)p2
p—1
t p—t _( —9
p—2)
=2 ()\1 D 1) Es+r 1,t4+r—s .
s=1 r=1 :
(=172
t p—t
:222( 1)t+r s l(p t—T+S)/\S+T )
s=1 r=1
t
=2(p—1) > _(—1)"ix; + 2t Z D)™ (p = i)
i=1 i=t+1
We are done. m

The Casimir number of 7(kG) can be presented as follows:

Theorem 4.3.6 The Casimir number of r(kG) is 2p>.

Proof.Let x = > %_, \;[M;]. Then c(xz) = > 7_,(0pary, c(2))[M,]. If ¢(x) € Z, then

j=1
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(5[Mt]7 c(x)) =0fort =2,3,--- ,p. However,

t

(Opgs () =2(p — t) Z(—l)t”i/\i + 2t i (D) (p —

i=1 i=t+1
fort =2,3,--- ,p—1 (see Lemma 4.3.5), and

p+1
2

(Oa,), c(@)) = Z(2Z — DAz

i=1

(see Lemma 4.3.4). This gives a system of equations with variables Ay, - -

the following equations:
(5[Mp—1]7 C($)> =0
(6[Mp—2]7 C(I» = 0.

A (4.5)

-, Ap. Consider

Using (4.5) it is not hard to see that A\,_; = 0. Similarly, the system of equations

(5[Mp—2]7 C(ZE)) 0
(01, )5 c(x)) = 0

together with A\,_; = 0 shows that A\,_» = 0. Repeating this argument we obtain that

Ap—1 = Ap_2 = -+ = A3 = 0. Now the system of equations
(1), () = 0
(5[Mp}7 C(LU)) =0

can be simplified as follows:
A +2X\=0
A1+ pAp, =0.

It follows that Ay = 2ppu, Ay = pu, A\, = —2p for p € Z. In this case,

(Opanys e(@)) = 2(p — DAy + 2 Z(—Ulﬂ‘(p — i)\

=2(p— 1A —2(p—2)\,

= 2p°p.
We conclude that ImcNZ = (2p?).
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Since the Casimir number of r(kG) is 2p? # 0, the Green ring r(kG) is Jacobson
semisimple. This is exactly a result of J.A. Green [33]. For the Green algebra r(kG) ®y
K, it follows from Theorem 4.2.1 that 7(kG) ®z K is Jacobson semisimple if and only if
the characteristic of K is not equal to 2 or p. In the following, we use the factorization
of the Dickson polynomials to determine the generators of the Jacobson radical of
r(kG) ®z K, or equivalently, K[X]/((X —2)E,_1(X)) (see Proposition 4.3.2) in the

cases where K is of characteristic 2 or p.

Proposition 4.3.7 If the characteristic of K is p, then the Jacobson radical of the
Green algebra K[X|/(X —2)E,-1(X)) is a principal ideal generated by X? — 4.

Proof.We have the decomposition E,_1(X) = (X — 2)%1()( + 2)1%1 in K[X] [13,
Theorem 3.1 (2)]. Thus, the polynomial (X — 2)E,_1(X) has only two distinct prime
factors X — 2 and X + 2. Since K[X] is a principal ideal domain and every nonzero
prime ideal is maximal, the Jacobson radical of K[X]/((X —2)E,_1(X)) is a principal
ideal generated by (X — 2)(X + 2), which is the product of distinct prime factors of
(X —2)E,1(X). O

Proposition 4.3.8 If the characteristic of K is 2, then the Jacobson radical of the
Green algebra K[ X]/((X — 2)E,—1(X)) is a principal ideal generated by

7] p—1—1 TS
> (—1) X"
1=0 i

Proof.Since the characteristic of K is 2, we have the following isomorphism:
K[X]/((X = 2)E, (X)) = K[X]/(XEp1(X)).

The Dickson polynomial E,_;(X) in K[X] can be written as
(251]

(0= 77T e =

]

where

0 =3 (771 e



and it has no multiple factors in K[X], see [9, Theorem 6]. It follows that the Jacob-

son radical of K[X]/(XE,_1(X)) is a principal ideal generated by X f(X). We have
completed the proof. O
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Chapter 5 The Casimir numbers of fusion

categories

Let C be a fusion category over an algebraically closed field k of arbitrary charac-
teristic. The Casimir number and another two numerical invariants of C are considered
in this chapter. These numerical invariants are all positive integers and admit the
property that the Grothendieck algebra Gr(C) ®z K over any field K is semisimple if
and only if any of these numbers is not zero in K. This means that all these numbers
have the same prime factors. If moreover C is pivotal, one obtains a criterion that C
is non-degenerate if and only if any one of these numbers is not zero in k. For the
case that C is a spherical fusion category over the field C of complex numbers, these
numbers and the Frobenius-Schur exponent of C all share the same prime factors. This
may be thought of as another statement of the Cauchy theorem for spherical fusion

categories.

§5.1 Introduction

A fusion category C over a field k is called non-degenerate if the global dimension
dim(C) of C is not zero in k. Since dim(C) is automatically not zero in a field k of
characteristic zero, this notation is only considered in a field k of positive characteristic.
A crucial property of non-degenerate fusion categories is that they can be lifted to the
case of characteristic zero (see e.g. [29, Section 9]). It is interesting to know when a
fusion category over a field of positive characteristic is non-degenerate. Ostrik stated
that a spherical fusion category C over a field k is non-degenerated, if the Grothendieck
algebra Gr(C) ®z k is semisimple (see [54, Proposition 2.9]). It has been proved by
Shimizu that a pivotal fusion category C over an algebraically closed field k is non-
degenerate if and only if its Grothendieck algebra Gr(C) ®z k is semisimple (see [60,
Theorem 6.5)).

In this chapter we first pay attention to the question when the Grothendieck

algebra Gr(C) ®z k is semisimple for any fusion category C over an algebraically closed
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field k. To solve this question, in Section 5.2 we associate any fusion category C with
three positive integers: m¢, ne and de, where the first one is the Casimir number of C
X; X
with respect to the basis {X;}icr of Gr(C). These numbers provide a semisimplicity

and the last one is the determinant of the matrix of left multiplication by >, ,
criterion on Grothendieck algebras, namely, the Grothendieck algebra Gr(C) ®z K
over any field K is semisimple if and only if any one of these numbers is not zero
in K. This leads to a result that the three numbers m¢, ne and de have the same
prime factors. The semisimplicity criterion for Grothendieck algebras together with
Shimizu’s work [60, Theorem 6.5] gives a criterion for a pivotal fusion category to be
non-degenerate. That is, a pivotal fusion category C over a field k is non-degenerate if

and only if one of the numbers m¢, ne and d¢ is not zero in k.

