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Abstract

This study is based on the axiomatic system of Lie conformal algebras proposed

by Kac, which provides an algebraic characterization of the singular part of the op-

erator product expansion (OPE) for chiral �elds in two-dimensional conformal �eld

theory. The theory of Lie conformal algebras is not only closely related to mathemati-

cal theories such as vertex algebras, in�nite-dimensional Lie algebras with locality, and

Hamiltonian formal systems, but also has signi�cant applications in physical problems

like nonlinear evolution equations. This makes the study of their structural and repre-

sentation theories profoundly meaningful both mathematically and physically. Biswal

et al. systematically investigated rank-two Lie conformal algebras, classifying them

into semisimple Lie conformal algebras, solvable Lie conformal algebras, and two types

of non-semisimple and non-solvable Lie conformal algebras, while completely charac-

terizing their algebraic structures. Building upon the completed classi�cation of �nite

irreducible modules, this paper further studies the extension problems of irreducible

modules for rank two Lie conformal algebras. This report consists of �ve chapters.

In Chapter 1, we introduce the research background and the main results of this

paper.

In Chapter 2, we review necessary fundamental de�nitions, relevant notations, and

existing important results.

In Chapter 3, we �rst consider semisimple rank two Lie conformal algebras. Based

on the classi�cation results of �nite semisimple Lie conformal algebras by Kac et al.

and the properties of semisimple Lie algebras, it is shown that semisimple rank two Lie

conformal algebras are isomorphic to the direct sum of two Virasoro conformal alge-

bras. By solving systems of multivariate polynomial equations, we provide a complete

classi�cation of the extensions of irreducible modules for this class of algebras. Sub-

sequently, using similar methods, we study solvable rank two Lie conformal algebras.
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By introducing integration techniques and utilizing properties of coe�cient matrices

and skew-symmetric matrices, we ultimately establish the corresponding classi�cation

results.

In Chapter 4, we focus on the classi�cation of extensions of irreducible modules

for non-semisimple and non-solvable rank two Lie conformal algebras of Type I.

In Chapter 5, we investigate non-semisimple and non-solvable rank two Lie con-

formal algebras of Type II. Notably, when Q = 0, this class of algebras corresponds

precisely to the W(a, b) algebras, whose module extension classi�cation has been com-

pleted by Luo et al. When Q ̸= 0, the structures of these algebras can be further

divided into �ve subcases, for each of which we provide a complete classi�cation of the

extensions of irreducible modules.

Keywords: Conformal algebra; Lie conformal algebra; Semisimple; Solvable; Non-

semisimple and non-solvable; Conformal module; Irreducible module; Extension; Rank

two.
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Chapter 1 Introduction

�1.1 Background

Since vertex algebras were introduced by Borcherds [5] in 1986, they have found

extensive applications in both mathematics and physics [3, 16]. In particular, the

locality condition between �elds in the de�nition of vertex algebras characterizes the

independence of measurements at spacelike separated points, which carries signi�cant

physical meaning. However, the complex operational rules involved make the study of

related theories relatively challenging.

Through formal Fourier transforms, the investigation of locality between two �elds

can be transformed into an examination of the singular part of their operator product

expansion (OPE). In the 1990s, Kac [9, 22] introduced an axiomatic de�nition of the

Lie conformal algebra, which gives an algebraic description of the singular part of the

operator product extansion (OPE) of the chiral �elds in 2-dimensional conformal �eld

theory. In addition to being closely related to vertex algebra and conformal �eld theory,

the theory of Lie conformal algebras is also closely associated with in�nite-dimensional

Lie algebras [1], Hamiltonian formal systems of nonlinear evolution equations [2], and

quantum physics [10], and thus has received more attention in recent years.

A conformal algebra is called �nite if it is a �nitely generated C[∂]-module, and the

rank of a �nite conformal algebra is just its rank as a C[∂]-module. It was shown in [4]

that a rank two conformal algebra is one of the following four types up to isomorphism:

(i) a semisimple conformal algebra;

(ii) a solvable conformal algebra;

(iii) the direct sum of a commutative Lie conformal algebra of rank one and the Vi-

rasoro conformal algebra V ir (called in this paper the Lie conformal algebra of

Type I);

(iv) and what we called the Lie conformal algebra of Type II(see case (2ii) in Propo-

sition 2.1.9).
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The classi�cation of their �nitely irreducible conformal modules can be found in [6,

32]. Even for �nite semisimple Lie conformal algebras, however, conformal modules

of Lie conformal algebras are generally not completely reducible. Therefore, solving

the extension problem plays an essential role in studying the representation theory of

conformal algebras. For instance, extensions of �nite irreducible conformal modules

over the Virasoro, the current, the Neveu-Schwarz and the semi-direct sum of the

Virasoro and the current conformal algebras were investigated by Cheng, Kac and

Wakimoto in [7,8], that over �nite Lie conformal algebras of planar Galilean type were

studied in [14], that over supercurrent conformal algebras were classi�ed by Lam in [17],

that over Lie conformal algebras W(a, b, r) were discussed in [24], and that over the

Schrödinger-Virasoro conformal algebras were considered by Yuan and Ling in [35]. In

this study, extensions of �nite irreducible modules over rank two conformal algebras are

characterized by dealing with certain polynomial equations induced by corresponding

module actions.

�1.2 Main results

It was proved in [9] that any �nite semisimple Lie conformal algebra is the direct

sum of the following algebras:

Cur(g), V ir ⋉ Cur(g), V ir ⊕ V ir,

where g is a �nite-dimensional semisimple Lie algebra. Let R be a conformal algebra

of rank two. Since there exists no semisimple Lie algebra of dimension less than 3, we

only need to focus on V ir ⊕ V ir for the semisimple case and the results are listed in

Theorems 3.1.2, 3.1.4 and 3.1.7.

Theorem 3.1.2 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of �nite irreducible conformal modules of the form

0 −→ Ccη −→ E −→ Vδ,α,β −→ 0 (1.1)

exist only when (δ1, δ2) = (1, 0), α1 ∈ {1, 2}, β1 + η = 0 or (δ1, δ2) = (0, 1), α2 ∈
{1, 2}, β2 + η = 0. In these cases, there exists a unique (up to a scalar) nontrivial

extension, i.e. dim(Ext(Vδ,α,β,Ccη)) = 1. Moreover, they are given (up to equivalence)
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by

Rλcη = 0, ∂cη = ηcη,

Aλv = δ1(∂ + α1λ+ β1)v + f(λ)cη, Bλv = δ2(∂ + α2λ+ β2)v + g(λ)cη. (1.2)

The values of δi, αi, βi, i = 1, 2 and η, along with the corresponding polynomials f(λ)

and g(λ) giving rise to nontrivial extensions, are listed as follows:

(i) If δ1 = 1, α1 ∈ {1, 2}, β1 + η = 0, then δ2 = 0, g(λ) = 0, 0 ̸= α2, β2 ∈ C and

f(λ) =

s1λ
2, α1 = 1,

s2λ
3, α1 = 2,

with nonzero constants s1, s2.

(ii) If δ2 = 1, α2 ∈ {1, 2}, β2 + η = 0, then δ1 = 0, f(λ) = 0, 0 ̸= α1, β1 ∈ C and

g(λ) =

t1λ
2, α2 = 1,

t2λ
3, α2 = 2,

with nonzero constants t1, t2.

Theorem 3.1.4 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of �nite irreducible conformal modules of the form

0 −→ Vδ,α,β −→ E −→ Ccη −→ 0 (1.3)

exist only when δ1 = 1, α1 = 1, β1 + η = 0 or δ2 = 1, α2 = 1, β2 + η = 0. In these cases,

there exists a unique (up to a scalar) nontrivial extension, i.e. dim(Ext(Ccη, Vδ,α,β)) =

1. Moreover, they are given (up to equivalence) by

Aλv = δ1(∂ + α1λ+ β1)v, Bλv = δ2(∂ + α2λ+ β2)v,

Aλcη = f(∂, λ)v, Bλcη = g(∂, λ)v, ∂cη = ηcη + h(∂)v. (1.4)

The values of δi, αi, βi, i = 1, 2 and η along with the corresponding polynomials f(∂, λ),

g(∂, λ) and h(∂) giving rise to nontrivial extensions, are listed as follows:

3



(i) If δ1 = 1, α1 = 1, β1 + η = 0, then δ2 = 0, g(∂, λ) = 0, α2, β2 ∈ C and f(∂, λ) =

h(∂) = s with nonzero constant s.

(ii) If δ2 = 1, α2 = 1, β2 + η = 0, then δ1 = 0, f(∂, λ) = 0, α1, β1 ∈ C and g(∂, λ) =

h(∂) = t with nonzero constant t.

Theorem 3.1.7 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of �nite irreducible conformal modules of the form

0 −→ Vδ,α,β −→ E −→ Vδ̄,ᾱ,β̄ −→ 0 (1.5)

only exist in the following cases. Moreover, they are given (up to equivalence) by

Aλv = δ1(∂ + α1λ+ β1)v, Bλv = δ2(∂ + α2λ+ β2)v,

Aλv̄ = δ̄1(∂ + ᾱ1λ+ β̄1)v̄ + f(∂, λ)v, Bλv̄ = δ̄2(∂ + ᾱ2λ+ β̄2)v̄ + g(∂, λ)v. (1.6)

The value of δi, δ̄i, αi, ᾱi, βi, β̄i, i = 1, 2 and the corresponding polynomials f(∂, λ) and

g(∂, λ) giving rise to nontrivial extensions, are listed as follows:

1. In the case that δ1 = δ̄1 = 1, δ2 = δ̄2 = 0, α2, β2, ᾱ2, β̄2 ∈ C, g(∂, λ) = 0, β1 =

β̄1, ᾱ1 − α1 ∈ {0, 1, 2, 3, 4, 5, 6}, α1, ᾱ1 ̸= 0 and

(i) ᾱ1 = α1, f(∂, λ) = s0 + s1λ, where (s0, s1) ̸= (0, 0).

(ii) ᾱ1 − α1 = 2, f(∂, λ) = sλ2(2(∂ + β1) + λ), where s ̸= 0.

(iii) ᾱ1 − α1 = 3, f(∂, λ) = s(∂ + β1)λ
2(∂ + β1 + λ), where s ̸= 0.

(iv) ᾱ1 − α1 = 4, f(∂, λ) = sλ2(4(∂ + β1)
3 + 6(∂ + β1)

2λ − (∂ + β1)λ
2 + α1λ

3),

where s ̸= 0.

(v) ᾱ1 = 1 and α1 = −4, f(∂, λ) = s((∂+β1)
4λ2−10(∂+β1)

2λ4−17(∂+β1)λ
5−

8λ6), where s ̸= 0.

(vi) ᾱ1 = 7
2
±

√
19
2

and α1 = −5
2
±

√
19
2
. f(∂, λ) = s((∂ + β1)

4λ3 − (2α1 + 3)(∂ +

β1)
3λ4 − 3α1(∂ + β1)

2λ5 − (3α1 + 1)(∂ + β1)λ
6 − (α1 +

9
28
)λ7), where s ̸= 0.

The value of dim(Ext(Vδ̄,ᾱ,β̄, Vδ,α,β)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that δ1 = δ̄1 = 0, δ2 = δ̄2 = 1, α1, β1, ᾱ1, β̄1 ∈ C, f(∂, λ) = 0, β2 =

β̄2, ᾱ2 − α2 ∈ {0, 1, 2, 3, 4, 5, 6}, α2, ᾱ2 ̸= 0, and

4



(i) ᾱ2 = α2, g(∂, λ) = t0 + t1λ, where (t0, t1) ̸= (0, 0).

(ii) ᾱ2 − α2 = 2, g(∂, λ) = tλ2(2(∂ + β2) + λ), where t ̸= 0.

(iii) ᾱ2 − α2 = 3, g(∂, λ) = t(∂ + β2)λ
2(∂ + β2 + λ), where t ̸= 0.

(iv) ᾱ2 − α2 = 4, g(∂, λ) = tλ2(4(∂ + β2)
3 + 6(∂ + β2)

2λ − (∂ + β2)λ
2 + α2λ

3),

where t ̸= 0.

(v) ᾱ2 = 1 and α2 = −4, g(∂, λ) = t((∂+β2)
4λ2−10(∂+β2)

2λ4−17(∂+β2)λ
5−

8λ6), where t ̸= 0.

(vi) ᾱ2 = 7
2
±

√
19
2

and α2 = −5
2
±

√
19
2
, g(∂, λ) = t((∂ + β2)

4λ3 − (2α2 + 3)(∂ +

β2)
3λ4 − 3α2(∂ + β2)

2λ5 − (3α2 + 1)(∂ + β2)λ
6 − (α2 +

9
28
)λ7), where t ̸= 0.

The value of dim(Ext(Vδ̄,ᾱ,β̄, Vδ,α,β)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

The nontrivial extensions for solvable rank two conformal algebras can be seen in

Theorems 3.2.3, 3.2.5 and 3.2.10, while those for non-semisimple and non-solvable Lie

conformal algebras of Type I are described in Theorems 4.1.2, 4.2.2 and 4.3.2.

Theorem 3.2.3 For a solvable rank two Lie conformal algebra R, nontrivial extensions

of �nite irreducible conformal modules of the form

0 −→ Ccη −→ E −→ VϕA,ϕB
−→ 0 (1.7)

exist only if p(λ) ̸= 0 and Q1(∂, λ) = 0. Moreover, they are given (up to equivalence)

by

Rλcη = 0, ∂cη = ηcη,

Aλv = ϕA(λ)v + f(λ)cη, Bλv = ϕB(λ)v + g(λ)cη. (1.8)

The values of η along with the corresponding polynomials ϕA(λ), ϕB(λ), f(λ) and g(λ)

giving rise to nontrivial extensions, are listed as follows: η ∈ C, ϕA(λ) = −p(λ),

ϕB(λ) = 0, f(λ) = 0 and g(λ) is a nonzero constant. Thus dim(Ext(VϕA,ϕB
,Ccη)) =

δϕA(λ)+p(λ),0.

Theorem 3.2.5 For a solvable rank two Lie conformal algebra R, nontrivial extensions

of �nite irreducible conformal modules of the form

0 −→ VϕA,ϕB
−→ E −→ Ccη −→ 0 (1.9)

5



do not exist, that is, dim(Ext(Ccη, VϕA,ϕB
)) = 0.

Theorem 3.2.10 For a solvable rank two Lie conformal algebra R, nontrivial exten-

sions of �nite irreducible conformal modules of the form

0 −→ VϕA,ϕB
−→ E −→ Vϕ̄A,ϕ̄B

−→ 0 (1.10)

always exist. Moreover, they are given (up to equivalence) by

Aλv = ϕA(λ)v, Bλv = ϕB(λ)v,

Aλv̄ = ϕ̄A(λ)v̄ + f(∂, λ)v, Bλv̄ = ϕ̄B(λ)v̄ + g(∂, λ)v. (1.11)

The corresponding polynomials ϕA(λ), ϕB(λ), ϕ̄A(λ), ϕ̄B(λ), f(∂, λ) and g(∂, λ) giving

rise to nontrivial extensions, are listed as follows:

1. In the case that p(λ) = Q1(∂, λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) = 0, ϕB(λ) = ϕ̄B(λ) ̸= 0, then f(∂, λ) = s(λ), g(∂, λ) =

t(λ), where s, t are polynomials, and either s ̸= 0 or t(λ) is not a scalar

multiple of λϕB(λ).

(ii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, ϕB(λ) = ϕ̄B(λ) = 0, then f(∂, λ) = s(λ), g(∂, λ) =

t(λ), where s, t are polynomials, and either t ̸= 0 or s(λ) is not a scalar

multiple of λϕA(λ).

(iii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, ϕB(λ) = ϕ̄B(λ) ̸= 0, then f(∂, λ) = s(λ), g(∂, λ) =

t(λ), where s, t are polynomials, and s(λ), t(λ) are not the same scalar multiple

of λϕA(λ), λϕB(λ) respectively.

2. In the case that p(λ) = 0, Q1(∂, λ) ̸= 0, we always have ϕB(λ) = ϕ̄B(λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) ̸= 0, g(∂, λ) = 0, then f(∂, λ) = s(λ), where the polynomial

s(λ) is not a scalar multiple of λϕA(λ).

(ii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, g(∂, λ) = t(λ) ̸= 0 such that the coe�cient ma-

trix M = {qij} of Q1(−λ − µ, λ)t(λ + µ) is of rank 2 and for qi0,j0 ̸= 0,

ϕA(λ) =
ai0

fi0,j0
(
∑

k fk,j0λ
k)− aj0

fi0,j0
(
∑

k fk,i0λ
k) with the coe�cients ai0−1, aj0−1

6



of λi0−1, λj0−1 in ϕA are not all 0, then

f(∂, λ) =

− 1
ai0−1

(
∑

k qk,j0λ
k)∂ + s(λ), if ai0−1 ̸= 0,

− 1
aj0−1

(
∑

k qk,i0λ
k)∂ + s(λ), if ai0−1 = 0,

where s is a polynomial.

3. In the case that p(λ) ̸= 0, Q1(∂, λ) = 0, we have ϕB(λ) = ϕ̄B(λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) ̸= 0, then f(∂, λ) = s(λ), g(∂, λ) = 0, where s1, s2 are

polynomials, and s(λ) is not a scalar multiple of λϕA(λ).

(ii) If ϕA(λ) ̸= ϕ̄A(λ), then f(∂, λ) = 0, ϕA(λ)− ϕ̄A(λ) = p(λ), and

g(∂, λ) =

k1(∂ + 1
r
λ) + k2, p(λ) = rϕA(λ) and r ̸= 1,

k1, p(λ) is not a scalar multiple of ϕA(λ),

where k1, k2 ∈ C and g(∂, λ) ̸= 0.

The space of Ext(Vϕ̄A,ϕ̄B
, VϕA,ϕB

) is of in�nite dimension in all of the above subcases

but (3)-(ii).

Theorem 4.1.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of �nite irreducible conformal modules of the form

0 −→ Ccη −→ E −→ Vα,β,ϕ −→ 0 (1.12)

exist only when (δ1, δ2) = (1, 0), α ∈ {1, 2}, β + η = 0. Moreover, they are given (up to

equivalence) by

Rλcη = 0, ∂cη = ηcη

Aλv = δ1(∂ + αλ+ β)v + f(λ)cη, Bλv = δ2ϕ(λ)v + g(λ)cη. (1.13)

The values of η, along with the corresponding polynomials f(λ) and g(λ) giving rise to
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nontrivial extensions, are listed as follows: g(λ) = 0 and

f(λ) =

s1λ
2, α = 1,

s2λ
3, α = 2,

with nonzero constants s1, s2. In these cases, dim(Ext(Vα,β,ϕ,Ccη)) = 1.

Theorem 4.2.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of �nite irreducible conformal modules of the form

0 −→ Vα,β,ϕ −→ E −→ Ccη −→ 0 (1.14)

exist only when δ1 = 1, α = 1, β + η = 0. Moreover, the space of Ext(Ccη, Vα,β,ϕ)

is 1-dimensional, and the unique nontrivial extension is given (up to equivalence) as

follows: δ2 = 0, g(∂, λ) = 0 and f(∂, λ) = h(∂) = s with nonzero constant s.

Theorem 4.3.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of �nite irreducible conformal modules of the form

0 −→ Vα,β,ϕ −→ E −→ Vᾱ,β̄,ϕ̄ −→ 0 (1.15)

exist only when (δ1, δ2) = (δ̄1, δ̄2). Moreover, they are given (up to equivalence) by

Aλv = δ1(∂ + αλ+ β)v, Bλv = δ2ϕ(λ)v,

Aλv̄ = δ̄1(∂ + ᾱλ+ β̄)v̄ + f(∂, λ)v, Bλv̄ = δ̄2ϕ̄(λ)v̄ + g(∂, λ)v. (1.16)

The value of δi, δ̄i, i = 1, 2, α, ᾱ, β, β̄, and the corresponding polynomials ϕ(λ), ϕ̄(λ), f(∂, λ)

and g(∂, λ) giving rise to nontrivial extensions, are listed as follows:

1. In the case that (δ1, δ2) = (δ̄1, δ̄2) = (1, 0), g = 0, β = β̄, ᾱ−α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸=
0, and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2, f(∂, λ) = sλ2(2(∂ + β) + λ), where s ̸= 0.

(iii) ᾱ− α = 3, f(∂, λ) = s(∂ + β)λ2((∂ + β) + λ), where s ̸= 0.

(iv) ᾱ− α = 4, f(∂, λ) = sλ2(4(∂ + β)3 + 6(∂ + β)2λ− (∂ + β)λ2 + α1λ
3), where

s ̸= 0.
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(v) ᾱ = 1 and α = −4, f(∂, λ) = s((∂+β)4λ2−10(∂+β)2λ4−17(∂+β)λ5−8λ6),

where s ̸= 0.

(vi) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s((∂+β)4λ3− (2α+3)(∂+β)3λ4−

3α(∂ + β)2λ5 − (3α + 1)(∂ + β)λ6 − (α + 9
28
)λ7), where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄,ϕ̄, Vα,β,ϕ)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that (δ1, δ2) = (δ̄1, δ̄2) = (0, 1), ϕ(λ) = ϕ̄(λ), f(∂, λ) = 0, g(∂, λ) = t(λ)

with polynomials t and t(λ) is not a scalar multiple of λϕ(λ). Then the space

Ext(Vᾱ,β̄,ϕ̄, Vα,β,ϕ) is in�nite-dimensional.

If R is a non-semisimple and non-solvable Lie conformal algebra of Type II, one

can �nd a basis {A,B} such that

[AλA] = (∂ + 2λ)A+Q(∂, λ)B, [AλB] = (∂ + aλ+ b)B, [BλB] = 0,

where a, b ∈ C and Q(∂, λ) is some skew-symmetric polynomial depending on a, b, i.e.

