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THESIS: Quasitriangular structures on some semisimple Hopf algebras

SPECIALIZATION: Fundamental Mathematics

POSTGRADUATE: Kun Zhou

MENTOR: Professor Gongxiang Liu

Abstract

Quasitriangular Hopf algebras is an important class of Hopf algebras in quantum

groups and there are many active studies on them, such as the classification of them

and the construction of invariants of manifolds from quasitriangular Hopf algebras etc.

Since many topics on quasitriangular Hopf algebras have a common feature, that is

depending heavily on the construction of quasitriangular Hopf algebras, we put the

exploration of the construction of quasitriangular Hopf algebras as the central work of

this thesis.

The known construction methods of quasitriangular Hopf algebras can be divided

into two types, one is to find all the quasitriangular structures on a given Hopf algebra,

and the other is to discover a new Hopf algebra and give the quasitriangular structures

on it. In general, the subjects related to both construction methods all are difficult,

even the non-trivial minimal triangular semisimple Hopf algebra with the smallest

dimension is not clear for us yet. We study the first construction method in this thesis.

Specifically, we study the quasitriangular structures on two classes of semisimple

Hopf algebras, one class of Hopf algebras are obtained by a special kind of abelian

extension of Hopf algebras, and the other class of Hopf algebras are some minimal qua-

sitriangular Hopf algebras. For the first class, we give all the quasitriangular structures

on them. For the second class, we mainly prove that the smallest dimension among

the non-trivial minimal triangular semisimple Hopf algebras is 16 and give an example

of 16 dimension Hopf algebra specifically.

The main results are described as follows.

For the first class of Hopf algebras which are kG#σ,τkZ2, we first prove that there

are only two forms of quasitriangular structures on them, one is called trivial quasi-

triangular structures, while the other is called non-trivial quasitriangular structures.

The trivial quasitriangular structures are some bicharacters on the group G and thus

v
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they are easy to be given. After that we give all non-trivial quasitriangular structures

and determine the number of quasitriangular structures on kG#σ,τkZ2. In the process

of giving all non-trivial quasitriangular structures, we explore the symmetries of qua-

sitriangular structures and obtain some propositions which play a key role in solving

all non-trivial quasitriangular structures.

Next, we select the simplest two families of Hopf algebras from the first class of

Hopf algebras for further study. We prove that all quasitriangular structures on these

two families of Hopf algebras are ϕ-symmetric and give all quasitriangular structures

on them.

For the second class of Hopf algebras, which we call full rank minimal quasitrian-

gular Hopf algebras. This class of Hopf algebras are some minimal quasitriangular Hopf

algebras. We give an example to show that there exists a Hopf algebra H such that H

is a minimal quasitriangular Hopf algebra but not a full rank minimal quasitriangular

Hopf algebra. Further, we use another example to illustrate that there exists a Hopf

algebra K such that K is a full rank minimal quasitriangular Hopf algebra but not a

minimal triangular Hopf algebra. Subsequently, we discuss the characterizations of full

rank minimal quasitriangular Hopf algebras. In particular, we construct a family of

non-trivial full rank minimal quasitriangular Hopf algebras.

Finally, we construct a family of non-trivial minimal triangular semisimple Hopf

algebras and give all non-trivial minimal triangular structures on them. As an ap-

plication, we prove that the smallest dimension among non-trivial minimal triangular

semisimple Hopf algebras is 16 and give an example of 16 dimension Hopf algebra.

Keywords: Hopf algebras; Quasitriangular structures; Abelian extension.
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Chapter 1 Introduction

§1.1 Background

Quasitriangular Hopf algebras were introduced by Drinfel’d [11] to give solutions

to the quantum Yang-Baxter equations. Quasitriangular Hopf algebras are the Hopf

algebras whose finite-dimensional representations form a braided rigid tensor category,

which naturally relates them to low dimensional topology(see [27], [34], [24], [66]).

Moreover, Drinfel’d proved that any finite dimensional Hopf algebra can be embedded

into a finite dimensional quasitriangular Hopf algebra, which we now call its quantum

double. Since quasitriangular Hopf algebras, especially the triangular ones are close to

groups and Lie algebras, they are more tractable than that of general Hopf algebras and

hence they can be used to support a testing ground for general Hopf algebraic ideas,

methods and conjectures. Quasitriangular Hopf algebras, even if the triangular ones

are far from known well. To our knowledge, many authors have studied quasitriangular

Hopf algebras from the following different aspects in recent years.

(1) Classification of quastiriangular Hopf algebras with given dimension, especially the

triangular ones;

(2) Construct quasitriangular structures on known Hopf algebras or give method to

construct new quasitriangular Hopf algebras;

(3) Using quasitriangular Hopf algebras to construct topological invariants;

(4) Study special quasitriangular Hopf algebras, such as ribbon Hopf algebras and

modular Hopf algebras;

(5) Explore braided tensor categories which are the categorical version of quasitrian-

gular Hopf algebras;

Because the problems (3)-(5) heavily depends on the answers of the problem (1)-

(2), we mainly focus on problems (1)-(2). The problem (1) is an important and basic

problem in Hopf algebras. However, this intriguing problem turns out to be extremely

hard and it is still widely open. Fortunately, there are two classes of quasitriangular
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Hopf algebras that are relatively well understood and they are semisimple triangualar

ones and pointed triangular ones. The semisimple triangular Hopf algebras over k(and
cosemisimple if the characteristic of k is positive) are completed classified in [15], [14].

The key theorem about such Hopf algebras states that each of them is obtained by

twisting a group algebra of a finite group [15, Theorem 2.1]. So far, all known triangular

Hopf algebras in characteristic 0 have Chevally property-namely, the Jacobson radical

is Hopf ideal. Naturally, we can ask the following question

Question 1.1.1 Does there exists a triangular Hopf algebra in characteristic 0 which

has no Chevalley property?

Furthermore, we find that there are many quasitriangular Hopf algebras such that

they are not triangular(see Remark 7.2.5), such as the 8-dimension Kac algebra K8 but

they are full rank minimal quasitriangular Hopf algebras(see Section 8.1 for definition),

then we pose the following question

Question 1.1.2 Give classification for full rank minimal quasitriangular Hopf alge-

bras with given dimension?

For the problem (2), all the quasitriangular structures on some well known Hopf

algebras are gotten, such as all quasitriangular structures on group algebras are de-

termined in [10] and all quasitriangular structures on small quantum groups Uq(sln)′

are given in [20]. In [21], S. Gelaki asked if there is a non-trivial minimal triangular

semisimple Hopf algebra? Then he and P. Etingof constructed a series of minimal tri-

angular semisimple Hopf algebra in [12]. Their method is to construct twists iteratively

and give some minimal triangular structures on some semisimple Hopf algebras. And

their results depends on solutions of set theoretic of Yang-Baxter equations. Inspired

by [21] and [12], we can naturally ask the following problems.

Question 1.1.3 Whether there are other ways to give series of minimal and triangular

semisimple Hopf algebras? and if so, give all minimal triangular structures on them?

Question 1.1.4 What is smallest dimension among non-trivial minimal triangular

semisimple Hopf algebras? Then give all minimal triangular structures on a smallest

one?

2



Also there are many other authors, such as [25], [53], [55], [76] have studied the

problem (2). We note that quasitriangular structures on pointed Hopf algebras have

been studied by many authors over past decades, such as [20], [55], [57], but few

authors study the quasitriangular structures on semisimple Hopf algebras in recent

years. In [63], D. E. Radford proved that the number of quasitriangular structures

on a semisimple Hopf algebra is finite and hence it is hoped that we can not only

calculate the quasitriangular structures on semisimple Hopf algebras but also study the

number of quasitriangular structures. For example, in 2011 S. Natale [53] proved that

there is no quasitriangular structure on some semisimple Hopf algebras which comes

from some special abelian extensions. She mainly used the conclusion that full fusion

subcategories of RepDω(G) are determined in [52, Theorem 5.1]. For us, we not only

want to get more abundant quasitriangular structures on semisimple Hopf algebras, but

also want to study the relationship between the number of quasitriangular structures

on a given semisimple Hopf algebra H and the H itself. So we want to know more

information about quasitriangular structures of a given Hopf algebra and it’s better

to determine all quasitriangular structures, and we believe that it will greatly help

us to learn quasitriangular Hopf algebras. Because it is known that there are many

quasitriangular structures on finite abelian groups and their quasitriangular structures

are easy to obtained by their bicharacters, so we choose simplest non-trivial semisimple

Hopf algebras kG#σ,τkZ2 which come from the following abelian extension to study

the problem (2)

kG ι−→ A
π−→ kZ2,

here we assume that G is a finite abelian group to make things easier. Naturally, we

can ask the following question

Question 1.1.5 Give quasitriangular structures on kG#σ,τkZ2?

Since we feel interested in the number of quasitriangular structures on a given semisim-

ple Hopf algebra, we also pose the following question.

Question 1.1.6 Is there any relationship between the number of quasitriangular struc-

tures on a given semisimple Hopf algebra and its dimension?

In addition, we are interested in invariants of quasitriangular Hopf algebras. In

[62], D. E. Radford showed that the antipode of a quasitriangular Hopf algebra is inner

3



and thus the antipode can give an invariant for identify non-quasitriangualrity. Even

more exciting result has been gotten in [54] which states that there no exist non-trivial

quasitriangular Hopf algebra with odd and square free dimension. These interesting

results inspire us to put forward the following question.

Question 1.1.7 Find more invariants of Hopf algebras to identify the quasitriangu-

larity?

Finally, because we are very interested in analytical version of Hopf algebras, i.e the

Kac algebras, we follow the step in [1] to explore whether a semimiple Hopf algebra

over complex field is Kac algebra and let’s repose the following question.

Question 1.1.8 Is a quasitriangular semisimple Hopf algebra over complex field must

be Kac algebra?

Based on the above questions 1.1.1-1.1.8, we realize that the construction of quasitri-

angular Hopf algebras plays an important role in answering them, i.e some interesting

examples of quasitriangular Hopf algebras may support good ideas to solve these prob-

lems, and it may even disprove certain conjectures. Therefore, the questions 1.1.3-1.1.6

are focused in the thesis, while the other questions will be discussed in the future.

§1.2 Main results

As we mentioned in the previous subsection, we mainly discuss the construction of

quasitriangular structures in the thesis. To solve the problems 1.1.3-1.1.6, we first con-

sider the problem 1.1.5. To answer the problem 1.1.5, we give the following Theorems

1.2.1-1.2.3.

Theorem 1.2.1 Let R be a general solution for kG#σ,τkZ2 and let (αij, βi, γi, δ)1≤i,j≤n

be a quadruple which is defined as follows

αij := w1(si, sj), βi := w2(si, a), γi := w3(a, si), δ := w4(a, a),

where wi(1 ≤ i ≤ 4) are associated functions of R. Then the above quadruple satisfies

the conditions (i)-(v) of Proposition 6.1.10

Conversely, we have the following theorem.

4



Theorem 1.2.2 Given a quadruple (αij, βi, γi, δ)1≤i,j≤n satisfying conditions (i)-(v) of

Proposition 6.1.10, then there exists a unique general solution R for kG#σ,τkZ2 such

that the following equations

w1(si, sj) = αij, w
2(si, a) = βi, w

3(a, si) = γi, w
4(a, a) = δ,

where wi(1 ≤ i ≤ 4) are associated functions of R.

Then we give a necessary and sufficient condition for the existence of a special

solution on kG#σ,τkZ2 as follows

Theorem 1.2.3 There exists a quasitriangular structure for kG#σ,τkZ2 if and only if

there exists a quadruple (αij, βi, γi, δ)1≤i,j≤n satisfies conditions (i)-(vi) of Proposition

6.2.1.

So we have answered the question 1.1.5. For the problem 1.1.6, we use the fol-

lowing Theorem 1.2.4 to give a answer to special case. Let TQ be the set of trivial

quasitriangular structures of kG#kZ2. Then we have

Theorem 1.2.4 Let m be the number of quasitriangular structures of kG#σ,τkZ2, then

we have m ∈ {0, |TQ|, 2|TQ|}. Moreover, if G = Zn1 × ... × Znr and m 6= 0 then the

number m is a factor of 2|G|r.

Later we use the following Theorem 1.2.5 to answer the problem 1.1.3. Let n be

an odd number and let T ′n := {minimal triangular structures on Hn
b:y }, then we have

Theorem 1.2.5 We have the following one-one correspondence:

T ′n
1−1←→ {(α, β, ωk, δ) ∈ k4| α2 = β2 = δ2 = 1, k ∈ N and (k2, n)|k}.

Finally, we have the following result to answer the problem 1.1.4.

Theorem 1.2.6 The 16 dimensional Hopf algebra H1
b:y is a Hopf algebra with smallest

dimension among non-trivial semisimple minimal triangular Hopf algebras.

5



§1.3 Organization

In this section, we give an outline of this dissertation.

This dissertation is divided into eight chapters, each of which is subdivided into

sections.

In Chapter 1, we provide the research background and main results.

In Chapter 2, we give a preparation of the following chapters.

In Chapter 3, we prove that the quasitriangular structures on kG#σ,τkZ2 has only

two forms, one is called trivial while the other is called non-trivial. The trivial qua-

sitriangular structures are easy to give, but the non-trivial quasitriangular structures

are difficult to know. Therefore, we give the necessary conditions for the existence of

non-trivial quasitriangular structures on kG#σ,τkZ2. As an application of these results,

we give all the quasitriangular structures on H2n2 .

In Chapter 4, we consider how to simplify the calculations of quasitriangular struc-

tures and hence the concept of symmetry of quasitriangular structures on any Hopf

algebra is introduced, and then some propositions about symmetry that are useful for

computing quasitriangular structures are given. Then we apply these conclusions to

the special case kG#σ,τkZ2.

In Chapter 5, we showed that the non-trivial quasitriangular structures are in

one-one correspondence to some special functions on kG#σ,τkZ2, which we call quasi-

triangular functions on kG#σ,τkZ2. After that, we focus on quasitriangular functions

and give a criterion for determining when a function is a quasitriangular function on

kG#σ,τkZ2.

In Chapter 6, we use the one-one correspondence about quasitriangular functions

which was proved in Chapter 5 to get a division-like operation on quasitriangular

structures of kG#σ,τkZ2. So we analogize the solution of linear equations and introduce

the concepts of general solutions and a special solution of quasitriangular structures on

kG#σ,τkZ2. Naturally, we reduce the problem of solving the non-trivial quasitriangular

structures on kG#σ,τkZ2 into finding all general solutions and giving a special solution.

At last, we give all the general solutions for kG#σ,τkZ2 and get a necessary and sufficient

condition for the existence of a special solution.

In Chapter 7, we discuss some interesting quasitriangular structures which were

called ϕ-symmetric quasitriangular structures. We give a simple necessary and suffi-

6



cient condition for the existence of a ϕ-symmetric quasitriangular structure. Then we

investigate two special classes of Hopf algebras K(8n, σ, τ) and A(8n, σ, τ) belonging

to kG#σ,τkZ2. And we proved that kG#σ,τkZ2 always has either K(8n, σ, τ) as its

quotient or A(8n, σ, τ) as its quotient. Moreover, we showed that all quasitriangular

structures on these two class Hopf algebras are ϕ-symmetric. Later all non-trivial

quasitriangular structures on K(8n, σ, τ) and A(8n, σ, τ) are given.

In Chapter 8, we provide a system method to construct series of special minimal

quasitriangular Hopf algebras which include triangular minimal quasitriangular Hopf

algebras. The concept of full rank minimal quasitriangular Hopf algebra is introduced

and a series of full rank minimal quasitriangular Hopf algebras are constructed. Then

the construction of minimal triangular semisimple Hopf algebras is discussed and all

minimal triangular quasitriangular structures on a family of Hopf algebras Hn
b:y have

been obtained. Finally, a smallest dimension Hopf algebra among non-trivial minimal

triangular semisimple Hopf algebras has been given and all its minimal triangular

quasitriangular structures are determined.

7



Chapter 2 Preliminaries

In this chapter, we mainly review some preliminaries used in this paper. It mainly

includes the definitions and some basic conclusions of Abelian extension and quasitri-

angular Hopf algebras.

§2.1 The definition of kG#σ,τkZ2

In this section, we recall the definition of kG#σ,τkZ2, and then we give some

examples of kG#σ,τkZ2 for guiding our further research.

Definition 2.1.1 A short exact sequence of Hopf algebras is a sequence of Hopf alge-

bras and Hopf algebra maps

K
ι−→ H

π−→ A (2.1)

such that

(i) ι is injective,

(ii) π is surjective,

(iii) ker(π) = HK+, K+ is the kernel of the counit of K.

In this situation it is said that H is an extension of A by K [45, Definiton 1.4]. An

extension (2.1) above such that K is commutative and A is cocommutative is called

abelian. In this paper, we only study the following special abelian extensions

kG ι−→ H
π−→ kZ2,

where G is a finite abelian group. Abelian extensions were classified by Masuoka

(see [45, Proposition 1.5]), and the above H can be expressed as kG#σ,τkZ2 which is

defined as follows.

Let Z2 = {1, x} be the cyclic group of order 2 and let G be a finite group. To give

the description of kG#σ,τkZ2, we need the following data

(i) / : Z2 → Aut(G) is an injective group homomorphism.
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(ii) σ : G→ k× is a map such that σ(g / x) = σ(g) for g ∈ G and σ(1) = 1.

(iii) τ : G × G → k× is a unital 2-cocycle and satisfies that σ(gh)σ(g)−1σ(h)−1 =

τ(g, h)τ(g / x, h / x) for g, h ∈ G.

The aim of (i) is to avoid making a commutative algebra (in such case all quasitriangular

structures are given by bicharacters and thus is known).

Definition 2.1.2 [1, Section 2.2] As an algebra, the Hopf algebra kG#σ,τkZ2 is gen-

erated by {eg, x}g∈G satisfying

egeh = δg,heg, xeg = eg/xx, x
2 =

∑
g∈G

σ(g)eg, g, h ∈ G.

The coproduct, counit and antipode are given by

∆(eg) =
∑

h,k∈G, hk=g

eh ⊗ ek, ∆(x) = [
∑
g,h∈G

τ(g, h)eg ⊗ eh](x⊗ x),

ε(x) = 1, ε(eg) = δg,11,

S(x) =
∑
g∈G

σ(g)−1τ(g, g−1)−1eg/xx, S(eg) = eg−1 , g ∈ G.

The following are some examples of kG#σ,τkZ2 and we will discuss them in next sec-

tions.

Example 2.1.3 Let n ∈ N and assume that w is a primitive nth root of 1 in k. Then
the generalized Kac-Paljutkin algebra H2n2 [58, Section 2.2] belongs to kG#σ,τkZ2. By

definition, the data (G, /, σ, τ) of H2n2 is given by the following way

(i) G = Zn × Zn = 〈a, b|an = bn = 1, ab = ba〉 and a / x = b, b / x = a.

(ii) σ(aibj) = wij for 1 ≤ i, j ≤ n.

(iii) τ(aibj, akbl) = (w)jk for 1 ≤ i, j, k, l ≤ n.

Among of them, if we take n = 2 then the resulting Hopf algebra is just the well-

known Kac-Paljutkin 8-dimensional algebra K8. That’s the reason why we call H2n2

the generalized Kac-Paljutkin algebra.

9



Example 2.1.4 Let n be a natural number. A Hopf algebraH belonging to kG#σ,τkZ2

is denoted by K(8n, σ, τ) if the data (G, /, σ, τ) of H satisfies

(i) G = Z2n × Z2 = 〈a, b|a2n = b2 = 1, ab = ba〉;

(ii) a / x = ab, b / x = b.

If we take n = 1 and let σ(aibj) = (−1)(i−j)j and τ(aibj, akbl) = (−1)j(k−l) for 1 ≤
i, j, k, l ≤ 2, then we can easily check that the resulting 8-dimensional Hopf algebra is

just the Kac-Paljutkin 8-dimensional algebra K8. Therefore, we give another kind of

generalization of K8.

Example 2.1.5 Let n ∈ N such that n ≥ 2 and assume that ζ is a primitive 2nth root

of 1. A Hopf algebra H belonging to kG#σ,τkZ2 is denoted by K(8n, ζ) if the data

(G, /, σ, τ) of H satisfies the following conditions

(i) G = Z2n × Z2 = 〈a, b|a2n = b2 = 1, ab = ba〉 and a / x = ab, b / x = b.

(ii) σ(aibj) = (−1)
i(i−1)

2 ζ i for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2.

(iii) τ(aibj, akbl) = (−1)jk for 1 ≤ i, k ≤ 2n and 1 ≤ j, l ≤ 2.

This recover some familiar examples of semisimple Hopf algebras. For example,

K(16, ζ) is the 16 dimensional Hopf algebra Hc:σ1 in [30, Section 3.1]. Moreover, it can

be seen that K(8n, ζ) belongs to K(8n, σ, τ).

Example 2.1.6 Let n be a natural number. A Hopf algebraH belonging to kG#σ,τkZ2

is denoted by A(8n, σ, τ) if the data (G, /, σ, τ) of H satisfies

(i) G = Z4n = 〈a|a4n = 1〉;

(ii) a / x = a2n+1.

In fact, non-trivial Hopf algebra A(8n, σ, τ) exists. For example we can make σ(ai) = 1

and τ(ai, aj) = (−1)ij for 1 ≤ i, j ≤ 4n, then we get a non-trivial Hopf algebra

A(8n, σ, τ).

Example 2.1.7 [30, Section 3.1] The 16 dimensional semisimple Hopf algebra Hb:y

belongs to kG#σ,τkZ2, and the data (G, /, σ, τ) of Hb:y is given as follows
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(i) G = Z4 × Z2 = 〈a, b|a4 = b2 = 1, ab = ba〉 and a / x = a3, b / x = b.

(ii) σ(aibj) = (−1)j, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2.

(iii) τ(aibj, akbl) = (−1)jk, 1 ≤ i, k ≤ 4, 1 ≤ j, l ≤ 2.

Example 2.1.8 Let n ∈ N. A Hopf algebra H belonging to kG#σ,τkZ2 is denoted by

Hn
b:y if the data (G, /, σ, τ) of H satisfies the following conditions

(i) G = Z4n × Z2n = 〈a, b|a4n = b2n = 1, ab = ba〉 and a / x = a2n+1, b / x = b.

(ii) σ(aibj) = (−1)j for 1 ≤ i ≤ 4n and 1 ≤ j ≤ 2n.

(iii) τ(aibj, akbl) = (−1)jk for 1 ≤ i, k ≤ 4n and 1 ≤ j, l ≤ 2n.

If n = 1, then H1
b:y is the 16 dimensional Hopf algebra Hb:y in [30, Section 3.1].

The following example will be used to show that there exist Hopf algebras kG#σ,τkZ2

such that they admit no quasitriangular structure.

Example 2.1.9 Let n be an odd number and let i be a primitive 4th root of 1. A

Hopf algebra H belonging to kG#σ,τkZ2 is denoted by A32n2 if the data (G, /, σ, τ) of

H satisfies the following conditions

(i) G = Z4n × Z4n = 〈a, b|a4n = b4n = 1, ab = ba〉 and a / x = a2n+1, b / x = b;

(ii) σ(g) = 1 for g ∈ G;

(iii) τ(aibj, akbl) = (i)jk for 1 ≤ i, k ≤ 4n and 1 ≤ j, l ≤ 4n.

§2.2 Quasitriangular structures on Hopf algebras

In this section, we review the definition of quasitriangular structures on Hopf

algebras and give some basic results about quasitriangular structures.

The definition of the Hopf algebra can be found in [59]. Recall that a quasitrian-

gular Hopf algebra is a pair (H,R) where H is a Hopf algebra and R =
∑
R(1) ⊗R(2)

is an invertible element in H ⊗H such that

(i) (∆⊗ Id)(R) = R13R23 and (Id⊗∆)(R) = R13R12.

(ii) ∆op(h)R = R∆(h) for h ∈ H.
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Here by definition R12 =
∑
R(1) ⊗ R(2) ⊗ 1, R13 =

∑
R(1) ⊗ 1 ⊗ R(2) and R23 =∑

1⊗R(1)⊗R(2). The element R is called a universalR-matrix ofH or a quasitriangular

structure on H. If R is a universal R-matrix of H such that RR21 = 1(R21 := τ(R)),

then we call R is a triangular structure on H.

The following lemma is well-known.

Lemma 2.2.1 [59, Proposition 12.2.11] Let H be a Hopf algebra and R ∈ H⊗H. For

f ∈ H∗, if we denote l(f) := (f ⊗ Id)(R) and r(f) := (Id⊗f)(R), then the following

statements are equivalent

(i) (∆⊗ Id)(R) = R13R23 and (Id⊗∆)(R) = R13R12.

(ii) l(f1)l(f2) = l(f1f2) and r(f1)r(f2) = r(f2f1) for f1, f2 ∈ H∗.

Let C(H∗) := 〈χV | V is a finite dimensional representation of H〉 as vector space,
where χV means the character of V , then we have

Lemma 2.2.2 If (H,R) be a quasitriangular Hopf algebra, then C(H∗) is a commuta-

tive subalgebra of H∗.

ProofµLet V,W be two finite dimensional representations of H, then it is known that

τ ◦R : V ⊗W → W ⊗ V is H-module map. Therefore we have χV χW = χWχV .
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Chapter 3 Two forms of universal R-matrices

In this chapter, we will prove that for kG#σ,τkZ2 there are at most two forms

of universal R-matrices. Then we give some necessary conditions for the existence of

nontrivial forms. Using these necessary conditions, we determine all quasitriangular

structures on generalized Kac-Paljutkin algebras H2n2(see Example 2.1.3).

§3.1 Forms of universal R-matrices

In this section, we will prove that for kG#σ,τkZ2 there are at most two forms of

universal R-matrices.

