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Abstract

This study is based on the axiomatic system of Lie conformal algebras proposed
by Kac, which provides an algebraic characterization of the singular part of the op-
erator product expansion (OPE) for chiral fields in two-dimensional conformal field
theory. The theory of Lie conformal algebras is not only closely related to mathemati-
cal theories such as vertex algebras, infinite-dimensional Lie algebras with locality, and
Hamiltonian formal systems, but also has significant applications in physical problems
like nonlinear evolution equations. This makes the study of their structural and repre-
sentation theories profoundly meaningful both mathematically and physically. Biswal
et al. systematically investigated rank-two Lie conformal algebras, classifying them
into semisimple Lie conformal algebras, solvable Lie conformal algebras, and two types
of non-semisimple and non-solvable Lie conformal algebras, while completely charac-
terizing their algebraic structures. Building upon the completed classification of finite
irreducible modules, this paper further studies the extension problems of irreducible

modules for rank two Lie conformal algebras. This report consists of five chapters.

In Chapter 1, we introduce the research background and the main results of this
paper.

In Chapter 2, we review necessary fundamental definitions, relevant notations, and

existing important results.

In Chapter 3, we first consider semisimple rank two Lie conformal algebras. Based
on the classification results of finite semisimple Lie conformal algebras by Kac et al.
and the properties of semisimple Lie algebras, it is shown that semisimple rank two Lie
conformal algebras are isomorphic to the direct sum of two Virasoro conformal alge-
bras. By solving systems of multivariate polynomial equations, we provide a complete
classification of the extensions of irreducible modules for this class of algebras. Sub-

sequently, using similar methods, we study solvable rank two Lie conformal algebras.

v
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By introducing integration techniques and utilizing properties of coefficient matrices
and skew-symmetric matrices, we ultimately establish the corresponding classification
results.

In Chapter 4, we focus on the classification of extensions of irreducible modules
for non-semisimple and non-solvable rank two Lie conformal algebras of Type I.

In Chapter 5, we investigate non-semisimple and non-solvable rank two Lie con-
formal algebras of Type II. Notably, when ) = 0, this class of algebras corresponds
precisely to the W(a, b) algebras, whose module extension classification has been com-
pleted by Luo et al. When @ # 0, the structures of these algebras can be further
divided into five subcases, for each of which we provide a complete classification of the

extensions of irreducible modules.

Keywords: Conformal algebra; Lie conformal algebra; Semisimple; Solvable; Non-
semisimple and non-solvable; Conformal module; Irreducible module; Extension; Rank

two.



Chapter 1 Introduction

§1.1 Background

Since vertex algebras were introduced by Borcherds [5] in 1986, they have found
extensive applications in both mathematics and physics [3, 16]. In particular, the
locality condition between fields in the definition of vertex algebras characterizes the
independence of measurements at spacelike separated points, which carries significant
physical meaning. However, the complex operational rules involved make the study of
related theories relatively challenging.

Through formal Fourier transforms, the investigation of locality between two fields
can be transformed into an examination of the singular part of their operator product
expansion (OPE). In the 1990s, Kac [9,22] introduced an axiomatic definition of the
Lie conformal algebra, which gives an algebraic description of the singular part of the
operator product extansion (OPE) of the chiral fields in 2-dimensional conformal field
theory. In addition to being closely related to vertex algebra and conformal field theory,
the theory of Lie conformal algebras is also closely associated with infinite-dimensional
Lie algebras [1|, Hamiltonian formal systems of nonlinear evolution equations [2|, and
quantum physics [10], and thus has received more attention in recent years.

A conformal algebra is called finite if it is a finitely generated C[0]-module, and the
rank of a finite conformal algebra is just its rank as a C[0]-module. It was shown in [4]

that a rank two conformal algebra is one of the following four types up to isomorphism:
(i) a semisimple conformal algebra;
(ii) a solvable conformal algebra;

(iii) the direct sum of a commutative Lie conformal algebra of rank one and the Vi-
rasoro conformal algebra Vir (called in this paper the Lie conformal algebra of

Type I);

(iv) and what we called the Lie conformal algebra of Type II(see case (2ii) in Propo-

sition 2.1.9).



The classification of their finitely irreducible conformal modules can be found in [6,
32]. Even for finite semisimple Lie conformal algebras, however, conformal modules
of Lie conformal algebras are generally not completely reducible. Therefore, solving
the extension problem plays an essential role in studying the representation theory of
conformal algebras. For instance, extensions of finite irreducible conformal modules
over the Virasoro, the current, the Neveu-Schwarz and the semi-direct sum of the
Virasoro and the current conformal algebras were investigated by Cheng, Kac and
Wakimoto in [7,8], that over finite Lie conformal algebras of planar Galilean type were
studied in [14], that over supercurrent conformal algebras were classified by Lam in [17],
that over Lie conformal algebras W(a,b,r) were discussed in [24], and that over the
Schrodinger-Virasoro conformal algebras were considered by Yuan and Ling in [35]. In
this study, extensions of finite irreducible modules over rank two conformal algebras are
characterized by dealing with certain polynomial equations induced by corresponding

module actions.

§1.2 Main results

It was proved in [9] that any finite semisimple Lie conformal algebra is the direct

sum of the following algebras:
Cur(g), Virx Cur(g), Vire Vir,

where g is a finite-dimensional semisimple Lie algebra. Let R be a conformal algebra
of rank two. Since there exists no semisimple Lie algebra of dimension less than 3, we
only need to focus on Vir & Vir for the semisimple case and the results are listed in
Theorems 3.1.2, 3.1.4 and 3.1.7.

Theorem 3.1.2 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of finite irreducible conformal modules of the form
0—Ccy—E — V5o —0 (1.1)

exist only when (01,02) = (1,0),0q € {1,2},61 +n = 0 or (§1,02) = (0,1),a0 €
{1,2},82 +1n = 0. In these cases, there exists a unique (up to a scalar) nontrivial

extension, i.e. dim(Ext(Vsap,Ccy)) = 1. Moreover, they are given (up to equivalence)

2



Racy, =0, e, = ncy,

Ao =80+ A+ B1)v+ f(N)ey,  Bav = 02(0 + ash + B2)v + g(N)cy,. (1.2)
The values of 6;, v, Bi,t = 1,2 and n, along with the corresponding polynomials f(\)
and g(\) giving rise to nontrivial extensions, are listed as follows:

(i) If 61 = 1,04 € {1,2}, 51 +n =0, then §5 = 0,9(\) = 0,0 # ay, B2 € C and

81)\2, a1 = 1,
fA) =

82)\3, ap = 2,

with nonzero constants sy, So.

(ZZ) If52 = 1,@2 S {1,2},52+77: 0, then 51 = O,f()\) = 0,0 7é Oél,ﬁl € C and

tl)\Qa Qo = ]-7
g(A) =
t2)\37 Qg = 27

with nonzero constants tq,ts.
Theorem 3.1.4 Let R be a direct sum of two Virasoro conformal algebras. Then
nontrivial extensions of finite irreducible conformal modules of the form

0— Vsap — £ —Ccy —0 (1.3)

exist only when 6y =1, a0 = 1,81 +n=00rds =1, a0 = 1,5, +1n = 0. In these cases,
there exists a unique (up to a scalar) nontrivial extension, i.e. dim(Ext(Ce,, Vsap)) =

1. Moreover, they are given (up to equivalence) by

A)\U = 61(84‘0&1)\4‘61)% Byv = 5Q<8—|—0g2)\—|—ﬂ2)1)’
AAC?? = f(a, )‘)Ua B)\Cn = g(@, A)Uy aCn =nc, + h(a)v (1.4)

The values of 0;, v, Bi, i = 1,2 and n along with the corresponding polynomials f(0, \),

g9(0,\) and h(0) giving rise to nontrivial extensions, are listed as follows:

3



(i) If 01 = L,a1 = 1,81 +n =0, then 0, = 0,9(9,A) = 0,9, 82 € C and f(9,)) =

h(0) = s with nonzero constant s.

(1) If 63 = L,aa = 1,85+ 1 =0, then & = 0, f(O,\) = 0,1,51 € C and g(0,\) =

h(0) =t with nonzero constant t.

Theorem 3.1.7 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of finite irreducible conformal modules of the form
0— Vsap — E— V55,5 —0 (1.5)
only exist in the following cases. Moreover, they are given (up to equivalence) by

A/\U :51(8+a1/\—|—61)v, B)ﬂ) :52(8+a2/\—|—52)v,
Ao =01(0 + A+ B1)o + (O, N, Bt = 85(0 + asA + B2)v + g(0, \v.  (1.6)

The value of 8, ;, i, &y, Bi, Bi,i = 1,2 and the corresponding polynomials f(0,)\) and

g(0, \) giving rise to nontrivial extensions, are listed as follows:

1. In the case that 6, = 61 = 1,00 = 8y = 0, ag, 2,09, € C,g(0,\) = 0,8, =
Bi,a; —ar € {0,1,2,3,4,5,6}, a1,a81 # 0 and
(i) a1 = a1, f(O,\) = sg+ s1A, where (sg,s1) # (0,0).
(i) @y —ay =2, f(9,\) = sA*(2(0 + B1) + A), where s # 0.
) @y —ay =3, f(O,\) =s(0+ 1)N\2(0+ B1 + N), where s # 0.
)

a —ay =4, f(0,N) = sX(4(0 + B1)? + 6(0 + b1)*X — (9 + Bi)A* + arN?),
where s # 0.

(i

(iv

(v) a1 =1 and a; = —4, f(9,)) = s((0+ B1)*"N —10(0+ B1)*M* —17(0+ 1) \° —
8\9), where s # 0.
(Vl) 6[1:%:|:@ O/ﬂdOélz

B1)*At = 3ai (0 + 51)*N°

+ VI £(9,0) = s((0+ )" N — (201 + 3)(9 +

_5

2
— (3o + 1)(0 + BN — (o + 25)AT), where s # 0.
The value of dim(Ext(Vs 4 5, Vsa,s)) s 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that §; = 6, = 0,0y = 6 = 1, a1, By, 01,81 € C,f(0,\) = 0,5, =
By, @ty — ay € {0,1,2,3,4,5,6}, a0, &y # 0, and
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Qg = o, g(0,\) = to + t1 A, where (ty,t1) # (0,0).

Qg —ay =2, g(0,\) = tA*(2(0 + B2) + \), where t # 0.

g — g =3, g(0,\) = (9 + B2)N*(0 + Ba + N), where t # 0.

Qg — g =4, g(0, ) = tA*(4(0 + [2)® + 6(0 + B2)* X — (9 + B2)A* + az)?),

where t # 0.

(v) ap =1 and ag = —4, g(9,\) = t((0+ B2)* N2 —10(0+ B2)* M — 17(D+ B2)\° —
8\9), where t # 0.

(vi) o = T+ Y19 and ay = =3+ Y10 4(9,0) = t((0 + Ba)* N — (202 + 3)( +

2 =2
Ba) At = 3a2(0 4 52)?A° — (Bag + 1)(0 + B2) A5 — (a2 + 55) A7), where t # 0.

The value of dim(Ext(Vs s 5, Vsa,p)) is 2 in subcase (i), and 1 in subcases (it)-(vi).

The nontrivial extensions for solvable rank two conformal algebras can be seen in
Theorems 3.2.3, 3.2.5 and 3.2.10, while those for non-semisimple and non-solvable Lie
conformal algebras of Type I are described in Theorems 4.1.2, 4.2.2 and 4.3.2.
Theorem 3.2.3 For a solvable rank two Lie conformal algebra R, nontrivial extensions

of finite wrreducible conformal modules of the form
0—Ccyp —E —Vy, 6, —0 (1.7)

exist only if p(A) # 0 and Q1(0,\) = 0. Moreover, they are given (up to equivalence)
by

Rxc, =0, Jc, =ncy,
Ayo = 640+ FNey, Bao = 6\ + (Ve (18)

The values of n along with the corresponding polynomials ¢a(N), o(A), f(A) and g(N)
giving rise to nontrivial extensions, are listed as follows: n € C, ¢a(N) = —p(N),

op(A) =0, f(A) =0 and g(X\) is a nonzero constant. Thus dim(Ext(Vy, 4,,Cc,)) =

O (N)+p(N),0-

Theorem 3.2.5 For a solvable rank two Lie conformal algebra R, nontrivial extensions

of finite irreducible conformal modules of the form

0 —=Vis6p —E —Ccy—0 (1.9)

5



do not exist, that is, dim(Ext(Cc,, Vi, 65)) = 0.
Theorem 3.2.10 For a solvable rank two Lie conformal algebra R, nontrivial exten-

stons of finite irreducible conformal modules of the form
0— V¢A7¢B — F — VéA,GBB — 0 (110)

always exist. Moreover, they are given (up to equivalence) by

A)\U = ¢A()\>’U, B)ﬂ) = quB(/\)U,
Ao = ¢a(N)T+ f(9, M),  Byv = ¢p(N)7 + g(d, M. (1.11)

The corresponding polynomials ¢A(N), dp(N), da(N), d(N), £(0, ) and g(d, ) giving

rise to nontrivial extensions, are listed as follows:

L. In the case that p(\) = Q1(0,\) = 0.

(©) If 94(N) = ¢a(N) = 0,05(\) = ¢p(N) # 0, then f(0,)) = s()),9(0,A) =

t(\), where s,t are polynomials, and either s # 0 or t(\) is not a scalar

multiple of Aop(N).

(i) If pa(N) = ¢a(A) # 0,05(N) = 95(\) = 0, then f(9,\) = s(\), (9. \) =
t(\), where s,t are polynomials, and either t # 0 or s(\) is not a scalar

multiple of Apa(N).

(i) I 6400 = 6a(N) # 0,65(0) = du(\) # 0, then F(D,A) = s(A),g(d,\) =

t(\), where s,t are polynomials, and s(\),t(\) are not the same scalar multiple

of Apa(N), App(N) respectively.

2. In the case that p(A) = 0,Q1(0, \) # 0, we always have pp(N) = ¢pp(A) = 0.

(1) If pa(N) = da(N) #0,9(9,\) = 0, then f(9,)\) = s(\), where the polynomial
s(A) is not a scalar multiple of Apa(N).

(i) If pa(N) = da(N) # 0,9(d,)) = t(\) # 0 such that the coefficient ma-
tric M = {q;;} of Qi(—=X — u, \)t(A + p) is of rank 2 and for ¢, j, # 0,
Pa(N) = 24 (57 frio ) — 2 (57, frioA¥) with the coefficients a1, ajo—1

Fig.do Fig.do
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of Xo=1 No=l in ¢4 are not all 0, then

fon) — | " Tk s+ Q). i a0,

- ! (Zk qkﬂo)\k>a + S(A>7 Zf a1;071 - O)

Ajo—1

where s s a polynomial.

3. In the case that p(A) # 0,Q1(0,\) = 0, we have ¢p(\) = ¢p(N) = 0.

(1) If da(X) = da(N) # 0, then f(9,)) = s()\),g9(0,\) = 0, where s,y are

polynomials, and s(\) is not a scalar multiple of Apa(N).
(i) If pa(X) # da(N), then f(3,A) = 0,04(X) = pa(A) = p(}), and

4(0.2) = k(04 A) + k2, p(N) =704(N) and r # 1,

kq, p(A) is not a scalar multiple of ¢pa(N),

where ky, ka € C and g(0, \) # 0.

The space of Ext(Vy, 5., Vea.ep) 15 of infinite dimension in all of the above subcases
but (3)-(ii).
Theorem 4.1.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of finite irreducible conformal modules of the form
0—Ccp —FE —Vaps —0 (1.12)

exist only when (91,02) = (1,0),a € {1,2}, 8 +n = 0. Moreover, they are given (up to

equivalence) by

Ric, =0, 0c, =nc,
Ao =0580+ar+B)v+ f(Ne,, Byv=060(N)v+ g(N)cy,. (1.13)

The values of n, along with the corresponding polynomials f(\) and g(X\) giving rise to

7



nontrivial extensions, are listed as follows: g(A) =0 and

with nonzero constants s1,sy. In these cases, dim(Ext(V, g4, Cc,)) = 1.
Theorem 4.2.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of finite irreducible conformal modules of the form
0 —Vope —E —Ccy—0 (1.14)

exist only when 61 = 1,a = 1,5 +n = 0. Moreover, the space of Ext(Cc,, Vy5.4)
is 1-dimensional, and the unique nontrivial extension is given (up to equivalence) as
follows: 93 = 0,9(0,\) =0 and f(0,\) = h(9) = s with nonzero constant s.