Q(∂, λ) = −Q(∂,−∂ − λ). If Q(∂, λ) = β(∂ + 2λ), a = 1, b = 0, R is the algebra

called L(β) in [28]. If Q(∂, λ) = 0, R is just the Lie conformal algebra W(a, b) whose

extension problem has been investigated in [20, 21]. Particularly, W(1 − b, 0) is the

Lie conformal algebra W(b) in [19] and W(1, 0) is just the Heisenberg-Virasoro Lie

conformal algebra in [18]. So in this case we consider R under the condition that

Q(∂, λ) ̸= 0 and the results can be found in Theorems 5.2.2, 5.2.4 and 5.2.6. Fixed

a = 1, b = 0, Q(∂, λ) = ∂ + 2λ, our results are consistent with those mentioned in [36].

Theorem 5.2.2 For a rank two Lie conformal algebra R that is of Type II with Q ̸= 0,

nontrivial extensions of �nite irreducible conformal modules of the form

0 −→ Ccη −→ E −→ Vα,β −→ 0 (1.17)

exist only if β + η = 0. Moreover, they are given (up to equivalence) by

Rλcη = 0, ∂cη = ηcη,

Aλv = (∂ + αλ+ β)v + f(λ)cη, Bλv = g(λ)cη. (1.18)

The values of α along with the corresponding polynomials f(λ) and g(λ) giving rise to
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nontrivial extensions, are listed as follows: g(λ) = 0 and

f(λ) =

s1λ
2, α = 1,

s2λ
3, α = 2,

with nonzero constants s1, s2. In these cases, dim(Ext(Vα,β,Ccη)) = 1.

Theorem 5.2.4 For a rank two Lie conformal algebra R that is of Type II, nontrivial

extensions of �nite irreducible conformal modules of the form

0 −→ Vα,β −→ E −→ Ccη −→ 0 (1.19)

exist only if β + η = 0 and α = 1. Moreover, they are given (up to equivalence) by

Aλv = (∂ + αλ+ β)v, Bλv = 0,

Aλcη = f(∂, λ)v, Bλcη = g(∂, λ)v, ∂cη = ηcη + h(∂)v, (1.20)

and dim(Ext(Ccη, Vα,β)) = 1. The corresponding polynomials f(∂, λ), g(∂, λ) and h(∂)

giving rise to nontrivial extensions, are listed as follows: g(∂, λ) = 0 and f(∂, λ) =

h(∂) = s with nonzero constant s.

Theorem 5.2.6 For a rank two Lie conformal algebra R that is of Type II, nontrivial

extensions of �nite irreducible conformal modules of the form

0 −→ Vα,β −→ E −→ Vᾱ,β̄ −→ 0 (1.21)

exist only if β = β̄. Moreover, they are given (up to equivalence) by

Aλv = (∂ + αλ+ β)v, Bλv = 0,

Aλv̄ = (∂ + ᾱλ+ β̄)v̄ + f(∂, λ)v, Bλv̄ = g(∂, λ)v. (1.22)

The value of α, ᾱ, and the corresponding polynomials f(∂, λ) and g(∂, λ) giving rise to

nontrivial extensions, are listed as follows (by replacing ∂ by ∂ + β):

1. In the case when a = 1, where Q(∂, λ) = c(∂ + 2λ) for some nonzero constant c,

ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸= 0 and
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(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 1, f(∂, λ) = ct
α
∂, g(∂, λ) = tλ, where t ̸= 0.

(iii) ᾱ− α = 2 with α ̸= −1, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ = 1 and α = −1, f(∂, λ) = sλ2(2∂ + λ)− ct(∂2 − λ2), g(∂, λ) = t(∂λ+ λ2),

where (s, t) ̸= (0, 0).

(v) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(vi) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+ 3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.

2. In the case when a = 0, where Q(∂, λ) = c(∂ + 2λ)(∂ + λ)λ+ d(∂ + 2λ)∂ for some

nonzero constants c, d, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸= 0 and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 1, f(∂, λ) = − ct
α
∂λ− dt

α
∂, g(∂, λ) = t, where t ̸= 0.

(iii) ᾱ− α = 2 with α ̸= −1, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ = 1 and α = −1, f(∂, λ) = sλ2(2∂ + λ) + ct∂2λ + dt(∂2 − λ2), g(∂, λ) =

t(∂ + λ), where (s, t) ̸= (0, 0).

(v) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(vi) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+ 3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.
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3. In the case when a = −1, where Q(∂, λ) = c(∂ + 2λ)∂2 + d(∂ + 2λ)(∂ + λ)∂λ for

some nonzero constants c, d, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸= 0 and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2 with α ̸= −1
2
, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iii) ᾱ = 3
2
and α = −1

2
, f(∂, λ) = sλ2(2∂+λ)−2dt∂2λ−ct(2∂2−λ2), g(∂, λ) = t,

where (s, t) ̸= (0, 0).

(iv) ᾱ− α = 3 with α ̸= −1, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(v) ᾱ = 2 and α = −1, f(∂, λ) = s∂λ2(∂ + λ)− dt
4
(2∂3λ + λ4)− ct

2
(∂3 − 2∂λ2 −

2λ3), g(∂, λ) = t(∂ + 1
2
λ), where (s, t) ̸= (0, 0).

(vi) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+ 3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i) and (v), and 1 in the other

subcases.

4. In the case when a = −4, where Q(∂, λ) = c(∂ + 2λ)(∂ + λ)3λ3 for some nonzero

constant c, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6, 7}, α, ᾱ ̸= 0, and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iii) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(v) ᾱ−α = 5 with α /∈ {−2,−4}, f(∂, λ) = − 3
α(α+2)(α+4)

ct∂3λ3+ 9(α+1)
2α(α+2)(α+4)

ct∂2λ4−
9(α+1)(2α+1)
10α(α+2)(α+4)

ct∂λ5 + (α+1)(2α+1)
10(α+2)(α+4)

ctλ6, g(∂, λ) = t, where t ̸= 0.

(vi) ᾱ = 3 and α = −2, f(∂, λ) = 3
8
ct∂4λ2− 3

2
ct∂2λ4− 57

40
ct∂λ5− 2

5
ctλ6, g(∂, λ) = t,

where t ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.
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(viii) ᾱ − α = 6 with α /∈ {−5
2
,−5

2
±

√
19
2
}, f(∂, λ) = − 3

(2α+5)(2α2+10α+3)
ct∂4λ3 +

3(2α+3)
(2α+5)(2α2+10α+3)

ct∂3λ4 − 9(α+1)(2α+3)
5(2α+5)(2α2+10α+3)

ct∂2λ5 + (α+1)(2α+1)(2α+3)
5(2α+5)(2α2+10α+3)

ct∂λ6 −
α(α+1)(2α+1)(2α+3)
70(2α+5)(2α2+10α+3)

ctλ7, g(∂, λ) = t(∂ − α
5
λ), where t ̸= 0.

(ix) ᾱ = 7
2
and α = −5

2
, f(∂, λ) = 36

665
ct∂̄5λ2 − 54

113
ct∂̄3λ4 − 387

665
ct∂̄2λ5 − 218

665
ct∂̄λ6 +

127
1862

ctλ7, g(∂, λ) = t(∂ + 1
2
λ), where t ̸= 0.

(x) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+ 3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

(xi) ᾱ = 1 and α = −6, f(∂, λ) = 1
35
ct∂5λ3 + 2

7
ct∂4λ4 + 36

35
ct∂3λ5 + 12

7
ct∂2λ6 +

66
49
ct∂λ7 + 99

245
ctλ8, g(∂, λ) = t(∂2 + 11

5
∂λ+ 6

5
λ2), where t ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i), and 1 in the other subcases.

5. In the case when a = −6, where Q(∂, λ) = c(∂+2λ)[11(∂+λ)4λ4+2(∂+λ)3∂2λ3]

for some nonzero constant c, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}, α, ᾱ ̸= 0, and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iii) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(v) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(vi) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+ 3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 4 ±
√
22
2

and α = −3 ±
√
22
2
, f(∂, λ) = − 40

7(α+3)
ct∂5λ3 + 100(α+2)

7(α+3)
ct∂4λ4 +

40(5α+1)
7(α+3)

ct∂3λ5+ 20(16α+11)
7(α+3)

ct∂2λ6+ 10(154α+101)
49(α+3)

ct∂λ7+ 823α+539
98(α+3)

ctλ8, g(∂, λ) = t,

where t ̸= 0.

(viii) ᾱ = 7 and α = −1, f(∂, λ) = −2
7
ct∂6λ3+9

7
ct∂5λ4−9

7
ct∂4λ5+2

7
ct∂3λ6, g(∂, λ) =

t(∂ + 1
7
λ), where t ̸= 0.

(ix) ᾱ = 2 and α = −6, f(∂, λ) = −2
7
ct∂6λ3 − 3ct∂5λ4 − 12ct∂4λ5 − 24ct∂3λ6 −

180
7
ct∂2λ7 − 99

7
ct∂λ8 − 22

7
ctλ9, g(∂, λ) = t(∂ + 6

7
λ), where t ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i), and 1 in the other subcases.
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Chapter 2 Preliminaries

In this chapter, we recall the de�nition of Lie conformal algebras, conformal mod-

ules and their extensions, and some known results that are useful in this paper. For

more details, one can refer to [4, 6, 7, 22, 32].

�2.1 Lie conformal algebras

First, we introduce the two equivalent de�nitions of Lie conformal algebras. The

distribution notion has advantages in attaching to Lie algebras, while it is more con-

venient to compute with λ-bracket.

De�nition 2.1.1 A Lie conformal algebra R is a C[∂]-module equipped with a C-
linear map (called λ-bracket) R ⊗ R → R[λ], a ⊗ b 7→ [aλb], satisfying the axioms

(C1)-(C4) for all a, b, c ∈ R.

(C1) [aλb] ∈ C[λ]⊗R,

(C2) [∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb],

(C3) [aλb] = −[b−λ−∂a],

(C4) [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]].

A Lie conformal algebra R is called �nite if R is �nitely generated as a C[∂]-
module. The rank of a �nite Lie conformal algebra is just its rank as a C[∂]-module.

Obviously, we can de�ne subalgebras, ideals, quotients, simple algebras and ho-

momorphisms of Lie conformal algebras.

For a, b, c ∈ R, set

[aλb] =
∑
k∈N+

λ(k)a(k)b, (2.1)

where λ(k) := λk

k!
. Then we can get a family of bilinear products {•(k)•} on R and

equivalently rephrase the above Lie conformal axioms.

(C1′) a(k)b = 0 for k ≫ 0,

(C2′) ∂a(k)b = −ka(k−1)b, a(k)∂b = ∂(a(k)b) + ka(k−1)b,

(C3′) a(k)b = −
∑
j

(−1)j+k∂(j)b(j+k)a,
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(C4′) a(k)(b(l)c)− bl(a(k)c) =
k∑

j=0

(
k
j

)
(a(j)b)k+l−jc.

There is a Lie algebra structure contained in the distribution notion of a Lie

conformal algebra.

Lemma 2.1.2 Let (R, {•(k)•) be a Lie conformal algebra. Then •(0)• is a Lie bracket

of R, and with respect to the 0-th product ∂R is an ideal of R so that R/∂R is a Lie

algebra.

Below are some important examples of Lie conformal algebras.

Example 2.1.3 Let V ir = C[∂]⊗L be the rank-one C[∂]-module generated by L. Then

[LλL] = (∂ + 2λ)L

de�nes a Lie conformal algebra structure on V ir. The Lie conformal algebra V ir is

called the Virasoro conformal algebra.

Example 2.1.4 Given a Lie algebra g, let Cur(g) = C[∂]⊗ g. Then

[aλb] = [a, b], ∀a, b ∈ g

de�nes a Lie conformal algebra structure on Cur(g). The Lie conformal algebra Cur(g)

is called the current Lie conformal algebra associated with g.

Example 2.1.5 Let Cur(g) be the current Lie conformal algebra associated to the

�nite-dimensional Lie algebra g. Then the C[∂]-module V ir ⊕ Cur(g) can be given a

conformal algebra structure by

[LλL] = (∂ + 2λ)L, [gλh] = [g, h], [Lλg] = (∂ + λ)g,

where L is the standard generator of V ir, g, h ∈ g. This Lie conformal algebra is called

the semidirect sum of V ir and Cur(g), denoted by V ir ⋉ Cur(g).

Besides, by utilizing the correspondence between formal distribution Lie algebras

and Lie conformal algebras, one can e�ectively construct a class of �nite non-simple

Lie conformal algebras. In [26], Su and Yuan investigated two non-simple Lie con-

formal algebras derived from the Schrödinger-Virasoro Lie algebra and the extended
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Schrödinger-Virasoro Lie algebra, which were generalized in [27]. Similarly, a class of

Lie conformal algebras W (b) was obtained from the in�nite-dimensional Lie algebra

W(a, b), which is the semidirect sum of the centerless Virasoro algebra and the in-

termediate series module A(a, b) [33]. Furthermore, from the twisted deformation of

Schrödinger-Virasoro type Lie conformal algebras, the Schrödinger-Virasoro Lie alge-

bra studied in [29] was obtained.

Let R be a Lie conformal algebra, I and J its ideals. The bracket [IλJ ] is the

subspace of R that is spanned by all products i(n)j with i ∈ I, j ∈ J, n ∈ N+.

De�nition 2.1.6 A Lie conformal algebra R is called solvable if its derived series

terminates at zero, i.e., there exists n ∈ N such that:

R(0) = R, R(k+1) = [R(k)
λR(k)], and R(n) = 0,

where [·λ·] denotes the λ-bracket de�ning the Lie conformal algebra structure.

A Lie conformal algebra R is called semisimple if it contains no nonzero solvable

ideals.

The classi�cation of rank one Lie conformal algebras and all �nite semisimple ones

was established by Kac et al. in [9], where Virasoro conformal algebra plays a central

role.

Proposition 2.1.7 [9, Proposition 3.3] If R is a non-commutative rank one Lie con-

formal algebra, then R must be isomorphic to V ir.

Theorem 2.1.8 [9, Theorem 7.1] Let R be a �nite semi-simple conformal algebra.

Then R can be uniquely decomposed in a �nite direct sum of conformal algebras, where

each summand is isomorphic to one of the following:

(a) V ir,

(b) Cur(g), where g is a simple �nite-dimensional Lie algebra,

(b) V ir ⋉ Cur(g), where g is a semisimple �nite-dimensional Lie algebra.

A super version of the above classi�cation can be seen in [11].

Let R be a free rank two Lie conformal algebra. If R is semisimple, as shown

in Theorem 2.1.8, R is the direct sum of V ir, Cur(g), V ir ⋉ Cur(g), where Cur(g)
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is the current conformal algebra associated with a �nite-dimensional semisimple Lie

algebra g. Since there exists no semisimple Lie algebra of dimension less than 3, then

R is isomorphic to the direct sum of two Virasoro Lie conformal algebras. As for the

non-semisimple case, we have the following proposition. For more details, one can refer

to [4, 15,23,34].

Proposition 2.1.9 [4, Theorem 3.21] Let R be a rank two Lie conformal algebra that

is not semisimple.

(1) If R is solvable, then there is a basis {A,B} such that

[AλA] = Q1(∂, λ)B, [AλB] = p(λ)B, [BλB] = 0, (2.2)

for some polynomial p(λ) and some skew-symmetric polynomial Q1(∂, λ) satisfying

p(λ)Q1(∂, λ) = 0.

(2) If R is neither solvable nor semisimple, then there are two classes.

(2i) R is the direct sum of a rank one commutative Lie conformal algebra and the

Virasoro Lie conformal algebra. That is, there is a basis {A,B} of R satisfying

[AλA] = (∂ + 2λ)A, [AλB] = 0, [BλB] = 0. (2.3)

(2ii) There is a basis {A,B} of R such that

[AλA] = (∂ + 2λ)A+Q(∂, λ)B,

[AλB] = (∂ + aλ+ b)B, [BλB] = 0,
(2.4)

where a, b ∈ C and Q(∂, λ) is some skew-symmetric polynomial depending on

a, b. Moreover, Q(∂, λ) ̸= 0 only when a ∈ {1, 0,−1,−4,−6} and b = 0, in

which case we document the explicit formula for Q(∂, λ) in the following table.
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a Q(∂, λ), c, d ∈ C,
1 c(∂ + 2λ)

0 c(∂ + 2λ)(∂ + λ)λ+ d(∂ + 2λ)∂

−1 c(∂ + 2λ)∂2 + d(∂ + 2λ)(∂ + λ)∂λ

−4 c(∂ + 2λ)(∂ + λ)3λ3

−6 c(∂ + 2λ)[11(∂ + λ)4λ4 + 2(∂ + λ)3∂2λ3]

Remark 2.1.10 A polynomial Q(∂, λ) is called skew-symmetric if Q(∂, λ) = −Q(∂,−λ−
∂).

In this study, we refer to the two classes of non-solvable and non-semisimple rank two

conformal algebras mentioned above as Lie conformal algebras of Type I and

Type II, respectively. A Lie conformal algebras of Type II with Q(∂, λ) = 0 is called

W(a, b) algebra.

�2.2 Conformal modules of Lie conformal algebras and their

extensions

Now, we can introduce the de�nition of conformal modules.

De�nition 2.2.1 Let R be a Lie conformal algebra. A conformal R-module V is a

C[∂]-module endowed with a C-linear map R⊗ V → V [λ], a⊗ v 7→ aλv, satisfying the

following axioms:

(∂a)λv = −λ(aλv), aλ(∂v) = (∂ + λ)aλv,

aλ(bµv) = [aλb]λ+µv + bµ(aλv),

for all a, b ∈ R and v ∈ V .

In the sequel, for convenience, a conformal R-module is also called an R-module.

A conformal module V is called irreducible if there is no nonzero submodule W such

that W ̸= V , and V is said to be a trivial R-module if R acts on V trivially. For

any η ∈ C, we can obtain a trivial R-module Ccη = C, which is determined by η, via

the action ∂cη = ηcη,Rλcη = 0. It is easy to check that the modules Ccη with η ∈ C
exhaust all trivial irreducible R-modules.

The complete classi�cation of the �nite nontrivial irreducible modules of the Vira-

soro conformal algebra was provided in [6,9], that ofR of rank two was described in [32],
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and that of other important Lie conformal algebras were investigated in [12,13,25,31]

and so on.

Proposition 2.2.2 [6, 9] Any non-trivial free rank one V ir-module has the form

Ma,b = C[∂]v, such that

Lλv = (∂ + aλ+ b)v,

for a, b ∈ C. Moreover, if a ̸= 0, then Ma,b is irreducible and any non-trivial �nite

irreducible V ir-module is in such form. If a = 0, then M0,b has the unique �nite

irreducible proper V ir-submodule (∂ + b)M0,b, which is isomorphic to M1,b.

Proposition 2.2.3 [32, Theorem 3.2] Suppose that R = C[∂]A ⊕ C[∂]B is a Lie

conformal algebra of rank two. Then any non-trivial �nite irreducible R-module is free

of rank one. Moreover, if V = C[∂]v is a non-trivial irreducible R-module, then the

action of R on V has to be one of the following cases:

(i) If R = C[∂]A⊕C[∂]B is a direct sum of two Virasoro Lie conformal algebras with

[AλB] = 0, then either

Aλv = (∂ + α1λ+ β1)v, Bλv = 0, for some β1, 0 ̸= α1 ∈ C,

or

Aλv = 0, Bλv = (∂ + α2λ+ β2)v, for some β2, 0 ̸= α2 ∈ C.

(ii) If R is solvable with the relations (2.2), then we have Aλv = ϕA(λ)v, Bλv =

ϕB(λ)v, where ϕA(λ), ϕB(λ) are not zero simultaneously. Moreover, ϕB(λ) ̸= 0

only if p(λ) = Q1(∂, λ) = 0.

(iii) Suppose that R is the Lie conformal algebra de�ned in (2.3), then either

Aλv = (∂ + αλ+ β)v, Bλv = 0, for some β, 0 ̸= α ∈ C,

or

Aλv = 0, Bλv = ϕ(λ)v, for some nonzero ϕ(λ) ∈ C[λ].
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(iv) Suppose that R is the Lie conformal algebra de�ned in (2.4). Then

Aλv = (∂ + αλ+ β), Bλv = γv,

where α, β, γ ∈ C such that γ ̸= 0 only if a = 1, b = 0 and Q(∂, λ) = 0. Further,

if γ = 0, then α ̸= 0.

De�nition 2.2.4 Let V and W be two modules over a Lie conformal algebra R. An

extension of W by V is an exact sequence of R-modules of the form

0 −→ V
i−→ E

p−→ W −→ 0, (2.5)

where E is isomorphic to V ⊕W as a vector space. Two extensions 0 −→ V
i−→ E

p−→
W −→ 0 and 0 −→ V

i′−→ E ′ p′−→ W −→ 0 are said to be equivalent if there exists a

homomorphism of modules such that the following diagram commutes

0 −−−→ V
i−−−→ E

p−−−→ W −−−→ 0

1V

y Ψ

y 1W

y
0 −−−→ V

i′−−−→ E ′ p′−−−→ W −−−→ 0.

(2.6)

Obviously, the direct sum of modules V ⊕W gives rise to an extension 0 → V →
V ⊕ W → W → 0. Any extension 0 → V → E → W → 0, which is equivalent to

0 → V → V ⊕W → W → 0, is called trivial extension.

In general, an extension can be thought of as the direct sum of vector spaces

E = V ⊕W , where V is a submodule of E, while for w ∈ W we have

aλ · w = aλw + faλ(w), a ∈ R,

where faλ : W → C[λ]⊗ V is a linear map satisfying the cocycle condition:

f[aλb]λ+µ
(w) = faλ(bµw) + aλfbµ(w)− fbµ(aλw)− bµfaλ(w), b ∈ R.

The set of all cocycles forms a vector space Ext(W,V ) over C. Cocycles equivalent to
trivial extensions are called coboundaries. They form a subspace Extc(W,V ) and the

quotient space Ext(W,V )/Extc(W,V ) is denoted by Ext(W,V ). The dimension of the
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quotient space is called the dimension of the space of extensions of W by V , denoted

by dim(Ext(W,V )). From now on, we will say two extensions are equivalent if they

belong to the same equivalent class unless confusion is possible.

