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Abstract

Quasitriangular Hopf algebras is an important class of Hopf algebras in quantum
groups and there are many active studies on them, such as the classification of them
and the construction of invariants of manifolds from quasitriangular Hopf algebras etc.
Since many topics on quasitriangular Hopf algebras have a common feature, that is
depending heavily on the construction of quasitriangular Hopf algebras, we put the
exploration of the construction of quasitriangular Hopf algebras as the central work of

this thesis.

The known construction methods of quasitriangular Hopf algebras can be divided
into two types, one is to find all the quasitriangular structures on a given Hopf algebra,
and the other is to discover a new Hopf algebra and give the quasitriangular structures
on it. In general, the subjects related to both construction methods all are difficult,
even the non-trivial minimal triangular semisimple Hopf algebra with the smallest

dimension is not clear for us yet. We study the first construction method in this thesis.

Specifically, we study the quasitriangular structures on two classes of semisimple
Hopf algebras, one class of Hopf algebras are obtained by a special kind of abelian
extension of Hopf algebras, and the other class of Hopf algebras are some minimal qua-
sitriangular Hopf algebras. For the first class, we give all the quasitriangular structures
on them. For the second class, we mainly prove that the smallest dimension among
the non-trivial minimal triangular semisimple Hopf algebras is 16 and give an example
of 16 dimension Hopf algebra specifically.

The main results are described as follows.

For the first class of Hopf algebras which are k%4, kZ,, we first prove that there
are only two forms of quasitriangular structures on them, one is called trivial quasi-
triangular structures, while the other is called non-trivial quasitriangular structures.

The trivial quasitriangular structures are some bicharacters on the group G and thus
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they are easy to be given. After that we give all non-trivial quasitriangular structures
and determine the number of quasitriangular structures on kG#U,TkZQ. In the process
of giving all non-trivial quasitriangular structures, we explore the symmetries of qua-
sitriangular structures and obtain some propositions which play a key role in solving
all non-trivial quasitriangular structures.

Next, we select the simplest two families of Hopf algebras from the first class of
Hopf algebras for further study. We prove that all quasitriangular structures on these
two families of Hopf algebras are ¢-symmetric and give all quasitriangular structures
on them.

For the second class of Hopf algebras, which we call full rank minimal quasitrian-
gular Hopf algebras. This class of Hopf algebras are some minimal quasitriangular Hopf
algebras. We give an example to show that there exists a Hopf algebra H such that H
is a minimal quasitriangular Hopf algebra but not a full rank minimal quasitriangular
Hopf algebra. Further, we use another example to illustrate that there exists a Hopf
algebra K such that K is a full rank minimal quasitriangular Hopf algebra but not a
minimal triangular Hopf algebra. Subsequently, we discuss the characterizations of full
rank minimal quasitriangular Hopf algebras. In particular, we construct a family of
non-trivial full rank minimal quasitriangular Hopf algebras.

Finally, we construct a family of non-trivial minimal triangular semisimple Hopf
algebras and give all non-trivial minimal triangular structures on them. As an ap-
plication, we prove that the smallest dimension among non-trivial minimal triangular

semisimple Hopf algebras is 16 and give an example of 16 dimension Hopf algebra.

Keywords: Hopf algebras; Quasitriangular structures; Abelian extension.
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Chapter 1 Introduction

§1.1 Background

Quasitriangular Hopf algebras were introduced by Drinfel’d [11] to give solutions
to the quantum Yang-Baxter equations. Quasitriangular Hopf algebras are the Hopf
algebras whose finite-dimensional representations form a braided rigid tensor category,
which naturally relates them to low dimensional topology(see [27], [34], [24], [66]).
Moreover, Drinfel’d proved that any finite dimensional Hopf algebra can be embedded
into a finite dimensional quasitriangular Hopf algebra, which we now call its quantum
double. Since quasitriangular Hopf algebras, especially the triangular ones are close to
groups and Lie algebras, they are more tractable than that of general Hopf algebras and
hence they can be used to support a testing ground for general Hopf algebraic ideas,
methods and conjectures. Quasitriangular Hopf algebras, even if the triangular ones
are far from known well. To our knowledge, many authors have studied quasitriangular

Hopf algebras from the following different aspects in recent years.

(1) Classification of quastiriangular Hopf algebras with given dimension, especially the

triangular ones;

(2) Construct quasitriangular structures on known Hopf algebras or give method to

construct new quasitriangular Hopf algebras;
(3) Using quasitriangular Hopf algebras to construct topological invariants;

(4) Study special quasitriangular Hopf algebras, such as ribbon Hopf algebras and

modular Hopf algebras;

(5) Explore braided tensor categories which are the categorical version of quasitrian-

gular Hopf algebras;

Because the problems (3)-(5) heavily depends on the answers of the problem (1)-
(2), we mainly focus on problems (1)-(2). The problem (1) is an important and basic
problem in Hopf algebras. However, this intriguing problem turns out to be extremely

hard and it is still widely open. Fortunately, there are two classes of quasitriangular

1



Hopf algebras that are relatively well understood and they are semisimple triangualar
ones and pointed triangular ones. The semisimple triangular Hopf algebras over k(and
cosemisimple if the characteristic of k is positive) are completed classified in [15], [14].
The key theorem about such Hopf algebras states that each of them is obtained by
twisting a group algebra of a finite group |15, Theorem 2.1]. So far, all known triangular
Hopf algebras in characteristic 0 have Chevally property-namely, the Jacobson radical

is Hopf ideal. Naturally, we can ask the following question

Question 1.1.1 Does there exists a triangular Hopf algebra in characteristic O which

has no Chevalley property?

Furthermore, we find that there are many quasitriangular Hopf algebras such that
they are not triangular(see Remark 7.2.5), such as the 8-dimension Kac algebra Kg but
they are full rank minimal quasitriangular Hopf algebras(see Section 8.1 for definition),

then we pose the following question

Question 1.1.2 Give classification for full rank minimal quasitriangular Hopf alge-

bras with given dimension?

For the problem (2), all the quasitriangular structures on some well known Hopf
algebras are gotten, such as all quasitriangular structures on group algebras are de-
termined in [10] and all quasitriangular structures on small quantum groups U, (sl,)’
are given in [20]. In [21], S. Gelaki asked if there is a non-trivial minimal triangular
semisimple Hopf algebra? Then he and P. Etingof constructed a series of minimal tri-
angular semisimple Hopf algebra in [12]. Their method is to construct twists iteratively
and give some minimal triangular structures on some semisimple Hopf algebras. And
their results depends on solutions of set theoretic of Yang-Baxter equations. Inspired

by [21] and [12], we can naturally ask the following problems.

Question 1.1.3 Whether there are other ways to give series of minimal and triangular

semisimple Hopf algebras? and if so, give all minimal triangular structures on them?

Question 1.1.4 What is smallest dimension among non-trivial minimal triangular
semisimple Hopf algebras? Then give all minimal triangular structures on a smallest

one?



Also there are many other authors, such as [25], [53|, [55], [76] have studied the
problem (2). We note that quasitriangular structures on pointed Hopf algebras have
been studied by many authors over past decades, such as [20], [55], [57], but few
authors study the quasitriangular structures on semisimple Hopf algebras in recent
years. In [63], D. E. Radford proved that the number of quasitriangular structures
on a semisimple Hopf algebra is finite and hence it is hoped that we can not only
calculate the quasitriangular structures on semisimple Hopf algebras but also study the
number of quasitriangular structures. For example, in 2011 S. Natale [53| proved that
there is no quasitriangular structure on some semisimple Hopf algebras which comes
from some special abelian extensions. She mainly used the conclusion that full fusion
subcategories of Rep D¥(G) are determined in [52, Theorem 5.1]. For us, we not only
want to get more abundant quasitriangular structures on semisimple Hopf algebras, but
also want to study the relationship between the number of quasitriangular structures
on a given semisimple Hopf algebra H and the H itself. So we want to know more
information about quasitriangular structures of a given Hopf algebra and it’s better
to determine all quasitriangular structures, and we believe that it will greatly help
us to learn quasitriangular Hopf algebras. Because it is known that there are many
quasitriangular structures on finite abelian groups and their quasitriangular structures
are easy to obtained by their bicharacters, so we choose simplest non-trivial semisimple
Hopf algebras k¢#, .kZ, which come from the following abelian extension to study
the problem (2)

k¢ 5 A S KkZs,

here we assume that G is a finite abelian group to make things easier. Naturally, we

can ask the following question

Question 1.1.5 Gi triangular struct kCH#, k7, ?
uestion 1.1. we quasiirianguiar Structures on o, 2

Since we feel interested in the number of quasitriangular structures on a given semisim-

ple Hopf algebra, we also pose the following question.

Question 1.1.6 Is there any relationship between the number of quasitriangular struc-

tures on a given semisimple Hopf algebra and its dimension?

In addition, we are interested in invariants of quasitriangular Hopf algebras. In

[62], D. E. Radford showed that the antipode of a quasitriangular Hopf algebra is inner

3



and thus the antipode can give an invariant for identify non-quasitriangualrity. Even
more exciting result has been gotten in [54] which states that there no exist non-trivial
quasitriangular Hopf algebra with odd and square free dimension. These interesting

results inspire us to put forward the following question.

Question 1.1.7 Find more invariants of Hopf algebras to identify the quasitriangu-

larity?

Finally, because we are very interested in analytical version of Hopf algebras, i.e the
Kac algebras, we follow the step in [1] to explore whether a semimiple Hopf algebra

over complex field is Kac algebra and let’s repose the following question.

Question 1.1.8 Is a quasitriangular semisimple Hopf algebra over complex field must

be Kac algebra?

Based on the above questions 1.1.1-1.1.8, we realize that the construction of quasitri-
angular Hopf algebras plays an important role in answering them, i.e some interesting
examples of quasitriangular Hopf algebras may support good ideas to solve these prob-
lems, and it may even disprove certain conjectures. Therefore, the questions 1.1.3-1.1.6

are focused in the thesis, while the other questions will be discussed in the future.

§1.2 Main results

As we mentioned in the previous subsection, we mainly discuss the construction of
quasitriangular structures in the thesis. To solve the problems 1.1.3-1.1.6, we first con-
sider the problem 1.1.5. To answer the problem 1.1.5, we give the following Theorems

1.2.1-1.2.3.

Theorem 1.2.1 Let R be a general solution for KC#, k7, and let (o, Bi, i, 0)1<ij<n
be a quadruple which is defined as follows

Uiy = U}I(Si,Sj), 5% = w2(5i7a’)7 Vi = wg(av Si)7 0= w4<a7a‘)7

where w'(1 < ¢ < 4) are associated functions of R. Then the above quadruple satisfies

the conditions (i)-(v) of Proposition 6.1.10

Conversely, we have the following theorem.

4



Theorem 1.2.2 Given a quadruple (cuj;, Bi, Vi, 0)1<i j<n satisfying conditions (i)-(v) of
Proposition 6.1.10, then there exists a unique general solution R for K%#,.kZy such

that the following equations
1 _ 2 _ 3 _ 4 _
w (Si,Sj) = Qyj, W (S'iaa) = Bi, w (G,Si) =%, W (Ga CL) =9,

where w'(1 < i < 4) are associated functions of R.

Then we give a necessary and sufficient condition for the existence of a special

solution on kG#U,TkZQ as follows

Theorem 1.2.3 There exists a quasitriangular structure for KE#, . kZ, if and only if
there exists a quadruple (cuj;, Bi, Vi, 0)1<ij<n Satisfies conditions (i)-(vi) of Proposition

6.2.1.

So we have answered the question 1.1.5. For the problem 1.1.6, we use the fol-
lowing Theorem 1.2.4 to give a answer to special case. Let Ty be the set of trivial

quasitriangular structures of k¢#kZ,. Then we have

Theorem 1.2.4 Let m be the number of quasitriangular structures of KS#, ,kZ, then
we have m € {0, |Tyl,2|Tg|}. Moreover, if G = Zyp, X ... X Ly, and m # 0 then the

number m is a factor of 2|G|".

Later we use the following Theorem 1.2.5 to answer the problem 1.1.3. Let n be

an odd number and let 7}, := {minimal triangular structures on Hj., }, then we have

Theorem 1.2.5 We have the following one-one correspondence:
T ¢ {(o, B,w",8) € k| a? =B =62 =1, k € N and (K*,n)|k}.

Finally, we have the following result to answer the problem 1.1.4.

Theorem 1.2.6 The 16 dimensional Hopf algebra Hl}:y is a Hopf algebra with smallest

dimension among non-trivial semisimple minimal triangular Hopf algebras.



§1.3 Organization

In this section, we give an outline of this dissertation.

This dissertation is divided into eight chapters, each of which is subdivided into
sections.

In Chapter 1, we provide the research background and main results.

In Chapter 2, we give a preparation of the following chapters.

In Chapter 3, we prove that the quasitriangular structures on k¢#, ,kZ, has only
two forms, one is called trivial while the other is called non-trivial. The trivial qua-
sitriangular structures are easy to give, but the non-trivial quasitriangular structures
are difficult to know. Therefore, we give the necessary conditions for the existence of
non-trivial quasitriangular structures on k“#, . kZ,. As an application of these results,
we give all the quasitriangular structures on Hy,2.

In Chapter 4, we consider how to simplify the calculations of quasitriangular struc-
tures and hence the concept of symmetry of quasitriangular structures on any Hopf
algebra is introduced, and then some propositions about symmetry that are useful for
computing quasitriangular structures are given. Then we apply these conclusions to
the special case kG#U,TkZQ.

In Chapter 5, we showed that the non-trivial quasitriangular structures are in
one-one correspondence to some special functions on kG#J,TkZQ, which we call quasi-
triangular functions on k9#, . kZ,. After that, we focus on quasitriangular functions
and give a criterion for determining when a function is a quasitriangular function on
KC#,  KZs.

In Chapter 6, we use the one-one correspondence about quasitriangular functions
which was proved in Chapter 5 to get a division-like operation on quasitriangular
structures of kG#U,TkZQ. So we analogize the solution of linear equations and introduce
the concepts of general solutions and a special solution of quasitriangular structures on
kC#, . kZ,. Naturally, we reduce the problem of solving the non-trivial quasitriangular
structures on k¢#, .kZ, into finding all general solutions and giving a special solution.
At last, we give all the general solutions for k%#, . kZ, and get a necessary and sufficient
condition for the existence of a special solution.

In Chapter 7, we discuss some interesting quasitriangular structures which were

called p-symmetric quasitriangular structures. We give a simple necessary and suffi-
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cient condition for the existence of a p-symmetric quasitriangular structure. Then we
investigate two special classes of Hopf algebras K (8n,o,7) and A(8n,o,T) belonging
to k9#,.kZy. And we proved that k9#,.kZ, always has either K(8n,0,7) as its
quotient or A(8n,o,T) as its quotient. Moreover, we showed that all quasitriangular
structures on these two class Hopf algebras are p-symmetric. Later all non-trivial
quasitriangular structures on K(8n,0,7) and A(8n, o, T) are given.

In Chapter 8, we provide a system method to construct series of special minimal
quasitriangular Hopf algebras which include triangular minimal quasitriangular Hopf
algebras. The concept of full rank minimal quasitriangular Hopf algebra is introduced
and a series of full rank minimal quasitriangular Hopf algebras are constructed. Then
the construction of minimal triangular semisimple Hopf algebras is discussed and all
minimal triangular quasitriangular structures on a family of Hopf algebras H;, have
been obtained. Finally, a smallest dimension Hopf algebra among non-trivial minimal
triangular semisimple Hopf algebras has been given and all its minimal triangular

quasitriangular structures are determined.



Chapter 2 Preliminaries

In this chapter, we mainly review some preliminaries used in this paper. It mainly
includes the definitions and some basic conclusions of Abelian extension and quasitri-

angular Hopf algebras.

§2.1 The definition of kG#J’TkZQ

In this section, we recall the definition of kG#O—7TkZQ7 and then we give some

examples of kG#mTkZz for guiding our further research.

Definition 2.1.1 A short exact sequence of Hopf algebras is a sequence of Hopf alge-
bras and Hopf algebra maps

K5 HSA (2.1)
such that
(1) ¢ is injective,
(ii) 7 is surjective,
(iii) ker(w) = HK™, K is the kernel of the counit of K.

In this situation it is said that H is an extension of A by K [45, Definiton 1.4]. An
extension (2.1) above such that K is commutative and A is cocommutative is called

abelian. In this paper, we only study the following special abelian extensions
k¢ & H 5 kZ,,

where G is a finite abelian group. Abelian extensions were classified by Masuoka
(see [45, Proposition 1.5), and the above H can be expressed as kC#, ,kZ, which is

defined as follows.

Let Zs = {1, z} be the cyclic group of order 2 and let G be a finite group. To give
the description of k¢#, ;kZ,, we need the following data

(i) <:Zy — Aut(G) is an injective group homomorphism.

8



(ii) o : G — k* is a map such that o(g<z) = o(g) for g € G and o(1) = 1.

(iii) 7 : G x G — k* is a unital 2-cocycle and satisfies that o(gh)o(g)~to(h)™! =
(g, h)T(g <z, h<x) for g,h € G.

The aim of (i) is to avoid making a commutative algebra (in such case all quasitriangular

structures are given by bicharacters and thus is known).

Definition 2.1.2 |1, Section 2.2] As an algebra, the Hopf algebra KE#,.kZy is gen-
erated by {ey, x}g4ec satisfying

2
egen = Ogn€y, T€y = €gqu®, T~ = E o(g)eg, g,h €G.
geG

The coproduct, counit and antipode are given by

Aleg) = Y en®er Al)=1) 7(g,h)e; @ enl(x @ x),

h,keG, hk=g g,heG
e(x) =1, e(eg) = dgal,
S(]}') = 20(9)717—(97971>71€g<&x7 8<€g) = 69_17 g e G

geG

The following are some examples of k¢#, kZ, and we will discuss them in next sec-

tions.

Example 2.1.3 Let n € N and assume that w is a primitive nth root of 1 in k. Then
the generalized Kac-Paljutkin algebra Hap,2 [58, Section 2.2] belongs to k¢#, ,kZ,. By
definition, the data (G,<,0,7) of Hay,2 is given by the following way

(i) G =2, X Z, = (a,bla™ =b"=1,ab=ba) and a<x =b,b<x = a.
(ii) o(a't’) = w¥ for 1 <4,j < n.
(iii) 7(a’V’, a*b) = (w)’* for 1 <4, 4, k,1 < n.

Among of them, if we take n = 2 then the resulting Hopf algebra is just the well-
known Kac-Paljutkin 8-dimensional algebra Kg. That’s the reason why we call H,,2

the generalized Kac-Paljutkin algebra.



Example 2.1.4 Let n be a natural number. A Hopf algebra H belonging to kK¢#, . kZ,
is denoted by K (8n,o, ) if the data (G,<,0,7) of H satisfies

(i) G = Zay X Zy = {(a,bla® = b* = 1,ab = ba);
(ii) a<x =abbaz =b.

If we take n = 1 and let o(a’t’) = (—=1)097 and 7(a’t’,d"b') = (—1)7*D for 1 <
1,7, k,l <2, then we can easily check that the resulting 8-dimensional Hopf algebra is
just the Kac-Paljutkin 8-dimensional algebra Kg. Therefore, we give another kind of

generalization of K.

Example 2.1.5 Let n € N such that n > 2 and assume that ( is a primitive 2nth root
of 1. A Hopf algebra H belonging to k¢#, ,kZ, is denoted by K(8n,() if the data

(G,<,0,7) of H satisfies the following conditions

(i) G = Zay, X Zy = {a,bla® = b* = 1,ab = ba) and a<x = ab,b<x = b.

i(i

(i) o(a’t) = (=1)" 7 ¢l for 1 <i<2nand 1< j<2.
(iii) 7(a’V’,a*b) = (=1)* for 1 < i,k <2nand 1 < j,1 < 2.

This recover some familiar examples of semisimple Hopf algebras. For example,
K (16, ) is the 16 dimensional Hopf algebra H..,, in [30, Section 3.1]. Moreover, it can
be seen that K (8n, () belongs to K (8n, o, ).

Example 2.1.6 Let n be a natural number. A Hopf algebra H belonging to kK¢#, . kZ,
is denoted by A(8n,o, ) if the data (G, <,0,7) of H satisfies

(1) G = Zsn = (ala™ = 1);

2n+1

(ii) a<z =a

In fact, non-trivial Hopf algebra A(8n, o, 7) exists. For example we can make o(a’) = 1
and 7(a’,a’) = (=1)¥ for 1 < 4,5 < 4n, then we get a non-trivial Hopf algebra
A(8n,o,T).

Example 2.1.7 [30, Section 3.1] The 16 dimensional semisimple Hopf algebra H,,,
belongs to k#, ,kZ,, and the data (G, <, 0,7) of Hy, is given as follows

10



(i) G=724 X Zy = {a,bla* =1*> =1,ab=ba) and a<x =a® bz =D.
(it) o(a'd) = (1), 1<i<4,1<5<2.
(iii) 7(a'®?,a*b) = (=1)% 1 <ik <4, 1 <j,1<2.

Example 2.1.8 Let n € N. A Hopf algebra H belonging to k“#, ,kZ, is denoted by
Hy, if the data (G, <,0,7) of H satisfies the following conditions

(i) G = Zyy X Loy = {a,bla*™ = *" = 1,ab = ba) and a <z = a* T, baz =b.
(i) o(a¥) = (=1) for 1 <i<4nand 1 <j < 2n.
(iii) 7(a’V’,a*b) = (=1)% for 1 < i,k <4n and 1 < j,1 < 2n.

If n = 1, then Hl}:y is the 16 dimensional Hopf algebra H,., in [30, Section 3.1|.
The following example will be used to show that there exist Hopf algebras kS#, ,kZ

such that they admit no quasitriangular structure.

Example 2.1.9 Let n be an odd number and let i be a primitive 4th root of 1. A
Hopf algebra H belonging to k“#, .kZ, is denoted by Asy,2 if the data (G,<,0,7) of

H satisfies the following conditions
(i) G = Zyp X Zyp, = {(a,bla™ = b" = 1,ab = ba) and a <z = a®* " bax = b;
(ii) o(g) =1 for g € G;

(iii) 7(a’®’,a*b) = (1)* for 1 <4,k < 4n and 1 < j,1 < 4n.

§2.2 Quasitriangular structures on Hopf algebras

In this section, we review the definition of quasitriangular structures on Hopf
algebras and give some basic results about quasitriangular structures.

The definition of the Hopf algebra can be found in [59]. Recall that a quasitrian-
gular Hopf algebra is a pair (H, R) where H is a Hopf algebra and R = >_ RV @ R?)

is an invertible element in H ® H such that
(1) (A X Id)(R) = R13R23 and (Id ®A)(R) = R13R12.
(ii)) A°?(h)R = RA(h) for h € H.
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Here by definition Rj; = SR @ R @1, Ry = Y RV ®1® R? and Ry =
S 1@RW®RAP. The element R is called a universal R-matrix of H or a quasitriangular
structure on H. If R is a universal R-matrix of H such that RRy = 1(Ry; := 7(R)),
then we call R is a triangular structure on H.

The following lemma is well-known.

Lemma 2.2.1 [59, Proposition 12.2.11]| Let H be a Hopf algebra and R € H® H. For
f e H*, if we denote I(f) := (f @ Id)(R) and r(f) := (Id®f)(R), then the following

statements are equivalent
(1) (A X Id)(R) = R13R23 and (Id ®A>(R) = R13R12.

(i) {(f)I(f2) = U(f1f2) and r(f1)r(f2) = r(f2fo) for fi, f2 € H".

Let C(H*) := (xv| V is a finite dimensional representation of H) as vector space,

where y means the character of V| then we have

Lemma 2.2.2 If (H, R) be a quasitriangular Hopf algebra, then C(H*) is a commuta-
tive subalgebra of H*.

Proof: Let V, W be two finite dimensional representations of H, then it is known that

ToR: VW — W ®V is H-module map. Therefore we have xyxw = xwxv.

12



Chapter 3 Two forms of universal R-matrices

In this chapter, we will prove that for kG#U’TkZQ there are at most two forms
of universal R-matrices. Then we give some necessary conditions for the existence of
nontrivial forms. Using these necessary conditions, we determine all quasitriangular

structures on generalized Kac-Paljutkin algebras Hs,2(see Example 2.1.3).

§3.1 Forms of universal R-matrices

In this section, we will prove that for kG#U,TkZQ there are at most two forms of
universal R-matrices.