Theorem 4.3.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial

extensions of finite irreducible conformal modules of the form
0—Vape —E—Vz55—0 (1.15)
exist only when (01,05) = (81,8). Moreover, they are given (up to equivalence) by

A\v =010+ aX+ Blv, Byv = d0(N)v,
AT =50+ aAt AT+ F@ONv, Bt = 5gNF + g0 N, (L16)

The value of 6;,6;,1 = 1,2, a, &, 3, 3, and the corresponding polynomials ¢(\), p(N), f(9, \)

and g(0, \) giving rise to nontrivial extensions, are listed as follows:
1. In the case that (01,08:) = (61,02) = (1,0), g = 0,8 = B,a—a € {0,1,2,3,4,5,6}, o, & #
0, and
(i
(ii

(i

a=a, f(0,\) = so+ s1A, where (so, s1) # (0,0).

a—a=2, f(0,\) =s (2(0+ B)+ ), where s # 0.

a—a=3, f(0,\) =s(0+B)N((0+ B)+ \), where s # 0.

(iv) @ —a =4, f(9,\) = s (4(9+ B)> +6(0 + B)*\ — (0 + B)N* + au A?), where
s # 0.

)
)
)
)



(v) a=1anda=—4, f(0,)) = s((0+8)*N*=10(0+ B)*A\* = 17(0+ B)\> —8\°),
where s # 0.

(vi) a =T+ anda = -3+, £(9,\) = s((0+B)'\> — (2a+3)(9+ )\ —
3c(0+ BN — (Bar+ 1)(0 + B)A® — (ar+ 55) A7), where s # 0.

The value of dim(Ext(Vy 54, Va,pe)) 15 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that (01,05) = (01, 02) = (0,1), p(A) = @(N), £(O, ) = 0,9(0, ) = t(N)
with polynomials t and t(\) is not a scalar multiple of \¢(N\). Then the space
Eaxt(V,

a3, Vap.6) s infinite-dimensional.

If R is a non-semisimple and non-solvable Lie conformal algebra of Type II, one

can find a basis {A, B} such that
[A\A] = (0420 A+ Q(0,\)B, [A\B]=(0+4+a\+b)B, [B\B]=0,

where a,b € C and Q(0, \) is some skew-symmetric polynomial depending on a, b, i.e.
Q(,\) = —Q(0,—0 — \). If Q(0,\) = B(0+2N\),a = 1,b = 0, R is the algebra
called £(8) in [28]. If Q(J,A) = 0, R is just the Lie conformal algebra W(a,b) whose
extension problem has been investigated in [20,21]|. Particularly, W(1 — b,0) is the
Lie conformal algebra W(b) in [19] and W(1,0) is just the Heisenberg-Virasoro Lie
conformal algebra in [18]. So in this case we consider R under the condition that
Q(0,\) # 0 and the results can be found in Theorems 5.2.2, 5.2.4 and 5.2.6. Fixed
a=1,b=0,Q(0,\) = 0+ 2\, our results are consistent with those mentioned in |36].
Theorem 5.2.2 For a rank two Lie conformal algebra R that is of Type IT with Q) # 0,

nontrivial extensions of finite irreducible conformal modules of the form
0—Ccy—FE — Va3 —0 (1.17)
exist only if B+ n = 0. Moreover, they are given (up to equivalence) by

Rxc, =0, Jc, =ncy,
Av=(0+ar+B)v+ f(Nec,, Byv=g(Nc,. (1.18)

The values of « along with the corresponding polynomials f(\) and g(\) giving rise to

9



nontrivial extensions, are listed as follows: g(A) =0 and

with nonzero constants sy, s2. In these cases, dim(Ext(V, g, Cc,)) = 1.

Theorem 5.2.4 For a rank two Lie conformal algebra R that is of Type II, nontrivial

extensions of finite irreducible conformal modules of the form
0—V,p—FE—Cc,—0 (1.19)

exist only if B+n =0 and a = 1. Moreover, they are given (up to equivalence) by

Ay =0+ ar+ PB)v, Byv=0,
Aye, = f(0,N)v,  Byc, =g(0,\v, 0dc, =nc, + h(0)v, (1.20)

and dim(Ext(Cc,, Vag)) = 1. The corresponding polynomials f(0,\), g(0, \) and h(0)
giving rise to nontrivial extensions, are listed as follows: g(0,\) = 0 and f(0,\) =

h(0) = s with nonzero constant s.

Theorem 5.2.6 For a rank two Lie conformal algebra R that is of Type II, nontrivial

extensions of finite trreducible conformal modules of the form
0—Vop —E—V;5—0 (1.21)
exist only if 3 = 3. Moreover, they are given (up to equivalence) by

Ay =(0+a\+ B)v, Byw=0,
Ayo = (0+ar+B)o+ F(@, N, Bao = (0, M. (1.22)

The value of o, &, and the corresponding polynomials f(0, \) and g(0, \) giving rise to

nontrivial extensions, are listed as follows (by replacing 0 by 0 + B):

1. In the case when a = 1, where Q(0,\) = ¢(0 + 2X\) for some nonzero constant c,

a—ae{0,1,2,3,4,5,6},a,a # 0 and

10



(i
(ii

(iii

f(O,N) = so+ 51\, g(0,\) = 0, where (sq,s1) # (0,0).
—a=1, f(0,\) = £0,9(d,\) = t\, where t # 0.

Qi

Qi

) @
)
) @ —a=2witha#—1, f(0,\) = sA\?(20 + \), g(d, \) = 0, where s # 0.
)

(iv) @a=1and a = =1, f(,\) = sA\?(20+ ) — ct(0* — \?), g(0, \) = t(ON+ \?),
where (s,t) # (0,0).
(v) @a—a=3, f(0,\) =sIN(0+)\),g(d,\) =0, where s # 0.
(vi) a—a =4, f(0,\) = sA2(40° + 60°X — IN? + ay A?), g(0, \) = 0, where s # 0.
(i) & =1 and a = —4, f(9,\) = s(3'A? — 100°X* — 179N — 8X8), g(, \) = 0
where s £ 0,
(vii) @ =T+ Y1 anda = 3+ Y £(9,)) = s(0*N — (20 + 3)3P\* — 32N> —
(3a + 1)8>\6 (a+ %)M),g(a, A) =0, where s # 0.

The value of dim(Ext(Vy 5, Vo)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.

2. In the case when a = 0, where Q(0,\) = ¢(0 +2X)(0 + A)A +d(0 + 2X)0 for some
nonzero constants ¢,d, @ —a € {0,1,2,3,4,5,6},a, & # 0 and

(i) a=a, f(O,\) =s0+ 51\, g(9,\) =0, where (so,s1) # (0,0).
(i) a—a=1, f(9,\) = —2LOX — £9,g(0,\) =t, where t # 0.
(ili) @ —a =2 with a # —1, f(0,\) = sA\*(20 + \), (9, \) = 0, where s # 0.
(iv) @ =1 and a = =1, f(0,\) = sA\?(20 + \) + ctd*\ + dt(0* — N\?),g(0,\) =
(0 + N), where (s,t) # (0,0).

~

(v) a—a=3, f(0,\) =s0N\(D+ N),g(d,\) =0, where s # 0.
(vi) @ —a =4, f(0,\) = sA\}(40% + 60>\ — IN* + a1 )3), g(0,\) = 0, where s # 0.
(vil) @ =1 and a = —4, f(0,)) = s(0*"\? — 109> \* — 170\° — 8X%), g(9,\) = 0
where s # 0.
(vii) @ =L+ Y2 and a = —3 £ Y0 £(9,)) = s(0'\* — (20 + 3)PPA! — 300?\5 —
(B +1)OX — (4 5%)AT), g(9, ) = 0, where s # 0.
The value of dim(Ext(Vy 5, Vo)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.
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3. In the case when a = —1, where Q(9,\) = (0 + 2X)0? + d(J + 2X)( + N)OX for
some nonzero constants ¢,d, @ —a € {0,1,2,3,4,5,6},a,& # 0 and
(i) a=a, f(0,\) =so+ s1A,g(0,\) =0, where (sg,s1) # (0,0).
(i) @ —a =2 with o # —3, f(9,\) = sX*(20 + X), 9(d, ) = 0, where s # 0.
(ii) @ =3 and o = —3, f(0,\) = sA?(20+ \) — 2dt0? X — ct(20% — A?), g(9, \) = ¢,

2

where (s,t) # (0,0).
(iv) @ —a =3 with o # —1, f(9,\) = sON*(0+ ), g(d,\) = 0, where s # 0.

(v) @a=2and o = —1, f(O,\) = sOX* (D + \) — L(20°X + \') — L(9° — 20\ —
2X%),g(0,\) = t(0 + 3)), where (s,t) # (0,0).

(vi) @ —a =4, f(0,\) = sA\2(40° + 60>\ — IN* + a1 0?), g(0,\) = 0, where s # 0.

(vil) @ =1 and a = —4, f(0,)) = s(0*"\? — 109*\* — 170\° — 8X%), g(9,\) = 0
where s # 0.

(vii) @ =T+ Y anda = 3+ Y2 £(9,)) = s(0*N? — (20 + 3)3*\* — 320°N\° —
(B +1)OX — (a4 %)AT), g(9, ) = 0, where s # 0.

The value of dim(Ext(V, 3, Vap)) is 2 in subcase (i) and (v), and 1 in the other

subcases.

4. In the case when a = —4, where Q(9,\) = (0 + 2X)(0 + A\)3\® for some nonzero
constant ¢, @ — o € {0,1,2,3,4,5,6,7}, o, # 0, and

(i

(i

) a=a, f(,\) = so+ s\, g(D,\) = 0, where (so, 1) # (0,0).
)
(iii)
)
)

a

a—a=2, f(0,\) =sA(20+ \),g(d,\) =0, where s # 0.
a—a=3, f(0,\) =sIN(D+)),g(d,\) =0, where s # 0.
Q

(iv) a—a =4, f(0,\) = sA2(40° + 60°X — IN? + ay A\?), g(0,\) = 0, where s # 0.
(V a—a =25 U)’lthOé ¢ {—2 —4} f(@ )\) mCtag)\S #mctﬁ%\‘l—
a+1)(2a+1) (a+1)(2a+1)
m t3/\5 m t)\ﬁ,g(3 A) = t where t 7é 0.

(vi) @ =3 and o= =2, f(9,\) = 3ctd* N —3ct0* M — S ctON> — 2ct\, g(0,\) = ¢,
where t # 0.

(vil) @ =1 and a = —4, f(0,)) = s(0*\? — 109> \* — 170X° — 8X%), g(9,\) = 0
where s # 0.
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vill) @ — a = 6 with « -2, -2 i ‘ﬁ , f(O, A 3 cto* 3 +
(2a+5)(2a +10a+3)

3(20+3) 3v4 9(a+1)(2a+3 215 (a+1)(2a+1)(20+3) 6
(2a15)(202 11001 3) ctd” A 5(2a45)(2a2+ 10+ 3) ctd”A 2a+5)(2a2+10a+3 ctoN” —
a(a+1)

70(2a+5()2(§;r2ll(120c;f3 ctAT, (9, \) = (0 — §A), where t 7é 0.

(ix) a=1 and o = =32, f(O,\) = Z2ctd N — 2Lt N — BLctd?X° — Z8ctONS +
2L\, g(9, A) = t(0 + 3A), where t # 0.

(x) a=12+Y anda=—-3£YI2 £(9,)) = s(0*\* — (20 + 3)P\! — 300?\ —
(3a )8)\6 — (a+ 35)A7),9(0,X) = 0, where s # 0.

(xi) @ =1 and o = =6, f(9,\) = 5=ctd\* + 2ctd* A\ + LctIPN5 + 2ctd? X +
BCtON + S=ctX®, g(0, X) = t(9% + LON+ 2N?), where t # 0.

The value of dim(Ext(V, 3, Vap)) is 2 in subcase (i), and 1 in the other subcases.

5. In the case when a = —6, where Q(9, \) = (0 + 2X)[11(0 + X\)* A +2(0 + X)39%\3]
for some nonzero constant ¢, @ — & € {0,1,2,3,4,5,6,7,8},a,@ # 0, and
i) a=a, f(0,\) =so+ 51\, g(0,\) =0, where (sg,s1) # (0,0).
(ii) =2, f(0,\) = sA2(20 + \),g(d,\) = 0, where s # 0.
(i) @ —a =3, f(9,\) = sON2(0 + ), g(0,\) =0, where s # 0.
)
)

Q |

(iv) a—a =4, f(0,\) = sA\2(40° + 60*°X — IN* + a1 0?), g(0,\) = 0, where s # 0.

(v) a=1and a = —4, f(0,\) = s(0*"\* — 100°\* — 170)X5 — 8X9),g(0,\) = 0
where s # 0.

(vi) a=1+Y0 anda = -3+ Y (5 \) = s(0*N> — (20 + 3)0P\* — 3a0°\5 —
(Ba+ 1)8)\6 (o + 2£)A7), 9(8,A) = 0, where s # 0.

(vil) a =4+ @ and o = =3 + @ , f(O,N) = tOPA3 4 20ty Nt

a+3) 7(a+3)

40(5a+1) 315 20(16a+11) 216 10(1544101) 7 823a+539 8
7(at3) t@ )\ W ta )\ W ta)\ + 98(a+3) Ct/\ ,g(@ )\) = t,
where t # 0.

(viii) @ =7 and o = —1, f(9,A) = —2ctd° N3+ 2PN —2ctd* No+2ctd3 N\, (0, ) =
t(0+ LX), where t # 0.

(ix) @ =2 and a = —6, f(D,\) = —2ctd°N* — 3ctdPA* — 12ct0* N> — 24t \° —
Bt N — LctdN® — ZctX?, g(9,\) = t(9 + 2X), where t # 0.

The value of dim(Ewxt(Vy 5, Vag)) is 2 in subcase (i), and 1 in the other subcases.
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Chapter 2 Preliminaries

In this chapter, we recall the definition of Lie conformal algebras, conformal mod-
ules and their extensions, and some known results that are useful in this paper. For

more details, one can refer to [4,6,7,22,32].

§2.1 Lie conformal algebras

First, we introduce the two equivalent definitions of Lie conformal algebras. The
distribution notion has advantages in attaching to Lie algebras, while it is more con-

venient to compute with A-bracket.

Definition 2.1.1 A Lie conformal algebra R is a C[0]-module equipped with a C-
linear map (called \-bracket) R @ R — R[], a ® b — [a\b], satisfying the azioms
(C1)-(C4) for all a,b,c € R.

(C1) [axb] € CAJ® R,

(C2) [8axb] = —Aaxb], [a:x08] = (9 + A)[axb],
(C3) [axb] = —[b_x—opa],

(C4) [ax[buc]] = [[arblxspc] + [bulaxc]].

A Lie conformal algebra R is called finite if R is finitely generated as a C[J]-
module. The rank of a finite Lie conformal algebra is just its rank as a C[d]-module.

Obviously, we can define subalgebras, ideals, quotients, simple algebras and ho-
momorphisms of Lie conformal algebras.

For a,b,c € R, set

jaxb] = > A¢ (2.1)

keN4

where A®) = ’\k—’f Then we can get a family of bilinear products {e()e} on R and
equivalently rephrase the above Lie conformal axioms.

(C1') a@yb =0 for k>0,

(C2') dayb = —kag._1)b, aw0b = 0(a@b) + kag_1b,

(C3) agob = — S (— 1Y *H9Db s,

J
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k
(C4) agy(bye) — bilawe) = ZO (5) (ag)b)si—se-

]:
There is a Lie algebra structure contained in the distribution notion of a Lie

conformal algebra.