Example 2.2.5 Let R be an arbitrary conformal algebra, and we can consider exten-

sions of trivial irreducible R-modules of the form

0 −→ Ccη −→ E −→ Ccη̄ −→ 0. (2.7)

In this case, E as a vector space is isomorphic to Ccη ⊕ Ccη̄, where Ccη is an R-

submodule, and the following identities hold in E:

Rλcη̄ = fR(λ)cη, ∂cη̄ = η̄cη̄ + tcη, (2.8)

for any R ∈ R, where η, η̄, t ∈ C and fR(λ) is some polynomial depending on R. Since

E is an R-module, it follows from Rλ(∂cη̄) = (∂ + λ)Rλcη̄ that

η̄fR(λ) = (η + λ)fR(λ)

which implies fR(λ) = 0 for any R ∈ R. Assume that (2.7) is a trivial extension, that

is, there exists cσ = kcη + lcη̄, where k, l ∈ C and l ̸= 0, such that

∂cσ = η̄cσ = η̄kcη + η̄lcη̄, Rλcσ = 0.

On the other hand, it follows from (2.8) that

∂cσ = k∂cη + l∂cη̄ = (ηk + tl)cη + η̄lcη̄.

So we have (η̄ − η)k = tl.

If η̄ ̸= η, for arbitrary t, we can �nd such k, l ∈ C, and E is always a trivial

extension. If η̄ = η, E is trivial only when t = 0. Therefore, dim(Ext(Ccη,Ccη̄))=δη,η̄
and when η = η̄, the nontrivial extensions are given (up to equivalence) by

Rλcη̄ = 0, ∂cη̄ = η̄cη̄ + kcη
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with k ̸= 0.

In [7], extensions over the Virasoro conformal modules of the following types have

been classi�ed:

0 −→ Ccη −→ E −→ Mα,β −→ 0 (2.9)

0 −→ Mα,β −→ E −→ Ccη −→ 0 (2.10)

0 −→ Mᾱ,β̄ −→ E −→ Mα,β −→ 0. (2.11)

The corresponding results are listed as follows.

Theorem 2.2.6 [7, Proposition 2.1] Nontrivial extensions of Virasoro conformal mod-

ules of the form (2.9) exist if and only if β + η = 0 and α = 1 or 2. In these cases,

they are given (up to equivalence) by

Lλvα = (∂ + αλ+ β)vα + f(λ)cη,

where

(i) f(λ) = c2λ
2, for α = 1 and c2 ̸= 0.

(ii) f(λ) = c3λ
3, for α = 2 and c3 ̸= 0.

Furthermore, all trivial cocycles are given by scalar multiples of the polynomial f(λ) =

αλ+ β + η.

Theorem 2.2.7 [7, Proposition 2.2] Nontrivial extensions of Virasoro conformal mod-

ules of the form (2.10) exist if and only if β + η = 0 and α = 1. In these cases, they

are given (up to equivalence) by

Lλcη = f(∂, λ)vα, ∂cη = ηcη + p(∂)vα,

where f(∂, λ) = p(∂) = k for some nonzero k ∈ C.

Furthermore, all trivial cocycles are given by the same scalar multiples of the poly-

nomial f(∂, λ) = (∂+αλ+β)ϕ(∂+λ) and p(∂) = (∂−η)ϕ(∂), where ϕ is a polynomial.
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Theorem 2.2.8 [7, Theorem 3.1] Nontrivial extensions of Virasoro conformal mod-

ules of the form (2.11) exist if and only if β = β̄ and α− ᾱ = 0, 1, 2, 3, 4, 5, 6. In these

cases, they are given (up to equivalence) by

Lλvα = (∂ + αλ+ β)vα + f(∂, λ)vᾱ.

The complete list of values of α and ᾱ along with the corresponding polynomials f(∂, λ),

is given as follows, whose nonzero scalar multiples give rise to nontrivial extensions (by

replacing ∂ by ∂ + β):

(i) α = ᾱ with α ∈ C. f(∂, λ) = a0 + a1λ, where (a0, a1) ̸= (0, 0).

(ii) α = 1 and ᾱ = 0. f(∂, λ) = a0∂ + b0∂λ+ b1λ
2, where (a0, b0, b1) ̸= (0, 0, 0).

(iii) α− ᾱ = 2 with α ∈ C. f(∂, λ) = λ2(2∂ + λ).

(iv) α− ᾱ = 3 with α ∈ C. f(∂, λ) = ∂λ2(∂ + λ).

(v) α− ᾱ = 4 with α ∈ C. f(∂, λ) = λ2(4∂3 + 6∂2λ− ∂λ2 + ᾱλ3).

(vi) α = 5 and ᾱ = 0. f(∂, λ) = 5∂4λ2 + 10∂2λ4 − ∂λ5.

(vii) α = 1 and ᾱ = −4. f(∂, λ) = ∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6.

(viii) α = 7
2
±

√
19
2

and ᾱ = −5
2
±

√
19
2
. f(∂, λ) = ∂4λ3 − (2ᾱ+3)∂3λ4 − 3ᾱ∂2λ5 − (3ᾱ+

1)∂λ6 − (ᾱ+ 9
28
)λ7.

Furthermore, all trivial cocycles are given by scalar multiples of the polynomial f(∂, λ) =

(∂ + αλ+ β)ϕ(∂)− (∂ + ᾱλ+ β̄)ϕ(∂ + λ), where ϕ is a polynomial.

23



Chapter 3 Extensions of �nite irreducible modules

of semisimple or solvable rank two Lie conformal

algebras

�3.1 Extensions of �nite irreducible modules of semisimple

rank two Lie conformal algebras

In this section, we consider R as a semisimple rank two Lie conformal algebra.

Then R is the direct sum of two Virasoro Lie conformal algebras. We can assume

R = C[∂]A⊕ C[∂]B with

[AλA] = (∂ + 2λ)A, [AλB] = 0, [BλB] = (∂ + 2λ)B. (3.1)

Let V be a non-trivial �nite irreducible R-module. According to case (i) in Proposition

2.2.3,

V ∼= Vδ,α,β = C[∂]v, Aλv = δ1(∂ + α1λ+ β1)v, Bλv = δ2(∂ + α2λ+ β2)v, (3.2)

where δi ∈ {0, 1}, βi, 0 ̸= αi ∈ C for i = 1, 2, and δ21 + δ22 = 1.

By De�nition 2.2.1, an R-module structure on V is given by Aλ, Bλ ∈ EndC(V )[λ]

such that

[Aλ, Aµ] = (λ− µ)Aλ+µ, (3.3)

[Aλ, Bµ] = 0, (3.4)

[Bλ, Bµ] = (λ− µ)Bλ+µ, (3.5)

[∂,Aλ] = −λAλ, (3.6)

[∂,Bλ] = −λBλ. (3.7)

�3.1.1 0 −→ Ccη −→ E −→ Vδ,α,β −→ 0
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First, we consider extensions of �nite irreducible R-modules of the form

0 −→ Ccη −→ E −→ Vδ,α,β −→ 0. (3.8)

Then E is isomorphic to Ccη⊕Vδ,α,β = Ccη⊕C[∂]v as a C[∂]-module, and the following

identities hold in E:

Rλcη = 0, ∂cη = ηcη,

Aλv = δ1(∂ + α1λ+ β1)v + f(λ)cη, Bλv = δ2(∂ + α2λ+ β2)v + g(λ)cη, (3.9)

where f(λ), g(λ) ∈ C[λ].

Lemma 3.1.1 All trivial extensions of �nite irreducible R-modules of the form (3.8)

are given by (3.9), where f(λ) and g(λ) are the same scalar multiples of δ1(α1λ+η+β1)

and δ2(α2λ+ η + β2), respectively.

ProofµAssume that (3.8) is a trivial extension, that is, there exists v′ = kcη+ l(∂)v ∈
E, where k ∈ C and 0 ̸= l(∂) ∈ C[∂], such that

Aλv
′ = δ1(∂ + α1λ+ β1)v

′ = kδ1(η + α1λ+ β1)cη + δ1l(∂)(∂ + α1λ+ β1)v,

Bλv
′ = δ2(∂ + α2λ+ β2)v

′ = kδ2(η + α2λ+ β2)cη + δ2l(∂)(∂ + α2λ+ β2)v.

On the other hand, it follows from (3.9) that

Aλv
′ = f(λ)l(η + λ)cη + δ1l(∂ + λ)(∂ + α1λ+ β1)v,

Bλv
′ = g(λ)l(η + λ)cη + δ2l(∂ + λ)(∂ + α2λ+ β2)v.

We can obtain that l(∂) is a nonzero constant by comparing both expressions for Aλv
′

and Bλv
′. Thus f(λ) and g(λ) are the same scalar multiple of δ1(α1λ + η + β1) and

δ2(α2λ+ η + β2), respectively.

Conversely, if f(λ) = kδ1(α1λ + η + β1) and g(λ) = kδ2(α2λ + η + β2) for some

k ∈ C, setting v′ = kcη + v we can deduce that (3.8) is a trivial extension.

Theorem 3.1.2 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of �nite irreducible conformal modules of the form (3.8) exist only
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when (δ1, δ2) = (1, 0), α1 ∈ {1, 2}, β1 + η = 0 or (δ1, δ2) = (0, 1), α2 ∈ {1, 2}, β2 + η =

0. In these cases, there exists a unique (up to a scalar) nontrivial extension, i.e.

dim(Ext(Vδ,α,β,Ccη)) = 1. Moreover, they are given (up to equivalence) by (3.9). The

values of δi, αi, βi, i = 1, 2 and η, along with the corresponding polynomials f(λ) and

g(λ) giving rise to nontrivial extensions, are listed as follows:

(i) If δ1 = 1, α1 ∈ {1, 2}, β1 + η = 0, then δ2 = 0, g(λ) = 0, 0 ̸= α2, β2 ∈ C and

f(λ) =

s1λ
2, α1 = 1,

s2λ
3, α1 = 2,

with nonzero constants s1, s2.

(ii) If δ2 = 1, α2 ∈ {1, 2}, β2 + η = 0, then δ1 = 0, f(λ) = 0, 0 ̸= α1, β1 ∈ C and

g(λ) =

t1λ
2, α2 = 1,

t2λ
3, α2 = 2,

with nonzero constants t1, t2.

ProofµApplying both sides of (3.4) to v and comparing the corresponding coe�cients,

we obtain

δ2(η + λ+ α2µ+ β2)f(λ)− δ1(η + µ+ α1λ+ β1)g(µ) = 0. (3.10)

If (δ1, δ2) = (1, 0), (3.10) implies g(µ) = 0 and it reduces to the case of Virasoro

conformal algebra. We can deduce the result by Proposition 2.1 in [7]. A similar

discussion can be made with (δ1, δ2) = (0, 1).

�3.1.2 0 −→ Vδ,α,β −→ E −→ Ccη −→ 0

Next, we consider extensions of �nite irreducible R-modules of the form

0 −→ Vδ,α,β −→ E −→ Ccη −→ 0. (3.11)

26



Then E is isomorphic to Vδ,α,β⊕Ccη = C[∂]v⊕Ccη as a C[∂]-module, and the following

identities hold in E:

Aλv = δ1(∂ + α1λ+ β1)v, Bλv = δ2(∂ + α2λ+ β2)v,

Aλcη = f(∂, λ)v, Bλcη = g(∂, λ)v, ∂cη = ηcη + h(∂)v, (3.12)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ] and h(∂) ∈ C[∂].

Lemma 3.1.3 All trivial extensions of �nite irreducible R-modules of the form (3.11)

are given by (3.12), and f(∂, λ) = δ1φ(∂ + λ)(∂ + α1λ+ β1), g(∂, λ) = δ2φ(∂ + λ)(∂ +

α2λ+ β2) and h(∂) = (∂ − η)φ(∂), where φ is a polynomial.

ProofµAssume that (3.11) is a trivial extension, that is, there exists c′η = kcη+l(∂)v ∈
E, where 0 ̸= k ∈ C and l(∂) ∈ C[∂], such that Aλc

′
η = Bλc

′
η = 0 and ∂c′η = ηc′η.

On the other hand, it follows from (3.12) that

Aλc
′
η = (kf(∂, λ) + δ1l(∂ + λ)(∂ + α1λ+ β1))v,

Bλc
′
η = (kg(∂, λ) + δ2l(∂ + λ)(∂ + α2λ+ β2))v,

∂c′η = kηcη + (kh(∂) + ∂l(∂))v.

We can obtain the result by comparing both expressions for Aλc
′
η, Bλc

′
η and ∂c′η.

Conversely, if f(∂, λ) = δ1φ(∂+λ)(∂+α1λ+β1), g(∂, λ) = δ2φ(∂+λ)(∂+α2λ+β2)

and h(∂) = (∂− η)φ(∂) for some polynomial φ, setting c′η = cη −φ(∂)v, we can deduce

that (3.11) is a trivial extension.

Theorem 3.1.4 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of �nite irreducible conformal modules of the form (3.11) exist

only when δ1 = 1, α1 = 1, β1+ η = 0 or δ2 = 1, α2 = 1, β2+ η = 0. In these cases, there

exists a unique (up to a scalar) nontrivial extension, i.e. dim(Ext(Ccη, Vδ,α,β)) = 1.

Moreover, they are given (up to equivalence) by (3.12). The values of δi, αi, βi, i = 1, 2

and η along with the corresponding polynomials f(∂, λ), g(∂, λ) and h(∂) giving rise to

nontrivial extensions, are listed as follows:

(i) If δ1 = 1, α1 = 1, β1 + η = 0, then δ2 = 0, g(∂, λ) = 0, α2, β2 ∈ C and f(∂, λ) =

h(∂) = s with nonzero constant s.
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(ii) If δ2 = 1, α2 = 1, β2 + η = 0, then δ1 = 0, f(∂, λ) = 0, α1, β1 ∈ C and g(∂, λ) =

h(∂) = t with nonzero constant t.

ProofµApplying both sides of (3.6) and (3.7) to cη and comparing the corresponding

coe�cients gives the following equations

(∂ + λ− η)f(∂, λ) = δ1h(∂ + λ)(∂ + α1λ+ β1), (3.13)

(∂ + λ− η)g(∂, λ) = δ2h(∂ + λ)(∂ + α2λ+ β2). (3.14)

We only need to consider the case that (δ1, δ2) = (1, 0). Then g(∂, λ) = 0 by (3.14)

and the result can be deduced by Proposition 2.2 in [7].

�3.1.3 0 −→ Vδ,α,β −→ E −→ Vδ̄,ᾱ,β̄ −→ 0

Finally, we consider extensions of �nite irreducible R-modules of the form

0 −→ Vδ,α,β −→ E −→ Vδ̄,ᾱ,β̄ −→ 0. (3.15)

Then E is isomorphic to Vδ,α,β ⊕ Vδ̄,ᾱ,β̄ = C[∂]v ⊕ C[∂]v̄ as a C[∂]-module, and the

following identities hold in E:

Aλv = δ1(∂ + α1λ+ β1)v, Bλv = δ2(∂ + α2λ+ β2)v,

Aλv̄ = δ̄1(∂ + ᾱ1λ+ β̄1)v̄ + f(∂, λ)v, Bλv̄ = δ̄2(∂ + ᾱ2λ+ β̄2)v̄ + g(∂, λ)v, (3.16)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ].

Lemma 3.1.5 All trivial extensions of �nite irreducible R-modules of the form (3.15)

are given by (3.16), and f(∂, λ) = δ1φ(∂ + λ)(∂ + α1λ + β1) − δ̄1φ(∂)(∂ + ᾱ1λ + β̄1)

and g(∂, λ) = δ2φ(∂+λ)(∂+α2λ+ β2)− δ̄2φ(∂)(∂+ ᾱ2λ+ β̄2) for some polynomial φ.

Proofµ Assume that (3.15) is a trivial extension, that is, there exists v̄′ = k(∂)v +

l(∂)v̄ ∈ E, where k(∂), l(∂) ∈ C[∂] and l(∂) ̸= 0, such that

Aλv̄
′ = δ̄1(∂ + ᾱ1λ+ β̄1)v̄

′ = δ̄1k(∂)(∂ + ᾱ1λ+ β̄1)v + δ̄1l(∂)(∂ + ᾱ1λ+ β̄1)v̄,
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Bλv̄
′ = δ̄2(∂ + ᾱ2λ+ β̄2)v̄

′ = δ̄2k(∂)(∂ + ᾱ2λ+ β̄2)v + δ̄2l(∂)(∂ + ᾱ2λ+ β̄2)v̄.

On the other hand, it follows from (3.16) that

Aλv̄
′ = (δ1k(∂ + λ)(∂ + α1λ+ β1) + l(∂ + λ)f(∂, λ))v + δ̄1l(∂ + λ)(∂ + ᾱ1λ+ β̄1)v̄,

Bλv̄
′ = (δ2k(∂ + λ)(∂ + α2λ+ β2) + l(∂ + λ)g(∂, λ))v + δ̄2l(∂ + λ)(∂ + ᾱ2λ+ β̄2)v̄.

Comparing both expressions for Aλv̄
′ and Bλv̄

′, we can obtain that l(∂) is a nonzero

constant. Then we can give the expressions of f(∂, λ) and g(∂, λ).

Conversely, if f(∂, λ) = δ1φ(∂ + λ)(∂ + α1λ + β1) − δ̄1φ(∂)(∂ + ᾱ1λ + β̄1) and

g(∂, λ) = δ2φ(∂ + λ)(∂ + α2λ + β2) − δ̄2φ(∂)(∂ + ᾱ2λ + β̄2) for some polynomial φ,

setting v̄′ = −φ(∂)v + v̄ we can deduce that (3.15) is a trivial extension.

Before classifying all nontrivial extensions of the form (3.15), we give the following

lemma for later use.

Lemma 3.1.6 The equation

c(∂ + λ, µ)(∂ + aλ+ b)− c(∂, µ)(∂ + µ+ āλ+ b̄) = 0 (3.17)

for unknown polynomials c(∂, λ) ∈ C[∂, λ] with a, ā, b, b̄ ∈ C has only zero solution.

ProofµPutting λ = 0 in (3.17), we get c(∂, µ)(b− µ− b̄) = 0. So c = 0.

Theorem 3.1.7 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of �nite irreducible conformal modules of the form (3.15) only

exist in the following cases. Moreover, they are given (up to equivalence) by (3.16).

The value of δi, δ̄i, αi, ᾱi, βi, β̄i, i = 1, 2 and the corresponding polynomials f(∂, λ) and

g(∂, λ) giving rise to nontrivial extensions, are listed as follows:

1. In the case that δ1 = δ̄1 = 1, δ2 = δ̄2 = 0, α2, β2, ᾱ2, β̄2 ∈ C, g(∂, λ) = 0, β1 =

β̄1, ᾱ1 − α1 ∈ {0, 1, 2, 3, 4, 5, 6}, α1, ᾱ1 ̸= 0 and

(i) ᾱ1 = α1, f(∂, λ) = s0 + s1λ, where (s0, s1) ̸= (0, 0).

(ii) ᾱ1 − α1 = 2, f(∂, λ) = sλ2(2(∂ + β1) + λ), where s ̸= 0.

(iii) ᾱ1 − α1 = 3, f(∂, λ) = s(∂ + β1)λ
2(∂ + β1 + λ), where s ̸= 0.
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(iv) ᾱ1 − α1 = 4, f(∂, λ) = sλ2(4(∂ + β1)
3 + 6(∂ + β1)

2λ − (∂ + β1)λ
2 + α1λ

3),

where s ̸= 0.

(v) ᾱ1 = 1 and α1 = −4, f(∂, λ) = s((∂+β1)
4λ2−10(∂+β1)

2λ4−17(∂+β1)λ
5−

8λ6), where s ̸= 0.

(vi) ᾱ1 = 7
2
±

√
19
2

and α1 = −5
2
±

√
19
2
. f(∂, λ) = s((∂ + β1)

4λ3 − (2α1 + 3)(∂ +

β1)
3λ4 − 3α1(∂ + β1)

2λ5 − (3α1 + 1)(∂ + β1)λ
6 − (α1 +

9
28
)λ7), where s ̸= 0.

The value of dim(Ext(Vδ̄,ᾱ,β̄, Vδ,α,β)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that δ1 = δ̄1 = 0, δ2 = δ̄2 = 1, α1, β1, ᾱ1, β̄1 ∈ C, f(∂, λ) = 0, β2 =

β̄2, ᾱ2 − α2 ∈ {0, 1, 2, 3, 4, 5, 6}, α2, ᾱ2 ̸= 0, and

(i) ᾱ2 = α2, g(∂, λ) = t0 + t1λ, where (t0, t1) ̸= (0, 0).

(ii) ᾱ2 − α2 = 2, g(∂, λ) = tλ2(2(∂ + β2) + λ), where t ̸= 0.

(iii) ᾱ2 − α2 = 3, g(∂, λ) = t(∂ + β2)λ
2(∂ + β2 + λ), where t ̸= 0.

(iv) ᾱ2 − α2 = 4, g(∂, λ) = tλ2(4(∂ + β2)
3 + 6(∂ + β2)

2λ − (∂ + β2)λ
2 + α2λ

3),

where t ̸= 0.

(v) ᾱ2 = 1 and α2 = −4, g(∂, λ) = t((∂+β2)
4λ2−10(∂+β2)

2λ4−17(∂+β2)λ
5−

8λ6), where t ̸= 0.

(vi) ᾱ2 = 7
2
±

√
19
2

and α2 = −5
2
±

√
19
2
, g(∂, λ) = t((∂ + β2)

4λ3 − (2α2 + 3)(∂ +

β2)
3λ4 − 3α2(∂ + β2)

2λ5 − (3α2 + 1)(∂ + β2)λ
6 − (α2 +

9
28
)λ7), where t ̸= 0.