The following lemma shows that the algebra structure of the dual Hopf algebra of
IKG#U,T]]&ZQ is very simple

Lemma 3.1.1 Denote the dual basis of {ey, eqx}gec: by {Ey, Xy }tgea, that is, Ey(ep) =
dgn, Eglenr) = 0, Xy(en) = 0, Xy(epw) = 044 for g,h € G. Then the following
equations hold in the dual Hopf algebra (K¢# .. kZy)*:

EgEh = Egh7 Eth = XhEg = 0, Xth = T(g, h)Xgh, g, heaq.

Proof: Direct computations show that
EgEh(ek) = Egh(ek) = (Sthg, EgEh(ekx) = Egh<€kx) =0

for g,h,k € G. As a result, we have I, F), = Ey,. Similarly, one can get the last two

equations. 0

Let k¢#,..kZ, as before. Recall the sets S, T we have defined in Section 1.2, they

are defined as follows

S:={g|lgeqG, gax=g}, T:={g9|geqG, gax#g}

A very basic observation is:
Lemma 3.1.2 We have S C TT where TT = {gh | g,h € T}.

13



Proof: Clearly, for s € S;t € T, we have ts € T. From the Definition 2.1.2 we
know that the action < is injective, therefore T' # ). Let ¢ € T and it is obvious that
S =t(t"'S) and hence S C TT. O

With the help of S, T, we find that

Lemma 3.1.3 Letw! : GxG =k, w?: GxG =k, w?:GxG =k, w':GxG —k

be four maps and define R as follows

R: = Z w'(g,h)e; ® ey, + Z w?(g, h)egz @ e+

g,hGG g,hGG
> w(g,h)ey @enr+ Y w(g, h)egr @ e,
g7h€G g,hEG

If R satisfies A?(ey,)R = RA(e,) for g € G, then

(i) w?(t,g)=0,teT,g€q.

(i) w(g,t)=0,teT, geq.

(iii) wi(s,t) = wt(t,s) =0, s€ S,t € T.

Proof: Because we have assumed that G is an abelian group, we get A% (e,) = A(ey).
Since A%(ey)R = RA(e,) for g € G by the condition, we know A(e,)R = RA(ey) .
Observe that {e,, e,2},ec is a linear basis for kS#, ,kZ, and if we compare the two

sides of the equation A(e,) R = RA(e,) then we obtain the following equations

Aleg) Y w’(h, k)epr @ e = [ > w(h,k)enr ® ex]Aley), (3.1)
h,keG h,keG

Aleg) Y w(h, k)ep @ exz] = [ > w’(h,k)en ® exz]Aley), (3.2)
h,keG h,keG

Aley)] Z wh(h, k)epr @ epx] = | Z wh(h, k)epr @ exx]Aley). (3.3)
h,keG h,keG

14



Firstly, we analyze equation (3.1) as follows

Ale)[ D w(h ke @ ex] = Y w’(h, k)enr @ ey, (3.4)
hkeG hkeG
hk=g

[ Z w?(h, k)epr @ ex]Aley) = Z w?(h <z, k)epur @ e (3.5)
hkeG h.heG
=g

Note that if h € T,k € G such that hk = g, then e,z ® e, will appear in (3.4) while
not in (3.5). As a result w?(h,k) =0 for h € T,k € G and thus (i) has been proved.

Similarly, for equation (3.2), there are the following equations

Aleg)[ > w(h k)ey @ exr] = Y w(h, k)e, ® ey, (3.6)
h.k€G h,k€G
hk=g

[ Z w?(h, k)ep, @ exx]Aley) = Z w(h, k 41)ep ® epapt. (3.7)
h.keG ZkkeG
=9

Observe that if h € G, k € T such that hk = g, then e, ® ez will appear in (3.6) while
not in (3.7). Therefore w3(h,k) =0 for h € G,k € T and so (ii) is proved.

For equation (3.3), we obtain the following equations

Ale)[ D w(h k)enz @ exz] = Y wh(h, k)enz @ exa, (3.8)
h,keG h,keG
hk=g

[ Z wh(h, k)epr @ ep]Aley) = Z w(h <42,k 42)ehey @ Cpa. (3.9)
hkeG hkeG
=g

Note that if h € S,k € T, then e,z ® ez and exz ® epz will appear in (3.8) and not
in (3.9). This implies that w*(h,k) = 0 for h € S,k € T. Similarly, one can find that
wh(h,k) =0 for h € T,k € S. Therefore (iii) has been proved. O

Lemma 3.1.4 Let R be the element given in Lemma 3.1.3 and assume that (A ®
Id)(R) = Ri3R23, (Id®A)(R) = Ri3R12. Then the following equations hold

(i) w?(sy1,82) = w3(s1,82) = wh(sy, 82) =0, 51,82 € S.

(il) wi(g, t2)w'(tr,2) =0, g € G, by, €T
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(111) wl(tl,g)w4(t1,t2) = O7 g € G, tl,tQ eT.

Proof: We have known [(X,)l(X}) = [(X,X},) for g,h € G due to Lemma 2.2.1. Let
s € S and we can find t1,t, € T such that t;t, = s because of Lemma 3.1.2 and hence

the following equation holds

(X0, X)) = 7(t t2)l(Xiy,) = 7(t, 1) > w(tita, g)eg + > w(tity, s)esa].

gelG seS

At the same time,

tGT tGT
—Zw (t1, )w (g, t A x)epr?
teT
= w(tr, hw'(ta, t az)o(t)er.
teT

Since 1( Xy, )I(Xy,) = (X, Xy,), we get that wi(s,s’) = w?(s,s’) = 0 for & € S and
thus wi(s,s’) = w?(s,s') =0 for s,s' € S. Similarly by (X, )r(Xy,) = r(Xy, X;,) one
can get that w3(s,s’) =0 for s, s’ € S. Therefore, (i) is proved.

It remains to show (ii) and (iii). We have known [(Ey)l(X¢, ) = 0 due to Lemma
3.1.1. However a direct computation shows that I(E,)[(Xy,) = > ,cp w' (g, t)w* (t1, t)esr.
Therefore w'(g,t)w(t;,t) = 0 for g € G,t1,t € T. Similarly, by r(E,)r(X,) = 0 we
get that w' (¢, g)w*(t,t;) = 0 for g € G,t;,¢ € T. These are exactly (ii), (iii). O

The following proposition shows that universal R-matrices of k9#, ,kZ, has only

two possible forms.

Proposition 3.1.5 Let R be the element given in Lemma 3.1.3 and assume that it is

a universal R-matriz of K¢#,.kZy. Then R must belong to one of the following two

cases:

(1) R= 3> w'(g, h)e, @ en;

g,heG

(i) R= > w'(s;,s2)es, @eg, + > w(s,t)ewr @ e +

81,52€8 seSteT
STowdt s)er @esr+ Y. whty, ta)en T @ e,
tET,SGS t1,to€T
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Proof: Owing to Lemmas 3.1.3 and 3.1.4, we can assume that R has the following

form:

R = Z (g,h)eg @ ep + Z stesx@)et—l—

g, heG SES teT
3 4
E w(t, s)e; @ esx + E w(ty,t2)en, T @ e,z
tET,SES ti,to€T

If w(ty,ty) = 0 for all t1,ty € T, then I(X;,) = I(Xy,) = 0. Using Lemma 3.1.1
we know that [(X;,)l(X,) = (X, Xy,) and as a result {(X;, X;,) = 0 for all #1,t, €
T. For s € S, we can take t1,t5 € T such that s = t;t5. Hence we have that
UXy Xt,) = 7(t, t2) (O ep w?(s,t)e;) = 0 which implies that w?(s,t) = 0 for s €
S, t € T. Similarly, by r(X;,) = r(Xy,) = 0 and r(X;, Xy,) = > ,cp 7(t2, t1)w (2, s)er,
we have w3(t,s) = 0 for s € S,t € T. Since w?(s,t) = w?(t,s) =0 for s € S;t € T, we
know that R =", ;w'(g,h)e, ® e, and therefore we get the first case.

If there are tg,ty € T such that w*(ty,t)) # 0, then we will show that w'(¢,g) =
wl(g,t) = 0 for all ¢ € G,t € T. For any g € G, we have w!(g,t))w(to, ) =
0 by (ii) of Lemma 3.1.4 and as a result w'(g,t;) = 0. Since R is invertible and
(e: ® ey )R = w'(t,t))ewr @ eyx, we know that w(t,ty) # 0 for t € T. Next, we
use (i) and (iii) of Lemma 3.1.4 repeatedly. We have w(t, g)w*(t,t,) = 0 due to
(iii) of Lemma 3.1.4. Thus w'(t,g) = 0 for t € T,g € G. Since R is invertible and
(e, @er, )R = wi(ty, ta)ey, xQep,x for ty,ty € T, we get that w (¢, 1) # 0 for t1,ts € T.
Because w!(g,t)w(t;,t) = 0 by (i) of Lemma 3.1.4, we know that w'(g,t) = 0 for
g € G,t € T and hence we get the second case. 0

Remark 3.1.6 For simple, we will call a universal R-matrix R in case (i) (resp. case

(ii)) of Proposition 3.1.5 by a trivial (resp. non-trivial) quasitriangular structure.

§3.2 Universal R-matrices of H,,

To determine all universal R-matrices of kK¢#, kZ,, we give necessary conditions
for kK¢#, .kZ, preserving a non-trivial quasitriangular structure firstly. Then we give
all universal R-matrices of Hy,2 by using these necessary conditions. For any finite set

X, we use | X| to denote the number of elements in X.
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Proposition 3.2.1 If there is a non-trivial quasitriangular structure on K€#, ,KZs,

then
(i) S| =171,
(ii) there is b € S such that ¥* =1 and t<x =tb fort € T;

(iii) 7(s1,82) = 7(s2,51), S1,82 € S;

Proof: Assume that R is a non-trivial quasitriangular structure on k%#, kZs,, then
we have [(Ey)I(E,,) = > cqw’(t1, s)w(ty, s)o(s)es for t1,ty € T. In this situation,
we claim that TT" = S. In fact, suppose that there are ti,t, € T satisfying tity € T.
Then it is easy to see that [(Ey,,) = > g w?(t1l2, s)esz which contradicts to the fact
(Ey)l(E,) = l(Eyt,) (Lemma 2.2.1). Thus we have 77T = S. Take at € T. We
get that t7° C S and thus |T'| < |S|. Since tS C T, |T| > |S|. As a result we have
|T| = |S| and thus (i) has been proved. Next we will show (ii). Take a ¢ty € T, then we
have T' = t,S. Let to<x = t; and denote b = t;'t;, then we have b € S by TT = S.
Since toS C T and (tps) <x = (tos)b, we have t <z = tb for t € T. It is easy to know
that b> = 1 since <x is a group automorphism with order 2 and thus (ii) has been
proved. Now let’s show (iii). Assume that R is a non-trivial quasitrianglar structure
on k¢#, .kZ,, then we have A°?(x)R = RA(z). Multiply both sides of this equation
by es, ® es, where s1, 59 € S and we note that e;, ® e, is an element in the center, so
we get (€5, ®es, ) AP(x)R = RA(x)(es, ®es,). On the one hand, we have the following

equation

(€6 @ €, )AP(2)R = (00, ® €3,)[ Y T(h,9)ey ® en)(x @ )R
g,heG

= [7(s2,81)es, R es,](x @ )R
= (x ®x)[7(s2,51)es, ® €5, R
- (I ® x)[T(S% sl)wl (517 82)(681 ® 652)]

= 7(89,81)W' (51, 82)€5, T ® €5,
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On the other hand, the following equation hold

RA(z)(es, @ es,) = R[ Y 7(g,h)eg @ enl(x @ 1) (es, @ €s,)

g,heG

= R[> 7(g.h)eg @ ex](es, @ €,)(x @ )

g,heG
= R[7(s1,89)es, @ eg,](x @ x)
= [7(s1, s2)w' (51, 52) €5, ® €5,](x ® )

= 7(s1, 59)w' (51, 52)€5, T @ €4,

Therefore, (es, ® e5,)AP(x)R = RA(z)(es, ® es,) holds if and only if 7(sq1,s2) =
7(82, 81). O

Corollary 3.2.2 If there are ti,ty € T such that t;'(t; < x) # t,'(ty < x), then

kC#, . kZy has no non-trivial quasitriangular structure.

Proof: If k#,,kZ, has a non-trivial quasitriangular structure, then there is b € S
such that ¢ <z = tb for t € T by (ii) of Proposition 3.2.1. Therefore t~'(t <x) = b for
t € T and we have completed the proof. O

The following proposition determine all possible trivial quasitriangular structures.

Proposition 3.2.3 The element R is a trivial quasitriangular structure on K4, k7

if and only if

(i) R=>_,neqw(g,h)e, ® ey for some bicharacter w on G;

(i) wlg 9z, h<aw) =w(g, h)n(g, h) where n(g,h) = 7(g,h)(h, g)~" for g,h € G.
Proof: We can assume that R = Zgﬁer(g, h)e, ® ey, is a trivial quasitriangular

structure on it. Owing to (A ® Id)(R) = R13Rs3 and (Id ®A)(R) = Ry3R12, we know
(i). Expanding A°(x)R = RA(x), one can get (ii). O

Next, we give a simple criterion to the quasitriangularity of k¢#, ,kZ,.

Corollary 3.2.4 If there are s1, sy € S such that n(s1, se) # 1, then there is no quasi-

triangular structure on kG#U,Tng.
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Proof: By Proposition 3.2.1, we know that there is no non-trivial quasitriangular
structure on kG#meg. Assume that there is a trivial quasitriangular structure, then
we can use (ii) of Proposition 3.2.3 to get w(sy,s2) = w(sy, s2)n(s1,s2). But this
equation can’t happen because of our assumption, so there is no trivial quasitriangular

structure on kG#gﬁTkZQ. O

The following proposition is a direct application of the above Corollary 3.2.4.

Proposition 3.2.5 Let Asy,2 be the Hopf algebras in Example 2.1.9, then there is no

quasitriangular structure on Ass,2 for any n € N.

Proof: It can be seen that a®*,b € S and n(a®",b) = —1, thus there is no quasitrian-

gular structure by Corollary 3.2.4. O

The following proposition is an application of above results and we get all universal

R-matrices of Hy,2(n > 3).

Proposition 3.2.6 All universal R-matrices of Hau2(n > 3) are given by

R = E O/k—wl@d—wkeaibj & eykpl

1<i 5, k,l1<n
for some o, 8 € k satisfying o™ = ™ = 1.
Proof: Since n > 3, we know a™'(a<z) # b~'(b<z). Therefore Hy,2 has no non-trivial
quasitriangular structure by Corollary 3.2.2. Assume that R = ZMGG w(g, h)e,®ey, is

a trivial quasitriangular structure on Hs,2, then w is a bicharacter on GG and it satisfies

the following equations by Proposition 3.2.3

w(a,a)" =1, w(a,b)" =1, (3.10)
Let w(a,a) := a,w(a,b) := § and using the above series of equations (3.10), we get
what we want. 0J

Remark 3.2.7
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(i)

(iii)

If n = 2, then Hg is the 8-dimensional Kac-Paljutkin algebra Kg. All possi-
ble quasitriangular structures on Kg were given in [71|. Proposition 3.2.6 above
does not consider quasitriangular structures on Ks. In fact, trivial quasitriangular
structures on Ky can be given by Proposition 3.2.6, which only needs to set the
parameter n = 2 in Proposition 3.2.6. Non-trivial quasitriangular structures on Ky

can be completely determined by using the (ii) in Lemma 2.2.1 and the equation
A?(x)R = RA(x);

Because of Proposition 3.2.1 above and our aim is to find all non-trivial quasitri-
angular structures on kG#Mng, we agree that kG#U,TkZQ satisfies the conditions

(i)-(iii) in Proposition 3.2.1 in the following content.

If we let n(g,h) = 7(g,h)7(h,g)~! for g,h € G, then 7 is a bicharacter on G due
to 7 is a 2-cocycle on the abelian group G and so (iii) of the Proposition 3.1.5 is
equivalent to n(sy, s2) = 1 for s1, 89 € S. We will often use 1 without explaination

in the following content.
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Chapter 4 Symmetries of quasitriangular

structures on Hopf algebras

We will define symmetries of quasitriangular structures on Hopf algebras and give
some relevant propositions in this chapter. Then we apply these propositions to the

special Hopf algebras k¢#, ,kZ,.

§4.1 Symmetries of quasitriangular structures and some

results

We will define symmetries of quasitriangular structures on Hopf algebras and give
some relevant propositions in this section.

Let (H,m,n, A, €) be a Hopf algebra and let R € H® H. If p : H — H? is a
Hopf isomorphism, then we denote (¢ ® ¢) o 7(R) as R, for the sake of convenience,
here 7 is the flip map and H? = (H,mo1,n, A, ¢). Now we can define p-symmetry of

quasitriangular structures on Hopf algebras as follows

Definition 4.1.1 Let ¢ : H — H°P be a Hopf isomorphism and let R € H ® H, then
we call R is p-symmetric if R = R,. Moreover if R = R, and it is a quasitriangular

structure on H then we call R is a @-symmetric quasitriangular structure.

The reason why we introduced the above definition is due to the following propo-

sitions

Proposition 4.1.2 Let ¢ : H — H be a Hopf isomorphism and let R € H® H, then

we have
(i) lg is algebra map < T, is anti-algebra map;
(ii) rg is anti-algebra map < g, is algebra map;
(iii) A?(h)R = RA(h) for h € H < A®(p(h))R, = R,A(¢(h)) for h € H;
(iv) R is invertible < R, is invertible.
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Proof: Since R = (R,),-1, we only need to prove half of the proposition. Let ¢*
be the dual map of ¢, then ¢* : H* — HP is a Hopf isomorphism, here HP =
(H,m,n, 7oA, e). If we denote lg(f) := (f®Id)(R), rr(f) := (Id®f)(R) respectively,

then we claim that the following equations hold
IR, =porgroy, TR, =polgoy" (4.1)
Directly we have

rr,(f) = (1d@f)[(p®@¢)oT(R)] = (¢ ® fop)oT(R)
=(e®@¢"(f)) oT(R) = (¢"(f) ® ¢)(R)
= p[(¢"(f) @ Id)(R)] = ¢[lr 0 ¥"(f)]
= (polro)(f),

and

lr,(f) = (f@ld)[(p@p)oT(R)] = (fop®p)oT(R)
= (p"(f) @) oT(R) = (¢ @ " (f))(R)
= pl(ld@e"(/)(R)] = ¢lrr o ¢ (f)]
= (porroy”)(f),

so (i),(ii) hold. Suppose that R = X7 7, @ r* and A?(h)R = RA(h). Taking a k € H,
then we can write it by k = @(h), h € H due to ¢ is bijective map. Using ¢ is Hopf

isomorphism, we get

A (p(h) Ry = [p(h) @ p(hm)I Ry = [p(he) @ e(hw)][Ziip(r!) © ¢(rs)]
= N1 0(r'hey) @ (riha)) = (0 ® ©)[S1 1 he) © rih)]

and

R A(p(h)) = Rylp(hay) © o(h@)] = [Bis0(r) @ o(r:)][e(ha)) @ o(hw)]
= X1 0(h@yr) @ o(heyri) = (¢ @ @) [, hayr' © hgyri.
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Because A”(h)R = RA(h), we know (h@) @ hay) (B, r; @ 1) = (X1 @ ) (hay @
h(z)). If we use the flip map 7 acting on both sides of this equation, then we get
S rthe) @ rihay = S hayr' @ hayr; and hence AP(p(h))R, = R,A(p(h)) for
h € H. That is to say (iii) holds. Assume R™' is the inverse of R, then it can be seen
that R,(R™'), =1 ® 1 and thus we have (iv). O

Recall that we call (H,x*) is a x-Hopf algebra over C if * : H — H is an anti-
multiplicative conjugate linear involution and comultiplicative, where H is a Hopf

algebra. Similar to Proposition 4.1.2, we have the following proposition.

Proposition 4.1.3 Let (H,x*) be a x-Hopf algebra and let R € H ® H. If we denote
R, := (x®*) o 7(R), then we have

(i) lr is algebra map < rg, is anti-algebra map;
(ii) rr is anti-algebra map < lg, is algebra map;
(iii) AP(h)R = RA(h) for h € H < A®(h)R. = R.A(h) for h € H;

(iv) R is invertible < R, is invertible.

Proof: Similar to the proof of Proposition 4.1.2.

Remark 4.1.4 So far, all known semisimple Hopf algebras over C have involutions,
i.e they are x-Hopf algebras. Therefore, the discussion on the symmetry of quasitrian-
gular structures are applicable to the known semisimple Hopf algebras. Moreover, the
following propositions in this section are also hold for *-Hopf algebras when we replace

the ¢ with % and we don’t plan to list them.

Proposition 4.1.5 Let ¢ : H — H°P be a Hopf isomorphism and let R € H® H. If
R is p-symmetric, then lg : H* — H is an algebra map if and only if rg - H* — H

18 an algebra map.

Proof: Since R = R, and we have proved lp, = ¢ orro¢*, rg, = polgo*in
Proposition 4.1.2, we get [ = porgo¢* and rg = @ o lg o p*. Using these equations

we get what we want. O
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Corollary 4.1.6 Let R € H® H. If R is p-symmetric and it is invertible, then

R is a quasitriangular structure if and only if g : H* — H s an algebra map and

A?(h)R = RA(h) for h € H.

Proof: By Proposition 4.1.5 and Lemma 2.2.1, we get what we want. 0

§4.2 Applying to kG#U’TkZQ

In order to apply the results of Section 4.1 to our case, we give the following

conclusions.

Proposition 4.2.1 Let ¢ : kK¢#,.kZy — (kK9#,.kZ2)P be a linear map which is

determined by p(ey) = €gar, P(€,) 1= eyx, then ¢ is a Hopf isomorphism.

Proof: Obviously ¢ is bijective, thus we only need to show ¢ is a bialgebra map.
To show ¢ is an algebra map, the only non-trivial thing is to check ¢(e,)p(erzr) =
pl(epz)ey]. Directly we have p(ey)p(enr) = egap(ent) = dgarpenr and [(epx)ey] =
V(enegar®) = Ogapnent, so @(eg)plenr) = @[(enr)e,y]. To prove that ¢ is a coalge-
bra map, we consider the dual map ¢*. Denote the dual basis of {eg, e,x}geq by
{E,, X,}geq, then it can be seen that ¢*(E,) = E,q and ¢*(X,) = X,. Therefore it

is easy to see that ¢* is an algebra map and this implies that ¢ is a coalgebra map. [J

Let R be the form (ii) in Proposition 3.1.5 and let ¢ be the Hopf isomorphism in
Proposition 4.2.1 above, then R, is given by

R, = Z w'(sg,51)es, ® €5, + Z Staz,s)ewr @ ey + Z (s,t<z)e®

$1,52€8 seS,teT teT,seS

(4.2)

esT + E Yo tr)enr @ e
t1,t2€T

Corollary 4.2.2 R is a quasitriangular structure on kK%#, .kZs, if and only if R, isa
quasitriangular structure on kK4, kZ,.
Proof: Owing to the Proposition 4.1.2 and Proposition 4.2.1, we get what we want. [
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Corollary 4.2.3 Let R be the form (ii) in Proposition 3.1.5, and if w'(l < i < 4)

satisfy the following conditions
(i) wh(sy,s2) = w'(sq,s1) for si,85 € S;
(i) w?(s,t) =w3(t<x,s) forse S,t €T;
(iii) w(ty,t2) = w(te, t1) forti,t2 € T;
then R is a quasitriangular structure if and only if lg is an algebra map and A°?(h)R =

RA(h) for h € KE4#, . kZs.

Proof: Since R, is given by the form (4.2) and (i)-(iii), it can be seen that R is
p-symmetric. Thanks to Corollary 4.1.6, we get what we want. U

Remark 4.2.4 For our convenience, we agree that ¢ mentioned in the following con-

tent refers to the ¢ in Proposition 4.2.1.
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Chapter 5 Quasitriangular functions on kG#J,TkZQ

In this chapter, we prove that non-trivial quasitriangular structures on k¢#, ,kZ
are in one-one correspondence to some special functions on k9#, kZ,, which we call
quasitriangular functions on k9#, kZ,. After that, we will focus on quasitriangular

functions and give a criterion for when a function is a quasitriangular function.