Lemma 2.1.2 Let (R, {e)e) be a Lie conformal algebra. Then egye is a Lie bracket
of R, and with respect to the 0-th product OR is an ideal of R so that R/OR is a Lie

algebra.

Below are some important examples of Lie conformal algebras.

Example 2.1.3 Let Vir = C[0]®L be the rank-one C[0]-module generated by L. Then
[LL] = (8 + 2\)L

defines a Lie conformal algebra structure on Vir. The Lie conformal algebra Vir is

called the Virasoro conformal algebra.

Example 2.1.4 Given a Lie algebra g, let Cur(g) = C[0] ® g. Then
[axb] = [a,b], Ya,be g

defines a Lie conformal algebra structure on Cur(g). The Lie conformal algebra Cur(g)

15 called the current Lie conformal algebra associated with g.

Example 2.1.5 Let Cur(g) be the current Lie conformal algebra associated to the
finite-dimensional Lie algebra g. Then the C[0]-module Vir & Cur(g) can be given a

conformal algebra structure by
where L is the standard generator of Vir, g, h € g. This Lie conformal algebra is called

the semidirect sum of Vir and Cur(g), denoted by Vir x Cur(g).

Besides, by utilizing the correspondence between formal distribution Lie algebras
and Lie conformal algebras, one can effectively construct a class of finite non-simple
Lie conformal algebras. In [26], Su and Yuan investigated two non-simple Lie con-

formal algebras derived from the Schrédinger-Virasoro Lie algebra and the extended
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Schrodinger-Virasoro Lie algebra, which were generalized in [27]. Similarly, a class of
Lie conformal algebras W (b) was obtained from the infinite-dimensional Lie algebra
W(a,b), which is the semidirect sum of the centerless Virasoro algebra and the in-
termediate series module A(a,b) [33]. Furthermore, from the twisted deformation of
Schrodinger-Virasoro type Lie conformal algebras, the Schrédinger-Virasoro Lie alge-
bra studied in [29] was obtained.

Let R be a Lie conformal algebra, I and J its ideals. The bracket [I,J] is the
subspace of R that is spanned by all products i(,)7 with i € 1,5 € J,n € N,.

Definition 2.1.6 A Lie conformal algebra R is called solvable if its derived series

terminates at zero, i.e., there exists n € N such that:
RO =R, RED=[ROR®]  and R™ =0,

where [-5-] denotes the A\-bracket defining the Lie conformal algebra structure.
A Lie conformal algebra R is called semisimple if it contains no nonzero solvable

1deals.

The classification of rank one Lie conformal algebras and all finite semisimple ones
was established by Kac et al. in [9], where Virasoro conformal algebra plays a central

role.

Proposition 2.1.7 [9, Proposition 3.3] If R is a non-commutative rank one Lie con-

formal algebra, then R must be isomorphic to Vir.

Theorem 2.1.8 [9, Theorem 7.1] Let R be a finite semi-simple conformal algebra.
Then R can be uniquely decomposed in a finite direct sum of conformal algebras, where

each summand is isomorphic to one of the following:
(a) Vir,
(b) Cur(g), where g is a simple finite-dimensional Lie algebra,

(b) Vir x Cur(g), where g is a semisimple finite-dimensional Lie algebra.

A super version of the above classification can be seen in [11].
Let R be a free rank two Lie conformal algebra. If R is semisimple, as shown

in Theorem 2.1.8, R is the direct sum of Vir, Cur(g), Vir x Cur(g), where Cur(g)
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is the current conformal algebra associated with a finite-dimensional semisimple Lie
algebra g. Since there exists no semisimple Lie algebra of dimension less than 3, then
R is isomorphic to the direct sum of two Virasoro Lie conformal algebras. As for the

non-semisimple case, we have the following proposition. For more details, one can refer

to [4,15,23,34].

Proposition 2.1.9 [/, Theorem 3.21] Let R be a rank two Lie conformal algebra that
15 not semisimple.
(1) If R is solvable, then there is a basis {A, B} such that
[A\A] = Q1(0,\)B, [A\B] = p(\)B, [B\B] =0, (2.2)
for some polynomial p(\) and some skew-symmetric polynomial Q1(0, \) satisfying
p(A)Q1(0, A) = 0.
(2) If R is neither solvable nor semisimple, then there are two classes.
(2i) R is the direct sum of a rank one commutative Lie conformal algebra and the
Virasoro Lie conformal algebra. That is, there is a basis { A, B} of R satisfying

[AyA] = (8 + 20)A, [A\B] =0, [B\B] = 0. (2.3)

(2ii) There is a basis {A, B} of R such that

[AVA] = (8 + 20)A + Q(9, \)B,
[A\B] = (0 + aX+b)B, [BAB] =0,

(2.4)

where a,b € C and Q(0,\) is some skew-symmetric polynomial depending on
a,b. Moreover, Q(0,\) # 0 only when a € {1,0,—1,—4,—6} and b = 0, in

which case we document the explicit formula for Q(0, \) in the following table.
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a Q(0,N), ¢,deC,

1 (0 + 2))
0 (8 +2X0)(0 + M)A+ d( + 2))0
-1 (0 +2X)0% +d(0 + 20) (0 + N)OA
—4 (04 20) (0 + A)3\3

—6 | c(0+ 2N)[11(0 + \)*AT + 2(0 + A)292N?]

Remark 2.1.10 A polynomial Q(0, \) is called skew-symmetric if Q(0,\) = —Q(0, —A\—
d).

In this study, we refer to the two classes of non-solvable and non-semisimple rank two
conformal algebras mentioned above as Lie conformal algebras of Type I and
Type II, respectively. A Lie conformal algebras of Type II with Q(0,\) = 0 is called
W(a,b) algebra.

§2.2 Conformal modules of Lie conformal algebras and their

extensions
Now, we can introduce the definition of conformal modules.

Definition 2.2.1 Let R be a Lie conformal algebra. A conformal R-module V is a
C[0]-module endowed with a C-linear map R @V — V[A], a @ v — ayv, satisfying the
following axioms:

(Oa)yv = =A(ayv), ax(Ov) = (0 + Nayv,

ax(b,v) = [axb]x,v + by (ayv),

foralla,be R andv e V.

In the sequel, for convenience, a conformal R-module is also called an R-module.
A conformal module V' is called irreducible if there is no nonzero submodule W such
that W # V, and V is said to be a trivial R-module if R acts on V trivially. For
any n € C, we can obtain a trivial R-module Cc, = C, which is determined by 7, via
the action Oc, = nc,, Rac, = 0. It is easy to check that the modules Cc, with n € C
exhaust all trivial irreducible R-modules.

The complete classification of the finite nontrivial irreducible modules of the Vira-

soro conformal algebra was provided in |6,9], that of R of rank two was described in [32],
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and that of other important Lie conformal algebras were investigated in [12,13,25,31]

and so on.

Proposition 2.2.2 /6, 9] Any non-trivial free rank one Vir-module has the form
M, = C[0]v, such that
Lyv=(0+ aX+b)v,

for a,b € C. Moreover, if a # 0, then M,y is trreducible and any non-trivial finite
irreducible Vir-module is wn such form. If a = 0, then My, has the unique finite

irreducible proper Vir-submodule (0 4 b) Mo, which is isomorphic to My .

Proposition 2.2.3 /32, Theorem 5.2] Suppose that R = C[0]A & C[0]B is a Lie
conformal algebra of rank two. Then any non-trivial finite irreducible R-module is free
of rank one. Moreover, if V = C[0Jv is a non-trivial irreducible R-module, then the

action of R on V' has to be one of the following cases:

(i) If R = C[0]A® C[0]B is a direct sum of two Virasoro Lie conformal algebras with
[A\B] = 0, then either

Ayv = (0+ an A+ pr)v, Byv =0, for some By, 0 # a1 € C,

or

Ayv =0, Byv = (0+ agA + fBa)v, for some B2, 0 # ay € C.

(11) If R is solvable with the relations (2.2), then we have Ayxv = ¢pa(N)v, Byv =
op(N)v, where pa(N), ¢p(N) are not zero simultaneously. Moreover, ¢p(\) # 0
only if p(A) = Q1(9, A) = 0.

(111) Suppose that R is the Lie conformal algebra defined in (2.3), then either
Ayv = (04 aX+ PB)v, Byv =0, for some 3, 0 # a € C,

or

Ayv =0, Byv = ¢(Nv, for some nonzero ¢p(\) € C[\|.
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(iv) Suppose that R is the Lie conformal algebra defined in (2.4). Then
Ay = (04 ar+ ), By =,

where o, B,y € C such that v # 0 only if a =1, b =0 and Q(0,\) = 0. Further,
ifv=0, then a # 0.

Definition 2.2.4 Let V and W be two modules over a Lie conformal algebra R. An

extension of W by V is an exact sequence of R-modules of the form
0—V-S5E-L w0, (2.5)

where E is 1somorphic to VAW as a vector space. Two extensions 0 — V SR AN
W —0and0 — V -2 B 25 W — 0 are said to be equivalent if there exists a

homomorphism of modules such that the following diagram commutes

i

0 s V s B —2 5 W s 0

1vl \pl 1Wl (2.6)

-/ /

0 sV s B 2w s 0.

Obviously, the direct sum of modules V & W gives rise to an extension 0 — V —
VeW — W — 0. Any extension 0 - V — E — W — 0, which is equivalent to

0=V =>VeW =W — 0, is called trivial extension.

In general, an extension can be thought of as the direct sum of vector spaces

E =V & W, where V is a submodule of E, while for w € W we have
ay-w = ayw + fq, (w), a € R,
where f,, : W — C[]A\] ® V is a linear map satisfying the cocycle condition:
Jiastias, (W) = fay (buw) + axfy, (w) = fo,(arxw) — b, fa, (w), b€ R.

The set of all cocycles forms a vector space Ext(W, V) over C. Cocycles equivalent to

trivial extensions are called coboundaries. They form a subspace Ext¢(W, V') and the

quotient space Ext(W, V) /Extc(W, V) is denoted by Ext(W, V). The dimension of the
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quotient space is called the dimension of the space of extensions of W by V, denoted
by dim(Exzt(W,V')). From now on, we will say two extensions are equivalent if they

belong to the same equivalent class unless confusion is possible.

Example 2.2.5 Let R be an arbitrary conformal algebra, and we can consider exten-

stons of trivial irreducible R-modules of the form
0 — Ccy — EF — Cc; — 0. (2.7)

In this case, E as a vector space is isomorphic to Cc, © Ccj, where Cc, is an R-

submodule, and the following identities hold in E':
RACT_] = fR(/\)Cnv 867_] = ncg + tey, (28)

for any R € R, where n,7,t € C and fr(\) is some polynomial depending on R. Since
E is an R-module, it follows from Rx(Oc;) = (0 + X)Ryxc;; that

nfr(A) = (n+ A) fr(N)

which implies fr(A) =0 for any R € R. Assume that (2.7) is a trivial extension, that
is, there exists ¢, = ke, + lcg, where k,1 € C and | # 0, such that

dcy = ¢, = ke, +Nlcg,  Rice = 0.
On the other hand, it follows from (2.8) that
dc, = kdc, + 10c; = (nk + tl)c, + qlc;.

So we have (7 —n)k = tl.

If n # n, for arbitrary t, we can find such k,l € C, and E is always a trivial
extension. If 1 =mn, E is trivial only when t = 0. Therefore, dim(Ext(Cc,, Cc;))=0,5
and when n = 7, the nontrivial extensions are given (up to equivalence) by

Rici; =0, Ocz = ncg + ke,
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with k # 0.

In [7], extensions over the Virasoro conformal modules of the following types have

been classified:

0—Ccy—FE—M,p—0 (2.9)
0 — My — E— Ccy —0 (2.10)
0— Myz—E — Myz — 0. (2.11)

The corresponding results are listed as follows.

Theorem 2.2.6 [7, Proposition 2.1] Nontrivial extensions of Virasoro conformal mod-
ules of the form (2.9) exist if and only if 5 +n =0 and o = 1 or 2. In these cases,

they are given (up to equivalence) by
Lyvg = (04 aX + Bug + f(N)ey,
where
(i) f(N) = A2, for a =1 and cy # 0.
(ii) f(N) = c3A3, for a =2 and c3 # 0.

Furthermore, all trivial cocycles are given by scalar multiples of the polynomial f(\) =

aX+ B +n.

Theorem 2.2.7 [7, Proposition 2.2] Nontrivial extensions of Virasoro conformal mod-
ules of the form (2.10) exist if and only if B +n =0 and a = 1. In these cases, they

are given (up to equivalence) by
L)\C’V] = f(aa /\)Uom acn = ncy + p(a)vaa

where f(0,\) = p(0) = k for some nonzero k € C.
Furthermore, all trivial cocycles are given by the same scalar multiples of the poly-

nomial f(0,\) = (0+aX+B)p(0+A) and p(0) = (0—n)p(0), where ¢ is a polynomial.
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Theorem 2.2.8 [7, Theorem 3.1] Nontrivial extensions of Virasoro conformal mod-
ules of the form (2.11) exist if and only if 3 =B and a —a =0,1,2,3,4,5,6. In these

cases, they are given (up to equivalence) by
Lyva = (0 + aA + B)va + f(9, A)vs.

The complete list of values of o and & along with the corresponding polynomials f(0, \),
is given as follows, whose nonzero scalar multiples give rise to nontrivial extensions (by

replacing 0 by 0 + B):
(i) a =a with a € C. f(0,\) = ap + a1\, where (ag,ar) # (0,0).
(ii) a« =1 and @ = 0. f(9,\) = agd + bgOX + bi\?, where (ag, b, b1) # (0,0,0).
(iii) a —a =2 with a € C. f(9,\) = \2(20 + \).
(iv) a —a =3 with a € C. f(9,\) =N (D + ).
(v) @ —a =4 with a € C. f(,)) = N(4® + 602\ — IN® + a\d).
(vi) a =5 and a=0. f(9,\) = 5I'\2 + 100°\* — ON°.
(vii) a =1 and @ = —4. (3, \) = I*N2 — 1002\* — 179\° — 8\°.

(viii) a = T+ Y1 gpda = —3+ Y (9, \) = 9N — (2a +3)9P\' — 360\’ — (3a +
1IN — (@ + )N

Furthermore, all trivial cocycles are given by scalar multiples of the polynomial f(0, \) =

(O +aX+ B)p(0) — (0 +aX+ B)p(0 + N), where ¢ is a polynomial.

23



Chapter 3 Extensions of finite irreducible modules
of semisimple or solvable rank two Lie conformal

algebras

§3.1 Extensions of finite irreducible modules of semisimple

rank two Lie conformal algebras

In this section, we consider R as a semisimple rank two Lie conformal algebra.
Then R is the direct sum of two Virasoro Lie conformal algebras. We can assume

R = C[0]A ® C[0]B with
[AVA] = (8 + 2)\)A, [A\B] = 0, [B.B] = (9 + 2\)B. (3.1)

Let V be a non-trivial finite irreducible R-module. According to case (i) in Proposition

2.9.3,
V=2Vsaps=Clolv, Aw=06(0+aiA+b1)v, Byv =050+ aA+ B2)v, (3.2)

where §; € {0,1},8;,0 # a; € C for i = 1,2, and 67 + 62 = 1.
By Definition 2.2.1, an R-module structure on V' is given by Ay, By € Endc(V)[)]
such that

[Ax, Al = (A = 1) Ani, (3.3)
Ay, B,] = 0, (3.4)
[Bx, Bu] = (A = 1) Bxsy, (3.5)
0, Ay] = —AAy, (3.6)
0, By] = —AB, (3.7)

§3.1.1 0—Ccy — E — V5oa3 — 0
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First, we consider extensions of finite irreducible R-modules of the form
0— Cey — E — Vsap —0. (3.8)

Then FE is isomorphic to Cc, @ Vs o3 = Ce,, ®C[0]v as a C[0]-module, and the following
identities hold in E:

Ric, =0, 0Oc, = nc,,
Ao =060+ A+ 51)v+ f(N)e,, Bav = 062(0 + aoh + B2)v + g(N)cy, (3.9)

where f(A), g(A\) € C[A].