The value of dim(Ext(Vδ̄,ᾱ,β̄, Vδ,α,β)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

Proofµ Applying both sides of (3.3), (3.4) and (3.5) to v̄ and comparing the corre-

sponding coe�cients of v, we obtain

δ̄1f(∂, λ)(∂ + λ+ ᾱ1µ+ β̄1) + δ1f(∂ + λ, µ)(∂ + α1λ+ β1)

− δ̄1f(∂, µ)(∂ + µ+ ᾱ1λ+ β̄1)− δ1f(∂ + µ, λ)(∂ + α1µ+ β1) = (λ− µ)f(∂, λ+ µ),

(3.18)

δ̄2f(∂, λ)(∂ + λ+ ᾱ2µ+ β̄2) + δ1g(∂ + λ, µ)(∂ + α1λ+ β1)

− δ̄1g(∂, µ)(∂ + µ+ ᾱ1λ+ β̄1)− δ2f(∂ + µ, λ)(∂ + α2µ+ β2) = 0, (3.19)

δ̄2g(∂, λ)(∂ + λ+ ᾱ2µ+ β̄2) + δ2g(∂ + λ, µ)(∂ + α2λ+ β2)
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− δ̄2g(∂, µ)(∂ + µ+ ᾱ2λ+ β̄2)− δ2g(∂ + µ, λ)(∂ + α2µ+ β2) = (λ− µ)g(∂, λ+ µ).

(3.20)

If (δ1, δ̄1, δ2, δ̄2) = (1, 1, 0, 0) or (δ1, δ̄1, δ2, δ̄2) = (0, 0, 1, 1), g(∂, λ) = 0 or f(∂, λ) =

0 follows from (3.19) and Lemma 3.1.6. Substituting these results back into the original

equations and simplifying, we obtain precisely the same equation solved in Theorem

3.2 of [7] (or equivalently, Theorem 2.7 in [21]).

If (δ1, δ̄1, δ2, δ̄2) = (1, 0, 0, 1), then putting µ = 0 in (3.18), we can obtain

f(∂ + λ, 0)(∂ + α1λ+ β1) = f(∂, λ)(∂ + λ+ β1).

So when α1 = 1, we have f(∂, λ) = f(∂ + λ, 0) = s(∂ + λ) for some polynomial s.

If α1 ̸= 1, we can denote f(∂, λ) = h(∂, λ)(∂ + α1λ + β1), and thus f(∂ + λ, 0) =

h(∂ + λ, 0)(∂ + λ + β1). Then one can deduce that h(∂, λ) = h(∂ + λ, 0). It is not

di�cult to check that f(∂, λ) = s(∂ + λ)(∂ +α1λ+ β1) for some polynomial s. On the

other hand, dealing with (3.20) in a similar way, we have g(∂, λ) = t(∂)(∂ + ᾱ2λ+ β̄2)

for ᾱ2 ̸= 0, where t is a polynomial. Putting these results in (3.19), we can obtain
s(∂ + λ)(∂ + λ+ ᾱ2µ+ β̄2) + t(∂ + λ)(∂ + λ+ ᾱ2µ+ β̄2)(∂ + λ+ β1) = 0, α1 = 1,

s(∂ + λ)(∂ + α1λ+ β1)(∂ + λ+ ᾱ2µ+ β̄2)

+t(∂ + λ)(∂ + λ+ ᾱ2µ+ β̄2)(∂ + α1λ+ β1) = 0, α1 ̸= 1.

(3.21)

The solutions are concluded as follows.

(i) If α1 = 1, then f(∂, λ) = −t(∂ + λ)(∂ + λ+ β1), g(∂, λ) = t(∂)(∂ + ᾱ2λ+ β̄2) for

some polynomial t. The extension is trivial.

(ii) If α1 ̸= 1, then f(∂, λ) = s(∂ + λ)(∂ + α1λ + β1), g(∂, λ) = −s(∂)(∂ + ᾱ2λ + β̄2)

for some polynomial t. The extension is trivial.

If (δ1, δ̄1, δ2, δ̄2) = (0, 1, 1, 0), one can deduce the result similarly.
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�3.2 Extensions of �nite irreducible modules of solvable rank

two Lie conformal algebras

In this section, we classify the extension of irreducible modules over a solvable

rank two Lie conformal algebra R. Then there is a basis {A,B} of R such that

[AλA] = Q1(∂, λ)B, [AλB] = p(λ)B, [BλB] = 0, (3.22)

for some polynomial p(λ) and some skew-symmetric polynomial Q1(∂, λ) satisfying

p(λ)Q1(∂, λ) = 0 [4]. If V is a non-trivial �nite irreducible R-module, it was shown

in [32] that

V ∼= VϕA,ϕB
= C[∂]v, Aλv = ϕA(λ)v, Bλv = ϕB(λ)v, (3.23)

where ϕA(λ), ϕB(λ) are not zero simultaneously. Moreover, ϕB(λ) ̸= 0 only if p(λ) =

Q1(∂, λ) = 0.

By de�nition 2.2.1, an R-module structure on V is given by Aλ, Bλ ∈ EndC(V )[λ]

such that

[Aλ, Aµ] = Q1(−λ− µ, λ)Bλ+µ, (3.24)

[Aλ, Bµ] = p(λ)Bλ+µ, (3.25)

[Bλ, Bµ] = 0, (3.26)

[∂,Aλ] = −λAλ, (3.27)

[∂,Bλ] = −λBλ. (3.28)

�3.2.1 0 −→ Ccη −→ E −→ VϕA,ϕB
−→ 0

First, we consider extensions of �nite irreducible R-modules of the form

0 −→ Ccη −→ E −→ VϕA,ϕB
−→ 0. (3.29)

Then E is isomorphic to Ccη⊕VϕA,ϕB
= Ccη⊕C[∂]v as a C[∂]-module, and the following
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identities hold in E:

Rλcη = 0, ∂cη = ηcη,

Aλv = ϕA(λ)v + f(λ)cη, Bλv = ϕB(λ)v + g(λ)cη, (3.30)

where f(λ), g(λ) ∈ C[λ].

Lemma 3.2.1 All trivial extensions of �nite irreducible R-modules of the form (3.29)

are given by (3.30), and f(λ), g(λ) are the same scalar multiples of ϕA(λ), ϕB(λ), re-

spectively.

ProofµAssume that (3.29) is a trivial extension, that is, there exists v′ = kcη+l(∂)v ∈
E, where k ∈ C and 0 ̸= l(∂) ∈ C[∂], such that

Aλv
′ = ϕA(λ)v

′ = kϕA(λ)cη + ϕA(λ)l(∂)v,

Bλv
′ = ϕB(λ)v

′ = kϕB(λ)cη + ϕB(λ)l(∂)v.

On the other hand, it follows from (3.30) that

Aλv
′ = f(λ)l(η + λ)cη + ϕA(λ)l(∂ + λ)v,

Bλv
′ = g(λ)l(η + λ)cη + ϕB(λ)l(∂ + λ)v.

We can obtain that l(∂) is a nonzero constant by comparing both expressions for

Aλv
′ and Bλv

′. Thus f(λ) and g(λ) are the same scalar multiple of ϕA(λ) and ϕB(λ)

respectively.

Conversely, if f(λ) = kϕA(λ) and g(λ) = kϕB(λ) for some k ∈ C, setting v′ =

kcη + v we can deduce that (3.29) is a trivial extension.

The following key lemma plays a crucial role in simplifying the calculations in our

classi�cation of nontrivial extensions.

Lemma 3.2.2 Let a(λ), b(µ), c(λ), d(µ) be four polynomials in C[λ, µ]. If a(λ) and

b(µ) are not 0 simultaneously, the equation

a(λ)d(µ)− b(µ)c(λ) = 0
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implies that c(λ) and d(µ) are the same multiples of a(λ) and b(µ) respectively. Par-

ticularly, if both a(λ) and b(µ) are not 0, the multiple is a scalar multiple.

Proofµ Without loss of generality, we assume that a(λ) ̸= 0. If b(µ) = 0, then

d(µ) = 0. In this case, the conclusion is founded whatever c(λ) is. If b(µ) ̸= 0, we have
c(λ)
a(λ)

= d(µ)
b(µ)

:= e(λ, µ). It is easy to see that e(λ, µ) is a constant, and the proof is done.

Theorem 3.2.3 For a solvable rank two Lie conformal algebra R, nontrivial exten-

sions of �nite irreducible conformal modules of the form (3.29) exist only if p(λ) ̸= 0

and Q1(∂, λ) = 0. Moreover, they are given (up to equivalence) by (3.30). The values

of η along with the corresponding polynomials ϕA(λ), ϕB(λ), f(λ) and g(λ) giving rise

to nontrivial extensions, are listed as follows: η ∈ C, ϕA(λ) = −p(λ), ϕB(λ) = 0,

f(λ) = 0 and g(λ) is a nonzero constant. Thus dim(Ext(VϕA,ϕB
,Ccη)) = δϕA(λ)+p(λ),0.

Proofµ Applying both sides of (3.24), (3.25) and (3.26) to v and comparing the

corresponding coe�cients, we obtain

Q1(−λ− µ, λ)ϕB(λ+ µ) = p(λ)ϕB(λ+ µ) = 0, (3.31)

f(λ)ϕA(µ)− f(µ)ϕA(λ) = Q1(−λ− µ, λ)g(λ+ µ), (3.32)

f(λ)ϕB(µ)− g(µ)ϕA(λ) = p(λ)g(λ+ µ), (3.33)

g(λ)ϕB(µ)− g(µ)ϕB(λ) = 0. (3.34)

We �rst consider the case that p(λ) = Q1(∂, λ) = 0 and take it in (3.32), (3.33) and

(3.34). Since ϕA(λ), ϕB(λ) are not zero simultaneously, we can assume that ϕA(λ) ̸= 0.

By Lemma 3.2.2 and (3.32), we have f(λ) = kϕA(λ) for some k ∈ C. It can be

deduced from (3.33) that g(µ) = kϕB(µ) for the same k. According to Lemma 3.2.1,

the extension is trivial in this case.

Now we assume that p(λ) = 0 and Q1(∂, λ) ̸= 0, which implies that ϕB(λ) = 0.

Then ϕA(λ) must not be zero and g(λ) is forced to be 0 by (3.33). Taking these results

in (3.32) and applying Lemma 3.2.2, we can see that f(λ) is a scalar multiple of ϕA(λ)

and thus the extension is trivial.

Lastly, we discuss the case that p(λ) ̸= 0 but Q1(∂, λ) = 0. Then ϕB(λ) = 0

and ϕA(λ) ̸= 0. In this case, (3.32) means that f(λ) = kϕA(λ) for some k ∈ C by
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Lemma 3.2.2. So if g(λ) = 0, the extension is trivial. If g(λ) ̸= 0, we can obtain that

ϕA(λ) = −p(λ) by comparing the coe�cients of the highest term of µ in (3.33), which

implies g(λ) is a nonzero constant. By Lemma 3.2.1, the corresponding extension is

nontrivial.

Since p(λ)Q1(∂, λ) = 0, we have completed the proof.

�3.2.2 0 −→ VϕA,ϕB
−→ E −→ Ccη −→ 0

Next, we consider extensions of �nite irreducible R-modules of the form

0 −→ VϕA,ϕB
−→ E −→ Ccη −→ 0. (3.35)

Then E is isomorphic to VϕA,ϕB
⊕Ccη = C[∂]v⊕Ccη as a C[∂]-module, and the following

identities hold in E:

Aλv = ϕA(λ)v, Bλv = ϕB(λ)v,

Aλcη = f(∂, λ)v, Bλcη = g(∂, λ)v, ∂cη = ηcη + h(∂)v, (3.36)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ] and h(∂) ∈ C[∂].

Lemma 3.2.4 All trivial extensions of �nite irreducible R-modules of the form (3.35)

are given by (3.36), and f(∂, λ) = φ(∂+λ)ϕA(λ), g(∂, λ) = φ(∂+λ)ϕB(λ) and h(∂) =

(∂ − η)φ(∂), where φ is a polynomial.

Proofµ Assume that (3.35) is a trivial extension, that is, there exists c′η = kcη +

l(∂)v ∈ E, where 0 ̸= k ∈ C and l(∂) ∈ C[∂], such that Aλc
′
η = Bλc

′
η = 0 and

∂c′η = ηc′η = kηcη + ηl(∂)v.

On the other hand, it follows from (3.36) that

Aλc
′
η = (kf(∂, λ) + l(∂ + λ)ϕA(λ))v,

Bλc
′
η = (kg(∂, λ) + l(∂ + λ)ϕB(λ))v,

∂c′η = kηcη + (kh(∂) + ∂l(∂))v.
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We can obtain the result by comparing both expressions for Aλc
′
η, Bλc

′
η and ∂c′η.

Conversely, if f(∂, λ) = φ(∂ + λ)ϕA(λ), g(∂, λ) = φ(∂ + λ)ϕB(λ) and h(∂) =

(∂ − η)φ(∂) for some polynomial φ, setting c′η = cη − φ(∂)v we can deduce that (3.35)

is a trivial extension.

Theorem 3.2.5 For a solvable rank two Lie conformal algebra R, nontrivial exten-

sions of �nite irreducible conformal modules of the form (3.35) do not exist, that is,

dim(Ext(Ccη, VϕA,ϕB
)) = 0.

ProofµApplying both sides of (3.27) and (3.28) to cη and comparing the corresponding

coe�cients gives the following equations

(∂ + λ− η)f(∂, λ) = h(∂ + λ)ϕA(λ), (3.37)

(∂ + λ− η)g(∂, λ) = h(∂ + λ)ϕB(λ). (3.38)

Since ϕA(λ) and ϕB(λ) are not all equal to zero, the above equations imply that there

exists a polynomial φ such that h(∂) = (∂ − η)φ(∂). Then we have f(∂, λ) = φ(∂ +

λ)ϕA(λ) and g(∂, λ) = φ(∂+λ)ϕB(λ). By Lemma 3.2.4, extensions of �nite irreducible

R-modules of the form (3.35) are always trivial.

�3.2.3 0 −→ VϕA,ϕB
−→ E −→ Vϕ̄A,ϕ̄B

−→ 0

Finally, we consider extensions of �nite irreducible R-modules of the form

0 −→ VϕA,ϕB
−→ E −→ Vϕ̄A,ϕ̄B

−→ 0. (3.39)

Then E is isomorphic to VϕA,ϕB
⊕ Vϕ̄A,ϕ̄B

= C[∂]v ⊕ C[∂]v̄ as a C[∂]-module, and the

following identities hold in E:

Aλv = ϕA(λ)v, Bλv = ϕB(λ)v,

Aλv̄ = ϕ̄A(λ)v̄ + f(∂, λ)v, Bλv̄ = ϕ̄B(λ)v̄ + g(∂, λ)v, (3.40)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ].

36



Lemma 3.2.6 All trivial extensions of �nite irreducible R-modules of the form (3.39)

are given by (3.40), and f(∂, λ) = φ(∂ + λ)ϕA(λ) − φ(∂)ϕ̄A(λ) and g(∂, λ) = φ(∂ +

λ)ϕB(λ)− φ(∂)ϕ̄B(λ) for some polynomial φ.

Proofµ Assume that (3.39) is a trivial extension, that is, there exists v̄′ = k(∂)v +

l(∂)v̄ ∈ E, where k(∂), l(∂) ∈ C[∂] and l(∂) ̸= 0, such that

Aλv̄
′ = ϕ̄A(λ)v̄

′ = k(∂)ϕ̄A(λ)v + l(∂)ϕ̄A(λ)v̄,

Bλv̄
′ = ϕ̄B(λ)v̄

′ = k(∂)ϕ̄B(λ)v + l(∂)ϕ̄B(λ)v̄.

On the other hand, it follows from (3.40) that

Aλv̄
′ = (k(∂ + λ)ϕA(λ) + l(∂ + λ)f(∂, λ))v + l(∂ + λ)ϕ̄A(λ)v̄,

Bλv̄
′ = (k(∂ + λ)ϕB(λ) + l(∂ + λ)g(∂, λ))v + l(∂ + λ)ϕ̄B(λ)v̄.

Comparing both expressions for Aλv̄
′ and Bλv̄

′, we can obtain that l(∂) is a nonzero

constant. Then we can give the expressions of f(∂, λ) and g(∂, λ).

Conversely, if f(∂, λ) = φ(∂+λ)ϕA(λ)−φ(∂)ϕ̄A(λ) and g(∂, λ) = φ(∂+λ)ϕB(λ)−
φ(∂)ϕ̄B(λ) for some polynomial φ, setting v̄′ = −φ(∂)v + v̄ we can deduce that (3.39)

is a trivial extension.

To better characterize the classi�cation procedure of nontrivial extensions, we

advance part of the computation in the following lemmas.

Lemma 3.2.7 The solutions of the equation

c(∂, λ)b(µ) + c(∂ + λ, µ)a(λ)− c(∂, µ)b(λ)− c(∂ + µ, λ)a(µ) = 0 (3.41)

for unknown polynomial c(∂, λ) ∈ C[∂, λ] are given as follows.

� If a(λ) = b(λ) = 0, the equation holds for any polynomial in C[∂, λ].

� If a(λ) = b(λ) ̸= 0, then c(∂, λ) = a(λ)(φ1(∂ + λ) − φ1(∂)) + φ2(λ), where φ1, φ2

are polynomials.

� If a(λ) ̸= b(λ), then c(∂, λ) = a(λ)φ(∂ + λ)− b(λ)φ(∂) for some polynomial φ.

37



Proofµ If a(λ) = b(λ) = 0 or c(∂, λ) = 0, the result is obvious.

Now we assume a(λ) = b(λ) ̸= 0, c(∂, λ) ̸= 0, and c(∂, λ) =
∑m

i=0 ci(λ)∂
i with

cm(λ) ̸= 0. The result can be obtained by induction on m. When m = 0, the variation

of (3.41)

(c(∂ + λ, µ)− c(∂, µ))a(λ) = (c(∂ + µ, λ)− c(∂, λ))a(µ) (3.42)

implies the original equation is established. Assume the conclusion holds for m = n

(n ≥ 0) and consider the case that m = n + 1. Comparing the coe�cients of ∂n of

(3.42), we have

λcn+1(µ)a(λ) = µcn+1(λ)a(µ).

So cn+1(λ) = kλa(λ) for some nonzero constant k by Lemma 3.2.2. Let kn+1 =

k
n+2

, d(∂, λ) = kn+1a(λ)((∂ + λ)n+2 − ∂n+2) and e(∂, λ) = c(∂, λ) − d(∂, λ). Since

both c and d satisfy (3.42), by induction, e(∂, λ) = a(λ)(φ0(∂ + λ) − φ0(∂)) + φ2(λ)

with polynomials φ0, φ2. Set φ1(∂) = φ0(∂) + kn+1∂
n+2, and the expression of c(∂, λ)

follows.

For a(λ) ̸= b(λ), we set c(∂, λ) =
∑m

i=0 ci(λ)∂
i with cm(λ) ̸= 0. If m = 0, the

equation (3.41) can be rewritten as

c0(λ)(a(µ)− b(µ))− c0(µ)(a(λ)− b(λ)) = 0,

which means c(∂, λ) = k(a(λ)−b(λ)) for some nonzero constant k. Thus the conclusion

holds for m = 0. Assume the conclusion holds for m = n (n ≥ 0) and consider the case

that m = n + 1. The coe�cients of ∂n+1 of the two sides of (3.41) imply cn+1(λ) =

t(a(λ) − b(λ)) with t ̸= 0. Let φ1(∂) = t∂n+1, d(∂, λ) = a(λ)φ1(∂ + λ) − b(λ)φ1(∂)

and e(∂, λ) = c(∂, λ) − d(∂, λ). Then d(∂, λ) satis�es (3.41), and so does e(∂, λ). By

the assumption, we have e(∂, λ) = a(λ)φ2(∂ + λ)− b(λ)φ2(∂) for some polynomial φ2.

Setting φ(∂) = φ1(∂)+φ2(∂), one can �nd that the conclusion also holds for m = n+1.

Lemma 3.2.8 Let f(λ, µ) be a nonzero polynomial in C[λ, µ] satisfying f(λ, µ) =

−f(µ, λ). Denote the coe�cient of λiµj in f by fij and the antisymmetric matrix

consisting of fij's by M . Assume fi0,j0 ̸= 0 (i0 < j0). Then the following statements

are equivalent.
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(i) There exist polynomials P1, P2 such that

P1(λ)P2(µ)− P1(µ)P2(λ) = f(λ, µ). (3.43)

(ii) For any i, j, k, l, fijfkl − fikfjl + fjkfil = 0.

(iii) rank(M) = 2.

Proofµ(i)⇒(ii). Assume that (3.43) has been established and the expressions of P1, P2

are given by P1(λ) =
∑n

i=0 pi1λ
i, P2(λ) =

∑n
i=0 pi2λ

i. Let P1 = (p01, p11, · · · , pn1)T and

P2 = (p02, p12, · · · , pn2)T . Then (ii) follows from fij = pi1pj2 − pj1pi2, ∀i, j.

(ii)⇒(iii). Assume (ii) and perform the following elementary row and column

transformations on M as follows.

M
rk−

fk−1,j0
fi0,j0

ri0+1+
fk−1,i0
fi0,j0

rj0+1,∀k ̸=i0+1,j0+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ck−

fk−1,j0
fi0,j0

ci0+1+
fk−1,i0
fi0,j0

cj0+1,∀k ̸=i0+1,j0+1

ri0+1↔r1−−−−−→
ci0+1↔c1

rj0+1↔r2−−−−−→
cj0+1↔c2

diag


 0 fi0,j0

−fi0,j0 0

 , 0, · · · , 0

 .

Thus rank(M) = 2.

(iii)⇒(i). Assume that rank(M) = 2 and denote the order of M by m (m ≥ 2).

Then there exists an invertible matrix P = {qij} of order m such that

M = Pdiag


 0 1

−1 0

 , 0, · · · , 0

P T .

De�ne P1(λ) =
∑m−1

i=0 qi+1,1λ
i, P2(λ) =

∑m−1
i=0 qi+1,2λ

i. It is easy to check that P1, P2

satisfy 3.43.

For f(λ, µ) meeting the condition in Lemma 3.2.8, based on the proof of (ii)⇒(iii)

and (iii)⇒(i), we can write down a pair of polynomials P1, P2 satisfying (3.43) as

follows:

P1(λ) =
∑
k

fk,j0λ
k, P2(λ) = − 1

fi0,j0

∑
k

fk,i0λ
k. (3.44)
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With the above discussion, we can solve the following equation.