§5.1 The one to one correspondence between quasitriangular

functions and quasitriangular structures

In this section, we give the definition of quasitriangular functions on k¢#, kZ,
and prove that there is a natural one-one correspondence between quasitriangular func-
tions and quasitriangular structures on k94, ,kZ,.

Let R be the form (ii) in Proposition 3.1.5 and we will use this R without expla-

nation in the following sections, then

Lemma 5.1.1 The equations A?(h)R = RA(h) hold for h € kS4#,.kZy if and only
if the following equations hold

w?(s,tax) = w?(s,t)n(s,t), s€ S,t €T, (5.1)
wi(t<x,s) =w(t,s)n(t,s), s€ S, teT, (5.2)
T(tg,tl)w4(t1 <][L’,t2<]l’) :T(t1<15(7,t2<]$)w4(t1,t2), t1,10 € T. (53)

Proof: Since R is invertible and k¢#, ,kZ, is generated by {e,, z| g € G} as algebra,
AP(h) = RA(h)R™! for h € k94, ,kZ, is equivalent to A°?(h) = RA(h)R™! for
h € {eg,z| g € G}. We first prove that A®(e,)R = RA(e,) for ¢ € G. Taking
s € S,t €T, then directly we have

A%P(es)R = | Z w'(s1,87)es, @ es,] + | Z wh(ty, ty)e,z @ ey, 1]

S1,82€8 t1,t2€T
5182=S§ tito=s
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and

RA(es) = | Z wl(sl, Sy)es, ® eg,]| + | Z w4(t1 QL ty AT) e qpl @ Eryaqr].

51,52€8 t1,t2€T
8182=s8 tito=s

Owing to tity = (t; <x)(t2 <) by definition, thus A%(s)R = RA(s). Similarly, we

have

AP(e,)R = RA(e;) = | Z w? (s, )esr @ ep] + | Z w(t, s)ey @ ey),

seS,t'eT seS,t'eT
st'=s st'=s

but G = SUT and so we have showed A% (e,)R = RA(e,) for g € G. Next we prove
that A%(x)R = RA(x) is equivalent to above equations (5.1)-(5.3). On the one hand,

we have the following equation

AT@)R =Y T(h.g)e, ® er)(z © )R

g,heCG
= Z T(s2, 51)w' (51, 82)€s, ® €5, + Z 7(t, s)w?(s,t 4x)ew @ e+
51,52€8 SESteT
Z (s, t)w(t 1z, s)e; ® ew+
teT,seS
Z T(ta, t1)w(t1 a2, ty 92)e,z @ ey, 7] (x @ 1),
t1,t2€T

On the other hand, the following equations hold

RA(z) = R[ Y (g, h)e, @ e (2 ® x)

g,heG

= Z 7(s1, 82)’601(51, So)es, @ e, + Z T(s,t)wz(s,t)esx ® e+

$1,52€8 seSteT

Dt s)wl(t, s)e ® et

teT,seS

Z T(ty <z, ty ax)w(ty, ta)e,x @ e, z](r @ 1),
t1,t2€T

Therefore, A?(x)R = RA(x) holds if and only if equations (5.1)-(5.3) hold. O

If R is a quasitriangular structure, then R is completely determined by w*. The
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following lemma states this fact. For simplify, we denote kS#, ,kZ, by Hg and we will

use this notation in this section without explanation.

Lemma 5.1.2 IfI(/1))I(f2) = I(f1f2) and r(f1)r(f2) = r(fofi) for f1, fo € (He)", then

w'(1 <4 < 3) of R are completely determined by w* as follows

4 4
: 1 _ w(s1t1,sot2)w(t1,t2) |
(1) w (81’82) T wi(s1t,t2)w(t1,s2t2)’

.o 'LU4 S
(i) w(s,1) = 7(s, t1) S

(lll) w?)(t’ 8) — T(S, tl)w4(t<l$,8t1) .

w(t<z,ty) 7

where 8,581,890 € S and t,t1,to € T.

Proof: We first show (ii). Taking s € S,t; € T', then we have I(X;)I(Xy,) = (X X4,)

by our assumption. We expand this equation as follows

I X)U(Xy) = Zw (s,t)eq] Zw (to, t1)esx] Zw (5, )w(to, t)eur]

teT teT teT
and
(X X0,) = 7(s,t)1(Xa,) = D 7(s, t1)w (st1, t)es],
teT

so we have w?(s, t)w*(t1,t) = 7(s,t1)w*(sty,t) and this implies that (i) holds. Then
we will show (i). Let s1,s2 € S and let t,t5 € T. Owing to r(Es,)r(E:,) = r(Ey, Es,)

by assumption, we can expand this equation as follows

r(Es,)r(Er,) = E w'(s1, s9)es,] E w?(s1,t9)es, T 5 w' (s1, so)w?(s1,t2)es, 7]

S1ES S1ES s1E€S

and

T(Et2ES2) = 82t2 Z ’LU 31752t2 €5 T ]

s51€8
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w?(s1,82t2)

thus we get w1(81>52) = Tw(sita)

But we have showed the following equations

w4(51t1, tg)

U)4(81t1, Sgtg)
w4(t1,t2) ’

2
ty) = t
wi(tr, sat) w(s1,12) = 7(s1,11)

U}2<817 82t2) = T(Sl, tl)

therefore we know (%) holds. To show (iii), we consider R, (here ¢ is the Hopf iso-
morphism in Proposition 4.2.1). Since the proof of Proposition 4.1.2, we know R,
satisfy U, (f1)lr,(f2) = g, (f1f2) and rr (f1)rR,(f2) = TR, (f2f1) for fi, f2 € (Ha)",
i.e R, such that the conditions of this Lemma. Denote the w'(l1 < i < 4) of R,
by w'(1 < i < 4), then we have w?(s,t) = w*(t <x,s) and w(t1,ty) = w(tz,t1)
for s € S and t1,to € T by (4.2). But we have proved that (ii) holds, we get that

w?(s,t) = T(S,h)u;;:(étll,’t?. And hence we know w3(t<x,s) = T(S,h)ff&i?? and this

implies (iii). O
The following lemma gives a criterion for when R is a non-trivial quasitriangular

structure on k%4, ,kZ,.

Lemma 5.1.3 The R is a quasitriangular structure on KE#,,kZs if and only if the

following equations hold

UE,)(Ey) = I(E,Ey), UX)I(X)) =1(X,Xp), g.h €, (5.4)
r(Ey)r(Ey) = r(EyEy), r(X)r(Xn) = r(XnX,), g.h € G, (5.5)
T(ty, t)wh(ty 9w, ty 9w) = 7(ty <2, ty <2)w(ty, Lo), t1,ta € T. (5.6)

Proof: Since the Lemma 2.2.1, Lemma 5.1.1 and the definition of quasitriangular
structures, we know that if R is a quasitriangular structure then it satisfies the above
equations (5.4)-(5.6). Conversely, suppose R such that equations (5.4)-(5.6), we will

first prove that I[(f1)l(f2) = I(fife) and r(fi)r(fo) = r(fofi) for fi, fo € (KE#,  kZs)*.
For s € S,t € T, since

I(E,) = Zwl(s, ey, I(E}) = Zw3(t,s')es/x

s’'es s'es
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and

Zw s, ey, 1(Xy) = Zw t, ey,

teT teT
it can be seen that I(E,)l(X)) = (E,X,) = 0 and (X,)I(E) = (X,E,) = 0 for
g,h € G. Because (k°#,,kZs)* is linear spanned by {E,, X,| g € G}, we get that
L(f)I(f2) = I(fif2) for fi,fo € (k9#,.kZy)*. Using a similar discussion, we will
know that r(f1)r(fa) = r(fofi) for fi, fo € (K94, ,kZs)*. Secondly, we will prove that
A?(h)R = RA(h) for h € k9#,.kZ;. Owing to the Lemma 5.1.1, we only need to
prove that w?(s, t<x) = w?(s,t)n(s,t) and w3(t<z,s) = w3(t, s)n(t,s) fors € S;t € T.
Let ty € T, then we have the following equations by (ii) of Lemma 5.1.2

4 4
5 w(sto,t) w(sty <z, t<dx)
t) = tg) —— tdx) = ty < . 5.7
w(s,t) = 7(s,to) 0Hto t) w?(s,t<x) =7(s,tg<x) Witz 1) (5.7)
Due to the assumption, we have
to<z,t<
wh(stg<x,tax) = T(sto a2, x)w4(sto,t) (5.8)
T(t, Sto)
and
to<dx,t<
Wity 9zt az) = I EIT) (5.9)

T(t,to)

2 (8 t) 7(s,to<x) T(sto<dz,t<z)  T(t,t0)

TOok0) r(tsto)  r(tocwtdm)” Using 7 is two cocycle, we get

So w?(s,t<ax) =

T(s,to<x) T(stg<x, t<x)  T(t to) _ T(stot)T(to <, taw)  T(t, o)

(s, to) T(t,sty)  T(tg<x,tax)  T(s,to)T(t,stg) T(tg<ax,t<ax)
_ T(s,tot)T(to <, tam)  T(t, 1)
(s, to)T(to, s)T(t, sto) T(tg <, t <)
T(s tot)T(to <z, t<ax)  T(t, to)

( )

n(s, tto)

nLs, to) (tto, ) (t,to T(t()<1£L',t<l.’L‘)
G ,tto)

77(3 o) =n(s,t).

Therefore w?(s, t<dz) = w?(s, t)n(s,t). To show w?(t<z, s) = w(t, s)n(t, s), we consider
R, and denote the w'(1 < i < 4) of R, by w"(1 < i < 4), then we have w(s,t) =
)

w3(t<ax, s) and w'(ty, ty) = wh(te, ) for s € S, ty,ty € T by (4.2). Owing to 7(t,<z, to<
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2)7(t,ta) = T(ta 9,1y <2)7(by, 1) = o(trta)o(tr) " o(t2) !, then we have LUS2fs) —
% and hence it is easy to see that R, also satisfies the conditions of this Lemma.
But we have showed that w(s,t <z) = w?(s, t)n(s,t), so w(t,s) = w3(t <z, s)n(s,t).
Since 7(s,t)™" = n(t, s), we know w?(t <x,s) = w3(t, s)n(t,s) and therefore we have
completed the proof. O

Since Hg is determined by the data (G, <, o, 7), naturally we can guess that all non-
trivial quasitriagular structures on Hg can be expressed by using the data (G, <, 0, 7).

To confirm this conjecture, we use the following propositions.

Proposition 5.1.4 If R is a universal R-matriz of Hg, then

(1) T(S,tl)w4($t1’t) _ T(S7t2)w4(st2,t) .

w? (tl,t) w? (tg,t) ’

(i) (s, 1) Sdtt) = 7 (s, 1) fbata)
(iii) wi(t, t))w(t =ty <x)o(ty) = 7(t, t71);
(iv) wh(ty, )w(ty <z, t™Ho(ty) = 7(t,t71);

(v) wh(ty <, ty 9w) = HELEL 0 (1, 1),

where s € S, t,t,ta €T.

Proof: Since (ii) of Lemma 5.1.2, we know w?(s,t) = 7(s, ;) w4((5tt1tt)) = T(S,tQ)Z:;(ét;g)

for s € S and t,t; € T. Therefore (i) holds. Similarly, we get (ii) due to (iii) of Lemma
5.1.2. Owing to R is a universal R-matrix, we have [(X;)l(X;-1) = [(X;X;-1). Then

we expand the equation as follows

(X Zw t,t1)es,x Zw t1)es, x]

t€T teT
Zw t tl t tl <]J,’) (t1>6t1]
t1€T

and

I(X, X-1) = 7(t DX = D w1 t)ena] =D Tt eyal,

teT te’l
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so we have (iii). Similarly, we get r(X;)r(X;-1) = r(X;-1Xy). And if we expand this
equation then we get w(ty, t)w(t; <z, t Vo (ty) = 7(t71t). But 7(¢t71,¢t) = 7(t,¢t71)
due to n(t,t™') = 1, therefore we know (iv) holds. (v) is a conclusion of Lemma 5.1.3

and so we have completed the proof. O

In fact, given a function w : T'x T — k* that satisfies the above conditions, we can
find a unique quasitriangular structure R that satisfies w* = w. And we will show this
in Theorem 5.1.11. Because of this reason, we introduce the concept of quasitriangular

functions on Hg.

Definition 5.1.5 A quasitriangular function on Hg is a function w : T x T — k*

such that (i)-(v) in Proposition 5.1.4, i.e it satisfies the following condtions

(1) T(S,tl)w(Stl’t) — T(S,t2)w(st2,t) .

w(tl,t) w(tg,t) 7

(i) 7(s, 1) S5 = 7(s, 1) el

w(t,t1) w(t,tz)

(iii) w(t, t)wt ™ty <x)o(ty) = 7(¢, t71);
(iv) w(ty, w(ty <z, t™o(ty) = 7(t,t71);
(V) w(ty Qa, by <a) = "Iy, )

T(tg,tl)

where s € S, t,t,to €T.

It can be seen that the definition of quasitriangular functions is expressed by the
data (G,<,0,7). Furthermore, we will see that non-trivial quasitriangular structures
on Hg are in one-one correspondence to quasitriangular functions on it in Corollary
5.1.12. Since we will often deal with the two maps [g, g in the later sections, we give

the following lemmas about them

Lemma 5.1.6 Let R be the form (ii) in Proposition 3.1.5, then we have
(i) UE)UEs,) = U(Es,s,) & w'(s152,5) = w'(s1, s)w'(s2, ), s € 5;
(ii) W(E)I(E,) = l(Eg) & w'(s, s\ w(t,s') = wi(st,s'), s € S;
(iil) (X)) (Xsy) = U X, Xs,) & w?(s1,8)w?(s2,t) = T(s1, S2)w?(s189,t), t € T;
(iv) U X)I(Xy) = (X Xy) & w?(s, t)w(t, ') = 7(s, t)wi(st, '), t' € T}
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where s,81,50 € S and t,ty,to € T.

Proof: We only show (i) and the other things can be proved in a similar way. Since

I(Es)l(Es,) = E w! (s1,s)es] g w! (82, s)es] E w! (s1,$ 82,8)6

seS seS seS
and
8182 E w 81827 65,
sES
we know (i) holds. O

Lemma 5.1.7 Let R be the form (ii) in Proposition 3.1.5, then we have
(i) 7(Es)r(Ey,) = 1(Eys,) < wh(s, s152) = wl(s, s1)w'(s, s9), s € S;
(ii) r(E)r(Ey) =r(Eg) & w' (s, s)w?(s',t) = w?(s, st), s’ € 5;
(iii) r(X,,)r(Xs,) = (X, Xy, ) & w(t, s1)w3(t, s2) = 7(s9, 51)w(t, $182), t € T;
(iv) r1(X)r(X,) = r(X,X;) & w3t <z, s)w(t',t) = 7(s, )yw(t', st), ' € T;

where s,81,50 € S and t,ty,to € T.

Proof: Similar to the proof of Lemma 5.1.6 above. 0

Lemma 5.1.8 Let R be the form (ii) in Proposition 3.1.5, and if w* is a quasitrian-
gular function on Hg and w'(1 < i < 3) are given in Lemma 5.1.2, then 1(X,)I(X}),) =
(X,X1), g,h €.

Proof: Since w?(s,t) = 7(s,t1) w4(stt1tt
Lemma 5.1.6, we have I(X;)I(X:,) = [(X;Xy,). Similarly, if we repeat part of the
proof in Proposition 5.1.4, then we will get that I[(X;){(X;-1) = [(X;X;-1) is equivalent
to wh(t, t)w(t ™1ty <x)o(ty) = 7(t,t71) for t; € T. But we have assumed that
wh(t, t))w(t™ 1ty <x)o(ty) = 7(t,t7) for t; € T, therefore we have I(X;)I(X;-1) =

for t; € T by assumption and (iv) of the
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(X X;-1). To show I(X,)l(X)) = (X,X,) for g,h € G, we only need to show the

following equations hold
Z<Xt1)l(Xt2> = Z(thXt2)> Z(th)l(XS) = Z(Xt1X3)7 l(XS1)l<X82) = Z(XS1X82)7

where s, 51,5, € S and t1,t, € T. Since |S| = |T| and T = T~ !, where T! := {t7!| t €

T}, we can assume t; = st and ty = ¢t~!, then we have

(X)) U(Xy) = UX)U (X 1) = [7(s,8) THHX)UX)UX-1)
= 7(5,t) U X)[UX)(X;1)] = 7(5,8) X)X, Xp1)
= 7(5,t) (X )[r(t, t (X)) = 7(s,t) (¢, ) (X,).

It can be seen that X X,—1 = 7(s,t)"'7(¢,t7 1) X, by using the 7 is a 2-cocycle, and
hence I( X3, )l(Xt,) = (X, Xy,). For s € S, we can find ¢, ¢’ such that s = ' due to
|S| = |T'|. Because t;t € S by definition, we have

X UX) = WX U (X)) = LX) [ (8, 8) X)X )]
= 7(t, ) HUXe )UX)(Xe) = 7(,1) 71X, X)U(Xp)
= 7(t, ") (b, O Xy ) U(Xy) = 74, ) (t, U X Xy

Similarly, one can show X; Xy = 7(¢, )" 7(t1,t)X;,: Xy and hence [(Xy,)I(X,) =

1( Xy, Xs). To show I( X, )l(Xs,) = 1(Xs, Xs,) for 51,89 € S, we assume that sy = ¢’ for

some t,t" € T. Then we have

X6 U (Xp) = X)) (Xew) = UX)) (8, 8) T UX)I(X)]
= 7(t, ) I(X)UX)NU(Xy) = (8, 8) (X, X )U(Xp)
=7(t,t") (s, O)I( X, ) (Xp) = 7(t, 1) I (51, )1 Xy e Xor).

One can check that X, X, = 7(¢, )" 7(s1,t) X, e Xpr, s0 (X)) (Xs,) = (X5, Xs,)-

Therefore we have completed the proof. O

Lemma 5.1.9 Let R be in Lemma 5.1.8, then we have [(E )(E,) = (E,Ey) for
g,h € G.
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Proof: We mimic the proof of above Lemma 5.1.8. Let s € S,t € T, then we have
E)(E,) = [Z w' (s, 8’)63/][2 w(t, s )egx] = Zw s, s w(t,s)egx]  (5.10)
s'es s'esS s'esS

and

(EsEy) = U(E Zw (st,s")egx]. (5.11)
s'eS
therefore we need to show w!(s, s")w3(t,s") = w3(st,s’) for s’ € S if we want to prove
E)IU(E) = U(E.E;). Let t; := t<z and taking t, € T, since we have assumed w? such
that (iii) of Lemma 5.1.2, we have

w4(t1, S/t2>
w4(t1,t2) ’

w(sty, s'ty)

3 / /
t = t .
w (8 75) T(S ) 2) U}4(St1’t2)

w(t,s') = 7(s, t3)

And hence 1;’“33(55;) = Zigjﬁf;’;igi"été,g Because w! satisfy the (i) of Lemma 5.1.2, we

know 11’033((‘?;5,;) = w'(s,s') and thus we get I(E,)I(F;) = I(E,E;). Then we prove that
[(Ey)l(E-1) = I(Ey). Since

L(E)l(Es-1) Zw (t, 8" )egx] Zw s')eg ]

and

w(t <z, st <)
wi(t—taz,t; <x)
(t7taz, sty <x)
wittax,t; <x)

T(t<z,t™ ax)o(ty <x)
T(t<x,t7 1 <ax)o(s'ty <)

=o(s).

wh(t<ax,s'ty)

w(t, w(t71,8') = [7(s', 1) [r(s' t1 <)

]

U}4

=7(s',t1)7(s', t1 < x)

— (s, t))7(s t, ax)o(t; 4 o) ———
T(s' t1)7(s" t1 < x)o(ty x)a(s’thx)

The first equality follows from the assumption about w3, and the third one follows
from Relation (iii) in Proposition 5.1.4 and the last one follows from the compati-

bility of o and 7. Thus we have showed w3(t, s )w3(t™!,s')o(s’) = 1, and this im-
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plies {(E})I(E;-1) = I(F1). Because we have proved that [(E,)l(E;) = I(EsE;) and
W(E)I(Ey-1) = I(E,) for s € S)t € T, if we repeat the proof of Lemma 5.1.8 then we
can obtain [(Ey)l(Ey) = I(E,EL), g,h € G. O

Lemma 5.1.10 Let R be in Lemma 5.1.8, then rg is an algebra anti-homomorphism.

Proof: If we consider R, then it is easy to see that IR, also satisfies the conditions of
Lemma 5.1.8, so we can apply Lemma 5.1.8-5.1.9 to R, i.e we know [g, is an algebra
map. Since we have showed [r, = @ org o, then I, is an algebra map implies rg is

antihomomorphism. O

Now we prove the inverse of Proposition 5.1.4 above also holds.

Theorem 5.1.11 Assume w is a quasitriangular function on Hg, then there is a u-
nique R such that it is a non-trivial quasitriangular structure on Hg and the w* of it

18 equal to the w.

Proof: Uniqueness can be obtained directly from Lemma 5.1.2. To show the existence,
we will use the w to construct a non-trivial quasitriangular structure. We define w?(1 <
i < 4) of R through letting w* := w and let w’(1 <4 < 3) be given by (i)-(iii) of Lemma
5.1.2. Since w is a quasitriangular function, we know w? and w?® are well defined. By
% for t, € T, so w' is also well-
defined. Owing to Lemma 5.1.8-5.1.10, we know R such that the equations (5.4), (5.5)

in Lemma 5.1.3. Furthermore, the R satisfies the equation (5.6) of Lemma 5.1.3 by the

direct calculation we can get w!(sy,sy) =

definition of quasitriangular function, so R is a non-trivial quasitriangular structure on

Hg due to Lemma 5.1.3. O

Corollary 5.1.12 There is a bijective map between the set of non-trivial quasitrian-

gular structures on Hg and the set of quasitriangular functions on Hg.

Proof: Denote the set of non-trivial quasitriangular structures on Hg as N and we
write the set of quasitriangular functions on Hg as F', then we can define a map
¢: N — F by ¢(R) := w'. Since Proposition 5.1.4, we know ¢ is well defined. Owing
to Theorem 5.1.11, we get ¢ is bijective. 0
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§5.2 The criterion of a quasitriangular function

In this section, we mainly discuss how to know a function is a quasitriangular
function, and give the criterion of a quasitriangular function.
Given a function w : T'x T' — k* and taking ty € T', then we can define functions

w?: SxT —=k*and w3: T xS — kX as follows

w(sto, t)

wi(t < x, sty)
w(to,t)’

w?(s,t) = 7(s,ty) w(t,s) := 7(s,t0) ,seSteT. (5.12)

Let Vi be the subspace of (Hg)* which is linear spanned by {X,| ¢ € G}, then we can
define [, : Vo — Hg and ry, : Vg — Hg through letting

Lo(Xo) =) w?(s, )ew, Lo(X) =Y w(t,t)epr, (5.13)

t'eT t'eT

ro(Xs) = Zw?’(t',s)et/, ro(X) = Zw(t’,t)et/:c. (5.14)

t'eT t'eT

It can be seen that Vi is a subalgebra of (Hg)*. In order to determine when the

function w is a quasitriangular function on (Hg)*, we give the following propositions

Proposition 5.2.1 The function w satisfies (i)-(iv) in Definition 5.1.5 if and only if

ly 18 an algebra homomorphism and r,, is an algebra anti-homomorphism.

Proof: If w such that (i)-(iv) in Definition 5.1.5 then we can repeat the proof of
Lemma 5.1.8, and hence we know [,, is an algebra homomorphism and r,, is an algebra
antihomomorphism. On the contrary, if [, is an algebra homomorphism and r,, is an

algebra antihomomorphism then we have the following equations

HX)UX,) = 1(X, X)), XX 1) = 1(X, X)),

r(Xo)r(Xe,) = r( Xy, Xs), r(Xy)r(Xe-1) = r(Xp-1X3).