Lemma 3.1.1 All trivial extensions of finite irreducible R-modules of the form (3.8)
are given by (3.9), where f(X) and g(\) are the same scalar multiples of 61(ax A\+n+ 1)
and da(c) +n + Pa), respectively.

Proof: Assume that (3.8) is a trivial extension, that is, there exists v = ke, +{(0)v €
E, where k € C and 0 # [(0) € C[0], such that

A" = 01(0 4+ ar A + 1)V = k1 (n + an X + Br)e, + 611(9) (0 + an A + Br)v,
B’ = 02(0 + azd + B2)v" = kda(n + aod + Ba)ey + 021(0)(0 + ) + Ba)u.

On the other hand, it follows from (3.9) that

Ayv' = fF(NUn + Ney 4+ 011(0 + A)(9 4 an A + Br)v,
Byv" = g(N)l(n+ X)ey 4 0210 + X)(0 + s + Ba2)v.

We can obtain that [(0) is a nonzero constant by comparing both expressions for Ayv’
and Byv'. Thus f(\) and g(\) are the same scalar multiple of d;(ay A +n + f;1) and
da(aa A + n + Po), respectively.

Conversely, if f(A) = kd1(cuX + 1+ B1) and g(A) = kda(ao) + 1 + 52) for some

k € C, setting v' = ke, + v we can deduce that (3.8) is a trivial extension.

Theorem 3.1.2 Let R be a direct sum of two Virasoro conformal algebras. Then

nontrivial extensions of finite irreducible conformal modules of the form (3.8) exist only
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when (91,02) = (1,0), a1 € {1,2}, 81 +1n =0 or (§1,02) = (0,1), a2 € {1,2}, 82+ 1 =
0. In these cases, there ezists a unique (up to a scalar) nontrivial extension, i.e.
dim(Ext(Vsap, Cey)) = 1. Moreover, they are given (up to equivalence) by (3.9). The
values of 6;, i, Bi,i = 1,2 and n, along with the corresponding polynomials f(\) and

g(N) giving rise to nontrivial extensions, are listed as follows:

(1) If 5y = 1,01 € {1,2}, 81 +n =0, then d3 = 0,g(\) = 0,0 # a9, 52 € C and

with nonzero constants sy, Sa.

(ii) If 62 = 1,90 € {1,2}, o+ =0, then 6 =0, f(A\) = 0,0 # ay, 51 € C and

t1>\2, Qg = 1,
9(\) =

tg)\:)’, Qg = 2,

with nonzero constants tq,ts.

Proof: Applying both sides of (3.4) to v and comparing the corresponding coefficients,

we obtain
2(n + A+ azp+ Ba2) f(A) = 61(n + p + arA + Bi)g(p) = 0. (3.10)

If (01,02) = (1,0), (3.10) implies g(u) = 0 and it reduces to the case of Virasoro
conformal algebra. We can deduce the result by Proposition 2.1 in [7]. A similar

discussion can be made with (d1,d2) = (0, 1).

§3.1.2 0— Vs —E — Cc, — 0

Next, we consider extensions of finite irreducible R-modules of the form

0 — Vsap — E — Cc, — 0. (3.11)

26



Then E is isomorphic to V. s ® Cc, = C[0]v@ Cc, as a C[0]-module, and the following
identities hold in E:

Ayv =60+ ar A+ B1)v,  Byv = 02(0 + ag + Ba)v,
Aye, = f(0,\)v,  Bac, =g(0,\)v, 0c, = ne, + h(0)v, (3.12)

where f(9,\),g(0,\) € C[0, \] and h(0) € C[0].

Lemma 3.1.3 All trivial extensions of finite irreducible R-modules of the form (5.11)
are given by (3.12), and f(9,\) = §10(0 + A) (0 + oA + 51), g(0, A) = d20(0 + A) (0 +
asA + B2) and h(0) = (0 —n)p(0), where ¢ is a polynomial.

Proof: Assume that (3.11) is a trivial extension, that is, there exists ¢; = ke, +1(9)v €
E, where 0 # k € C and [(9) € C[0], such that Axc, = Bxc, = 0 and dc;, = nc),.
On the other hand, it follows from (3.12) that

Axc, = (Ef(0,A) +611(0 + N) (0 + au A + B1))v,
By, = (kg(0, A) + 021(0 + A) (0 + o\ + B2))v,
oc,, = kney + (kh(9) + 01(0))v.

We can obtain the result by comparing both expressions for Axc), Bic, and dc;.
Conversely, if f(9,\) = 0100+ \)(O4+a1 A+ 51), (0, \) = dap(0+ ) (04 A+ )
and h(9) = (0 —n)p(9) for some polynomial ¢, setting ¢, = ¢, — p(d)v, we can deduce

that (3.11) is a trivial extension.

Theorem 3.1.4 Let R be a direct sum of two Virasoro conformal algebras. Then
nontrivial extensions of finite irreducible conformal modules of the form (3.11) exist
only when 6y = 1,00 =1,814+n=00rd =1, a0 = 1,55+n = 0. In these cases, there
exists a unique (up to a scalar) nontrivial extension, i.e. dim(Ext(Cc,, Vsap)) = 1.
Moreover, they are given (up to equivalence) by (3.12). The values of 6;, a;, Bi,i = 1,2
and n along with the corresponding polynomials f(0,X), g(0, ) and h(9) giving rise to

nontrivial extensions, are listed as follows:

(i) If 6y = 1,a; = 1,5 +n =0, then 6 = 0,9(0,\) = 0,9, 82 € C and f(0,\) =

h(0) = s with nonzero constant s.
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(ii) If 0 = 1, = 1,05+ 1 =0, then 6 = 0, f(9,\) = 0,a1, 51 € C and g(d,\) =

h(9Q) =t with nonzero constant t.

Proof: Applying both sides of (3.6) and (3.7) to ¢, and comparing the corresponding

coefficients gives the following equations

(O+AX=n)f(0,\) =5h(D+ N (0 + ar A+ b)), (3.13)
(O+AX—=1n)g(0,\) = 02h(0 + N\) (0 + as\ + [32). (3.14)

We only need to consider the case that (d1,92) = (1,0). Then g(0,A) = 0 by (3.14)
and the result can be deduced by Proposition 2.2 in [7].

§3.1.3 0 —Viup — E —Vs55 —0

Finally, we consider extensions of finite irreducible ‘R-modules of the form
0— Vsap — E — V555 — 0. (3.15)

Then E is isomorphic to Vi, @ Vs55 = C[0]v @ C[0]v as a C[0]-module, and the
following identities hold in E:

A)\U = (51(6+a1)\—|—ﬁl)v, B)\U = 52(6+C¥2)\+B2)U,
Ao =610+ @A+ B+ F(O,\v,  Bav = 35(0 + o\ + Bo)v + g(0, M, (3.16)
where f(aa )‘)7 g<87 )\) S (C[87 )\]

Lemma 3.1.5 All trivial extensions of finite irreducible R-modules of the form (3.15)
are given by (5.16), and f(9,\) = 61p(0 + A)(0 + ar A + B1) — 61p(0) (0 + ar A + Bi)
and g(0,\) = G2p(0 + N)(9+ ax\ + B2) — 020(9) (0 + A + B2) for some polynomial .

Proof: Assume that (3.15) is a trivial extension, that is, there exists v = k(9)v +

[(0)v € E, where k(0),1(0) € C[J] and 1(0) # 0, such that

A0 = 61(0 + @\ + BV = 61k(0)(0 + ay A + Br)v + 011(9)(0 + an A + B1),
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B0 = 05(0 + agh + B2)0 = 62k(0)(0 + ao) + B2)v + 6:1(0)(0 + @\ + B)0.
On the other hand, it follows from (3.16) that

A\ = (610 4+ N0+ A+ B1) + 10+ N) F(0, \)v + 61l( 4+ N) (D + aa A + B1)0,
B\ = (62k(0 + N (0 + agh + B2) + 10 + N)g(d, \))v + 621(0 + N)(0 + an) + Bo)0.

Comparing both expressions for A ¢’ and B,v', we can obtain that [(0) is a nonzero
constant. Then we can give the expressions of f(0,A) and g(0, \).

Conversely, if f(0,A) = 610(0 + N)(0 + auA + B1) — 610(9)(9 + auA + B1) and
g(0,\) = 820(0 + N) (0 + g\ + B2) — G20(0)(d + G\ + B2) for some polynomial ¢,
setting 0" = —p(9)v + v we can deduce that (3.15) is a trivial extension.

Before classifying all nontrivial extensions of the form (3.15), we give the following

lemma for later use.

Lemma 3.1.6 The equation
c(O+ X\ p)(0+aX+b) —c(0,u)(0+pu+ar+b) =0 (3.17)

for unknown polynomials c¢(0,\) € C[0, \] with a,a,b,b € C has only zero solution.

Proof: Putting A = 0 in (3.17), we get ¢(9, u)(b— pu —b) = 0. So ¢ = 0.

Theorem 3.1.7 Let R be a direct sum of two Virasoro conformal algebras. Then
nontrivial extensions of finite irreducible conformal modules of the form (3.15) only
exist in the following cases. Moreover, they are given (up to equivalence) by (3.16).
The value of 8, 6;, i, &, Bi, Bi,i = 1,2 and the corresponding polynomials f(0,)\) and

g(0, \) giving rise to nontrivial extensions, are listed as follows:

1. In the case that (51 = 51 = 1,52 = 52 = 0, ag,ﬁQ,O_ég,Bg S (C,g((?,A) = 0,61 =
Bi,a1 —a; €{0,1,2,3,4,5,6}, 1,081 # 0 and

(i) an = aq, f(O,\) = so + s1A, where (sg,s1) # (0,0).
(ii) @y —ay =2, f(0,\) = sA\2(2(0+ B1) + ), where s # 0.
(i) aq — oy =3, f(O,N) = s(0+ B1)N(0 + B1+ \), where s # 0.
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(i) ar —ar =4, f(9,A) = sAN2(4(0 + B1)* + 6(0 + £1)*A — (9 + P1)A* + anN?),
where s # 0.

(v) @y =1 and ay = —4, f(O,\) = s((O+ B1)N2—=10(0+ B1)*A\T = 17(0+ 1) \° —
8\9), where s # 0.

(vi) @ =T+ Y% and oy = =3 £ Y £, ) = s((0+ )N — (201 +3) (D +
Br)3 A = 3a1(9 4 1)*A° — (3ar + 1)(0 + B1) XS — (o1 + 5%) A7), where s # 0.

The value of dim(Ext(Vs 4 5, Vsa,s)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

2. In the case that 51 = 51 = 0,52 = 52 = 1, &1,51,0_51,61 S C,f((?, )\) = O,ﬁg =
Ba, @ — ap € {0,1,2,3,4,5,6}, 0, 0 # 0, and
(Z) Qg = a9, g(a, )\) = t() + tl/\7 where (to,tl) 7é (0,0)
(ii) Qg — g =2, g(0, ) = tA2(2(0 + Ba) + ), where t # 0.
(1) @ — az =3, g(0,\) = t(0 + P2)A2(0 + [z + A), where t # 0.
(iv) az — ag = 4, g(0,\) = tA*(4(0 + B2)* + 6(0 + £2)’A — (O + B2)\* + aa)?),
where t # 0.
(v) @ =1 and ay = —4, (9, ) = t((0+ P2)*N* —10(0 + 2)*A* — 17(D + B2) N° —
8X9), where t # 0.
(vi) @ = T+ Y and ag = =3 £ Y9 (9, )) = t((d + B2)"N* — (25 + 3) (D +
B2)3 N — 3aa(9 4 B2) A% — (3ag + 1) (0 + B2)X° — (g 4 55) A7), where t # 0.

The value of dim(Ext(Vs 4 5, Vsa,s)) is 2 in subcase (i), and 1 in subcases (ii)-(vi).

Proof: Applying both sides of (3.3), (3.4) and (3.5) to v and comparing the corre-

sponding coefficients of v, we obtain

01f(D,N) (O + A4 G+ Br) + 61f (O + A, )0+ ah + By)

— 01 f (8, )0+ p+ A+ B1) — 01 f(O 4 p, A) (O + capn + B1) = (A — ) f(O, A+ p),
(3.18)

02f (0, M)(0 + A+ Gap + B2) + 619(0 + A, ;1) (9 + cu A + By)
—619(0, 1) (O + p+ @A+ B1) — 82 f (O + 1, \) (O + agp + B2) = 0, (3.19)
029(0, \) (0 4 A + @gpr + Ba) + 029 (D + X, 11)(9 + aa) + Ba)
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— 029(0, 1) (0 + p1 4 A\ + Ba) — 629(0 + 1, \) (0 + i + B2) = (A — p)g(0, A + ).
(3.20)

If (61,01,02,02) = (1,1,0,0) or (01,01, 02,02) = (0,0,1,1), g(d,\) =0 or f(O,\) =
0 follows from (3.19) and Lemma 3.1.6. Substituting these results back into the original
equations and simplifying, we obtain precisely the same equation solved in Theorem

3.2 of [7] (or equivalently, Theorem 2.7 in [21]).

If (61,01,02,02) = (1,0,0,1), then putting = 0 in (3.18), we can obtain
FO+X0)(0+ arA+ 51) = f(O,N)(0+ A+ ).

So when a; = 1, we have f(0,\) = f(0+ A,0) = s(0 + ) for some polynomial s.
If a; # 1, we can denote f(0,\) = h(9,)(0 + a1 A + 1), and thus f(0 + X,0) =
h(0 + X,0)(0 + A + B1). Then one can deduce that h(0,\) = h(0 + X, 0). It is not
difficult to check that f(9,\) = s(0+ X)(0+ ag A+ (1) for some polynomial s. On the
other hand, dealing with (3.20) in a similar way, we have g(9,\) = t(9)(0 + @\ + 2)

for a # 0, where ¢ is a polynomial. Putting these results in (3.19), we can obtain

$(O+N)(O+ A+ agp+ o) A+ N (O + N+ agu+ )0+ A+ 5) =0, a=1,
$(0 4+ A)(0+ a1 A+ 1)(0 + A + dgp + P2)

+1(0 4+ A (O + A+ @ap + B2) (0 + an X + B1) =0, o # 1.
(3.21)

The solutions are concluded as follows.

(i) If ay = 1, then £(9,A) = —t(@ + A)(D+ A + B1), g(0, A) = £(D)(D + A + Bs) for

some polynomial t. The extension is trivial.

(ii) If ay # 1, then f(0,)) = (0 + A\) (0 + au A + B1), 9(0, \) = —5(9)(D + G\ + [a)

for some polynomial . The extension is trivial.

If (61,01,02,02) = (0,1,1,0), one can deduce the result similarly.
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§3.2 Extensions of finite irreducible modules of solvable rank

two Lie conformal algebras

In this section, we classify the extension of irreducible modules over a solvable

rank two Lie conformal algebra R. Then there is a basis { A, B} of R such that
[ANA] = Q1(9, M) B, [A\B] = p(A\)B, [B\B] =0, (3.22)

for some polynomial p(A) and some skew-symmetric polynomial (;(0,\) satisfying
p(N)Q1(0,A) = 0 [4]. If V is a non-trivial finite irreducible R-module, it was shown
in [32] that

V2Vy,6s =Cl0lv, Aw=0¢a(Nv, By =dp(A)o, (3.23)

where ¢4(\), ¢p(\) are not zero simultaneously. Moreover, ¢p(A) # 0 only if p(A) =
Q1(0,\) =0.
By definition 2.2.1, an R-module structure on V' is given by Ay, B\ € Endc(V)[)]

such that
[Ar Ay = Qu=A = 1, ) o (3.24)
[A)\a B;t] = p<)‘)B)\+/u (325)
[B)\7 Bu] = Oa (326)
[aa A)\} - _)‘A)u (327)
[0, By] = —AB, (3.28)
§3.21 0—C¢)—F —Vy,4, —0
First, we consider extensions of finite irreducible R-modules of the form
0—Ccy— E —Vj, 4, — 0. (3.29)

Then FE is isomorphic to Cc,®V;, 4, = Cc,®C[0]v as a C[0]-module, and the following
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identities hold in E:

Rac, =0, 0Oc, = ney,
Ao =pa(N)v+ f(Ne,, Byv=¢p(AN)v+ g(N)ey, (3.30)

where f(\), g(A\) € C[A].