Lemma 3.2.9 Let f(λ, µ) be a polynomial satisfying the condition in Lemma 3.2.8

with P1, P2 de�ned in (3.44). The equation

a(λ)b(µ)− a(µ)b(λ) = f(λ, µ) (3.45)

for unknown polynomial b(∂) ∈ C[∂] has solutions only when a(λ) =
ai0

fi0,j0
P1(λ) +

aj0P2(λ) and not all ai0 , aj0 equal 0. If solutions do exist, they are given as follows.

� If ai0 ̸= 0, then b(λ) = ka(λ) +
fi0,j0
ai0

P2(λ), where k ∈ C.

� If ai0 = 0, aj0 ̸= 0, then b(λ) = ka(λ)− 1
aj0

P1(λ), where k ∈ C.

ProofµFirst we consider the special case that the coe�cient matrix M of f is

diag


 0 1

−1 0

 , 0, · · · , 0

 .

In this case, P1(λ) = 1, P2(λ) = λ. Denote the order of M by n + 1 and write

a(λ) =
∑n

i=0 aiλ
i, b(λ) =

∑n
i=0 biλ

i. Taking them in (3.45), we havea0b1 − a1b0 = 1,

aibj − ajbi = 0,∀i < j, (i, j) ̸= (0, 1).
(3.46)

So the equation has solutions only when not all a0, a1 are equal to 0. Assume the

solutions do exist. If a0 ̸= 0, (3.46) implies b1 = 1+a1b0
a0

, bj =
ajb0
a0

, ∀j > 1 and then

aj = 0, ∀j > 1. Thus, a(λ) = a0 + a1λ and b(λ) = b0 +
1+a1b0

a0
λ. If a0 = 0, then

(3.46) implies a1 ̸= 0, b0 = − 1
a1

and aj, bj = 0,∀j > 1. Therefore, a(λ) = a1λ and

b(λ) = − 1
a1

+ b1λ.

For the general case, we use a = (a0, a1, · · · , an)T ,b = (b0, b1, · · · , bn)T to mean

the coe�cient matrices of a(λ), b(λ) and P to mean the invertible matrix corresponding

to P1(λ), P2(λ) as mentioned in the proof of (iii)⇒(i). Denote a′ = P−1a,b′ = P−1b.
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Since M = abT − baT , we have

diag


 0 1

−1 0

 , 0, · · · , 0

 = a′b′T − b′a′T .

By the above discussion, b′ exists only when a′ = (a′0, a
′
1, 0, · · · , 0) with a′0, a

′
1

not being 0 simultaneously, which is equivalent to a(λ) = a′0P1(λ) + a′1P2(λ) with

(a′0, a
′
1) ̸= (0, 0). Focusing on the coe�cient of λi0 , λj0 , we have a′0 =

ai0
fi0,j0

, a′1 = aj0 .

Similarly, we can obtain the general expression of b(λ) in di�erent cases.

Theorem 3.2.10 For a solvable rank two Lie conformal algebra R, nontrivial exten-

sions of �nite irreducible conformal modules of the form (3.39) always exist. More-

over, they are given (up to equivalence) by (3.40). The corresponding polynomials

ϕA(λ), ϕB(λ), ϕ̄A(λ), ϕ̄B(λ), f(∂, λ) and g(∂, λ) giving rise to nontrivial extensions, are

listed as follows:

1. In the case that p(λ) = Q1(∂, λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) = 0, ϕB(λ) = ϕ̄B(λ) ̸= 0, then f(∂, λ) = s(λ), g(∂, λ) =

t(λ), where s, t are polynomials, and either s ̸= 0 or t(λ) is not a scalar

multiple of λϕB(λ).

(ii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, ϕB(λ) = ϕ̄B(λ) = 0, then f(∂, λ) = s(λ), g(∂, λ) =

t(λ), where s, t are polynomials, and either t ̸= 0 or s(λ) is not a scalar

multiple of λϕA(λ).

(iii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, ϕB(λ) = ϕ̄B(λ) ̸= 0, then f(∂, λ) = s(λ), g(∂, λ) =

t(λ), where s, t are polynomials, and s(λ), t(λ) are not the same scalar mul-

tiple of λϕA(λ), λϕB(λ) respectively.

2. In the case that p(λ) = 0, Q1(∂, λ) ̸= 0, we always have ϕB(λ) = ϕ̄B(λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) ̸= 0, g(∂, λ) = 0, then f(∂, λ) = s(λ), where the polynomial

s(λ) is not a scalar multiple of λϕA(λ).

(ii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, g(∂, λ) = t(λ) ̸= 0 such that the coe�cient ma-

trix M = {qij} of Q1(−λ − µ, λ)t(λ + µ) is of rank 2 and for qi0,j0 ̸= 0,

ϕA(λ) =
ai0

fi0,j0
(
∑

k fk,j0λ
k)− aj0

fi0,j0
(
∑

k fk,i0λ
k) with the coe�cients ai0−1, aj0−1
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of λi0−1, λj0−1 in ϕA are not all 0, then

f(∂, λ) =

− 1
ai0−1

(
∑

k qk,j0λ
k)∂ + s(λ), if ai0−1 ̸= 0,

− 1
aj0−1

(
∑

k qk,i0λ
k)∂ + s(λ), if ai0−1 = 0,

where s is a polynomial.

3. In the case that p(λ) ̸= 0, Q1(∂, λ) = 0, we have ϕB(λ) = ϕ̄B(λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) ̸= 0, then f(∂, λ) = s(λ), g(∂, λ) = 0, where s1, s2 are

polynomials, and s(λ) is not a scalar multiple of λϕA(λ).

(ii) If ϕA(λ) ̸= ϕ̄A(λ), then f(∂, λ) = 0, ϕA(λ)− ϕ̄A(λ) = p(λ), and

g(∂, λ) =

k1(∂ + 1
r
λ) + k2, p(λ) = rϕA(λ) and r ̸= 1,

k1, p(λ) is not a scalar multiple of ϕA(λ),

where k1, k2 ∈ C and g(∂, λ) ̸= 0.

The space of Ext(Vϕ̄A,ϕ̄B
, VϕA,ϕB

) is of in�nite dimension in all of the above subcases

but (3)-(ii).

Proofµ Applying both sides of (3.24), (3.25) and (3.26) to v̄ and comparing the

corresponding coe�cients, we obtain

Q1(−λ− µ, λ)ϕ̄B(λ+ µ) = p(λ)ϕ̄B(λ+ µ) = 0, (3.47)

f(∂, λ)ϕ̄A(µ) + f(∂ + λ, µ)ϕA(λ)− f(∂, µ)ϕ̄A(λ)− f(∂ + µ, λ)ϕA(µ)

= Q1(−λ− µ, λ)g(∂, λ+ µ), (3.48)

f(∂, λ)ϕ̄B(µ) + g(∂ + λ, µ)ϕA(λ)− g(∂, µ)ϕ̄A(λ)− f(∂ + µ, λ)ϕB(µ) = p(λ)g(∂, λ+ µ),

(3.49)

g(∂, λ)ϕ̄B(µ) + g(∂ + λ, µ)ϕB(λ)− g(∂, µ)ϕ̄B(λ)− g(∂ + µ, λ)ϕB(µ) = 0. (3.50)

Case 1. p(λ) = Q1(∂, λ) = 0.

(i) If ϕA(λ) = ϕ̄A(λ) = 0, ϕB(λ) = ϕ̄B(λ) ̸= 0, we can obtain f(∂, λ) ∈ C[λ]
from (3.49). And by (3.50) and Lemma 3.2.7, we have g(∂, λ) = ϕB(λ)(t1(∂ + λ) −
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t1(∂)) + t2(λ) for some polynomials t1, t2. According to Lemma 3.2.6, this extension is

equivalent to the extension with the same f(∂, λ) and g(∂, λ) = t2(λ), and is nontrivial

only if f(∂, λ) ̸= 0 or t2(λ) is not a scalar multiple of λϕB(λ).

(ii) If ϕA(λ) = ϕ̄A(λ) = 0, ϕB(λ) ̸= ϕ̄B(λ), (3.49) implies f(∂, λ) = 0 by comparing

the coe�cients of the highest order term with respect to ∂. Meanwhile, (3.50) means

g(∂, λ) = ϕB(λ)t(∂ + λ) − ϕ̄B(λ)t(∂) for some polynomial t by Lemma 3.2.7. In this

subcase, the extension is trivial.

(iii) If ϕA(λ) = ϕ̄A(λ) ̸= 0, ϕB(λ) = ϕ̄B(λ) ̸= 0, we can deduce that f(∂, λ) =

ϕA(λ)(s1(∂ + λ) − s1(∂)) + s2(λ), g(∂, λ) = ϕB(λ)(t1(∂ + λ) − t1(∂)) + t2(λ) for some

polynomials s1, s2, t1, t2 from (3.48) and (3.50). Taking them in (3.49) and setting

r(λ) = t1(λ)− s1(λ), we can obtain

r(∂ + λ+ µ)− r(∂ + λ)− r(∂ + µ) + r(∂) = 0,

which implies r(λ) = r1λ + r0 for some r0, r1 ∈ C. This extension is equivalent to the

extension with f(∂, λ) = s2(λ) and g(∂, λ) = t′(λ) where t′(λ) = r1λϕB(λ) + t2(λ).

By Lemma 3.2.6, the extension is nontrivial if and only if s2(λ), t
′(λ) are not the same

scalar multiple of λϕA(λ), λϕB(λ) respectively.

(iv) If ϕA(λ) = ϕ̄A(λ) ̸= 0, ϕB(λ) ̸= ϕ̄B(λ), then f(∂, λ) = ϕA(λ)(s1(∂ + λ) −
s1(∂)) + s2(λ), g(∂, λ) = ϕB(λ)t(∂ + λ)− ϕ̄B(λ)t(∂) for some polynomials s1, s2, t from

(3.48) and (3.50). Taking them in (3.49) and setting r(λ) = t(λ)−s1(λ), we can obtain

ϕA(λ)ϕB(µ)(r(∂+λ+µ)−r(∂+µ))−ϕA(λ)ϕ̄B(µ)(r(∂+λ)−r(∂)) = s2(λ)(ϕB(µ)−ϕ̄B(µ)).

Denote the degree of r(λ) by m. If m ≥ 2, comparing the coe�cients of ∂m−1 on

each side of the above equation, we can get a contradiction. Let r(λ) = r1λ+ r0 with

r1, r2 ∈ C. Then we have s2(λ) = r1λϕA(λ). And the extension is always trivial in this

subcase because f(∂, λ) = ϕA(λ)(s1(∂ + λ)− s1(∂)) = ϕA(λ)(t(∂ + λ)− t(∂)).

(v) If ϕA(λ) ̸= ϕ̄A(λ), ϕB(λ) ̸= ϕ̄B(λ), then f(∂, λ) = ϕA(λ)s(∂ + λ)− ϕ̄A(λ)s(∂),

g(∂, λ) = ϕB(λ)t(∂+λ)−ϕ̄B(λ)t(∂) for some polynomials s, t. If r(∂) = s(∂)−t(∂) ̸= 0,

then r(∂) can be written as r(∂) =
∑m

i=0 ri∂
i with rm ̸= 0. Taking them in (3.49) and
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considering the coe�cients of ∂m give

rm(ϕA(λ)− ϕ̄A(λ))(ϕ̄B(µ)− ϕB(µ)) = 0,

which contradicts the assumption. So we can deduce that s(∂) = t(∂) and thus the

extension is trivial.

The other subcases can be learned from the symmetry of (ϕA, ϕ̄A) and (ϕB, ϕ̄B).

Case 2. p(λ) = 0, Q1(∂, λ) ̸= 0. In this case, ϕB(λ) = ϕ̄B(λ) = 0 by (3.47) and

then ϕA(λ) and ϕ̄A(λ) are nonzero polynomials.

(i) If ϕA(λ) = ϕ̄A(λ) ̸= 0, then (3.49) implies g(∂, λ) = t(λ) ∈ C[λ]. Put it in

(3.48) and take the partial derivative of both sides of the equation with respect to ∂,

and we can obtain

(f∂(∂ + λ, µ)− f∂(∂, µ))ϕA(λ)− (f∂(∂ + µ, λ)− f∂(∂, λ))ϕA(µ) = 0. (3.51)

By Lemma 3.2.7, f∂(∂, λ) = ϕA(λ)(v1(∂ + λ)− v1(∂)) + v2(λ), where v1, v2 are polyno-

mials. Let s1(∂) =
∫
v1(∂)d∂, and then

f(∂, λ) =

∫
f∂(∂, λ)d∂ = ϕA(λ)(s1(∂ + λ)− s1(∂)) + v2(λ)∂ + v3(λ),

where v3 is a polynomial. Taking this result in (3.48) again, one can get

λϕA(λ)v2(µ)− µϕA(µ)v2(λ) = Q1(−λ− µ, λ)t(λ+ µ). (3.52)

With this equation, we have the following two subceses.

If t = 0, v2(λ) = kλa(λ) for some constant k. Let s′1(∂) = s1(∂) +
k
2
∂2. Then

f(∂, λ) = ϕA(λ)(s
′
1(∂ + λ)− s′1(∂)) + s2(λ) for some polynomials s′1, s2. In this case,

the extension is nontrivial only if s2 is not a scalar multiple of λϕA(λ).

If t ̸= 0, then there exists v2(λ) satisfying (3.52) only when Q(λ, µ) = Q1(−λ −
µ, λ)t(λ + µ), λϕA(λ) meet the condition in Lemma 3.2.8 and 3.2.9. Under these con-

ditions, we can give the expression of v2(λ) and then that of f(∂, λ). In this case, the

extension is nontrivial.

(ii) If ϕA(λ) ̸= ϕ̄A(λ), then (3.49) implies g(∂, λ) = 0. So by (3.48) and Lemma

3.2.7, we have f(∂, λ) = ϕA(λ)s(∂ + λ) − ϕ̄A(λ)s(∂) for some polynomial s. Thus the
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extension is trivial under the condition.

Case 3. p(λ) ̸= 0, Q1(∂, λ) = 0. In this case, ϕB(λ) = ϕ̄B(λ) = 0 by (3.47) and

then ϕA(λ) and ϕ̄A(λ) are nonzero polynomials.

(i) If ϕA(λ) = ϕ̄A(λ) ̸= 0, then f(∂, λ) = ϕA(λ)(s1(∂ + λ) − s1(∂)) + s2(λ) with

polynomials s1, s2 by (3.48). Assume g(∂, λ) ̸= 0. Comparing the coe�cients of the

highest item with respect to ∂ in (3.49), we get p(λ) = 0, which contracts the given

condition. So g(∂, λ) = 0 and the extension is nontrivial only when s2(λ) is not a scalar

multiple of λϕA(λ).

(ii) If ϕA(λ) ̸= ϕ̄A(λ), then f(∂, λ) = ϕA(λ)s(∂+λ)− ϕ̄A(λ)s(∂) with polynomial s

by (3.48). Assume g(∂, λ) ̸= 0. Let g(∂, λ) =
∑m

i=0 gi(λ)∂
i. Comparing the coe�cients

of ∂m in (3.49), we have p(λ) = ϕA(λ) − ϕ̄A(λ) and gm(λ) = k1 ∈ C×. If m ≥ 1, one

can obtain p(λ) = rϕA(λ) for some nonzero constant r and gm−1(λ) =
mk1
r
λ+ k2 with

k2 ∈ C by comparing the coe�cients of ∂m−1 in (3.48). If m ≥ 2, the coe�cients of

∂m−2 imply r = 1 and then ϕ̄A(λ) = 0. Thus we get a contradiction. The extension is

nontrivial if and only if g(∂, λ) ̸= 0.
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Chapter 4 Extensions of �nite irreducible modules

of rank two Lie conformal algebras that are of Type I

Let R be the conformal algebra de�ned in (2.3). Then there is a basis {A,B}
such that

[AλA] = (∂ + 2λ)A, [AλB] = 0, [BλB] = 0. (4.1)

In this chapter, we deal with the extension problem over R. If V is a non-trivial �nite

irreducible R-module, then either

V ∼= Vα,β,ϕ = C[∂]v, Aλv = δ1(∂ + αλ+ β)v, Bλv = δ2ϕ(λ)v, (4.2)

where δ1, δ2 ∈ {0, 1}, δ21 + δ22 = 1, β, 0 ̸= α ∈ C, and ϕ is a nonzero polynomial.

By de�nition 2.2.1, the R-module structure on V given by Aλ, Bλ ∈ EndC(V )[λ]

satis�es

[Aλ, Aµ] = (λ− µ)Aλ+µ, (4.3)

[Aλ, Bµ] = 0, (4.4)

[Bλ, Bµ] = 0, (4.5)

[∂,Aλ] = −λAλ, (4.6)

[∂,Bλ] = −λBλ. (4.7)

�4.1 0 −→ Ccη −→ E −→ Vα,β,ϕ −→ 0

First, we consider extensions of �nite irreducible R-modules of the form

0 −→ Ccη −→ E −→ Vα,β,ϕ −→ 0. (4.8)

Then E is isomorphic to Ccη⊕Vα,β,ϕ = Ccη⊕C[∂]v as a C[∂]-module, and the following
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identities hold in E:

Rλcη = 0, ∂cη = ηcη

Aλv = δ1(∂ + αλ+ β)v + f(λ)cη, Bλv = δ2ϕ(λ)v + g(λ)cη, (4.9)

where f(λ), g(λ) ∈ C[λ].

Lemma 4.1.1 All trivial extensions of �nite irreducible R-modules of the form (4.8)

are given by (4.9), and f(λ) and g(λ) are the same scalar multiple of δ1(αλ + η + β)

and δ2ϕ(λ) respectively.

ProofµAssume that (4.8) is a trivial extension, that is, there exists v′ = kcη+ l(∂)v ∈
E, where k ∈ C and 0 ̸= l(∂) ∈ C[∂], such that

Aλv
′ = δ1(∂ + αλ+ β)v′ = δ1k(η + αλ+ β)cη + δ1l(∂)(∂ + αλ+ β)v,

Bλv
′ = δ2ϕ(λ)v

′ = δ2kϕ(λ)cη + δ2l(∂)ϕ(λ)v.

On the other hand, it follows from (4.9) that

Aλv
′ = f(λ)l(η + λ)cη + δ1l(∂ + λ)(∂ + αλ+ β)v,

Bλv
′ = g(λ)l(η + λ)cη + δ2l(∂ + λ)ϕ(λ)v.

We can obtain that l(∂) is a nonzero constant by comparing both expressions for Aλv
′

and Bλv
′. Thus f(λ) and g(λ) are the same scalar multiple of δ1(αλ + η + β) and

δ2ϕ(λ) respectively.

Conversely, if f(λ) = δ1k(αλ+ η+ β) and g(λ) = δ2kϕ(λ) for some k ∈ C, setting
v′ = kcη + v we can deduce that (4.8) is a trivial extension.

Theorem 4.1.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of �nite irreducible conformal modules of the form (4.8) exist only when

(δ1, δ2) = (1, 0), α ∈ {1, 2}, β + η = 0. Moreover, they are given (up to equivalence) by

(4.9). The values of η, along with the corresponding polynomials f(λ) and g(λ) giving
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rise to nontrivial extensions, are listed as follows: g(λ) = 0 and

f(λ) =

s1λ
2, α = 1,

s2λ
3, α = 2,

with nonzero constants s1, s2. In these cases, dim(Ext(Vα,β,ϕ,Ccη)) = 1.

Proofµ Applying both sides of (4.3), (4.4) and (4.5) to v and comparing the corre-

sponding coe�cients, we obtain

δ1(η + λ+ αµ+ β)f(λ)− δ1(η + µ+ αλ+ β)f(µ) = (λ− µ)f(λ+ µ), (4.10)

δ2ϕ(µ)f(λ)− δ1(η + µ+ αλ+ β)g(µ) = 0, (4.11)

δ2ϕ(µ)g(λ)− δ2ϕ(λ)g(µ) = 0. (4.12)

If (δ1, δ2) = (1, 0), (4.11) implies g(µ) = 0 and it reduces to the case of Virasoro

conformal algebra. We can deduce the result by Proposition 2.1 in [7]. If (δ1, δ2) =

(0, 1), then f(λ) = 0 by (4.11). Applying Lemma 3.2.2 to (4.12), we have g(λ) = kϕ(λ)

for some constant k and then the extension is trivial.

�4.2 0 −→ Vα,β,ϕ −→ E −→ Ccη −→ 0

Next, we consider extensions of �nite irreducible R-modules of the form

0 −→ Vα,β,ϕ −→ E −→ Ccη −→ 0. (4.13)

Then E is isomorphic to Vα,β,ϕ⊕Ccη = C[∂]v⊕Ccη as a C[∂]-module, and the following

identities hold in E:

Aλv = δ1(∂ + αλ+ β)v, Bλv = δ2ϕ(λ)v,

Aλcη = f(∂, λ)v, Bλcη = g(∂, λ)v, ∂cη = ηcη + h(∂)v, (4.14)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ] and h(∂) ∈ C[∂].
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Lemma 4.2.1 All trivial extensions of �nite irreducible R-modules of the form (4.13)

are given by (4.14), and f(∂, λ) = δ1φ(∂ + λ)(∂ + αλ + β), g(∂, λ) = δ2φ(∂ + λ)ϕ(λ)

and h(∂) = (∂ − η)φ(∂), where φ is a polynomial.

Proofµ Assume that (4.13) is a trivial extension, that is, there exists c′η = kcη +

l(∂)v ∈ E, where 0 ̸= k ∈ C and l(∂) ∈ C[∂], such that Aλc
′
η = Bλc

′
η = 0 and

∂c′η = ηc′η = kηcη + ηl(∂)v.

On the other hand, it follows from (4.14) that

Aλc
′
η = (kf(∂, λ) + δ1l(∂ + λ)(∂ + αλ+ β))v,

Bλc
′
η = (kg(∂, λ) + δ2l(∂ + λ)ϕ(λ))v,

∂c′η = kηcη + (kh(∂) + ∂l(∂))v.

We can obtain the result by comparing both expressions for Aλc
′
η, Bλc

′
η and ∂c′η.

Conversely, if f(∂, λ) = δ1φ(∂ + λ)(∂ + αλ + β), g(∂, λ) = δ2φ(∂ + λ)ϕ(λ) and

h(∂) = (∂ − η)φ(∂) for some polynomial φ, setting c′η = cη − φ(∂)v, we can deduce

that (4.13) is a trivial extension.