The following lemma shows that the algebra structure of the dual Hopf algebra of

kG#σ,τkZ2 is very simple

Lemma 3.1.1 Denote the dual basis of {eg, egx}g∈G by {Eg, Xg}g∈G, that is, Eg(eh) =

δg,h, Eg(ehx) = 0, Xg(eh) = 0, Xg(ehx) = δg,h for g, h ∈ G. Then the following

equations hold in the dual Hopf algebra (kG#σ,τkZ2)
∗:

EgEh = Egh, EgXh = XhEg = 0, XgXh = τ(g, h)Xgh, g, h ∈ G.

ProofµDirect computations show that

EgEh(ek) = Egh(ek) = δgh,k, EgEh(ekx) = Egh(ekx) = 0

for g, h, k ∈ G. As a result, we have EgEh = Egh. Similarly, one can get the last two

equations. �

Let kG#σ,τkZ2 as before. Recall the sets S, T we have defined in Section 1.2, they

are defined as follows

S := {g | g ∈ G, g / x = g}, T := {g | g ∈ G, g / x 6= g}.

A very basic observation is:

Lemma 3.1.2 We have S ⊆ TT where TT = {gh | g, h ∈ T}.
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Proofµ Clearly, for s ∈ S, t ∈ T , we have ts ∈ T . From the Definition 2.1.2 we

know that the action / is injective, therefore T 6= ∅. Let t ∈ T and it is obvious that

S = t(t−1S) and hence S ⊆ TT . �

With the help of S, T , we find that

Lemma 3.1.3 Let w1 : G×G→ k, w2 : G×G→ k, w3 : G×G→ k, w4 : G×G→ k
be four maps and define R as follows

R : =
∑
g,h∈G

w1(g, h)eg ⊗ eh +
∑
g,h∈G

w2(g, h)egx⊗ eh+∑
g,h∈G

w3(g, h)eg ⊗ ehx+
∑
g,h∈G

w4(g, h)egx⊗ ehx.

If R satisfies ∆op(eg)R = R∆(eg) for g ∈ G, then

(i) w2(t, g) = 0, t ∈ T, g ∈ G.

(ii) w3(g, t) = 0, t ∈ T, g ∈ G.

(iii) w4(s, t) = w4(t, s) = 0, s ∈ S, t ∈ T .

ProofµBecause we have assumed that G is an abelian group, we get ∆op(eg) = ∆(eg).

Since ∆op(eg)R = R∆(eg) for g ∈ G by the condition, we know ∆(eg)R = R∆(eg) .

Observe that {eg, egx}g∈G is a linear basis for kG#σ,τkZ2 and if we compare the two

sides of the equation ∆(eg)R = R∆(eg) then we obtain the following equations

∆(eg)[
∑
h,k∈G

w2(h, k)ehx⊗ ek] = [
∑
h,k∈G

w2(h, k)ehx⊗ ek]∆(eg), (3.1)

∆(eg)[
∑
h,k∈G

w3(h, k)eh ⊗ ekx] = [
∑
h,k∈G

w3(h, k)eh ⊗ ekx]∆(eg), (3.2)

∆(eg)[
∑
h,k∈G

w4(h, k)ehx⊗ ekx] = [
∑
h,k∈G

w4(h, k)ehx⊗ ekx]∆(eg). (3.3)
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Firstly, we analyze equation (3.1) as follows

∆(eg)[
∑
h,k∈G

w2(h, k)ehx⊗ ek] =
∑
h,k∈G
hk=g

w2(h, k)ehx⊗ ek, (3.4)

[
∑
h,k∈G

w2(h, k)ehx⊗ ek]∆(eg) =
∑
h,k∈G
hk=g

w2(h / x, k)eh/xx⊗ ek. (3.5)

Note that if h ∈ T, k ∈ G such that hk = g, then ehx ⊗ ek will appear in (3.4) while

not in (3.5). As a result w2(h, k) = 0 for h ∈ T, k ∈ G and thus (i) has been proved.

Similarly, for equation (3.2), there are the following equations

∆(eg)[
∑
h,k∈G

w3(h, k)eh ⊗ ekx] =
∑
h,k∈G
hk=g

w3(h, k)eh ⊗ ekx, (3.6)

[
∑
h,k∈G

w3(h, k)eh ⊗ ekx]∆(eg) =
∑
h,k∈G
hk=g

w3(h, k / x)eh ⊗ ek/xx. (3.7)

Observe that if h ∈ G, k ∈ T such that hk = g, then eh⊗ ekx will appear in (3.6) while

not in (3.7). Therefore w3(h, k) = 0 for h ∈ G, k ∈ T and so (ii) is proved.

For equation (3.3), we obtain the following equations

∆(eg)[
∑
h,k∈G

w4(h, k)ehx⊗ ekx] =
∑
h,k∈G
hk=g

w4(h, k)ehx⊗ ekx, (3.8)

[
∑
h,k∈G

w4(h, k)ehx⊗ ekx]∆(eg) =
∑
h,k∈G
hk=g

w4(h / x, k / x)eh/x ⊗ ek/xx. (3.9)

Note that if h ∈ S, k ∈ T , then ehx ⊗ ekx and ekx ⊗ ehx will appear in (3.8) and not

in (3.9). This implies that w4(h, k) = 0 for h ∈ S, k ∈ T . Similarly, one can find that

w4(h, k) = 0 for h ∈ T, k ∈ S. Therefore (iii) has been proved. �

Lemma 3.1.4 Let R be the element given in Lemma 3.1.3 and assume that (∆ ⊗
Id)(R) = R13R23, (Id⊗∆)(R) = R13R12. Then the following equations hold

(i) w2(s1, s2) = w3(s1, s2) = w4(s1, s2) = 0, s1, s2 ∈ S.

(ii) w1(g, t2)w
4(t1, t2) = 0, g ∈ G, t1, t2 ∈ T .

15



(iii) w1(t1, g)w4(t1, t2) = 0, g ∈ G, t1, t2 ∈ T .

ProofµWe have known l(Xg)l(Xh) = l(XgXh) for g, h ∈ G due to Lemma 2.2.1. Let

s ∈ S and we can find t1, t2 ∈ T such that t1t2 = s because of Lemma 3.1.2 and hence

the following equation holds

l(Xt1Xt2) = τ(t1, t2)l(Xt1t2) = τ(t1, t2)[
∑
g∈G

w2(t1t2, g)eg +
∑
s∈S

w4(t1t2, s)esx].

At the same time,

l(Xt1)l(Xt2) = (
∑
t∈T

w4(t1, t)etx)(
∑
t∈T

w4(t2, t)etx)

=
∑
t∈T

w4(t1, t)w
4(t2, t / x)etx

2

=
∑
t∈T

w4(t1, t)w
4(t2, t / x)σ(t)et.

Since l(Xt1)l(Xt2) = l(Xt1Xt2), we get that w4(s, s′) = w2(s, s′) = 0 for s′ ∈ S and

thus w4(s, s′) = w2(s, s′) = 0 for s, s′ ∈ S. Similarly by r(Xt1)r(Xt2) = r(Xt2Xt1) one

can get that w3(s, s′) = 0 for s, s′ ∈ S. Therefore, (i) is proved.
It remains to show (ii) and (iii). We have known l(Eg)l(Xt1) = 0 due to Lemma

3.1.1. However a direct computation shows that l(Eg)l(Xt1) =
∑

t∈T w
1(g, t)w4(t1, t)etx.

Therefore w1(g, t)w4(t1, t) = 0 for g ∈ G, t1, t ∈ T . Similarly, by r(Eg)r(Xt1) = 0 we

get that w1(t, g)w4(t, t1) = 0 for g ∈ G, t1, t ∈ T . These are exactly (ii), (iii). �

The following proposition shows that universal R-matrices of kG#σ,τkZ2 has only

two possible forms.

Proposition 3.1.5 Let R be the element given in Lemma 3.1.3 and assume that it is

a universal R-matrix of kG#σ,τkZ2. Then R must belong to one of the following two

cases:

(i) R =
∑

g,h∈G
w1(g, h)eg ⊗ eh;

(ii) R =
∑

s1,s2∈S
w1(s1, s2)es1 ⊗ es2 +

∑
s∈S,t∈T

w2(s, t)esx⊗ et +∑
t∈T,s∈S

w3(t, s)et ⊗ esx+
∑

t1,t2∈T
w4(t1, t2)et1x⊗ et2x.
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Proofµ Owing to Lemmas 3.1.3 and 3.1.4, we can assume that R has the following

form:

R =
∑
g,h∈G

w1(g, h)eg ⊗ eh +
∑

s∈S,t∈T

w2(s, t)esx⊗ et+∑
t∈T,s∈S

w3(t, s)et ⊗ esx+
∑

t1,t2∈T

w4(t1, t2)et1x⊗ et2x.

If w4(t1, t2) = 0 for all t1, t2 ∈ T , then l(Xt1) = l(Xt2) = 0. Using Lemma 3.1.1

we know that l(Xt1)l(Xt2) = l(Xt1Xt2) and as a result l(Xt1Xt2) = 0 for all t1, t2 ∈
T . For s ∈ S , we can take t1, t2 ∈ T such that s = t1t2. Hence we have that

l(Xt1Xt2) = τ(t1, t2)(
∑

t∈T w
2(s, t)et) = 0 which implies that w2(s, t) = 0 for s ∈

S, t ∈ T . Similarly, by r(Xt1) = r(Xt2) = 0 and r(Xt2Xt1) =
∑

t∈T τ(t2, t1)w
3(t, s)et,

we have w3(t, s) = 0 for s ∈ S, t ∈ T . Since w2(s, t) = w3(t, s) = 0 for s ∈ S, t ∈ T , we
know that R =

∑
g,h∈Gw

1(g, h)eg ⊗ eh and therefore we get the first case.

If there are t0, t′0 ∈ T such that w4(t0, t
′
0) 6= 0, then we will show that w1(t, g) =

w1(g, t) = 0 for all g ∈ G, t ∈ T . For any g ∈ G, we have w1(g, t′0)w
4(t0, t

′
0) =

0 by (ii) of Lemma 3.1.4 and as a result w1(g, t′0) = 0. Since R is invertible and

(et ⊗ et′0)R = w4(t, t′0)etx ⊗ et′0x, we know that w4(t, t′0) 6= 0 for t ∈ T . Next, we

use (ii) and (iii) of Lemma 3.1.4 repeatedly. We have w1(t, g)w4(t, t′0) = 0 due to

(iii) of Lemma 3.1.4. Thus w1(t, g) = 0 for t ∈ T, g ∈ G. Since R is invertible and

(et1⊗et2)R = w4(t1, t2)et1x⊗et2x for t1, t2 ∈ T , we get that w4(t1, t2) 6= 0 for t1, t2 ∈ T .
Because w1(g, t)w4(t1, t) = 0 by (ii) of Lemma 3.1.4, we know that w1(g, t) = 0 for

g ∈ G, t ∈ T and hence we get the second case. �

Remark 3.1.6 For simple, we will call a universal R-matrix R in case (i) (resp. case

(ii)) of Proposition 3.1.5 by a trivial (resp. non-trivial) quasitriangular structure.

§3.2 Universal R-matrices of H2n2

To determine all universal R-matrices of kG#σ,τkZ2, we give necessary conditions

for kG#σ,τkZ2 preserving a non-trivial quasitriangular structure firstly. Then we give

all universal R-matrices of H2n2 by using these necessary conditions. For any finite set

X, we use |X| to denote the number of elements in X.
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Proposition 3.2.1 If there is a non-trivial quasitriangular structure on kG#σ,τkZ2,

then

(i) |S| = |T |;

(ii) there is b ∈ S such that b2 = 1 and t / x = tb for t ∈ T ;

(iii) τ(s1, s2) = τ(s2, s1), s1, s2 ∈ S;

ProofµAssume that R is a non-trivial quasitriangular structure on kG#σ,τkZ2, then

we have l(Et1)l(Et2) =
∑

s∈S w
3(t1, s)w

3(t2, s)σ(s)es for t1, t2 ∈ T . In this situation,

we claim that TT = S. In fact, suppose that there are t1, t2 ∈ T satisfying t1t2 ∈ T .
Then it is easy to see that l(Et1t2) =

∑
s∈S w

3(t1t2, s)esx which contradicts to the fact

l(Et1)l(Et2) = l(Et1t2) (Lemma 2.2.1). Thus we have TT = S. Take a t ∈ T . We

get that tT ⊆ S and thus |T | ≤ |S|. Since tS ⊆ T , |T | ≥ |S|. As a result we have

|T | = |S| and thus (i) has been proved. Next we will show (ii). Take a t0 ∈ T, then we

have T = t0S. Let t0 / x = t1 and denote b = t−10 t1, then we have b ∈ S by TT = S.

Since t0S ⊆ T and (t0s) / x = (t0s)b, we have t / x = tb for t ∈ T . It is easy to know

that b2 = 1 since /x is a group automorphism with order 2 and thus (ii) has been

proved. Now let’s show (iii). Assume that R is a non-trivial quasitrianglar structure

on kG#σ,τkZ2, then we have ∆op(x)R = R∆(x). Multiply both sides of this equation

by es1 ⊗ es2 where s1, s2 ∈ S and we note that es1 ⊗ es2 is an element in the center, so

we get (es1 ⊗ es2)∆op(x)R = R∆(x)(es1 ⊗ es2). On the one hand, we have the following

equation

(es1 ⊗ es2)∆op(x)R = (es1 ⊗ es2)[
∑
g,h∈G

τ(h, g)eg ⊗ eh](x⊗ x)R

= [τ(s2, s1)es1 ⊗ es2 ](x⊗ x)R

= (x⊗ x)[τ(s2, s1)es1 ⊗ es2 ]R

= (x⊗ x)[τ(s2, s1)w
1(s1, s2)(es1 ⊗ es2)]

= τ(s2, s1)w
1(s1, s2)es1x⊗ es2x
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On the other hand, the following equation hold

R∆(x)(es1 ⊗ es2) = R[
∑
g,h∈G

τ(g, h)eg ⊗ eh](x⊗ x)(es1 ⊗ es2)

= R[
∑
g,h∈G

τ(g, h)eg ⊗ eh](es1 ⊗ es2)(x⊗ x)

= R[τ(s1, s2)es1 ⊗ es2 ](x⊗ x)

= [τ(s1, s2)w
1(s1, s2)es1 ⊗ es2 ](x⊗ x)

= τ(s1, s2)w
1(s1, s2)es1x⊗ es2x.

Therefore, (es1 ⊗ es2)∆
op(x)R = R∆(x)(es1 ⊗ es2) holds if and only if τ(s1, s2) =

τ(s2, s1). �

Corollary 3.2.2 If there are t1, t2 ∈ T such that t−11 (t1 / x) 6= t−12 (t2 / x), then

kG#σ,τkZ2 has no non-trivial quasitriangular structure.

Proofµ If kG#σ,τkZ2 has a non-trivial quasitriangular structure, then there is b ∈ S
such that t / x = tb for t ∈ T by (ii) of Proposition 3.2.1. Therefore t−1(t / x) ≡ b for

t ∈ T and we have completed the proof. �

The following proposition determine all possible trivial quasitriangular structures.

Proposition 3.2.3 The element R is a trivial quasitriangular structure on kG#σ,τkZ2

if and only if

(i) R =
∑

g,h∈Gw(g, h)eg ⊗ eh for some bicharacter w on G;

(ii) w(g / x, h / x) = w(g, h)η(g, h) where η(g, h) = τ(g, h)τ(h, g)−1 for g, h ∈ G.

Proofµ We can assume that R =
∑

g,h∈Gw(g, h)eg ⊗ eh is a trivial quasitriangular

structure on it. Owing to (∆⊗ Id)(R) = R13R23 and (Id⊗∆)(R) = R13R12, we know

(i). Expanding ∆op(x)R = R∆(x), one can get (ii). �

Next, we give a simple criterion to the quasitriangularity of kG#σ,τkZ2.

Corollary 3.2.4 If there are s1, s2 ∈ S such that η(s1, s2) 6= 1, then there is no quasi-

triangular structure on kG#σ,τkZ2.
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Proofµ By Proposition 3.2.1, we know that there is no non-trivial quasitriangular

structure on kG#σ,τkZ2. Assume that there is a trivial quasitriangular structure, then

we can use (ii) of Proposition 3.2.3 to get w(s1, s2) = w(s1, s2)η(s1, s2). But this

equation can’t happen because of our assumption, so there is no trivial quasitriangular

structure on kG#σ,τkZ2. �

The following proposition is a direct application of the above Corollary 3.2.4.

Proposition 3.2.5 Let A32n2 be the Hopf algebras in Example 2.1.9, then there is no

quasitriangular structure on A32n2 for any n ∈ N.

Proofµ It can be seen that a2n, b ∈ S and η(a2n, b) = −1, thus there is no quasitrian-

gular structure by Corollary 3.2.4. �

The following proposition is an application of above results and we get all universal

R-matrices of H2n2(n ≥ 3).

Proposition 3.2.6 All universal R-matrices of H2n2(n ≥ 3) are given by

R =
∑

1≤i,j,k,l≤n

αik+jlβil+jkeaibj ⊗ eakbl

for some α, β ∈ k satisfying αn = βn = 1.

ProofµSince n ≥ 3, we know a−1(a/x) 6= b−1(b/x). Therefore H2n2 has no non-trivial

quasitriangular structure by Corollary 3.2.2. Assume that R =
∑

g,h∈Gw(g, h)eg⊗eh is
a trivial quasitriangular structure on H2n2 , then w is a bicharacter on G and it satisfies

the following equations by Proposition 3.2.3

w(a, a)n = 1, w(a, b)n = 1, (3.10)

w(b, a) = w(a, b), w(b, b) = w(a, a).

Let w(a, a) := α,w(a, b) := β and using the above series of equations (3.10), we get

what we want. �

Remark 3.2.7
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(i) If n = 2, then H8 is the 8-dimensional Kac-Paljutkin algebra K8. All possi-

ble quasitriangular structures on K8 were given in [71]. Proposition 3.2.6 above

does not consider quasitriangular structures on K8. In fact, trivial quasitriangular

structures on K8 can be given by Proposition 3.2.6, which only needs to set the

parameter n = 2 in Proposition 3.2.6. Non-trivial quasitriangular structures on K8

can be completely determined by using the (ii) in Lemma 2.2.1 and the equation

∆op(x)R = R∆(x);

(ii) Because of Proposition 3.2.1 above and our aim is to find all non-trivial quasitri-

angular structures on kG#σ,τkZ2, we agree that kG#σ,τkZ2 satisfies the conditions

(i)-(iii) in Proposition 3.2.1 in the following content.

(iii) If we let η(g, h) = τ(g, h)τ(h, g)−1 for g, h ∈ G, then η is a bicharacter on G due

to τ is a 2-cocycle on the abelian group G and so (iii) of the Proposition 3.1.5 is

equivalent to η(s1, s2) = 1 for s1, s2 ∈ S. We will often use η without explaination

in the following content.
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Chapter 4 Symmetries of quasitriangular

structures on Hopf algebras

We will define symmetries of quasitriangular structures on Hopf algebras and give

some relevant propositions in this chapter. Then we apply these propositions to the

special Hopf algebras kG#σ,τkZ2.

§4.1 Symmetries of quasitriangular structures and some

results

We will define symmetries of quasitriangular structures on Hopf algebras and give

some relevant propositions in this section.

Let (H,m, η,∆, ε) be a Hopf algebra and let R ∈ H ⊗ H. If ϕ : H → Hop is a

Hopf isomorphism, then we denote (ϕ ⊗ ϕ) ◦ τ(R) as Rϕ for the sake of convenience,

here τ is the flip map and Hop = (H,m ◦ τ, η,∆, ε). Now we can define ϕ-symmetry of

quasitriangular structures on Hopf algebras as follows

Definition 4.1.1 Let ϕ : H → Hop be a Hopf isomorphism and let R ∈ H ⊗H, then

we call R is ϕ-symmetric if R = Rϕ. Moreover if R = Rϕ and it is a quasitriangular

structure on H then we call R is a ϕ-symmetric quasitriangular structure.

The reason why we introduced the above definition is due to the following propo-

sitions

Proposition 4.1.2 Let ϕ : H → Hop be a Hopf isomorphism and let R ∈ H⊗H, then

we have

(i) lR is algebra map ⇔ rRϕ is anti-algebra map;

(ii) rR is anti-algebra map ⇔ lRϕ is algebra map;

(iii) ∆op(h)R = R∆(h) for h ∈ H ⇔ ∆op(ϕ(h))Rϕ = Rϕ∆(ϕ(h)) for h ∈ H;

(iv) R is invertible ⇔ Rϕ is invertible.
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Proofµ Since R = (Rϕ)ϕ−1 , we only need to prove half of the proposition. Let ϕ∗

be the dual map of ϕ, then ϕ∗ : H∗ → Hcop is a Hopf isomorphism, here Hcop =

(H,m, η, τ ◦∆, ε). If we denote lR(f) := (f ⊗ Id)(R), rR(f) := (Id⊗f)(R) respectively,

then we claim that the following equations hold

lRϕ = ϕ ◦ rR ◦ ϕ∗, rRϕ = ϕ ◦ lR ◦ ϕ∗. (4.1)

Directly we have

rRϕ(f) = (Id⊗f)[(ϕ⊗ ϕ) ◦ τ(R)] = (ϕ⊗ f ◦ ϕ) ◦ τ(R)

= (ϕ⊗ ϕ∗(f)) ◦ τ(R) = (ϕ∗(f)⊗ ϕ)(R)

= ϕ[(ϕ∗(f)⊗ Id)(R)] = ϕ[lR ◦ ϕ∗(f)]

= (ϕ ◦ lR ◦ ϕ∗)(f),

and

lRϕ(f) = (f ⊗ Id)[(ϕ⊗ ϕ) ◦ τ(R)] = (f ◦ ϕ⊗ ϕ) ◦ τ(R)

= (ϕ∗(f)⊗ ϕ) ◦ τ(R) = (ϕ⊗ ϕ∗(f))(R)

= ϕ[(Id⊗ϕ∗(f))(R)] = ϕ[rR ◦ ϕ∗(f)]

= (ϕ ◦ rR ◦ ϕ∗)(f),

so (i),(ii) hold. Suppose that R = Σn
i=1ri⊗ ri and ∆op(h)R = R∆(h). Taking a k ∈ H,

then we can write it by k = ϕ(h), h ∈ H due to ϕ is bijective map. Using ϕ is Hopf

isomorphism, we get

∆op(ϕ(h))Rϕ = [ϕ(h(2))⊗ ϕ(h(1))]Rϕ = [ϕ(h(2))⊗ ϕ(h(1))][Σ
n
i=1ϕ(ri)⊗ ϕ(ri)]

= Σn
i=1ϕ(rih(2))⊗ ϕ(rih(1)) = (ϕ⊗ ϕ)[Σn

i=1r
ih(2) ⊗ rih(1)]

and

Rϕ∆(ϕ(h)) = Rϕ[ϕ(h(1))⊗ ϕ(h(2))] = [Σn
i=1ϕ(ri)⊗ ϕ(ri)][ϕ(h(1))⊗ ϕ(h(2))]

= Σn
i=1ϕ(h(1)r

i)⊗ ϕ(h(2)ri) = (ϕ⊗ ϕ)[Σn
i=1h(1)r

i ⊗ h(2)ri].
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Because ∆op(h)R = R∆(h), we know (h(2) ⊗ h(1))(Σn
i=1ri ⊗ ri) = (Σn

i=1ri ⊗ ri)(h(1) ⊗
h(2)). If we use the flip map τ acting on both sides of this equation, then we get

Σn
i=1r

ih(2) ⊗ rih(1) = Σn
i=1h(1)r

i ⊗ h(2)ri and hence ∆op(ϕ(h))Rϕ = Rϕ∆(ϕ(h)) for

h ∈ H. That is to say (iii) holds. Assume R−1 is the inverse of R, then it can be seen

that Rϕ(R−1)ϕ = 1⊗ 1 and thus we have (iv). �

Recall that we call (H, ∗) is a ∗-Hopf algebra over C if ∗ : H → H is an anti-

multiplicative conjugate linear involution and comultiplicative, where H is a Hopf

algebra. Similar to Proposition 4.1.2, we have the following proposition.

Proposition 4.1.3 Let (H, ∗) be a ∗-Hopf algebra and let R ∈ H ⊗H. If we denote

R∗ := (∗ ⊗ ∗) ◦ τ(R), then we have

(i) lR is algebra map ⇔ rR∗ is anti-algebra map;

(ii) rR is anti-algebra map ⇔ lR∗ is algebra map;

(iii) ∆op(h)R = R∆(h) for h ∈ H ⇔ ∆op(h)R∗ = R∗∆(h) for h ∈ H;

(iv) R is invertible ⇔ R∗ is invertible.

ProofµSimilar to the proof of Proposition 4.1.2.

Remark 4.1.4 So far, all known semisimple Hopf algebras over C have involutions,

i.e they are ∗-Hopf algebras. Therefore, the discussion on the symmetry of quasitrian-

gular structures are applicable to the known semisimple Hopf algebras. Moreover, the

following propositions in this section are also hold for ∗-Hopf algebras when we replace

the ϕ with ∗ and we don’t plan to list them.

Proposition 4.1.5 Let ϕ : H → Hop be a Hopf isomorphism and let R ∈ H ⊗H. If

R is ϕ-symmetric, then lR : H∗ → H is an algebra map if and only if rR : H∗ → Hop

is an algebra map.

Proofµ Since R = Rϕ and we have proved lRϕ = ϕ ◦ rR ◦ ϕ∗, rRϕ = ϕ ◦ lR ◦ ϕ∗ in
Proposition 4.1.2, we get lR = ϕ ◦ rR ◦ ϕ∗ and rR = ϕ ◦ lR ◦ ϕ∗. Using these equations

we get what we want. �
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Corollary 4.1.6 Let R ∈ H ⊗ H. If R is ϕ-symmetric and it is invertible, then

R is a quasitriangular structure if and only if lR : H∗ → H is an algebra map and

∆op(h)R = R∆(h) for h ∈ H.