Lemma 3.2.1 All trivial extensions of finite irreducible R-modules of the form (3.29)
are given by (3.30), and f(\), g(\) are the same scalar multiples of ¢a(N), dp(N), re-

spectively.

Proof: Assume that (3.29) is a trivial extension, that is, there exists v’ = k¢, +1(0)v €
E, where k € C and 0 # [(0) € C|[0], such that

A" = da(MNV" = kda(Ney + da(M)()v,
B)\Ul = ¢B()\)’Ul = kqu()\)Cr] + qu()\)l((?)v

On the other hand, it follows from (3.30) that

A’ = POV + Ney + a0 + A,
Byv" = g(N)Il(n+ N)ey, + (M) + A)v.

We can obtain that [(J) is a nonzero constant by comparing both expressions for
Ayv" and Byv'. Thus f(A) and g(\) are the same scalar multiple of ¢4(\) and ¢g(\)
respectively.

Conversely, if f(A) = kpa(N\) and g(\) = kop(\) for some k € C, setting v' =
ke, + v we can deduce that (3.29) is a trivial extension.

The following key lemma plays a crucial role in simplifying the calculations in our

classification of nontrivial extensions.

Lemma 3.2.2 Let a()\),b(p), c(N),d(p) be four polynomials in C[A\, p]. If a(X) and

b(u) are not 0 simultaneously, the equation

a(A)d(p) = b(p)e(A) = 0
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implies that ¢(\) and d(u) are the same multiples of a(\) and b(n) respectively. Par-
ticularly, if both a(\) and b(p) are not 0, the multiple is a scalar multiple.

Proof: Without loss of generality, we assume that a(\) # 0. If b(u) = 0, then

d(p) = 0. In this case, the conclusion is founded whatever c¢(A) is. If b(u) # 0, we have

28\3 = % = e(A, p). Tt is easy to see that e(\, ) is a constant, and the proof is done.

Theorem 3.2.3 For a solvable rank two Lie conformal algebra R, nontrivial exten-
sions of finite irreducible conformal modules of the form (38.29) exist only if p(\) # 0
and Q1(0,\) = 0. Moreover, they are given (up to equivalence) by (3.30). The values
of n along with the corresponding polynomials p4(N), ds(N), f(A) and g(\) giving rise
to nontrivial extensions, are listed as follows: n € C, ¢pa(\) = —p(N), é(A) = 0,
f(X) =0 and g(X) is a nonzero constant. Thus dim(Ext(Vy, 4., Ccy)) = 6ga0)+p(0),0-

Proof: Applying both sides of (3.24), (3.25) and (3.26) to v and comparing the

corresponding coefficients, we obtain

Qu(=A = p, A)op(A + p) = p(N)gp(A + ) =0, (3.31)
FN@a(p) = f()oa(A) = Qi(=A = p, A)g(A + p), (3.32)
FNos() — g(1)da(N) = p(N)g(A + p), (3.33)
9(Nos() — g(w)es(A) =0 (3.34)

We first consider the case that p(\) = Q1(9,\) = 0 and take it in (3.32), (3.33) and
(3.34). Since ¢4(A), ¢p(A) are not zero simultaneously, we can assume that ¢4(X) # 0.
By Lemma 3.2.2 and (3.32), we have f(\) = k¢a(A) for some &k € C. It can be
deduced from (3.33) that g(u) = k¢p(u) for the same k. According to Lemma 3.2.1,
the extension is trivial in this case.

Now we assume that p(A) = 0 and @Q1(09,\) # 0, which implies that ¢p(A) = 0.
Then ¢4(A\) must not be zero and g(\) is forced to be 0 by (3.33). Taking these results
in (3.32) and applying Lemma 3.2.2) we can see that f()\) is a scalar multiple of ¢4 ()
and thus the extension is trivial.

Lastly, we discuss the case that p(A\) # 0 but @1(9,A) = 0. Then ¢p(A) = 0
and ¢4(A) # 0. In this case, (3.32) means that f(\) = kopa(A) for some k € C by
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Lemma 3.2.2. So if g(\) = 0, the extension is trivial. If g(\) # 0, we can obtain that
d4(A) = —p(A) by comparing the coefficients of the highest term of x in (3.33), which
implies g(A) is a nonzero constant. By Lemma 3.2.1, the corresponding extension is

nontrivial.

Since p(A)Q1(9, ) = 0, we have completed the proof.

§3.22 0—Vy, 4, — EF—Cc;, —0

Next, we consider extensions of finite irreducible R-modules of the form
0 — Vo6 — £ —> Cc, — 0. (3.35)

Then £ is isomorphic to Vy, 4, ®Cc, = C[0]vdCc, as a C[0]-module, and the following
identities hold in £:

Ayv = pa(N)v, Byv = ¢pp(A)v,
Axey = f(0,\)v,  Bacy =g(0,\)v, 0c, = ne, + h(0)v, (3.36)

where f(9,\),g(9,\) € C[9, \] and h(0) € C[0].

Lemma 3.2.4 All trivial extensions of finite irreducible R-modules of the form (5.35)
are given by (3.36), and f(0,\) = (O 4+ X)pa(A), g(0,A) = p(0+ N)pp(\) and h(0) =
(0 —n)p(0), where ¢ is a polynomial.

Proof: Assume that (3.35) is a trivial extension, that is, there exists ¢, = k¢, +
[(Q)v € E, where 0 # k € C and [(0) € C[0J], such that Ayc;, = Byc, = 0 and
dc, = ne, = kne, +nl(0)v.

On the other hand, it follows from (3.36) that

Ay, = (Kf(0,A) + 10+ N)dpa(A))v,
B = (hg(0. ) + 10+ N\,
ac, = kne, + (kh(9) + 9l1(0))v.
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We can obtain the result by comparing both expressions for Axc), Bic, and dc;.
Conversely, if f(0,A) = ©(0 + N)pa(A),g(0,\) = (0 + N)ép(A\) and h(0) =
(0 —n)p(0) for some polynomial p, setting ¢, = ¢, — ¢(0)v we can deduce that (3.35)

is a trivial extension.

Theorem 3.2.5 For a solvable rank two Lie conformal algebra R, nontrivial exten-
sions of finite irreducible conformal modules of the form (5.85) do not exist, that is,

dim(Ext(Cep, Vi, 65)) = 0.

Proof: Applying both sides of (3.27) and (3.28) to ¢, and comparing the corresponding

coefficients gives the following equations

@+ A=) (0,0 = h(D+ Nda(\), (3.37)
@+ X —0)g(d,\) = (D + Non(N). (3.38)

Since ¢4(A) and ¢p(A) are not all equal to zero, the above equations imply that there
exists a polynomial ¢ such that h(9) = (0 — n)p(9). Then we have f(9,\) = ¢(0 +
ANpa(N) and (0, \) = p(0+ N)ép(A). By Lemma 3.2.4, extensions of finite irreducible

R-modules of the form (3.35) are always trivial.

§3.23 00—V, ¢, — F — VéA,qBB — 0

Finally, we consider extensions of finite irreducible R-modules of the form
0— Vopop — E—V5, 45, —0. (3.39)

Then E is isomorphic to Vy, 4, ® V3, 5, = C[0]v ® C[0]v as a C[0]-module, and the
following identities hold in E:

A)ﬂ) = QSA(/\)U, B)\U = QbB()\)U,
A0 = A N0+ £(0,\ v, Byv = ¢p(\)v + g(9d, M, (3.40)

where f(0,\),g(0,\) € C[9, \].
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Lemma 3.2.6 All trivial extensions of finite irreducible R-modules of the form (5.39)
are given by (3.40), and f(0, ) = ©(0 + N)da(A) — ¥(0)oa(A) and g(0,\) = (9 +
Nop(\) — @(0)dp(N) for some polynomial .

Proof: Assume that (3.39) is a trivial extension, that is, there exists v = k(9)v +
[(0)v € E, where k(0),1(0) € C[J] and 1(0) # 0, such that

]|

-

Y

A" = Ga(NT = k(0)pa(MNv +1(9)da(N)
Byv' = ¢p(\)' = k(0)dp(N\)v + 1(9)dr(\)

1

On the other hand, it follows from (3.40) that

A\t = (k(0 + A)pa(N) + 1O+ N) F(9,\)v + 1(D + N)pa(N)7,
By’ = (E(0+ N os(\) + 10+ N)g(d, \)v + 1(d + N dp(N)7.

Comparing both expressions for Ay’ and B,v', we can obtain that [(0) is a nonzero
constant. Then we can give the expressions of f(0,A) and g(0, \).

Conversely, if £(9, )) = p(9+ )64 (N) —£(D)6a(A) and g(0, X) = $(0+\)ép(N) —
©(0)pp(N\) for some polynomial ¢, setting v/ = —p(9)v + v we can deduce that (3.39)
is a trivial extension.

To better characterize the classification procedure of nontrivial extensions, we

advance part of the computation in the following lemmas.
Lemma 3.2.7 The solutions of the equation
(0, N)b(p) + c(0+ A, w)a(X) — (9, u)b(N) — (0 + p, Na(pu) =0 (3.41)
for unknown polynomial c(0, \) € C[0, A] are given as follows.
o Ifa(N\) =0b(N\) =0, the equation holds for any polynomial in C[0, \].

o Ifa(A) =b(X\) #0, then c(0,\) = a(A)(¢1(0+ A) — ©1(9)) + wa(A), where o1, P2

are polynomials.

o If a(\) # b(N), then c(0,A) = a(N)p(0 4+ ) — b(A\)p(0) for some polynomial .
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Proof: If a(\) = b(\) = 0 or ¢(9,\) = 0, the result is obvious.
Now we assume a(A) = b(\) # 0, ¢(9,\) # 0, and ¢(9,\) = D", c;(N)0" with
¢m(N\) # 0. The result can be obtained by induction on m. When m = 0, the variation

of (3.41)
(e(9+ A 1) = (D, 1))a(N) = (e(D + . A) — (. A))a(p) (3.42)

implies the original equation is established. Assume the conclusion holds for m = n
(n > 0) and consider the case that m = n + 1. Comparing the coefficients of 0™ of
(3.42), we have

Acni1(p)a(A) = penia(Na(p).

So ¢pi1(A) = EkAa(A) for some nonzero constant k by Lemma 3.2.2. Let k,y1 =
ko d(0,)) = knp1a(N)((0 + N2 — 0"%2) and e(0,)) = ¢(d,\) — d(0, ). Since

nt2
both ¢ and d satisfy (3.42), by induction, (9, ) = a(X)(po(0 + A) — vo(9)) + pa(N)
with polynomials g, 2. Set ©1(0) = po(9) + k, 10™"2, and the expression of ¢(d, \)
follows.

For a(\) # b(A), we set ¢(9,\) = Y it c;i(N)" with ¢,,(A) # 0. If m = 0, the

equation (3.41) can be rewritten as

co(A)(a(p) = b(p)) — co(p)(a(A) = b(A)) =0,

which means ¢(9, \) = k(a(\) —b())) for some nonzero constant k. Thus the conclusion
holds for m = 0. Assume the conclusion holds for m = n (n > 0) and consider the case
that m = n + 1. The coefficients of 9" of the two sides of (3.41) imply c¢,,1(\) =
t(a(X) — b(\)) with ¢ # 0. Let ¢1(9) = t0"*, d(9,\) = a(N)e1(0 + ) — b(\)p1()
and e(0,A) = ¢(9,\) —d(9,\). Then d(0,\) satisfies (3.41), and so does (0, A). By
the assumption, we have e(0, A) = a(A)p2(0 + X) — b(A)p2(0) for some polynomial p,.
Setting p(0) = ¢1(9)+¢2(0), one can find that the conclusion also holds for m = n+1.

Lemma 3.2.8 Let f(\ p) be a nonzero polynomial in CI\, ] satisfying f(A\, pu) =
—f(u, \). Denote the coefficient of N'w? in f by fi; and the antisymmetric matriz
consisting of fi;j’s by M. Assume f;, ;o 7 0 (io < jo). Then the following statements

are equivalent.
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(i) There exist polynomials Py, Py such that

PiNPa(p) = Pu(u) Po(N) = FON p). (3.43)

(ii) For any i,j,k,1, fijfu — fifi + Firfu =0.

(1ii) rank(M) = 2.

Proof: (i)=-(ii). Assume that (3.43) has been established and the expressions of P;, P»
are given by Pi(\) = Y1 pa N, Pa(N) = Y1 pioA". Let Py = (po1, pi1, -+, pu1)? and
Py = (po2, P12, -+ , pn2)’ . Then (ii) follows from f;; = pipjo — pjipia, Vi, J.

(ii)=-(iii). Assume (ii) and perform the following elementary row and column

transformations on M as follows.

j Ffe—1,i
s 580 .. . . .
— r; r Vk#ig+1 1
Figo Tttt TR~ S Tio+s #io+1,jo+ Pig 1971 Tjgp1 e
jlj 7

fk—1,j fk—1,i . . Cin+147C1  Cjo4147C2
- 0.¢i0 41+ T, jOCjo+1,Vk7fZ0+Ljo+1 0 70
i0,J0

0 fu
diag Fioio 0,-44,0

_fi(),jo 0
Thus rank(M) = 2.
(iii)=-(i). Assume that rank(M) = 2 and denote the order of M by m (m > 2).

Then there exists an invertible matrix P = {g;;} of order m such that

. 0 1 T
M = Pdiag ,0,---,0p P
-1 0

Define P;(\) = ZZ’:OI G111\, Pa(N) = 22161 qir12A'. Tt is easy to check that Py, Py
satisfy 3.43.

For f(\, ) meeting the condition in Lemma 3.2.8, based on the proof of (ii)=-(iii)
and (iii)=-(i), we can write down a pair of polynomials P;, P, satisfying (3.43) as

follows:

Pi()\) = Z frio\', Po(\) = — f’l’ Z Frio\". (3.44)
k 20,J0 k
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With the above discussion, we can solve the following equation.

Lemma 3.2.9 Let f(\, u) be a polynomial satisfying the condition in Lemma 5.2.8
with Py, Py defined in (3.44). The equation

a(A)b(p) = a(p)b(A) = f(A, 1) (3.45)

for unknown polynomial b(0) € C[0] has solutions only when a()\) = 2 Pi()\) +

fig.io

aj,P2(N) and not all a;,, aj, equal 0. If solutions do exist, they are given as follows.

o Ifa;, # 0, then b(\) = ka(\) + £222 Py(\), where k € C.

ai,

o Ifai, =0,a; # 0, then b(\) = ka(\) — == P1(\), where k € C.

ajo

Proof: First we consider the special case that the coefficient matrix M of f is

, 0 1
diag ,0,---.,0
-1 0

In this case, Pi(A) = 1, P,(A\) = A. Denote the order of M by n + 1 and write
a(X) =0 g aiX, b(N) =30 b\ Taking them in (3.45), we have

Clobl — albo = 1, (3 46)

aibj - ajbi = O,VZ < jv (Za]) 7é (Oa 1)

So the equation has solutions only when not all ag,a; are equal to 0. Assume the
solutions do exist. If ag # 0, (3.46) implies b, = %,bj = aégO,Vj > 1 and then
a; = 0,Vj > 1. Thus, a(\) = ag + a1 A and b(A\) = by + %)\. If ag = 0, then
(3.46) implies a; # 0,by = —% and a;,b; = 0,Vj > 1. Therefore, a(\) = a1\ and

_ 1
b(A) = —L + A

For the general case, we use a = (ag,ay, -+ ,a,)’, b = (by, b1, -+ ,b,)T to mean
the coefficient matrices of a()), b(A) and P to mean the invertible matrix corresponding

to Pi()\), Po()\) as mentioned in the proof of (iii)=>(i). Denote a’ = P~'a,b’ = P~'b.
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Since M = ab” — ba’, we have

0 1
diag 0,---,0p =a'b" —ba’.
-1 0

By the above discussion, b’ exists only when a’' = (d¢,a’1,0,---,0) with a'o,d’;

not being 0 simultaneously, which is equivalent to a(\) = a’oP(\) + a’1 P()\) with

(d'o,a'1) # (0,0). Focusing on the coefficient of A, \°, we have /¢ = F a'y = aj,.