Theorem 4.2.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of �nite irreducible conformal modules of the form (4.13) exist only when

δ1 = 1, α = 1, β+ η = 0. Moreover, the space of Ext(Ccη, Vα,β,ϕ) is 1-dimensional, and

the unique nontrivial extension is given (up to equivalence) as follows: δ2 = 0, g(∂, λ) =

0 and f(∂, λ) = h(∂) = s with nonzero constant s.

ProofµApplying both sides of (4.6) and (4.7) to cη and comparing the corresponding

coe�cients gives the following equations

(∂ + λ− η)f(∂, λ) = δ1h(∂ + λ)(∂ + αλ+ β), (4.15)

(∂ + λ− η)g(∂, λ) = δ2h(∂ + λ)ϕ(λ). (4.16)

If (δ1, δ2) = (1, 0), then g = 0 by (4.16) and the result can be deduced by Proposi-

tion 2.2 in [7]. If (δ1, δ2) = (0, 1), then f = 0. (4.16) and Lemma 4.2.1 imply that the

extension is trivial in this case.
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�4.3 0 −→ Vα,β,ϕ −→ E −→ Vᾱ,β̄,ϕ̄ −→ 0

Finally, we consider extensions of �nite irreducible R-modules of the form

0 −→ Vα,β,ϕ −→ E −→ Vᾱ,β̄,ϕ̄ −→ 0. (4.17)

Then E is isomorphic to Vα,β,ϕ ⊕ Vᾱ,β̄,ϕ̄ = C[∂]v ⊕ C[∂]v̄ as a C[∂]-module, and the

following identities hold in E:

Aλv = δ1(∂ + αλ+ β)v, Bλv = δ2ϕ(λ)v,

Aλv̄ = δ̄1(∂ + ᾱλ+ β̄)v̄ + f(∂, λ)v, Bλv̄ = δ̄2ϕ̄(λ)v̄ + g(∂, λ)v, (4.18)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ].

Lemma 4.3.1 All trivial extensions of �nite irreducible R-modules of the form (4.17)

are given by (4.18), and f(∂, λ) = δ1φ(∂ + λ)(∂ + αλ + β)− δ̄1φ(∂)(∂ + ᾱλ + β̄) and

g(∂, λ) = δ2φ(∂ + λ)ϕ(λ)− δ̄2φ(∂)ϕ̄(λ) for some polynomial φ.

Proofµ Assume that (4.17) is a trivial extension, that is, there exists v̄′ = k(∂)v +

l(∂)v̄ ∈ E, where k(∂), l(∂) ∈ C[∂] and l(∂) ̸= 0, such that

Aλv̄
′ = δ̄1(∂ + ᾱλ+ β̄)v̄′ = δ̄1k(∂)(∂ + ᾱλ+ β̄)v + δ̄1l(∂)(∂ + ᾱλ+ β̄)v̄,

Bλv̄
′ = δ̄2ϕ̄(λ)v̄

′ = δ̄2k(∂)ϕ̄(λ)v + δ̄2l(∂)ϕ̄(λ)v̄.

On the other hand, it follows from (4.18) that

Aλv̄
′ = (δ1k(∂ + λ)(∂ + αλ+ β) + l(∂ + λ)f(∂, λ))v + δ̄1l(∂ + λ)(∂ + ᾱλ+ β̄)v̄,

Bλv̄
′ = (δ2k(∂ + λ)ϕ(λ) + l(∂ + λ)g(∂, λ))v + δ̄2l(∂ + λ)ϕ̄(λ)v̄.

Comparing both expressions for Aλv̄
′ and Bλv̄

′, we can obtain that l is a nonzero

constant. And then we can give the expressions of f(∂, λ) and g(∂, λ).

Conversely, if f(∂, λ) = δ1φ(∂+λ)(∂+αλ+β)− δ̄1φ(∂)(∂+ ᾱλ+ β̄) and g(∂, λ) =

δ2φ(∂ + λ)ϕ(λ) − δ̄2φ(∂)ϕ̄(λ) for some polynomial φ, setting v̄′ = −φ(∂)v + v̄ we can
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deduce that (4.17) is a trivial extension.

Theorem 4.3.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of �nite irreducible conformal modules of the form (4.17) exist only when

(δ1, δ2) = (δ̄1, δ̄2). Moreover, they are given (up to equivalence) by (4.18). The value

of δi, δ̄i, i = 1, 2, α, ᾱ, β, β̄, and the corresponding polynomials ϕ(λ), ϕ̄(λ), f(∂, λ) and

g(∂, λ) giving rise to nontrivial extensions, are listed as follows:

1. In the case that (δ1, δ2) = (δ̄1, δ̄2) = (1, 0), g = 0, β = β̄, ᾱ−α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸=
0, and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2, f(∂, λ) = sλ2(2(∂ + β) + λ), where s ̸= 0.

(iii) ᾱ− α = 3, f(∂, λ) = s(∂ + β)λ2((∂ + β) + λ), where s ̸= 0.

(iv) ᾱ− α = 4, f(∂, λ) = sλ2(4(∂ + β)3 + 6(∂ + β)2λ− (∂ + β)λ2 + α1λ
3), where

s ̸= 0.

(v) ᾱ = 1 and α = −4, f(∂, λ) = s((∂+β)4λ2−10(∂+β)2λ4−17(∂+β)λ5−8λ6),

where s ̸= 0.

(vi) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s((∂+β)4λ3− (2α+3)(∂+β)3λ4−

3α(∂ + β)2λ5 − (3α + 1)(∂ + β)λ6 − (α + 9
28
)λ7), where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄,ϕ̄, Vα,β,ϕ)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that (δ1, δ2) = (δ̄1, δ̄2) = (0, 1), ϕ(λ) = ϕ̄(λ), f(∂, λ) = 0, g(∂, λ) = t(λ)

with polynomials t and t(λ) is not a scalar multiple of λϕ(λ). Then the space

Ext(Vᾱ,β̄,ϕ̄, Vα,β,ϕ) is in�nite-dimensional.

Proofµ Applying both sides of (4.3), (4.4) and (4.5) to v̄ and comparing the corre-

sponding coe�cients, we obtain

δ̄1f(∂, λ)(∂ + λ+ ᾱµ+ β̄) + δ1f(∂ + λ, µ)(∂ + αλ+ β)

− δ̄1f(∂, µ)(∂ + µ+ ᾱλ+ β̄)− δ1f(∂ + µ, λ)(∂ + αµ+ β) = (λ− µ)f(∂, λ+ µ),

(4.19)

δ̄2f(∂, λ)ϕ̄(µ) + δ1g(∂ + λ, µ)(∂ + αλ+ β)
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− δ̄1g(∂, µ)(∂ + µ+ ᾱλ+ β̄)− δ2f(∂ + µ, λ)ϕ(µ) = 0, (4.20)

δ̄2g(∂, λ)ϕ̄(µ) + δ2g(∂ + λ, µ)ϕ(λ)− δ̄2g(∂, µ)ϕ̄(λ)− δ2g(∂ + µ, λ)ϕ(µ) = 0. (4.21)

If (δ1, δ̄1, δ2, δ̄2) = (1, 1, 0, 0), the result can be deduced from Lemma 3.1.6, Theo-

rem 3.2 in [7] (or Theorem 2.7 in [21]) and Lemma 4.3.1.

If (δ1, δ̄1, δ2, δ̄2) = (0, 0, 1, 1), then (4.19) implies f(∂, λ) = 0. Applying Lemma

3.2.7 to (4.21), we have g(∂, λ) = t(∂ + λ)ϕ(λ) − t(∂)ϕ̄(λ) for some polynomial t if

ϕ(λ) ̸= ϕ̄(λ) and g(∂, λ) = (t1(∂ + λ)− t1(∂))ϕ(λ) + t2(λ) for some polynomial t1, t2 if

ϕ(λ) = ϕ̄(λ). By Lemma 4.3.1, the extension is nontrivial only when ϕ = ϕ̄ and t2(λ)

is not a scalar multiple of λϕ(λ).

If (δ1, δ̄1, δ2, δ̄2) = (1, 0, 0, 1), then putting µ = 0 in (4.19), we can obtain

f(∂ + λ, 0)(∂ + αλ+ β) = f(∂, λ)(∂ + λ+ β).

So when α = 1, we have f(∂, λ) = f(∂ + λ, 0) = s(∂ + λ) for some polynomial s. If

α ̸= 1, then one can deduce that f(∂, λ) = s(∂+λ)(∂+αλ+β) for some polynomial s.

Applying Lemma 3.2.7 to (4.21), we have g(∂, λ) = t(∂)ϕ̄(λ), where t is a polynomial.

Putting these results in (4.20), we can obtains(∂ + λ) + t(∂ + λ)(∂ + λ+ β) = 0, α = 1,

s(∂ + λ) + t(∂ + λ) = 0, α ̸= 1,
(4.22)

The solutions are concluded as follows.

(i) If α = 1, then f(∂, λ) = −t(∂ + λ)(∂ + λ + β), g(∂, λ) = t(∂)ϕ̄(λ) for some

polynomial t. The extension is trivial.

(ii) If α ̸= 1, then f(∂, λ) = s(∂ + λ)(∂ + αλ + β), g(∂, λ) = −s(∂)ϕ̄(λ) for some

polynomial s. The extension is trivial.

If (δ1, δ̄1, δ2, δ̄2) = (0, 1, 1, 0), one can deduce the result similarly.
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Chapter 5 Extensions of �nite irreducible modules

of rank two Lie conformal algebras that are of Type II

In this chapter, we investigate the extension problems under the condition that R
is the conformal algebra de�ned in (2.4). Then there is a basis {A,B} such that

[AλA] = (∂ + 2λ)A+Q(∂, λ)B, [AλB] = (∂ + aλ+ b)B, [BλB] = 0. (5.1)

�5.1 Extensions of �nite irreducible modules of W(a, b)

algebras

When Q(∂, λ) = 0, R is a W(a, b) algebra, which had been discussed in [21].

Recall the classi�cation of all �nite nontrivial W(a, b)-module in [20].

Theorem 5.1.1 [20, Theorem 3.10] Any �nite nontrivial irreducible W(a, b)-module

M is free of rank one over C[∂]. Moreover,

1. If (a, b) ̸= (1, 0),

M ∼= Mα,β = C[∂]v, Aλv = (∂ + αλ+ β)v, Bλv = 0,

with α, β ∈ C and α ̸= 0.

2. If (a, b) = (1, 0),

M ∼= Mα,β,γ = C[∂]v, Aλv = (∂ + αλ+ β)v, Bλv = γv,

with α, β, γ ∈ C and (α, γ) ̸= (0, 0).

Then the corresponding results of extensions over the W(a, b)-modules are listed

as follows.

Theorem 5.1.2 [21, Theorem 3.4] (1) If (a, b) ̸= (1, 0), nontrivial extensions of �nite

irreducible W(a, b)-modules of the form

0 −→ Ccη −→ E −→ Mα,β −→ 0 (5.2)
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exist. Moreover, they are given (up to equivalence) by

Aλvα = (∂ + αλ+ β)vα + f(λ)cη, Bλvα = g(λ)cη; (5.3)

. The values of β and η along with the pairs of polynomials g(λ) and f(λ), whose

nonzero scalar multiples give rise to nontrivial extensions, are listed as follows:

(i) if g(λ) = 0, then α = 1, 2, β + η = 0 and f(λ) is from the nonzero polynomials

of Theorem 2.2.6;

(ii) if a ̸= 1, b = 0 and β + η = 0, then g(λ) = k for some nonzero complex number

k, α = 1− a, and

f(λ) =


c2λ

2, α = 1,

c3λ
3, α = 2,

0, otherwise,

with c2, c3 ∈ C;

(iii) if a ̸= 1, b + β + η = 0 and β + η ̸= 0, then g(λ) = k for some nonzero complex

number k, α = 1− a, and f(λ) = 0;

(iv) if a = 1, b ̸= 0 and b+β+η = 0, then g(λ) = k(1− 1
b
λ) for some nonzero complex

number k, α = 1, and f(λ) = 0.

(2) If (a, b) = (1, 0), nontrivial extensions of �nite irreducible W(1, 0)-modules of the

form

0 −→ Ccη −→ E −→ Mα,β,γ −→ 0 (5.4)

exist if and only if β + η = 0 and γ = 0. Moreover, they are given (up to equivalence)

by

Lλvα = (∂ + αλ+ β)vα + f(λ)cη, Wλvα = γvα + g(λ)cη; (5.5)

, where, if g(λ) = 0, then α = 1, 2 and f(λ) is from the nonzero polynomials of Theorem

2.2.6, or else g(λ) = kλ for some nonzero complex number k, α = 1 and f(λ) = c2λ
2

with c2 ∈ C.
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Theorem 5.1.3 [21, Theorem 3.6] (1) If (a, b) ̸= (1, 0), nontrivial extensions of �nite

irreducible W(a, b)-modules of the form

0 −→ Mα,β −→ E −→ Ccη −→ 0. (5.6)

exist if and only if β + η = 0 and α = 1. In this case, dimExt(Cc−β,M1,β) = 1, and

the unique (up to equivalence) nontrivial extension is given by

Aλcη = kvα, Bλcη = 0, ∂cη = ηcη + kvα,

where k is a nonzero complex number.

(2) If (a, b) = (1, 0), nontrivial extensions of �nite irreducible W(1, 0)-modules of the

form

0 −→ Mα,β,γ −→ E −→ Ccη −→ 0. (5.7)

exist if and only if β+η = 0 and (α, γ) = (1, 0). In this case, dimExt(Cc−β,M1,β,0) = 1,

and the unique (up to equivalence) nontrivial extension is given by

Aλcη = kvα, Bλcη = 0, ∂cη = ηcη + kvα,

where k is a nonzero complex number.

Theorem 5.1.4 [19, Theorem 3.7] Nontrivial extensions of �nite irreducible W(a, 0)-

modules of the form

0 −→ Mᾱ,β̄ −→ E −→ Mα,β −→ 0 (5.8)

with a ̸= 1 exist if and only if β = β̄. For each β ∈ C, these extensions are given (up

to equivalence) by

Aλvα = (∂ + αλ+ β)vα + f(∂, λ)vᾱ, Bλvα = g(∂, λ)vᾱ, (5.9)

where g(∂, λ) = 0 and f(∂, λ) is from the nonzero polynomials of Theorem 2.2.8, with

α, ᾱ ̸= 0, or the values of α and ᾱ along with the pairs of polynomials g(∂, λ) and
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f(∂, λ), whose nonzero scalar multiples give rise to nontrivial extensions, are listed as

follows (by replacing ∂ by ∂ + β):

(1) When a = 3, we have α = ᾱ = 1, f(∂, λ) = a0+ a1λ and g(∂, λ) = ∂2+ 3
2
∂λ+ 1

2
λ2,

where a0, a1 ∈ C.
(2) When a = 2, we have α− ᾱ = −1 or 0. Moreover,

(i) In the case α− ᾱ = −1, f(∂, λ) = 0 and g(∂, λ) = 1.

(ii) In the case α− ᾱ = 0, f(∂, λ) = a0+ a1λ and g(∂, λ) = ∂+ ᾱλ, where a0, a1 ∈ C.

(3) When a = 0, we have α− ᾱ = 1, 2 or α = 1, ᾱ = −2. Moreover,

(i) In the case α− ᾱ = 1, f(∂, λ) = 0 and g(∂, λ) = 1.

(ii) In the case α− ᾱ = 2, f(∂, λ) = a0λ
2(2∂+λ) and g(∂, λ) = ∂− ᾱλ, where a0 ∈ C.

(iii) In the case α = 1, ᾱ = −2, f(∂, λ) = a0∂λ
2(∂ + λ) and g(∂, λ) = ∂2 + 3∂λ+ 2λ2,

where a0 ∈ C.

(4) When a = −1, we have α− ᾱ = 2, 3 or α = 1, ᾱ = −3. Moreover,

(i) In the case α− ᾱ = 2, f(∂, λ) = a0λ
2(2∂ + λ) and g(∂, λ) = 1, where a0 ∈ C.

(ii) In the case α − ᾱ = 3, f(∂, λ) = a0∂λ
2(∂ + λ) and g(∂, λ) = ∂ − 1

2
ᾱλ, where

a0 ∈ C.

(iii) In the case α = 1, ᾱ = −3, f(∂, λ) = a0λ
2(4∂3 +6∂2λ− ∂λ2 − 3λ3) and g(∂, λ) =

∂2 + 5
2
∂λ+ 3

2
λ2, where a0 ∈ C.

(5) When a = −2, we have α− ᾱ = 3, 4 or α = 1, ᾱ = −4. Moreover,

(i) In the case α− ᾱ = 3, f(∂, λ) = a0∂λ
2(∂ + λ) and g(∂, λ) = 1, where a0 ∈ C.

(ii) In the case α − ᾱ = 4, f(∂, λ) = a0λ
2(4∂3 + 6∂2λ − ∂λ2 + ᾱλ3) and g(∂, λ) =

∂ − 1
3
ᾱλ, where a0 ∈ C.

(iii) In the case α = 1, ᾱ = −4, f(∂, λ) = a0(∂
4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6) and

g(∂, λ) = ∂2 + 7
3
∂λ+ 4

3
λ2, where a0 ∈ C.

(6) When a = −3, we have α− ᾱ = 4, 5 or α = 1, ᾱ = −5. Moreover,
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(i) In the case α − ᾱ = 4, f(∂, λ) = a0λ
2(4∂3 + 6∂2λ− ∂λ2 + ᾱλ3) and g(∂, λ) = 1,

where a0 ∈ C.

(ii) In the case α− ᾱ = 5, α ̸= 1, f(∂, λ) = 0 and g(∂, λ) = ∂ − 1
4
ᾱλ.

(iii) In the case α = 1, ᾱ = −4, f(∂, λ) = a0(∂
4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6) and

g(∂, λ) = ∂ + λ, where a0 ∈ C.

(iv) In the case α = 1, ᾱ = −5, f(∂, λ) = 0 and g(∂, λ) = ∂2 + 9
4
∂λ+ 5

4
λ2.

(7) When a = −4, we have α− ᾱ = 5, 6 or α = 1, ᾱ = −6. Moreover,

(i) In the case α− ᾱ = 5, α ̸= 1, f(∂, λ) = 0 and g(∂, λ) = 1.

(ii) In the case α = 1, ᾱ = −4, f(∂, λ) = a0(∂
4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6) and

g(∂, λ) = 1, where a0 ∈ C.

(iii) In the case α− ᾱ = 6, α ̸= 7
2
±

√
19
2
, f(∂, λ) = 0 and g(∂, λ) = ∂ − 1

5
ᾱλ.

(iv) In the case α− ᾱ = 6, α = 7
2
±

√
19
2
, f(∂, λ) = a0(∂

4λ3 − (2ᾱ+3)∂3λ4 − 3ᾱ∂2λ5 −
(3ᾱ + 1)∂λ6 − (ᾱ+ 9

28
)λ7) and g(∂, λ) = ∂ − 1

5
ᾱλ, where a0 ∈ C.

(v) In the case α = 1, ᾱ = −6, f(∂, λ) = 0 and g(∂, λ) = ∂2 + 11
5
∂λ+ 6

5
λ2.

(8) When a = −5, we have α− ᾱ = 6, 7 or α = 1, ᾱ = −7. Moreover,

(i) In the case α− ᾱ = 6, α ̸= 7
2
±

√
19
2
, f(∂, λ) = 0 and g(∂, λ) = 1.

(ii) In the case α− ᾱ = 6, α = 7
2
±

√
19
2
, f(∂, λ) = a0(∂

4λ3 − (2ᾱ+3)∂3λ4 − 3ᾱ∂2λ5 −
(3ᾱ + 1)∂λ6 − (ᾱ+ 9

28
)λ7) and g(∂, λ) = 1, where a0 ∈ C.

(iii) In the case α− ᾱ = 7, f(∂, λ) = 0 and g(∂, λ) = ∂ − 1
6
ᾱλ.

(iv) In the case α = 1, ᾱ = −7, f(∂, λ) = 0 and g(∂, λ) = ∂2 + 13
6
∂λ+ 7

6
λ2.

(9) When a = 5
3
, we have f(∂, λ) = 0. Moreover,

(i) In the case α− ᾱ = −2
3
, g(∂, λ) = 1.

(ii) In the case α− ᾱ = 1
3
, g(∂, λ) = ∂ + 3

2
ᾱλ.

(iii) In the case α = 1, ᾱ = −1
3
, g(∂, λ) = ∂2 + 1

2
∂λ− 1

2
λ2;
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(iv) In the case α = 5
3
, ᾱ = −2

3
. g(∂, λ) = ∂3 + 3

2
∂2λ− 3

2
∂λ2 − λ3.

(10) When a ̸= 3, 2, 0,−1,−2,−3,−4,−5 or 5
3
, we have f(∂, λ) = 0. Moreover,

(i) In the case α− ᾱ = 1− a, g(∂, λ) = 1.

(ii) In the case α− ᾱ = 2− a, g(∂, λ) = ∂ − 1
1−a

ᾱλ.

(iii) In the case α = 1, ᾱ = a− 2, g(∂, λ) = ∂2 − 1
1−a

(1 + 2ᾱ)∂λ− 1
1−a

ᾱλ2.

Theorem 5.1.5 [21, Theorem 3.10] (A) If (a, b) ̸= (1, 0), nontrivial extensions of

�nite irreducible W(a, b)-modules of the form

0 −→ Mᾱ,β̄ −→ E −→ Mα,β −→ 0 (5.10)

exist. Moreover, they are given (up to equivalence) by

Aλvα = (∂ + αλ+ β)vα + f(∂, λ)vᾱ, Bλvα = g(∂, λ)vᾱ. (5.11)

The values of α and ᾱ, β and β̄ along with the pairs of polynomials g(∂, λ) and f(∂, λ),

whose nonzero scalar multiples give rise to nontrivial extensions, are listed as follows

(by replacing ∂ by ∂ + β only in (1) and (4)):

(1) If β − β̄ = 0, b ̸= 0, then g(∂, λ) = 0, f(∂, λ) is from the nonzero polynomials

of Theorem 2.2.8 with α, ᾱ ̸= 0.