Expand these equations above, then we know that w such that (i)-(iv) in Definition

5.1.5. 0
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Proposition 5.2.1 above will often be used to solve quasitriangular functions on
Hg in the following sections. Given a function w : T' x T" — k* and taking tq € T', we
have defined w?, w? through the equalities (5.12). Furthermore, we can define another

function w! : S x S — k* as follows

w4(81t0, 82t0)U)4(t0, to)
w4(51t0, t0>w4(t07 Sgto) ’

w'(sy,87) = 51,82 € S. (5.15)

Then we have the following proposition

Proposition 5.2.2 Taking to € T' and if w such that (i)-(iv) in Definition 5.1.5, then

w s a quasitriangular function on Hg if and only if the following equations hold
(i) w'(s,b) = w'(b, s) = n(to, s), here w' is given by the (5.15) above;

(i) wlto <z, to ax) = Ty (1, 1) ;

Proof: If w is a quasitriangular function on H¢, then we only need to show (i). Since
w is a quasitriangular function on Hg, we can find a unique R € Hg ® Hg such that
R is a non-trivial quasitriangular structure on Hg and the w?* of it is equal to the w
by Theorem 5.1.11. Since Lemma 5.1.2, we know the w'(1 <1 < 3) of R are given by
the equations (5.12), (5.15). Owing to Lemma 5.1.1, we have

w?(s, t<ax) = w(s,t)n(s,t), w(t<amw, s) =w(t,s)n(t,s), (5.16)

where s € S,t € T. Owing to (ii) of Lemma 5.1.6, we get w3(bt, s) = w'(b, s)w?(t, s).
But bt = t<x because of the Remark 3.2.7, we know w?(t<z, s) = w'(b, s)w?(t, s). Since
w(t<z, s) = w(t, s)n(t, s) by (5.16), we get w' (b, s) = n(t, s). Due to 1 is a bicharacter
and the Remark 3.2.7, we know n(t, s) = n(to, s) and hence w'(b, s) = n(to, s). Similar-
ly, we can show w'(s, b) = n(to, s) and thus we have shown (i). Conversely, if w satisfies
(i), (ii), then we can construct a R € Hg® Hg such that w! = w and the wi(1 < i < 3)
of it are given by the equations (5.12), (5.15). To show w is a quasitriangular function,
we need only to prove that w(t; <z, ty<x) = %w(tl, ty) for t1,t5 € T. Repeat-
ing the proofs of Lemmas 5.1.8-5.1.10, then we know [g is an algebra homomorphism

and rg is an algebra anti-homomorphism. So we have Ig(Ey)lr(E;) = [r(Ey) and

rr(Ep)rr(E:) = rr(Ey) for t € T. But we have already seen that these two equalities

39



implies that w?(t < x,s) = w!(b, s)w3(t,s) and w?(s,t <x) = w'(s,b)w?(s,t). Because

of (i), we get
w?(s,tax) = w?(s,t)n(s,t), w(t<z,s) =w(t,s)nt,s). (5.17)

3 are given by the equations (5.12), one can get

Since w?, w
w4(51t0, Sgto) = T(Sl, to)_1w2(81, SQto)w4(t0, Sgto) (518)
and

w4(t0, Sgto) = T(SQ, t0)71w4(t0, to)’ws(to dz, SQ), (519)

where s, 55 € S. Using equations (5.18) and (5.19) together, then we get

’LU2(51, Sgto)w3(t0 4z, 32)w4(t0, to)

4
w” (8120, S2tg) = 5.20
(s1lo, s2t0) T(s1,t0)7 (82, t0) (5:20)
Similarly, one can get
2 to < z)w3(t Yt <, ty <
w(s1tgax, s9tgax) = W (s1, sato aw)ur(to, sp)w(to 97, b <) (5.21)
T(81,t0 <1 x)T(89,tg < x)
Combining the equations (5.17), (5.20), (5.21), we obtain
w(s1tg <, sotg < 1) 1 w(to<x,to<z)  7T(s1,t0)7T(s2,t0)
1 = 1(s1, s2to) 1
w(s1to, Sato) n(to, se)  w(to,to)  7(s1,t0<1x)T(S2,t0 <)
1 to<dx,tg< t t
= (51, sato) UCRERTRED 7(81,10)7 (82, o) .
U(to,Sg) T(to,to) T(Sl,t0<1$)7(82,t0<1$)
. . . wi(sitodr,satodz) _ T(s1to<w,sato<dx) :
Using the following Lemma 5.2.3, we obtain w41(501 to’sztg) = 71(502 to,sftg) Since
T =105, we know w(t; <z, ty<x) = %w(tl,b) for t;,t, € T. O

Proposition 5.2.2 above simplifies the test for the condition (v) in Definition 5.1.5,
so it will be used frequently in next sections. The following lemma is used in the proof

of Proposition 5.2.2 above.

1 T(to<z,to<z)  T(s1,t0)7(s2,t0) _ 7(s1t0<T,82t0<T)
t0,52) T(to,to) T(S1,t0<l:l?)‘l‘(82,t0<lx) T(SQto,slto)

Lemma 5.2.3 (s, Szto)n(
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Proof: Directly we have

XleSQXtOXtO = XSl (XSQXtO)XtO
( 82>Xt0

S9, to

(52, 10) Xs
(s2,t0) (Xleto)(XSQXto)

(82, t0) [T (51, t0) X 1) [7 (525 t0) Xisato]
(s2,0)

(52, 0)

52, to T(Sla tO) (327 tO)X81t0X52t0

I
S 3 3 3 3

82, t0)T(81,t0)7 (52, t0)T(81t0, S2t0) Xy, spe2
and

XleSQXtoXtO = X81X32 (XtOXtO)

T(to,to)
= Xs Xs zX T
! Z[T(toﬂx,toﬁﬂﬁ) fo< fo< ]
T(to,to)
= Xs XSQX T X, T
T(t0<1$,t0<127) 1( fo< ) fo<
T(to,to)

= XS ,t q X st X x
T(tOQI,tOQZL') 1[“(52 0 x) to< 2] to<
to,t
= 1(s9,tg <) 7 (o, fo)
T(to < x,tp <)

T(to,to)
= , 1o <
77(82 0 x>7’(t0<1$,t04$)

(X81 Xt()<1.1‘) (ngXtodac)

7'(81, to < .23)7'(52, tg < x)Xs1t0<1:r:X52t0<1x'

Because X, 1yar Xsptoar = T(S1t0 <, Satg <) X 12, We know

5182

n(sito, Sato) ( )T(to Qx,tog<dx) 7(81,t0)7 (52, t0) _ T(s1to <, sato A T)
n(sa,to <) 200 7(to, to) T(81,t0 94 x)T(82,t0 < ) N 7(sato, S1to)

-1 n(sito,s2t0) __
n —_ = 7
and n(s2,to<z)

To complete the proof, we only need to show 7(ss,ty) = n(to, s2)
n(s1, satg). By the definition of 7, we have (s, to) = n(to, s2)~'. Since

n(s1to, sato) _ n(s1, sato)n(to, s2to) _ n(s1, sato)n(to, S2)
n(s2,to <) n(s2,to <) n(s2,to <)

= n(s1, Sato)n(to, s2)n(to <, 52) = 1(s1, Sato)n(toto 1, s2)

= n(s1, S2to),
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the last equality follows from the assumption about Hg in Remark 3.2.7, we know
ertasate) _ G, soty). =

n(s2,to<x)
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Chapter 6 Solutions of quasitriangular structures

on kG#mTng

In this chapter, we analogize the problem of solving a system of linear equations
and naturally reduce the problem of solving quasitriangular structures on kS#, ,kZ,
to the problem of solving all general solutions as well as giving a special solution for it.
After that we give all general solutions for kG#meg and get a necessary and sufficient

condition for the existence of a special solution for k%#, kZ,.

§6.1 General solutions for quasitriangular structures on

kG#O’,TkZQ

In this section, we introduce the concepts of general solution and special solution of
non-trivial quasitriangular structures on k9#, ,kZ,. Then we give all general solutions
for kG#UkaZQ.

Let R, R’ be non-trivial quastriangular structures on k“#, ,kZ, and assume that
the four maps associated with R (resp. R') are w'(1 < i < 4) (resp. w'(1 < i < 4)),

then we can use these maps to define four other maps v*(1 < i < 4) as follows

1 2
1 w'(s1,82) o w?(s,t)
= t) =
vien ) w'(s1,52)’ (5.1) w?(s,t)

3 4
3 w(t,s) 4 w(ty, ta)
= —_— ti.t —
v3(t, s) WAL, s) v (1, t2) Wit )’

where s,s1,s0 € S and t,ty,t, € T. Using the data (G,<,0,7) of kK¢#,,kZ,; we
can induce another data (G’,<’,o’,7') by making G' := G, < := < and o¢'(g) =
1, 7(g,h) := 1 for g,h € G. Then the data (G',<,0’,7") determines a Hopf algebra
by Definition 2.1.2 and we simply denote it as k¢#kZ,. Then we have

Proposition 6.1.1 Let R” be the form (i) in Proposition 3.1.5 and the (w”)'(1 <i <
4) of it are the v'(1 < i < 4) above, then R" is a quasitriangular structure on KE#KkZs.
Proof: Since R, R’ are non-trivial quasitriangular structures on k“#, kZ,, we know

wt, w are quasitriangular functions on k¢#, ;kZ,. Then we can easily check that v*
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is a quasitriangular function on k%#kZ,. And furthermore, v*(1 < i < 3) are given as

follows because of Lemma 5.1.2

U4(81t1, SQtQ)U4(t1, tg)
vi(s1t, ta)vi(ty, Sata)’

vt (sty,t)
U4(t1, t)

vi(t<ax, sty)
vi(t <z, ty)

v3(s,t) = , V3 (t,s) =

vl(sl, Sg) =

Therefore we know R’ is a quasitriangular structure on k#kZ, due to the proof of

Theorem 5.1.11. O

We can view R” as % and then we can analogize the solutions of a system of linear

equations and give the following definition

Definition 6.1.2 We call a quasitriangular structure on k¢#kZs as a general solu-
tion for kG#U’TkZZ. Naturally, we call a quasitriangular structure on ]kG#O—,TkZQ as a

special solution for kG#U,TkZQ.

Then the problem of solving all quasitriangular structures on k%#, ,kZ, can be reduced
to solving all general solutions and finding a special solution. And we will give all

general solutions in this subsection. To do this, we first give the following lemma

Lemma 6.1.3 Assume that H is a finite abelian group and ¢ : H — H is a group
isomorphism. Let Sy := {h € H| ¢(h) = h} and let Ty := {h € H| ¢(h) # h}. If
|Sk| = |Tw| and there is ¢ € H such that > =1 and ¢(h) = he for h € Ty, then there
are 81,...,8, € Sy and a € Ty such that H = (s;,al sfi = 1,a® = s{"...s"" 5,85 =

$;Si, AS; = S;A)1<i j<n GS group for some natural numbers n, k;, m;.

Proof: Since Sy is a subgroup of H, we can find s;...s,, € Sy such that Sy =
(si] sfi = 1,5;8; = $;Si)1<ij<n for some natural numbers k;(1 < i < n). Because Ty
is not empty, we can find a € Ty. But a® € Sy due to ¢(a?) = (ac)? = a?, so we can
assume a® = s''...s" for some natural numbers m;(1 < i < n). Let H' be a group
such that H' = (S;, A| SF = 1,42 = S7"..8™ S,S; = S;S;, AS; = S;A)1<ij<n as
group, then we will prove that H = H’ as group and hence we completed the proof.
We define a group homomorphism f : H — H through letting f(.5;) := s, f(A) :==a
for 1 < i < n, then f is well defined by the definition of H’. Owing to aSy C Ty
and |Sy| = |Ty|, we obtain Ty = aSy. Thus we can see that f is surjective. To

show f is injective, we only need to show |H'| < |H|. Let Sy := (S;)1<i<n, then
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fls, : Sur — Sy is onto by definition and hence |Sy:| > |Sg|. But |Sgr| < [Su| by
definition of H’, so we know |Sy/| = |Sg|. Directly, we have H' = Sy U ASy and
therefore |H'| < 2|Sy|. Since |H| = 2|Sg| and |Sy/| = |Su|, we have |H'| < |H|. O

Corollary 6.1.4 For the data (G,<,0,T), there are s, ...,s, € S and a € T such that
G ¥ (s;,q] 3?" = 1,a% = s .8 58 = $;8;,a8; = S;Q)1<ij<n QS group for some

natural numbers n, k;, m;.

Proof: Since the assumption about kG#Mng in Remark 3.2.7 and the Lemma 6.1.3

above, we get what we want. O

Since Corollary 6.1.4 above, we agree that G = (s;, a sf =1,a% = s ...sTn 58 =
$;8i,aS; = S;4)1<i j<n as group for some natural numbers n, k;, m; in the following con-
tent, where s; € S,a € T for 1 < i < n. Let k9#,.kZ, as before, we associate
a free object with it as follows. We define F; as a free k algebra generated by set

{Zs;, Ta, 1, €5, €q, €1 }1<i<n, and let I be the ideal generated by {zsz1 — x5, T125, —

ki 2 -1 m m
Ty, Tg,Ts;, — Ty, T, To,Ta — 1(8i, ) Tals,, Tgh — Py, 15 — 7'(a,a)Ps;n1 gn Tyt TG
ki 2 m m
U{Ileb €1%1,€5,€1 — €5;,€1€5, — €, esies]- - esjesiy €5;€a — €aCs;, Sz —€1,€, — esll”'esnn )
where 1 < 4,5 < n and Pgh gn € k is defined by the following equation
gk
Xp. X = Pgilmg%nXgi'l._.ggLn, 1y ey Gn € G, J1, ..y jn € N, (6.1)

For convenience, we agree that ngl gin in the following content refers to the
1 9n

ngl gin in equation (6.1) above. Then we have the following lemma.
gl

Lemma 6.1.5 Denote the dual Hopf algebra of K¢#,.kZy by H*, then H* = Ag/Iq

as an algebra.

Proof: We define an algebra map 7 : Ag/Ic — H* by setting
m(xs,) = Xs;, m(xq) = X, m(21) = Xy, 7(es,) = Ey,;, w(eq) = Eq, m(er) = Ey.

Then we will show that 7 is well defined and it is bijective. Since Lemma 3.1.1 and
the definition of I, we know 7 is well defined. Next we show 7 is bijective. Because

{Xs,, Xa, Es,, B, } € Imm, we know 7 is surjective. Owing to the definition of I, we

45



obtain dim(Ag/Ig) < dim(H*). But we have shown 7 is surjective, so dim(Ag/Ig) =
dim(H*) and hence 7 is bijective. O

Let R be the form (ii) on k“#, ,kZ, in Proposition 3.1.5. For our purposes, we
assume that w'(1 <1 < 4) of R satisfy w!(1,s) = wl(s,1) = 1 and w?(1,t) = w3(¢, 1)
for s € St € T in the following content. Then we have

Lemma 6.1.6 The map lr s an algebra homomorphism if and only if the following

conditions hold

(i) U(Es) . (B = UEs ), UXe) " U(Xs,)™ =P nl(

ol (X )i
(i) UE)I(E,) = U(Ey), L(X)(Xa) = 7(s,a)(Xs);

(i) 1(Es)" = U(Er), I(X,)" = Poul(X1);

(v) UEa)? = UEgm gon), UXa)® = Pz UXgm_gon);

(vi) w?(s,t a@) = n(s, thw?(s,1);

where s € S, 1 <1i <n.

Proof: We define an algebra map 7 : H* — H by setting

(X)) = U(X5), m(Xa) = U(Xa), 7(X1) = U(X0),
ﬂ-(Es«;) = Z(Es)v 7T-(Ea) = Z(Ea)v 7T-(El) = Z(El)

Then we will show that 7 is well defined and © = [g. To show 7 is well defined, the
only non-trivial case is to prove that m(X,)m(X,) = n(s,a)l(X,)l(X;). Directly we
have 7m(X;)m(X,) = 1(X;)I(X,) and

UX)UXa) = D w?(s,)e])Y w(a, t)ex] = Y w’(s, t)w(a, t)es].

teT teT teT

Similarly, we get m(X,)7(X;) = (Xa)I(Xs) and

(X)X =Y wa, )ea] Y w(s,t)e,] =D w’(s,taz)w(a,t)ea].

teT teT teT
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Owing to (v), we obtain 7(X)m(X,) = n(s,a)l(X.)I(Xs). Due to (i),(ii), we get 7 = I
and thus we have completed the proof. (]

Similar to Lemma 6.1.6, we have

Lemma 6.1.7 The map rg is an algebra anti-homomorphism if and only if the follow-

g conditions hold

(i) r(Ey)™..r(E,)" =7(E 4 gin)s r(Xg)..r(X,,)m = P (X
1 Sn 1

ER st/

(il) r(E)r(E,) = 1(Fs), r(Xo)r(Xs) = 7(s,a)r(Xsa);

(iii) r(E,,)" =r(Ey), r(Xs,)" = Pyw r(X1), 1(Xa)? = P r(Xgm gmn);

i

(iv) r(Ea)? = r(Egn_gm), 7(Xa)® = P2 1(Xgm_gmn);

(v) w3(t<ax,s) =n(t,s)wi(t,s);

where s € S, 1 <1i <n.

Proof: Consider the R, then it can be seen that R, such that the conditions of
Lemma 6.1.6 and so [g, is an algebra map. Since the proof of Proposition 4.1.2, we
know [g, is an algebra map if and only if rx is an algebra anti-homomorphism and

hence we have completed the proof. O

The following proposition can be used to determine when R is a quasitriangular

structure on kG#UkaZQ.

Proposition 6.1.8 Let R be the form (ii) on kKS#,,kZy in Proposition 3.1.5, then R
is a quasitriangular structure on k%4, .kZy if and only if R such that the conditions
of Lemma 6.1.6, Lemma 6.1.7 and w*(ab, ab) = %w‘l(a,a).

Proof: If R is a quasitriangular structure on k¢#, .kZ,, Since I is an algebra ho-
momorphism and rg is an algebra anti-homomorphism and thus R such that the con-

ditions of Lemma 6.1.6, Lemma 6.1.7. Owing to Lemma 5.1.1, we get w*(ab, ab) =

7(ab,ab)

@) w*(a, a). Conversely, if R such that the conditions of Lemma 6.1.6, Lemma 6.1.7

and w?(ab, ab) = %w‘l(a,a), then [r is an algebra homomorphism and rg is an

algebra anti-homomorphism. Therefore w* satisfies (i)-(iv) in Definition 5.1.5 due to
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Proposition 5.2.1. Then we will use Proposition 5.2.2 to get what we want. To do
this, we only need to show w!(s,b) = w!(b, s) = n(a,s). Because Iy is an algebra map
and (ii) of Lemma 5.1.7, we get w?(s, ab) = w?(s,a)w'(s,b). Owing to Lemma 6.1.6,

we obtain w?(s,a <x) = w*(s,a)n(s,a). But a <z = ab by assumption, so we have

w'(s,b) = n(s,a). Due to ZEZZ; = n(s,a?) and a*® € S, we know 7(s,a) = n(a, s) and
hence w'(s,b) = n(a,s). Similarly, one can show w!(b,s) = n(a,s) and so we have

completed the proof. O

In practice, we usually use the following corollary to determine when R is a qua-

sitriangular structure on k9#, ,kZ, because it’s easier to be checked.

Corollary 6.1.9 Let R be the form (ii) on k%#,.kZy in Proposition 5.1.5, then R
is a quasitriangular structure on KC#, . kZy if and only if R such that the following

conditions

(i) R satisfies (i)-(iv) of Lemma 6.1.6;
(ii) R satisfies (i)-(iv) of Lemma 6.1.7;
(iii) w'(b,s) = w'(s,b) = n(a,s), s € S;

(iv) w*(ab, ab) = %ﬁ?w‘l(a, a);

Proof: Since the proof of Proposition 6.1.8, we know that necessity holds. Conversely,
owing to Proposition 6.1.8 above, we only need to show w?(s,t<xz) = n(s,t)w?(s,t)
and w?(t<z, s) = n(t, s)w(t, s) for s € S,t € T. Since (i),(ii) of Lemma 6.1.7, we know
R satisfies (ii) of Lemma 5.1.7. Then we get w?(s, tb) = w?(s, t)w'(s,b). But we have

wl(s,b) = n(a, s), so w?(s, th) = w?(s,t)n(a, s) by Lemma 5.1.7. Due to % =n(at, s)

and at € S, we get % = 1 and hence w?(s,t<z) = n(s, t)w?(s,t). Similarly, one can
prove that w?(t <, s) = n(t, s)w(t,s) and thus we have completed the proof. O

For the convenience of calculation, we assume b = s}*...sP» for some natural num-
bers py, ..., p, in the following sections. Then all general solutions for k¢#, ,kZ, will

be given by the following Theorems 6.1.13-6.1.14.
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Proposition 6.1.10 Let R be a general solution for KS#,,KZs, that is to say R is a

non-trivial quasitriangular structure on kG#kZsy, and if we denote
Q5 1= wl(sia Sj)a Bi = w2(5i7 a)7 Yi = w3(&’ Si): 0= w4<a7 a)>

then the following equations hold

(i) a; =a; =1, 1<14,7<n;

.. ki .

(i) =1, g2 =alt...al", 1 <i<n;

eee kz o 1 2 m1 1 < <

(Hl) sz - 71 - ali o m ) Z n;

: + +

(IV) 52 — /371711 le/Bglnﬂ?n — ,yinl Pl.”%r%nnern;.

(v) oftabr =off ol =1, BY B0 = At Ak

Proof: Using (i) of Lemma 5.1.6 and (i) of Lemma 5.1.7, we know that w' is a
bicharacter on S. Then we have w!(s;, s;)* = w'(s;,s;)% = 1 and so (i) holds. To
show (ii), we note that I(X,)* = I(X1) and r(E,)* = r(Egm ) and if we use (iii)

of Lemma 5.1.6, we get w?(s;,a)k = 1 through letting ¢t = a and so we have Bf =

Similarly, since

E w?(s,a)’e,, T r(Egm gmn) g w' (s, 7.8 )es,

ses ses

2

so we have w?(s;,a)? = w'(s;, s7"...s™) through letting s = s;. Because we have

m"

shown w! is a bicharacter on S, we obtain w!(s;, s{"...s7") = a/{*.. and hence (ii)

holds. If we consider R, then we know R, is also a general solution for kG#MkZQ and
so R, such that (ii). Due to the w"(1 < i < 4) of R, such that w(s;,a) = w*(ab, s;)
by definition of R, and we have w?(ab, s;) = w3(a, s;)w*(b, s;) by (ii) of Lemma 5.1.6,
we obtain w(s;,a) = w3(a, s;)w!(b, s;). But w'(b,s;) = 1 because of (iii) of Corollary
6.1.9, so w?(ab, s;) = w*(a,s;) = v; and hence (iii) holds. To show (iv), we first show
(v). Since (iii) of Corollary 6.1.9, we know w!(s;,b) = w'(b,s;) = 1. But we have
shown w! is a bicharacter on S and because b = si*...sP» by the assumption, we know

Pn

pP1
a0 =

w*(a,a). Using (iv) of Lemma 5.1.6, we get w?(ab, ab) = w?(b, ab)w*(a, ab). With the

Pn

= ofl...al" = 1. Because of (iv) in Corollary 6.1.9, we have w*(ab,ab) =
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help of the (iv) of Lemma 5.1.7, we obtain w?(a, ab) = w(a, a)w3(a,b) and so we have
w?(b, ab)w3(a,b) = 1. Due to w?(b, ab) = w?(b,a)w!(b,b) = w?(b,a) by (ii) of Lemma
5.1.6, we know w?(b, a)w?(a,b) = 1. Since w?(b,a) = *...37» and w?(a,b) = W*..4P",
we get 1.0 = v P P But w?(a,b)? = w(a,1) = 1 by (iii) of Lemma 5.1.7,
we get 7P .. 42P» = 1 and thus .38 = AP 4P». Therefore (v) holds. To show

m1+p1
1

(iv), we only need to show §? = ...pMnFPn due to the same reason with the proof

of (iii). Since I(X,)? = (X 2) = [(Xgmi gra) and the following equations hold

= Zw4(a,t)w4(a,t<lx)et, UX g1 gn) Zw .8 t)ey,

ses teT

we have

w*(a, a)w*(a,ab) = w?(s7"...s"™ a) (6.2)

n

through letting ¢ = a. Since (iii) of Lemma 5.1.6, we get w?(s, t)w?(s',t) = w?(ss', 1)
for s € S;t € T. So we have

w? (s ..M a) = BB, (6.3)

Since the (iii) in Lemma 5.1.2, we have w?(ab,b) = % Owing to (ii) of Lemma

5.1.6, we can get w3(ab,b) = w?(a,b)w'(b,b). But we have known w'(b,b) = 1, so
w(ab, b) = w?(a,b). Furthermore, owing to w*(a, ab) = w*(a, a)w?(a,b) and w(a, b) =

v Pty P we have

w(a,ab) = w'(a,a)y ..y, P (6.4)

Combining equations (6.2)-(6.4) and (v), we obtain (iv). O
In fact, the four tuple (oj, 5, 7i,9)1<ij<n in the above proposition completely

determine R.