ProofµBy Proposition 4.1.5 and Lemma 2.2.1, we get what we want. �

§4.2 Applying to kG#σ,τkZ2

In order to apply the results of Section 4.1 to our case, we give the following

conclusions.

Proposition 4.2.1 Let ϕ : kG#σ,τkZ2 → (kG#σ,τkZ2)
op be a linear map which is

determined by ϕ(eg) := eg/x, ϕ(egx) := egx, then ϕ is a Hopf isomorphism.

Proofµ Obviously ϕ is bijective, thus we only need to show ϕ is a bialgebra map.

To show ϕ is an algebra map, the only non-trivial thing is to check ϕ(eg)ϕ(ehx) =

ϕ[(ehx)eg]. Directly we have ϕ(eg)ϕ(ehx) = eg/x(ehx) = δg/x,hehx and ϕ[(ehx)eg] =

ϕ(eheg/xx) = δg/x,hehx, so ϕ(eg)ϕ(ehx) = ϕ[(ehx)eg]. To prove that ϕ is a coalge-

bra map, we consider the dual map ϕ∗. Denote the dual basis of {eg, egx}g∈G by

{Eg, Xg}g∈G, then it can be seen that ϕ∗(Eg) = Eg/x and ϕ∗(Xg) = Xg. Therefore it

is easy to see that ϕ∗ is an algebra map and this implies that ϕ is a coalgebra map. �

Let R be the form (ii) in Proposition 3.1.5 and let ϕ be the Hopf isomorphism in

Proposition 4.2.1 above, then Rϕ is given by

Rϕ =
∑

s1,s2∈S

w1(s2, s1)es1 ⊗ es2 +
∑

s∈S,t∈T

w3(t / x, s)esx⊗ et +
∑

t∈T,s∈S

w2(s, t / x)et⊗

(4.2)

esx+
∑

t1,t2∈T

w4(t2, t1)et1x⊗ et2x.

Corollary 4.2.2 R is a quasitriangular structure on kG#σ,τkZ2 if and only if Rϕ is a

quasitriangular structure on kG#σ,τkZ2.

ProofµOwing to the Proposition 4.1.2 and Proposition 4.2.1, we get what we want. �
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Corollary 4.2.3 Let R be the form (ii) in Proposition 3.1.5, and if wi(1 ≤ i ≤ 4)

satisfy the following conditions

(i) w1(s1, s2) = w1(s2, s1) for s1, s2 ∈ S;

(ii) w2(s, t) = w3(t / x, s) for s ∈ S, t ∈ T ;

(iii) w4(t1, t2) = w4(t2, t1) for t1, t2 ∈ T ;

then R is a quasitriangular structure if and only if lR is an algebra map and ∆op(h)R =

R∆(h) for h ∈ kG#σ,τkZ2.

Proofµ Since Rϕ is given by the form (4.2) and (i)-(iii), it can be seen that R is

ϕ-symmetric. Thanks to Corollary 4.1.6, we get what we want. �

Remark 4.2.4 For our convenience, we agree that ϕ mentioned in the following con-

tent refers to the ϕ in Proposition 4.2.1.
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Chapter 5 Quasitriangular functions on kG#σ,τkZ2

In this chapter, we prove that non-trivial quasitriangular structures on kG#σ,τkZ2

are in one-one correspondence to some special functions on kG#σ,τkZ2, which we call

quasitriangular functions on kG#σ,τkZ2. After that, we will focus on quasitriangular

functions and give a criterion for when a function is a quasitriangular function.

§5.1 The one to one correspondence between quasitriangular

functions and quasitriangular structures

In this section, we give the definition of quasitriangular functions on kG#σ,τkZ2

and prove that there is a natural one-one correspondence between quasitriangular func-

tions and quasitriangular structures on kG#σ,τkZ2.

Let R be the form (ii) in Proposition 3.1.5 and we will use this R without expla-

nation in the following sections, then

Lemma 5.1.1 The equations ∆op(h)R = R∆(h) hold for h ∈ kG#σ,τkZ2 if and only

if the following equations hold

w2(s, t / x) = w2(s, t)η(s, t), s ∈ S, t ∈ T, (5.1)

w3(t / x, s) = w3(t, s)η(t, s), s ∈ S, t ∈ T, (5.2)

τ(t2, t1)w
4(t1 / x, t2 / x) = τ(t1 / x, t2 / x)w4(t1, t2), t1, t2 ∈ T. (5.3)

ProofµSince R is invertible and kG#σ,τkZ2 is generated by {eg, x| g ∈ G} as algebra,
∆op(h) = R∆(h)R−1 for h ∈ kG#σ,τkZ2 is equivalent to ∆op(h) = R∆(h)R−1 for

h ∈ {eg, x| g ∈ G}. We first prove that ∆op(eg)R = R∆(eg) for g ∈ G. Taking

s ∈ S, t ∈ T , then directly we have

∆op(es)R = [
∑

s1,s2∈S
s1s2=s

w1(s1, s2)es1 ⊗ es2 ] + [
∑

t1,t2∈T
t1t2=s

w4(t1, t2)et1x⊗ et2x]
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and

R∆(es) = [
∑

s1,s2∈S
s1s2=s

w1(s1, s2)es1 ⊗ es2 ] + [
∑

t1,t2∈T
t1t2=s

w4(t1 / x, t2 / x)et1/xx⊗ et2/xx].

Owing to t1t2 = (t1 / x)(t2 / x) by definition, thus ∆op(s)R = R∆(s). Similarly, we

have

∆op(et)R = R∆(et) = [
∑

s∈S,t′∈T
st′=s

w2(s, t′)esx⊗ et′ ] + [
∑

s∈S,t′∈T
st′=s

w3(t′, s)et′ ⊗ esx],

but G = S ∪ T and so we have showed ∆op(eg)R = R∆(eg) for g ∈ G. Next we prove

that ∆op(x)R = R∆(x) is equivalent to above equations (5.1)-(5.3). On the one hand,

we have the following equation

∆op(x)R = [
∑
g,h∈G

τ(h, g)eg ⊗ eh](x⊗ x)R

= [
∑

s1,s2∈S

τ(s2, s1)w
1(s1, s2)es1 ⊗ es2 +

∑
s∈S,t∈T

τ(t, s)w2(s, t / x)esx⊗ et+∑
t∈T,s∈S

τ(s, t)w3(t / x, s)et ⊗ esx+

∑
t1,t2∈T

τ(t2, t1)w
4(t1 / x, t2 / x)et1x⊗ et2x](x⊗ x),

On the other hand, the following equations hold

R∆(x) = R[
∑
g,h∈G

τ(g, h)eg ⊗ eh](x⊗ x)

= [
∑

s1,s2∈S

τ(s1, s2)w
1(s1, s2)es1 ⊗ es2 +

∑
s∈S,t∈T

τ(s, t)w2(s, t)esx⊗ et+∑
t∈T,s∈S

τ(t, s)w3(t, s)et ⊗ esx+

∑
t1,t2∈T

τ(t1 / x, t2 / x)w4(t1, t2)et1x⊗ et2x](x⊗ x).

Therefore, ∆op(x)R = R∆(x) holds if and only if equations (5.1)-(5.3) hold. �

If R is a quasitriangular structure, then R is completely determined by w4. The
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following lemma states this fact. For simplify, we denote kG#σ,τkZ2 by HG and we will

use this notation in this section without explanation.

Lemma 5.1.2 If l(f1)l(f2) = l(f1f2) and r(f1)r(f2) = r(f2f1) for f1, f2 ∈ (HG)∗, then

wi(1 ≤ i ≤ 3) of R are completely determined by w4 as follows

(i) w1(s1, s2) = w4(s1t1,s2t2)w4(t1,t2)
w4(s1t1,t2)w4(t1,s2t2)

;

(ii) w2(s, t) = τ(s, t1)
w4(st1,t)
w4(t1,t)

;

(iii) w3(t, s) = τ(s, t1)
w4(t/x,st1)
w4(t/x,t1)

;

where s, s1, s2 ∈ S and t, t1, t2 ∈ T .

ProofµWe first show (ii). Taking s ∈ S, t1 ∈ T , then we have l(Xs)l(Xt1) = l(XsXt1)

by our assumption. We expand this equation as follows

l(Xs)l(Xt1) = [
∑
t∈T

w2(s, t)et][
∑
t∈T

w4(t0, t1)etx] = [
∑
t∈T

w2(s, t)w4(t0, t)etx]

and

l(XsXt1) = τ(s, t1)l(Xst1) = [
∑
t∈T

τ(s, t1)w
4(st1, t)etx],

so we have w2(s, t)w4(t1, t) = τ(s, t1)w
4(st1, t) and this implies that (ii) holds. Then

we will show (i). Let s1, s2 ∈ S and let t1, t2 ∈ T . Owing to r(Es2)r(Et2) = r(Et2Es2)

by assumption, we can expand this equation as follows

r(Es2)r(Et2) = [
∑
s1∈S

w1(s1, s2)es1 ][
∑
s1∈S

w2(s1, t2)es1x] = [
∑
s1∈S

w1(s1, s2)w
2(s1, t2)es1x]

and

r(Et2Es2) = r(Es2t2) = [
∑
s1∈S

w2(s1, s2t2)es1x],
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thus we get w1(s1, s2) = w2(s1,s2t2)
w2(s1,t2)

. But we have showed the following equations

w2(s1, s2t2) = τ(s1, t1)
w4(s1t1, s2t2)

w4(t1, s2t2)
, w2(s1, t2) = τ(s1, t1)

w4(s1t1, t2)

w4(t1, t2)
,

therefore we know (i) holds. To show (iii), we consider Rϕ(here ϕ is the Hopf iso-

morphism in Proposition 4.2.1). Since the proof of Proposition 4.1.2, we know Rϕ

satisfy lRϕ(f1)lRϕ(f2) = lRϕ(f1f2) and rRϕ(f1)rRϕ(f2) = rRϕ(f2f1) for f1, f2 ∈ (HG)∗,

i.e Rϕ such that the conditions of this Lemma. Denote the wi(1 ≤ i ≤ 4) of Rϕ

by w′i(1 ≤ i ≤ 4), then we have w′2(s, t) = w3(t / x, s) and w′4(t1, t2) = w4(t2, t1)

for s ∈ S and t1, t2 ∈ T by (4.2). But we have proved that (ii) holds, we get that

w′2(s, t) = τ(s, t1)
w′4(st1,t)
w′4(t1,t)

. And hence we know w3(t / x, s) = τ(s, t1)
w4(t,st1)
w4(t,t1)

and this

implies (iii). �

The following lemma gives a criterion for when R is a non-trivial quasitriangular

structure on kG#σ,τkZ2.

Lemma 5.1.3 The R is a quasitriangular structure on kG#σ,τkZ2 if and only if the

following equations hold

l(Eg)l(Eh) = l(EgEh), l(Xg)l(Xh) = l(XgXh), g, h ∈ G, (5.4)

r(Eg)r(Eh) = r(EhEg), r(Xg)r(Xh) = r(XhXg), g, h ∈ G, (5.5)

τ(t2, t1)w
4(t1 / x, t2 / x) = τ(t1 / x, t2 / x)w4(t1, t2), t1, t2 ∈ T. (5.6)

Proofµ Since the Lemma 2.2.1, Lemma 5.1.1 and the definition of quasitriangular

structures, we know that if R is a quasitriangular structure then it satisfies the above

equations (5.4)-(5.6). Conversely, suppose R such that equations (5.4)-(5.6), we will

first prove that l(f1)l(f2) = l(f1f2) and r(f1)r(f2) = r(f2f1) for f1, f2 ∈ (kG#σ,τkZ2)
∗.

For s ∈ S, t ∈ T , since

l(Es) =
∑
s′∈S

w1(s, s′)es′ , l(Et) =
∑
s′∈S

w3(t, s′)es′x
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and

l(Xs) =
∑
t′∈T

w2(s, t′)et′ , l(Xt) =
∑
t′∈T

w4(t, t′)et′x,

it can be seen that l(Eg)l(Xh) = l(EgXh) = 0 and l(Xg)l(Eh) = l(XgEh) = 0 for

g, h ∈ G. Because (kG#σ,τkZ2)
∗ is linear spanned by {Eg, Xg| g ∈ G}, we get that

l(f1)l(f2) = l(f1f2) for f1, f2 ∈ (kG#σ,τkZ2)
∗. Using a similar discussion, we will

know that r(f1)r(f2) = r(f2f1) for f1, f2 ∈ (kG#σ,τkZ2)
∗. Secondly, we will prove that

∆op(h)R = R∆(h) for h ∈ kG#σ,τkZ2. Owing to the Lemma 5.1.1, we only need to

prove that w2(s, t /x) = w2(s, t)η(s, t) and w3(t /x, s) = w3(t, s)η(t, s) for s ∈ S, t ∈ T .
Let t0 ∈ T , then we have the following equations by (ii) of Lemma 5.1.2

w2(s, t) = τ(s, t0)
w4(st0, t)

w4(t0, t)
, w2(s, t / x) = τ(s, t0 / x)

w4(st0 / x, t / x)

w4(t0 / x, t / x)
. (5.7)

Due to the assumption, we have

w4(st0 / x, t / x) =
τ(st0 / x, t / x)

τ(t, st0)
w4(st0, t) (5.8)

and

w4(t0 / x, t / x) =
τ(t0 / x, t / x)

τ(t, t0)
w4(t0, t). (5.9)

So w2(s, t / x) = w2(s, t) τ(s,t0/x)
τ(s,t0)

τ(st0/x,t/x)
τ(t,st0)

τ(t,t0)
τ(t0/x,t/x)

. Using τ is two cocycle, we get

τ(s, t0 / x)

τ(s, t0)

τ(st0 / x, t / x)

τ(t, st0)

τ(t, t0)

τ(t0 / x, t / x)
=
τ(s, t0t)τ(t0 / x, t / x)

τ(s, t0)τ(t, st0)

τ(t, t0)

τ(t0 / x, t / x)

=
τ(s, t0t)τ(t0 / x, t / x)

η(s, t0)τ(t0, s)τ(t, st0)

τ(t, t0)

τ(t0 / x, t / x)

=
τ(s, t0t)τ(t0 / x, t / x)

η(s, t0)τ(tt0, s)τ(t, t0)

τ(t, t0)

τ(t0 / x, t / x)

=
η(s, tt0)

η(s, t0)
= η(s, t).

Therefore w2(s, t/x) = w2(s, t)η(s, t). To show w3(t/x, s) = w3(t, s)η(t, s), we consider

Rϕ and denote the wi(1 ≤ i ≤ 4) of Rϕ by w′i(1 ≤ i ≤ 4), then we have w′2(s, t) =

w3(t/x, s) and w′4(t1, t2) = w4(t2, t1) for s ∈ S, t1, t2 ∈ T by (4.2). Owing to τ(t1/x, t2/
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x)τ(t1, t2) = τ(t2 / x, t1 / x)τ(t2, t1) = σ(t1t2)σ(t1)
−1σ(t2)

−1, then we have τ(t1/x,t2/x)
τ(t2,t1)

=
τ(t2/x,t1/x)
τ(t1,t2)

and hence it is easy to see that Rϕ also satisfies the conditions of this Lemma.

But we have showed that w′2(s, t / x) = w′2(s, t)η(s, t), so w3(t, s) = w3(t / x, s)η(s, t).

Since η(s, t)−1 = η(t, s), we know w3(t / x, s) = w3(t, s)η(t, s) and therefore we have

completed the proof. �

SinceHG is determined by the data (G, /, σ, τ), naturally we can guess that all non-

trivial quasitriagular structures on HG can be expressed by using the data (G, /, σ, τ).

To confirm this conjecture, we use the following propositions.

Proposition 5.1.4 If R is a universal R-matrix of HG, then

(i) τ(s, t1)
w4(st1,t)
w4(t1,t)

= τ(s, t2)
w4(st2,t)
w4(t2,t)

;

(ii) τ(s, t1)
w4(t,st1)
w4(t,t1)

= τ(s, t2)
w4(t,st2)
w4(t,t2)

;

(iii) w4(t, t1)w
4(t−1, t1 / x)σ(t1) = τ(t, t−1);

(iv) w4(t1, t)w
4(t1 / x, t

−1)σ(t1) = τ(t, t−1);

(v) w4(t1 / x, t2 / x) = τ(t1/x,t2/x)
τ(t2,t1)

w4(t1, t2);

where s ∈ S, t, t1, t2 ∈ T .

ProofµSince (ii) of Lemma 5.1.2, we know w2(s, t) = τ(s, t1)
w4(st1,t)
w4(t1,t)

= τ(s, t2)
w4(st2,t)
w4(t2,t)

for s ∈ S and t, t1 ∈ T . Therefore (i) holds. Similarly, we get (ii) due to (iii) of Lemma

5.1.2. Owing to R is a universal R-matrix, we have l(Xt)l(Xt−1) = l(XtXt−1). Then

we expand the equation as follows

l(Xt)l(Xt−1) = [
∑
t1∈T

w4(t, t1)et1x][
∑
t1∈T

w4(t−1, t1)et1x]

= [
∑
t1∈T

w4(t, t1)w
4(t, t1 / x)σ(t1)et1 ]

and

l(XtXt−1) = τ(t, t−1)l(X1) = τ(t, t−1)[
∑
t∈T

w2(1, t1)et1x] = [
∑
t∈T

τ(t, t−1)et1x],
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so we have (iii). Similarly, we get r(Xt)r(Xt−1) = r(Xt−1Xt). And if we expand this

equation then we get w4(t1, t)w
4(t1 / x, t

−1)σ(t1) = τ(t−1, t). But τ(t−1, t) = τ(t, t−1)

due to η(t, t−1) = 1, therefore we know (iv) holds. (v) is a conclusion of Lemma 5.1.3

and so we have completed the proof. �

In fact, given a function w : T×T → k× that satisfies the above conditions, we can

find a unique quasitriangular structure R that satisfies w4 = w. And we will show this

in Theorem 5.1.11. Because of this reason, we introduce the concept of quasitriangular

functions on HG.

Definition 5.1.5 A quasitriangular function on HG is a function w : T × T → k×

such that (i)-(v) in Proposition 5.1.4, i.e it satisfies the following condtions

(i) τ(s, t1)
w(st1,t)
w(t1,t)

= τ(s, t2)
w(st2,t)
w(t2,t)

;

(ii) τ(s, t1)
w(t,st1)
w(t,t1)

= τ(s, t2)
w(t,st2)
w(t,t2)

;

(iii) w(t, t1)w(t−1, t1 / x)σ(t1) = τ(t, t−1);

(iv) w(t1, t)w(t1 / x, t
−1)σ(t1) = τ(t, t−1);

(v) w(t1 / x, t2 / x) = τ(t1/x,t2/x)
τ(t2,t1)

w(t1, t2);

where s ∈ S, t, t1, t2 ∈ T .

It can be seen that the definition of quasitriangular functions is expressed by the

data (G, /, σ, τ). Furthermore, we will see that non-trivial quasitriangular structures

on HG are in one-one correspondence to quasitriangular functions on it in Corollary

5.1.12. Since we will often deal with the two maps lR, rR in the later sections, we give

the following lemmas about them

Lemma 5.1.6 Let R be the form (ii) in Proposition 3.1.5, then we have

(i) l(Es1)l(Es2) = l(Es1s2)⇔ w1(s1s2, s) = w1(s1, s)w
1(s2, s), s ∈ S;

(ii) l(Es)l(Et) = l(Est)⇔ w1(s, s′)w3(t, s′) = w3(st, s′), s′ ∈ S;

(iii) l(Xs1)l(Xs2) = l(Xs1Xs2)⇔ w2(s1, t)w
2(s2, t) = τ(s1, s2)w

2(s1s2, t), t ∈ T ;

(iv) l(Xs)l(Xt) = l(XsXt)⇔ w2(s, t′)w4(t, t′) = τ(s, t)w4(st, t′), t′ ∈ T ;
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where s, s1, s2 ∈ S and t, t1, t2 ∈ T .

ProofµWe only show (i) and the other things can be proved in a similar way. Since

l(Es1)l(Es2) = [
∑
s∈S

w1(s1, s)es][
∑
s∈S

w1(s2, s)es] =
∑
s∈S

w1(s1, s)w
1(s2, s)es

and

l(Es1s2) =
∑
s∈S

w1(s1s2, s)es,

we know (i) holds. �

Lemma 5.1.7 Let R be the form (ii) in Proposition 3.1.5, then we have

(i) r(Es1)r(Es2) = r(Es1s2)⇔ w1(s, s1s2) = w1(s, s1)w
1(s, s2), s ∈ S;

(ii) r(Es)r(Et) = r(Est)⇔ w1(s′, s)w2(s′, t) = w2(s′, st), s′ ∈ S;

(iii) r(Xs1)r(Xs2) = r(Xs2Xs1)⇔ w3(t, s1)w
3(t, s2) = τ(s2, s1)w

3(t, s1s2), t ∈ T ;

(iv) r(Xt)r(Xs) = r(XsXt)⇔ w3(t′ / x, s)w4(t′, t) = τ(s, t)w4(t′, st), t′ ∈ T ;

where s, s1, s2 ∈ S and t, t1, t2 ∈ T .

ProofµSimilar to the proof of Lemma 5.1.6 above. �

Lemma 5.1.8 Let R be the form (ii) in Proposition 3.1.5, and if w4 is a quasitrian-

gular function on HG and wi(1 ≤ i ≤ 3) are given in Lemma 5.1.2, then l(Xg)l(Xh) =

l(XgXh), g, h ∈ G.

Proofµ Since w2(s, t) = τ(s, t1)
w4(st1,t)
w4(t1,t)

for t1 ∈ T by assumption and (iv) of the

Lemma 5.1.6, we have l(Xs)l(Xt1) = l(XsXt1). Similarly, if we repeat part of the

proof in Proposition 5.1.4, then we will get that l(Xt)l(Xt−1) = l(XtXt−1) is equivalent

to w4(t, t1)w
4(t−1, t1 / x)σ(t1) = τ(t, t−1) for t1 ∈ T . But we have assumed that

w4(t, t1)w
4(t−1, t1 / x)σ(t1) = τ(t, t−1) for t1 ∈ T , therefore we have l(Xt)l(Xt−1) =
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l(XtXt−1). To show l(Xg)l(Xh) = l(XgXh) for g, h ∈ G, we only need to show the

following equations hold

l(Xt1)l(Xt2) = l(Xt1Xt2), l(Xt1)l(Xs) = l(Xt1Xs), l(Xs1)l(Xs2) = l(Xs1Xs2),

where s, s1, s2 ∈ S and t1, t2 ∈ T . Since |S| = |T | and T = T−1, where T−1 := {t−1| t ∈
T}, we can assume t1 = st and t2 = t−1, then we have

l(Xt1)l(Xt2) = l(Xst)l(Xt−1) = [τ(s, t)−1l(Xs)l(Xt)]l(Xt−1)

= τ(s, t)−1l(Xs)[l(Xt)l(Xt−1)] = τ(s, t)−1l(Xs)l(XtXt−1)

= τ(s, t)−1l(Xs)[τ(t, t−1)l(X1)] = τ(s, t)−1τ(t, t−1)l(Xs).

It can be seen that XstXt−1 = τ(s, t)−1τ(t, t−1)Xs by using the τ is a 2-cocycle, and

hence l(Xt1)l(Xt2) = l(Xt1Xt2). For s ∈ S, we can find t, t′ such that s = tt′ due to

|S| = |T |. Because t1t ∈ S by definition, we have

l(Xt1)l(Xs) = l(Xt1)l(Xtt′) = l(Xt1)[τ(t, t′)−1l(Xt)l(Xt′)]

= τ(t, t′)−1[l(Xt1)l(Xt)]l(Xt′) = τ(t, t′)−1l(Xt1Xt)l(Xt′)

= τ(t, t′)−1τ(t1, t)l(Xt1t)l(Xt′) = τ(t, t′)−1τ(t1, t)l(Xt1tXt′).

Similarly, one can show Xt1Xtt′ = τ(t, t′)−1τ(t1, t)Xt1tXt′ and hence l(Xt1)l(Xs) =

l(Xt1Xs). To show l(Xs1)l(Xs2) = l(Xs1Xs2) for s1, s2 ∈ S, we assume that s2 = tt′ for

some t, t′ ∈ T . Then we have

l(Xs1)l(Xs2) = l(Xs1)l(Xtt′) = l(Xs1)[τ(t, t′)−1l(Xt)l(Xt′)]

= τ(t, t′)−1[l(Xs1)l(Xt)]l(Xt′) = τ(t, t′)−1l(Xs1Xt)l(Xt′)

= τ(t, t′)−1τ(s1, t)l(Xs1t)l(Xt′) = τ(t, t′)−1τ(s1, t)l(Xs1tXt′).

One can check that Xs1Xs2 = τ(t, t′)−1τ(s1, t)Xs1tXt′ , so l(Xs1)l(Xs2) = l(Xs1Xs2).

Therefore we have completed the proof. �

Lemma 5.1.9 Let R be in Lemma 5.1.8, then we have l(Eg)l(Eh) = l(EgEh) for

g, h ∈ G.
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ProofµWe mimic the proof of above Lemma 5.1.8. Let s ∈ S, t ∈ T , then we have

l(Es)l(Et) = [
∑
s′∈S

w1(s, s′)es′ ][
∑
s′∈S

w3(t, s′)es′x] = [
∑
s′∈S

w1(s, s′)w3(t, s′)es′x] (5.10)

and

l(EsEt) = l(Est) = [
∑
s′∈S

w3(st, s′)es′x]. (5.11)

therefore we need to show w1(s, s′)w3(t, s′) = w3(st, s′) for s′ ∈ S if we want to prove

l(Es)l(Et) = l(EsEt). Let t1 := t /x and taking t2 ∈ T , since we have assumed w3 such

that (iii) of Lemma 5.1.2, we have

w3(t, s′) = τ(s′, t2)
w4(t1, s

′t2)

w4(t1, t2)
, w3(st, s′) = τ(s′, t2)

w4(st1, s
′t2)

w4(st1, t2)
.