The Casimir number of a special kind of Verlinde modular category C of rank
n+ 1 is calculated to be 2n+4 in Section 5.3. It follows that the Grothendieck algebra
Gr(C) ®z K over a field K is semisimple if and only if 2n + 4 is a unit in K. This
is equivalent to saying that the (n + 1)-th Dickson polynomial E, (X)) of the second
kind has no multiple factors in K[X]. If 2n + 4 is zero in K, we use the factorizations

of Dickson polynomials to describe the Jacobson radical of Gr(C) ®z K explicitly

As these numbers m¢, ne and de have the same prime factors, in Section 5.4 we only
focus on the Casimir number m of a fusion category C. We give some results concerning
prime factors of the Casimir number of representation categories of semisimple Hopf
algebras. In particular, for a semisimple and cosemisimple Hopf algebra H, we show
that the Casimir number of the representation category of the Drinfeld double D(H)
shares the same prime factors with those of dimy H. We also reveal a relationship
between the Casimir number m¢ of a fusion category C and the Casimir number mg of
the pivotalization C of C. We show that the former is a factor of the latter. This gives
a result that any non-degenerate fusion category over a field k has a nonzero Casimir

number in k. However, the converse is not known to be true.

The Frobenius-Schur exponent of a spherical fusion category C has been defined
in [51, Definition 5.1] as a minimal positive integer satisfying certain properties. In the
case that the ground field is the field C of complex numbers, the Cauchy theorem for

spherical fusion categories asserts that the prime ideals dividing the global dimension
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dim(C) and those dividing the Frobenius-Schur exponent of C are the same in the ring of
algebraic integers [10, Theorem 3.9]. We prove in Section 5.5 that the Casimir number
and the Frobenius-Schur exponent of C have the same prime factors, which may be

considered as another statement of the Cauchy theorem for spherical fusion categories.

§5.2 Numerical invariants

In this section, all fusion categories are defined over an algebraically closed field
k of arbitrary characteristic. We first introduce some numerical invariants of a fusion
category C, and then use them to describe when the Grothendieck algebra Gr(C) ®z K
over any field K is semisimple.

Let C be a fusion category over k and {X;};c; the set of isomorphism classes of
simple objects of C. The Grothendieck ring Gr(C) of C is an associative unital ring
with a multiplication induced by the tensor product on C, namely,

XiX; = [X;®X;] =Y NEX,

kel

where NF, called the fusion coefficient of Gr(C), is the multiplicity of X} in the Jordan-

i
Holder series of X; ® X;. The duality functor * of C induces an involution on Gr(C),
namely, (X;X;)* = X;X; and (X;)* = X; for i,j € I. We write (X;)* = X for
convenience. In view of this, the duality functor * induces a permutation on the index
set I.

There is an associative symmetric and non-degenerate Z-bilinear form (—,—) on
Gr(C) defined by

(Xi, X;) = dimy Hom (X, X7) = 05 4+,

where 9, j+ is the Kronecker symbol. This form is also #-invariant, namely, (X;, X;) =

(X[, X7) forall 4, j € I. Thus, Gr(C) is a symmetric *-algebra over Z. The pair of dual
bases with respect to the form (—, —) is the set {X;, X;«};cr satisfying the following

ZX@Xﬁ — ZX ® X,

iel i€l

Note that N = (X; X, Xj-) hold for all i, j, k € I. It follows from

equality:
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that Ni’} = Nf = N,ij*. Using this equality one is able to check that

Y XiXi@ X =) X; @ X X, (5.1)
iel i€l
Y XX @ X =) X; @ X; X (5.2)
iel i€l

Recall that the Casimir operator (see e.g. [47, Section 3.1]) of the Grothendieck
ring Gr(C) is the map ¢ from Gr(C) to its center Z(Gr(C)) given by
cla) = ZXiaXi* for a € Gr(C).
el
The element ¢(1) = >, ; X; X;+, depending on (—, —) only up to a central unit of Gr(C)
(see [47, Section 1.2.5]), is called the Casimir element of Gr(C). It is well known that
the image Imc of ¢ is an ideal of Z(Gr(C)) and is called the Higman ideal of Gr(C).

The element ¢(1) = >, ; X; X;+, as an element in Gr(C) ®z Q, is central invertible
(see the proof of [28, Lemma 9.3.10]), hence there exists a unique central invertible
element b in Gr(C) ®z Q such that ¢(1)b = 1. Suppose b = >, ; 74 X;, where m; and
n; form a pair of coprime integers for each ¢ € I. Denote by ne > 0 the least common
multiple of n; for all i € I. Then bne € Gr(C) and ne = ¢(1)bne = c¢(bne). This means
that ne € Z N Ime, and hence Z N Ime # {0}.

Since the intersection Z N Imc is a nonzero principle ideal of Z, the positive
generator of Z N Ime (denoted by me) is called the Casimir number of C. Namely,
Z N Ime = (me) for me > 0. The element a satisfying c¢(a) = mc is not unique in
general. It is easy to see that the element a satisfying c¢(a) = m¢ is unique if and only
if the map c is injective, if and only if Gr(C) is commutative. The Casimir number
me always divides the number ne since we have seen that ne € Z N Ime. If Gr(C) is
commutative, we have m¢ = nc.

Observe that the matrix [¢(1)] of left multiplication by ¢(1) with respect to the
basis { X, }icr of Gr(C) is a positive definite integer matrix (see [47, Proposition 8]). It
follows that the determinant de := det[c(1)], called the determinant of C, is always a

positive integer.

Remark 5.2.1 (1) If two fusion categories are monoidally equivalent under a monoidal

functor, then this functor induces an isomorphism preserving fusion coefficients
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between the Grothendieck rings of fusion categories. Thus, equivalent fusion cate-

gories lead to the same Casimir numbers and the same determinants.

(2) Let Hy and Hs be two finite dimensional semisimple Hopf algebras over k. If
H, and H, are twisted of each other in the sense that Hy = Hy as algebras and
Hy = (Hy)q for some 2-pseudo-cocycle ), then the Grothendieck rings Gr(Hy) and
Gr(Hs) share the same fusion coefficients (see [53, Theorem 4.1]). It turns out
that the Casimir number or the determinant of representation category of Hy is
the same as that of Hy. In other words, the Casimir number or the determinant of

representation category of a semisimple Hopf algebra is stable under twisting.

(3) The notation of the Casimir number of a fusion category defined here is indeed
a special case of the notation of Casimir number defined over a representation

category of a finite dimensional Hopf algebra, see Section 4.2.