Similarly, we can obtain the general expression of b(\) in different cases.

Theorem 3.2.10 For a solvable rank two Lie conformal algebra R, nontrivial exten-
sions of finite irreducible conformal modules of the form (3.39) always exist. More-
over, they are given (up to equivalence) by (3.40). The corresponding polynomials

da(N), d8(N), 0a(N), d(N), £(O,\) and g(d, \) giving rise to nontrivial extensions, are

listed as follows:

1. In the case that p(\) = Q1(0,\) = 0.

(i) If pa(N) = ¢a(N) = 0,08(\) = ¢p(\) # 0, then f(9,)) = 5(\),9(d,\) =
t(N\), where s,t are polynomials, and either s # 0 or t(\) is not a scalar
maultiple of App(N).

t(N\), where s,t are polynomials, and either t # 0 or s(\) is not a scalar
multiple of Apa(N).

(iii) If 6400 = 6a(N) £ 0,65(\) = du(\) £ 0, then £(9,3) = s(\), 9(0,)) =
t(N\), where s,t are polynomials, and s(\),t(\) are not the same scalar mul-

tiple of Apa(N), A\op(N) respectively.

2. In the case that p(\) = 0,Q1(9, \) # 0, we always have ¢pp(\) = ¢p(A\) = 0.

(i) If pa(N) = @a(A) #0,9(9,\) = 0, then f(9,)\) = s(\), where the polynomial
s(N) is not a scalar multiple of Apa(N).

(1) If pa(A) = da(\) # 0,9(0,)\) = t(\) # 0 such that the coefficient ma-
tric M = {q;;} of Qi(—=X — u, \)t(A + p) is of rank 2 and for g, # 0,
Pa(N) = 21 (37, frio M) — 2 (30, frig\F) with the coefficients a1, aj,—1

fig.io fig.do
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of Ao~ No=L in ¢4 are not all 0, then

a1

——— (> @i A )0+ 5(N),  if aj—1 =0,

Ajo—1

f(87 )‘) =

{ : >k Qk,jo)‘k)a +5(A), i a1 #0,

where s 1s a polynomial.
3. In the case that p(A) # 0,Q1(0,\) = 0, we have ¢g(A\) = ¢p()\) = 0.

(i) If pa(\) = da(N) # 0, then f(O,\) = s(\),g(d,\) = 0, where s1,s, are

polynomials, and s(\) is not a scalar multiple of Apa(N).

(ii) If pa(N) # ¢a(N), then f(D,X) = 0,04(\) — da(N) = p(N), and

kl(a_{_%)\)_{_kj% p()\) :TQSA()\) andr;«é 17
9(9,A) =
k1, p(A) is not a scalar multiple of da(N),
where ki, ky € C and g(0,\) # 0.
The space of Ext(Vy, 5., Veaep) 15 of infinite dimension in all of the above subcases

but (3)-(ii).

Proof: Applying both sides of (3.24), (3.25) and (3.26) to v and comparing the

corresponding coefficients, we obtain

Q=X — 1, Nop(A+ 1) = p(N)ds(A + 1) = 0, (3.47)
F@,)0a(i) + F(O+ X, 1)pa(X) — f(8, )da(N) = (O + 11, \)dalp)
=Q1(—=X— p, N g(0, X\ + ), (3.48

9(8, N op(p) + g(0 + X, 1) o(N) — 9(9, ) op(A) — g(8 + 1, N\)dp(u) = 0. (3.50

Case 1. p(\) = Q1(0,A) = 0.
() Tt 64(0) = 4(N) = 0,65(A) = 5(A) # 0, we can obtain £(d,)) € C[\
from (3.49). And by (3.50) and Lemma 3.2.7, we have g(9,\) = ¢p(\)(t1(0 + \) —
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t1(0)) + t2(A) for some polynomials ¢, t5. According to Lemma 3.2.6, this extension is
equivalent to the extension with the same f(0, \) and g(0, A) = t2(\), and is nontrivial
only if f(0,A) # 0 or t2(\) is not a scalar multiple of A ().

(ii) If pa(A) = da(N) = 0,68(\) # 65(N), (3.49) implies f(9,A) = 0 by comparing
the coefficients of the highest order term with respect to 0. Meanwhile, (3.50) means
g(0,\) = ¢d(MNt(0 + \) — ¢p(M\)t(9) for some polynomial ¢ by Lemma 3.2.7. In this

subcase, the extension is trivial.

(iii) If pa(\) = da(\) # 0,65(N\) = ¢p(\) # 0, we can deduce that f(9,\) =
DA (51(0 1 X) = 51(0)) + 52(0), 90, 2) = S5 (11D + A) — 11(9)) + () for some
polynomials sy, so,t1,t from (3.48) and (3.50). Taking them in (3.49) and setting
r(A) = t1(A) — s1(\), we can obtain

r(@+A+p)—r(@+A) —r(@+p) +r(0) =0,

which implies r(\) = r1 A + r¢ for some rg,r; € C. This extension is equivalent to the
extension with f(0,A) = s2(A) and g(0,A) = t'(\) where t/(A) = rApp(N) + t2(N).
By Lemma 3.2.6, the extension is nontrivial if and only if so(A),#'(A) are not the same

scalar multiple of Ap4 (), A\¢p(A) respectively.

(iv) If pa(A) = da(A) # 0,08(N) # é5(N), then f(0,)) = pa(N)(51(d + ) —
51(0)) + 52(N), (0, A) = pp(M)t(O+ \) — dp(A)t(d) for some polynomials sy, s9,t from
(3.48) and (3.50). Taking them in (3.49) and setting r(\) = £(\) — s1()\), we can obtain

Ga(N)op(1) (r(O+X+10) =1 (0+1)) =P a(N) b5 (1) (r(0+X)=7(9)) = s2(A\) (b5 (1) —d5(1)).

Denote the degree of r(\) by m. If m > 2, comparing the coefficients of 9™~ on
each side of the above equation, we can get a contradiction. Let r(\) = ri\ + ro with

r1,72 € C. Then we have s5(\) = r1A@4(A). And the extension is always trivial in this

subcase because f(9,\) = ¢a(A)(51(0+ ) — 51(0)) = Ppa(N)(E(O + N) —£(9)).

(V) If 9a(A) # 0a(N), &5(N) # dp(N), then f(9,A) = d4(N)s(0 + A) = da(N)s(9),
(0, \) = ¢p(N)t(0+ ) —dp(N)t(d) for some polynomials s, t. If () = s(0)—t(d) # 0,
then r(9) can be written as r(9) = Y ", r;0" with r,, # 0. Taking them in (3.49) and
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considering the coefficients of 9™ give

rm(@a(A) = 0a(X)(dB(1) — d5(1)) =0,

which contradicts the assumption. So we can deduce that s(0) = t(9) and thus the
extension is trivial.

The other subcases can be learned from the symmetry of (¢4, ¢4) and (¢35, d5).

Case 2. p(\) = 0,Q1(9,)) # 0. In this case, ¢pp(\) = ¢p(\) = 0 by (3.47) and
then ¢4(A\) and ¢4()\) are nonzero polynomials.

(i) If pa(A) = ¢a(A) # 0, then (3.49) implies g(d,A\) = t(\) € C[\]. Put it in
(3.48) and take the partial derivative of both sides of the equation with respect to 0,

and we can obtain

(fa(@+ A p) = fa(0, 1)) pa(N) = (fa(D + 11, A) = fa(0, A))pa(p) = 0. (3.51)

By Lemma 3.2.7, f5(0, ) = ¢pa(N)(v1(0+ A) —v1(9)) + va(N), where vy, vy are polyno-
mials. Let s1(9) = [v1(9)dd, and then

£(0.0) = / Fo(0. N0 = BN (51D + A) — $1(8)) + v2(N)D + v3(N),

where v3 is a polynomial. Taking this result in (3.48) again, one can get

AP a(A)va(p) = pda(pva(A) = Qr(=A — 1, (A + p). (3.52)

With this equation, we have the following two subceses.

If t = 0, va(X\) = kXa(A) for some constant k. Let §'1(9) = s1(9) + £6%. Then
F(O,A) = da(N)(s'1(0+ AN) — §'1(0)) + s2(A) for some polynomials s'y, se. In this case,
the extension is nontrivial only if s, is not a scalar multiple of A4 ().

If t # 0, then there exists vo() satisfying (3.52) only when Q(\, u) = Q1(—\ —
ty M)A+ 1), Adpa(A) meet the condition in Lemma 3.2.8 and 3.2.9. Under these con-
ditions, we can give the expression of vg(A) and then that of f(0, ). In this case, the
extension is nontrivial.

(ii) If p4(\) # @a(N), then (3.49) implies g(d,\) = 0. So by (3.48) and Lemma
3.2.7, we have f(9,)\) = ¢pa(N)s(d+ ) — ¢4(\)s(d) for some polynomial s. Thus the
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extension is trivial under the condition.

Case 3. p()\) # 0,Q1(0,A) = 0. In this case, ¢g(A\) = ¢p(\) = 0 by (3.47) and
then ¢4(A\) and ¢4()\) are nonzero polynomials.

() If 4(\) = Ga()) # 0, then f(9,)) = 6a(N)(s:(0+ A) — 51(9)) + s3()) with
polynomials s1, se by (3.48). Assume ¢g(0,\) # 0. Comparing the coefficients of the
highest item with respect to 0 in (3.49), we get p(A) = 0, which contracts the given
condition. So ¢(0, ) = 0 and the extension is nontrivial only when s,(\) is not a scalar
multiple of A@4(A).

(ii) If pa(A) # da(N), then f(9,)) = pa(N)s(0+A) — da(\)s(0) with polynomial s
by (3.48). Assume g(9,\) # 0. Let g(9,\) = >_1", 9:(A\)9". Comparing the coeflicients
of ™ in (3.49), we have p(A) = ¢a(A) — da(N) and g, () = ky € C*. If m > 1, one
can obtain p(\) = r¢4()) for some nonzero constant r and gp,—1(A) = ZE X + ky with
ko € C by comparing the coefficients of 9™~! in (3.48). If m > 2, the coefficients of
O™=2 imply r = 1 and then ¢4()\) = 0. Thus we get a contradiction. The extension is
nontrivial if and only if ¢g(9, \) # 0.
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Chapter 4 Extensions of finite irreducible modules
of rank two Lie conformal algebras that are of Type I
Let R be the conformal algebra defined in (2.3). Then there is a basis {A, B}

such that
[AyA] = (04 2M)A, [A\B] =0, [B\B] =0. (4.1)

In this chapter, we deal with the extension problem over R. If V' is a non-trivial finite

irreducible R-module, then either
V=V,e=Cl0lv, Aw=06(0+ar+PB)v, Byv= 00N, (4.2)

where 01,8 € {0,1},62 + 62 =1,3,0 # a € C, and ¢ is a nonzero polynomial.
By definition 2.2.1, the R-module structure on V' given by Ay, By € Endc(V)[)]

satisfies

[Ax, Al = (A = 1) Angp, (4.3)
[Ay, B,] =0, (4.4)
By, B,] =0, (4.5)
[0, A\] = —AA), (4.6)
0, By] = —ABy (4.7)

§4.1 0—Cc¢) — E — V54 —0

First, we consider extensions of finite irreducible R-modules of the form
0—Ccy — E— V54 —0. (4.8)

Then FE is isomorphic to Cc, ®V, g4 = Cc, @ C[0]v as a C[0]-module, and the following
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identities hold in E:

Racy =0, 0Ocy, = e,
Ao =80+ ar+ B+ f(N)e,, Byv=00(AN)v+ g(N)ey, (4.9)

where f(\), g(A\) € C[A].

Lemma 4.1.1 All trivial extensions of finite irreducible R-modules of the form (4.8)
are given by (4.9), and f(\) and g(\) are the same scalar multiple of 61 (aX +n + )
and 02¢(\) respectively.

Proof: Assume that (4.8) is a trivial extension, that is, there exists v = k¢, +1(9)v €
E, where k € C and 0 # [(0) € C|[0], such that

A" =610+ aX+ B)v" = 6ik(n+ aX + B)e, + 611(0)(0 + aX + B)v,
Byv' = 690 A\)v" = dakp(N)ey, + 621(D)p(N)v.

On the other hand, it follows from (4.9) that

A" = F 4+ Ny + 0110 + N) (0 + aX + B)v,
Byv" = g(A\)l(n+ A)ey + 621(0 + N)p(N)v.

We can obtain that [(0) is a nonzero constant by comparing both expressions for Ayv’
and Byv'. Thus f(\) and g(\) are the same scalar multiple of 0;(aX +n + ) and
d20(A) respectively.

Conversely, if f(A) = d1k(aX+n+ 5) and g(A) = d2kd(N) for some k € C, setting

V' = ke, + v we can deduce that (4.8) is a trivial extension.

Theorem 4.1.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial
extensions of finite irreducible conformal modules of the form (4.8) exist only when
(01,02) = (1,0),c € {1,2}, B +n = 0. Moreover, they are given (up to equivalence) by
(4.9). The values of n, along with the corresponding polynomials f(\) and g(\) giving
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rise to nontrivial extensions, are listed as follows: g(A) =0 and

with nonzero constants s1,sy. In these cases, dim(Ext(V, g4, Cc,)) = 1.

Proof: Applying both sides of (4.3), (4.4) and (4.5) to v and comparing the corre-

sponding coefficients, we obtain

I+ A+ap+B)fA) =am+p+ar+B)f(n)=A—pfA+p),  (4.10)
020(1) f(A) = d1(n + p + aX + B)g(pn) =0, (4.11)
020 (1)g(A) — d2¢(N)g() = 0. (4.12)

If (01,02) = (1,0), (4.11) implies g(u) = 0 and it reduces to the case of Virasoro
conformal algebra. We can deduce the result by Proposition 2.1 in [7]. If (01,02) =
(0,1), then f(A) =0 by (4.11). Applying Lemma 3.2.2 to (4.12), we have g(\) = k¢(A)

for some constant k and then the extension is trivial.

§4.2 0—Vyps — E — Ccy — 0

Next, we consider extensions of finite irreducible R-modules of the form
0 —Vope — E — Cc, — 0. (4.13)

Then FE is isomorphic to V, 3 & Cc, = C[0]Jv®Cc, as a C[0]-module, and the following
identities hold in E:

Ayv =610+ aX+ Blv,  Byv = d20(N)v,
Axey = f(O,\)v, By, =g(0, v, 9Jc, = ne, + h(0)v, (4.14)

where f(0, ), g(0,\) € C[0,\] and h(0) € C[).
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Lemma 4.2.1 All trivial extensions of finite irreducible R-modules of the form (4.13)
are given by (4.14), and f(0,\) = 619(0 + A)(0 + aX + B),9(0,A) = dap(0 + N)op(N)
and h(0) = (0 —n)p(0), where ¢ is a polynomial.

Proof: Assume that (4.13) is a trivial extension, that is, there exists ¢, = k¢, +
[(O)v € E, where 0 # k € C and [(9) € C[d], such that Ayc;, = Bac, = 0 and
dc,, = ne, = kne, +nl(9)v.