And hence w3(st,s′)
w3(t,s′)

= w4(st1,s′t2)w4(t1,t2)
w4(st1,t2)w4(t1,s′t2)

. Because w1 satisfy the (i) of Lemma 5.1.2, we

know w3(st,s′)
w3(t,s′)

= w1(s, s′) and thus we get l(Es)l(Et) = l(EsEt). Then we prove that

l(Et)l(Et−1) = l(E1). Since

l(Et)l(Et−1) = [
∑
s′∈S

w3(t, s′)es′x][
∑
s′∈S

w3(t−1, s′)es′x]

= [
∑
s′∈S

w3(t, s′)w3(t−1, s′)σ(s′)es′ ]

and

w3(t, s′)w3(t−1, s′) = [τ(s′, t1)
w4(t / x, s′t1)

w4(t / x, t1)
][τ(s′, t1 / x)

w4(t−1 / x, s′t1 / x)

w4(t−1 / x, t1 / x)
]

= τ(s′, t1)τ(s′, t1 / x)
w4(t / x, s′t1)w

4(t−1 / x, s′t1 / x)

w4(t / x, t1)w4(t−1 / x, t1 / x)

= τ(s′, t1)τ(s′, t1 / x)
τ(t / x, t−1 / x)σ(t1 / x)

τ(t / x, t−1 / x)σ(s′t1 / x)

= τ(s′, t1)τ(s′, t1 / x)σ(t1 / x)
1

σ(s′t1 / x)
= σ(s′)−1.

The first equality follows from the assumption about w3, and the third one follows

from Relation (iii) in Proposition 5.1.4 and the last one follows from the compati-

bility of σ and τ . Thus we have showed w3(t, s′)w3(t−1, s′)σ(s′) = 1, and this im-
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plies l(Et)l(Et−1) = l(E1). Because we have proved that l(Es)l(Et) = l(EsEt) and

l(Et)l(Et−1) = l(E1) for s ∈ S, t ∈ T , if we repeat the proof of Lemma 5.1.8 then we

can obtain l(Eg)l(Eh) = l(EgEh), g, h ∈ G. �

Lemma 5.1.10 Let R be in Lemma 5.1.8, then rR is an algebra anti-homomorphism.

ProofµIf we consider Rϕ then it is easy to see that Rϕ also satisfies the conditions of

Lemma 5.1.8, so we can apply Lemma 5.1.8-5.1.9 to Rϕ, i.e we know lRϕ is an algebra

map. Since we have showed lRϕ = ϕ ◦ rR ◦ϕ∗, then lRϕ is an algebra map implies rR is

antihomomorphism. �

Now we prove the inverse of Proposition 5.1.4 above also holds.

Theorem 5.1.11 Assume w is a quasitriangular function on HG, then there is a u-

nique R such that it is a non-trivial quasitriangular structure on HG and the w4 of it

is equal to the w.

ProofµUniqueness can be obtained directly from Lemma 5.1.2. To show the existence,

we will use the w to construct a non-trivial quasitriangular structure. We define wi(1 ≤
i ≤ 4) of R through letting w4 := w and let wi(1 ≤ i ≤ 3) be given by (i)-(iii) of Lemma

5.1.2. Since w is a quasitriangular function, we know w2 and w3 are well defined. By

direct calculation we can get w1(s1, s2) = w2(s1,s2t2)
w2(s1,t2)

for t2 ∈ T , so w1 is also well-

defined. Owing to Lemma 5.1.8-5.1.10, we know R such that the equations (5.4), (5.5)

in Lemma 5.1.3. Furthermore, the R satisfies the equation (5.6) of Lemma 5.1.3 by the

definition of quasitriangular function, so R is a non-trivial quasitriangular structure on

HG due to Lemma 5.1.3. �

Corollary 5.1.12 There is a bijective map between the set of non-trivial quasitrian-

gular structures on HG and the set of quasitriangular functions on HG.

Proofµ Denote the set of non-trivial quasitriangular structures on HG as N and we

write the set of quasitriangular functions on HG as F , then we can define a map

φ : N → F by φ(R) := w4. Since Proposition 5.1.4, we know φ is well defined. Owing

to Theorem 5.1.11, we get φ is bijective. �
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§5.2 The criterion of a quasitriangular function

In this section, we mainly discuss how to know a function is a quasitriangular

function, and give the criterion of a quasitriangular function.

Given a function w : T × T → k× and taking t0 ∈ T , then we can define functions

w2 : S × T → k× and w3 : T × S → k× as follows

w2(s, t) := τ(s, t0)
w4(st0, t)

w4(t0, t)
, w3(t, s) := τ(s, t0)

w4(t / x, st0)

w4(t / x, t0)
, s ∈ S, t ∈ T. (5.12)

Let VG be the subspace of (HG)∗ which is linear spanned by {Xg| g ∈ G}, then we can

define lw : VG → HG and rw : VG → HG through letting

lw(Xs) :=
∑
t′∈T

w2(s, t′)et′ , lw(Xt) :=
∑
t′∈T

w(t, t′)et′x, (5.13)

rw(Xs) :=
∑
t′∈T

w3(t′, s)et′ , rw(Xt) :=
∑
t′∈T

w(t′, t)et′x. (5.14)

It can be seen that VG is a subalgebra of (HG)∗. In order to determine when the

function w is a quasitriangular function on (HG)∗, we give the following propositions

Proposition 5.2.1 The function w satisfies (i)-(iv) in Definition 5.1.5 if and only if

lw is an algebra homomorphism and rw is an algebra anti-homomorphism.

Proofµ If w such that (i)-(iv) in Definition 5.1.5 then we can repeat the proof of

Lemma 5.1.8, and hence we know lw is an algebra homomorphism and rw is an algebra

antihomomorphism. On the contrary, if lw is an algebra homomorphism and rw is an

algebra antihomomorphism then we have the following equations

l(Xs)l(Xt1) = l(XsXt1), l(Xt)l(Xt−1) = l(XtXt−1),

r(Xs)r(Xt1) = r(Xt1Xs), r(Xt)r(Xt−1) = r(Xt−1Xt).

Expand these equations above, then we know that w such that (i)-(iv) in Definition

5.1.5. �
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Proposition 5.2.1 above will often be used to solve quasitriangular functions on

HG in the following sections. Given a function w : T × T → k× and taking t0 ∈ T , we
have defined w2, w3 through the equalities (5.12). Furthermore, we can define another

function w1 : S × S → k× as follows

w1(s1, s2) =
w4(s1t0, s2t0)w

4(t0, t0)

w4(s1t0, t0)w4(t0, s2t0)
, s1, s2 ∈ S. (5.15)

Then we have the following proposition

Proposition 5.2.2 Taking t0 ∈ T and if w such that (i)-(iv) in Definition 5.1.5, then

w is a quasitriangular function on HG if and only if the following equations hold

(i) w1(s, b) = w1(b, s) = η(t0, s), here w1 is given by the (5.15) above;

(ii) w(t0 / x, t0 / x) = τ(t0/x,t0/x)
τ(t0,t0)

w(t0, t0);

ProofµIf w is a quasitriangular function on HG, then we only need to show (i). Since

w is a quasitriangular function on HG, we can find a unique R ∈ HG ⊗HG such that

R is a non-trivial quasitriangular structure on HG and the w4 of it is equal to the w

by Theorem 5.1.11. Since Lemma 5.1.2, we know the wi(1 ≤ i ≤ 3) of R are given by

the equations (5.12), (5.15). Owing to Lemma 5.1.1, we have

w2(s, t / x) = w2(s, t)η(s, t), w3(t / x, s) = w3(t, s)η(t, s), (5.16)

where s ∈ S, t ∈ T . Owing to (ii) of Lemma 5.1.6, we get w3(bt, s) = w1(b, s)w3(t, s).

But bt = t/x because of the Remark 3.2.7, we know w3(t/x, s) = w1(b, s)w3(t, s). Since

w3(t/x, s) = w3(t, s)η(t, s) by (5.16), we get w1(b, s) = η(t, s). Due to η is a bicharacter

and the Remark 3.2.7, we know η(t, s) = η(t0, s) and hence w1(b, s) = η(t0, s). Similar-

ly, we can show w1(s, b) = η(t0, s) and thus we have shown (i). Conversely, if w satisfies

(i), (ii), then we can construct a R ∈ HG⊗HG such that w4 = w and the wi(1 ≤ i ≤ 3)

of it are given by the equations (5.12), (5.15). To show w is a quasitriangular function,

we need only to prove that w(t1 / x, t2 / x) = τ(t1/x,t2/x)
τ(t2,t1)

w(t1, t2) for t1, t2 ∈ T . Repeat-
ing the proofs of Lemmas 5.1.8-5.1.10, then we know lR is an algebra homomorphism

and rR is an algebra anti-homomorphism. So we have lR(Eb)lR(Et) = lR(Ebt) and

rR(Eb)rR(Et) = rR(Ebt) for t ∈ T . But we have already seen that these two equalities
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implies that w3(t / x, s) = w1(b, s)w3(t, s) and w2(s, t / x) = w1(s, b)w2(s, t). Because

of (i), we get

w2(s, t / x) = w2(s, t)η(s, t), w3(t / x, s) = w3(t, s)η(t, s). (5.17)

Since w2, w3 are given by the equations (5.12), one can get

w4(s1t0, s2t0) = τ(s1, t0)
−1w2(s1, s2t0)w

4(t0, s2t0) (5.18)

and

w4(t0, s2t0) = τ(s2, t0)
−1w4(t0, t0)w

3(t0 / x, s2), (5.19)

where s1, s2 ∈ S. Using equations (5.18) and (5.19) together, then we get

w4(s1t0, s2t0) =
w2(s1, s2t0)w

3(t0 / x, s2)w
4(t0, t0)

τ(s1, t0)τ(s2, t0)
. (5.20)

Similarly, one can get

w4(s1t0 / x, s2t0 / x) =
w2(s1, s2t0 / x)w3(t0, s2)w

4(t0 / x, t0 / x)

τ(s1, t0 / x)τ(s2, t0 / x)
. (5.21)

Combining the equations (5.17), (5.20), (5.21), we obtain

w4(s1t0 / x, s2t0 / x)

w4(s1t0, s2t0)
= η(s1, s2t0)

1

η(t0, s2)

w4(t0 / x, t0 / x)

w4(t0, t0)

τ(s1, t0)τ(s2, t0)

τ(s1, t0 / x)τ(s2, t0 / x)

= η(s1, s2t0)
1

η(t0, s2)

τ(t0 / x, t0 / x)

τ(t0, t0)

τ(s1, t0)τ(s2, t0)

τ(s1, t0 / x)τ(s2, t0 / x)
.

Using the following Lemma 5.2.3, we obtain w4(s1t0/x,s2t0/x)
w4(s1t0,s2t0)

= τ(s1t0/x,s2t0/x)
τ(s2t0,s1t0)

. Since

T = t0S, we know w(t1 / x, t2 / x) = τ(t1/x,t2/x)
τ(t2,t1)

w(t1, t2) for t1, t2 ∈ T . �

Proposition 5.2.2 above simplifies the test for the condition (v) in Definition 5.1.5,

so it will be used frequently in next sections. The following lemma is used in the proof

of Proposition 5.2.2 above.

Lemma 5.2.3 η(s1, s2t0)
1

η(t0,s2)
τ(t0/x,t0/x)
τ(t0,t0)

τ(s1,t0)τ(s2,t0)
τ(s1,t0/x)τ(s2,t0/x)

= τ(s1t0/x,s2t0/x)
τ(s2t0,s1t0)

.
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ProofµDirectly we have

Xs1Xs2Xt0Xt0 = Xs1(Xs2Xt0)Xt0

= η(s2, t0)Xs1(Xt0Xs2)Xt0

= η(s2, t0)(Xs1Xt0)(Xs2Xt0)

= η(s2, t0)[τ(s1, t0)Xs1t0 ][τ(s2, t0)Xs2t0 ]

= η(s2, t0)τ(s1, t0)τ(s2, t0)Xs1t0Xs2t0

= η(s2, t0)τ(s1, t0)τ(s2, t0)τ(s1t0, s2t0)Xs1s2t20

and

Xs1Xs2Xt0Xt0 = Xs1Xs2(Xt0Xt0)

= Xs1Xs2 [
τ(t0, t0)

τ(t0 / x, t0 / x)
Xt0/xXt0/x]

=
τ(t0, t0)

τ(t0 / x, t0 / x)
Xs1(Xs2Xt0/x)Xt0/x

=
τ(t0, t0)

τ(t0 / x, t0 / x)
Xs1 [η(s2, t0 / x)Xt0/xXs2 ]Xt0/x

= η(s2, t0 / x)
τ(t0, t0)

τ(t0 / x, t0 / x)
(Xs1Xt0/x)(Xs2Xt0/x)

= η(s2, t0 / x)
τ(t0, t0)

τ(t0 / x, t0 / x)
τ(s1, t0 / x)τ(s2, t0 / x)Xs1t0/xXs2t0/x.

Because Xs1t0/xXs2t0/x = τ(s1t0 / x, s2t0 / x)Xs1s2t20
, we know

η(s1t0, s2t0)

η(s2, t0 / x)
η(s2, t0)

τ(t0 / x, t0 / x)

τ(t0, t0)

τ(s1, t0)τ(s2, t0)

τ(s1, t0 / x)τ(s2, t0 / x)
=
τ(s1t0 / x, s2t0 / x)

τ(s2t0, s1t0)
.

To complete the proof, we only need to show η(s2, t0) = η(t0, s2)
−1 and η(s1t0,s2t0)

η(s2,t0/x)
=

η(s1, s2t0). By the definition of η, we have η(s2, t0) = η(t0, s2)
−1. Since

η(s1t0, s2t0)

η(s2, t0 / x)
=
η(s1, s2t0)η(t0, s2t0)

η(s2, t0 / x)
=
η(s1, s2t0)η(t0, s2)

η(s2, t0 / x)

= η(s1, s2t0)η(t0, s2)η(t0 / x, s2) = η(s1, s2t0)η(t0t0 / x, s2)

= η(s1, s2t0),
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the last equality follows from the assumption about HG in Remark 3.2.7, we know
η(s1t0,s2t0)
η(s2,t0/x)

= η(s1, s2t0). �
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Chapter 6 Solutions of quasitriangular structures

on kG#σ,τkZ2

In this chapter, we analogize the problem of solving a system of linear equations

and naturally reduce the problem of solving quasitriangular structures on kG#σ,τkZ2

to the problem of solving all general solutions as well as giving a special solution for it.

After that we give all general solutions for kG#σ,τkZ2 and get a necessary and sufficient

condition for the existence of a special solution for kG#σ,τkZ2.

§6.1 General solutions for quasitriangular structures on

kG#σ,τkZ2

In this section, we introduce the concepts of general solution and special solution of

non-trivial quasitriangular structures on kG#σ,τkZ2. Then we give all general solutions

for kG#σ,τkZ2.

Let R,R′ be non-trivial quastriangular structures on kG#σ,τkZ2 and assume that

the four maps associated with R (resp. R′) are wi(1 ≤ i ≤ 4) (resp. w′i(1 ≤ i ≤ 4)),

then we can use these maps to define four other maps vi(1 ≤ i ≤ 4) as follows

v1(s1, s2) :=
w1(s1, s2)

w′1(s1, s2)
, v2(s, t) :=

w2(s, t)

w′2(s, t)

v3(t, s) :=
w3(t, s)

w′3(t, s)
, v4(t1, t2) :=

w4(t1, t2)

w′4(t1, t2)
,

where s, s1, s2 ∈ S and t, t1, t2 ∈ T . Using the data (G, /, σ, τ) of kG#σ,τkZ2 we

can induce another data (G′, /′, σ′, τ ′) by making G′ := G, /′ := / and σ′(g) :=

1, τ ′(g, h) := 1 for g, h ∈ G. Then the data (G′, /′, σ′, τ ′) determines a Hopf algebra

by Definition 2.1.2 and we simply denote it as kG#kZ2. Then we have

Proposition 6.1.1 Let R′′ be the form (ii) in Proposition 3.1.5 and the (w′′)i(1 ≤ i ≤
4) of it are the vi(1 ≤ i ≤ 4) above, then R′′ is a quasitriangular structure on kG#kZ2.

ProofµSince R,R′ are non-trivial quasitriangular structures on kG#σ,τkZ2, we know

w4, w′4 are quasitriangular functions on kG#σ,τkZ2. Then we can easily check that v4
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is a quasitriangular function on kG#kZ2. And furthermore, vi(1 ≤ i ≤ 3) are given as

follows because of Lemma 5.1.2

v1(s1, s2) =
v4(s1t1, s2t2)v

4(t1, t2)

v4(s1t1, t2)v4(t1, s2t2)
, v2(s, t) =

v4(st1, t)

v4(t1, t)
, v3(t, s) =

v4(t / x, st1)

v4(t / x, t1)
.

Therefore we know R′′ is a quasitriangular structure on kG#kZ2 due to the proof of

Theorem 5.1.11. �

We can view R′′ as R
R′

and then we can analogize the solutions of a system of linear

equations and give the following definition

Definition 6.1.2 We call a quasitriangular structure on kG#kZ2 as a general solu-

tion for kG#σ,τkZ2. Naturally, we call a quasitriangular structure on kG#σ,τkZ2 as a

special solution for kG#σ,τkZ2.

Then the problem of solving all quasitriangular structures on kG#σ,τkZ2 can be reduced

to solving all general solutions and finding a special solution. And we will give all

general solutions in this subsection. To do this, we first give the following lemma

Lemma 6.1.3 Assume that H is a finite abelian group and φ : H → H is a group

isomorphism. Let SH := {h ∈ H| φ(h) = h} and let TH := {h ∈ H| φ(h) 6= h}. If

|SH | = |TH | and there is c ∈ H such that c2 = 1 and φ(h) = hc for h ∈ TH , then there

are s1, ..., sn ∈ SH and a ∈ TH such that H = 〈si, a| skii = 1, a2 = sm1
1 ...smn

n , sisj =

sjsi, asi = sia〉1≤i,j≤n as group for some natural numbers n, ki,mj.

Proofµ Since SH is a subgroup of H, we can find s1...sm ∈ SH such that SH =

〈si| skii = 1, sisj = sjsi〉1≤i,j≤n for some natural numbers ki(1 ≤ i ≤ n). Because TH
is not empty, we can find a ∈ TH . But a2 ∈ SH due to φ(a2) = (ac)2 = a2, so we can

assume a2 = sm1
1 ...smn

n for some natural numbers mi(1 ≤ i ≤ n). Let H ′ be a group

such that H ′ = 〈Si, A| Skii = 1, A2 = Sm1
1 ...Smn

n , SiSj = SjSi, ASi = SiA〉1≤i,j≤n as

group, then we will prove that H ∼= H ′ as group and hence we completed the proof.

We define a group homomorphism f : H ′ → H through letting f(Si) := si, f(A) := a

for 1 ≤ i ≤ n, then f is well defined by the definition of H ′. Owing to aSH ⊆ TH

and |SH | = |TH |, we obtain TH = aSH . Thus we can see that f is surjective. To

show f is injective, we only need to show |H ′| ≤ |H|. Let SH′ := 〈Si〉1≤i≤n, then
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f |SH′
: SH′ → SH is onto by definition and hence |SH′ | ≥ |SH |. But |SH′ | ≤ |SH | by

definition of H ′, so we know |SH′| = |SH |. Directly, we have H ′ = SH′ ∪ ASH′ and
therefore |H ′| ≤ 2|SH′ |. Since |H| = 2|SH | and |SH′ | = |SH |, we have |H ′| ≤ |H|. �

Corollary 6.1.4 For the data (G, /, σ, τ), there are s1, ..., sn ∈ S and a ∈ T such that

G ∼= 〈si, a| skii = 1, a2 = sm1
1 ...smn

n , sisj = sjsi, asi = sia〉1≤i,j≤n as group for some

natural numbers n, ki,mj.

ProofµSince the assumption about kG#σ,τkZ2 in Remark 3.2.7 and the Lemma 6.1.3

above, we get what we want. �

Since Corollary 6.1.4 above, we agree thatG = 〈si, a| skii = 1, a2 = sm1
1 ...smn

n , sisj =

sjsi, asi = sia〉1≤i,j≤n as group for some natural numbers n, ki,mj in the following con-

tent, where si ∈ S, a ∈ T for 1 ≤ i ≤ n. Let kG#σ,τkZ2 as before, we associate

a free object with it as follows. We define FG as a free k algebra generated by set

{xsi , xa, x1, esi , ea, e1}1≤i≤n, and let IG be the ideal generated by {xsix1 − xsi , x1xsi −
xsi , xsixsj − xsjxsi , xsixa − η(si, a)xaxsi , x

ki
si
− P

s
ki
i
x1, x

2
a − τ(a, a)P−1

s
m1
1 ...smn

n
xm1
s1
...xmn

sn }
∪{x1e1, e1x1, esie1 − esi , e1esi − esi , esiesj − esjesi , esiea − eaesi , ekisi − e1, e

2
a − em1

s1
...emn

sn },
where 1 ≤ i, j ≤ n and P

g
j1
1 ...gjnn

∈ k is defined by the following equation

Xj1
g1
...Xjn

gn = P
g
j1
1 ...gjnn

X
g
j1
1 ...gjnn

, g1, ..., gn ∈ G, j1, ..., jn ∈ N. (6.1)

For convenience, we agree that P
g
j1
1 ...gjnn

in the following content refers to the

P
g
j1
1 ...gjnn

in equation (6.1) above. Then we have the following lemma.

Lemma 6.1.5 Denote the dual Hopf algebra of kG#σ,τkZ2 by H∗, then H∗ ∼= AG/IG

as an algebra.

ProofµWe define an algebra map π : AG/IG → H∗ by setting

π(xsi) = Xsi , π(xa) = Xa, π(x1) = X1, π(esi) = Esi , π(ea) = Ea, π(e1) = E1.

Then we will show that π is well defined and it is bijective. Since Lemma 3.1.1 and

the definition of IG, we know π is well defined. Next we show π is bijective. Because

{Xsi , Xa, Esi , Ea} ⊆ Imπ, we know π is surjective. Owing to the definition of IG, we
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obtain dim(AG/IG) ≤ dim(H∗). But we have shown π is surjective, so dim(AG/IG) =

dim(H∗) and hence π is bijective. �

Let R be the form (ii) on kG#σ,τkZ2 in Proposition 3.1.5. For our purposes, we

assume that wi(1 ≤ i ≤ 4) of R satisfy w1(1, s) = w1(s, 1) = 1 and w2(1, t) = w3(t, 1)

for s ∈ S, t ∈ T in the following content. Then we have

Lemma 6.1.6 The map lR is an algebra homomorphism if and only if the following

conditions hold

(i) l(Es1)i1 ...l(Esn)in = l(E
s
i1
1 ...s

in
n

), l(Xs1)
i1 ...l(Xsn)in = P

s
i1
1 ...s

in
n
l(X

s
i1
1 ...s

in
n

);

(ii) l(Es)l(Ea) = l(Esa), l(Xs)l(Xa) = τ(s, a)l(Xsa);

(iii) l(Esi)ki = l(E1), l(Xsi)
ki = Psiki l(X1);

(v) l(Ea)2 = l(Esm1
1 ...smn

1
), l(Xa)

2 = Pa2 l(Xs
m1
1 ...smn

1
);

(vi) w2(s, t / x) = η(s, t)w2(s, t);

where s ∈ S, 1 ≤ i ≤ n.

ProofµWe define an algebra map π : H∗ → H by setting

π(Xsi) = l(Xsi), π(Xa) = l(Xa), π(X1) = l(X1),

π(Esi) = l(Esi), π(Ea) = l(Ea), π(E1) = l(E1).

Then we will show that π is well defined and π = lR. To show π is well defined, the

only non-trivial case is to prove that π(Xs)π(Xa) = η(s, a)l(Xa)l(Xs). Directly we

have π(Xs)π(Xa) = l(Xs)l(Xa) and

l(Xs)l(Xa) = [
∑
t∈T

w2(s, t)et][
∑
t∈T

w4(a, t)etx] = [
∑
t∈T

w2(s, t)w4(a, t)etx].

Similarly, we get π(Xa)π(Xs) = l(Xa)l(Xs) and

l(Xa)l(Xs) = [
∑
t∈T

w4(a, t)etx][
∑
t∈T

w2(s, t)et] = [
∑
t∈T

w2(s, t / x)w4(a, t)etx].
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Owing to (v), we obtain π(Xs)π(Xa) = η(s, a)l(Xa)l(Xs). Due to (i),(ii), we get π = lR

and thus we have completed the proof. �

Similar to Lemma 6.1.6, we have

Lemma 6.1.7 The map rR is an algebra anti-homomorphism if and only if the follow-

ing conditions hold

(i) r(Es1)i1 ...r(Esn)in = r(E
s
i1
1 ...s

in
n

), r(Xs1)
i1 ...r(Xsn)in = P

s
i1
1 ...s

in
n
r(X

s
i1
1 ...s

in
n

);

(ii) r(Es)r(Ea) = r(Esa), r(Xa)r(Xs) = τ(s, a)r(Xsa);

(iii) r(Esi)ki = r(E1), r(Xsi)
ki = Psiki r(X1), r(Xa)

2 = Pa2 r(Xs
m1
1 ...smn

1
);

(iv) r(Ea)2 = r(Esm1
1 ...smn

1
), r(Xa)

2 = Pa2 r(Xs
m1
1 ...smn

1
);

(v) w3(t / x, s) = η(t, s)w3(t, s);

where s ∈ S, 1 ≤ i ≤ n.