Proposition 5.2.2 Let C be a fusion category over k. For any field K, the following

statements are equivalent:
(1) The determinant de # 0 in K.
(2) The number ne # 0 in K.
(3) The Casimir number me # 0 in K.
(4) The Grothendieck algebra Gr(C) @z K is semisimple.
Proof.(1) = (2): Let c(1) = >_,.; X;X;+ denote the Casimir element of Gr(C). Sup-
pose the characteristic polynomial of the integer matrix [¢(1)] is
fx)=a2"+ax" ' 4+ a2+ an,

where n is the cardinality of I. Then f(x) € Z[z] and «,, = *+dc. By the Cayley-

Hamilton’s theorem, the operator of left multiplication by ¢(1) satisfies that

0= f(c(1)) =c(1)(c(1)"  +arc(1)" 2+ +ap1) +an = c(l)a+ ay,
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where a = ¢(1)" ! + aye(1)" 2 + -+ - + @, 1. Thus, ¢(1)a = —a,, = Fdc € Z. By the
definition of ne, we have ne | de. Now de # 0 in K implies that ne # 0 in K.

(2) = (3): It follows from me¢ | ne.

(3) = (4): Note that there exists some a € Gr(C) such that ), , X;a X = me.
Denote by A := Gr(C) ®z K and consider | e ® X € A® A. Obviously,

’LEI

ZX X = Land ZbX—@X*_ZXZ-miCGin*b

el el i€l

holds for any b € A, see (5.1). Thus, > s ® X is a separable idempotent of A,

ier X
and hence A is a separable K-algebra. It is Well known that any separable K-algebra
is a semisimple K-algebra (see e.g., [11]).

(4) = (1): Let Tr(a) be the trace of the operator of left multiplication by a € A.
Since A is semisimple, the bilinear form (a,b) = Tr(ab) on A is non-degenerate. This
implies that the matrix [a;;] for a;; = (X;, Xj) is an invertible matrix in K. Let ¢;; be

the (i, j)-entry of [¢(1)]. Then

= () XeXpe X, Xjo) = Y (Xi X e X, X

kel kel

= (N5 X Xp, Xpe) = > N (X X, X

k,sel k,sel
- Y NN = N

k,sel sel
= Tr( Z = Tr(X;X;-)

sel

= Qgj*.

That is, the matrix [¢(1)] differs from the matrix [a;;] only by permutations of columns.

It follows that [¢(1)] is an invertible matrix in K and det[c¢(1)] = d¢ # 0 in K. O

Remark 5.2.3 (1) The proof of (4) = (1) in Proposition 5.2.2 comes from the proof
of [54, Proposition 2.9]. From this proof one is able to see that de = =+ det[a;;],
where a;; = Tr(X;X;) fori,jel.

(2) The result that Gr(C) ®z K is semisimple if and only if me # 0 in K is essentially
the Higman’s theorem applied to the Frobenius algebra Gr(C)®@zK (see [38, Theorem
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1] or [47, Proposition 6]). This result can also be deduced directly from Theorem
/2.1

(3) Any one of the statements of Proposition 5.2.2 is equivalent to the result that
c(1) = Y e XiXi- is invertible in Gr(C) ®z K (see [63, Theorem 3.8]).

It can be seen from the proof of (1) = (2) in Proposition 5.2.2 that n¢ | de.
Together with m¢ | ne we may see that me | ne and ne | de. Moreover, if the field K
is of characteristic p, it follows from Proposition 5.2.2 that p 1 d¢ if and only if p 1 ne,
if and only if p t me. This gives the following relationship among the numbers me, ne

and d¢:

Theorem 5.2.4 The Casimir number me, the number ne and the determinant de of

a fusion category C have the same prime factors.

Recall from [60, Theorem 6.5] that a pivotal fusion category C over a field k is
non-degenerate (i.e., the global dimension dim(C) of C is not zero in k) if and only if its
Grothendieck algebra Gr(C) ®z k is semisimple. This result together with Proposition

5.2.2 gives a criterion for non-degenerate pivotal fusion categories:

Proposition 5.2.5 A pivotal fusion category C over a field k is non-degenerate if and

only if any one of these numbers me, ne and de is not zero in k.

The rest of this section provides some fusion categories whose determinants or

Casimir numbers can be explicitly described.

Example 5.2.6 Let C be a pointed fusion category over a field k. The Grothendieck
ring of C s the group ring ZG for a finite group G. The Casimir number of C is the
order |G| of G and the determinant of C is |G|\, It follows from Proposition 5.2.2
that for any field K, the K-algebra KG = ZG ®z K is semisimple if and only if |G| # 0
in K. This is the Maschke’s theorem for group algebras.

Example 5.2.7 Let C be a modular category over a field k with isomorphism classes
of simple objects {X;}icr. That is, C is a spherical fusion category with a braiding c

such that the S-matriz S = [sy] is invertible in k, where s;; = Tr(cx;x, © cx,x;) (see
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e.g. [28, Section 8.14]). Note that dim(X;) # 0 in k for anyi € I (see [28, Proposition
4.8.4]). For anyi € I, the map

8..
hi @ X - el
i dim(X;) Jorj e

defines a homomorphism from Gr(C) to k. In other words, {hi(X;)}ier forms all
eigenvalues of the matriz [X;| of left multiplication by X; with respect to the basis
{X:}ier of Gr(C). Note that all eigenvalues of the matriz [c(1)] are hi(c(1)) fori € I.
Moreover,
SiiSij* dim(C)
(c(1)) = A X. X)) = (X Vhi( X ) = L
h’l(c( )) h’l(z I ) Zhl< ])hl( J) - diIn(Xl’)Q dlm(Xz)2’

Jjel j€elI Je

where the last equality follows from [28, Proposition 8.14.2]. It follows that

de = [ (e(1) = e

where n is the cardinality of I.

Example 5.2.8 Recall from [61] that the near-group category C is a rigid fusion cate-
gory whose simple objects except for one are invertible. Let G be the group of isomor-
phism classes of invertible objects in C and X the isomorphism class of the remaining
non-invertible simple object. The Grothendieck ring Gr(C) of C obey the following
multiplication rule:
g-h=gh g- X=X-g=X, X>=) g+pX,
9eG
where g,h € G and p is a positive integer. The matriz [c(1)] of left multiplication by
c(1) with respect to the basis G U {X} of Gr(C) can be written explicitly as follows
(see [67, Example 3.5]):
ey = [
u' p?+2|G]

where M is a square matriz of size |G| whose diagonal elements are all |G| 4+ 1 and
off-diagonal elements are all 1, u is a column vector of size |G| whose elements are all

p. It is easy to compute that
de = det[c(1)] = (4]G| + p*)|G|“!.
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Note that the Casimir number of C is a minimal positive integer me such that
Zgagf1 + XaX =me for some a € Gr(C).
geG
Accordingly, the Casimir number me and the associated a € Gr(C) can be determined
separately as follows:
Case 1: If p is odd, then a = (4|G| + p*) =23 q9 — pX and me = (4|G| + p?)|G].
Case 2: If p is even, then a = 5(4|G|+p*) =3 cq 9 — 5X and me = 5(4|G|+ p?)|G].
We see that me and de have the same prime factors for both cases (1) and (2).