On the other hand, it follows from (4.14) that

Axe, = (KF(9,A) + 6,110 + \)(0 + aX + B))v,
By, = (kg(0, A) + 6200 + A\)p(N))v,
dc, = kne, + (kh(9) + 01(0))v.

We can obtain the result by comparing both expressions for Axc), Bic, and dc; .
Conversely, if f(0,\) = 61¢(0 + X\)(0 + aX + B),9(0,\) = d2p(0 + N)p(A) and
h(9) = (90 — 1n)p(9) for some polynomial ¢, setting ¢, = ¢, — ¢(d)v, we can deduce

that (4.13) is a trivial extension.

Theorem 4.2.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial
extensions of finite irreducible conformal modules of the form (4.13) exist only when
0 =1,a=1,8+n=0. Moreover, the space of Ext(Cc,, V, ) is 1-dimensional, and
the unique nontrivial extension is given (up to equivalence) as follows: 69 = 0, g(0, \) =

0 and f(0,\) = h(0) = s with nonzero constant s.

Proof: Applying both sides of (4.6) and (4.7) to ¢, and comparing the corresponding

coefficients gives the following equations

@+ X —0)f(0,)) = 6,1(d+ \)(D+ a\+ B), (4.15)
@4+ X —0)g(9,\) = 62h(d + N)d(\). (4.16)

If (61,02) = (1,0), then g = 0 by (4.16) and the result can be deduced by Proposi-
tion 2.2 in |7]. If (61,62) = (0,1), then f = 0. (4.16) and Lemma 4.2.1 imply that the

extension is trivial in this case.
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§4.3 O—>Va,g7¢—>E—>VW—>O

Finally, we consider extensions of finite irreducible R-modules of the form
0— Va,ﬁ,¢ — F — V qu — 0. (417)

Then E is isomorphic to Va4 ® V; 55 = C[0]v @ C[0]v as a C[d]-module, and the
following identities hold in £

Ao =010+ aX+ B)v, Bhv = d0(\)v,
A0 =60+ ar+ B)o+ f(O, v, Byo = 620(\)7 + g(d, N\, (4.18)

where f(0,\),g(0,\) € C[0, \].

Lemma 4.3.1 All trivial extensions of finite irreducible R-modules of the form (4.17)
are given by (4.18), and f(0,\) = 610(0 + X\)(0 + aX + B) — 510(9)(0 + aX + B) and
g(0, ) = 620(0 + N)p(N) — S20(0)b(N) for some polynomial .

Proof: Assume that (4.17) is a trivial extension, that is, there exists v/ = k(0)v +
[(0)v € E, where k(0),1(0) € C[J] and () # 0, such that

A" = 810+ a\ + B = 81k(9)(0 + a\ + B)v + 5,1(9)(0 + a) + B)7,

BT = 020(N)1" = 05k (9)p(N)v + 651(9)p ().
On the other hand, it follows from (4.18) that

Azt = (61k(0 4+ N)(0 4 aX + B) + 10+ N f(0, \))v + 6,1(0 + N (0 + ar + B)v,
Byt = (52k(0 + N)(A) + 1 + N)g(, \)v + 5:1(0 + \)d(\).

Comparing both expressions for A,v' and B,?’, we can obtain that [ is a nonzero

constant. And then we can give the expressions of f(0,\) and ¢(9, ).
Conversely, if £(9,\) = 61p(0+ \)(0+aA+3) —61¢(9)(0+ar+ ) and g(d, \) =
520(0 + N)P(N) — d20p(0) () for some polynomial ¢, setting v/ = —p(9)v + ¥ we can
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deduce that (4.17) is a trivial extension.

Theorem 4.3.2 For a rank two Lie conformal algebra R that is of Type I, nontrivial
extensions of finite irreducible conformal modules of the form (4.17) exist only when
(61,02) = (81,02). Moreover, they are given (up to equivalence) by (4.18). The value
of 6i,0i,1 = 1,2, a,@, 3,3, and the corresponding polynomials ¢p(N), d(N\), £(9,)\) and

g(0, \) giving rise to nontrivial extensions, are listed as follows:

1. In the case that (01,05) = (61,85) = (1,0), g = 0,8 = B,a—a € {0,1,2,3,4,5,6}, a, & #
0, and
(1) a=a, f(0,\) = so+ s1A, where (so,s1) # (0,0).
(ii) a—a=2, f(O,\) = s\*(2(0 + B) +
(i) @ —a =3, f(0,\) =s(0+ B)N((+ B) + ), where s # 0.
(iv) a—a=4, f(O,\) =s\(4(0 + 8)3
s # 0.

(v) a=1anda=—4, f(9,\) = s((0+8)* 2 =10(0+ B)*A\* —17(0+ ) N> —8\),
where s # 0.

A), where s # 0.

+6(0 + B)°A — (9 + B)N? + ar\?), where

(i) a="1+Y1 gnda= -3+ £(9,)) = s((0+B)"N — (2a+3)(d+ B)* ' —
3c(0 4 B)*N° — (Bar+ 1)(9 4 B)A® — (ar+ 55) A7), where s # 0.

The value of dim(Ext(V; 5.5, Va,s.e)) is 2 in subcase (i), and 1 in subcases (it)-(vi).

2. In the case that (01,05) = (61, 02) = (0,1), p(A) = @(N), £(O, ) = 0,9(0, ) = t())
with polynomials t and t(\) is not a scalar multiple of \¢(N\). Then the space
Eaxt(V;

a3, Vap.e) s infinite-dimensional.

Proof: Applying both sides of (4.3), (4.4) and (4.5) to ¥ and comparing the corre-

sponding coefficients, we obtain

Sif(O,NO+N+au+B)+ 81 f(0+ )0+ ar+p)

— 01 f (0, 1)(0 + p+aX+ B) = (94 1, N0+ ap+8) = (A= 1) f(9, A + p),
(4.19)

02f (0, N)() +19(0 + A, 1) (0 + X + )
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—019(9, 1) (D + p+ aX + B) — 02 f (D + 1, N () = 0, (4.20)
029(0, \)p(p) + 29(0 + A, ) d(A) = 029(0, 1) p(N) — 629(0 + 1, \)p(p) = 0. (4.21)

If (81, 01,68,02) = (1,1,0,0), the result can be deduced from Lemma 3.1.6, Theo-
rem 3.2 in [7] (or Theorem 2.7 in |21]) and Lemma 4.3.1.

If (61,61,080,05) = (0,0,1,1), then (4.19) implies f(d,\) = 0. Applying Lemma
3.2.7 to (4.21), we have g(d,\) = t(0 + A\)@(A) — t(0)d(A\) for some polynomial ¢ if
d(N) # ¢(N) and g(9,\) = (t1(0 + \) — t1(9))d(\) + to()\) for some polynomial ty,t, if
#(\) = #()\). By Lemma 4.3.1, the extension is nontrivial only when ¢ = ¢ and t5()\)
is not a scalar multiple of Ag(\).

If (61,01,02,02) = (1,0,0,1), then putting = 0 in (4.19), we can obtain
FO+X0)(0+ ar+B) = f(O,\)(0+ X+ 5).

So when a = 1, we have f(0,\) = f(0+ X,0) = s(0 + \) for some polynomial s. If
a # 1, then one can deduce that f(9,\) = s(0+ A)(0+ aX+ () for some polynomial s.

Applying Lemma 3.2.7 to (4.21), we have g(0, \) = t(0)p(\), where t is a polynomial.

Putting these results in (4.20), we can obtain

S(O+AN)+tO+NO+A+6)=0, a=1,
s(O+AN)+t(0+\) =0, a#1,

(4.22)

The solutions are concluded as follows.

(i) If « = 1, then f(9,\) = —t(0+ A\)(0 + X+ B),9(0,\) = t(9)p(\) for some

polynomial ¢. The extension is trivial.

(ii) If @ # 1, then f(9,\) = s(0 + N)(0 + aX + B),9(0,\) = —s(0)p(\) for some

polynomial s. The extension is trivial.

If (61,01,02,02) = (0,1,1,0), one can deduce the result similarly.
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Chapter 5 Extensions of finite irreducible modules

of rank two Lie conformal algebras that are of Type 11

In this chapter, we investigate the extension problems under the condition that R

is the conformal algebra defined in (2.4). Then there is a basis {A, B} such that

[AVA] = (8 + 20) A+ Q(0, B, [A\B] = (9 + aX + b)B, [BaB] = 0. (5.1)

§5.1 Extensions of finite irreducible modules of W(a, b)

algebras

When Q(9,\) = 0, R is a W(a,b) algebra, which had been discussed in [21].
Recall the classification of all finite nontrivial W(a, b)-module in [20].

Theorem 5.1.1 /20, Theorem 3.10] Any finite nontrivial irreducible W(a,b)-module

M is free of rank one over C[0]. Moreover,

1. 1f (a,b) # (1,0),
M = M, 3 = C[0]v, Ayv = (0 + aX+ p)v, Byv =0,
with o, B € C and a # 0.
2. If (a,b) = (1,0),
M = M., =Cl0lv, Ayv = (0 + aX+ B)v, B\v =,

with o, B, € C and (a,7) # (0,0).

Then the corresponding results of extensions over the W(a, b)-modules are listed

as follows.

Theorem 5.1.2 /21, Theorem 3.4/ (1) If (a,b) # (1,0), nontrivial extensions of finite
irreducible W(a,b)-modules of the form

0—Ccy —FE— M,p—0 (5.2)
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exist. Moreover, they are given (up to equivalence) by
A\vg = (04 aX+ Bvg + f(N)ey,  Bava = g(N)cy; (5.3)

The values of B and n along with the pairs of polynomials g(\) and f(\), whose

nonzero scalar multiples give rise to nontrivial extensions, are listed as follows:

(i) if g(A) =0, then « = 1,2, 5+ n =0 and f(\) is from the nonzero polynomials
of Theorem 2.2.6;

(i) ifa# 1, b=0 and 5+ n =0, then g(\) = k for some nonzero complex number

k,a=1-—a, and

0, otherwise,
with co,c3 € C;

(1) ifa %1, b+ B+n=0 and B+n#0, then g(\) = k for some nonzero complex
number k, « =1 —a, and f(\) = 0;

() ifa=1,b#0 and b+ B+n =0, then g(\) = k(1 —3X) for some nonzero complex
number k, a =1, and f(\) = 0.

(2) If (a,b) = (1,0), nontrivial extensions of finite irreducible W(1,0)-modules of the

form

0—Ccy—E— My,p,—0 (5.4)

exist if and only if 5+ n =0 and v = 0. Moreover, they are given (up to equivalence)
by
Lyvg = (04 aX+ Bvg + f(N)ey,  Wivg = Y04 + g(N)cy; (5.5)

, where, if g(A\) =0, then o = 1,2 and f(\) is from the nonzero polynomials of Theorem
2.2.6, or else g(\) = kX for some nonzero complex number k, a =1 and f(\) = cu\?

with co € C.
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Theorem 5.1.3 /21, Theorem 3.6] (1) If (a,b) # (1,0), nontrivial extensions of finite
irreducible W(a,b)-modules of the form

0— Mypg — E — Cc, — 0. (5.6)

exist if and only if B+n =0 and a = 1. In this case, dimExt(Cc_g, My ) = 1, and

the unique (up to equivalence) nontrivial extension is given by
Axe, = kv, Bye, =0, O0c,=nc,+ kv,

where k 1s a nonzero complex number.
(2) If (a,b) = (1,0), nontrivial extensions of finite irreducible W(1,0)-modules of the

form
0— Myp,— E — Cc, — 0. (5.7)

ezist if and only if 4+n = 0 and (o, y) = (1,0). In this case, dimExt(Cc_g, M1 p0) = 1,

and the unique (up to equivalence) nontrivial extension is given by
Axe, = kv, Bye, =0, 0c, =nc, + kvg,

where k 1s a nonzero complex number.

Theorem 5.1.4 [19, Theorem 3.7] Nontrivial extensions of finite irreducible WW(a,0)-

modules of the form
0 — M, —FE— M3 —0 (5.8)

with a # 1 ewist if and only if B = 3. For each 3 € C, these extensions are given (up

to equivalence) by
Ayva = (0 + aX+ B)va + [(0,Nva,  Bava = g(9, A)va, (5.9)

where g(0,\) = 0 and f(0,\) is from the nonzero polynomials of Theorem 2.2.8, with
a,a # 0, or the values of o and & along with the pairs of polynomials g(0,\) and
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f(0,X), whose nonzero scalar multiples give rise to nontrivial extensions, are listed as
follows (by replacing O by 0+ B):

(1) When a = 3, we have « = a =1, f(9,A) = ap+ a1 A and g(0,\) = 8% + 30N+ 3%,
where ag, a; € C.

(2) When a = 2, we have « — & = —1 or 0. Moreover,

(i) In the case a« —a = —1, f(0,\) =0 and g(0,\) = 1.

(ii) In the case o —a =0, f(0,\) = ap+ a1 A and g(0, ) = 0+ aA, where ag,a; € C.
(8) When a =0, we have a« —a = 1,2 or a = 1,& = —2. Moreover,

(i) In the case « —a =1, f(0,\) =0 and g(0,\) = 1.

(ii) In the case a—a = 2, f(0,\) = agA*(20+ ) and g(d,\) = d—a\, where ag € C.

(iii) In the case o = 1, = =2, f(9,)) = agdN*(0 + \) and g(0,\) = 0% + 30\ + 2)?,

where ag € C.
(4) When a = —1, we have o« —a = 2,3 or a = 1,a = —3. Moreover,
(i) In the case « —a =2, f(,\) = apA\*(20 + \) and g(d,\) = 1, where ag € C.

(ii) In the case a —a = 3, f(0,\) = a0 *(0 + N) and g(d,\) = 0 —
Qg € C.

%07)\, where

(iii) In the case a = 1,a = —3, f(0,\) = apA\*(40% + 60>\ — ON? — 3\3) and (0, \) =
9% + 20X + 3\, where ay € C.
(5) When a = =2, we have o — & = 3,4 or a = 1,a = —4. Moreover,
(1) In the case « —a =3, f(9,)\) = agdN*(0+ \) and g(0,\) = 1, where ay € C.

(ii) In the case a — @ = 4, f(0,\) = agA\*(40® + 60°\ — ON* + a)?) and g(d,)\) =
0— %07)\, where ay € C.

(i) In the case a = 1,a = —4, f(0,\) = ao(9*N\? — 1002\ — 179N° — 8\%) and
9(0,X) = 0% + 20X + A%, where aq € C.

(6) When a = —3, we have a« — & = 4,5 or a = 1,a = —5. Moreover,
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(i) In the case a —a =4, f(0,\) = ag)\*(40° 4+ 60>\ — ON? + aX?) and g(0,\) = 1,
where ag € C.
(it) In the case « —a =5,a #1, f(0,)) =0 and g(d,\) = 0 — Ta\.
(i) In the case « = 1,a = —4, f(9,\) = ag(0* \?* — 100*°\* — 170N° — 8)%) and
g(0,\) =0+ A, where ay € C.
(v) In the case a = 1,a = =5, f(0,\) =0 and g(9,\) = 9? + 20X\ + 2\
(7) When a = —4, we have « —a = 5,6 or a = 1,& = —6. Moreover,
(i) In the case « —a =5,a # 1, f(0,\) =0 and g(0,\) = 1.

(ii) In the case a = 1,a = —4, f(0,)\) = ao(0*\* — 100°\* — 170\5 — 8)\°) and
g(0,\) = 1, where ag € C.

1=

(1ii) In the casea—o’z:(i,a#%:t@, f(9,A) =0 and g(0,\) = 0 — z@\.

o (N3 — (20 + 3)DBA — 3a02N° —

(iv) In the case o« — @ = 6,0 = %i@, f(O,N) =
0 — za\, where ay € C.

(B +1)0X° — (@ + 5£)A7) and g(d,\) =

[ =

(v) In the case a = 1,a = —6, f(0,)) =0 and g(d,\) = 0> + LOX + EA°.
(8) When a = =5, we have a« —a = 6,7 or a = 1,a = —7. Moreover,
(i) In the casea—@z&a#%i@, f(0,\) =0 and g(0,\) = 1.