Proofµ Consider the Rϕ, then it can be seen that Rϕ such that the conditions of

Lemma 6.1.6 and so lRϕ is an algebra map. Since the proof of Proposition 4.1.2, we

know lRϕ is an algebra map if and only if rR is an algebra anti-homomorphism and

hence we have completed the proof. �

The following proposition can be used to determine when R is a quasitriangular

structure on kG#σ,τkZ2.

Proposition 6.1.8 Let R be the form (ii) on kG#σ,τkZ2 in Proposition 3.1.5, then R

is a quasitriangular structure on kG#σ,τkZ2 if and only if R such that the conditions

of Lemma 6.1.6, Lemma 6.1.7 and w4(ab, ab) = τ(ab,ab)
τ(a,a)

w4(a, a).

Proofµ If R is a quasitriangular structure on kG#σ,τkZ2, Since lR is an algebra ho-

momorphism and rR is an algebra anti-homomorphism and thus R such that the con-

ditions of Lemma 6.1.6, Lemma 6.1.7. Owing to Lemma 5.1.1, we get w4(ab, ab) =
τ(ab,ab)
τ(a,a)

w4(a, a). Conversely, if R such that the conditions of Lemma 6.1.6, Lemma 6.1.7

and w4(ab, ab) = τ(ab,ab)
τ(a,a)

w4(a, a), then lR is an algebra homomorphism and rR is an

algebra anti-homomorphism. Therefore w4 satisfies (i)-(iv) in Definition 5.1.5 due to
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Proposition 5.2.1. Then we will use Proposition 5.2.2 to get what we want. To do

this, we only need to show w1(s, b) = w1(b, s) = η(a, s). Because lR is an algebra map

and (ii) of Lemma 5.1.7, we get w2(s, ab) = w2(s, a)w1(s, b). Owing to Lemma 6.1.6,

we obtain w2(s, a / x) = w2(s, a)η(s, a). But a / x = ab by assumption, so we have

w1(s, b) = η(s, a). Due to η(s,a)
η(a,s)

= η(s, a2) and a2 ∈ S, we know η(s, a) = η(a, s) and

hence w1(s, b) = η(a, s). Similarly, one can show w1(b, s) = η(a, s) and so we have

completed the proof. �

In practice, we usually use the following corollary to determine when R is a qua-

sitriangular structure on kG#σ,τkZ2 because it’s easier to be checked.

Corollary 6.1.9 Let R be the form (ii) on kG#σ,τkZ2 in Proposition 3.1.5, then R

is a quasitriangular structure on kG#σ,τkZ2 if and only if R such that the following

conditions

(i) R satisfies (i)-(iv) of Lemma 6.1.6;

(ii) R satisfies (i)-(iv) of Lemma 6.1.7;

(iii) w1(b, s) = w1(s, b) = η(a, s), s ∈ S;

(iv) w4(ab, ab) = τ(ab,ab)
τ(a,a)

w4(a, a);

ProofµSince the proof of Proposition 6.1.8, we know that necessity holds. Conversely,

owing to Proposition 6.1.8 above, we only need to show w2(s, t / x) = η(s, t)w2(s, t)

and w3(t/x, s) = η(t, s)w3(t, s) for s ∈ S, t ∈ T . Since (i),(ii) of Lemma 6.1.7, we know

R satisfies (ii) of Lemma 5.1.7. Then we get w2(s, tb) = w2(s, t)w1(s, b). But we have

w1(s, b) = η(a, s), so w2(s, tb) = w2(s, t)η(a, s) by Lemma 5.1.7. Due to η(a,s)
η(s,t)

= η(at, s)

and at ∈ S, we get η(a,s)
η(s,t)

= 1 and hence w2(s, t / x) = η(s, t)w2(s, t). Similarly, one can

prove that w3(t / x, s) = η(t, s)w3(t, s) and thus we have completed the proof. �

For the convenience of calculation, we assume b = sp11 ...s
pn
n for some natural num-

bers p1, ..., pn in the following sections. Then all general solutions for kG#σ,τkZ2 will

be given by the following Theorems 6.1.13-6.1.14.
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Proposition 6.1.10 Let R be a general solution for kG#σ,τkZ2, that is to say R is a

non-trivial quasitriangular structure on kG#kZ2, and if we denote

αij := w1(si, sj), βi := w2(si, a), γi := w3(a, si), δ := w4(a, a),

then the following equations hold

(i) αkiij = α
kj
ij = 1, 1 ≤ i, j ≤ n;

(ii) βkii = 1, β2
i = αm1

i1 ...α
mn
in , 1 ≤ i ≤ n;

(iii) γkii = 1, γ2i = αm1
1i ...α

mn
ni , 1 ≤ i ≤ n;

(iv) δ2 = βm1+p1
1 ...βmn+pn

n = γm1+p1
1 ...γmn+pn

n ;

(v) αp11i ...α
pn
ni = αp1i1 ...α

pn
in = 1, βp11 ...β

pn
n = γp11 ...γ

pn
n ;

Proofµ Using (i) of Lemma 5.1.6 and (i) of Lemma 5.1.7, we know that w1 is a

bicharacter on S. Then we have w1(si, sj)
ki = w1(si, sj)

kj = 1 and so (i) holds. To

show (ii), we note that l(Xsi)
ki = l(X1) and r(Ea)2 = r(Esm1

1 ...smn
n

) and if we use (iii)

of Lemma 5.1.6, we get w2(si, a)ki = 1 through letting t = a and so we have βkii = 1.

Similarly, since

r(Ea)
2 =

∑
s∈S

w2(s, a)2es, r(Esm1
1 ...smn

n
) =

∑
s∈S

w1(s, sm1
1 ...smn

n )es,

so we have w2(si, a)2 = w1(si, s
m1
1 ...smn

n ) through letting s = si. Because we have

shown w1 is a bicharacter on S, we obtain w1(si, s
m1
1 ...smn

n ) = αm1
i1 ...α

mn
in and hence (ii)

holds. If we consider Rϕ, then we know Rϕ is also a general solution for kG#σ,τkZ2 and

so Rϕ such that (ii). Due to the w′i(1 ≤ i ≤ 4) of Rϕ such that w′2(si, a) = w3(ab, si)

by definition of Rϕ and we have w3(ab, si) = w3(a, si)w
1(b, si) by (ii) of Lemma 5.1.6,

we obtain w′2(si, a) = w3(a, si)w
1(b, si). But w1(b, si) = 1 because of (iii) of Corollary

6.1.9, so w3(ab, si) = w3(a, si) = γi and hence (iii) holds. To show (iv), we first show

(v). Since (iii) of Corollary 6.1.9, we know w1(si, b) = w1(b, si) = 1. But we have

shown w1 is a bicharacter on S and because b = sp11 ...s
pn
n by the assumption, we know

αp11i ...α
pn
ni = αp1i1 ...α

pn
in = 1. Because of (iv) in Corollary 6.1.9, we have w4(ab, ab) =

w4(a, a). Using (iv) of Lemma 5.1.6, we get w4(ab, ab) = w2(b, ab)w4(a, ab). With the
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help of the (iv) of Lemma 5.1.7, we obtain w4(a, ab) = w4(a, a)w3(a, b) and so we have

w2(b, ab)w3(a, b) = 1. Due to w2(b, ab) = w2(b, a)w1(b, b) = w2(b, a) by (ii) of Lemma

5.1.6, we know w2(b, a)w3(a, b) = 1. Since w2(b, a) = βp11 ...β
pn
n and w3(a, b) = γp11 ...γ

pn
n ,

we get βp11 ...βpnn = γ−p11 ...γ−pnn . But w3(a, b)2 = w3(a, 1) = 1 by (iii) of Lemma 5.1.7,

we get γ2p11 ...γ2pnn = 1 and thus βp11 ...βpnn = γp11 ...γ
pn
n . Therefore (v) holds. To show

(iv), we only need to show δ2 = βm1+p1
1 ...βmn+pn

n due to the same reason with the proof

of (iii). Since l(Xa)
2 = l(Xa2) = l(Xs

m1
1 ...smn

n
) and the following equations hold

l(Xa)
2 =

∑
s∈S

w4(a, t)w4(a, t / x)et, l(Xs
m1
1 ...smn

n
) =

∑
t∈T

w2(sm1
1 ...smn

n , t)et,

we have

w4(a, a)w4(a, ab) = w2(sm1
1 ...smn

n , a) (6.2)

through letting t = a. Since (iii) of Lemma 5.1.6, we get w2(s, t)w2(s′, t) = w2(ss′, t)

for s ∈ S, t ∈ T . So we have

w2(sm1
1 ...smn

n , a) = βm1
1 ...βmn

n . (6.3)

Since the (iii) in Lemma 5.1.2, we have w3(ab, b) = w4(a,ab)
w4(a,a)

. Owing to (ii) of Lemma

5.1.6, we can get w3(ab, b) = w3(a, b)w1(b, b). But we have known w1(b, b) = 1, so

w3(ab, b) = w3(a, b). Furthermore, owing to w4(a, ab) = w4(a, a)w3(a, b) and w3(a, b) =

γ−p11 ...γ−pnn , we have

w4(a, ab) = w4(a, a)γ−p11 ...γ−pnn . (6.4)

Combining equations (6.2)-(6.4) and (v), we obtain (iv). �

In fact, the four tuple (αij, βi, γi, δ)1≤i,j≤n in the above proposition completely

determine R.

Proposition 6.1.11 Let R be in Proposition 6.1.10 and let (αij, βi, γi, δ)1≤i,j≤n be in

Proposition 6.1.10, then the following equations hold

(i) w1(si11 ...s
in
n , s

j1
1 ...s

jn
n ) =

n∏
k=1

n∏
l=1

αikjlkl ;
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(ii) w2(si11 ...s
in
n , s

j1
1 ...s

jn
n a) = (

n∏
k=1

βikk )
n∏
k=1

n∏
l=1

αikjlkl ;

(iii) w3(si11 ...s
in
n a, s

j1
1 ...s

jn
n ) = (

n∏
k=1

γjkk )
n∏
k=1

n∏
l=1

αikjlkl ;

(iv) w4(si11 ...s
in
n a, s

j1
1 ...s

jn
n a) = (

n∏
k=1

βikk )(
n∏
k=1

γjkk )
n∏
k=1

n∏
l=1

αikjlkl δ;

where 0 ≤ i1, ..., in ≤ n− 1 and 0 ≤ j1, ..., jn ≤ n− 1.

Proofµ Since w1 is a bicharacter on S, we get (i). Owing to (ii) of Lemma 5.1.7,

we know w2(si11 ...s
in
n , s

j1
1 ...s

jn
n a) = w1(si11 ...s

in
n , s

j1
1 ...s

jn
n )w2(si11 ...s

in
n , a). Due to (iii) of

Lemma 5.1.6, we obtain w2(si11 ...s
in
n , a) =

n∏
k=1

βikk and so we have (ii). Similarly, we can

show (iii). Thanks to (iv) of Lemma 5.1.6, we get

w4(si11 ...s
in
n a, s

j1
1 ...s

jn
n a) = w2(si11 ...s

in
n , s

j1
1 ...s

jn
n a)w4(a, sj11 ...s

jn
n a). (6.5)

Using (iv) of Lemma 5.1.7, we have

w4(a, sj11 ...s
jn
n a) = w3(a / x, sj11 ...s

jn
n )w4(a, a). (6.6)

Because of (5.2) in Lemma 5.1.1, we get

w3(a / x, sj11 ...s
jn
n ) = w3(a, sj11 ...s

jn
n ). (6.7)

Since the equations (6.5)-(6.7) and (ii),(iii), we know (iv). �

Conversely, given a four tuple (αij, βi, γi, δ)1≤i,j≤n satisfies conditions (i)-(v) of

Proposition 6.1.10, then we have

Proposition 6.1.12 Given a four tuple (αij, βi, γi, δ)1≤i,j≤n satisfying conditions (i)-

(v) of Proposition 6.1.10 and let R be the form (ii) on kG#kZ2 in Proposition 3.1.5. If

wi(1 ≤ i ≤ 4) of R are given by (i)-(iv) in Proposition 6.1.11 by using the four tuple,

then R is a general solution for kG#σ,τkZ2.

ProofµSince Corollary 6.1.9, we only need to show R such that the conditions of Corol-

lary 6.1.9. Because the definition of w1, we know w1 is a bicharacter on S and hence we
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get l(Es1)i1 ...l(Esn)in = l(E
s
i1
1 ...s

in
n

). To show l(Xs1)
i1 ...l(Xsn)in = P

s
i1
1 ...s

in
n
l(X

s
i1
1 ...s

in
n

),

we need only to prove that w2(−, t) is a character on S for t ∈ T by (iii) of Lemma 5.1.6.

By definition of w2, we get w2(−, sj11 ...sjnn a) is a character on S. Owing to aS = T ,

we obtain w2(−, t) is a character on S for t ∈ T and so (i) of Lemma 6.1.6 holds. To

show (ii) of Lemma 6.1.6, we only need to prove that w1(s, s′)w3(a, s) = w3(as, s′) and

w2(s, t)w4(a, t) = w4(as, t) for s, s′ ∈ S, t ∈ T because of (iii), (iv) of Lemma 5.1.6.

And these equalities are not difficult to check and so (ii) of Lemma 6.1.6 hold. To show

(iii) of Lemma 6.1.6, note that w1 is a bicharacter on S and αkiij = 1 by assumption and

hence l(Esi)ki = l(E1). Similarly, because w2(−, t) is a character on S for t ∈ T and

βkii = 1 by our conditions, therefore we get l(Xsi)
ki = l(X1) and so we know (iii) of

Lemma 6.1.6 hold. To show (iv), it can be seen that w3(t,−) is a bicharacter on S and

γ2i = αm1
1i ...α

mn
ni by assumption and so we have l(Ea)2 = l(Esm1

1 ...smn
1

). By definition, we

have

l(Xa)
2 = [

∑
t∈T

w4(a, t)etx][
∑
t∈T

w4(a, t)etx] =
∑
t∈T

w4(a, t)w4(a, t / x)et

and l(Xs
m1
1 ...smn

1
) =

∑
t∈T w

2(sm1
1 ...smn

1 , t)etx. To show l(Xa)
2 = l(Xs

m1
1 ...smn

1
), we

need only to show w4(a, t)w4(a, t / x) = w2(sm1
1 ...smn

1 , t) for t ∈ T . For the sim-

plest case t = a, we have w4(a, a)w4(a, ab) = δ2
∏n

k=1 γ
pk
k and w2(sm1

1 ...smn
1 , a) =∏n

k=1 β
mk
k by definition. Since (v) of Proposition 6.1.10, we have βp11 ...βpnn = γp11 ...γ

pn
n .

And because b2 = 1 and b = sp11 ...s
pn
n , we get γ2p11 ...γ2pnn = 1. Therefore we get

w4(a, t)w4(a, a / x) = w2(sm1
1 ...smn

1 , a). For the case t = sj11 ...s
jn
1 a, if we use the equali-

ties w4(a, a)w4(a, a/x) = w2(sm1
1 ...smn

1 , a), γ2i = αm1
1i
...αmn

ni
, then we can also prove that

w4(a, sj11 ...s
jn
1 a)w4(a, sj11 ...s

jn
1 ab) = w2(sm1

1 ...smn
1 , sj11 ...s

jn
1 a) and hence we have show (iv)

of Lemma 6.1.6. Therefore we have prove that (i) of Corollary 6.1.9 holds. To prove

that R such that (ii) of Corollary 6.1.9, we consider the Rϕ. If we denote the four maps

associated with Rϕ as w′i(1 ≤ i ≤ 4), then it can be seen that the following equations

hold

w′1(si, sj) = αji, w
′2(si, a) = γi, w

′3(a, si) = βi, w
′4(a, a) = δ.

Furthermore, one can get that the four tuple (αji, γi, βi, δ)1≤i,j≤n satisfies conditions

(i)-(v) of Proposition 6.1.10 and hence Rϕ such that the conditions of this Proposition
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and hence Rϕ such that (i) of Corollary 6.1.9. And this implies that R satisfies (ii) of

Corollary 6.1.9. The (iii) of Corollary 6.1.9 holds by (v) of Proposition 6.1.10. Finally

we prove that w4(ab, ab) = w4(a, a). Due to βp11 ...βpnn = γp11 ...γ
pn
n , γ

2p1
1 ...γ2pnn = 1 and

the definition of w4, we know that w4(ab, ab) = w4(a, a) and thus we have completed

the proof. �

Combining Propositions 6.1.10-6.1.12, we obtain the following theorems

Theorem 6.1.13 Given a four tuple (αij, βi, γi, δ)1≤i,j≤n satisfying conditions (i)-(v)

of Proposition 6.1.10, then there exists a unique general solution R for kG#σ,τkZ2 such

that the following equations

w1(si, sj) = αij, w
2(si, a) = βi, w

3(a, si) = γi, w
4(a, a) = δ.

ProofµBy Propositions 6.1.10-6.1.12, we get what we want. �

Theorem 6.1.14 Let R be a general solution for kG#σ,τkZ2, then we can find a unique

four tuple (αij, βi, γi, δ)1≤i,j≤n satisfying the conditions (i)-(v) of Proposition 6.1.10 and

the following equalities

αij := w1(si, sj), βi := w2(si, a), γi := w3(a, si), δ := w4(a, a).

ProofµBy Proposition 6.1.10, we get what we want. �

Let (αij, βi, γi, δ)1≤i,j≤n := (1, 1, 1, 1)1≤i,j≤n, then we can see that the four tuple

such that the conditions of Proposition 6.1.10 and so we get a general solution for

kG#σ,τkZ2. And hence we know that the general solution for kG#σ,τkZ2 always exists.

Since we are interested in the number of quasitriangular structures of kG#σ,τkZ2, we

will give the following theorem. Let NQ be the set of all non-trivial quasitriangular

structures of kG#σ,τkZ2 and let TQ be the set of trivial quasitriangular structures of

kG#σ,τkZ2. For simple, we denote AQ as all quasitriangular structures of kG#σ,τkZ2.

Then we have

Theorem 6.1.15 If NQ 6= ∅ and TQ 6= ∅, then we have |NQ| = |TQ|. Moreover, if

G = Zn1 × ...× Znr , then the cardinality of AQ is a factor of 2|G|r.
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ProofµLetW := {ω is bicharacter on G such that ω(g, h) = ω(g/x, h/x) for g, h ∈ G}.
By Proposition 3.2.3, we know |TQ| = |W |. Owing to Theorem 6.1.13-6.1.14 and using

a little observation, one can obtain that the number of general solutions for kG#σ,τkZ2

is also |W |. If NQ 6= ∅, then we get that |NQ| is equal to the cardinality of the set of

all general solutions by definition. Hence we have |NQ| = |TQ|. It is easy to see that

|W | is a factor of |G|r, so we know |AQ| is a factor of 2|G|r. �

Remark 6.1.16 In fact, the above result implies that the number of quasitriangu-

lar structures of kG#kZ2 is 2|TQ|. If we put this observation and the Propositions

3.2.5-3.2.6 together, we know that AQ can be taken any number in {0, |TQ|, 2|TQ|}.
Furthermore, if kG#σ,τkZ2 has a non-trivial quasitriangular structure, then the num-

ber of quasitriangular structures only depends on part of data (G, /). And this result

seems to be very interesting. For example, we can quickly know that the number

of quastriangular structures of D4(the dihedral group with degree 2) is equal to the

number of quastriangular structures of K8 or have the double relationship! Trivial qua-

sitriangular structures are easy to give, thus the number of kG#σ,τkZ2 can be evaluated

very quickly!

Next, we use Theorems 6.1.13-6.1.14 to give all the general solutions on the Hopf

algebra Hb:y as an application.

Example 6.1.17 Recall that the 16 dimensional semisimple Hopf algebra H1
b:y in Ex-

ample 2.1.8, the group G = 〈a, b|a4 = b2 = 1, ab = ba〉 and a / x = a3, b / x = b.

It can be seen that S = {1, a2, b, a2b} and T = {a, a3, ab, a3b}. Thus we can assume

s1 = a2, s2 = b by Corollary 6.1.4. Since the definition of Hb:y, we get m1 = p1 = 1

and m2 = p2 = 0. Let (αij, βi, γi, δ)1≤i,j≤2 be a four tuple satisfying conditions (i)-(v)

of Proposition 6.1.10, then we get the following equations

α1i = αi1 = 1, α2
22 = 1, β2

i = γ2i = 1, β1 = γ1, δ
2 = 1. (6.8)

For simple, we denote α22 as α. Now if we use Proposition 6.1.12, then we get a general

solution R for Hb:y. In order to see the R more clearly, we list the wi(1 ≤ i ≤ 4) of R

as follows
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w1 1 a2 b a2b

1 1 1 1 1

a2 1 1 1 1

b 1 1 α α

a2b 1 1 α α

w2 a a3 ab a3b

1 1 1 1 1

a2 β1 β1 β1 β1

b β2 β2 αβ2 αβ2

a2b β1β2 β1β2 αβ1β2 αβ1β2

w3 1 a2 b a2b

a 1 γ1 γ2 γ1γ2

a3 1 γ1 γ2 γ1γ2

ab 1 γ1 αγ2 αγ1γ2

a3b 1 γ1 αγ2 αγ1γ2

w4 a a3 ab a3b

a δ γ1δ γ2δ γ1γ2δ

a3 β1δ δ β1γ2δ γ2δ

ab β2δ β2γ1δ αβ2γ2δ αβ2γ1γ2δ

a3b β1β2δ β2δ αβ1β2γ2δ αβ2γ2δ

It can be known from Theorems 6.1.13-6.1.14 that the above table gives all general

solutions forHb:y when (αij, βi, γi, δ)1≤i,j≤2 takes all the four tuples that satisfy equation

6.8.

§6.2 Special solutions for quasitriangular structures on

kG#σ,τkZ2

In this section, we will imitate the method used in the section 5.1 to give a neces-

sary and sufficient condition for the existence of a special solution on kG#σ,τkZ2.

Proposition 6.2.1 Let R be a special solution for kG#σ,τkZ2, and if we denote

αij := w1(si, sj), βi := w2(si, a), γi := w3(a, si), δ := w4(a, a),

then the following equations hold

(i) αkiij = α
kj
ij = 1, 1 ≤ i, j ≤ n;

(ii) βkii = P
s
ki
i
, β2

i σ(si) = αm1
i1 ...α

mn
in , 1 ≤ i ≤ n;

(iii) γkii = P
s
ki
i
, γ2i σ(si) = αm1

1i ...α
mn
ni , 1 ≤ i ≤ n;

(iv) δ2 = [τ(a, a)τ(b, a)τ(b, b)−1σ(a)−1P−1
s
m1
1 ...smn

n
P−1
s
p1
1 ...spnn

]βm1+p1
1 ...βmn+pn

n ;

(v) δ2 = [τ(a, a)τ(a, b)τ(b, b)−1σ(a)−1P−1
s
m1
1 ...smn

n
P−1
s
p1
1 ...spnn

]γm1+p1
1 ...γmn+pn

n ;
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(vi) αp11i ...α
pn
ni = αp1i1 ...α

pn
in = η(a, si), β

p1
1 ...β

pn
n = γp11 ...γ

pn
n η(a, b);

ProofµWe mimic the proof of Proposition 6.1.10 as follows. Since w1 is a bicharacter

on S, we have w1(si, sj)
ki = w1(si, sj)

kj = 1 and so (i) holds. To show (ii), we note

that l(Xsi)
ki = P

s
ki
i
l(X1) and r(Ea)2 = r(Esm1

1 ...smn
n

), if we use (iii) of Lemma 5.1.6, we

get w2(si, a)ki = P
s
ki
i

and so we have βkii = P
s
ki
i
. Similarly, since

r(Ea)
2 =

∑
s∈S

w2(s, a)2σ(s)es, r(Esm1
1 ...smn

n
) =

∑
s∈S

w1(s, sm1
1 ...smn

n )es,

we have w2(si, a)2σ(si) = w1(si, s
m1
1 ...smn

n ) through letting s = si. Because we have

shown w1 is a bicharacter on S, we obtain w1(si, s
m1
1 ...smn

n ) = αm1
i1 ...α

mn
in and hence (ii)

holds. If we consider Rϕ, then we know Rϕ is also a special solution for kG#σ,τkZ2 and

so Rϕ such that (ii). Due to the w′i(1 ≤ i ≤ 4) of Rϕ such that w′2(si, a) = w3(ab, si)

by definition of Rϕ and w3(ab, si) = w3(a, si)w
1(b, si) by (ii) of Lemma 5.1.6, we obtain

w′2(si, a) = w3(a, si)w
1(b, si). But w1(b, si) = η(a, si) because of (iii) in Corollary 6.1.9,

so w3(ab, si) = w3(a, si)η(a, si) = γiη(a, si). Because η(a, si)
ki = η(a, si)

2 = 1 and (ii)

holds for Rϕ, we know (iii) holds. To show (iv), we first show (vi). Since (iii) in Corol-

lary 6.1.9, we know w1(si, b) = w1(b, si) = η(a, si). But we have known w1 is a bicharac-

ter on S and b = sp11 ...s
pn
n by the assumption, we know αp11i ...α

pn
ni = αp1i1 ...α

pn
in = η(a, si).