§5.3 The Casimir numbers of Verlinde modular categories

In this section, we consider the Casimir number of a Verlinde modular category C
of rank n + 1 introduced in [28], see also [5]. By heavy computation, we will find that
the Casimir number of C is 2n + 4. It will be shown that the Grothendieck algebra
Gr(C) ®z K considered here is isomorphic to the quotient algebra K[X|/(E,+1(X)),
where E,1(X) is the (n + 1)-th Dickson polynomial of the second kind. This leads to
a byproduct that FE,;(X) has no multiple factors in K[X] if and only if 2n +4 is a
unit in K, although the factorizations of E,.;(X) have been carried out using much
lengthier methods [15], see also [9]. In the case when 2n + 4 is zero in K, we use the
factorizations of Dickson polynomials to describe the Jacobson radical of Gr(C) ®z K
explicitly.

Let g be a simple complex Lie algebra, n a positive integer and ¢ = enrT a
complex number. The Verlinde modular category C(g, q) associative with the pair (g, q)
is ”semisimple part” of the representation category of the associated Lusztig quantum
group Uk (g), more precisely, the quotient of the subcategory of tilting modules by the
subcategory of negligible modules (see [28, Section 8.12.2]).

In the following we only consider the case g = sl, and denote the Verlinde mod-
ular category C(sly, q) by C,(¢q). The simple objects of C,(q) are Xy, X1, -, X,, the
irreducible representations of the Lusztig quantum group u,(sly) (i.e., simple comod-
ules for the quantum function algebra O,(SLy) with highest weights 0,1,--- ,n). The
tensor product in C,(g) is the truncation of the usual tensor product in representa-

tion category of u,(sly), namely, the usual tensor product X; ® X; modulo a certain
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"negligible” part of X; ® X;. For instance, C1(q) =Vecj ,; (where w is the nontrivial
3-cocycle), Ca(q) is one of the well-known Ising model categories [25, Appendix B].
The Grothendieck ring Gr(C,(q)) of C,(q) is the truncated Verlinde ring given
in [28, Example 4.10.6] whose multiplication rule is
min{s,5}

XZX] - Z XiJrj,Ql. (53)

l=max{i+j—n,0}

This Grothendieck ring is a symmetric Frobenius algebra over Z with the bilinear form
defined by (X;, X;) = d;;. Thus, {X;,X; | 0 < i < n} forms a pair of dual bases of
Gr(C,(q)) with respect to the bilinear form (—, —).

The Casimir operator of Gr(C,(q)) is the map ¢ from Gr(C,(q)) to its center given
by

= ZXixXi for z € Gr(C,(q)).

Since Gr(C,(¢)) is commutative, we have ¢(z) = ¢(1)x, where ¢(1) = 7" ; X2, which
is the Casimir element of Gr(C,(¢)). The Casimir number of Gr(C,(q)) is the non-
negative integer m satisfying Z N Imc = (m). This number is a category invariant of
Cn(q), so is also called the Casimir number of the category C,(q). We shall see that
the Casimir number of C,(g) can be used to detect when the Grothendieck algebra
Gr(C,(q)) ®z K over a field K is semisimple.

In the following, we shall calculate the Casimir number of C,(g). Firstly, the

Casimir element ¢(1) of Gr(C,(q)) can be described as follows.

Lemma 5.3.1 We have ¢(1) = ZEO(TL +1—25)Xs;.

Proof.A direct calculation shows that

I3

]

(1) =) X7+ Z X2

Jj=0 Jj=l3]+1
]

J
= ZXzJ o1 + Z Z X2] 21 by (53)

7=0 =0 F]+11=2j—n

I3
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2(Xo + (Xo+ Xo) + -+ (Xo+ Xog+ -+ + X, 2))
+(Xo+ Xo+ -+ X)), 2|n
2(X0+(X0+X2)++(XO+X2++Xn—1))7 2*”

We complete the proof. O

To describe the Z-linear expression of ¢(x) for any x € Gr(C,(q)), we need some
preparations. The left multiplication by X; with respect to the basis {X¢, X1, -+, X, }

corresponds to a matrix, which is denoted by X;, namely,

Xo Xo
X X
X, .1 _ X, '1
X, X,

We denote E;;; 11 for 0 < 7,5 < n the square matrix unit of order n + 1 with
t+ 1,5 + 1)-entry 1, and 0 otherwise. Then the matrix X; can be written explicitl
J y y

as follows:

Xi=Ei i +Eyipo+Egjs+- -+ Ep_it1 011
+Ey; +Esii +Eyio+ -+ B0
+Es; 1 +Ey i +Esi0 4+ -+ B30
4. (5.4)
+Ein1+Eips+Eis3+ + By it

i n—i

:E E Es+t+1,i+t—s+1'

s=0 t=0

Let 0(7) be the function defined over Z by (i) = 1 if i is even, and 0 if ¢ is odd.

Then the coefficient of X; in the linear expression of ¢(x) has the following form.

Proposition 5.3.2 Let x = ZZZO M Xk Then the coefficient of X; in the linear ex-
pression of ¢(x) is (n+1—i) St _o(k+1)5(i+ k)N, +(i+1) Y oreis1 M=k +1)0(i+E) A
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Proof.Let X; X, = " N\ X;. Then Nij = (X;X;, X;) = (X;X;, Xi) = NJ; since

the form (—, —) is associative and symmetric. It follows that
clr)=cWr =Y n+1-)IHMX;Xe= Y (n+1—7)5()MN5X:.
],k‘ZO iaj»kzo

n

Thus, the coefficient of X; in the linear expression of ¢(x) is > 7, _o(n+1 —7)0(5) M NE.
Moreover, this coefficient can also be written as follows:

n

> (n+1—5)5(G) NN

4,k=0
(n+1)6(0)
no(1)
= (/\07/\17”' 7)\n)X7, .
d(n)
(n+1)6(0)
= ()\07 ALy a)\n)Es+t+1,i+t—s+1 ) by (5-4)
s=0 t=0
d(n)
= n+1—i—t+9)0(i+t—5)Asps. (5.5)
s=0 t=0

A straightforward computation shows that if s +¢ = k < i, then the coefficient of A
in (5.5) is (n+1—14)(k+1)0(i + k); if s +¢ = k > i, then the coefficient of \; in (5.5)
is (i +1)(n —k+1)d(i + k). Thus, (5.5) is equal to

(n+1—4)> (k+ 18+ k)X + (@ +1) Y (n—k+1)5(+ k).
k=0 k=i+1
This completes the proof. O

The main result of this section is presented as follows.

Theorem 5.3.3 The Casimir number of Verlinde modular category C,(q) is 2n + 4.