Proposition 6.1.11 Let R be in Proposition 6.1.10 and let (cuj, Bi, Vi, 0)1<ij<n be in

Proposition 6.1.10, then the following equations hold

Zk]l
Qs

=

(i) wh(st...sin s]t. sin) = ﬁ

k=11=1
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(i) w?(st.syysitesira) = (I1 BF) T TT e

k=1 k=11=1

(iii) w(s...sma, s7. . sin) = (H i) T1 1T egs™;

k=11=1
] oy ) . ) n ; n n o n i
(iv) wi{st'ospra, st spra) = (11 AL % *) L IT oo
k=1 k=1

where 0 < i1, ...,0, <n—1and 0 < 51, ..., 0, <n— 1.

1

Proof: Since w' is a bicharacter on S, we get (i). Owing to (ii) of Lemma 5.1.7,

we know w?(si...sin §T . sina) = w!(si.. s L s simYw? (s s a). Due to (iii) of

Lemma 5.1.6, we obtain w?(s!'...s", a) = H B and so we have (ii). Similarly, we can

show (iii). Thanks to (iv) of Lemma 5.1. 6 we get
wh(s..sma, s sTa) = wi(st st s st a)w? (a, S0 sTha). (6.5)
Using (iv) of Lemma 5.1.7, we have
w(a,s...s7ma) = wi(a <z, s .57 )w(a, a). (6.6)
Because of (5.2) in Lemma 5.1.1, we get
wi(a<az,s)...s7) = w(a,s]...s7). (6.7)

Since the equations (6.5)-(6.7) and (ii),(iii), we know (iv). O

Conversely, given a four tuple (oj,8i,7%,0)1<ij<n satisfies conditions (i)-(v) of

Proposition 6.1.10, then we have

Proposition 6.1.12 Given a four tuple (cj, Bi, Vi, 0)1<ij<n Satisfying conditions (i)-
(v) of Proposition 6.1.10 and let R be the form (ii) on K“#kZy in Proposition 3.1.5. If
w'(1 <i < 4) of R are given by (i)-(iv) in Proposition 6.1.11 by using the four tuple,
then R is a general solution for kG#O—J—kZQ.

Proof: Since Corollary 6.1.9, we only need to show R such that the conditions of Corol-

lary 6.1.9. Because the definition of w!, we know w! is a bicharacter on S and hence we

o1



get I(Ex,)" (B, )™ = UEg ). To show [(X,)" (X, )" = P s l(X ),
we need only to prove that w?(—, t) is a character on S for t € T by (iii) of Lemma 5.1.6.
By definition of w?, we get w?(—,s!"...s/ma) is a character on S. Owing to aS = T,
we obtain w?(—,t) is a character on S for ¢t € T and so (i) of Lemma 6.1.6 holds. To
show (ii) of Lemma 6.1.6, we only need to prove that w!(s, s')w?(a, s) = w3(as, s') and
w?(s, t)w(a,t) = w(as,t) for s,s’ € S, t € T because of (iii), (iv) of Lemma 5.1.6.
And these equalities are not difficult to check and so (ii) of Lemma 6.1.6 hold. To show
(iii) of Lemma 6.1.6, note that w' is a bicharacter on S and ozfj? = 1 by assumption and
hence [(E,,)* = I(E;). Similarly, because w?(—,t) is a character on S for t € T" and
BFi =1 by our conditions, therefore we get (X, )% = I(X;) and so we know (iii) of
Lemma 6.1.6 hold. To show (iv), it can be seen that w?3(¢, —) is a bicharacter on S and
7 = alj'...ap by assumption and so we have I(E,)? = [(Egm ). By definition, we

have

1(X,)? = [Z w(a, t)e,x] [Z w(a,t)e,x] = Zw4(a, Hw*(a,t <x)e,
teT teT teT
and [(Xgm  gon) = Soer WA(sTsTm e, To show 1(X,)? = UXgm gmn), we
need only to show w*(a,t)w(a,t <z) = w?(s{™...s7"",t) for t € T. For the sim-
plest case t = a, we have w*(a,a)w(a,ab) = 6*[[,_,7%* and w?(s7"...s7",a) =
[T5—, 8™ by definition. Since (v) of Proposition 6.1.10, we have S7'...00» = A" Ak,

And because b = 1 and b = si*...sPn

n

L.2n = 1. Therefore we get

we get 7P
w(a,t)w(a,a<x) = w?(sT...s"™ a). For the case t = s7'...s7"a, if we use the equali-
ties w'(a, a)w'(a, a<ax) = w?(s{"...s7", a), 77 = aj’*...al'", then we can also prove that
w(a, s ...s"a)w(a, s ...s1mab) = w?(s7 .87, s7'...s1"a) and hence we have show (iv)
of Lemma 6.1.6. Therefore we have prove that (i) of Corollary 6.1.9 holds. To prove
that R such that (ii) of Corollary 6.1.9, we consider the R,,. If we denote the four maps
associated with R, as w’i(l < i < 4), then it can be seen that the following equations

hold
w’l(si,sj) = aj, w?(ss,a) = v, w?(a,s;) = B, w(a,a) = 9.

Furthermore, one can get that the four tuple (oj;, v, 5i,d)1<i j<n satisfies conditions

(i)-(v) of Proposition 6.1.10 and hence R, such that the conditions of this Proposition
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and hence R, such that (i) of Corollary 6.1.9. And this implies that R satisfies (ii) of
Corollary 6.1.9. The (iii) of Corollary 6.1.9 holds by (v) of Proposition 6.1.10. Finally
we prove that w*(ab, ab) = w*(a,a). Due to fP'... 50 = AP1 _yPn APt 420n — ] and
the definition of w*, we know that w*(ab, ab) = w*(a,a) and thus we have completed

the proof. O

Combining Propositions 6.1.10-6.1.12, we obtain the following theorems

Theorem 6.1.13 Given a four tuple (cuj, Bi, Vi, 6)1<i j<n Satisfying conditions (i)-(v)
of Proposition 6.1.10, then there exists a unique general solution R for KS#, K7y such

that the following equations

wl(sia S]) = Q4j, 'LU2(SZ‘,CL) = /Bia w3<a73i> = Yi, w4(a7a) = 0.

Proof: By Propositions 6.1.10-6.1.12, we get what we want. U

Theorem 6.1.14 Let R be a general solution for KS#, k7, then we can find a unique
four tuple (cvj, Bi, Vi, 0)1<ij<n Satisfying the conditions (i)-(v) of Proposition 6.1.10 and

the following equalities

aij = w'(8i,85), Bi = w(si,a), vi = w(a,s;), 0 :=w(a,a).

Proof: By Proposition 6.1.10, we get what we want. 0

Let (i, Bis Vi, 0)1<ij<n = (1,1,1,1)1<; j<n, then we can see that the four tuple
such that the conditions of Proposition 6.1.10 and so we get a general solution for
kG#U,TkZZ And hence we know that the general solution for kG#Mng always exists.
Since we are interested in the number of quasitriangular structures of k¢#, ,kZ,, we
will give the following theorem. Let Ng be the set of all non-trivial quasitriangular
structures of ]kG#U,T]kZQ and let Ty be the set of trivial quasitriangular structures of
kG#U,TkZQ. For simple, we denote A as all quasitriangular structures of kG#U,TkZ}

Then we have

Theorem 6.1.15 If Ny # (0 and Ty # 0, then we have |Ng| = |Tg|. Moreover, if
G = Zn, X ... X Ly, then the cardinality of Ag is a factor of 2|G|".
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Proof: Let W := {w is bicharacter on G such that w(g, h) = w(g<z, h<x) for g, h € G}.
By Proposition 3.2.3, we know |Ty| = |[W|. Owing to Theorem 6.1.13-6.1.14 and using
a little observation, one can obtain that the number of general solutions for kG#oﬁT]kZQ
is also |[W/[. If Ng # 0, then we get that |Ng| is equal to the cardinality of the set of
all general solutions by definition. Hence we have |Ng| = |Tp]|. It is easy to see that

|W| is a factor of |G|", so we know |Ag]| is a factor of 2|G|". O

Remark 6.1.16 In fact, the above result implies that the number of quasitriangu-
lar structures of k¢#kZ, is 2|T, ol If we put this observation and the Propositions
3.2.5-3.2.6 together, we know that Ay can be taken any number in {0, |Ty|,2|Tg|}
Furthermore, if k¢#, ,kZ, has a non-trivial quasitriangular structure, then the num-
ber of quasitriangular structures only depends on part of data (G,<). And this result
seems to be very interesting. For example, we can quickly know that the number
of quastriangular structures of D,(the dihedral group with degree 2) is equal to the
number of quastriangular structures of Kg or have the double relationship! Trivial qua-
sitriangular structures are easy to give, thus the number of k“#, ,kZ, can be evaluated

very quickly!

Next, we use Theorems 6.1.13-6.1.14 to give all the general solutions on the Hopf

algebra Hy,, as an application.

Example 6.1.17 Recall that the 16 dimensional semisimple Hopf algebra H, l}:y in Ex-
ample 2.1.8, the group G = (a,bla* = V> = 1,ab = ba) and a <z = a®>,b<z = b.
It can be seen that S = {1,a? b,a*b} and T = {a,a® ab,a®b}. Thus we can assume
s1 = a?,s5 = b by Corollary 6.1.4. Since the definition of Hy.,, we get my =p; =1
and mg = py = 0. Let (ayj, 5,7, 6)1<ij<2 be a four tuple satisfying conditions (i)-(v)

of Proposition 6.1.10, then we get the following equations
A1, = Oy — 1, 0432 = 1, 57? = "}/12 = 1, 51 =, 52 =1. (68)

For simple, we denote a9y as a. Now if we use Proposition 6.1.12, then we get a general
solution R for H;.,,. In order to see the R more clearly, we list the w'(l1<i<4)of R

as follows
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w! 1 a’ b a’b w? a a’ ab a’b

1 1 1 1 1 1 1 1 1 1
a2 1 1 1 1 a? 5 A A A

b 1 1 a aQ b B2 B2 By By
a®b 1 1 aQ aQ a’b | Bifs BB afifa a BB
w? 1 a? b a’b w a a? ab a’b

a 1 gs! 2 M2 a 0 710 Y20 Y1720
a’ 1 gs! 2 T2 a® B10 0 Bi720 Y20
ab 1 gs! a”a Q172 ab Ba0 Pay1d aBayad  aBay1720
a’b 1 ga! Qa2 Q7172 a’b | 1520 P20 afiB2ye0 aB2720

It can be known from Theorems 6.1.13-6.1.14 that the above table gives all general
solutions for Hy,.,, when (oy;, 8i,7i, 6)1<i j<2 takes all the four tuples that satisfy equation

6.8.

§6.2 Special solutions for quasitriangular structures on

kG#O’,TkZQ

In this section, we will imitate the method used in the section 5.1 to give a neces-

sary and sufficient condition for the existence of a special solution on k¢#, ,kZ.

Proposition 6.2.1 Let R be a special solution for KS#, ,kZ,, and if we denote
. e 02 03 4
= w (84, 85), i i =w(si,a), v :=w(a,s;), 6 :=w"(a,a),

then the following equations hold

(11) Bk, = Psf“ BQU(SZ) = 0627111” a1 << n;

Hin o

Mn

(111) ’szb - PS]_%‘? ’Yio-(si> = a;rz%l"'ani ’ 1 S Z S n;

m1+p1 5mn+pn .
- Pn 5

e

(iv) 0% = [7(a,a)7 (b, a)7(b, b)*la(a)*lps_ml1 SmnPS_pll

1

(v) 0% = [r(a,a)7(a,0)7(b,b) "o (a) T Pty n Pt g™
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p

(vi) odi..alr = bl alr =n(a,s;), B7'...00 =W APn(a,b);

Proof: We mimic the proof of Proposition 6.1.10 as follows. Since w! is a bicharacter
on S, we have w'(s;, ;)% = w'(s;, s;)® = 1 and so (i) holds. To show (ii), we note
that I(X,,)" = Pk [(X1) and r(E,)? = r(Egm ), if we use (iii) of Lemma 5.1.6, we

get w?(s;, a)ki = Ps’.‘i and so we have g = P x;. Similarly, since

E w?(s,a)’o(s)es, T r(Egmi gnn) g w'(s, 7.8 )es,

seSs seS

we have w?(s;,a)?0(s;) = w'(s;, s]""...s™) through letting s = s;. Because we have
1

mn

shown w! is a bicharacter on S, we obtain w'(s;, s]"*...s") = af}'...alr™ and hence (ii)
holds. If we consider R, then we know R, is also a special solution for kG#mTkZQ and
so R, such that (ii). Due to the w"(1 <14 < 4) of R, such that w(s;,a) = w’(ab, s;)
by definition of R, and w?(ab, s;) = w*(a, s;)w' (b, s;) by (ii) of Lemma 5.1.6, we obtain
w?(s;,a) = w(a, s;)wh(b, s;). But wl(b, s;) = n(a, s;) because of (iii) in Corollary 6.1.9,
so w(ab, s;) = w?(a, s;)n(a,s;) = vin(a,s;). Because n(a, s;)* = n(a,s;)*> = 1 and (ii)
holds for R, we know (iii) holds. To show (iv), we first show (vi). Since (iii) in Corol-

lary 6.1.9, we know w'(s;, b) = w'(b, s;) = n(a, s;). But we have known w' is a bicharac-

ter on S and b = si'...sE» by the assumption, we know of}...aP = o} ...a" = n(a, s;).
Because of (iv) in Corollary 6.1.9, we have w*(ab, ab) = %uﬂ(a,a}. Using (iv) of

Lemma 5.1.6, we get w'(ab,ab) = 7(b, a)'w?(b, ab)w*(a, ab). With the help of the
(iv) of Lemma 5.1.7, we obtain w*(a,ab) = 7(a,b) 'w*(a,a)w?(a,b) and so we have
7(b,a) " 7(a, b) " tw?(b, ab)w?(a, b) = TTLG)I’) Due to w?(b, ab) = n(b, a)w?(b,a) by (5.1)
of Lemma 5.1.1, we know 7(b,a)"'7(a,b)"*n(b, a)w?(b, a)w?(a,b) = M It can be

7(a,a)

seen that T(b’f_)(z(gi?(g(z;)’“b) = 7(b,b)n(a,b). Moreover, since w?(b,a) = P, . B*...30"
) ) Sl «.Sp

and w¥(a,b) = Pyl ik, we get (B7'..05) (3" .a8") = 7(b,b)n(a, D) Phi .-
splsh spt.sh

Due to (iii) of Lemma 5.1.6, we obtain w?(a,b)> = 7(b,b) and hence w?(a,b) =

7(b,D)w?(a,b)™" = 7(b,0)Pyr _gny; ™.y, P Therefore (vi) holds. To show (iv), s-

ince 1(X,)? = 7(a,a)l(X,2) = 7(a,a)l(X, m_gmn) and the following equations hold

= Zw4(a,t)w4(a,t<1x)a(t)et, (X Zw sy t)e,

ses teT
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we have

w*(a, a)w*(a,ab)o(a) = 7(a, a)w?(s7™...s™" a) (6.9)

through letting ¢ = a. Since Lemma 5.1.6, we get w?(s, t)w?(s',t) = 7(s, s )w?(ss',t)

for s € S;t € T, so we have

O

w?(s7...s" a) = Ps_[”ll...s

o BB (6.10)

Since the (iii) in Lemma 5.1.2, we have w?(ab,b) = 7(b, a)qf;(&(;b)). Owing to (5.2) in
Lemma 5.1.1, we can get w?(ab, b) = w?(a, b)n(a, b). Because we have known w?(a, b) =
7(0,0)Por gmyy Py, P and w?(ab, b) = 7(b, a)m, we have

w(a,a)

w*(a, ab) = w*(a,a)7(b,a)'n(a,b)7 (b, D) P gnyy 7oy (6.11)

n

Combining equations (6.9)-(6.11) and (v), we obtain (iv). Finally, if we consider R,,
then we have (iv) holds for R,. Therefore we get (v) holds for R. O

Similar to Proposition 6.1.11, we have

Proposition 6.2.2 Let R be in Proposition 6.2.1 and let (i, Bi, Vi, 0)1<ij<n be in
Proposition 6.2.1, then the following equations hold

(1) wh(si...sin, s7tsim) = T [T os”;

k=1 1=1
(i) w?(s}t...sn s7'...sira) = stll Sln(H B TT 11T ek s
Ueesnt k=1i=1
3(gt  ging. I gin) — p~1 ST ey TT T aikdt .
(i) w¥(sisiva, st = P71 (FT ) T TT el
1esnt ply E=1i=1

(iv) w(si...stna, s71...89ma) = N(iy, ooy in, G1, -y Jn) (T BE)(TT 72F) T1 1T 5”46 ;

k=1 k=1 k=1i=1
where 0 < i1, .., < (M —1), 0 < J1,eyfn < (n—1) and A(iy, .coyin, J1s s Jn) =
Psgll...siﬁ stl'll...s{ﬁT(s? L.sina) i (a, 7t sim) L

Proof: Since w! is a bicharacter on S, we get (i). Owing to (ii) of Lemma 5.1.7,

we know w?(st...si, 5] .sira) = wl(s)...sin, ) sIn)w?(s...si a). Due to (iii) of
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Lemma 5.1.6, we obtain w?(s?'...si» a) = P51 . [[ B and so we have (ii). Similarly,
spesn
we can show (iii). Thanks to (iv) of Lemma 5.1.6, we get

wi(st...sma, s s0ra) = T(st st a) TP (s s ST st a)w? (a, 8757 a). (6.12)

On

Using (iv) of Lemma 5.1.7, we have
wi(a,s]...sma) = 7(s]' .57 a) ot (a ax, sT 5wt a, a). (6.13)
Because of (5.2) in Lemma 5.1.1, we get
w(a <z, s ...s0) =nla, s ...s7)wd(a, sI...s7). (6.14)

Since the equations (6.12)-(6.14) and (ii),(iii), we know (iv) holds. O

Conversely, given a four tuple (oj, 3,7, d)1<ij<n satisfies conditions (i)-(vi) of

Proposition 6.2.1, then we have

Proposition 6.2.3 Let R be the form (ii) on kK9#,.kZy in Proposition 3.1.5, and if
w'(1 <1 < 4) of R are given by (i)-(iv) in Proposition 6.2.2 by using the four tuple

above, then R is a special solution for kK4, kZ,.

Proof: Since Corollary 6.1.9, we only need to show R such that the conditions of Corol-
lary 6.1.9. Because the definition of w!, we know w! is a bicharacter on S and hence we
get [(Eg, ). A(E,,)™ = (Esjl...siﬁ)‘ To show I(X,,)"..[(X,, ) = Psil...s%"l(Xsil...sif‘%
we only need to show [[;_, w?(sy, )" = Psilmsiwa(s?...si{l,t) for t € T. Owing to

aS =T, we can assume t = s'...s7"a. Since w?(sy, s7'...s/ra) = B [ 1,2, o}y, we obtain

ﬁwQ(sk,sil...sﬂ"a)ik = ﬁﬁ;f ﬁ st (6.15)
k=1 k=1 kl=1

Because the definition of w? and the equation (6.15) above, we get [],_, w?(sy,t)* =

Psil...siﬁ w?(s't...s t) for t € T and so (i) of Lemma 6.1.6 holds. To show (ii) of Lemma

6.1.6, we only need to prove that w'(s, s )w?(a,s) = w3(as,s’) and w?(s, t)w*(a,t) =

7(s,a)w(as,t) for 5,5 € S, t € T due to Lemma 5.1.6. And these equalities are not

difficult to check and so (ii) of Lemma 6.1.6 hold. To show (iii) of Lemma 6.1.6, note
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that w! is a bicharacter on S and afj? = 1 by assumption and hence I(E;,)* = I(E,).
To show I(X,,)* = P 1(X1), we only need to prove that w?(s;,t)" = Py, fort € T.

Since the definition of w?

and ﬁf" = P, by assumption, we get w?(s;, t)k = P, for
t € T and so we know (iii) of Lemma 6.1.6 hold. To show (iv), it can be seen that
I(Eq)? = I(Egm _gmn) is equivalent to w?(a, s)?0(s) = w'(a?,s) for s € S. Since (iii)

1

in Proposition 6.2.1 and w' is a bicharacter, we know w?3(a, s;)%0(s;) = w'(a?, s;). By

4: 3 Ji jn) — p—1 n 3 I
definition, we have w?(a, s7'...s/") = P [[;—; w’(a, sg)?* and so we get
s

w?(a, s]...s")? = n Hw a, s;)%"
. n

To show w?(a, s7'...s7") 20 (51" ...s0") = w'(a?, s]"...s7"), we only need to show
n .
P e Ilootstt i) = 1.
—1

But the equation above follows from the following Lemma 6.2.4 and so we have [(E,)* =

[(Egm_ gmn). By definition, we have

Zw (a,t)ex] Zw (a,t)ex] = Zw a,tyw*(a,t <x)o(t)e

teT teT teT

and [(Xym e ) =30, cpw(s7" .87 t)ew. To show 1(X,)? = 7(a, a)l(Xgm  gmn), we
only need to show wi(a,t)w*(a,t < x)o(t) = 7(a,a)w?(s7"...s7"",t) for t € T. For
the simplest case t = a, we have w(a,a)w*(a,ab) = 7(a, b)flps_ml_.sﬁn [T, viko?
and w?(s7"...s7" a) = P7n11 s [I—, By by definition. Since the1 proof of Propo-
sition 6.2.1, we have w ( b) = Ppll_ pn%’l...vﬁ" = 7(0,0) Py gy ey P and
w'(a, a)w'(a,ab) = 7(a,b) ' 7(b,0) Py gnyy Py, P67, Owing to (iv), (vi) of Propo-

sition 6.2.1, we get w(a,a)w(a,ab)o(a) = 7(a,a)w?(si"...s{"" a). For the case t =
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s7...s7"a, using the following equalities

w*(a, a)w(a, ab)o(a) = T(a, a)w?(s{"...s7"", a), vio(s;) = o™ .apn
and the following Lemma 6.2.4, we can prove that w*(a, t)w?(a, taz)o(t) = 7(a, a)w?(s7™...s7"" t)
and hence we have show (iv) of Lemma 6.1.6. To prove that R such that (i)-(iv) of
Lemma 6.1.7, we consider the R,. If we denote the four maps associated with R, as

w' (1 <4 < 4), then it can be seen that the following equations hold
w'(si, 85) = i, w(s4,a) = n(a, )%, w(a,s;) =n(s;,a)b, w(a,a)=4.

Furthermore, one can check that the four tuple (o, n(a, ;)vi, 1(si, a)Bi, 0)1<i j<n sat-
isfies conditions (i)-(vi) of Proposition 6.2.1 and hence R, such that the conditions of
this Proposition. Therefore R, such that (i)-(iv) of Lemma 6.1.6. And this implies
that R such that (i)-(iv) of Lemma 6.1.7. Since w' is a bicharacter on S and (vi)
of Proposition 6.2.1, we know (iii) of Corollary 6.1.9 holds. Finally we prove that

w(ab, ab) = %w‘l(a? a). Since the definition of w?*, we have

w'(ab,ab) = Pyi .7(b,a) ' 7(a,0) " T 87 [ [ 7"*n(a, b)s
k=1 k=1

Due to Psz’ll._.sgnﬁl“'ﬁn = 7(b, b)PSii’lmSﬁn’yl_pl,..’y;pn and B'...50" = n(a, b)Y .4k,

we know that w?(ab, ab) = %w‘l(a, a). Using the fact 7 is a 2-cocycle, we can
see that T(aTlE;);b()b 5 = TT(‘(ISZ;)) and hence we get w*(ab, ab) = %’Z;’)w‘l(a,a). Therefore
we have completed the proof. O

We have the following equality

Lemma 6.2.4 P72 | T[i_, o(sp) 7o (s} ...si") = 1, where jy, ..., jn € N.
spt.st

Proof: On the one hand, it can be seen that A(E;) = Es@ Es+0(s) X ® X, for s € S
and so we have A(Esjl-lmszln) = Esjl-ln_sgln ®Es{1...s£;” +o (s ...s%”)ijl-lmszﬁ ®Xs{1...s£;"' On the
other hand, we have A(F,, ). A(FE,, )" = [E,, @ B, +0(51) X5, @ X, . [Es, @ FEy, +
0(50) X, & Xl = By @ By o+ 0(s0)" 0 ()" P, 5 X g ® X o

3 71 In — ) ) 2 n e J1 j
Since BJ}... Bl = Egqu ., We get Ps’l'l...sz;” [[i—; o(sk)t = o(s...slr). O

60



By Propositions 6.2.1-6.2.3, we get the following theorem

Theorem 6.2.5 There exists a quasitriangular structure for KS#, . kZ, if and only if
there exists a four tuple (auj, Bi, Vi, 0)1<ij<n Satisfies conditions (i)-(vi) of Proposition

6.2.1.