Because of (iv) in Corollary 6.1.9, we have w4(ab, ab) = τ(ab,ab)
τ(a,a)

w4(a, a). Using (iv) of

Lemma 5.1.6, we get w4(ab, ab) = τ(b, a)−1w2(b, ab)w4(a, ab). With the help of the

(iv) of Lemma 5.1.7, we obtain w4(a, ab) = τ(a, b)−1w4(a, a)w3(a, b) and so we have

τ(b, a)−1τ(a, b)−1w2(b, ab)w3(a, b) = τ(ab,ab)
τ(a,a)

. Due to w2(b, ab) = η(b, a)w2(b, a) by (5.1)

of Lemma 5.1.1, we know τ(b, a)−1τ(a, b)−1η(b, a)w2(b, a)w3(a, b) = τ(ab,ab)
τ(a,a)

. It can be

seen that τ(b,a)τ(a,b)τ(ab,ab)
τ(a,a)η(b,a)

= τ(b, b)η(a, b). Moreover, since w2(b, a) = P−1
s
p1
1 ...spnn

βp11 ...β
pn
n

and w3(a, b) = P−1
s
p1
1 ...spnn

γp11 ...γ
pn
n , we get (βp11 ...β

pn
n )(γp11 ...γ

pn
n ) = τ(b, b)η(a, b)P 2

s
p1
1 ...spnn

.

Due to (iii) of Lemma 5.1.6, we obtain w3(a, b)2 = τ(b, b) and hence w3(a, b) =

τ(b, b)w3(a, b)−1 = τ(b, b)Psp11 ...spnn
γ−p11 ...γ−pnn . Therefore (vi) holds. To show (iv), s-

ince l(Xa)
2 = τ(a, a)l(Xa2) = τ(a, a)l(Xs

m1
1 ...smn

n
) and the following equations hold

l(Xa)
2 =

∑
s∈S

w4(a, t)w4(a, t / x)σ(t)et, l(Xs
m1
1 ...smn

n
) =

∑
t∈T

w2(sm1
1 ...smn

n , t)et,
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we have

w4(a, a)w4(a, ab)σ(a) = τ(a, a)w2(sm1
1 ...smn

n , a) (6.9)

through letting t = a. Since Lemma 5.1.6, we get w2(s, t)w2(s′, t) = τ(s, s′)w2(ss′, t)

for s ∈ S, t ∈ T , so we have

w2(sm1
1 ...smn

n , a) = P−1
s
m1
1 ...smn

n
βm1
1 ...βmn

n . (6.10)

Since the (iii) in Lemma 5.1.2, we have w3(ab, b) = τ(b, a)w
4(a,ab)
w4(a,a)

. Owing to (5.2) in

Lemma 5.1.1, we can get w3(ab, b) = w3(a, b)η(a, b). Because we have known w3(a, b) =

τ(b, b)Psp11 ...spnn
γ−p11 ...γ−pnn and w3(ab, b) = τ(b, a)w

4(a,ab)
w4(a,a)

, we have

w4(a, ab) = w4(a, a)τ(b, a)−1η(a, b)τ(b, b)Psp11 ...spnn
γ−p11 ...γ−pnn . (6.11)

Combining equations (6.9)-(6.11) and (v), we obtain (iv). Finally, if we consider Rϕ,

then we have (iv) holds for Rϕ. Therefore we get (v) holds for R. �

Similar to Proposition 6.1.11, we have

Proposition 6.2.2 Let R be in Proposition 6.2.1 and let (αij, βi, γi, δ)1≤i,j≤n be in

Proposition 6.2.1, then the following equations hold

(i) w1(si11 ...s
in
n , s

j1
1 ...s

jn
n ) =

n∏
k=1

n∏
l=1

αikjlkl ;

(ii) w2(si11 ...s
in
n , s

j1
1 ...s

jn
n a) = P−1

s
i1
1 ...s

in
n

(
n∏
k=1

βikk )
n∏
k=1

n∏
l=1

αikjlkl ;

(iii) w3(si11 ...s
in
n a, s

j1
1 ...s

jn
n ) = P−1

s
j1
1 ...sjnn

(
n∏
k=1

γjkk )
n∏
k=1

n∏
l=1

αikjlkl ;

(iv) w4(si11 ...s
in
n a, s

j1
1 ...s

jn
n a) = λ(i1, ..., in, j1, ..., jn)(

n∏
k=1

βikk )(
n∏
k=1

γjkk )
n∏
k=1

n∏
l=1

αikjlkl δ;

where 0 ≤ i1, ..., in ≤ (n − 1), 0 ≤ j1, ..., jn ≤ (n − 1) and λ(i1, ..., in, j1, ..., jn) :=

P−1
s
i1
1 ...s

in
n

P−1
s
j1
1 ...sjnn

τ(si11 ...s
in
n , a)−1τ(a, sj11 ...s

jn
n )−1.

Proofµ Since w1 is a bicharacter on S, we get (i). Owing to (ii) of Lemma 5.1.7,

we know w2(si11 ...s
in
n , s

j1
1 ...s

jn
n a) = w1(si11 ...s

in
n , s

j1
1 ...s

jn
n )w2(si11 ...s

in
n , a). Due to (iii) of
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Lemma 5.1.6, we obtain w2(si11 ...s
in
n , a) = P−1

s
p1
1 ...spnn

n∏
k=1

βikk and so we have (ii). Similarly,

we can show (iii). Thanks to (iv) of Lemma 5.1.6, we get

w4(si11 ...s
in
n a, s

j1
1 ...s

jn
n a) = τ(si11 ...s

in
n , a)−1w2(si11 ...s

in
n , s

j1
1 ...s

jn
n a)w4(a, sj11 ...s

jn
n a). (6.12)

Using (iv) of Lemma 5.1.7, we have

w4(a, sj11 ...s
jn
n a) = τ(sj11 ...s

jn
n , a)−1w3(a / x, sj11 ...s

jn
n )w4(a, a). (6.13)

Because of (5.2) in Lemma 5.1.1, we get

w3(a / x, sj11 ...s
jn
n ) = η(a, sj11 ...s

jn
n )w3(a, sj11 ...s

jn
n ). (6.14)

Since the equations (6.12)-(6.14) and (ii),(iii), we know (iv) holds. �

Conversely, given a four tuple (αij, βi, γi, δ)1≤i,j≤n satisfies conditions (i)-(vi) of

Proposition 6.2.1, then we have

Proposition 6.2.3 Let R be the form (ii) on kG#σ,τkZ2 in Proposition 3.1.5, and if

wi(1 ≤ i ≤ 4) of R are given by (i)-(iv) in Proposition 6.2.2 by using the four tuple

above, then R is a special solution for kG#σ,τkZ2.

ProofµSince Corollary 6.1.9, we only need to show R such that the conditions of Corol-

lary 6.1.9. Because the definition of w1, we know w1 is a bicharacter on S and hence we

get l(Es1)i1 ...l(Esn)in = l(E
s
i1
1 ...s

in
n

). To show l(Xs1)
i1 ...l(Xsn)in = P

s
i1
1 ...s

in
n
l(X

s
i1
1 ...s

in
n

),

we only need to show
∏n

k=1w
2(sk, t)

ik = P
s
i1
1 ...s

in
n
w2(si11 ...s

in
n , t) for t ∈ T . Owing to

aS = T , we can assume t = sj11 ...s
jn
n a. Since w2(sk, s

j1
1 ...s

jn
n a) = βk

∏n
l=1 α

jl
kl, we obtain

n∏
k=1

w2(sk, s
j1
1 ...s

jn
n a)ik =

n∏
k=1

βikk

n∏
k,l=1

αikjlkl . (6.15)

Because the definition of w2 and the equation (6.15) above, we get
∏n

k=1w
2(sk, t)

ik =

P
s
i1
1 ...s

in
n
w2(si11 ...s

in
n , t) for t ∈ T and so (i) of Lemma 6.1.6 holds. To show (ii) of Lemma

6.1.6, we only need to prove that w1(s, s′)w3(a, s) = w3(as, s′) and w2(s, t)w4(a, t) =

τ(s, a)w4(as, t) for s, s′ ∈ S, t ∈ T due to Lemma 5.1.6. And these equalities are not

difficult to check and so (ii) of Lemma 6.1.6 hold. To show (iii) of Lemma 6.1.6, note
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that w1 is a bicharacter on S and αkiij = 1 by assumption and hence l(Esi)ki = l(E1).

To show l(Xsi)
ki = P

s
ki
i
l(X1), we only need to prove that w2(si, t)

ki = P
s
ki
i

for t ∈ T .
Since the definition of w2 and βkii = P

s
ki
i

by assumption, we get w2(si, t)
ki = P

s
ki
i

for

t ∈ T and so we know (iii) of Lemma 6.1.6 hold. To show (iv), it can be seen that

l(Ea)
2 = l(Esm1

1 ...smn
1

) is equivalent to w3(a, s)2σ(s) = w1(a2, s) for s ∈ S. Since (iii)

in Proposition 6.2.1 and w1 is a bicharacter, we know w3(a, si)
2σ(si) = w1(a2, si). By

definition, we have w3(a, sj11 ...s
jn
n ) = P−1

s
j1
1 ...sjnn

∏n
k=1w

3(a, sk)
jk and so we get

w3(a, sj11 ...s
jn
n )2 = P−2

s
j1
1 ...sjnn

n∏
k=1

w3(a, sk)
2jk

= P−2
s
j1
1 ...sjnn

n∏
k=1

w1(a2, sk)
jkσ(sk)

−jk

= P−2
s
j1
1 ...sjnn

(
n∏
k=1

σ(sk)
−jk)w1(a2, sj11 ...s

jn
n )

To show w3(a, sj11 ...s
jn
n )2σ(sj11 ...s

jn
n ) = w1(a2, sj11 ...s

jn
n ), we only need to show

P−2
s
j1
1 ...sjnn

n∏
k=1

σ(sk)
−jkσ(sj11 ...s

jn
n ) = 1.

But the equation above follows from the following Lemma 6.2.4 and so we have l(Ea)2 =

l(Esm1
1 ...smn

1
). By definition, we have

l(Xa)
2 = [

∑
t∈T

w4(a, t)etx][
∑
t∈T

w4(a, t)etx] =
∑
t∈T

w4(a, t)w4(a, t / x)σ(t)et

and l(Xs
m1
1 ...smn

1
) =

∑
t∈T w

2(sm1
1 ...smn

1 , t)etx. To show l(Xa)
2 = τ(a, a)l(Xs

m1
1 ...smn

1
), we

only need to show w4(a, t)w4(a, t / x)σ(t) = τ(a, a)w2(sm1
1 ...smn

1 , t) for t ∈ T . For

the simplest case t = a, we have w4(a, a)w4(a, ab) = τ(a, b)−1P−1
s
p1
1 ...spnn

∏n
k=1 γ

pk
k δ

2

and w2(sm1
1 ...smn

1 , a) = P−1
s
m1
1 ...smn

n

∏n
k=1 β

mk
k by definition. Since the proof of Propo-

sition 6.2.1, we have w3(a, b) = P−1
s
p1
1 ...spnn

γp11 ...γ
pn
n = τ(b, b)Psp11 ...spnn

γ−p11 ...γ−pnn and

w4(a, a)w4(a, ab) = τ(a, b)−1τ(b, b)Psp11 ...spnn
γ−p11 ...γ−pnn δ2. Owing to (iv), (vi) of Propo-

sition 6.2.1, we get w4(a, a)w4(a, ab)σ(a) = τ(a, a)w2(sm1
1 ...smn

1 , a). For the case t =
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sj11 ...s
jn
1 a, using the following equalities

w4(a, a)w4(a, ab)σ(a) = τ(a, a)w2(sm1
1 ...smn

1 , a), γ2i σ(si) = αm1
1i
...αmn

ni

and the following Lemma 6.2.4, we can prove that w4(a, t)w4(a, t/x)σ(t) = τ(a, a)w2(sm1
1 ...smn

1 , t)

and hence we have show (iv) of Lemma 6.1.6. To prove that R such that (i)-(iv) of

Lemma 6.1.7, we consider the Rϕ. If we denote the four maps associated with Rϕ as

w′i(1 ≤ i ≤ 4), then it can be seen that the following equations hold

w′1(si, sj) = αji, w
′2(si, a) = η(a, si)γi, w

′3(a, si) = η(si, a)βi, w
′4(a, a) = δ.

Furthermore, one can check that the four tuple (αji, η(a, si)γi, η(si, a)βi, δ)1≤i,j≤n sat-

isfies conditions (i)-(vi) of Proposition 6.2.1 and hence Rϕ such that the conditions of

this Proposition. Therefore Rϕ such that (i)-(iv) of Lemma 6.1.6. And this implies

that R such that (i)-(iv) of Lemma 6.1.7. Since w1 is a bicharacter on S and (vi)

of Proposition 6.2.1, we know (iii) of Corollary 6.1.9 holds. Finally we prove that

w4(ab, ab) = τ(ab,ab)
τ(a,a)

w4(a, a). Since the definition of w4, we have

w4(ab, ab) = P−2
s
p1
1 ...spnn

τ(b, a)−1τ(a, b)−1
n∏
k=1

βpk
n∏
k=1

γpkη(a, b)δ

.

Due to P−1
s
p1
1 ...spnn

γp11 ...γ
pn
n = τ(b, b)Psp11 ...spnn

γ−p11 ...γ−pnn and βp11 ...βpnn = η(a, b)γp11 ...γ
pn
n ,

we know that w4(ab, ab) = τ(b,b)
τ(a,b)τ(b,a)

w4(a, a). Using the fact τ is a 2-cocycle, we can

see that τ(b,b)
τ(a,b)τ(b,a)

= τ(ab,ab)
τ(a,a)

and hence we get w4(ab, ab) = τ(ab,ab)
τ(a,a)

w4(a, a). Therefore

we have completed the proof. �

We have the following equality

Lemma 6.2.4 P−2
s
j1
1 ...sjnn

∏n
k=1 σ(sk)

−jkσ(sj11 ...s
jn
n ) = 1, where j1, ..., jn ∈ N.

ProofµOn the one hand, it can be seen that ∆(Es) = Es⊗Es+σ(s)Xs⊗Xs for s ∈ S
and so we have ∆(E

s
j1
1 ...sjnn

) = E
s
j1
1 ...sjnn

⊗E
s
j1
1 ...sjnn

+σ(sj11 ...s
jn
n )X

s
j1
1 ...sjnn

⊗X
s
j1
1 ...sjnn

. On the

other hand, we have ∆(Es1)
j1 ...∆(Esn)jn = [Es1⊗Es1 +σ(s1)Xs1⊗Xs1 ]

j1 ...[Esn⊗Esn +

σ(sn)Xsn ⊗Xsn ]jn = E
s
j1
1 ...sjnn

⊗ E
s
j1
1 ...sjnn

+ σ(s1)
j1 ...σ(sn)jnP 2

s
j1
1 ...sjnn

X
s
j1
1 ...sjnn

⊗X
s
j1
1 ...sjnn

.

Since Ej1
s1
...Ejn

sn = E
s
j1
1 ...sjnn

, we get P 2

s
j1
1 ...sjnn

∏n
k=1 σ(sk)

jk = σ(sj11 ...s
jn
n ). �
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By Propositions 6.2.1-6.2.3, we get the following theorem

Theorem 6.2.5 There exists a quasitriangular structure for kG#σ,τkZ2 if and only if

there exists a four tuple (αij, βi, γi, δ)1≤i,j≤n satisfies conditions (i)-(vi) of Proposition

6.2.1.

ProofµBy Propositions 6.2.1-6.2.3, we get what we want. �

To use the above Theorem 6.2.5 more convenient, we give the following corollary.

Corollary 6.2.6 There exists a quasitriangular structure for kG#σ,τkZ2 if and only if

there exists a bicharacter w1 on S and a pairing (βi, γi)1≤i≤n satisfying the following

conditions

(i) βkii = P
s
ki
i
, γkii = P

s
ki
i
;

(ii) βp11 ...βpnn = γp11 ...γ
pn
n η(a, b), βm1

1 ...βmn
n = γm1

1 ...γmn
n ;

(iii) w1(si, b) = w1(b, si) = η(a, si), w
1(si, a

2) = β2
i σ(si), w

1(a2, si) = γ2i σ(si);

where 1 ≤ i ≤ n.

Proofµ If there exists a quasitriangular structure, then we know w1, (βi, γi)1≤i≤n of

Proposition 6.2.1 such that the conditions (i)-(iii). Conversely, let αij := w1(si, sj)

and let δ be given by (iv) of Proposition 6.2.1, then we know that (αij, βi, γi, δ)1≤i,j≤n

satisfies conditions (i)-(vi) of Proposition 6.2.1 by our conditions (i)-(iii). And hence

there exists a quasitriangular structure by Theorem 6.2.5. �

Next we give a sufficient condition for the existence of a special solution on

kG#σ,τkZ2.

Corollary 6.2.7 If there is a bicharacter w1 on S and a set {βi ∈ k| 1 ≤ i ≤ n}
satisfying the following conditions

(i) βkii = P
s
ki
i
;

(ii) w1(si, a
2) = w1(a2, si) = β2

i σ(si);

(iii) w1(si, b) = w1(b, si) = η(a, si);
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where 1 ≤ i ≤ n, then there exists a quasitriangular structure on kG#σ,τkZ2.

Proofµ Let γi := βiη(a, si), then we can see that w1 and (βi, γi)1≤i≤n satisfy the

conditions of Corollary 6.2.6. And so we get what we want. �

We give the following examples to illustrate our results in this section.

Example 6.2.8 Let K(8n, σ, τ) be in Example 2.1.4, then we can assume s1 =

a2, s2 = b. It can be seen that we can give a bicharacter on S satisfying the con-

ditions of Corollary 6.2.7 through the following equations

w1(s1, s1) := β2σ(s1), w
1(s1, s2) = w1(s2, s1) := η(a, s1), w

1(s2, s2) := η(a, s2),

where β ∈ k such that βn = Psn1 . That is to say there is a special solution for

K(8n, σ, τ).

Example 6.2.9 We have given all general solutions for H1
b:y in Example 6.1.17, now

let’s use Theorem 6.2.5 to give a special solution R0 for H1
b:y. To do this, we first give

a four tuple (αij, βi, γi, δ)1≤i,j≤2 as follows

w1(s1, s1) = w1(s2, s2) := 1, w1(s1, s2) = w1(s2, s1) := −1, βi = γi := 1, δ := 1,

where 1 ≤ i ≤ 2. Then it can be seen that the four tuple satisfies the conditions (i)-(vi)

of Proposition 6.2.1 and hence we can use Theorem 6.1.13 to get a special solution for

Hb:y. Using the Proposition 6.2.2, we know the wi(1 ≤ i ≤ 4) of R0 are given as follows

w1 1 a2 b a2b

1 1 1 1 1

a2 1 1 −1 −1

b 1 −1 1 −1

a2b 1 −1 −1 1

w2 a a3 ab a3b

1 1 1 1 1

a2 1 1 −1 −1

b 1 −1 1 −1

a2b 1 −1 −1 1
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w3 1 a2 b a2b

a 1 1 1 1

a3 1 1 −1 −1

ab 1 −1 1 −1

a3b 1 −1 −1 1

w4 a a3 ab a3b

a 1 1 1 1

a3 1 1 −1 −1

ab −1 1 −1 1

a3b −1 1 1 −1
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Chapter 7 ϕ-symmetric quasitriangular structures

on kG#σ,τkZ2

In this chapter, we apply the conclusions in Chapter 5 to give all ϕ-symmetric qua-

sitriangular structures on kG#σ,τkZ2. Then we prove that all quasitriangular structures

on K(8n, σ, τ), A(8n, σ, τ) are ϕ-symmetric and give all quasitriangular structures on

K(8n, σ, τ), A(8n, σ, τ).

§7.1 ϕ-symmetric quasitriangular structures on kG#σ,τkZ2

Let ϕ be the Hopf isomorphism in Proposition 4.2.1. By Corollary 4.2.3, we know

the most simple quasitriangular structures on kG#σ,τkZ2 are ϕ-symmetric quasitrian-

gular structures. We will give a necessary and sufficient condition for the existence of

ϕ-symmetric quasitriangular structures on kG#σ,τkZ2 in this section. Before that, we

give the following definition.

Definition 7.1.1 A quasitriangular function w on kG#σ,τkZ2 is called a ϕ-symmetric

quasitriangular function if it satisfies w(t1, t2) = w(t2, t1) for t1, t2 ∈ T .

The following proposition is the reason why we give the above definition.

Proposition 7.1.2 Let R be the form (ii) in Proposition 3.1.5, then R is a ϕ-symmetric

quasitriangular structure if and only if w4 is a ϕ-symmetric quasitriangular function

and wi(1 ≤ i ≤ 3) are given by (i)-(iii) in Lemma 5.1.2.

ProofµIf R is a ϕ-symmetric quasitriangular structure, then we know w4 is a quasitri-

angular function due to Proposition 5.1.4. By definition of ϕ-symmetric quasitriangular

structure, we get w(t1, t2) = w(t2, t1) for t1, t2 ∈ T . Moreover, since Lemma 5.1.2, we

obtain that wi(1 ≤ i ≤ 3) are given by (i)-(iii) in Lemma 5.1.2 and so we have proved the

necessity. Conversely, if w4 is a ϕ-symmetric quasitriangular function and wi(1 ≤ i ≤ 3)

are given by (i)-(iii) in Lemma 5.1.2, then we get R is a quasitriangular structure by

Theorem 5.1.11. To show R is a ϕ-symmetric quasitriangular structure, we only need

to prove that w2(s, t) = w3(t / x, s) and w1(s1, s2) = w1(s2, s1) for s, s1, s2 ∈ S, t ∈ T
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by definition. Since (i)-(iii) of Lemma 5.1.2 and w4(t1, t2) = w4(t2, t1) for t1, t2 ∈ T , we
get w2(s, t) = w3(t / x, s) and w1(s1, s2) = w1(s2, s1). �

Corollary 7.1.3 Let R be a quasitriangular structure on kG#σ,τkZ2, then R is a ϕ-

symmetric quasitriangular structure if and only if w1(si, sj) = w1(sj, si), w
2(si, a) =

w3(ab, si) for 1 ≤ i, j ≤ n.

Proofµ The necessity is obvious. In order to prove the sufficiency, we only need

to prove that w(t1, t2) = w(t2, t1) for t1, t2 ∈ T because of Proposition 7.1.2 above.

Since aS = T , we can assume that t1 = as and t2 = as′ for some s, s′ ∈ S. Then

we have w4(as, as′) = τ(s, a)−1w2(s, as′)w4(a, as′) by (ii) of Lemma 5.1.2. Because

(ii) of Lemma 5.1.7, we have w2(s, as′) = w2(s, a)w1(s, s′). Owing to w4(a, as′) =

τ(s′, a)−1w4(a, a)w3(ab, s′) by (iii) of Lemma 5.1.2, we get

w4(as, as′) = τ(s, a)−1τ(s′, a)−1w4(a, a)w1(s, s′)w2(s, a)w3(ab, s′).

Since w1 is a bicharacter on S, we get w1(s, s′) = w1(s′, s). Due to (iii) of Lemma

5.1.6 and (iii) of Lemma 5.1.7, we know w2(s, a) = w3(ab, s) and w3(ab, s′) = w2(s′, a).

Therefore we have w4(as, as′) = w4(as′, as). �

As an application of the results of Section 6.2, we give the following proposition.

Proposition 7.1.4 There exists a ϕ-symmetric quasitriangular structure for kG#σ,τkZ2

if and only if there exists a bicharacter w1 on S and a set {βi ∈ k| 1 ≤ i ≤ n} satisfies
the following conditions

(i) w1(si, sj) = w1(sj, si);

(ii) βkii = P
s
ki
i
, w1(si, a

2) = β2
i σ(si);

(iii) w1(si, b) = η(a, si);

where n = |S| and 1 ≤ i, j ≤ n.

ProofµIf R is a ϕ-symmetric quasitriangular structure, then we can find a bicharacter

w1 on S and a pairing (βi, γi)1≤i≤n satisfy (ii), (iii) by Corollary 6.2.6. Since Corollary

7.1.3, we know w1 satisfies (i). Conversely, it can be seen that w1 and {βi ∈ k| 1 ≤ i ≤
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n} such that conditions of Corollary 6.2.7, so we can find a quasitriangular structure

R on kG#σ,τkZ2 satisfies w1 of R is exactly the w1 and w2(si, a) = βi. Then we

will show that R is ϕ-symmetric and hence we complete the proof. Since Corollary

7.1.3, we only need to prove that w1(si, sj) = w1(sj, si), w
2(si, a) = w3(ab, si) for

1 ≤ i, j ≤ n. Owing to (i), we know w1(si, sj) = w1(sj, si). Because of the proof

of Corollary 6.2.7, we get w3(a, si) = η(a, si)w
2(si, a). Due to (ii) of Lemma 5.1.1,

we obtain w3(ab, si) = w3(a, si)η(a, si). Therefore w3(ab, si) = η(a, si)
2w2(si, a). But

η(a, si)
2 = η(a2, si) = 1, so w3(ab, si) = w2(si, a). �

Remark 7.1.5 In fact, not all non-trivial quasitriangular structures on Hopf algebras

kG#σ,τkZ2 are ϕ-symmetric. For example, the R0 in Example 6.2.9 is not ϕ-symmetric.

This can be seen from the fact that w4 of R0 is not a ϕ-symmetric quasitriangular

function. Therefore we know that symmetry of a quasitriangular structure is a special

property.

§7.2 All quasitriangular structures on K(8n, σ, τ), A(8n, σ, τ)

We regard K(8n, σ, τ) and A(8n, σ, τ) as Hopf algebras which are easy to deal

with due to the numbers of generators of G are very small. Moreover, we will see

that kG#σ,τkZ2 has a quotient, either K(8n, σ, τ) or A(8n, σ, τ). For these reason-

s, we will study these Hopf algebras and give all the quasitriangular structures on

K(8n, σ, τ), A(8n, σ, τ) in this section. Let kG#σ,τkZ2 be in Definition 2.1.2, and

if there is a subgroup H of G such that H / x = H, then we have another data

(H, /|H , σ|H , τ |H×H). For our convenience, we denote the data (H, /|H , σ|H , τ |H×H) as

(H, /, σ, τ).

Proposition 7.2.1 The Hopf algebra kH#σ,τkZ2 is a quotient of kG#σ,τkZ2.