Proof.Let x =Y ;_ M Xj. It follows from Proposition 5.3.2 that the coefficient o of
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X; in the linear expression of ¢(x) is

%=4n+1—025%+1ﬁ@+kﬂh+0+1)i:@—k+1ﬁ@+kﬂm

for 0 <i <n.If ¢(x) € Z, then a; = 0 for 1 < i < n. Consider the system of equations

a, =0

Ap_2 — 0

with variables Ag, A1, -+, \,. This implies that A, = 0. Similarly, the system of
equations

Qp_1 =10

Qp_3 =10
together with A, = 0 induces that A,y = 0. Repeating this argument until the

following equations:

g = 0
a1 = Oa
we obtain that A\, = A\,_1 = -+ = A3 = 0. Now consider the system of equations
g — 0
;= 0.

It follows that \; = 0 and A\g = —3Xy. Thus, the coefficient «ag of Xy is

ap=(n+ 1)+ zn:(n —k+1)5(k) A,

k=1

We conclude that the Casimir number of C,(q) is 2n + 4. O

Remark 5.3.4 The mazimal non-negative eigenvalue of the matrix X; is called the
Frobenius-Perron dimension of X;, denoted FPdim(X;). Then FPdim induces an alge-
bra morphism from Gr(C,(q)) to the field C of complex numbers. Note that
i+l _ il

q—qt

FPdim(X;) = 2
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for 0 < i < n (see [28, Exercise 4.10.7]). Then the Frobenius-Perron dimension of
Cn(q) is the number FPdim(C,(q)) defined to be

FPdim(Cy(q)) = FPdim(c(1)) = Z(dezm(xi)f =
This shows that
2n + 4 = FPdim(C,(q))(q —q7')?,

which gives a relationship between the Casimir number of C,(q) and the Frobenius-
Perron dimension of C,(q). By the way, this equality can be obtained as well from
the following approach: it follows from Theorem 5.3.3 that 2n + 4 = c(1)x, where
xr =3 — Xo, applying FPdim to this equality we also obtain that

2n + 4 = FPdim(C,(q)) FPdim(z) = FPdim(C,(q))(q — ¢ *)*.

The Casimir number of C,(¢) can be used to determine the semisimplicity of the
Grothendieck algebra Gr(C,(¢)) ®z K over a field K. In the following, we turn to
consider the Jacobson radical of Gr(C,(¢q)) ®z K in the case when 2n + 4 is zero in K.
To this end, we need to present the Grothendieck ring Gr(C,(¢)) in terms of generators
and relations.

Let Z[X] be a polynomial ring with one variable X over Z and (E,;1(X)) the ideal

(
of Z[X] generated by the n+ 1-th Dickson polynomial E,,1(X) (see (4.2)). The image
(

n+1( ))

of a polynomial f(X) under the natural ring epimorphism Z[X| — Z[X]/

denoted by f(X). We have the following lemma.

Lemma 5.3.5 For 0 <1,j <n, the equality

min{s,j}
EXEX) = Y EgyaX)

l=max{i+j—n,0}

holds in Z|X|/(En11(X)).

Proof.We suppose that F,(X) =0 if s < 0. We proceed by induction on 7+ j only for
the case 0 < i+ 7 < n, and the proof of the case n < i+ 7 < 2n is similar. It is obvious
that the identity holds for ¢ + 5 = 0. For a fixed 1 < k < n — 1, suppose that the
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identity holds for 1 <1+ j < k. We show that it also holds for the case i +j = k + 1.
Note that (i — 1) 4+ j < k and (i — 2) + j < k. Applying the induction hypothesis on
(i—1)+j<kand (i —2)+j <k, we obtain the following two equalities:

min{i—1,5}
Ei 1 (X)E;(X) = > Ei14j-u(X) (5.6)
l=max{i—14+j—n,0}
and
min{i—2,5}
Eio(X)E;(X) = > Ei—gyj-a(X). (5.7)

l=max{i—24;—n,0}

Now consider the product XE; 1(X)E;(X) in Z[X]/(En4+1(X)). On the one hand,

using (5.6) we get that

min{i—1,5}
XE 1(X)E;(X)=X Z Ei1yj-a(X)

l=max{i—14j—n,0}

min{i—1,5}

= Z (Ei+j_21(X) + Ei—2+j—21(X>)'

l=max{i—1+j—n,0}

On the other hand, using (5.7) we have

XE;1(X)E;(X) = (Ei(X) + Ei»(X)) E;(X)
min{i—2,5}

= E,(X)E;(X) + Z Eioyj—a(X).

l=max{i—2+4j—n,0}

It follows that

min{i—1,5} min{i—2,5}
Ey(X)E;(X) = Z (Bitj—2(X) + Ei—ayj-a(X)) — Z Ei o a(X).
l=max{i—1+j—n,0} l=max{i—2+;j—n,0}

By discussing the cases i —1 < 7,7 — 1= 7 and i — 1 > j separately, we obtain that

min{s,5}
E(X)EX)= >  EyaX).

l=max{i+j—n,0}

We complete the proof. O

Theorem 5.3.6 The Grothendieck ring Gr(C,(q)) is isomorphic to the quotient ring
ZIX]/(Eps1(X)).
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Proof.Consider the Z-linear map 6 from Gr(C,(q)) to Z[X]/(En+1(X)) given by 0(X;) =
W for 0 < ¢ < mn. This is a ring epimorphism by Lemma 5.3.5. To see that this
map is injective, we suppose S \;E;(X) = 0 for each \; € Z, then 3" | N E;(X) =
Eni1(X) f(X) for some f(X) € Z[X]. By comparing the degrees of both two sides of

the equality, we obtain that f(X) =0, and hence \; =0 for 0 < i <n. O

The factorizations of £, 1(X) have been carried out using much lengthier methods
by W.-S. Chou [15] (see also [9]). According to Theorem 5.3.6, we obtain the following
criterion for F,1(X) without multiple factors in K[X].

Proposition 5.3.7 The (n+1)-th Dickson polynomial E,1(X) of the second kind has
no multiple factors in K[X] if and only if 2n + 4 is a unit in K.

Proof.We have by Theorem 5.3.6 that Gr(C,(¢)) ®z K = K[X|/(En+1(X)). It follows
from Theorem 5.3.3 that 2n + 4 is a unit in K if and only if K[X]|/(E,+1(X)) is
semisimple, if and only if E,,;(X) has no multiple factors in K[X], as desired. O

In the following we turn to describe the Jacobson radical of the Grothendieck
algebra Gr(C,(q)) ®z K (or equivalently, K[X]/(E,+1(X))) in the case 2n + 4 is zero
in K. Note that a product of all distinct irreducible factors of E,1(X) gives rise to a
generator of the Jacobson radical of K[X]/(E,+1(X)).

Proposition 5.3.8 Let the characteristic of K be p > 2. If p | 2n+4, write n + 2 =
p"(m + 1) where (p,m + 1) = 1, then the Jacobson radical of K[X]/(En+1(X)) is a
principal ideal generated by E,,(X)(X? — 4).