Proof: By Propositions 6.2.1-6.2.3, we get what we want. 0

To use the above Theorem 6.2.5 more convenient, we give the following corollary.

Corollary 6.2.6 There exists a quasitriangular structure for K4, . kZs if and only if
there exists a bicharacter w' on S and a pairing (B;,7:i)1<i<n Satisfying the following

conditions

(i) Bi...pem = A7 AErn(a,b), BB = At A

(iii) w'(s;,b) = wh(b, s;) = n(a, s;), w(s;,a®) = Bo(s;), w'(a? s;) = vio(s:);

where 1 <4 <n.

Proof: If there exists a quasitriangular structure, then we know w', (8;,7i)1<i<n of
Proposition 6.2.1 such that the conditions (i)-(iii). Conversely, let a;; = w'(s;, s;)
and let § be given by (iv) of Proposition 6.2.1, then we know that (a;, 5,7, 6)1<ij<n

satisfies conditions (i)-(vi) of Proposition 6.2.1 by our conditions (i)-(iii). And hence

there exists a quasitriangular structure by Theorem 6.2.5. 0

Next we give a sufficient condition for the existence of a special solution on

kG#U,TkZQ :

Corollary 6.2.7 If there is a bicharacter w* on S and a set {3; € k| 1 < i < n}

satisfying the following conditions
(i) 551 = Psfz‘ ’

(i) w'(s;, a?) = wl(a?, s;) = f2o(s;);

(iii) w'(s;,0) = wh(b, s;) = n(a, s;);
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where 1 <1 < n, then there exists a quasitriangular structure on kG#meg.

1

Proof: Let v := 8in(a,s;), then we can see that w' and (f5;,7:)1<i<n satisfy the

conditions of Corollary 6.2.6. And so we get what we want. 0
We give the following examples to illustrate our results in this section.
Example 6.2.8 Let K(8n,0,7) be in Example 2.1.4, then we can assume s; =

a%, sy = b. It can be seen that we can give a bicharacter on S satisfying the con-

ditions of Corollary 6.2.7 through the following equations

wl(sl,sl) = 620(51), wl(sl,sz) = wl(sg, s1) :==n(a, s1), wl(sg, S9) :=n(a, s9),

where 3 € k such that 8" = Pgx. That is to say there is a special solution for
K(8n,o,T).

Example 6.2.9 We have given all general solutions for Hbl:y in Example 6.1.17, now
let’s use Theorem 6.2.5 to give a special solution Ry for Hbl:y. To do this, we first give

a four tuple (ay;, 55, 7i, 6)1<ij<2 as follows
w'(sy,51) = w'(sy,s0) =1, w'(sy,s9) = w'(sy,51) :=—1, Bi=7:=1,0:=1,

where 1 <7 < 2. Then it can be seen that the four tuple satisfies the conditions (i)-(vi)
of Proposition 6.2.1 and hence we can use Theorem 6.1.13 to get a special solution for

Hy.,. Using the Proposition 6.2.2, we know the w'(1 < i < 4) of Ry are given as follows

w! 1 a? b a’b w? a a? ab a’b
1 1 1 1 1 1 1 1 1 1
a® 1 1 —1 -1 a® 1 1 —1 -1
b 1 -1 1 -1 b 1 -1 1 -1
a’b 1 -1 -1 1 a’b 1 -1 -1 1
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Chapter 7 p-symmetric quasitriangular structures

on kG#077k22

In this chapter, we apply the conclusions in Chapter 5 to give all ¢-symmetric qua-
sitriangular structures on k¢#, ,kZ,. Then we prove that all quasitriangular structures
on K(8n,0,7), A(8n,0,T) are p-symmetric and give all quasitriangular structures on

K(8n,o,7), A(8n,o,T).

§7.1 ¢-symmetric quasitriangular structures on kG#mez

Let ¢ be the Hopf isomorphism in Proposition 4.2.1. By Corollary 4.2.3, we know
the most simple quasitriangular structures on kG#meQ are (-symmetric quasitrian-
gular structures. We will give a necessary and sufficient condition for the existence of
p-symmetric quasitriangular structures on k9#, .kZ, in this section. Before that, we

give the following definition.

Definition 7.1.1 A quasitriangular function w on K¢#, . kZ, is called a p-symmetric

quasitriangular function if it satisfies w(ty,ty) = w(te, t1) for ty,te € T.

The following proposition is the reason why we give the above definition.

Proposition 7.1.2 Let R be the form (ii) in Proposition 3.1.5, then R is a @-symmetric
quasitriangular structure if and only if w* is a @-symmetric quasitriangular function
and w'(1 <1 < 3) are given by (i)-(iii) in Lemma 5.1.2.

4 is a quasitri-

Proof: If R is a p-symmetric quasitriangular structure, then we know w
angular function due to Proposition 5.1.4. By definition of p-symmetric quasitriangular
structure, we get w(ty,ts) = w(ty, t1) for ty,ty € T. Moreover, since Lemma 5.1.2, we
obtain that w'(1 < i < 3) are given by (i)-(iii) in Lemma 5.1.2 and so we have proved the
necessity. Conversely, if w? is a p-symmetric quasitriangular function and wi(1 < i < 3)
are given by (i)-(iii) in Lemma 5.1.2, then we get R is a quasitriangular structure by

Theorem 5.1.11. To show R is a p-symmetric quasitriangular structure, we only need

to prove that w?(s,t) = w3(t <z, s) and w'(sy, s9) = w'(sy, s1) for s,81,80€ 5, t €T
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by definition. Since (i)-(iii) of Lemma 5.1.2 and w* (¢, t5) = w(ts,t1) for t;,ts € T, we

get w?(s,t) = w(t<x,s) and w'(sy, s9) = wl(sg,51). O

Corollary 7.1.3 Let R be a quasitriangular structure on K¢#,.kZy, then R is a -
symmetric quasitriangular structure if and only if w'(s;,s;) = w'(s;,s;), w?(s;,a) =

w3(ab, s;) for 1 <i,j5 <mn.

Proof: The necessity is obvious. In order to prove the sufficiency, we only need
to prove that w(ty,ts) = w(tq,t1) for t1,ty € T because of Proposition 7.1.2 above.
Since aS = T, we can assume that t; = as and t, = as’ for some s,s" € S. Then

1

we have w'(as,as’) = 7(s,a) 'w?(s,as’)w(a,as’) by (ii) of Lemma 5.1.2. Because

(ii) of Lemma 5.1.7, we have w?(s,as’) = w*(s,a)w'(s,s’). Owing to w(a,as’) =

7(s',a)'wi(a, a)w?(ab, s') by (iii) of Lemma 5.1.2, we get
w*(as,as’) = 7(s,a) " '7(s', a) tw(a, a)w' (s, s )w? (s, a)w?(ab, s).

Since w! is a bicharacter on S, we get w!(s,s’) = w!(s’,s). Due to (iii) of Lemma
5.1.6 and (iii) of Lemma 5.1.7, we know w?(s,a) = w3(ab, s) and w3(ab, s') = w*(s', a).

Therefore we have w(as, as’) = w*(as’, as). O

As an application of the results of Section 6.2, we give the following proposition.

Proposition 7.1.4 There exists a p-symmetric quasitriangular structure for K94, k7
if and only if there exists a bicharacter w' on S and a set {f; € k| 1 <i < n} satisfies

the following conditions
(1) w'(si,s;5) = w'(s;,8:);
(i) Bl = Pk w' (s, a%) = Bio(si);
(1if) w' (s, b) = n(a, s;);
where n = |S| and 1 <i,j <n.
Proof: If R is a p-symmetric quasitriangular structure, then we can find a bicharacter

w! on S and a pairing (5;, ;) 1<i<n satisfy (ii), (iii) by Corollary 6.2.6. Since Corollary
7.1.3, we know w'! satisfies (i). Conversely, it can be seen that w! and {3; € k| 1 < i <
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n} such that conditions of Corollary 6.2.7, so we can find a quasitriangular structure
R on k94, kZ, satisfies w' of R is exactly the w! and w?(s;;a) = ;. Then we
will show that R is ¢-symmetric and hence we complete the proof. Since Corollary
7.1.3, we only need to prove that w'(s;,s;) = w'(s;,s;), w?(s;,a) = w(ab,s;) for
1 <i,j < n. Owing to (i), we know w'(s;, s;) = w'(s;,s;). Because of the proof
of Corollary 6.2.7, we get w3(a,s;) = n(a, s;)w?(s;,a). Due to (ii) of Lemma 5.1.1,

we obtain w?(ab, s;) = w3(a, s;)n(a,s;). Therefore w3(ab, s;) = n(a, s;)*w?(s;,a). But

n(a, s;)* = n(a?,s;) = 1, so w(ab, s;) = w?(s;,a). O
Remark 7.1.5 In fact, not all non-trivial quasitriangular structures on Hopf algebras
kC#, ,kZy are p-symmetric. For example, the Ry in Example 6.2.9 is not p-symmetric.
This can be seen from the fact that w* of Ry is not a ¢-symmetric quasitriangular

function. Therefore we know that symmetry of a quasitriangular structure is a special

property.

§7.2 All quasitriangular structures on K(8n,0,7), A(8n,o,7)

We regard K(8n,0,7) and A(8n,o,7) as Hopf algebras which are easy to deal
with due to the numbers of generators of G are very small. Moreover, we will see
that k¢#,.kZ, has a quotient, either K(8n,0,7) or A(8n,o,7). For these reason-
s, we will study these Hopf algebras and give all the quasitriangular structures on
K(8n,0,7), A(8n,o,7) in this section. Let k®#,,kZ, be in Definition 2.1.2, and
if there is a subgroup H of G such that H <x = H, then we have another data

(H,<|p,0|m, T|pxm). For our convenience, we denote the data (H,<|g,o|m, T|pxm) as
(H,<,0,7).

Proposition 7.2.1 The Hopf algebra k" #, . kZy is a quotient of KE#, ,KZs.

Proof: We define a linear map 1 : kG#U,TkZQ — kH #...kZy by letting

w(eh) ‘= €h, w<€g) = 07 ¢(€h$) = e, w<€g$) = 07

where h € H, g ¢ H. Then it can be seen that v is a morphism of Hopf algebras and

1) is surjective. So we have completed the proof. ([l
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Corollary 7.2.2 The Hopf algebra K (8n,0,T) is a quotient of KS#,,kZy or the Hopf
algebra A(8n,o,T) is a quotient of KS4#, ,KZ,.

Proof: Owing to (ii) of Proposition 3.1.5, there is b € S such that b* = 1 and t<z = tb
for t € T. Taking a € T and let H := (a,b) as subgroup of G, then we know that
Kk #,.kZs is a quotient of ]kG#C,,T]kZQ by Proposition 7.2.1. Next we will show that
H = {a,b] a® = 1,1 = 1,ab = ba) or H = (a,b| a*™ = 1,b = a®*) as group for some
n € N and thus we complete the proof. If b € (a), then we can assume b = a™ for some
m € N. Since b* = 1, then we have a®*™ = 1. we claim that m is an even number in this
case. Otherwise, m is odd and then we have a™ € S. Because a® € S by definition and
(2,m) =1, so we get a € S. But this is a contradiction, and hence we can assume that
m = 2n. Then it can be seen that H = (a,b| a'™ = 1,b = a®) as group. If b ¢ (a),
then we will show that H = (a,b| a®® = 1,b*> = 1,ab = ba). Since a*> € S and a ¢ S,
we can assume that the order of a is 2n for some n € N. Let ¢,j € N and if a't/ = 1,
then we have 2|7 due to b ¢ (a). Then we know a’ = 1 and hence (2n)|i. Therefore we

get H = (a,b| a® =1,0* = 1,ab = ba). O

Not only K (8n,0,7), A(8n,o,7) have the simple form, but also the quasitriangular

structures on them are very simple.

Proposition 7.2.3 All quasitriangular structures on K(8n,o,7), A(8n,0,7) are ¢-

symmetric.

Proof: Let R be a non-trivial quasitriangular structure on K (8n, o, 7), then we will
show that R is ¢-symmetric. Owing to the definition of K(8n,o,7), we can assume
that s; = a?, s, = b. Since Corollary 7.1.3, we only need to show that the following

equations hold
wl(sl, S9) = wl(sg,sl), wz(sl,a) = w?’(ab,sl), w2(32,a) = w3(ab, Sa).

Because (iii) of Corollary 6.2.6, we get w'(sy,b) = w'(b, s1) = n(a, s1). But s, = b and
so we obtain w!(sy, s3) = w'(s2,51). Due to (5.3) of Lemma 5.1.1, we have w(ab, a) =

w(a,ab). Since [(X,)? = 7(a,a)l(Xq2), we get w(a, t)w(a, t<x)o(t) = 7(a, a)w?(a?,t)
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by expanding the equation. Let ¢ = a, then we have
4 4 _ 2/ 2
w*(a,a)w*(a,ab)o(a) = 7(a,a)w(a*, a). (7.1)

Similarly, we obtain that w* (¢, a)w*(t<x, a)o(t) = 7(a, a)w?(t, a*) by expanding r(X,)* =
7(a,a)r(X,z). Let t = a, then we have

w*(a, a)w*(ab,a)o(a) = 7(a, a)w?(a,a?). (7.2)
Since w*(a, ab) = w*(ab, a) and the equations (7.1), (7.2), we get w?(a?, a) = w3(a, a?).
Because of (5.2) in Lemma 5.1.1, the know w?(ab, a*) = w*(a, a?) and so the equation

w?(s1,a) = w3(ab, s1) holds. To show w?(sy,a) = w3(ab, s3), we use (ii) of Lemma 5.1.2

and we get w?(b,a) = 7(b,a) wfglbs) Similarly, we get w?(ab, b) = 7(b, a) 24 ‘;‘Zb) by (iii)
of Lemma 5.1.2. Because we have known w?(a,ab) = w(ab,a), we get w?(b,a) =

w3(ab, b) and so w?(sy,a) = w?(ab, s3). Therefore R is p-symmetric. Similarly, one can

prove that all quasitriangular structures on A(8n, o, 7) are @-symmetric. O

Let Qf := {non-trivial quasitriangular structures on K (8n,o,7) }, then we have

Theorem 7.2.4 Qi ¢— {(B1,62,0)| B¢ = Py, 2 = Pg, 0* = T<“ U(baa BiBo},

where s = a?, sy = b.

Proof: Given a non-trivial quasitriangular structure R on K (8n, o, 7), we can define

a triple (81, 32,0) through letting 8 := w?(s1,a), Bo = w?(s9,a), & := w'(a,a).
Since (ii), (iv) of Proposition 6.2.1, we know 8" = P, 85 = Pg, 6> =~ abab));baa B152.
Conversely, let (01, f2,0) be a triple satisfying 8 = Py, 3 = P, 2, 0% = T “b“b)); baa B1 5,

then we claim that there is a unique quasitriangular structure R such that w?(s;,a) =
Bi, w?(s9,a) = By, w(a,a) = . To do this, let w! be a bicharacter on S which is

determined as follows

w'(s1,s1) = Blo(s1), w'(sy,s2) = w'(sq, 81) := 1, w'(sy,s2) := n(a, sy). (7.3)

then we will use Proposition 7.1.4 to get a quasitriangular structure R such that
w?(s1,a) = P1, w(sy,a) = Bz, wi(a,a) =05 We first show w! is well defined. To show
this, the only non-trivial thing is to prove that [0 (s1)]" = 1. Since Lemma 6.2.4, we
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get Po(s1)" =1 and so [B7o(s1)]" = 1. Then we prove that w' and the set {81, B2}
such that the conditions of Proposition 7.1.4. To prove this, the only non-trivial thing is
to show f30(sy) = 1. Owing to 7(a,b)7(ab,b) = o(ab)o(a) o (b)~! and o(ab) = o(a),
we know 7(b,b)o(b) = 1. Due to $20(ss) = 7(b,b)a(b), we have B30 (sy) = 1. Now we
can use Proposition 7.1.4 and Proposition 6.2.2 to get a ¢-symmetric quasitriangular
structure R satisfying w?(s1,a) = 1, w?(s9,a) = B2, w*(a,a) = §. Since Lemma 5.1.2,
we know R is unique if it is a p-symmetric quasitriangular structure and it satifies that
w?(s1,a) = B1, w?(sy,a) = By, w'(a,a) = 6. Finally, by Proposition 7.2.3, we know

that this correspondence we have discussed is one-one. 0

Remark 7.2.5 In fact, from the proof of the above theorem, we know that all non-
trivial quasitriangular structures on K (8n,o,7) are given by (i)-(iv) of Proposition
6.2.2, where (S, 82, 0) are in Theorem 7.2.4 and w' is defined by (7.3) above and «;; =
w'(siy85), vi = Bim(a,s;) for 1 < i < 2. Suppose n(a,b) = 1 for K(8n,0,7). Given
a non-trivial quasitriangular structure on K (8n, o, 1), if we compare the coefficient of
ea®es,x for Ry and R™! = (S®Id)(R), then we can get that Ry; # R™'. Furthermore,
one can obtain that there is no trivial triangular structure such that it is triangular.
That is to say K (8n, o, 7) is not triangular when 7n(a,b) = 1. And these Hopf algebras

exist in large numbers, such as K(8n,() in Example 2.1.5.

Similar to above Theorem 7.2.4, let Q4 := {non-trivial quasitriangular structures

on A(8n,0,7) }, then we have

Theorem 7.2.6 Q4 ¢— {(B,0)| B* = Pgn, 6% = %Pyﬁl*”}, where s = a?.

Proof: Let R be a non-trivial quasitriangular structure and let w'(s, s) = 3, w*(a,a) =
J, then it can be seen that (3,0) such that the following conditions

7(a,a)7(b,a)

2n = P2n 2 p— !
P = e 0= o (a)

Pt (7.4)

due to (ii),(iv) of Proposition 6.2.1. Conversely, if (3, ) satisfies the equation (7.4),

then we can use (i)-(iv) of Proposition 6.2.2 to define a R as follows
w'(s, s) = f%o(s), w’(s,a) = w(a,s) := B, w'(a,a) = 4. (7.5)
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Then we can see that the four tuple (8%0(s), 3, 3,d) satisfies conditions (i)-(vi) of
Proposition 6.2.1 and thus R is a non-trivial quasitriangular structure. Moreover, since
Lemma 5.1.2, we know R is unique if it is a p-symmetric quasitriangular structure and
satisfies w?(s,a) = w3(s,a) = B, w'(a,a) = §. Finally, since Proposition 7.2.3, we

know that this correspondence we have discussed is one-to-one. 0

Remark 7.2.7 From the proof of the above theorem, we know that all non-trivial
quasitriangular structures on A(8n, o, 7) are given by (i)-(iv) of Proposition 6.2.2, where

(8,9) are in Theorem 7.2.6 and w' is defined by (7.5) above and ay; = w'(s, s), v = f3.
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Chapter 8 Construction of minimal quasitriangular

Hopf algebras

In this chapter, we will study two classes of minimal quasitriangular Hopf algebras
which are full rank minimal quasitriangular Hopf algebras and minimal triangular Hopf
algebras. We mainly consider how to construct these two classes of Hopt algebras

through the conclusions we have discussed.

§8.1 Full rank minimal quasitriangular Hopf algebras

Since we also feel interested in minimal quasitriangular Hopf algebras, we want
to identify all minimal quasitriangular Hopf algebras among k“#, ,kZ,. We observed
that this problem is complex for the general case, so we choose to study a special class
of minimal quasitriangular Hopf algebras which we call full rank minimal quasitriangu-
lar Hopf algebras in this section. This kind of Hopf algebras have a remarkable feature,
that is, the Hopf algebra structures on them are determined by their quasitriangular
structures. We will see that it is easy to know when a Hopf algebra is a full rank mini-
mal quasitriangular Hopf algebra and we can find a large number of full rank minimal
quasitriangular Hopf algebras form Hopf algebras kS#, ,kZ,. For a quasitriangular
Hopf algebra (H, R), we will denote H, := {(f ®1d)| f € H}, H, := {(Id®f)| f € H}
respectively in this section. Next we give the definition of full rank minimal quasitri-

angular Hopf algebras.

Definition 8.1.1 A quasitriangular Hopf algebra (H, R) is called by a full rank mini-
mal quasitriangular Hopf algebra if H = H;.

It can be seen that H = H, is equivalent to H = H,, thus the condition H = H; in
Definition 8.1.1 can be replaced by H = H,.. By definition, we know a full rank minimal
quasitriangular Hopf algebra is a special class of minimal quasitriangular Hopf algebras.
From the result in [21, Theorem 2.2|, we know minimal triangular Hopf algebras belong

to full rank minimal quasitriangular Hopf algebras. The following lemma is obviously.
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Lemma 8.1.2 A quasitriangular Hopf algebra (H, R) is a full rank minimal quasitri-

angular Hopf algebra if and only Rank(R) = dim(H).

The following lemma shows that full rank minimal quasitriangular Hopf algebras and

minimal quasitriangular Hopf algebras are exactly coincident in some special cases.

Lemma 8.1.3 If (H,R) is a quasitriangular Hopf algebra such that Hy = H,, then
(H,R) is a full rank minimal quasitriangular Hopf algebra if and only (H, R) is a

minimal quasitriangular Hopf algebra.

Proof: By definition, we only need to prove sufficiency. If (H, R) is a minimal quasi-
triangular Hopf algebra, then we have H = H;H,. Since H; = H, and H, is subalgebra
of H, we get H = H,. 0

Before we continue to study full rank minimal quasitriangular Hopf algebras, we

give the following examples of them.

Example 8.1.4 Let H be a finite abelian group, then we can find a Hopf isomorphism
¢ : k[H] — k" due to H is commutative. Let R = Y, .y #(h)(k)en ® eg, then we
can get that (kff, R) is a full rank minimal quasitriangular Hopf algebra. Therefore
we know that finite abelian group belongs to full rank minimal quasitriangular Hopf

algebras.

In fact all minimal triangualar Hopf algebras are full rank minimal quasitriangular
Hopf algebras and this fact has been figured in |21, Theorem 2.2|. Another example of

full rank minimal quasitriangular Hopf algebras is the 8-dimension Kac algebra.

Example 8.1.5 The 8-dimension Kac algebra Kg |1, Section 2.3.1] belongs to kE#, ,kZ.
By definition, the data (G, <, 0,7) of Kg is given by the following way

(i) G =79 X Zy = {a,bla* =1*> =1,ab=ba) and a<z =b,b<z = a.
(ii) o(a't’) = (=1)Y for 1 < 4,5 < 2.
(iii) 7(a’V’,a*b) = (=1)7% for 1 < i, 75, k,1 < 2.

All possible quasitriangular structures on Ky were given in [71] and we will choose

non-trivial quasitriangular structures of Ky to get full rank minimal quasitriangular

72



Hopf algebras. Let v € k such that 4* = —1, define R, as below

R, =[e1®e1+e1 ®eap+ €ap @ €1 — €ap @ eap|+
le1x ® e, + 12 ® ey — Vet ® €4 + Vet @ ep]+
[ea @ 12 + €, ® 17 + YPeq ® ey — Yoy @ eqpx]+

1

[V ea @ eq + e, ® eyt + YerT ® eu + 7 tepr ® ey

From [71], we know all non-trivial quasitriangular structures on Ky have been gotten
when R, run over ¥ = —1. Moreover, one can see that Rank(R,) = 8 and hence
(K3, R,) is a full rank minimal quasitriangular Hopf algebra. Moreover, one can check
that 12, is not triangular and trivial universal /R-matrices are also not triangular, that
is to say the set of full rank minimal Hopf algebras is larger than the set of minimal

triangular Hopf algebras.

Proposition 8.1.6 If (H, R) is a full rank minimal quasitriangular Hopf algebra, then
the set of group like elements G(H) is an abelian group.