ProofµWe define a linear map ψ : kG#σ,τkZ2 → kH#σ,τkZ2 by letting

ψ(eh) := eh, ψ(eg) := 0, ψ(ehx) := ehx, ψ(egx) := 0,

where h ∈ H, g /∈ H. Then it can be seen that ψ is a morphism of Hopf algebras and

ψ is surjective. So we have completed the proof. �
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Corollary 7.2.2 The Hopf algebra K(8n, σ, τ) is a quotient of kG#σ,τkZ2 or the Hopf

algebra A(8n, σ, τ) is a quotient of kG#σ,τkZ2.

ProofµOwing to (ii) of Proposition 3.1.5, there is b ∈ S such that b2 = 1 and t/x = tb

for t ∈ T . Taking a ∈ T and let H := 〈a, b〉 as subgroup of G, then we know that

kH#σ,τkZ2 is a quotient of kG#σ,τkZ2 by Proposition 7.2.1. Next we will show that

H = 〈a, b| a2n = 1, b2 = 1, ab = ba〉 or H = 〈a, b| a4n = 1, b = a2n〉 as group for some

n ∈ N and thus we complete the proof. If b ∈ 〈a〉, then we can assume b = am for some

m ∈ N. Since b2 = 1, then we have a2m = 1. we claim that m is an even number in this

case. Otherwise, m is odd and then we have am ∈ S. Because a2 ∈ S by definition and

(2,m) = 1, so we get a ∈ S. But this is a contradiction, and hence we can assume that

m = 2n. Then it can be seen that H = 〈a, b| a4n = 1, b = a2n〉 as group. If b /∈ 〈a〉,
then we will show that H = 〈a, b| a2n = 1, b2 = 1, ab = ba〉. Since a2 ∈ S and a /∈ S,
we can assume that the order of a is 2n for some n ∈ N. Let i, j ∈ N and if aibj = 1,

then we have 2|j due to b /∈ 〈a〉. Then we know ai = 1 and hence (2n)|i. Therefore we

get H = 〈a, b| a2n = 1, b2 = 1, ab = ba〉. �

Not onlyK(8n, σ, τ), A(8n, σ, τ) have the simple form, but also the quasitriangular

structures on them are very simple.

Proposition 7.2.3 All quasitriangular structures on K(8n, σ, τ), A(8n, σ, τ) are ϕ-

symmetric.

Proofµ Let R be a non-trivial quasitriangular structure on K(8n, σ, τ), then we will

show that R is ϕ-symmetric. Owing to the definition of K(8n, σ, τ), we can assume

that s1 = a2, s2 = b. Since Corollary 7.1.3, we only need to show that the following

equations hold

w1(s1, s2) = w1(s2, s1), w
2(s1, a) = w3(ab, s1), w

2(s2, a) = w3(ab, s2).

Because (iii) of Corollary 6.2.6, we get w1(s1, b) = w1(b, s1) = η(a, s1). But s2 = b and

so we obtain w1(s1, s2) = w1(s2, s1). Due to (5.3) of Lemma 5.1.1, we have w4(ab, a) =

w4(a, ab). Since l(Xa)
2 = τ(a, a)l(Xa2), we get w4(a, t)w4(a, t/x)σ(t) = τ(a, a)w2(a2, t)
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by expanding the equation. Let t = a, then we have

w4(a, a)w4(a, ab)σ(a) = τ(a, a)w2(a2, a). (7.1)

Similarly, we obtain that w4(t, a)w4(t/x, a)σ(t) = τ(a, a)w3(t, a2) by expanding r(Xa)
2 =

τ(a, a)r(Xa2). Let t = a, then we have

w4(a, a)w4(ab, a)σ(a) = τ(a, a)w3(a, a2). (7.2)

Since w4(a, ab) = w4(ab, a) and the equations (7.1), (7.2), we get w2(a2, a) = w3(a, a2).

Because of (5.2) in Lemma 5.1.1, the know w3(ab, a2) = w3(a, a2) and so the equation

w2(s1, a) = w3(ab, s1) holds. To show w2(s2, a) = w3(ab, s2), we use (ii) of Lemma 5.1.2

and we get w2(b, a) = τ(b, a)w
4(ab,a)
w4(a,a)

. Similarly, we get w3(ab, b) = τ(b, a)w
4(a,ab)
w4(a,a)

by (iii)

of Lemma 5.1.2. Because we have known w4(a, ab) = w4(ab, a), we get w2(b, a) =

w3(ab, b) and so w2(s2, a) = w3(ab, s2). Therefore R is ϕ-symmetric. Similarly, one can

prove that all quasitriangular structures on A(8n, σ, τ) are ϕ-symmetric. �

Let QK := {non-trivial quasitriangular structures on K(8n, σ, τ) }, then we have

Theorem 7.2.4 QK
1−1←→ {(β1, β2, δ)| βn1 = Psn1 , β

2
2 = Ps22 , δ

2 = τ(a,a)τ(b,a)
τ(b,b)σ(a)

β1β2},
where s1 = a2, s2 = b.

ProofµGiven a non-trivial quasitriangular structure R on K(8n, σ, τ), we can define

a triple (β1, β2, δ) through letting β1 := w2(s1, a), β2 := w2(s2, a), δ := w4(a, a).

Since (ii), (iv) of Proposition 6.2.1, we know βn1 = Psn1 , β
2
2 = Ps22 , δ

2 = τ(a,a)τ(b,a)
τ(b,b)σ(a)

β1β2.

Conversely, let (β1, β2, δ) be a triple satisfying βn1 = Psn1 , β
2
2 = Ps22 , δ

2 = τ(a,a)τ(b,a)
τ(b,b)σ(a)

β1β2,

then we claim that there is a unique quasitriangular structure R such that w2(s1, a) =

β1, w
2(s2, a) = β2, w

4(a, a) = δ. To do this, let w1 be a bicharacter on S which is

determined as follows

w1(s1, s1) := β2
1σ(s1), w

1(s1, s2) = w1(s2, s1) := 1, w1(s2, s2) := η(a, s2). (7.3)

then we will use Proposition 7.1.4 to get a quasitriangular structure R such that

w2(s1, a) = β1, w
2(s2, a) = β2, w

4(a, a) = δ. We first show w1 is well defined. To show

this, the only non-trivial thing is to prove that [β2
1σ(s1)]

n = 1. Since Lemma 6.2.4, we
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get P 2
sn1
σ(s1)

n = 1 and so [β2
1σ(s1)]

n = 1. Then we prove that w1 and the set {β1, β2}
such that the conditions of Proposition 7.1.4. To prove this, the only non-trivial thing is

to show β2
2σ(s2) = 1. Owing to τ(a, b)τ(ab, b) = σ(ab)σ(a)−1σ(b)−1 and σ(ab) = σ(a),

we know τ(b, b)σ(b) = 1. Due to β2
2σ(s2) = τ(b, b)σ(b), we have β2

2σ(s2) = 1. Now we

can use Proposition 7.1.4 and Proposition 6.2.2 to get a ϕ-symmetric quasitriangular

structure R satisfying w2(s1, a) = β1, w
2(s2, a) = β2, w

4(a, a) = δ. Since Lemma 5.1.2,

we know R is unique if it is a ϕ-symmetric quasitriangular structure and it satifies that

w2(s1, a) = β1, w
2(s2, a) = β2, w

4(a, a) = δ. Finally, by Proposition 7.2.3, we know

that this correspondence we have discussed is one-one. �

Remark 7.2.5 In fact, from the proof of the above theorem, we know that all non-

trivial quasitriangular structures on K(8n, σ, τ) are given by (i)-(iv) of Proposition

6.2.2, where (β1, β2, δ) are in Theorem 7.2.4 and w1 is defined by (7.3) above and αij =

w1(si, sj), γi = βiη(a, si) for 1 ≤ i ≤ 2. Suppose η(a, b) = 1 for K(8n, σ, τ). Given

a non-trivial quasitriangular structure on K(8n, σ, τ), if we compare the coefficient of

ea⊗es2x for R21 and R−1 = (S⊗Id)(R), then we can get that R21 6= R−1. Furthermore,

one can obtain that there is no trivial triangular structure such that it is triangular.

That is to say K(8n, σ, τ) is not triangular when η(a, b) = 1. And these Hopf algebras

exist in large numbers, such as K(8n, ζ) in Example 2.1.5.

Similar to above Theorem 7.2.4, let QA := {non-trivial quasitriangular structures
on A(8n, σ, τ) }, then we have

Theorem 7.2.6 QA
1−1←→ {(β, δ)| β2n = Ps2n , δ

2 = τ(a,a)τ(b,a)
τ(b,b)σ(a)

Psnβ
1+n}, where s = a2.

ProofµLet R be a non-trivial quasitriangular structure and let w1(s, s) = β, w4(a, a) =

δ, then it can be seen that (β, δ) such that the following conditions

β2n = Ps2n , δ
2 =

τ(a, a)τ(b, a)

τ(b, b)σ(a)
Psnβ

1+n. (7.4)

due to (ii),(iv) of Proposition 6.2.1. Conversely, if (β, δ) satisfies the equation (7.4),

then we can use (i)-(iv) of Proposition 6.2.2 to define a R as follows

w1(s, s) := β2σ(s), w2(s, a) = w3(a, s) := β, w4(a, a) := δ. (7.5)
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Then we can see that the four tuple (β2σ(s), β, β, δ) satisfies conditions (i)-(vi) of

Proposition 6.2.1 and thus R is a non-trivial quasitriangular structure. Moreover, since

Lemma 5.1.2, we know R is unique if it is a ϕ-symmetric quasitriangular structure and

satisfies w2(s, a) = w3(s, a) = β, w4(a, a) = δ. Finally, since Proposition 7.2.3, we

know that this correspondence we have discussed is one-to-one. �

Remark 7.2.7 From the proof of the above theorem, we know that all non-trivial

quasitriangular structures on A(8n, σ, τ) are given by (i)-(iv) of Proposition 6.2.2, where

(β, δ) are in Theorem 7.2.6 and w1 is defined by (7.5) above and α11 = w1(s, s), γ = β.
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Chapter 8 Construction of minimal quasitriangular

Hopf algebras

In this chapter, we will study two classes of minimal quasitriangular Hopf algebras

which are full rank minimal quasitriangular Hopf algebras and minimal triangular Hopf

algebras. We mainly consider how to construct these two classes of Hopf algebras

through the conclusions we have discussed.

§8.1 Full rank minimal quasitriangular Hopf algebras

Since we also feel interested in minimal quasitriangular Hopf algebras, we want

to identify all minimal quasitriangular Hopf algebras among kG#σ,τkZ2. We observed

that this problem is complex for the general case, so we choose to study a special class

of minimal quasitriangular Hopf algebras which we call full rank minimal quasitriangu-

lar Hopf algebras in this section. This kind of Hopf algebras have a remarkable feature,

that is, the Hopf algebra structures on them are determined by their quasitriangular

structures. We will see that it is easy to know when a Hopf algebra is a full rank mini-

mal quasitriangular Hopf algebra and we can find a large number of full rank minimal

quasitriangular Hopf algebras form Hopf algebras kG#σ,τkZ2. For a quasitriangular

Hopf algebra (H,R), we will denote Hl := {(f ⊗ Id)| f ∈ H}, Hr := {(Id⊗f)| f ∈ H}
respectively in this section. Next we give the definition of full rank minimal quasitri-

angular Hopf algebras.

Definition 8.1.1 A quasitriangular Hopf algebra (H,R) is called by a full rank mini-

mal quasitriangular Hopf algebra if H = Hl.

It can be seen that H = Hl is equivalent to H = Hr, thus the condition H = Hl in

Definition 8.1.1 can be replaced by H = Hr. By definition, we know a full rank minimal

quasitriangular Hopf algebra is a special class of minimal quasitriangular Hopf algebras.

From the result in [21, Theorem 2.2], we know minimal triangular Hopf algebras belong

to full rank minimal quasitriangular Hopf algebras. The following lemma is obviously.
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Lemma 8.1.2 A quasitriangular Hopf algebra (H,R) is a full rank minimal quasitri-

angular Hopf algebra if and only Rank(R) = dim(H).

The following lemma shows that full rank minimal quasitriangular Hopf algebras and

minimal quasitriangular Hopf algebras are exactly coincident in some special cases.

Lemma 8.1.3 If (H,R) is a quasitriangular Hopf algebra such that Hl = Hr, then

(H,R) is a full rank minimal quasitriangular Hopf algebra if and only (H,R) is a

minimal quasitriangular Hopf algebra.

ProofµBy definition, we only need to prove sufficiency. If (H,R) is a minimal quasi-

triangular Hopf algebra, then we have H = HlHr. Since Hl = Hr and Hl is subalgebra

of H, we get H = Hl. �

Before we continue to study full rank minimal quasitriangular Hopf algebras, we

give the following examples of them.

Example 8.1.4 Let H be a finite abelian group, then we can find a Hopf isomorphism

φ : k[H] → kH due to H is commutative. Let R =
∑

h,k∈H φ(h)(k)eh ⊗ ek, then we

can get that (kH , R) is a full rank minimal quasitriangular Hopf algebra. Therefore

we know that finite abelian group belongs to full rank minimal quasitriangular Hopf

algebras.

In fact all minimal triangualar Hopf algebras are full rank minimal quasitriangular

Hopf algebras and this fact has been figured in [21, Theorem 2.2]. Another example of

full rank minimal quasitriangular Hopf algebras is the 8-dimension Kac algebra.

Example 8.1.5 The 8-dimension Kac algebraK8 [1, Section 2.3.1] belongs to kG#σ,τkZ2.

By definition, the data (G, /, σ, τ) of K8 is given by the following way

(i) G = Z2 × Z2 = 〈a, b|a2 = b2 = 1, ab = ba〉 and a / x = b, b / x = a.

(ii) σ(aibj) = (−1)ij for 1 ≤ i, j ≤ 2.

(iii) τ(aibj, akbl) = (−1)jk for 1 ≤ i, j, k, l ≤ 2.

All possible quasitriangular structures on K8 were given in [71] and we will choose

non-trivial quasitriangular structures of K8 to get full rank minimal quasitriangular
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Hopf algebras. Let γ ∈ k such that γ4 = −1, define Rγ as below

Rγ : = [e1 ⊗ e1 + e1 ⊗ eab + eab ⊗ e1 − eab ⊗ eab]+

[e1x⊗ ea + e1x⊗ eb − γ2eabx⊗ ea + γ2eabx⊗ eb]+

[ea ⊗ e1x+ eb ⊗ e1x+ γ2ea ⊗ eabx− γ2eb ⊗ eabx]+

[γ−1eax⊗ eax+ γeax⊗ ebx+ γebx⊗ eax+ γ−1ebx⊗ ebx].

From [71], we know all non-trivial quasitriangular structures on K8 have been gotten

when Rγ run over γ4 = −1. Moreover, one can see that Rank(Rγ) = 8 and hence

(K8, Rγ) is a full rank minimal quasitriangular Hopf algebra. Moreover, one can check

that Rγ is not triangular and trivial universal R-matrices are also not triangular, that

is to say the set of full rank minimal Hopf algebras is larger than the set of minimal

triangular Hopf algebras.

Proposition 8.1.6 If (H,R) is a full rank minimal quasitriangular Hopf algebra, then

the set of group like elements G(H) is an abelian group.

ProofµOwing to (H,R) is a full rank, we know lR : H∗cop → H is Hopf isomorphism.

Thus we only need to show G(H∗cop) is an abelian group. By Lemma 3.1.2, we know

C(H∗) is a commutative algebra. It can be seen that S∗(C(H∗)) = C(H∗cop), so we

obtain C(H∗cop) is a commutative algebra. Since G(H∗cop) ⊆ C(H∗cop), we obtain that

G(H∗cop) is an abelian group. �

Using this result, we can easily get that the quantum double D(kS3) is not full

rank minimal quasitriangular Hopf algebra. And this example shows that minimal

quasitriangular Hopf algebras are larger than full rank minimal quasitriangular Hopf

algebras. Naturally, we can ask when kG#σ,τkZ2 is full rank minimal quasitriangular

Hopf algebra. Below we give sufficient conditions for kG#σ,τkZ2 to be a full rank

minimal quasitriangular Hopf algebra. Then we use our results to get a series of full

rank minimal quasitriangular Hopf algebras. For simplicity, we still denote kG#σ,τkZ2

as HG. By Proposition 3.2.1, if there is a non-trivial quasitriangular structure R on

HG, then we have |S| = |T |. Observe that if we let S = {s1, · · · , sm} and T =

{t1, · · · , tm}, then the functions wi(1 ≤ i ≤ 4) of R can be viewed as 4 matrices,

which are (w1(si, sj))1≤i,j≤m, (w2(ti, sj))1≤i,j≤m, (w3(si, tj))1≤i,j≤m, (w4(ti, tj))1≤i,j≤m.
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So when we say wi(1 ≤ i ≤ 4) we mean that they are matrices in the following content.

Proposition 8.1.7 If R is a non-trivial quasitriangular structure on HG, then (HG, R)

is a full rank minimal quasitriangular Hopf algebra if only if one of wi(1 ≤ i ≤ 4) is

non-degenerated matrix.

Proofµ Assume that (HG, R) is a full rank minimal quasitriangular Hopf algebra,

then we have Rank(R) = dim(H) by Lemma 8.1.2. Thus we know wi(1 ≤ i ≤ 4)

are non-degenerated matrices and this implies the necessity holds. Conversely, let

1 ≤ j ≤ 4 and suppose wj is non-degenerated matrix, then we will show wi(1 ≤ i ≤ 4)

are non-degenerated matrices. Owing to Proposition 6.2.2 and wj is non-degenerated

matrix, we know w1 is a non-degenerated matrix. Using Proposition 6.2.2 again, we

get wi(1 ≤ i ≤ 4) are non-degenerated matrices. And this implies Rank(R) = dim(H)

and hence we know (HG, R) is a full rank minimal quasitriangular Hopf algebra. �

Recall the Example 6.2.9, then one can see thatHb:y is a full rank minimal quasitri-

angular Hopf algebra by using the above Proposition 8.1.7. For non-trivial ϕ-symmetric

quasitriangular structures on HG, we have the following proposition.

Proposition 8.1.8 If R is a non-trivial ϕ-symmetric quasitriangular structure on HG,

then (HG, R) is a full rank minimal quasitriangular Hopf algebra if only if (HG, R) is

a minimal quasitriangular Hopf algebra.

Proofµ By Lemma 8.1.3, we only need to prove that (HG)l = (HG)r. Since lR is an

algebra map and TT = S, it can be seen that (HG)l = 〈l(Xt), l(Et) | t ∈ T 〉 as algebra.
Similarly, one can get that (HG)r = 〈r(Xt), r(Et) | t ∈ T 〉 as algebra. Because R is

ϕ-symmetric and Rϕ has the form (4.2), we know l(Xt) = r(Xt) and l(Et) = r(Et/x)

for t ∈ T . Therefore we obtain (HG)l = (HG)r. �

To get a series of full rank minimal quasitriangular Hopf algebras, we use the

following propositions. For the Hopf algebra K(8n, σ, τ), we keep using the notation

Psn1 in Theorem 7.2.4. Then we have

Theorem 8.1.9 K(8n, σ, τ) is a full rank minimal quasitriangular Hopf algebra if and

only if η(a, b) = −1 and there is β ∈ k such that βn = P(a2)n and β2σ(a2) is a primitive

nth root of 1.
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ProofµAssume that (K(8n, σ, τ), R) is a full rank minimal quasitriangular Hopf alge-

bra, then it can be seen thatR is a non-trivial quasitriangular structure. By Proposition

8.1.7, we know w1 is non-degenerated matrix. To calculate the matrix w1, we denote

sj := a2j−2, sn+j := a2j−2b for 1 ≤ j ≤ n. Owing to (vi) of Proposition 6.2.1, we know

w1(s, b) = η(a, s) for s ∈ S. In particular, we get w1(si, b) = η(a, si) = η(a, a2i−2) = 1

for 1 ≤ i ≤ n. Since w1 is a bicharacter on S, we have the following equalities for

1 ≤ i, j ≤ n

w1(si, sn+j) = w1(si, sjb) = w1(si, sj)w
1(si, b) = w1(si, sj). (8.1)

Similarly, one can get the following equations

w1(si, sn+j) = w1(si, sj), w
1(si+n, sn+j) = w1(si, sj)η(a, b), (8.2)

where 1 ≤ i, j ≤ n. Let A be a matrix defined by A := (w1(si, sj))1≤i,j≤n. Due to

equations (8.1) and (8.2), we have

(w1(si, sj))1≤i,j≤2n =

A A

A η(a, b)A

 ∼
A 0

0 (η(a, b)− 1)A

 .

Here "∼" means that two matrices can be gotten each other through elementary op-

erations. Therefore we know w1 is non-degenerated if and only if η(a, b) = −1 and

A is non-degenerated matrix. Let β := w2(a2, a), then we have βn = P(a2)n and

w1(a2, a2) = β2σ(a2) by (ii) of Proposition 6.2.1. Because w1 is a bicharacter on S,

we obtain w1(si, sj) = (β2σ(a2))(i−1)(j−1) for 1 ≤ i, j ≤ n. Since A is non-degenerated

matrix, we know β2σ(a2) is a primitive nth root of 1. Therefore we have proved the ne-

cessity. To show the sufficiency, we suppose that η(a, b) = −1, βn = P(a2)n and β2σ(a2)

is a primitive nth root of 1, then we will construct a non-trivial quasitriangular struc-

ture on K(8n, σ, τ) such that (K(8n, σ, τ), R) is a full rank minimal quasitriangular

Hopf algebra. Let β′, δ ∈ k such that β′2 = Pb2 , δ
2 = τ(a,a)τ(b,a)

τ(b,b)σ(a)
ββ′, then we can get

a non-trivial quasitriangular structure R such that w2(a2, a) = β by Theorem 7.2.4.

Since we have showed w1 is non-degenerated in this case, we get (K(8n, σ, τ), R) is a

full rank minimal quasitriangular Hopf algebra. �

To use Theorem 8.1.9 more conveniently, we give the following corollary.
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Corollary 8.1.10 Let K(8n, σ, τ) as before. If τ(a, ai) = 1 for i ∈ N and η(a, b) = −1,

then K(8n, σ, τ) is a full rank minimal quasitriangular Hopf algebra if and only if there

is ω ∈ k such that ωn = 1 and ω2σ(a2) is a primitive nth root of 1.

ProofµBy Theorem 8.1.9, we get what we want. �

Using Corollary 8.1.10, we can give a series of full rank minimal quasitriangular

Hopf algebras as follows

Corollary 8.1.11 Let K(8n, ζ) be the Hopf algebras given in Example 2.1.5, then we

have the following conclusions:

(i) if n is even and n ≥ 4, then K(8n, ζ) is full rank minimal quasitriangular Hopf

algebra.

(ii) if n is odd or n = 2, then K(8n, ζ) is not full rank minimal quasitriangular Hopf

algebra.

ProofµFirstly, we show (i). By the definition of K(8n, ζ), σ(a2) = −ζ2. If n is even

and bigger than 4, we can find a ω ∈ k such that ωn = 1 and ω2 = −1. Then we have

ω2σ(a2) = ζ2 and thus ω2σ(a2) is a primitive nth root of 1. By Corollary 8.1.10, we

know that K(8n, ζ) is full rank minimal quasitriangular Hopf algebra.

Secondly, we show (ii). If n is odd, then we have (ω2σ(a2))n = [−(ωζ)2]n = −1 for

arbitrary ω ∈ k such that ωn = 1. Hence ω2σ(a2) is not a primitive nth root of 1. As

a result K(8n, ζ) is not full rank minimal quasitriangular Hopf algebra. If n = 2, then

σ(a2) = 1. Let ω ∈ k such that ω2 = 1. Thus ω2σ(a2) = 1 which is not a primitive 2th

root of 1. Therefore K(16, ζ) is not full rank minimal quasitriangular Hopf algebra. �

So we have found a series of full rank minimal quasitriangular Hopf algebras which

belong to kG#σ,τkZ2.

§8.2 Minimal and triangular semisimple Hopf algebras

S. Gelaki raised the question of whether there is a minimal and triangular semisim-

ple Hopf algebra in [21], and then he and P. Etingof constructed a series of minimal
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triangular semisimple Hopf algebra in [12]. Their method is to construct twists itera-

tively and give some minimal triangular structures on some semisimple Hopf algebras.

Inspired by [21] and [12], we can naturally ask whether there are other ways to give

minimal and triangular semisimple Hopf algebras? and if so, whether we can give

all minimal triangular structures on them? To answer this question, we choose Hopf

algebras kG#σ,τkZ2 to explore this problem. We first give a criterion when a quasitri-

angular structure on kG#σ,τkZ2 is a triangular structure. Then we use this criterion

and some results in Subsection 8.1 to construct all minimal triangular structures on

Hn
b:y for n ∈ N and these Hopf algebras are different from the minimal triangular

semisimple Hopf algebras ((Zp×Zp)o (Zp×Zp), J
−1
21 J) and C[G̃]J constructed in [12],

where G̃ = S3o (Z2×Z3)
∗. Our method is based on the result that all quasitriangular

structures on kG#σ,τkZ2 have been determined. Therefore one can get all minimal

triangular structures on kG#σ,τkZ2 by using our way. By the way, we prove that

the semisimple Hopf algebra H1
b:y is the smallest Hopf algebra among the non-trivial

semisimple minimal triangular Hopf algebras. For convenience, we assume that R in

this subsection means that a non-trivial quasitriangular structure on kG#σ,τkZ2. We

first give the following lemma.

Lemma 8.2.1 Let R be a non-trivial quasitriangular structure. If w4(t1, t2)w
4(t2 /

x, t1/x)σ(t1)σ(t2) = 1, t1, t2 ∈ T , then w1(s1, s2)w
1(s2, s1) = 1, w2(s, t)w3(t, s)σ(s) = 1

for s, s1, s2 ∈ S, t ∈ T .