Proof.The decomposition E,1(X) = E,,(X)P (X% — ZL)IOTT_1 holds in K[X] (see [9,
Section 3]), and the Dickson polynomial E,,(X) has no multiple factors in K[X] by
Proposition 5.3.7. It follows that F,,(X)(X?—4) is a product of all distinct irreducible
factors of E,.1(X). We conclude that the Jacobson radical of K[X|/(E,11(X)) is a
principal ideal generated by E,,(X)(X?2 — 4). O

Let the characteristic of K be 2. Then the factorizations of the Dickson poly-

nomials of the second kind are a little bit more complicated. If m is even, it follows
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from [9, Theorem 6] that F,,(X) = F,,(X)?, where

which is a product of several distinct irreducible polynomials in K[X], which occur in
cliques corresponding to the divisors d of m + 1 with d > 1. To each such d there
correspond ¢(d)/(2ky) irreducible factors, where ¢ is the Euler’s totient function and
kq is the least positive integer such that ¢*¢ = 41(mod d). Each of such irreducible

factors has the form
kg—1

[T =@+

1=0

for some choice of (4, where (; is a primitive d-th root of unity.

Proposition 5.3.9 Let the characteristic of K be 2.

(1) If n+ 1 is even, then the Jacobson radical of K[X]/(En+1(X)) is a principal ideal

generated by F,1(X).

(2) If n+1 is odd, write n+2 = 2"(m+1), where m is even, then the Jacobson radical
of K[X]/(En+1(X)) is a principal ideal generated by X F,,(X).

Proof.(1) If n+ 1 is even, then F,1(X) is a product of all distinct irreducible factors
of E,1(X)) as stated above. Thus, the Jacobson radical of K[X|/(E,11(X)) is a
principal ideal generated by m

(2) If n+ 1 is odd, write n +2 = 2"(m + 1), where r > 1 and m is even. In this

case,
Eni1(X) = X7 B, (X)Y = XY B, (X))

(see [9, Section 3]). Thus, X F,,(X) can be written as a product of all distinct irre-

ducible factors of E, (X)), and hence the Jacobson radical of K[X]/(E,+1(X)) is a

principal ideal generated by X F,,(X). O
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85.4 Prime factors of Casimir numbers

Denote by my the Casimir number of representation category Rep(H) of a semisim-
ple Hopf algebra H. In this section, we will give some results concerning prime factors
of my. Obviously, these results holding for the Casimir number of Rep(H) also hold
for the determinant of Rep(H ) as the two numbers have the same prime factors. Then
we show that the Casimir number m¢ of a fusion category C divides the Casimir num-
ber mz of the pivotalization C. This is used to prove that any non-degenerate fusion
category has a nonzero determinant.

A finite dimensional Hopf algebra H is call pivotal if H contains a group-like
element g such that S?(h) = ghg™! for all h € H. The representation category Rep(H)

of a finite dimensional semisimple pivotal Hopf algebra H is a pivotal fusion category.

Proposition 5.4.1 Let H be a finite dimensional semisimple pivotal Hopf algebra over

k. The Casimir number my # 0 in k if and only if S? = idy and dimy H # 0 in k.

Proof.The Casimir number my # 0 in k if and only if Rep(H) is non-degenerate by
Proposition 5.2.5, if and only if H is cosemisimple by [29, Section 9.1], if and only if
S? = idy and dimy H # 0 in k by [27, Corollary 3.2]. O

Since a finite dimensional semisimple and cosemisimple Hopf algebra H over k
always satisfies that S? = idy and dimy H # 0 (see [27, Corollary 3.2]), Proposition
5.4.1 has the following corollary:

Corollary 5.4.2 Let H be a finite dimensional semisimple and cosemisimple Hopf

algebra over k. The Casimir number my is always not zero in k.

The following result gives more information about the Casimir number my of a

semisimple and cosemisimple Hopf algebra H under a certain hypothesis.

Proposition 5.4.3 Let H be a finite dimensional semisimple and cosemisimple Hopf
algebra over k. If the Grothendieck ring Gr(H) of H is commutative, then the Casimir

number myg and the dimension dimy H have the same prime factors.
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Proof.We turn to prove the determinant dy and the dimension dimy H have the same
prime factors. We first consider the case char(k) = 0. The set of isomorphism classes
of simple objects of Rep(H) is denoted by { X, }es. Since the Grothendieck ring Gr(H)
is commutative, it follows from [47, Proposition 20] that all eigenvalues of the matrix
[c(1)] of left multiplication by ¢(1) = .., X;X;- with respect to the basis {X;}ics
of Gr(H) are positive integers, and moreover, all these eigenvalues divide dimy H. In
particular, dimy H is itself the largest eigenvalue of [¢(1)] (see [47, Proposition 8]). On
the other hand, the determinant dy is obtained by multiplying all these eigenvalues.
Thus, dy and dim, H have the same prime factors.

For the case char(k) = p > 0, we denote O the ring of Witt vectors of k and
K the field of fractions of O. For the semisimple and cosemisimple Hopf algebra H,
using the lifting Theorem [27, Theorem 2.1] we may construct a Hopf algebra A over O
which is free of rank dimy H as an O—module such that A/pA is isomorphic to H as a
Hopf algebra. The Hopf algebra Ag := A®e K is a semisimple and cosemisimple Hopf
algebra over the field K of characteristic 0 with the same Grothendieck ring as for H.
It follows that the Grothendieck ring Gr(Ap) is commutative and the determinant d 4,
of Rep(Ay) is equal to the determinant dy of Rep(H). By the same argument as for
the case of char(k) = 0, we may see that the determinant da, and dimg Ay have the
same prime factors. Note that dimg Ay = dimg (A ®p K) which is equal to dimy H
since the Hopf algebra A over O is free of rank dimy H and O as a discrete valuation
ring is a unique factorization domain. We conclude that dy and dimy H have the same

prime factors. 0

Applying Proposition 5.4.3 to the Drinfeld double of a semisimple and cosemisim-
ple Hopf algebra, we have the following result:

Theorem 5.4.4 Let H be a finite dimensional semisimple and cosemisimple Hopf al-
gebra over k and D(H) the Drinfeld double of H. The Casimir number mpry and the

dimension dimy H have the same prime factors.

Proof.The representation category of the Drinfeld double D(H) is a modular fusion
category over k, since D(H) is a quasitriangular semisimple and cosemisimple Hopf

algebra (see [49, Corollary 10.3.13]). It follows that the Grothendieck ring Gr(D(H))
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of D(H) is a commutative ring. By Proposition 5.4.3, the Casimir number mp(gy and
the dimension dimy D(H) = (dimy H)? have the same prime factors. This gives the

desired result. O

In the following, we describe a relationship between the Casimir number m¢ of a
fusion category C and the Casimir number mgz of C. , where C is the pivotalization of C
stated below.