(2) If β − β̄ ̸= 0, β − β̄ + b = 0, a ̸= 1, then f(∂, λ) = 0 and g(∂, λ) is as follows

(where m is the highest degree of g(∂, λ)):

(i) If m = 0, then α− ᾱ = 1− a and g(∂, λ) = 1.

(ii) If m = 1, then α− ᾱ = 2− a and g(∂, λ) = ∂ − 1
1−a

ᾱλ+ 1
1−a

ᾱb+ β̄.

(iii) If m = 2, then α = 1, ᾱ = a − 2 and g(∂, λ) = ∂2 − 1
1−a

(1 + 2ᾱ)∂λ − 1
1−a

ᾱλ2 +

a10∂ + a11λ + a00, where a10 = 2β̄ + 1
1−a

(1 + 2ᾱ)b, a11 = 2b
1−a

ᾱ − 1
1−a

(1 + 2ᾱ)β̄,

and a00 = β̄2 + bβ̄ 1
1−a

(1 + 2ᾱ)− b2 1
1−a

ᾱ.

(iv) If m = 3, then α = a = 5
3
, ᾱ = −2

3
and g(∂, λ) = ∂3+ 3

2
∂2λ− 3

2
∂λ2−λ3+ a20∂

2+

a21∂λ+a22λ
2+a10∂+a11λ+a00, where a20 = 3β̄− 3

2
b, a21 = 3β̄+3b, a22 = −3

2
β̄+3b,

a10 = 3β̄2 − 3bβ̄ − 3
2
b2, a11 =

3
2
β̄2 + 3bβ̄ − 3b2, a00 = β̄3 − 3

2
bβ̄2 − 3

2
b2β̄ + b3.
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(3) If β − β̄ ̸= 0, β − β̄ + b = 0, a = 1, then f(∂, λ) = 0 and g(∂, λ) is as follows

(where m is the highest degree of g(∂, λ)):

(i) If m = 0, then α− ᾱ = 0 and g(λ) = 1.

(ii) If m = 1, then α− ᾱ = 1 and g(λ) = λ− b.

(iii) If m = 2, then α− ᾱ = 2 and g(∂, λ) = ∂λ− ᾱλ2 − b∂ + (β̄ +2bᾱ)λ− (bβ̄ + b2ᾱ).

(iv) If m = 3, then α = 1, ᾱ = −2 and g(∂, λ) = ∂2λ + 3∂λ2 + 2λ3 − b∂2 + (2β̄ −
6b)∂λ+ (3β̄ − 6b)λ2 + (−2β̄b+ 3b2)∂ + (β̄2 − 6bβ̄ + 6b2)λ− β̄2b+ 3b2β̄ − 2b3.

(4) If β − β̄ = 0, b = 0, then f(∂, λ) and g(∂, λ) satisfy the conclusions given in

Theorem 5.1.4.

(B) If (a, b) = (1, 0), nontrivial extensions of �nite irreducible W(1, 0)-modules of

the form

0 −→ Mᾱ,β̄,γ̄ −→ E −→ Mα,β,γ −→ 0 (5.12)

exist if and only if γ = γ̄, β = β̄. Moreover, they are given (up to equivalence) by

Aλvα = (∂ + αλ+ β)vα + f(∂, λ)vᾱ, Bλvα = γvα + g(∂, λ)vᾱ. (5.13)

The values of α and ᾱ, β and β̄, γ and γ̄ along with the pairs of polynomials g(∂, λ)

and f(∂, λ), whose nonzero scalar multiples give rise to nontrivial extensions, are listed

as follows (by replacing ∂ by ∂ + β):

(1) If γ = γ̄ = 0, then f(∂, λ) and g(∂, λ) are as follows:

(i) If α− ᾱ = 0, then f(∂, λ) = a0 + a1λ and g(∂, λ) = b0 with (a0, a1, b0) ̸= (0, 0, 0).

(ii) If α− ᾱ = 1, then f(∂, λ) = 0 and g(∂, λ) = b1λ with b1 ̸= 0.

(iii) If α − ᾱ = 2, then f(∂, λ) = a3λ
2(2∂ + λ) and g(∂, λ) = b2λ(∂ − ᾱλ) with

(a3, b2) ̸= (0, 0).

(iv) If (α, ᾱ) = (1,−2), then f(∂, λ) = a4∂λ
2(∂+λ) and g(∂, λ) = b3λ(∂

2+3∂λ+2λ2)

with (a4, b3) ̸= (0, 0).
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(v) If α − ᾱ = 3 and ᾱ ̸= −2, then f(∂, λ) = a4∂λ
2(∂ + λ) and g(∂, λ) = 0 with

a4 ̸= 0.

(vi) If α − ᾱ = 4, then f(∂, λ) = a5λ
2(4∂3 + 6∂2λ− ∂λ2 + ᾱλ3) and g(∂, λ) = 0 with

a5 ̸= 0.

(vii) If (α, ᾱ) = (1,−4), then f(∂, λ) = a6(∂
4λ2−10∂2λ4−17∂λ5−8λ6) and g(∂, λ) = 0

with a6 ̸= 0.

(viii) If α − ᾱ = 6, α = 7
2
±

√
19
2
, then f(∂, λ) = a7(∂

4λ3 − (2ᾱ + 3)∂3λ4 − 3ᾱ∂2λ5 −
(3ᾱ + 1)∂λ6 − (ᾱ+ 9

28
)λ7) and g(∂, λ) = 0 with a7 ̸= 0.

(2) If γ = γ̄ ̸= 0, then f(∂, λ) and g(∂, λ) are as follows:

(i) If α = ᾱ, then f(∂, λ) = a0 + a1λ and g(∂, λ) = b0 with (a0, a1, b0) ̸= (0, 0, 0).

(ii) If α− ᾱ = 1, then f(∂, λ) = a2λ
2 and g(∂, λ) = b1λ with (a2, b1) ̸= (0, 0).

(iii) If α− ᾱ = 2, then f(∂, λ) = b2
β
∂λ2+a3λ

3 and g(∂, λ) = b2λ
2 with (b2, a3) ̸= (0, 0).

�5.2 Extensions of �nite irreducible modules of rank two Lie

conformal algebras that are of Type II with Q(∂, λ) ̸= 0

Now we consider the case thatQ(∂, λ) ̸= 0, which means b = 0 and a ∈ {1, 0,−1,−4,−6}.
If V is a non-trivial �nite irreducible R-module, then

V ∼= Vα,β = C[∂]v, Aλv = (∂ + αλ+ β)v, Bλv = 0, (5.14)

where β, 0 ̸= α ∈ C.
By de�nition 2.2.1, the R-module structure on Vα,β given by Aλ, Bλ ∈ EndC(V )[λ]

satis�es

[Aλ, Aµ] = (λ− µ)Aλ+µ +Q(−λ− µ, λ)Bλ+µ, (5.15)

[Aλ, Bµ] = ((a− 1)λ− µ)Bλ+µ, (5.16)

[Bλ, Bµ] = 0, (5.17)

[∂,Aλ] = −λAλ, (5.18)

[∂,Bλ] = −λBλ. (5.19)
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�5.2.1 0 −→ Ccη −→ E −→ Vα,β −→ 0

First, we consider extensions of �nite irreducible R-modules of the form

0 −→ Ccη −→ E −→ Vα,β −→ 0. (5.20)

Then E is isomorphic to Ccη ⊕Vα,β = Ccη ⊕C[∂]v as a C[∂]-module, and the following

identities hold in E:

Rλcη = 0, ∂cη = ηcη,

Aλv = (∂ + αλ+ β)v + f(λ)cη, Bλv = g(λ)cη, (5.21)

where f(λ), g(λ) ∈ C[λ].

Lemma 5.2.1 All trivial extensions of �nite irreducible R-modules of the form (5.20)

are given by (5.21), and f(λ) is a scalar multiple of αλ+ η + β, g(λ) = 0.

ProofµAssume that (5.20) is a trivial extension, that is, there exists v′ = kcη+l(∂)v ∈
E, where k ∈ C and 0 ̸= l(∂) ∈ C[∂], such that

Aλv
′ = (∂ + αλ+ β)v′ = k(η + αλ+ β)cη + l(∂)(∂ + αλ+ β)v, Bλv

′ = 0.

On the other hand, it follows from (5.21) that

Aλv
′ = f(λ)l(η + λ)cη + l(∂ + λ)(∂ + αλ+ β)v,

Bλv
′ = g(λ)l(η + λ)cη.

We can obtain that l(∂) is a nonzero constant and g = 0 by comparing both expressions

for Aλv
′ and Bλv

′. Thus f(λ) is a scalar multiple of αλ+ η + β.

Conversely, if f(λ) = k(αλ + η + β) and g(λ) = 0 for some k ∈ C, setting
v′ = kcη + v we can deduce that (5.20) is a trivial extension.

Theorem 5.2.2 For a rank two Lie conformal algebra R that is of Type II with Q ̸= 0,

nontrivial extensions of �nite irreducible conformal modules of the form (5.20) exist
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only if β + η = 0. Moreover, they are given (up to equivalence) by (5.21). The values

of α along with the corresponding polynomials f(λ) and g(λ) giving rise to nontrivial

extensions, are listed as follows: g(λ) = 0 and

f(λ) =

s1λ
2, α = 1,

s2λ
3, α = 2,

with nonzero constants s1, s2. In these cases, dim(Ext(Vα,β,Ccη)) = 1.

ProofµApplying both sides of (5.15) and (5.16) to v and comparing the corresponding

coe�cients, we obtain

(η + λ+ αµ+ β)f(λ)− (η + µ+ αλ+ β)f(µ)

= (λ− µ)f(λ+ µ) +Q(−λ− µ, λ)g(λ+ µ), (5.22)

− (η + µ+ αλ+ β)g(µ) = ((a− 1)λ− µ)g(λ+ µ). (5.23)

Setting λ = 0 in (5.23) gives

(η + β)g(µ) = 0.

If β + η ̸= 0, then g = 0. Putting µ = 0 in (5.22) and combining Lemma 5.2.1,

one can deduce the extension is trivial.

Assume β + η = 0. If g = 0, then one can obtain the result by Proposition 2.1

in [7]. Now we consider that g ̸= 0. If a = 1, then (5.23) turns into

(αλ+ µ)g(µ) = µg(λ+ µ),

which implies α ∈ {0, 1} and g(λ) =

t, α = 0,

tλ, α = 1,
for some nonzero constant t. On

the other hand, under the condition that a = 1, we have Q(∂, λ) = c(∂ + 2λ), c ̸= 0.

So (5.22) is equivalent to the equation

(λ+ αµ)f(λ)− (µ+ αλ)f(µ) = (λ− µ)f(λ+ µ) + c(λ− µ)g(λ+ µ).

Taking the value of α, g(λ) and µ = 0 in the variant, one can get a contradiction. So

62



g(λ) = 0 if a = 1.

If β + η = 0, g(λ) ̸= 0, a ̸= 1, then (5.23) implies α = 1 − a and g(λ) = t ∈ C×.

So if a = 0, then α = 1 and Q(∂, λ) = cλ(∂ + λ)(∂ + 2λ) + d∂(∂ + 2λ). Putting µ = 0

in (5.22), we have −λf(0) = −dtλ2. Thus d = 0 and f(0) = 0. Then putting µ = −λ

in (5.22), we can see that 0 = 2ctλ3, that is, c = 0, which contracts with Q(∂, λ) ̸= 0.

Hence a ̸= 0. Similarly, one can check that a ̸= −1 by putting µ = 0,−λ,−2λ in

(5.22) one after another. For a = −4, we can assume f(λ) = sλ6. By comparing the

coe�cient of λ5µ2 in (5.22), we can deduce that s = c = 0. Thus, Q(∂, λ) = 0. For

a = −6, we can assume f(λ) = sλ8 and we can get a contradiction by comparing the

coe�cient of λ6µ3 in (5.22).

�5.2.2 0 −→ Vα,β −→ E −→ Ccη −→ 0

Next, we consider extensions of �nite irreducible R-modules of the form

0 −→ Vα,β −→ E −→ Ccη −→ 0. (5.24)

Then E is isomorphic to Vα,β ⊕Ccη = C[∂]v⊕Ccη as a C[∂]-module, and the following

identities hold in E:

Aλv = (∂ + αλ+ β)v, Bλv = 0,

Aλcη = f(∂, λ)v, Bλcη = g(∂, λ)v, ∂cη = ηcη + h(∂)v, (5.25)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ] and h(∂) ∈ C[∂].

Lemma 5.2.3 All trivial extensions of �nite irreducible R-modules of the form (5.24)

are given by (5.25), and f(∂, λ) = φ(∂ + λ)(∂ + αλ + β), g(∂, λ) = 0 and h(∂) =

(∂ − η)φ(∂), where φ is a polynomial.

Proofµ Assume that (5.24) is a trivial extension, that is, there exists c′η = kcη +

l(∂)v ∈ E, where 0 ̸= k ∈ C and l(∂) ∈ C[∂], such that Aλc
′
η = Bλc

′
η = 0 and

∂c′η = ηc′η = kηcη + ηl(∂)v.
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On the other hand, it follows from (5.25) that

Aλc
′
η = (kf(∂, λ) + l(∂ + λ)(∂ + αλ+ β))v, Bλc

′
η = kg(∂, λ)v,

∂c′η = kηcη + (kh(∂) + ∂l(∂))v.

We can obtain the result by comparing both expressions for Aλc
′
η, Bλc

′
η and ∂c′η.

Conversely, if f(∂, λ) = φ(∂ + λ)(∂ +αλ+ β), g(∂, λ) = 0 and h(∂) = (∂− η)φ(∂)

for some polynomial φ, setting c′η = cη − φ(∂)v, we can deduce that (5.24) is a trivial

extension.

Theorem 5.2.4 For a rank two Lie conformal algebra R that is of Type II, nontriv-

ial extensions of �nite irreducible conformal modules of the form (5.24) exist only if

β + η = 0 and α = 1. Moreover, they are given (up to equivalence) by (5.25) and

dim(Ext(Ccη, Vα,β)) = 1. The corresponding polynomials f(∂, λ), g(∂, λ) and h(∂) giv-

ing rise to nontrivial extensions, are listed as follows: g(∂, λ) = 0 and f(∂, λ) = h(∂) =

s with nonzero constant s.

ProofµApplying both sides of (5.18) and (5.19) to cη and comparing the corresponding

coe�cients gives the following equations

(∂ + λ− η)f(∂, λ) = h(∂ + λ)(∂ + αλ+ β), (5.26)

(∂ + λ− η)g(∂, λ) = 0. (5.27)

Then g(∂, λ) = 0 by (5.27), and the result can be deduced by Proposition 2.2

in [7].

�5.2.3 0 −→ Vα,β −→ E −→ Vᾱ,β̄ −→ 0

Finally, we consider extensions of �nite irreducible R-modules of the form

0 −→ Vα,β −→ E −→ Vᾱ,β̄ −→ 0. (5.28)
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Then E is isomorphic to Vα,β⊕Vᾱ,β̄ = C[∂]v⊕C[∂]v̄ as a C[∂]-module, and the following

identities hold in E:

Aλv = (∂ + αλ+ β)v, Bλv = 0,

Aλv̄ = (∂ + ᾱλ+ β̄)v̄ + f(∂, λ)v, Bλv̄ = g(∂, λ)v, (5.29)

where f(∂, λ), g(∂, λ) ∈ C[∂, λ].

Lemma 5.2.5 All trivial extensions of �nite irreducible R-modules of the form (5.28)

are given by (5.29), and f(∂, λ) = φ(∂ + λ)(∂ + αλ + β) − φ(∂)(∂ + ᾱλ + β̄) and

g(∂, λ) = 0 for some polynomial φ.

Proofµ Assume that (5.28) is a trivial extension, that is, there exists v̄′ = k(∂)v +

l(∂)v̄ ∈ E, where k(∂), l(∂) ∈ C[∂] and l(∂) ̸= 0, such that

Aλv̄
′ = (∂ + ᾱλ+ β̄)v̄′ = k(∂)(∂ + ᾱλ+ β̄)v + l(∂)(∂ + ᾱλ+ β̄)v̄, Bλv̄

′ = 0.

On the other hand, it follows from (5.29) that

Aλv̄
′ = (k(∂ + λ)(∂ + αλ+ β) + l(∂ + λ)f(∂, λ))v + l(∂ + λ)(∂ + ᾱλ+ β̄)v̄,

Bλv̄
′ = l(∂ + λ)g(∂, λ)v.

Comparing both expressions for Aλv̄
′ and Bλv̄

′, we can obtain that l is a nonzero

constant. And then we can give the expressions of f(∂, λ) and g(∂, λ).

Conversely, if f(∂, λ) = φ(∂ + λ)(∂ + αλ+ β)−φ(∂)(∂ + ᾱλ+ β̄) and g(∂, λ) = 0

for some polynomial φ, setting v̄′ = −φ(∂)v + v̄, we can deduce that (5.28) is a trivial

extension.

Theorem 5.2.6 For a rank two Lie conformal algebra R that is of Type II, nontrivial

extensions of �nite irreducible conformal modules of the form (5.28) exist only if β = β̄.

Moreover, they are given (up to equivalence) by (5.29). The value of α, ᾱ, and the

corresponding polynomials f(∂, λ) and g(∂, λ) giving rise to nontrivial extensions, are

listed as follows (by replacing ∂ by ∂ + β):

1. In the case when a = 1, where Q(∂, λ) = c(∂ + 2λ) for some nonzero constant c,
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ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸= 0 and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 1, f(∂, λ) = ct
α
∂, g(∂, λ) = tλ, where t ̸= 0.

(iii) ᾱ− α = 2 with α ̸= −1, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ = 1 and α = −1, f(∂, λ) = sλ2(2∂ + λ)− ct(∂2 − λ2), g(∂, λ) = t(∂λ+ λ2),

where (s, t) ̸= (0, 0).

(v) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(vi) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.

2. In the case when a = 0, where Q(∂, λ) = c(∂ + 2λ)(∂ + λ)λ+ d(∂ + 2λ)∂ for some

nonzero constants c, d, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸= 0 and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 1, f(∂, λ) = − ct
α
∂λ− dt

α
∂, g(∂, λ) = t, where t ̸= 0.

(iii) ᾱ− α = 2 with α ̸= −1, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ = 1 and α = −1, f(∂, λ) = sλ2(2∂ + λ) + ct∂2λ + dt(∂2 − λ2), g(∂, λ) =

t(∂ + λ), where (s, t) ̸= (0, 0).

(v) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(vi) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.
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The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.

3. In the case when a = −1, where Q(∂, λ) = c(∂ + 2λ)∂2 + d(∂ + 2λ)(∂ + λ)∂λ for

some nonzero constants c, d, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6}, α, ᾱ ̸= 0 and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2 with α ̸= −1
2
, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iii) ᾱ = 3
2
and α = −1

2
, f(∂, λ) = sλ2(2∂+λ)−2dt∂2λ−ct(2∂2−λ2), g(∂, λ) = t,

where (s, t) ̸= (0, 0).

(iv) ᾱ− α = 3 with α ̸= −1, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(v) ᾱ = 2 and α = −1, f(∂, λ) = s∂λ2(∂ + λ)− dt
4
(2∂3λ + λ4)− ct

2
(∂3 − 2∂λ2 −

2λ3), g(∂, λ) = t(∂ + 1
2
λ), where (s, t) ̸= (0, 0).

(vi) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i) and (v), and 1 in the other

subcases.

4. In the case when a = −4, where Q(∂, λ) = c(∂ + 2λ)(∂ + λ)3λ3 for some nonzero

constant c, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6, 7}, α, ᾱ ̸= 0, and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iii) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(v) ᾱ−α = 5 with α /∈ {−2,−4}, f(∂, λ) = − 3
α(α+2)(α+4)

ct∂3λ3+ 9(α+1)
2α(α+2)(α+4)

ct∂2λ4−
9(α+1)(2α+1)
10α(α+2)(α+4)

ct∂λ5 + (α+1)(2α+1)
10(α+2)(α+4)

ctλ6, g(∂, λ) = t, where t ̸= 0.

(vi) ᾱ = 3 and α = −2, f(∂, λ) = 3
8
ct∂4λ2− 3

2
ct∂2λ4− 57

40
ct∂λ5− 2

5
ctλ6, g(∂, λ) = t,

where t ̸= 0.
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(vii) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(viii) ᾱ − α = 6 with α /∈ {−5
2
,−5

2
±

√
19
2
}, f(∂, λ) = − 3

(2α+5)(2α2+10α+3)
ct∂4λ3 +

3(2α+3)
(2α+5)(2α2+10α+3)

ct∂3λ4 − 9(α+1)(2α+3)
5(2α+5)(2α2+10α+3)

ct∂2λ5 + (α+1)(2α+1)(2α+3)
5(2α+5)(2α2+10α+3)

ct∂λ6 −
α(α+1)(2α+1)(2α+3)
70(2α+5)(2α2+10α+3)

ctλ7, g(∂, λ) = t(∂ − α
5
λ), where t ̸= 0.

(ix) ᾱ = 7
2
and α = −5

2
, f(∂, λ) = 36

665
ct∂̄5λ2 − 54

113
ct∂̄3λ4 − 387

665
ct∂̄2λ5 − 218

665
ct∂̄λ6 +

127
1862

ctλ7, g(∂, λ) = t(∂ + 1
2
λ), where t ̸= 0.

(x) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

(xi) ᾱ = 1 and α = −6, f(∂, λ) = 1
35
ct∂5λ3 + 2

7
ct∂4λ4 + 36

35
ct∂3λ5 + 12

7
ct∂2λ6 +

66
49
ct∂λ7 + 99

245
ctλ8, g(∂, λ) = t(∂2 + 11

5
∂λ+ 6

5
λ2), where t ̸= 0.

The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i), and 1 in the other subcases.

5. In the case when a = −6, where Q(∂, λ) = c(∂+2λ)[11(∂+λ)4λ4+2(∂+λ)3∂2λ3]

for some nonzero constant c, ᾱ− α ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}, α, ᾱ ̸= 0, and

(i) ᾱ = α, f(∂, λ) = s0 + s1λ, g(∂, λ) = 0, where (s0, s1) ̸= (0, 0).