Proof: Owing to (H, R) is a full rank, we know lr : H**®? — H is Hopf isomorphism.
Thus we only need to show G(H*P) is an abelian group. By Lemma 3.1.2, we know
C(H*) is a commutative algebra. It can be seen that S*(C(H*)) = C(H**P), so we
obtain C(H**P) is a commutative algebra. Since G(H**?) C C(H*“?), we obtain that
G(H*®°P) is an abelian group. O

Using this result, we can easily get that the quantum double D(kSs3) is not full
rank minimal quasitriangular Hopf algebra. And this example shows that minimal
quasitriangular Hopf algebras are larger than full rank minimal quasitriangular Hopf
algebras. Naturally, we can ask when k9#, kZ, is full rank minimal quasitriangular
Hopf algebra. Below we give sufficient conditions for k¢#,.kZ, to be a full rank
minimal quasitriangular Hopf algebra. Then we use our results to get a series of full
rank minimal quasitriangular Hopf algebras. For simplicity, we still denote k¢#, ,kZ
as Hg. By Proposition 3.2.1, if there is a non-trivial quasitriangular structure R on
Hg, then we have |S| = |T'|. Observe that if we let S = {s1,---,s,} and T =

{t1,--+ ,tm}, then the functions w’(l1 < i < 4) of R can be viewed as 4 matrices,

which are (w'(s;, 55))1<ij<m, (W (ti,55))1<ij<m, (W (si,t5))1<ij<m, (Wi, t5))1<ij<m-
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So when we say wi(l <1 < 4) we mean that they are matrices in the following content.

Proposition 8.1.7 If R is a non-trivial quasitriangular structure on Hg, then (Hg, R)
is a full rank minimal quasitriangular Hopf algebra if only if one of w'(1 < i < 4) is

non-degenerated matriz.

Proof: Assume that (Hg, R) is a full rank minimal quasitriangular Hopf algebra,
then we have Rank(R) = dim(H) by Lemma 8.1.2. Thus we know w'(1 < i < 4)
are non-degenerated matrices and this implies the necessity holds. Conversely, let
1 < j <4 and suppose w’ is non-degenerated matrix, then we will show w'(1 <7 < 4)
are non-degenerated matrices. Owing to Proposition 6.2.2 and w’ is non-degenerated
matrix, we know w! is a non-degenerated matrix. Using Proposition 6.2.2 again, we
get w'(1 < i < 4) are non-degenerated matrices. And this implies Rank(R) = dim(H)

and hence we know (Hg, R) is a full rank minimal quasitriangular Hopf algebra. [

Recall the Example 6.2.9, then one can see that H,,, is a full rank minimal quasitri-
angular Hopf algebra by using the above Proposition 8.1.7. For non-trivial p-symmetric

quasitriangular structures on Hg, we have the following proposition.

Proposition 8.1.8 If R is a non-trivial p-symmetric quasitriangular structure on Hg,
then (Hg, R) is a full rank minimal quasitriangular Hopf algebra if only if (Hg, R) is

a minimal quasitriangular Hopf algebra.

Proof: By Lemma 8.1.3, we only need to prove that (Hg), = (Hg),. Since [ is an
algebra map and 7T = S, it can be seen that (Hg), = (I(X:),l(E}:) | t € T) as algebra.
Similarly, one can get that (Hg), = (r(X:),r(E:) | t € T) as algebra. Because R is
p-symmetric and R, has the form (4.2), we know [(X}) = r(X}) and I(E}) = 7(Epa)
for ¢t € T. Therefore we obtain (Hg); = (Hg),- O

To get a series of full rank minimal quasitriangular Hopf algebras, we use the
following propositions. For the Hopf algebra K (8n,o,7), we keep using the notation

Pgn in Theorem 7.2.4. Then we have

Theorem 8.1.9 K (8n,0,7) is a full rank minimal quasitriangular Hopf algebra if and
only if n(a,b) = —1 and there is § € k such that 3" = P2)n and *0(a®) is a primitive
nth root of 1.
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Proof: Assume that (K (8n,0,7), R) is a full rank minimal quasitriangular Hopf alge-

bra, then it can be seen that R is a non-trivial quasitriangular structure. By Proposition

!'is non-degenerated matrix. To calculate the matrix w!, we denote

8.1.7, we know w
sj i =a%"% s,.;:=a*?p for 1 < j <n. Owing to (vi) of Proposition 6.2.1, we know
w'(s,b) = n(a,s) for s € S. In particular, we get w'(s;,b) = n(a, s;) = n(a,a®?) =1
for 1 < i < n. Since w'

I1<u,5<n

is a bicharacter on S, we have the following equalities for

w' (si, 8n14) = W' (81, 8;b) = w' (s, s;)w (54, b) = w'(s4, 55). (8.1)
Similarly, one can get the following equations
w! <5i7 5n+j) = w1<3i7 Sj)ﬂ wl(si+n> 5n+j) = w1<3ia 3]’)77(6% b)7 (8'2>

where 1 < i,5 < n. Let A be a matrix defined by A := (w'(s;, s;))1<ij<n. Due to

equations (8.1) and (8.2), we have

A A A 0
<w1<5i7 Sj))lgi,jgzn = ~

A n(a,b)A 0 (n(a,b) —1)A

Here "~" means that two matrices can be gotten each other through elementary op-

erations. Therefore we know w! is non-degenerated if and only if n(a,b) = —1 and
A is non-degenerated matrix. Let § := w?(a? a), then we have " = Pa2y» and
wh(a?,a?) = [%0(a?) by (ii) of Proposition 6.2.1. Because w' is a bicharacter on S,
we obtain w!(s;, s;) = (8%0(a?))=D0=Y for 1 < 4,5 < n. Since A is non-degenerated
matrix, we know 3%c(a?) is a primitive nth root of 1. Therefore we have proved the ne-
cessity. To show the sufficiency, we suppose that n(a,b) = —1, 8" = P,2)» and 2o (a?)
is a primitive nth root of 1, then we will construct a non-trivial quasitriangular struc-
ture on K(8n,o, ) such that (K(8n,0,7), R) is a full rank minimal quasitriangular
Hopf algebra. Let ', € k such that 52 = P, 6% = %6&, then we can get
a non-trivial quasitriangular structure R such that w?(a? a) = B by Theorem 7.2.4.

Since we have showed w' is non-degenerated in this case, we get (K (8n,0,7), R) is a

full rank minimal quasitriangular Hopf algebra. 0

To use Theorem 8.1.9 more conveniently, we give the following corollary.
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Corollary 8.1.10 Let K(8n,0,7) as before. If T(a,a’) =1 fori € N andn(a,b) = —1,
then K (8n,o,T) is a full rank minimal quasitriangular Hopf algebra if and only if there

is w € k such that w™ =1 and w?c(a?) is a primitive nth root of 1.

Proof: By Theorem 8.1.9, we get what we want. 0

Using Corollary 8.1.10, we can give a series of full rank minimal quasitriangular

Hopf algebras as follows

Corollary 8.1.11 Let K(8n,() be the Hopf algebras given in Example 2.1.5, then we

have the following conclusions:

(i) if n is even and n > 4, then K(8n,() is full rank minimal quasitriangular Hopf

algebra.

(ii) if n is odd or n = 2, then K(8n,() is not full rank minimal quasitriangular Hopf

algebra.

Proof: Firstly, we show (i). By the definition of K(8n,(), o(a?) = —(?. If n is even
and bigger than 4, we can find a w € k such that w™ = 1 and w? = —1. Then we have
w?c(a?) = ¢* and thus w?c(a?) is a primitive nth root of 1. By Corollary 8.1.10, we
know that K(8n,() is full rank minimal quasitriangular Hopf algebra.

Secondly, we show (ii). If n is odd, then we have (w?c(a?))" = [—(w()?]" = —1 for
arbitrary w € k such that w"™ = 1. Hence w?c(a?) is not a primitive nth root of 1. As
a result K (8n, () is not full rank minimal quasitriangular Hopf algebra. If n = 2, then
o(a?) = 1. Let w € k such that w? = 1. Thus w?c(a?) = 1 which is not a primitive 2th
root of 1. Therefore K (16, () is not full rank minimal quasitriangular Hopf algebra. [

So we have found a series of full rank minimal quasitriangular Hopf algebras which

belong to kE#, ,KZs.

§8.2 Minimal and triangular semisimple Hopf algebras

S. Gelaki raised the question of whether there is a minimal and triangular semisim-

ple Hopf algebra in [21], and then he and P. Etingof constructed a series of minimal
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triangular semisimple Hopf algebra in [12]. Their method is to construct twists itera-
tively and give some minimal triangular structures on some semisimple Hopf algebras.
Inspired by [21] and [12], we can naturally ask whether there are other ways to give
minimal and triangular semisimple Hopf algebras? and if so, whether we can give
all minimal triangular structures on them? To answer this question, we choose Hopf
algebras k¢#, ,kZ, to explore this problem. We first give a criterion when a quasitri-
angular structure on kO#, ,kZ, is a triangular structure. Then we use this criterion
and some results in Subsection 8.1 to construct all minimal triangular structures on
Hy, for n € N and these Hopf algebras are different from the minimal triangular
semisimple Hopf algebras ((Z, x Z,) % (Z, x Zp),72_11 J) and C|G]” constructed in [12],
where G = S3 X (Zoy x Z3)*. Our method is based on the result that all quasitriangular
structures on kG#J,T]ng have been determined. Therefore one can get all minimal
triangular structures on k®#,,kZ, by using our way. By the way, we prove that
the semisimple Hopf algebra Hl}:y is the smallest Hopf algebra among the non-trivial
semisimple minimal triangular Hopf algebras. For convenience, we assume that R in
this subsection means that a non-trivial quasitriangular structure on kG#U,TkZQ. We

first give the following lemma.

Lemma 8.2.1 Let R be a non-trivial quasitriangular structure. If w*(ty, t2)w(ty <
z,t1<x)o(ty)o(ty) =1, t1,ty € T, then w'(sy, so)w' (s, 51) = 1, w?(s, t)w(t, s)o(s) =1
for s, si,s0€ S5, teT.

Proof: By Lemma 5.1.2, we get the following equalities

wh(t<x, sty <)
wi(t<w, ty<z)’

wh(sty,t)

3 _
m, w (t,S)—T(S,thx)

w?(s,t) = 7(s,1;)

Therefore we obtain

w(sty, Hw(t <z, sty <)
w(ty, wr(t <z, ty <)
[o(st)o ()] ! o(5)
[o(t1)o ()]
:T(S,tl)T(S,tl ax)o(ty)o(s) 1
o(sty)

w? (s, t)w(t, s)o(s) = 7(s,t1)7(s,1, < ) o(s)

= 7(s,t1)7(s, 1 9 )
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Then we will show w!(sy, s2)w!(s2,51) = 1. Due to (ii) of Lemma 5.1.6, we obtain

w3 (s1t,52)
w3(t752) )

5.1.7. Thus we have

w2(52,31t

wh(sy, 9) = Similarly, one can get w!'(sq,s;) = wg(sz,t)) by (ii) of Lemma

3 2 -1
. . w3(s1t, $2) w3 (sg, 51t)  o(82)
w(s1, s2)w (52, 51) w3(t, s9)  w(sg,t) o(s2)7t

Using Lemma 8.2.1, we can easily obtain the following proposition.

Proposition 8.2.2 The R is a triangular structure if and only if w*(t1, to)w*(to<z, t1<

x)o(ty)o(ts) =1 forty,to €T.

Proof: Directly we have

Ry = Z w1<527 31)651 ® es, + Z wg(tv 8)6537 ® e4t+

51,52€8 seSteT
2 4
E w (s, t)e; ® esx + E w*(to, t1)en T ® ey,
teT,seS t1,to€T

So the following equation holds

RRy; = Z w' (51, 82)w' (s, 51)es, @ €5, + Z w? (s, t)w’(t, s)o(s)es ® e+

51,82€8 seSteT

> w(s, ul(t s)o(s)e @es+ Y wht,b)w(tax, t <x)o(t)o(t)er, @ ey,

teT,seS t1,t2€T
By Lemma 8.2.1, we get what we want. 0

In order to use Proposition 8.2.2 more conveniently, we give the following corollary.

Corollary 8.2.3 If R is @-symmetric and w*(ty,t2)* = 1 for t1,ty € T, then R is

triangular if and only if %a(tl)a(w) =1 forti,to €T.

Proof: Since R is ¢-symmetric, we get w(ty <, t; <x) = wi(t; <, ty <x). Owing

t1<1.r,t2<1$)

to Lemma 5.1.1, we obtain w(t; <z, 1y < @) = w(ty, t) ™ . Therefore we can

T(tg,tl)
see that R is triangular if and only if w? (¢, tg)QWJ(tl)a(tg) = 1 by Proposition
8.2.2. Because w(t1,t2)? = 1, we get what we want. O
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We give the application of Corollary 8.2.3 by the following example.

Example 8.2.4 Let H;, be in Example 2.1.8. We will use Theorem 6.2.5 and Corol-
lary 8.2.3 to give a minimal triangular structure on Hy, . By definition of Hy, , we
know S = {1,a% b,a?b}. Thus we can assume that s; = a?, s, = b. To give a special

solution for Hbl:y, we first give a four tuple (i;, Bi, 7, 0)1<i j<o as follows
an=ap =1, ap=ay:=-1, fi=7:=1 f=—p:=10=1

Then it can be seen that the four tuple satisfies the conditions (i)-(vi) of Proposition
6.2.1 and hence we can use Theorem 6.1.13 to get a special solution Ry for H, bl:y. Using

the Proposition 6.2.2, we know the wi(1 <1i < 4) of Ry are given as follows

w! 1 a’ b a’b w? a a’ ab asb
1 1 1 1 1 1 1 1 1 1
a® 1 1 -1 -1 a® 1 1 -1 -1
b 1 -1 1 —1 b 1 -1 1 -1
a’b 1 -1 -1 1 a’b 1 -1 -1 1
w3 1 a? b a®b wt| a a® ab @%b
a 1 1 -1 —1 a 1 1 -1 -1
a’ 1 1 1 1 a’ 1 1 1 1
ab 1 -1 -1 1 ab | —1 1 1 —1
a’b 1 -1 1 —1 a’b | —1 1 -1 1

By definition, we have T' = {a**1#| 1 < 4,5 < 2}. Then it can be checked that

7 (14, t2<x)
7(t2,t1)

isfies the conditions of Corollary 8.2.3. Moreover, we can get that w! is non-degenerated

o(ty)o(ty) = 1 for ty,t, € T. From the above tables, one can see that Ry sat-

matrix and hence Ry is full rank minimal quasitriangular structure by Proposition 8.1.7.

Therefore we have given a full rank minimal and triangular structure on H bl:y.

To further simplify Proposition 8.2.2, we introduce the following lemmas.
Lemma 8.2.5 Let R be a non-trivial quasitriangular structure. Then w(ty, t)w*(to <
x,ty<x)o(ty)o(te) =1 for ty,ta € T if and only if the following equations hold

w'(s1, s0)w' (s9,51) = 1, w?(s, )w(t, s)o(s) = 1, w*(a, a)w*(ab,ab)o(a)® = 1
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for s, si,80€ S, teT.

Proof: By Lemma 8.2.1, we know the necessity holds. To show the sufficiency, we will

use Lemmas 5.1.6,5.1.7. Since T" = a.S, we need only to show the following equations
w*(s1a, spa)w*(sqab, s1ab)o(s1a)o(sea) =1, 51,55 € S.

By (iv) of Lemma 5.1.6, we get w*(s1a, sea) = 7(s1,a) " w?(s1, sea)w*(a, s2a). Further,
we can use (iv) of Lemma 5.1.7 to obtain w?*(a, s2a) = 7(s2,a) "'w?(a <z, s9)w(a, a).

Therefore we have the following equation
w(s1a, s9a) = 7(s1,a) " 7 (s9,a) " w?(s1, s20)w?(a < x, s5)w(a, a). (8.3)
Similarly, one can get the following equality
w*(sqab, s1ab) = T(sy, ab) 17 (s1, ab) " 'w?(sy, s1ab)w?(a, s1)w*(ab, ab). (8.4)

Note that w? (s, sea) = w!(sy, s9)w?(s1, a) and w?(sq, s1ab) = w'(sq, s1)w?(se, a<xw) by

3

Lemma 5.1.7, and if we use the assumption about w?, w3, we get

[w? (51, s9a)w®(a <z, s9)][w?(sq, s1ab)w(a, s1)] = o(s1) to(sy) .

Since w*(a,a)w*(ab, ab)o(a)®> = 1 and the compatibility between o and 7, one can
obtain that w?(sa, sya)w*(s2ab, syab)o(sia)o(sea) = 1 and hence we have completed

the proof. O

In fact, some conditions in Lemma 8.2.5 can be further simplified. Recall that we

have assumed that G = (s;, a| sfi = 1,a* = s{"...sT" 518 = $;8i,a8; = $;A)1<ij<n AS

group for some natural numbers n, k;, m;, then we have

Lemma 8.2.6 Let R be a non-trivial quasitriangular structure. Then the following

statements are equivalent
(i) w'(s, shw'(s',s) =1, w?(s,t)w(t,s)o(s) =1, s, € S, t € T;
(i) w1<3i>3j)w1(3j73i) =1, w?(si, a)w’(a, s;)o(s;) =1, 1 <4,j <n;
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Proof: By definition, we only need to prove that (ii) implies (i). Now we assume
that (ii) holds. Let s,s' € S, we first show w!(s, s')w!(s’,s) = 1. Owing to Lemmas
5.1.6,5.1.7, we obtain that w' is a bicharacter on S. Thus we have w'(s, s")w'(s,s) =
1. Then we will prove that w?(s,s'a)w?(s'a, s)o(s) = 1. To do this, we use Lem-
mas 5.1.6,5.1.7 again. Then we get w?(s,s'a) = w?(s,a)w'(s,s’) and w3(s'a,s) =
w(a, s)wl(s',s). Because w'(s,s)wl(s',s) = 1, we get w?(s,sa)w?(s'a,s)o(s) =
w?(s,a)w?(a, s)o(s). Thus we only need to show w?(s,a)w?(a,s)o(s) = 1. Let s =
sit...s" and keep the notation in Proposition 6.2.2, we can obtain w?(s,a)w?(a, s) =
stf Jin ITr_ (Beyk)™ by using (ii) and (iii) of Proposition 6.2.2. By assumption, we
hai/é.ﬁk'yk = o(sy)"!. Therefore we get w?(s, a)w?(a,s) = Psgf...s%" IT;_, o(sk)~*. Now
we can use Lemma 6.2.4 to get w?(s, a)w?(a, s) = o(s{'...s'")~1. By definition, we have

s = s''...s' and hence we obtain w?(s, a)w?(a, s)o(s) = 1. O

If we use Lemmas 8.2.5-8.2.6 and Proposition 8.2.2 together, then we obtain the

following proposition which gives a simple criterion for R to be a triangular structure.

Proposition 8.2.7 The R is a triangular structure if and only if the following condi-

tions hold
w'(si, 85)w(s4,5) = 1, w?(si, a)w(a, s;)o(s;) = 1, w*(a, a)w*(ab, ab)o(a)? = 1,
where 1 < 1,7 < n.

Proof: By Lemmas 8.2.5-8.2.6 and Proposition 8.2.2, we get what we want. 0

Now we're going to use Proposition 8.1.8 and Theorem 6.2.5 to answer the question
at the beginning of this subsection. We first construct all the triangular structures
on Hy,, then we will find all minimal triangular structures among these triangular

structures. To achieve our goal, we give the following lemma.
Lemma 8.2.8 If n is even number, then there is no non-trivial quasitriangular struc-
ture on Hy, .

Proof: By definition of H,, we know S = {a*¥’| i,7 > 0}. Thus we can arrange

y’
that s; = a? sy = b. Assume that R is a non-trivial quasitriangular structure on

Hy,,. For convenience, we keep the notation in Proposition 6.2.1. Owing to (ii) of
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Proposition 6.2.1, we obtain 53" = 1 and ag = —f3. So we have o = (—1)"

21 we know p; = n,ps = 0. Due to (vi) of Proposition 6.2.1, one

Because a <z = a
can get that af; = —1. But we already obtain of; = (—1)", so (—1)" = —1 and this

implies n is an odd number. O

Due to Lemma 8.2.8, we only consider Hj when n is an odd number. Given an

odd number n, let T, := {non-trivial triangular structures on Hy;, }. Then we have

Theorem 8.2.9 T, <5 {(a, B, Ba,0) €k a? = 32 = B2n = 62 = 1}.

Proof: Since S = {a*¥’] i,j > 0}, we can arrange that s; = a? s, = b. Let R be a
non-trivial triangular structure on Hy, . For simple, we keep the notation in Proposition
6.2.1. Then we define a map ¢ : T, — {(a, B1, B2,0) € k| a? = B = 32" = 6% = 1}
by letting ¢(R) := (a2, B1, B2,8). Due to Proposition 8.2.7, we know w!(ss, s9)? = 1.
Since w'(sy, s2) = agg by definition, we obtain a2, = 1. Using (iv),(v) of Proposition
6.2.1, one can get that 62 = 87! = 471, Thanks to (vi) of Proposition 6.2.1, we know
BT = ~7. So we have 3; = ;. By Proposition 8.2.7, we know w?(s, a)w?(a,s;) = 1.
Because w?(sy,a) = f; and w3(a, s;) = 1 by definition, we obtain 8;y; = 1 and so
B2 = 1. Owing to n is an odd number and §2 = 37 we get 62 = 1. Note that
the equation 85" = 1 follows from (ii) of Proposition 6.2.1 directly and hence we have
proved that ¢ is well defined. Then we will show ¢ is bijective. Let (o, 31, 32,9) € k*
such that o = 87 = 33" = §% = 1. If we define a;;,v; € k for 1 <i,j < 2 as follows

app =1, ajg = —522, Qo1 = —52_2, gy =a, 71 =01, V2= —/32_1'

Then one can check that the four tuple (o, 5,7, 0)1<i j<2 satisfies conditions (i)-(vi)
of Proposition 6.2.1, therefore we can obtain a non-trivial quasitriangular structure R
such that w'(s;, s;) = a;; and w?(s;, a) = B, w*(a, s;) = v; by Theorem 6.2.5. Now one
can see that R satisfies the conditions of Proposition 8.2.7, so we know R is triangular
structure. Moreover, it can be seen that ¢(R) = («, S, P2,6). Therefore we have
prove that ¢ is surjective. Finally we will show ¢ is injective. Let R be a non-trivial
triangular structure on H, by For simple, we continue to use the notation in Proposition
6.2.1. Thanks to (ii) of Proposition 6.2.1, we get ay; = 3% and ap, = —(2. Similarly,

one can obtain ajs = —73 by using (iii) of Proposition 6.2.1. Due to Proposition 8.2.7,
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we know 71 = ;' and v, = —f3; . Therefore we have seen that (evij, Biy iy 6)1<ij<2 18

completely determined by (cwg, £1, B2,d) and this implies that ¢ is injective. O

Since we have obtained all triangular structures on Hy', , we only need to identify
all minimal structures from 7,,. To this end, we first introduce the following lemmas.
Recall that if (H,R) is a quasitriangular Hopf algebra, then the H;, H, have been
defined by H; := {(f ®1d)| f € H}, H, := {(Id®f)| f € H} respectively. For simple,
we will denote kG#U,TkZQ as Hg in this subsection. The following lemma is a part of

the proof in [21, Theorem 2.2].

Lemma 8.2.10 If R is a non-trivial triangular structure on Hg, then (Hg), = (Hg),-

Proof: Using Ry = R™! and R™! = (S ® Id)(R), one can complete the proof. O

Now we can give a necessary and sufficient condition for determining when a

triangular structure R is minimal.

Corollary 8.2.11 If R is a non-trivial triangular structure on Hg, then R is minimal

if and only if w' is a non-degenerated matrix.

Proof: By Lemmas 8.2.10,8.1.3 and Proposition 8.1.7, we get what we want. 0

Next we will give a criterion for when the w! in Corollary 8.2.11 is non-degenerated
matrix. Assume that H = (¢;| ¢;" = 1,99, = 9¢j%i)1<ij<m as group and let w
be a bicharacter on H, then we will give a criterion for when (w(g,h))gnen is non-
degenerated matrix. Let a;; := w(g;, g;) and let w; be a primitive n;th root of 1 in
k. Since w is bicharacter, we can assume that o;; = w;n” . Then we can get a matrix
(mij)1<ij<m and we denote it as M. Let (i1, ....%m), (J1, -, Jm) € Zpy X ... X Zy,, such

that (i1, ...,%m) = (J1, ..., Jm), then we will write it as (i1, ..., 0m) = (J1, -+ Jm)-

Lemma 8.2.12 The matriz (w(g, h))ynen is non-degenerated if and only if the follow-

ing equation has a unique solution (0, ...,0)

(i1 oo i) M = (0,...,0), (i1, e im) € Zny X oo X Zoy, .