Let C be a fusion category over k. Recall from [29, Theorem 2.6] that there exists
an isomorphism v : id — * * %% between the identity and the fourth duality tensor
autoequivalences of C. Denote by C = C%?Z the corresponding equivariantization.
More explicitly, simple objects of C are pairs (X, a), where X is a simple object of C,
and o : X — X™ satisfies ™« = yx. The fusion category C has a canonical pivotal
structure which is called the pivotalization of C (see [28, Definition 7.21.9] for details).
Moreover, the pivotal fusion category C is also spherical (see [30, Corollary 7.6)).

To describe any simple object (X, av) of 5, we first fix an isomorphism 6 : X — X**.
Since Hom (X, X**) is one dimensional, we may write a = uf and yx = v6**6 for some
u,v € k*. Then o**«a = 7y implies that u?> = v. Therefore, for each simple object
X of C, we only have two choices of «, and if one of them is o then another one is
—a. In view of this, we may write (X,«) = X and (X, —a) = X . It follows that
1"=1,1"®1 =1,dim(17)=-1,and X*®1~ =1~ ®@ X* = X7 (see [55, Section
5.1]). Note that the forgetful function F : C—=¢C , X* = X preserves squared norms
of simple objects [28, Remark 7.21.11]. It follows that dim(C) = 2dim(C).

If char(k) # 2, the Grothendieck algebra Gr(g) ®z k has the following decompo-
sition:

Gr(C) ®z k = e(Gr(C) @2 k) @ (1 — e)(Gr(C) ®z k), (5.8)

-1 5 a central idempotent element of Gr(C) ®z k. It follows from [55,

2
Section 5.1] that

where e =

Gr(C) ®z k = (Gr(C) @2 k) /e(Gr(C) @2 k) = (1 —e)(Gr(C) @z k).  (5.9)

The Casimir number me (resp. de or ne¢) and mg (resp. dg or ng) have the

following relation:
Proposition 5.4.5 Let C be a fusion category over k and C the pwotalization of C.
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(1) me | mg.
(2) nc | ne.

(3) de | dg.

Proof.(1) Denote by {X;}ier the set of isomorphism classes of simple objects of C.
Then {Xii}ie 1 is the set of isomorphism classes of simple ob jects of C. For the Casimir
number mg, there exists some a € Gr(C) such that >ier XiFa(XF)* = mgs. Applying
the ring morphism f : Gr(C) — Gr(C) induced by the forgetful function F : C — C to
this equation, we have ) ., X;2f(a)(X;)* = mg. It follows that ms € ZNImc = (mc).
This gives a proof of Part (1).

(2) The proof is similar to Part (1).

(3) In the Grothendieck ring Gr(g) we suppose for any j € I that
SOXNXIXS =D X+ vX (5.10)
i€l el el

where p;;,v;; € Z. Then for any j € I,

SOXHXX; =) XHX)X =) X+ vX

el el el el

This means that, in the Grothendieck ring Gr(g), the matrix of left multiplication
by the Casimir element Y., X;"(X;)* = 23", , X;"(X;")* with respect to the basis
{X*}ies of Gr(C) is

A B

2 )
B A

where A = (f4jj)nxn, B = (Vij)nxn and n is the cardinality of /. Thus, the determinant
of C is
dz = 2°" det(A + B) det(A — B).

Applying the homomorphism f : Gr(C ) — Gr(C) as above to the equation (5.10), we
have that » .., Xi(X;)* X; = > .o/ (i + vi5) Xi. This shows that, in the Grothendieck
ring Gr(C), the matrix of left multiplication by the Casimir element ), , X; X with
respect to the basis {X;}ier of Gr(C) is A+ B. Thus, the determinant of C is d¢ =
det(A + B), which is a factor of d. O

86



As a consequence, we have the following result:

Proposition 5.4.6 Let C be a fusion category over k with char(k) # 2. If C is non-
degenerate, then me # 0 in k.

Proof.Since C is non-degenerate, i.e., the global dimension dim(C) # 0 in k, it follows
that dim(C) = 2dim(C) # 0. Thus, the pivotal fusion category C is non-degenerate. It
follows from Proposition 5.2.5 that ms # 0 in k. As a result, m¢ # 0 since m¢ is a

factor of mg. O

We expect that the converse of Proposition 5.4.6 is also true. One method of
addressing this problem is to prove that det(A + B) and det(A — B) as stated in
Proposition 5.4.5 have the same prime factors. However, the proof seems too hard to

be finished. What we can do is the proof of the following statement:

Proposition 5.4.7 LetC be a fusion category over k with char(k) # 2. Then C is non-

1-1-1
2

degenerate if and only if the subalgebra e(Gr(C~) ®z k) is semisimple, where e =

is a central idempotent element of Gr(C) ®z k.

Proof.The global dimension dim(C) # 0 shows that dim(C) = 2dim(C) # 0. Thus,
the Grothendieck algebra Gr(g) ®z k of the pivotal fusion category C is semisimple
by [60, Theorem 6.5]. It follows that the quotient algebra (see (5.8))

(Gr(C) @7 k) /(1 — €)(Gr(C) @7 k) = ¢(Gr(C) @7 k)

is also semisimple. Conversely, consider the element ¢ = Y, ; dim(eX;")e(X;")*. For

any a € e(Gr(C) ®z k), it follows from (5.1) that
ta = Z dim(eX;")e(XF)*a = Z dim(eaX")e(X)* = dim(a)t.
iel il

Similarly, it follows from (5.2) that at = dim(a)t. Thus, ¢ is an central element of
e(Gr(C) @z k) satisfying 2 = dim(t)¢t = dim(C)¢ = 2dim(C)t. If dim(C) = 0, then the
ideal of e(Gr(C) @z k) generated by ¢ is nilpotent, a contradiction to the semisimplicity

of e(Gr(C) @z k). O
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§5.5 Casimir numbers vs. Frobenius-Schur exponents

In this section, we shall show that the Casimir number and the Frobenius-Schur
exponent of a spherical fusion category over the field C of complex numbers have the
same prime factors.

Let C be a fusion category over k and V' a finite dimensional left Gr(C)®z K-module
over an algebraic closure field K. For any ¢ € Endg(V), we define Z(p) € Endg (V)
by

Z(p)(v) = > Xip(Xi-v) for v € V.

il
Then Z(yp) lies in Endgr(c)e,x (V) and does not depend on the choice of a pair of dual
bases of Gr(C) ®z K (see [32, Lemma 7.1.10]). If V is a simple Gr(C) ®z K-module,
then Endgrc)e,x (V) =2 K. In this case, there exists a unique element ¢y € K such
that
Z(p) = cyTr(p)idy for all p € Endg (V).

Such an element ¢y only depends on the isomorphism class of V' and is called the
Schur element associated with V' (see [32, Theorem 7.2.1]). Note that the semisimplic-
ity criterion stated in [32, Theorem 7.2.6] works for Grothendieck algebras. Namely,
the Grothendieck algebra Gr(C) ®z K is semisimple if and only if any Schur element
associated with a simple module over Gr(C) ®z K is not zero in K.