ProofµBy Lemma 5.1.2, we get the following equalities

w2(s, t) = τ(s, t1)
w4(st1, t)

w4(t1, t)
, w3(t, s) = τ(s, t1 / x)

w4(t / x, st1 / x)

w4(t / x, t1 / x)
.

Therefore we obtain

w2(s, t)w3(t, s)σ(s) = τ(s, t1)τ(s, t1 / x)
w4(st1, t)w

4(t / x, st1 / x)

w4(t1, t)w4(t / x, t1 / x)
σ(s)

= τ(s, t1)τ(s, t1 / x)
[σ(st1)σ(t)]−1

[σ(t1)σ(t)]−1
σ(s)

=
τ(s, t1)τ(s, t1 / x)σ(t1)σ(s)

σ(st1)
= 1
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Then we will show w1(s1, s2)w
1(s2, s1) = 1. Due to (ii) of Lemma 5.1.6, we obtain

w1(s1, s2) = w3(s1t,s2)
w3(t,s2)

. Similarly, one can get w1(s2, s1) = w2(s2,s1t)
w2(s2,t)

by (ii) of Lemma

5.1.7. Thus we have

w1(s1, s2)w
1(s2, s1) =

w3(s1t, s2)

w3(t, s2)

w2(s2, s1t)

w2(s2, t)
=
σ(s2)

−1

σ(s2)−1
= 1.

�

Using Lemma 8.2.1, we can easily obtain the following proposition.

Proposition 8.2.2 The R is a triangular structure if and only if w4(t1, t2)w
4(t2/x, t1/

x)σ(t1)σ(t2) = 1 for t1, t2 ∈ T .

ProofµDirectly we have

R21 =
∑

s1,s2∈S

w1(s2, s1)es1 ⊗ es2 +
∑

s∈S,t∈T

w3(t, s)esx⊗ et+∑
t∈T,s∈S

w2(s, t)et ⊗ esx+
∑

t1,t2∈T

w4(t2, t1)et1x⊗ et2x.

So the following equation holds

RR21 =
∑

s1,s2∈S

w1(s1, s2)w
1(s2, s1)es1 ⊗ es2 +

∑
s∈S,t∈T

w2(s, t)w3(t, s)σ(s)es ⊗ et+∑
t∈T,s∈S

w2(s, t)w3(t, s)σ(s)et ⊗ es +
∑

t1,t2∈T

w4(t1, t2)w
4(t2 / x, t1 / x)σ(t1)σ(t2)et1 ⊗ et2 .

By Lemma 8.2.1, we get what we want. �

In order to use Proposition 8.2.2 more conveniently, we give the following corollary.

Corollary 8.2.3 If R is ϕ-symmetric and w4(t1, t2)
2 = 1 for t1, t2 ∈ T , then R is

triangular if and only if τ(t1/x,t2/x)
τ(t2,t1)

σ(t1)σ(t2) = 1 for t1, t2 ∈ T .

Proofµ Since R is ϕ-symmetric, we get w4(t2 / x, t1 / x) = w4(t1 / x, t2 / x). Owing

to Lemma 5.1.1, we obtain w4(t1 / x, t2 / x) = w4(t1, t2)
τ(t1/x,t2/x)
τ(t2,t1)

. Therefore we can

see that R is triangular if and only if w4(t1, t2)
2 τ(t1/x,t2/x)

τ(t2,t1)
σ(t1)σ(t2) = 1 by Proposition

8.2.2. Because w4(t1, t2)
2 = 1, we get what we want. �
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We give the application of Corollary 8.2.3 by the following example.

Example 8.2.4 Let Hn
b:y be in Example 2.1.8. We will use Theorem 6.2.5 and Corol-

lary 8.2.3 to give a minimal triangular structure on H1
b:y. By definition of H1

b:y, we

know S = {1, a2, b, a2b}. Thus we can assume that s1 = a2, s2 = b. To give a special

solution for H1
b:y, we first give a four tuple (αij, βi, γi, δ)1≤i,j≤2 as follows

α11 = α22 := 1, α12 = α21 := −1, β1 = γ1 := 1, β2 = −γ2 := 1, δ = 1.

Then it can be seen that the four tuple satisfies the conditions (i)-(vi) of Proposition

6.2.1 and hence we can use Theorem 6.1.13 to get a special solution R0 for H1
b:y. Using

the Proposition 6.2.2, we know the wi(1 ≤ i ≤ 4) of R0 are given as follows

w1 1 a2 b a2b

1 1 1 1 1

a2 1 1 −1 −1

b 1 −1 1 −1

a2b 1 −1 −1 1

w2 a a3 ab a3b

1 1 1 1 1

a2 1 1 −1 −1

b 1 −1 1 −1

a2b 1 −1 −1 1

w3 1 a2 b a2b

a 1 1 −1 −1

a3 1 1 1 1

ab 1 −1 −1 1

a3b 1 −1 1 −1

w4 a a3 ab a3b

a 1 1 −1 −1

a3 1 1 1 1

ab −1 1 1 −1

a3b −1 1 −1 1

By definition, we have T = {a2i+1bj| 1 ≤ i, j ≤ 2}. Then it can be checked that
τ(t1/x,t2/x)
τ(t2,t1)

σ(t1)σ(t2) = 1 for t1, t2 ∈ T . From the above tables, one can see that R0 sat-

isfies the conditions of Corollary 8.2.3. Moreover, we can get that w1 is non-degenerated

matrix and hence R0 is full rank minimal quasitriangular structure by Proposition 8.1.7.

Therefore we have given a full rank minimal and triangular structure on H1
b:y.

To further simplify Proposition 8.2.2, we introduce the following lemmas.

Lemma 8.2.5 Let R be a non-trivial quasitriangular structure. Then w4(t1, t2)w
4(t2 /

x, t1 / x)σ(t1)σ(t2) = 1 for t1, t2 ∈ T if and only if the following equations hold

w1(s1, s2)w
1(s2, s1) = 1, w2(s, t)w3(t, s)σ(s) = 1, w4(a, a)w4(ab, ab)σ(a)2 = 1
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for s, s1, s2 ∈ S, t ∈ T .

ProofµBy Lemma 8.2.1, we know the necessity holds. To show the sufficiency, we will

use Lemmas 5.1.6,5.1.7. Since T = aS, we need only to show the following equations

w4(s1a, s2a)w4(s2ab, s1ab)σ(s1a)σ(s2a) = 1, s1, s2 ∈ S.

By (iv) of Lemma 5.1.6, we get w4(s1a, s2a) = τ(s1, a)−1w2(s1, s2a)w4(a, s2a). Further,

we can use (iv) of Lemma 5.1.7 to obtain w4(a, s2a) = τ(s2, a)−1w3(a / x, s2)w
4(a, a).

Therefore we have the following equation

w4(s1a, s2a) = τ(s1, a)−1τ(s2, a)−1w2(s1, s2a)w3(a / x, s2)w
4(a, a). (8.3)

Similarly, one can get the following equality

w4(s2ab, s1ab) = τ(s2, ab)
−1τ(s1, ab)

−1w2(s2, s1ab)w
3(a, s1)w

4(ab, ab). (8.4)

Note that w2(s1, s2a) = w1(s1, s2)w
2(s1, a) and w2(s2, s1ab) = w1(s2, s1)w

2(s2, a/x) by

Lemma 5.1.7, and if we use the assumption about w2, w3, we get

[w2(s1, s2a)w3(a / x, s2)][w
2(s2, s1ab)w

3(a, s1)] = σ(s1)
−1σ(s2)

−1.

Since w4(a, a)w4(ab, ab)σ(a)2 = 1 and the compatibility between σ and τ , one can

obtain that w4(s1a, s2a)w4(s2ab, s1ab)σ(s1a)σ(s2a) = 1 and hence we have completed

the proof. �

In fact, some conditions in Lemma 8.2.5 can be further simplified. Recall that we

have assumed that G = 〈si, a| skii = 1, a2 = sm1
1 ...smn

n , sisj = sjsi, asi = sia〉1≤i,j≤n as

group for some natural numbers n, ki,mj, then we have

Lemma 8.2.6 Let R be a non-trivial quasitriangular structure. Then the following

statements are equivalent

(i) w1(s, s′)w1(s′, s) = 1, w2(s, t)w3(t, s)σ(s) = 1, s, s′ ∈ S, t ∈ T ;

(ii) w1(si, sj)w
1(sj, si) = 1, w2(si, a)w3(a, si)σ(si) = 1, 1 ≤ i, j ≤ n;
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Proofµ By definition, we only need to prove that (ii) implies (i). Now we assume

that (ii) holds. Let s, s′ ∈ S, we first show w1(s, s′)w1(s′, s) = 1. Owing to Lemmas

5.1.6,5.1.7, we obtain that w1 is a bicharacter on S. Thus we have w1(s, s′)w1(s′, s) =

1. Then we will prove that w2(s, s′a)w3(s′a, s)σ(s) = 1. To do this, we use Lem-

mas 5.1.6,5.1.7 again. Then we get w2(s, s′a) = w2(s, a)w1(s, s′) and w3(s′a, s) =

w3(a, s)w1(s′, s). Because w1(s, s′)w1(s′, s) = 1, we get w2(s, s′a)w3(s′a, s)σ(s) =

w2(s, a)w3(a, s)σ(s). Thus we only need to show w2(s, a)w3(a, s)σ(s) = 1. Let s =

si11 ...s
in
n and keep the notation in Proposition 6.2.2, we can obtain w2(s, a)w3(a, s) =

P−2
s
i1
1 ...s

in
n

∏n
k=1(βkγk)

ik by using (ii) and (iii) of Proposition 6.2.2. By assumption, we

have βkγk = σ(sk)
−1. Therefore we get w2(s, a)w3(a, s) = P−2

s
i1
1 ...s

in
n

∏n
k=1 σ(sk)

−ik . Now

we can use Lemma 6.2.4 to get w2(s, a)w3(a, s) = σ(si11 ...s
in
n )−1. By definition, we have

s = si11 ...s
in
n and hence we obtain w2(s, a)w3(a, s)σ(s) = 1. �

If we use Lemmas 8.2.5-8.2.6 and Proposition 8.2.2 together, then we obtain the

following proposition which gives a simple criterion for R to be a triangular structure.

Proposition 8.2.7 The R is a triangular structure if and only if the following condi-

tions hold

w1(si, sj)w
1(sj, si) = 1, w2(si, a)w3(a, si)σ(si) = 1, w4(a, a)w4(ab, ab)σ(a)2 = 1,

where 1 ≤ i, j ≤ n.

ProofµBy Lemmas 8.2.5-8.2.6 and Proposition 8.2.2, we get what we want. �

Now we’re going to use Proposition 8.1.8 and Theorem 6.2.5 to answer the question

at the beginning of this subsection. We first construct all the triangular structures

on Hn
b:y, then we will find all minimal triangular structures among these triangular

structures. To achieve our goal, we give the following lemma.

Lemma 8.2.8 If n is even number, then there is no non-trivial quasitriangular struc-

ture on Hn
b:y.

Proofµ By definition of Hn
b:y, we know S = {a2ibj| i, j ≥ 0}. Thus we can arrange

that s1 = a2, s2 = b. Assume that R is a non-trivial quasitriangular structure on

Hn
b:y. For convenience, we keep the notation in Proposition 6.2.1. Owing to (ii) of
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Proposition 6.2.1, we obtain β2n
2 = 1 and α21 = −β2

2 . So we have αn21 = (−1)n.

Because a / x = a2n+1, we know p1 = n, p2 = 0. Due to (vi) of Proposition 6.2.1, one

can get that αn21 = −1. But we already obtain αn21 = (−1)n, so (−1)n = −1 and this

implies n is an odd number. �

Due to Lemma 8.2.8, we only consider Hn
b:y when n is an odd number. Given an

odd number n, let Tn := {non-trivial triangular structures on Hn
b:y }. Then we have

Theorem 8.2.9 Tn
1−1←→ {(α, β1, β2, δ) ∈ k4| α2 = β2

1 = β2n
2 = δ2 = 1}.

Proofµ Since S = {a2ibj| i, j ≥ 0}, we can arrange that s1 = a2, s2 = b. Let R be a

non-trivial triangular structure onHn
b:y. For simple, we keep the notation in Proposition

6.2.1. Then we define a map φ : Tn → {(α, β1, β2, δ) ∈ k4| α2 = β2
1 = β2n

2 = δ2 = 1}
by letting φ(R) := (α22, β1, β2, δ). Due to Proposition 8.2.7, we know w1(s2, s2)

2 = 1.

Since w1(s2, s2) = α22 by definition, we obtain α2
22 = 1. Using (iv),(v) of Proposition

6.2.1, one can get that δ2 = βn+1
1 = γn+1

1 . Thanks to (vi) of Proposition 6.2.1, we know

βn1 = γn1 . So we have β1 = γ1. By Proposition 8.2.7, we know w2(s1, a)w3(a, s1) = 1.

Because w2(s1, a) = β1 and w3(a, s1) = γ1 by definition, we obtain β1γ1 = 1 and so

β2
1 = 1. Owing to n is an odd number and δ2 = βn+1

1 , we get δ2 = 1. Note that

the equation β2n
2 = 1 follows from (ii) of Proposition 6.2.1 directly and hence we have

proved that φ is well defined. Then we will show φ is bijective. Let (α, β1, β2, δ) ∈ k4

such that α2 = β2
1 = β2n

2 = δ2 = 1. If we define αij, γi ∈ k for 1 ≤ i, j ≤ 2 as follows

α11 = 1, α12 = −β2
2 , α21 = −β−22 , α22 = α, γ1 = β1, γ2 = −β−12 .

Then one can check that the four tuple (αij, βi, γi, δ)1≤i,j≤2 satisfies conditions (i)-(vi)

of Proposition 6.2.1, therefore we can obtain a non-trivial quasitriangular structure R

such that w1(si, sj) = αij and w2(si, a) = βi, w
3(a, si) = γi by Theorem 6.2.5. Now one

can see that R satisfies the conditions of Proposition 8.2.7, so we know R is triangular

structure. Moreover, it can be seen that φ(R) = (α, β1, β2, δ). Therefore we have

prove that φ is surjective. Finally we will show φ is injective. Let R be a non-trivial

triangular structure on Hn
b:y. For simple, we continue to use the notation in Proposition

6.2.1. Thanks to (ii) of Proposition 6.2.1, we get α11 = β2
1 and α21 = −β2

2 . Similarly,

one can obtain α12 = −γ22 by using (iii) of Proposition 6.2.1. Due to Proposition 8.2.7,
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we know γ1 = β−11 and γ2 = −β−12 . Therefore we have seen that (αij, βi, γi, δ)1≤i,j≤2 is

completely determined by (α22, β1, β2, δ) and this implies that φ is injective. �

Since we have obtained all triangular structures on Hn
b:y, we only need to identify

all minimal structures from Tn. To this end, we first introduce the following lemmas.

Recall that if (H,R) is a quasitriangular Hopf algebra, then the Hl, Hr have been

defined by Hl := {(f ⊗ Id)| f ∈ H}, Hr := {(Id⊗f)| f ∈ H} respectively. For simple,

we will denote kG#σ,τkZ2 as HG in this subsection. The following lemma is a part of

the proof in [21, Theorem 2.2].

Lemma 8.2.10 If R is a non-trivial triangular structure on HG, then (HG)l = (HG)r.

ProofµUsing R21 = R−1 and R−1 = (S ⊗ Id)(R), one can complete the proof. �

Now we can give a necessary and sufficient condition for determining when a

triangular structure R is minimal.

Corollary 8.2.11 If R is a non-trivial triangular structure on HG, then R is minimal

if and only if w1 is a non-degenerated matrix.

ProofµBy Lemmas 8.2.10,8.1.3 and Proposition 8.1.7, we get what we want. �

Next we will give a criterion for when the w1 in Corollary 8.2.11 is non-degenerated

matrix. Assume that H = 〈gi| gni
i = 1, gigj = gjgi〉1≤i,j≤m as group and let w

be a bicharacter on H, then we will give a criterion for when (w(g, h))g,h∈H is non-

degenerated matrix. Let αij := w(gi, gj) and let ωi be a primitive nith root of 1 in

k. Since w is bicharacter, we can assume that αij = ω
mij

j . Then we can get a matrix

(mij)1≤i,j≤m and we denote it as M . Let (i1, ..., im), (j1, ..., jm) ∈ Zn1 × ...× Znm such

that (i1, ..., im) = (j1, ..., jm), then we will write it as (i1, ..., im) ≡ (j1, ..., jm).

Lemma 8.2.12 The matrix (w(g, h))g,h∈H is non-degenerated if and only if the follow-

ing equation has a unique solution (0, ..., 0)

(i1, ..., im)M ≡ (0, ..., 0), (i1, ..., im) ∈ Zn1 × ...× Znm .

ProofµLet χ
g
i1
1 ...g

im
m

: H → k be a character which is determined by χ
g
i1
1 ...g

im
m

(gj) := ω
ij
j

for 1 ≤ ik ≤ nk, 1 ≤ j, k ≤ m. Then it is well known that {e
g
i1
1 ...g

im
m
| 1 ≤ ik ≤
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nk, 1 ≤ k ≤ m} is a basis of orthogonal idempotents of k[H], where e
g
i1
1 ...g

im
m

=∑
h∈H χgi11 ...g

im
m

(h). Define a linear map f : kH → k[H] by f(eg) :=
∑

h∈H w(g, h)h

for g, h ∈ H, then we can see that (w(g, h))g,h∈H is non-degenerated if and only if f is

bijective. To study when f is bijective, we define anther linear map φ : k[H]→ kH by

φ(gi11 ...g
im
m ) :=

∑
h∈H χgi11 ...g

im
m

(h)−1eh where 1 ≤ ik ≤ nk, 1 ≤ k ≤ m. Using the orthog-

onal relationship between the characters of H, we know that φ is bijective. Therefore

we know f is bijective if and only if φ◦ f is bijective. By direct calculation we have φ◦
f(e

g
i1
1 ...g

im
m

) = n1...nme
g
i′1
1 ...g

i′m
m

where (i′1, ..., i
′
m) = (i1, ..., im)M . Therefore we know that

φ ◦ f is bijective if and only if (i1, ..., im)M 6= (j1, ..., jm)M for (i1, ..., im) 6= (j1, ..., jm).

However, one can see that (i1, ..., im)M 6= (j1, ..., jm)M for (i1, ..., im) 6= (j1, ..., jm) if

and only if (i1, ..., im)M ≡ (0, ..., 0), (i1, ..., im) ∈ Zn1 × ...×Znm has a unique solution.

Hence we have completed the proof. �

For the group H, if m = 2 and n1 = n2 = n then we have a more simple way

to determine when the matrix (w(g, h))g,h∈H is non-degenerated. For convenience, we

denote |M | as the determinant of M and write (|M |, n) as the largest common factor

of |M | and n.

Corollary 8.2.13 If H = 〈gi| gni = 1, gigj = gjgi〉1≤i,j≤2 as group, then the matrix

(w(g, h))g,h∈H is non-degenerated if and only if (|M |, n)|mij for 1 ≤ i, j ≤ 2.

Proofµ By Lemma 8.2.12, we only need to show that (i1, i2)M ≡ (0, 0), (i1, i2) ∈
Zn×Zn has a unique solution if and only if (|M |, n)|mij for 1 ≤ i, j ≤ 2. Assume that

(i1, i2)M ≡ (0, 0), (i1, i2) ∈ Zn×Zn has a unique solution. Let d := n
(|M |,n) and let M∗

be the adjoint matrix of M , then we have (dM∗)M = diag(d|M |, d|M |). Therefore we

have diag(d|M |, d|M |) ≡ (0, 0) ∈ Zn × Zn. Since (i1, i2)M ≡ (0, 0), (i1, i2) ∈ Zn × Zn
has only one solution, we obtain d(m22,−m12) ≡ (0, 0) and d(−m21,−m11) ≡ (0, 0).

And this implies that (|M |, n)|mij for 1 ≤ i, j ≤ 2. Conversely, we suppose that

(|M |, n)|mij for 1 ≤ i, j ≤ 2, then we can find m′ij ∈ N such that mij = (|M |, n)m′ij

for 1 ≤ i, j ≤ 2. Let M ′ := (m′ij)1≤i,j≤2, then it can be seen that M = (|M |, n)M ′

and (|M ′|, d) = 1. By definition, one can get that (i1, i2)M ≡ (0, 0), (i1, i2) ∈ Zn × Zn
has a unique solution if and only if (i1, i2)M ≡ (0, 0), (i1, i2) ∈ Zd × Zd has a unique

solution. Due to (|M ′|, d) = 1, we know M ′ is the inverse of M in M2(Zd). Thus we

obtain that (i1, i2)M ≡ (0, 0), (i1, i2) ∈ Zd × Zd has a unique solution. �
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Next, we give all minimal triangular structures on Hn
b:y by using the above conclu-

sions. Let ω be a 2nth primitive root of 1 and let T ′n := {minimal triangular structures

on Hn
b:y }, then we have

Theorem 8.2.14 T ′n
1−1←→ {(α, β, ωk, δ) ∈ k4| α2 = β2 = δ2 = 1, k ∈ N and (k2, n)|k}.

ProofµWe will use Theorem 8.2.9 and Corollary 8.2.11 to get what we want. Let R

be a non-trivial triangular structure. Since the proof of Theorem 8.2.9, we know that

the map φ : Tn → {(α, β1, β2, δ) ∈ k4| α2 = β2
1 = β2n

2 = δ2 = 1} which is defined

by φ(R) := (α22, β1, β2, δ) is bijective. To complete the proof, we only need to show

Im(φ|T ′n) = {(α, β, ωk, δ) ∈ k4| α2 = β2 = δ2 = 1, k ∈ N and (k2, n)|k}. Because we

have proved that β2n
2 = 1 in Theorem 8.2.9, we can assume that β2 = ωk for some

k ∈ N. Then we claim that R is minimal if and only if (k2, n)|k. By Corollary 8.2.11,

we obtain that R is minimal if and only if the matrix w1 is non-degenerated. Since

S = 〈si| s2ni = 1, sisj = sjsi〉1≤i,j≤2 as group, then we can use Corollary 8.2.13 to get

that w1 is non-degenerated if and only if (|M |, n)|mij for 1 ≤ i, j ≤ 2. Owing to the

proof of Theorem 8.2.9, we know the following equations hold

α11 = 1, α12 = α−121 = −β2
2 , α

2
22 = 1.

By definition of the matrixM , we obtainm11 = 0, m12 = 2k+n, m21 = −2k+n, m22 =

ln, where l ∈ N. Thus we have |M | = n2 − 4k2. Due to n is an odd number, we get

(|M |, n) = (k2, n). Therefore we know R is minimal triangular structure if and only if

the corresponding four tuple (α22, β1, ω
k, δ) satisfies that (k2, n)|k. �

Finally, we will show that H1
b:y is the smallest Hopf algebra among non-trivial

semisimple minimal triangular Hopf algebras. To do this, we first recall the only two

non-trivial (self-dual) semisimple Hopf algebras A± of dimension 12(See [18] for details),

where A± are the form kS3#σ±,τkZ2.

Lemma 8.2.15 The Hopf algebras A± are not minimal triangular Hopf algebras.

ProofµWe only show that A+ is not minimal triangular and the other part can be

proved in a similar way. Assume that A+ is minimal triangular. Since A+ is self-dual,

we can find a braided structure 〈, 〉 : A+ × A+ → k such that 〈, 〉 is non-degenerated
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and 〈a, b〉 = 〈s(b), a〉 for a, b ∈ A+. Next, we will show that such braided structure

does not exist. Consider the 〈, 〉 restrict to kS3 × kS3 and we denote it as 〈, 〉 for
convenience. Then we get that 〈, 〉 is a braided structure on kS3 such that 〈a, b〉 =

〈s(b), a〉 for a, b ∈ kS3 . Using the viewpoint of dual, we get a triangular structure

on k[S3]. But k[S3] = kZ3#kZ2 and hence we can use Proposition 3.1.5 to obtain

that k[S3] has only trivial quasitriangular structures. Further, one can obtain that the

only triangular structure on k[S3] is R = 1 ⊗ 1. Thus we have 〈eg, eh〉 = ε(eg)ε(eh)

for g, h ∈ S3. To determined the braided structure 〈, 〉, we assume 〈eg, x〉 = β(g),

where β(g) ∈ k. Directly we have 〈eg, ehx〉 =
∑

kl=g〈ek, x〉〈el, eh〉 = ε(eh)β(g). Since

〈egeh, x〉 =
∑

k,l∈S3
τ(k, l)〈eg, ekx〉〈eh, elx〉, we obtain δg,hβ(g) = β(g)β(h) for g, h ∈ S3.

Since 〈, 〉 is non-degenerated, we can assume that g0 ∈ S3 satisfying β(g0) = 1. Then

one can see that β(g) = 0 when g 6= g0. Let g1 ∈ S3 such that g1 6= 1 and g1 6= g0,

then we have 〈eg1 , b〉 ≡ 0 for b ∈ A+. But this fact contradicts the assumption about

the non-degeneracy of 〈, 〉. Therefore we get A+ is not minimal triangular. �

Theorem 8.2.16 The Hopf algebra H1
b:y is the smallest Hopf algebra among non-trivial

semisimple minimal triangular Hopf algebras.

Proofµ By [1, Section 2.3], we know the non-trivial semisimple Hopf algebras with

dimension< 16 are the 8-dimension Kac algebra K8 and the two 12-dimension semisim-

ple Hopf algebras A±. Since all quasitriangular structures on K8 have been gotten

in [71], one can easily check that K8 is not minimal triangular. By Lemma 8.2.15, we

know A± are not minimal triangular. Therefore we have completed the proof. �
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