Proof: Let Xgit gim * H — k be a character which is determined by Xgit_gim (gj) == w;j

1< iy <

for 1 < i < ng,1 < 5,k < m. Then it is well known that {egi1 gim
1 -9m
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ng, 1 < k < m} is a basis of orthogonal idempotents of k[H]|, where €yt _gim =
Y oheH ngl...g:':ﬁ(h)' Define a linear map f : k' — k[H] by f(eg) := > ey w(g, h)h
for g, h € H, then we can see that (w(g, h))gnen is non-degenerated if and only if f is
bijective. To study when f is bijective, we define anther linear map ¢ : k[H] — k7 by
(g gim) =3 hen Xg?mg%n(h)_leh where 1 < i < ny,1 <k < m. Using the orthog-
onal relationship between the characters of H, we know that ¢ is bijective. Therefore

we know f is bijective if and only if ¢ o f is bijective. By direct calculation we have ¢ o

f(egi1 gim) =N1..Nme o Where (i, ...,4,,) = (i1, ..., iy ) M. Therefore we know that
0 gin i gim

¢ o f is bijective if and only if (i1, ..., 7m) M # (J1, ..., J) M for (i1, ...;5m) Z (J1y -y Jm)-
However, one can see that (iy,...,%5,)M # (j1, ..oy Jm) M for (i1, ...;0,) # (41, -y Jm) if

and only if (i1, ..., %,) M = (0,...,0), (i1,...,im) € Zpn, X ... X Zy,, has a unique solution.

Hence we have completed the proof. O

For the group H, if m = 2 and n; = ny = n then we have a more simple way
to determine when the matrix (w(g, h))gnren is non-degenerated. For convenience, we
denote |M| as the determinant of M and write (|M|,n) as the largest common factor

of |[M| and n.

Corollary 8.2.13 If H = (g;| 97 = 1,9:9; = 9;9i)1<ij<2 as group, then the matric
(w(g, h))gnen is non-degenerated if and only if (|M|,n)|m;; for 1 <i,j <2.

Proof: By Lemma 8.2.12, we only need to show that (iy,is)M = (0,0), (i1,i2) €
Zy, % Ly, has a unique solution if and only if (|M|, n)|m;; for 1 <4, j < 2. Assume that
(i1,32) M = (0,0), (i1,42) € Zn X Zy has a unique solution. Let d := qz7i— and let M
be the adjoint matrix of M, then we have (dM*)M = diag(d|M|, d|M]). Therefore we
have diag(d|M|,d|M|) = (0,0) € Z,, X Z,. Since (i1,i2)M = (0,0), (i1,i2) € Zy, X Zy,
has only one solution, we obtain d(maqz, —my2) = (0,0) and d(—ma, —my1) = (0,0).
And this implies that (|M|,n)|m;; for 1 < i,j < 2. Conversely, we suppose that
(|M],n)|mi; for 1 <4,j < 2, then we can find mj; € N such that m; = (|M|,n)m;
for 1 <i,5 < 2. Let M'" := (mj;)1<ij<2, then it can be seen that M = (|M|,n)M’
and (|M'|,d) = 1. By definition, one can get that (i1,i2)M = (0,0), (i1,i2) € Z, X Zy,
has a unique solution if and only if (i1, i2)M = (0,0), (i1,42) € Zg X Zg has a unique
solution. Due to (|M’|,d) = 1, we know M’ is the inverse of M in My(Zy). Thus we
obtain that (i1,i2)M = (0,0), (i1,12) € Zgq X Z4 has a unique solution. O
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Next, we give all minimal triangular structures on Hy, by using the above conclu-
sions. Let w be a 2nth primitive root of 1 and let 7)) := {minimal triangular structures

on H}, }, then we have

Theorem 8.2.14 T/, <= {(a, B,wF,6) € k*| a? = 82 =62 =1, k € N and (k2,n)|k}.

Proof: We will use Theorem 8.2.9 and Corollary 8.2.11 to get what we want. Let R
be a non-trivial triangular structure. Since the proof of Theorem 8.2.9, we know that
the map ¢ : T, — {(a, B1,52,0) € k| o? = 2 = 33" = § = 1} which is defined
by ¢(R) := (aa2, 1, 52,9) is bijective. To complete the proof, we only need to show
Im(¢l) = {(a,B,w*,6) € k| a? = 8 = 6% = 1, k € N and (k% n)|k}. Because we
have proved that 32" = 1 in Theorem 8.2.9, we can assume that (, = w* for some
k € N. Then we claim that R is minimal if and only if (k% n)|k. By Corollary 8.2.11,
we obtain that R is minimal if and only if the matrix w! is non-degenerated. Since
S = (si| s7" = 1,8:8; = 8;8:)1<ij<2 as group, then we can use Corollary 8.2.13 to get
that w' is non-degenerated if and only if (|M|,n)|m;; for 1 < i,j < 2. Owing to the

proof of Theorem 8.2.9, we know the following equations hold
11 — 1, 12 = &2_11 = —522, Oé%z = 1.

By definition of the matrix M, we obtain my; = 0, mqs = 2k+n, mo; = —2k+n, moy =
In, where [ € N. Thus we have |M| = n? — 4k*. Due to n is an odd number, we get
(|]M|,n) = (k* n). Therefore we know R is minimal triangular structure if and only if

the corresponding four tuple (amo, B1,w", d) satisfies that (k2 n)lk. O

Finally, we will show that Hbl:y is the smallest Hopf algebra among non-trivial
semisimple minimal triangular Hopf algebras. To do this, we first recall the only two
non-trivial (self-dual) semisimple Hopf algebras A of dimension 12(See [18] for details),
where A are the form k% #,, kZ,.

Lemma 8.2.15 The Hopf algebras A+ are not minimal triangular Hopf algebras.

Proof: We only show that A, is not minimal triangular and the other part can be
proved in a similar way. Assume that A, is minimal triangular. Since A, is self-dual,

we can find a braided structure (,) : A, x A, — k such that (,) is non-degenerated
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and (a,b) = (s(b),a) for a,b € A;. Next, we will show that such braided structure

does not exist. Consider the (,) restrict to k® x k% and we denote it as (,) for
convenience. Then we get that (,) is a braided structure on k° such that (a,b) =
(s(b),a) for a,b € k. Using the viewpoint of dual, we get a triangular structure
on k[S3]. But k[S3] = k%#kZ, and hence we can use Proposition 3.1.5 to obtain
that k[S;] has only trivial quasitriangular structures. Further, one can obtain that the
only triangular structure on k[Ss] is R = 1 ® 1. Thus we have (eg,e) = e(e,)e(en)
for g,h € S3. To determined the braided structure (,), we assume (e,,z) = 5(g),
where 3(g) € k. Directly we have (eg, enx) = > 4y (ex, ¥){e1, en) = €(en)B(g). Since
(egn, T) = D 1 1es, Tk, 1) {eg, exx)(en, exx), we obtain o, ,8(g) = B(g)B(h) for g, h € Ss.
Since (,) is non-degenerated, we can assume that gy € Sz satisfying 8(go) = 1. Then
one can see that 5(g) = 0 when g # go. Let g1 € S3 such that g; # 1 and g1 # go,

then we have (e, ,b) =0 for b € A,. But this fact contradicts the assumption about

the non-degeneracy of (,). Therefore we get A, is not minimal triangular. O

Theorem 8.2.16 The Hopf algebra Hl}:y 1s the smallest Hopf algebra among non-trivial

semisimple minimal triangular Hopf algebras.

Proof: By |1, Section 2.3], we know the non-trivial semisimple Hopf algebras with
dimension< 16 are the 8-dimension Kac algebra Kg and the two 12-dimension semisim-
ple Hopf algebras A.. Since all quasitriangular structures on Kg have been gotten
in [71], one can easily check that Kg is not minimal triangular. By Lemma 8.2.15, we

know Ay are not minimal triangular. Therefore we have completed the proof. OJ

86



References

[1] A. Abella, Some advances about the existence of compact involutions in semisimple

Hopf algebras, Sao Paulo J. Math. Sci. 13 (2019), no. 2, 628-651.

[2] A. L. Agore, Coquasitriangular structures for extensions of Hopf algebras, Glasg.

Math. J. 55 (2013), no. 1, 201-215.

[3] E. Aljadeff, P. Etingof, S. Gelaki, D. Nikshych, On twisting of finite-dimensional Hopf
algebras, J. Algebra 256 (2002), no. 2, 484-501.

[4] N. Andruskiewitsch, J. Devoto, Extensions of Hopf algebras, Algebra i Analiz 7 (1995),
no. 1, 22-61.

[5] N. Andruskiewitsch, M. Miiller, Examples of extensions of Hopf algebras, Rev. Colom-
biana Mat. 49 (2015), no. 1, 193-211.

[6] N. Andruskiewitsch, P. Etingof, S. Gelaki, Triangular Hopf algebras with the Chevalley
property, Michigan Math. J. 49 (2001), no. 2, 277-298.

[7] J. R. Blattner, M. Cohen, S. Montgomery, Crossed products and inner actions of Hopf
algebras, Trans. Amer. Math. Soc. 298 (1986), no. 2, 671-711.

[8] C. G. Bontea, D. Nikshych, Pointed braided tensor categories, Tensor categories and
Hopf algebras, 67-94, Contemp. Math., 728, Amer. Math. Soc., [Providence|, RI, 2019.

[9] D. Bulacu, E. Nauwelaerts, Quasitriangular and ribbon quasi-Hopf algebras, Comm.

Algebra 31 (2003), no. 2, 657-672.

[10] A. A. Davydov, Quasitriangular structures on cocommutative Hopf algebras, arXiv:q-

alg/9706007, 1997.

[11] V. G. Drinfel’d, Quantum groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. (LOMI) 155 (1986).

[12] P. Etingof, S. Gelaki, A method of construction of finite-dimensional triangular

semisimple Hopf algebras. Math. Res. Lett. 5 (1998), no. 4, 551-561.

[13] P. Etingof, S. Gelaki, On families of triangular Hopf algebras, Int. Math. Res. Not.
2002, no. 14, 757-768.

87



[14] P. Etingof, S. Gelaki, Some properties of finite-dimensional semisimple Hopf algebras,
Math. Res. Lett. 5 (1998), no. 1-2, 191-197.

[15] P. Etingof, S. Gelaki, The classification of triangular semisimple and cosemisimple
Hopf algebras over an algebraically closed field, Internat. Math. Res. Notices 2000, no.
5, 223-234.

[16] P. Etingof, S. Gelaki, The representation theory of co-triangular semisimple Hopf
algebras, arXiv:math/9812118, 1998.

[17] D. E. Evans, M. Pugh, Braided subfactors, spectral measures, planar algebras, and
Calabi-Yau algebras associated to SU(3) modular invariants, Progress in operator
algebras, noncommutative geometry, and their applications, Theta Ser. Adv. Math.,

15, Theta, Bucharest, 2012.

[18] N. Fukuda, Semisimple Hopf algebras of dimension 12, Tsukuba J. Math. 21 (1997),
no. 1, 43-54.

[19] S. Gelaki, On the classification of finite-dimensional triangular Hopf algebras, New
directions in Hopf algebras, 69-116, Math. Sci. Res.Inst. Publ., 43, Cambridge Univ.
Press, Cambridge, 2002.

[20] S. Gelaki, On the quasitriangularity of Ug(sl,)’, J. London Math. Soc. (2) 57 (1998),
no. 1, 105-125.

[21] S. Gelaki, Quantum groups of dimension pq?. Israel J. Math. 102 (1997), 227-267.

[22] S. Gelaki, Some properties and examples of triangular pointed Hopf algebras, Math.
Res. Lett. 6 (1999), no. 5-6, 563-572.

[23] S. Gelaki, Topics on quasitriangular Hopf algebras, Master’s Thesis, Ben Gurion Uni-
versity of the Negev, Israel, 1992.

[24] S. Gelaki, S. Westreich, Hopf algebras of types Uy(sly)" and Oq(SLy,)" which give rise
to certain invariants of knots, links and 3-manifolds, Trans. Amer. Math. Soc. 352

(2000), no. 8, 3821-3836.

[25] Hua-Lin Huang, Gong-Xiang Liu , On quiver-theoretic description for quasitriangu-

larity of Hopf algebras, J. Algebra 323 (2010), no. 10, 2848-2863.

88



[26] M. Izumi, K. Masaki, Kac algebras arising from composition of subfactors: general

theory and classification, Mem. Amer. Math. Soc. 158 (2002), no. 750, 198 pp.
[27] A. Joyal, R. Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78.
[28] G. I. Kac, Group extensions which are ring groups, Mat. Sb. (N.S.) 76 (1968), 473-496.

[29] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155. Springer-Verlag,
New York, 1995. ISBN 0-387-94370-6.

[30] Y. Kashina, Classification of semisimple Hopf algebras of dimension 16, J. Algebra
232 (2000), no. 2, 617-663.

[31] Y. Kashina, On semisimple Hopf algebras of dimension 2™, Algebr. Represent. Theory
19 (2016), no. 6, 1387-1422.

[32] Y. Kashina, On two families of Hopf algebras of dimension 2™, Comm. Algebra 31
(2003), no. 4, 1643-1668.

[33] Y. Kashina, G. Mason, S. Montgomery, Computing the Frobenius-Schur indicator for
abelian extensions of Hopf algebras, J. Algebra 251 (2002), no. 2, 888-913.

[34] L. H. Kauffman, Hopf algebras and invariants of 3-manifolds, J. Pure Appl. Algebra
100 (1995), no. 1-3, 73-92.

[35] M. Keilberg, Quasitriangular structures of the double of a finite group, Comm. Algebra
46 (2018), no. 12, 5146-5178.

[36] Zhi-Min Liu, Sheng-Lin Zhu, On the structure of irreducible Yetter-Drinfeld modules
over quasi-triangular Hopf algebras, J. Algebra 539 (2019), 339-365.

[37] V. V. Lyubashenko, Modular transformations for tensor categories, J. Pure Appl.
Algebra 98 (1995), no. 3, 279-327.

[38] S. Majid, Foundations of quantum group theory, Cambridge University Press, Cam-
bridge, 1995. ISBN 0-521-46032-8.

[39] S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Mod-
ern Phys. A 5 (1990), no. 1, 1-91.

[40] S. Majid, Y. S. Soibelman, Rank of quantized universal enveloping algebras and mod-
ular functions, Comm. Math. Phys. 137 (1991), no. 2, 249-262.

89



[41] A. Masuoka, Calculations of some groups of Hopf algebra extensions, J. Algebra 191
(1997), no. 2, 568-588.

[42] A. Masuoka, Cohomology and coquasi-bialgebra extensions associated to a matched

pair of bialgebras, Adv. Math. 173 (2003), no. 2, 262-315.

[43] A. Masuoka, Extensions of Hopf algebras, Deformation of group schemes and appli-
cations to number theory (Japanese) (Kyoto, 1995). Surikaisekikenkytisho Kokytiroku
No. 942 (1996), 53-65.

[44] A. Masuoka, Extensions of Hopf algebras and Lie bialgebras, Trans. Amer. Math. Soc.
352 (2000), no. 8, 3837-3879.

[45] A. Masuoka, Hopf algebra extensions and cohomology, New directions in Hopf al-
gebras, 167-209, Math. Sci. Res.Inst. Publ., 43, Cambridge Univ. Press, Cambridge,
2002.

[46] A. Masuoka, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1995),
no. 1-3, 361-373.

[47] A. Masuoka, Some further classification results on semisimple Hopf algebras, Comm.

Algebra 24 (1996), no. 1, 307-329.

[48] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference
Series in Mathematics, 82. Washington, DC, 1993. ISBN 0-8218-0738-2.

[49] S. Natale, On semisimple Hopf algebras of dimension pq?, Algebr. Represent. Theory
4 (2001), no. 3, 277-291.

[50] S. Natale, Hopf algebra extensions of group algebras and Tambara-Yamagami cate-

gories, Algebr. Represent. Theory 13 (2010), no. 6, 673-691.

[51] S. Natale, On group theoretical Hopf algebras and exact factorizations of finite groups,

J. Algebra 270 (2003), no. 1, 199-211.

[52] D. Naidu , D. Nikshych , S. Witherspoon, Fusion subcategories of representation
categories of twisted quantum doubles of finite groups, Int. Math. Res. Not. IMRN
2009, no. 22, 4183-4219.

[53] S. Natale, On quasitriangular structures in Hopf algebras arising from exact group

factorizations, Comm. Algebra 39 (2011), no. 12, 4763-4775.

90



[54] S. Natale, R-matrices and Hopf algebra quotients, Int. Math. Res. Not. 2006, Art.ID
47182, 18 pp.

[55] A. Nenciu, Quasitriangular pointed Hopf algebras constructed by Ore extensions, Al-
gebr. Represent. Theory 7 (2004), no. 2, 159-172.

[56] D. Nikshych, Classifying braidings on fusion categories, Tensor categories and Hopf
algebras, 155-167, Contemp. Math., 728, Amer. Math. Soc., Providence, RI, 2019.

[57] E. Panaite, F. V. Oystaeyen, Quasitriangular structures for some pointed Hopf alge-
bras of dimension 2", Comm. Algebra 27 (1999), no. 10, 4929-4942.

[58] D. Pansera, A class of semisimple Hopf algebras acting on quantum polynomial alge-
bras, Rings, modules and codes, 303-316, Contemp. Math., 727, Amer. Math. Soc.,
Providence, RI, 2019.

[59] D. E. Radford, Hopf Algebras, World Scientific, Series on Knots and Everything, 49.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

[60] D. E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), no. 2,
285-315.

[61] D. E. Radford, On Kauffman’s knot invariants arising from finite-dimensional Hopf
algebras, Advances in Hopf algebras (Chicago, IL, 1992), 205-266, Lecture Notes in
Pure and Appl. Math., 158, Dekker, New York, 1994.

[62] D. E. Radford, On the antipode of a quasitriangular Hopf algebra, J. Algebra 151
(1992), no. 1, 1-11.

[63] D. E. Radford, On the quasitriangular structures of a semisimple Hopf algebra, J.
Algebra 141 (1991), no. 2, 354-358.

[64] D. E. Radford, Solutions to the quantum Yang-Baxter equation and the Drinfel’d
double, J. Algebra 161 (1993), no. 1, 20-32.

[65] D. E. Radford, The group of automorphisms of a semisimple Hopf algebra over a field
of characteristic 0 is finite, Amer. J. Math. 112 (1990), no. 2, 331-357.

[66] N. Reshetikhin, V. G. Turaev, Invariants of 3-manifolds via link polynomials and
quantum groups. Invent. Math. 103 (1991), no. 3, 547-597.

91



[67] E. Rowell, R. Stong, W. Zhenghan, On classification of modular tensor categories,
Comm. Math. Phys. 292 (2009), no. 2, 343-389.

[68] P. Schauenburg, On coquasitriangular Hopf algebras and the quantum Yang-Baxter
equation, Algebra Berichte [Algebra Reports|, 67. Verlag Reinhard Fischer, Munich,
1992. ISBN 3-88927-101-4.

[69] H. J. Schneider, Some properties of factorizable Hopf algebras, Proc. Amer. Math.
Soc. 129 (2001), no. 7, 1891-1898.

[70] K. Shimizu, Non-degeneracy conditions for braided finite tensor categories, Adv. Math.
355 (2019), 106778, 36 pp.

[71] S. Suzuki, A family of braided cosemisimple Hopf algebras of finite dimension, Tsukuba
J. Math. 22 (1998), no. 1, 1-29.

[72] M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm.
Algebra 9 (1981), no. 8, 841-882.

[73] M. Takeuchi, Modular categories and Hopf algebras, J. Algebra 243 (2001), no. 2,
631-643.

[74] D. Tambara, Invariants and semi-direct products for finite group actions on tensor

categories, J. Math. Soc. Japan 53 (2001), no. 2, 429-456.

[75] M. Wakui, Polynomial invariants for a semisimple and cosemisimple Hopf algebra of

finite dimension, J. Pure Appl. Algebra 214 (2010), no. 6, 701-728.

[76] Shuan-Hong Wang , Y. G. Kim, Quasitriangular structures for a class of Hopf algebras
of dimension p®, Comm. Algebra 32 (2004), no. 4, 1401-1423.

[77] P. Watts, Killing form on quasitriangular Hopf algebras and quantum Lie algebras,
arXiv:q-alg/9505027, 1995.

[78] S. Westreich, Quasitriangular Hopf algebras whose group-like elements form an abelian

group, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1023-1026.

[79] Wen-Zheng Zhao, Shuan-Hong Wang, Zheng-Ming Jiao, On the quasitriangular struc-
tures of bicrossproduct Hopf algebras, Comm. Algebra 28 (2000), no. 10, 4839-4853.

92



[80] Kun Zhou, Gong-Xiang Liu, On the quasitriangular structures of abelian extensions

of Zy, Comm. Algebra 24 (2021), no. 1, 307-329.

E-mail address: xzkdh4712@163.com

93



7 - S TR] A R i SO

Kun Zhou, Gong-Xiang Liu, On the quasitriangular structures of abelian extensions

of Zy, Comm. Algebra 24 (2021), no. 1, 307-329.

94



5l 14

VUAE 2 i 2 ST AR R SR 07 1, FROF E CRBTE R il K22 ) IR B 2i8 5 A 58, RBOHE &
SIS RS SR B R — A2 A A

TS HO B IR I ST X AR B, X JLAERARLE 22 ST AR S X RO O. SCRES
. W RIPESAR LA T RIRKIIEE, IC/F7E S R — e IR B, RIGFITA T W5
Jones projections IR, fEEBR E—BEER 7T, M &2 RE R =00 X423
F—HILE OB, R IR R IR & TR A LR ANET N, R IR IR R T
R 1) 3= 812 T DL GE R B X IEAR 2 IW, I H A2 3 SCHrak 2 X AL 2 M8 B U5 2. 7 % [
KI5 ST AR A (A IR — 208, X R — Ee e B BT O RSB B R — A T, A
R I XA WA, ST FAEA H RS BT 7 RORIISCRE, WEFETTIR- S0
A F W55 5% AT T — £, FEXF 3RS TR IR, A0 SCERAT I 10 5 S
PRI, HAE— KN R B3R TR ST 0. IR AR ST — EAIE B - th 86 Am 40 G 75

REBWRIEREIZ, T HIRBIR, RBEMEIR, FIRKEIR, MARBIR, B I7EA R J7
45 TR S ).

WEEHHOYE LRTE RS, v, 2R, T4, ZRE, X%, Kk, RE®, 2
3C, firvE, AERS, WE R, ROCHE, B, Dk, AEN, AR, £, KR, BRR, S,
WERE, U, BEE, sk, SRR RATE T 3 AR

TREL R RSB R U R AR AR NG, IEHIAT 1605 1 b e i) 27 =) SR8
SCHEL, R AT D 3R DY AR R R =) ARV SR AL AR ().

TR A ARV R 25 1 A T B 2 T DA B 2 i O 2 ) X T 2 T A g 3 R K 5 1 ¥ 2
Jill, AR TE BN AT AR PR HER B4 T T2 1R AR B AR Bnh.  FRE R R B
FEEIN, FEPRIBEV S EM BN AN T VP2 kT Subfactor MR, FREEGHHE R KX
BRI, fEE RV BUF it i 17 5T Planar algebra BJ&FERE, JF BT
Kac algebra 75— %6 ] {1 DABEIR 5T

BRI AT, BRI, b skE R, SO0, A IRLER G2 M EAE 1 2 S b —
AR I R IE BB ACA ). AR AR JUAR ARG h AN e IR FEFRIR = IR I i mT LA
— AT I ER L LLHE RS

IJE, WEFGRMHKN, BRI -5 8 G S T 228 3R, SRR # S AL FERS B IR vt
WOAR AR AR 22 7 LAY SR s 3 QRN Bt B v 38 HL OB RIS R B, 2 S AT TR A5
LR A oAU, BRI N, B 2 R I R, SR, SRR 5REHE, N T ERA

95



B2 (ORI (8] T £ 0 T i vk, JF H— BT RS0 AR TRBL. RN — B A sih 5 3 K
EEIRIRAE T ARSI B ).

JE b
2021 £ 9 A

96