Let V be a simple Gr(C) ®z K-module with the Schur element ¢y, The character
of V' is denoted by xv. Then ), ; xv(X;) X+ is a central element of Gr(C) ®z K. This
element acts by a scalar fi, on V' and by zero on any simple module not isomorphic to

V. The scalar fy is called the formal codegree of V' (see [56, Lemma 2.3]).

Lemma 5.5.1 Let V be a simple Gr(C) ®z K-module with the Schur element ¢y and

the formal codegree fi,. The action of ZMGI X X;X;» X« on'V is a scalar multiple by

cv fv.

Proof.For a simple module V' over Gr(C) ®z K, there is a corresponding algebra
morphism

pv : Gr(C) ®z K — Endg(V), py(a)(v) =av for a € Gr(C) ®z K, v e V.
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Note that Z(p)(v) = cyTr(p)v holds for any ¢ € Endg (V) and v € V. Replacing ¢
and v in this equality by py(X;) and X;-v respectively, we have Z(py (X;))(X;-v) =
ey Tr(py (X)) X +v. Summing over all j € I we have

S v (X)) (Xje0) = e S Ty (X)) X0

jel jeI
Taking into account the definition of Z, we have

ijel jel

This gives rise to the desired result ) X X; X Xjv=cyfyvforanyveV. O

ijel

Note that Gr(C) ®z C is always semisimple and dim(C) is always not zero in the
field C of complex numbers. Thus, [60, Theorem 6.5] is trivial if the field k is taken
to be C. In the following, we shall give a modification version of [60, Theorem 6.5] so
that we can use it to present another statement of the Cauchy theorem for spherical
fusion categories.

Let C be a spherical fusion category over C with isomorphism classes of simple
objects {X; }ier. The Frobenius-Schur exponent of C has been defined in [51, Definition
5.1] in terms of the higher Frobenius-Schur indicators of objects of C. This exponent,
denoted by N, can be regarded as the order of the twist 6 of the Drinfeld center Z(C)
associated with a pivotal structure of C (see [51, Theorem 5.5]). Let {5 € C be a
primitive N-th root of unity. Then Z[¢y] is a Dedekind domain and every nonzero
proper ideal factors into a product of prime ideal factors. Let p be a prime ideal of
Z[¢n]. Then p is maximal since Z[{y] is Dedekind. Thus, the quotient ring Z[{x]/p
is a field. In this case, dim(X) € Z[¢n] (see [51]) can be considered as an element in

Z[¢n]/p in a natural way.

Theorem 5.5.2 Let C be a spherical fusion category over C with the Frobenius-Schur
exponent N. For any prime ideal p of Z[En], the Casimir number me # 0 in Z[En|/p if
and only if the global dimension dim(C) # 0 in Z[En]/p. Thus, the set of prime ideals
dividing the principal ideal generated by dim(C) is identical to that of me in Z[EN].

Proof.Note that the Casimir number me = .. ; X;a.X;- for some a € Gr(C). Applying
dim to this equality, we have m¢ = dim(C) dim(a). Thus, if m¢ # 0 in Z[Ex]/p, then
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dim(C) # 0 in Z[¢y]/p. Conversely, if dim(C) # 0 in Z[¢{y]/p, so is dim(C) # 0 in
K, where K is an algebraic closure of the field Z[¢y]/p. Let Z(C) be the Drinfeld
center of C. Since dim(C) # 0 in K, it follows from [50, Section 5] that Z(C) is a
modular category and dim(Z(C)) = dim(C)? # 0 in K. If we denote Irr(Z(C)) the set
of isomorphism classes of simple objects of Z(C) and n the cardinality of Irr(Z(C)),
then by Example 5.2.7 the determinant of Z(C) is
dim(Z(C))"
Iy ererz(eyy dim(Y)?

Note that dz(c) is the determinant of the matrix of left multiplication by the Casimir

dzc) = # 0.

element vy, 7y YY" It follows that >y cp, 7)) VY™ is an invertible element in
Gr(Z(C))®z K. Note that the forgetful tensor functor F' : Z(C) — C induces an algebra
morphism f : Gr(Z(C)) ®z K — Gr(C) ®z K whose image is contained in the center
of Gr(C) ®z K. In particular, from the proof of [56, Lemma 3.1] we may see that

O vy) =Y XXX X,

Yelrr(Z(C)) i,j€l

Thus, >, je; XiX; X+ X« is a central invertible element in Gr(C) ®z K. This together
with Lemma 5.5.1 shows that ¢y # 0 for any simple Gr(C) ®; K-module V. We
conclude that Gr(C) ®z K is semisimple by [32, Theorem 7.2.6], and hence m¢ # 0 in
K by Proposition 5.2.2. This gives the desired result that m¢ # 0 in Z[¢y]/p. O

We are now ready to state the relationship between the Casimir number m¢ and

the Frobenius-Schur exponent N of C.

Theorem 5.5.3 Let C be a spherical fusion category over C. The Casimir number me

and the Frobenius-Schur exponent N of C have the same prime factors.

Proof.For the Casimir number mg, there is some a € Gr(C) such that Y., X;aX;« =

el
me. Applying dim to this equality, we have dim(C)dim(a) = m¢ in Z[¢y]. Note
that (N) and (dim(C)) are two principal ideals of Z[¢{y] having the same prime ideal
factors (see [10, Theorem 3.9]). If p | N for a prime number p, then there exists a
prime ideal factor p of (N) such that p N Z = (p). In this case, p is also a prime

ideal factor of (dim(C)). Moreover, (dim(C))NZ C pNZ = (p). It follows from
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me = dim(C)dim(a) that me € (dim(C)) NZ C (p), and hence p | me. Conversely,
if pt N for a prime p, we need to show that p { me. Let p be a prime ideal of Z[{y]
such that p NZ = (p). Then (N) € p since p { N. This implies that (dim(C)) € p.
Especially, 0 # dim(C) € Z[¢{y]/p. Tt follows from Theorem 5.5.2 that me # 0 in
Zlén]/p. In other words, me ¢ pNZ = (p) and hence p { me. O

Remark 5.5.4 Let (N) and (dim(C)) be principal ideals of Z[n] generated by N and
dim(C), respectively. The statement of [10, Theorem 3.9] that (N) and (dim(C)) have
the same prime ideal factors is called the Cauchy theorem for a spherical fusion cat-
egory. Indeed, applying this to the case C = Rep(G) for a finite group G, we obtain
the classical Cauchy theorem for finite groups: dim(C) = |G| and N = exp(G) have
the same prime factors. Now, Theorem 5.5.3 shows that all of the numbers me, ne, de
and the Frobenius-Schur exponent N of C have the same prime factors. This may be

thought of as another statement of the Cauchy theorem for spherical fusion categories.
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