(ii) ᾱ− α = 2, f(∂, λ) = sλ2(2∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iii) ᾱ− α = 3, f(∂, λ) = s∂λ2(∂ + λ), g(∂, λ) = 0, where s ̸= 0.

(iv) ᾱ−α = 4, f(∂, λ) = sλ2(4∂3 +6∂2λ− ∂λ2 +α1λ
3), g(∂, λ) = 0, where s ̸= 0.

(v) ᾱ = 1 and α = −4, f(∂, λ) = s(∂4λ2 − 10∂2λ4 − 17∂λ5 − 8λ6), g(∂, λ) = 0,

where s ̸= 0.

(vi) ᾱ = 7
2
±

√
19
2

and α = −5
2
±

√
19
2
, f(∂, λ) = s(∂4λ3 − (2α+3)∂3λ4 − 3α∂2λ5 −

(3α + 1)∂λ6 − (α + 9
28
)λ7), g(∂, λ) = 0, where s ̸= 0.

(vii) ᾱ = 4 ±
√
22
2

and α = −3 ±
√
22
2
, f(∂, λ) = − 40

7(α+3)
ct∂5λ3 + 100(α+2)

7(α+3)
ct∂4λ4 +

40(5α+1)
7(α+3)

ct∂3λ5+ 20(16α+11)
7(α+3)

ct∂2λ6+ 10(154α+101)
49(α+3)

ct∂λ7+ 823α+539
98(α+3)

ctλ8, g(∂, λ) = t,

where t ̸= 0.

(viii) ᾱ = 7 and α = −1, f(∂, λ) = −2
7
ct∂6λ3+9

7
ct∂5λ4−9

7
ct∂4λ5+2

7
ct∂3λ6, g(∂, λ) =

t(∂ + 1
7
λ), where t ̸= 0.

(ix) ᾱ = 2 and α = −6, f(∂, λ) = −2
7
ct∂6λ3 − 3ct∂5λ4 − 12ct∂4λ5 − 24ct∂3λ6 −

180
7
ct∂2λ7 − 99

7
ct∂λ8 − 22

7
ctλ9, g(∂, λ) = t(∂ + 6

7
λ), where t ̸= 0.
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The value of dim(Ext(Vᾱ,β̄, Vα,β)) is 2 in subcase (i), and 1 in the other subcases.

ProofµApplying both sides of (5.15) and (5.16) to v̄ and comparing the corresponding

coe�cients, we obtain

f(∂, λ)(∂ + λ+ ᾱµ+ β̄) + f(∂ + λ, µ)(∂ + αλ+ β)− f(∂, µ)(∂ + µ+ ᾱλ+ β̄)

− f(∂ + µ, λ)(∂ + αµ+ β) = (λ− µ)f(∂, λ+ µ) +Q(−λ− µ, λ)g(∂, λ+ µ),

(5.30)

g(∂ + λ, µ)(∂ + αλ+ β)− g(∂, µ)(∂ + µ+ ᾱλ+ β̄) = ((a− 1)λ− µ)g(∂, λ+ µ).

(5.31)

Setting λ = 0 in (5.31) gives

g(∂, µ)(β − β̄) = 0.

If g(∂, µ) = 0, then the result follows from Theorem 3.2 in [7] (or Theorem 2.7

in [21]). Now we assume g(∂, λ) ̸= 0 so that β = β̄. If no confusion is possible, we

replace ∂ + β by ∂ in the sequel. By Proposition 3.8 and Corollary 3.10 in [21], for

a ∈ {0,−1,−4,−6}, the nonzero solutions (up to a nonzero scalar t) of (5.31) are given

by

g(∂, λ) =


1, α− ᾱ = a− 1,

∂ − 1
1−a

αλ, α− ᾱ = a− 2,

∂2 − 1
1−a

(1 + 2α)∂λ− 1
1−a

αλ2, α = a− 2, ᾱ = 1,

(5.32)

and for a = 1,

g(∂, λ) =



1, α− ᾱ = 0,

λ, α− ᾱ = −1,

∂λ− αλ2, α− ᾱ = −2,

∂2λ+ 3∂λ2 + 2λ3, α = −2, ᾱ = 1.

(5.33)

Putting these results in (5.30), we can obtain the expression of f(∂, λ) as follows.
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(1) If a = 1, α = ᾱ, (5.30) is writen as

f(∂, λ)(∂ + λ+ αµ) + f(∂ + λ, µ)(∂ + αλ)

− f(∂, µ)(∂ + µ+ αλ)− f(∂ + µ, λ)(∂ + αµ)

= (λ− µ)f(∂, λ+ µ) + ct(λ− µ). (5.34)

By the nature of (5.34), we may assume that a solution to (5.34) is a homogeneous

polynomial in ∂ and λ of degree 0, that is, f(∂, λ) = s for some constant s. Taking it

in (5.34), we have ct = 0 which means g(∂, λ) = 0 or Q(∂, λ) = 0. This contradiction

illustrates that the equation has no solution in this case.

(2) If a = 1, α− ᾱ = −1, (5.30) is writen as

f(∂, λ)(∂ + λ+ µ+ αµ) + f(∂ + λ, µ)(∂ + αλ)− f(∂, µ)(∂ + λ+ µ+ αλ)

− f(∂ + µ, λ)(∂ + αµ) = (λ− µ)f(∂, λ+ µ) + ct(λ+ µ)(λ− µ). (5.35)

By the nature of (5.35), we may assume that a solution to (5.35) is a homogeneous

polynomial in ∂ and λ of degree 1, that is, f(∂, λ) = s1∂+s2λ for some constant s1, s2.

Taking it in (5.35), we have s1 =
ct
α
with α ̸= 0 which means f(∂, λ) = ct

α
∂ + s2λ. For

other homogeneous parts, one can refer to the case that g(∂, λ) = 0.

(3) If a = 1, α− ᾱ = −2, set ∂̄ = ∂+β, F (∂̄, λ) = f(∂̄−β, λ), and (5.30) is writen

as

F (∂̄, λ)(∂̄ + λ+ 2µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 2λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ) = (λ− µ)F (∂̄, λ+ µ) + ct(λ− µ)(∂̄(λ+ µ)− α(λ+ µ)2).

(5.36)

By the nature of (5.36), we may assume that a solution to (5.36) is a homogeneous

polynomial in ∂̄ and λ of degree 2, that is, F (∂̄, λ) = s1∂̄
2 + s2∂̄λ + s3λ

2 for some

constant s1, s2, s3. Taking it in (5.36), we have α = 0, F (∂̄, λ) = ct∂̄2 + s2∂̄λ and

α = −1, F (∂̄, λ) = −ct(∂̄2 − λ2) + s2(∂̄λ+ λ2).

(4) If a = 1, α = −2, ᾱ = 1, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is
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writen as

F (∂̄, λ)(∂̄ + λ+ µ) + F (∂̄ + λ, µ)(∂̄ − 2λ)

− F (∂̄, µ)(∂̄ + µ+ λ)− F (∂̄ + µ, λ)(∂̄ − 2µ)

= (λ− µ)F (∂̄, λ+ µ) + ct(λ− µ)(∂̄2(λ+ µ) + 3∂̄(λ+ µ)2 + 2(λ+ µ)3). (5.37)

By the nature of (5.37), we may assume that a solution to (5.37) is a homogeneous

polynomial in ∂̄ and λ of degree 3, that is, F (∂̄, λ) = s1∂̄
3 + s2∂̄

2λ + s3∂̄λ
2 + s4λ

3 for

some constant s1, s2, s3, s4. Taking it in (5.37), we have ct = 0 and get a contradiction.

(5) If a = 0, α− ᾱ = −1, set ∂̄ = ∂+β, F (∂̄, λ) = f(∂̄−β, λ), and (5.30) is writen

as

F (∂̄, λ)(∂̄ + λ+ µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ) = (λ− µ)F (∂̄, λ+ µ)− ctλµ(λ− µ)− dt(λ+ µ)(λ− µ).

(5.38)

By the nature of (5.38), we may assume that a solution to (5.38) is a sum of homoge-

neous polynomials in ∂̄, λ of degree 1 and degree 2, that is, F (∂̄, λ) = s1∂̄
2 + s2∂̄λ +

s3λ
2 + s4∂̄ + s5λ for some constant s1, s2, s3, s4, s5. Taking it in (5.38), we have α ̸= 0

and F (∂̄, λ) = − ct
α
∂̄λ+ s3λ

2 − dt
α
∂̄ + s5λ.

(6) If a = 0, α− ᾱ = −2, set ∂̄ = ∂+β, F (∂̄, λ) = f(∂̄−β, λ), and (5.30) is writen

as

F (∂̄, λ)(∂̄ + λ+ 2µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 2λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ)

= (λ− µ)F (∂̄, λ+ µ)− t(λ− µ)(cλµ+ dλ+ dµ)(∂̄ − αλ− αµ). (5.39)

By the nature of (5.39), we may assume that a solution to (5.39) is a sum of ho-

mogeneous polynomials in ∂̄, λ of degree 2 and degree 3, that is, F (∂̄, λ) = s1∂̄
3 +

s2∂̄
2λ+s3∂̄λ

2+s4λ
3+s5∂̄

2+s6∂̄λ+s7λ
2 for some constant s1, s2, s3, s4, s5, s6, s7. Tak-

ing it in (5.39), we have α = 0, F (∂̄, λ) = −ct∂̄2λ + s3∂̄λ
2 + s4λ

3 − dt∂̄2 + s6∂̄λ and

α = −1, F (∂̄, λ) = ct∂̄2λ+ s3∂̄λ
2 + s4λ

3 + dt∂̄2 + s6∂̄λ+ (s6 − dt)λ2.

(7) If a = 0, α = −2, ᾱ = 1, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is
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writen as

F (∂̄, λ)(∂̄ + λ+ µ) + F (∂̄ + λ, µ)(∂̄ − 2λ)− F (∂̄, µ)(∂̄ + λ+ µ)− F (∂̄ + µ, λ)(∂̄ − 2µ)

= (λ− µ)F (∂̄, λ+ µ)− t(λ− µ)(cλµ+ dλ+ dµ)(∂̄2 + 3∂̄(λ+ µ) + 2(λ+ µ)2).

(5.40)

By the nature of (5.40), we may assume that a solution to (5.40) is a sum of homoge-

neous polynomials in ∂̄, λ of degree 3 and degree 4, that is, F (∂̄, λ) =
∑5

i=1 si∂̄
5−iλi−1+∑9

i=6 si∂̄
9−iλi−6 for some constant si, i = 1, 2, · · · , 9. Taking it in (5.40), we have

ct = dt = 0 and get a contradiction.

(8) If a = −1, α − ᾱ = −2, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ 2µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 2λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ)

= (λ− µ)F (∂̄, λ+ µ) + ct(λ− µ)(λ+ µ)2 + dtλµ(λ− µ)(λ+ µ). (5.41)

By the nature of (5.41), we may assume that a solution to (5.41) is a sum of homoge-

neous polynomials in ∂̄, λ of degree 2 and degree 3, that is, F (∂̄, λ) = s1∂̄
3 + s2∂̄

2λ +

s3∂̄λ
2 + s4λ

3 + s5∂̄
2 + s6∂̄λ+ s7λ

2 for some constant s1, s2, s3, s4, s5, s6, s7. Taking it in

(5.41), we have α = −1
2
and F (∂̄, λ) = −2dt∂̄2λ+ s3∂̄λ

2+ s4λ
3− 2ct∂̄2+ s6∂̄λ+(1

2
s6+

ct)λ2.

(9) If a = −1, α − ᾱ = −3, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ 3µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 3λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ)

= (λ− µ)F (∂̄, λ+ µ) + t(λ2 − µ2)(dλµ+ cλ+ cµ)(∂̄ − α

2
λ− α

2
µ). (5.42)

By the nature of (5.42), we may assume that a solution to (5.42) is a sum of homoge-

neous polynomials in ∂̄, λ of degree 3 and degree 4, that is, F (∂̄, λ) =
∑5

i=1 si∂̄
5−iλi−1+∑9

i=6 si∂̄
9−iλi−6 for some constant si, i = 1, 2, · · · , 9. Taking it in (5.42), we have

α = −1, F (∂̄, λ) = −dt
2
∂̄3λ+ s3∂̄

2λ2 + s4∂̄λ
3 − 1

2
(s3 − s4 +

dt
2
)λ4 − ct

2
∂̄3 + s7∂̄

2λ+ (s7 +
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ct)∂̄λ2 + (s7 + ct)λ3.

(10) If a = −1, α = −3, ᾱ = 1, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ µ) + F (∂̄ + λ, µ)(∂̄ − 3λ)− F (∂̄, µ)(∂̄ + λ+ µ)− F (∂̄ + µ, λ)(∂̄ − 3µ)

= (λ− µ)F (∂̄, λ+ µ) + t(λ2 − µ2)(cλ+ cµ+ dλµ)(∂̄2 +
5

2
∂̄(λ+ µ) +

3

2
(λ+ µ)2).

(5.43)

By the nature of (5.43), we may assume that a solution to (5.43) is a sum of homoge-

neous polynomials in ∂̄, λ of degree 4 and degree 5, that is, F (∂̄, λ) =
∑6

i=1 si∂̄
6−iλi−1+∑11

i=7 si∂̄
11−iλi−7 for some constant si, i = 1, 2, · · · , 11. Taking it in (5.43), we have

ct = dt = 0, a contradiction.

(11) If a = −4, α − ᾱ = −5, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ 5µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 5λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ) = (λ− µ)F (∂̄, λ+ µ)− ctλ3µ3(λ− µ). (5.44)

By the nature of (5.44), we may assume that a solution to (5.44) is a sum of homo-

geneous polynomials in ∂̄, λ of degree 6, that is, F (∂̄, λ) = s1∂̄
6 + s2∂̄

5λ + s3∂̄
4λ2 +

s4∂̄
3λ3+s5∂̄

2λ4+s6∂̄λ
5+s7λ

6 for some constant s1, · · · , s7. Taking it in (5.44), we have

α = −2, F (∂̄, λ) = 3
8
ct∂̄4λ2+s4∂̄

3λ3+ 3
2
(s4−ct)∂̄2λ4+ 3

40
(12s4−19ct)∂̄λ5+ 1

5
(s4−2ct)λ6

and α /∈ {0,−2,−4}, F (∂̄, λ) = s3∂̄
4λ2 + (2(α+1)

α+2
s3 − 3

α(α+2)(α+4)
ct)∂̄3λ3 + (2α+1

α+2
s3 +

9(α+1)
2α(α+2)(α+4)

ct)∂̄2λ4 + ( 5α+1
5(α+2)

s3 − 9(α+1)(2α+1)
10α(α+2)(α+4)

ct)∂̄λ5 + ( α
5(α+2)

s3 +
(α+1)(2α+1)
10(α+2)(α+4)

ct)λ6.

(12) If a = −4, α − ᾱ = −6, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ 6µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 6λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ) = (λ− µ)F (∂̄, λ+ µ)− ctλ3µ3(λ− µ)(∂̄ − α

5
λ− α

5
µ).

(5.45)

By the nature of (5.45), we may assume that a solution to (5.45) is a sum of homo-

geneous polynomials in ∂̄, λ of degree 7, that is, F (∂̄, λ) =
∑8

i=1 si∂̄
8−iλi−1 for some
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constant s1, · · · , s8. Taking it in (5.45), we have α = −5
2
, F (∂̄, λ) = 36

665
ct∂̄5λ2 +

s4∂̄
4λ3 + (2s4 − 54

113
ct)∂̄3λ4 + (9

5
s4 − 387

665
ct)∂̄2λ5 + (4

5
s4 − 218

665
ct)∂̄λ6 + (1

7
s4 +

127
1862

ct)λ7

and α /∈ {−5
2
,−5

2
±

√
19
2
}, F (∂̄, λ) = s3∂̄

5λ2 + (5(3α+4)
3(2α+5)

s3 − 3
(2α+5)(2α2+10α+3)

ct)∂̄4λ3 +

(5(4α+3)
3(2α+5)

s3 +
3(2α+3)

(2α+5)(2α2+10α+3)
ct)∂̄3λ4 +(5α+2

2α+5
s3 − 9(α+1)(2α+3)

5(2α+5)(2α2+10α+3)
ct)∂̄2λ5 +( 6α+1

3(2α+5)
s3 +

(α+1)(2α+1)(2α+3)
5(2α+5)(2α2+10α+3)

ct)∂̄λ6 + ( α
3(2α+5)

s3 − α(α+1)(2α+1)(2α+3)
70(2α+5)(2α2+10α+3)

ct)λ7.

(13) If a = −4, α = −6, ᾱ = 1, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ µ) + F (∂̄ + λ, µ)(∂̄ − 6λ)− F (∂̄, µ)(∂̄ + λ+ µ)− F (∂̄ + µ, λ)(∂̄ − 6µ)

= (λ− µ)F (∂̄, λ+ µ)− ctλ3µ3(λ− µ)(∂̄2 +
11

5
∂̄(λ+ µ) +

6

5
(λ+ µ)2). (5.46)

By the nature of (5.46), we may assume that a solution to (5.46) is a sum of homo-

geneous polynomials in ∂̄, λ of degree 8, that is, F (∂̄, λ) =
∑9

i=1 si∂̄
9−iλi−1 for some

constant si, i = 1, 2, · · · , 9. Taking it in (5.46), we have F (∂̄, λ) = s3∂̄
6λ2 + (13

3
s3 +

1
35
ct)∂̄5λ3+(25

3
s3+

2
7
ct)∂̄4λ4+(9s3+

36
35
ct)∂̄3λ5+(17

3
s3+

12
7
ct)∂̄2λ6+(41

21
s3+

66
49
ct)∂̄λ7+

(2
7
s3 +

99
245

ct)λ8.

(14) If a = −6, α − ᾱ = −7, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ 7µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)− F (∂̄, µ)(∂̄ + 7λ+ µ+ αλ)

− F (∂̄ + µ, λ)(∂̄ + αµ) = (λ− µ)F (∂̄, λ+ µ) + ct(λ− µ)(11λ4µ4 − 2λ3µ3(λ+ µ)2).

(5.47)

By the nature of (5.47), we may assume that a solution to (5.47) is a sum of ho-

mogeneous polynomials in ∂̄, λ of degree 8, that is, F (∂̄, λ) =
∑9

i=1 si∂̄
9−iλi−1 for

some constant si, i = 1, 2, · · · , 9. Taking it in (5.47), we have α = −3±
√
22
2
, F (∂̄, λ) =

s3∂̄
6λ2+(3α+5

α+3
s3− 40

7(α+3)
ct)∂̄5λ3+(5(α+1)

α+3
s3+

100(α+2)
7(α+3)

ct)∂̄4λ4+(5α+3
α+3

s3+
40(5α+1)
7(α+3)

ct)∂̄3λ5+

(3α+1
α+3

s3 +
20(16α+11)

7(α+3)
ct)∂̄2λ6 + ( 7α+1

7(α+3)
s3 +

10(154α+101)
49(α+3)

ct)∂̄λ7 + ( α
7(α+3)

s3 +
823α+539
98(α+3)

ct)λ8.

(15) If a = −6, α − ᾱ = −8, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

writen as

F (∂̄, λ)(∂̄ + λ+ 8µ+ αµ) + F (∂̄ + λ, µ)(∂̄ + αλ)

− F (∂̄, µ)(∂̄ + 8λ+ µ+ αλ)− F (∂̄ + µ, λ)(∂̄ + αµ)
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= (λ− µ)F (∂̄, λ+ µ) + ct(λ− µ)(11λ4µ4 − 2λ3µ3(λ+ µ)2)(∂̄ − α

7
λ− α

7
µ).

(5.48)

By the nature of (5.48), we may assume that a solution to (5.48) is a sum of homoge-

neous polynomials in ∂̄, λ of degree 9, that is, F (∂̄, λ) =
∑10

i=1 si∂̄
10−iλi−1 for some con-

stant si, i = 1, 2, · · · , 10. Taking it in (5.48), we have α = −1, F (∂̄, λ) = s3∂̄
7λ2+(7

5
s3−

2
7
ct)∂̄6λ3+( 7

10
s3+

9
7
ct)∂̄5λ4−( 7

10
s3+

9
7
ct)∂̄4λ5−(7

5
s3− 2

7
ct)∂̄3λ6−s3∂̄

2λ7− 7
20
s3∂̄λ

8− 1
20
s3λ

9

and α = −6, F (∂̄, λ) = s3∂̄
7λ2+(28

5
s3− 2

7
ct)∂̄6λ3+(133

10
s3−3ct)∂̄5λ4+(91

5
s3−12ct)∂̄4λ5+

(77
5
s3 − 24ct)∂̄3λ6 + (8s3 − 180

7
ct)∂̄2λ7 + (47

20
s3 − 99

7
ct)∂̄λ8 + ( 3

10
s3 − 22

7
ct)λ9.

(16) If a = −6, α = −8, ᾱ = 1, set ∂̄ = ∂ + β, F (∂̄, λ) = f(∂̄ − β, λ), and (5.30) is

written as

F (∂̄, λ)(∂̄ + λ+ µ) + F (∂̄ + λ, µ)(∂̄ − 8λ)− F (∂̄, µ)(∂̄ + λ+ µ)− F (∂̄ + µ, λ)(∂̄ − 8µ)

= (λ− µ)F (∂̄, λ+ µ)

+ ct(λ− µ)(11λ4µ4 − 2λ3µ3(λ+ µ)2)(∂̄2 +
15

7
∂̄(λ+ µ) +

8

7
(λ+ µ)2).

(5.49)

By the nature of (5.49), we may assume that a solution to (5.49) is a sum of homo-

geneous polynomials in ∂̄, λ of degree 10, that is, F (∂̄, λ) =
∑11

i=1 si∂̄
11−iλi−1 for some

constant si, i = 1, 2, · · · , 11. Taking it in (5.49), we have ct = 0 and get a contradiction.

The �nal results follow from Lemma 5.2.5 and Theorem 3.2 in [7] (or Theorem 2.7

in [21]).
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