(it) In the case a —a = 6,00 = L + @, (0, X) = ag(9*N® — (2a + 3)P M\ — 3a0?\° —
(B +1)OXS — (@ + 55)A7) and g(0,\) = 1, where ao € C.

(iii) In the case a —a =7, f(8,X) =0 and g(0, ) = 0 — za.
(iv) In the case « = 1,a = =7, f(0,\) =0 and g(d,\) = 0> + LN + {A\%.
(9) When a = 2, we have f(0,\) = 0. Moreover,
(i) In the case a —a = —2, g(0,\) = 1.
(it) In the case o« — a = 3, g(9,\) = 0 + 3a.
(iii) In the case a =1,a = —3%, g(0,\) = 0% + 30X — 2A?;
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() In the case a = 3, a = —2. g(0,)\) = 0% + 39°X — 20A* — N2

10 en a ,2,0,—1, -2, -3, —4, =5 or 2, we have ,A) = 0. Moreover,
Wh #3 2,—3,—4 2 h fO, A 0. M

3’

(i) In the case o« —a =1—a, g(0,\) = 1.

(it) In the case o« —a =2 —a, g(0,\) = & — =@

(iii) In the case a =1,a =a—2, g(0,\) = 0% — (1 4+ 20)0X — =A%

Theorem 5.1.5 [21, Theorem 3.10] (A) If (a,b) # (1,0), nontrivial extensions of
finite irreducible W(a,b)-modules of the form

0—Mys —FE— My —0 (5.10)
exist. Moreover, they are given (up to equivalence) by
Avg = (0 + aX+ Bvg + f(O, \)va,  Bave = g(0, \)vs. (5.11)

The values of o and &, 3 and 3 along with the pairs of polynomials g(0,\) and f(0, \),
whose nonzero scalar multiples give rise to nontrivial extensions, are listed as follows
(by replacing 0 by O + B only in (1) and (4)):

(1) If B—B=0,b#0, then g(d,\) =0, f(9,)) is from the nonzero polynomials
of Theorem 2.2.8 with o, @ # 0.

(2)IfB—PB#0,8—-B+b=0,a#1, then f(3,\) =0 and g(9, \) is as follows
(where m is the highest degree of g(0,\)):

(i) If m =0, then a —a=1—a and g(0,\) = 1.
(ii) If m =1, then o« —a =2 —a and g(0,\) = 0 — —a\+ ab+ B.

(iti) If m =2, then o = 1,a = a — 2 and g(9,\) = 9% — (1 + 2a)0X — -a\? +
aw@ + CLH)\ + anpo, where aig — 25 + ﬁ(l + 20_6)177 a1 = 2—b0_é - %(1 + 26{)6,

and agy = 5% + b= (1+2a) — b’ a.

(iv) If m =3, then o =a=2,a=—2 and g(9,\) = 0>+ 302X — 30X2 — A3 + a900° +
a218A+a22)\2+a100~|—a11>\+a00, where oo = 36—%[), 91 = 3B+3b, 99 = —%B—ng,
ay = 33% — 3b53 — 352; an = %Bz +3b5 — 3b%, ago = B — 3552 - %b25 + 07
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(3)IfB—PB#0,8—-B+b=0,a=1, then f(3,\) =0 and g(d, \) is as follows
(where m is the highest degree of g(0, \)):

(i) If m =0, then « —a =0 and g(\) = 1.
(W) If m =1, thena —a =1 and g(\) = XA —b.
(iii) If m =2, then o — & = 2 and g(d,\) = O\ — ar? — bd + (B + 2ba)\ — (b + b*a).

(i) If m = 3, then a« = 1, @ = —2 and g(0,\) = O*X + 30\2 + 2)3 — bd? + (28 —
60)ON + (38 — 6b)A2 + (—28b + 3b%)0 + (B2 — 6b3 + 6b*)\ — 5%b + 3b2 3 — 20°.

(4)If B—B=0,b=0, then f(0,)) and g(d,\) satisfy the conclusions given in

Theorem 5.1.4.

(B) If (a,b) = (1,0), nontrivial extensions of finite irreducible W(1,0)-modules of
the form

0— Msps—FE— My, —0 (5.12)
exist if and only if v =7, B = B. Moreover, they are given (up to equivalence) by
A)\Uoz - (8 +al+ B)Ua + f(a7 /\)U&u Byv, = YVa + g(aa /\)U&' (513)

The values of a and &, B and B, v and 5 along with the pairs of polynomials (0, \)
and f(0, ), whose nonzero scalar multiples give rise to nontrivial extensions, are listed
as follows (by replacing 0 by 0+ f):

(1) If v =7 =0, then f(0,\) and g(0,\) are as follows:

(i) If « —a =0, then f(0,\) = ag+ a1 A and g(9, ) = by with (ag,ay,by) # (0,0,0).
(i) If « —a =1, then f(0,\) =0 and g(0,\) = by A with by # 0.

(i56) If « —a = 2, then f(9,\) = a3 \*(20 + ) and g(9,\) = b A0 — a\) with
(a37b2) 7é (0,0)

(iv) If (o, @) = (1, —2), then f(D,\) = asON*(D+ ) and g(9, \) = bz\(0*+ 30\ +2\?)
with (a4,63) 7é (0,0)
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(v) If o —a = 3 and @ # =2, then f(0,)\) = a,0N* (0 + \) and g(0,\) = 0 with
ay % 0.

(vi) If « — @ = 4, then f(0,\) = asA*(40° + 60>\ — 0N + aA?) and g(d, \) = 0 with
as 7é 0.

(vii) If (o, @) = (1, —4), then f(0,\) = ag(O*" 2 —100*X\* —170X° —8X5) and g(d, \) = 0
with ag # 0.

(viii) If @ — & = 6,0 = L £ Y19 then f(9,)) = a7(0*N? — (2a + 3)9°\* — 3a9°\° —

(B +1)0X° — (@ + 5%)AT) and g(d,\) = 0 with az # 0.
(2) If v =5 #0, then f(9,\) and ¢(8,\) are as follows:
(i) If & = @, then £(9,)) = ag + ar) and g(d, \) = by with (ag, ar, bo) # (0,0,0).
(ii) If « —a =1, then f(0,\) = asA? and g(0,\) = b\ with (as,b) # (0,0).

(iii) If a—a = 2, then f(3,\) = BON +az\* and g(9, \) = byA* with (by, ag) # (0,0).
§5.2 Extensions of finite irreducible modules of rank two Lie

conformal algebras that are of Type II with Q(0,\) # 0

Now we consider the case that (0, A) # 0, which means b = 0and a € {1,0,—1, —4, —6}.

If V' is a non-trivial finite irreducible R-module, then
V=V,s=Clov, Ayw=(0+ar+)v, By =0, (5.14)

where 3,0 # «a € C.
By definition 2.2.1, the R-module structure on V, g given by Ay, By € Endc(V)[)]

satisfies

[Ax, Al = (A = 1) A + Q(=A — 11, A) Basy, (5.15)
[Ax, Bu] = ((@ = DA — 1) Bagy, (5.16)
[Bx, Bu] = 0, (5.17)
[0, A\] = —AA,, (5.18)
8, Byl = —AB, (5.19)
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§5.2.1 0—Ccy — FE — Va3 —0

First, we consider extensions of finite irreducible R-modules of the form
0—Ccy — E—V,3 —0. (5.20)

Then E is isomorphic to Ce, @V, 3 = Cc, & C[0]v as a C[0]-module, and the following
identities hold in E:

Rac, =0, 0Oc, =ncy,

Aw = (0+ar+ B+ f(Ney, B =g(Ney, (5.21)
where f(X), g(A) € C[\].
Lemma 5.2.1 All trivial extensions of finite irreducible R-modules of the form (5.20)

are given by (5.21), and f(X\) is a scalar multiple of aX+n+ B, g(\) = 0.

Proof: Assume that (5.20) is a trivial extension, that is, there exists v' = k¢, +1(0)v €
E, where k € C and 0 # [(0) € C|[0], such that

A = (04 ar+ ) = k(n+ aX+ B)e, +1(0)(0+ aX+ B)v, By =0.
On the other hand, it follows from (5.21) that

A" = fNUn+ N)ey + 10+ N)(0 + ax + B)v,
Byv' = g(N)Il(n+ Ny,

We can obtain that [(0) is a nonzero constant and g = 0 by comparing both expressions
for Ayv" and Byv'. Thus f()) is a scalar multiple of aX 4+ n + p.
Conversely, if f(A\) = k(a\ +n + f) and g(\) = 0 for some k € C, setting

v" = ke, + v we can deduce that (5.20) is a trivial extension.

Theorem 5.2.2 For a rank two Lie conformal algebra R that is of Type II with Q) # 0,

nontrivial extensions of finite irreducible conformal modules of the form (5.20) exist
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only if B+ mn = 0. Moreover, they are given (up to equivalence) by (5.21). The values
of o along with the corresponding polynomials f(\) and g(\) giving rise to nontrivial

extensions, are listed as follows: g(A\) =0 and

5102, a=1,
) =

593, a =2,

with nonzero constants sy, s. In these cases, dim(Ext(V, g, Cc,)) = 1.

Proof: Applying both sides of (5.15) and (5.16) to v and comparing the corresponding

coefficients, we obtain

M+ A+ap+B)f(N) =+ p+ar+B8)f(p)
= A=) fON+ 1) + Q(=X — 1, \)g(A + ), (5.22)
—(n+p+ar+B)g(p) = ((a =)A= p)g(A + p). (5.23)

Setting A = 0 in (5.23) gives
(n+ B)g(p) = 0.

If 54+mn +# 0, then g = 0. Putting = 0 in (5.22) and combining Lemma 5.2.1,
one can deduce the extension is trivial.

Agsume g +n = 0. If ¢ = 0, then one can obtain the result by Proposition 2.1
in [7]. Now we consider that g # 0. If a = 1, then (5.23) turns into

(@A + p)g(p) = pg(A + p),

t, a=0,
which implies a € {0,1} and g(\) = for some nonzero constant ¢. On
th, a=1,

the other hand, under the condition that a = 1, we have Q(0,\) = ¢(0 + 2\), ¢ # 0.
So (5.22) is equivalent to the equation

(A +ap)f(A) = (u+aX) f(p) = (A=) f(A+ p) + (A = p)g(A + p).

Taking the value of a;, g(\) and = 0 in the variant, one can get a contradiction. So
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gA)=0ifa=1.

If 8+n=0,9(\) #0,a # 1, then (5.23) implies &« = 1 —a and g(\) =t € C*.
Soif a =0, then o =1 and Q(9,\) = cA(0+ A)(0 + 2X) + dO(0 + 2)). Putting p =0
in (5.22), we have —\f(0) = —dtA\%. Thus d = 0 and f(0) = 0. Then putting u = —\
in (5.22), we can see that 0 = 2¢t\3, that is, ¢ = 0, which contracts with Q(9, \) # 0.
Hence a # 0. Similarly, one can check that a # —1 by putting © = 0,—\, =2\ in
(5.22) one after another. For a = —4, we can assume f(\) = s\°. By comparing the
coefficient of A\°p? in (5.22), we can deduce that s = ¢ = 0. Thus, Q(d,\) = 0. For
a = —6, we can assume f(A\) = sA® and we can get a contradiction by comparing the

coefficient of \°u? in (5.22).

§6.22 0—V,p—E—Cc —0

Next, we consider extensions of finite irreducible R-modules of the form
0 —V,p— E —Cc, —0. (5.24)

Then E is isomorphic to V, g @ Cc, = C[0]v @ Cc, as a C[0]-module, and the following
identities hold in E:

Ay = (0+ar+ P)v, Byv=0,
Aye, = f(0,\)v,  Bic, =g(0,\)v, 0c, = nc, + h(0)v, (5.25)

where f(0,\),g(0,\) € C[9, \] and h(0) € C[0].

Lemma 5.2.3 All trivial extensions of finite irreducible R-modules of the form (5.24)
are given by (5.25), and f(0,\) = ©(0 + A\)(0 + aX + B),9(0,\) = 0 and h(0) =
(0 —n)p(0), where ¢ is a polynomial.

Proof: Assume that (5.24) is a trivial extension, that is, there exists ¢, = kc, +
[(O)v € E, where 0 # k € C and [(9) € C[d], such that Ayc;, = Bac, = 0 and
dcy, = ney, = kne, +nl(0)v.
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On the other hand, it follows from (5.25) that

Ay = (BF(0,0) + 1O+ N+ A+ B))o,  Bac, = kg(d, \o,
dc,, = kney + (kh(9) + 01(9))v.

We can obtain the result by comparing both expressions for Axc), Bic, and dc;.

Conversely, if f(0,A) = p(0+A)(9+ar+f),9(9,A) = 0 and h(9) = (0 —n)¢(0)
for some polynomial ¢, setting ¢, = ¢, — p(9)v, we can deduce that (5.24) is a trivial

extension.

Theorem 5.2.4 For a rank two Lie conformal algebra R that is of Type 11, nontriv-
ial extensions of finite irreducible conformal modules of the form (5.24) exist only if
B+n =0 and a = 1. Moreover, they are given (up to equivalence) by (5.25) and
dim(Ext(Ccy, Vag)) = 1. The corresponding polynomials f(0, ), g(0, \) and h(0) giv-
ing rise to nontrivial extensions, are listed as follows: g(0,\) =0 and f(0,\) = h(0) =

s with nonzero constant s.

Proof: Applying both sides of (5.18) and (5.19) to ¢, and comparing the corresponding

coefficients gives the following equations

(O+AX=n)f(0,\) =h(D+ \)(0+ a\+ B), (5.26)
(O+A—mn)g(0,\) =0. (5.27)

Then ¢g(0,A) = 0 by (5.27), and the result can be deduced by Proposition 2.2
in [7].

§56.23 0—Vop—F —V,5—0

Finally, we consider extensions of finite irreducible R-modules of the form

0—=Vopg — E— V53 —0. (5.28)
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Then E is isomorphic to V, s®V; 5 = C[0lv@C[0]v as a C[0]-module, and the following
identities hold in E:

Ay =0+ aX+ PB)v, Byv=0,
AAT} - (a + a + B)T} + f(au )‘>U7 BAT) = 9(87 /\)Ua (529)

where f(0,\),g(0,\) € C[0, \].

Lemma 5.2.5 All trivial extensions of finite irreducible R-modules of the form (5.28)
are given by (5.29), and f(0,\) = ©(8 + N (0 + aX + B) — ¢(0)(0 + aX + B) and
g(0,\) = 0 for some polynomial .

Proof: Assume that (5.28) is a trivial extension, that is, there exists v’ = k(0)v +
[(0)v € E, where k(0),1(0) € C[0] and 1(0) # 0, such that

A\t = (04 aX + B)0 = k(9)(0 4+ ax + B)v + 1(0)(0 + aX + B)v, Byv' = 0.
On the other hand, it follows from (5.29) that

A\ = (k(0+ M)+ aX+ B) + (D + N) f(0,\)v + 1+ \)(D+ aX + B),
Byt = 1(0 + \)g(d, \v.

Comparing both expressions for A o' and B,9', we can obtain that [ is a nonzero
constant. And then we can give the expressions of f(0,\) and ¢(0, \).

Conversely, if f(0,\) = (0 + A)(0+ aX+ ) — p(0)(0 + aX + ) and g(d,\) =0
for some polynomial ¢, setting v/ = —¢(0)v + v, we can deduce that (5.28) is a trivial

extension.

Theorem 5.2.6 For a rank two Lie conformal algebra R that is of Type 11, nontrivial
extensions of finite irreducible conformal modules of the form (5.28) exist only if B = .
Moreover, they are given (up to equivalence) by (5.29). The value of o, @, and the
corresponding polynomials f(0,\) and g(0,\) giving rise to nontrivial extensions, are

listed as follows (by replacing O by 0+ B):
1. In the case when a = 1, where Q(0,\) = ¢(0 + 2\) for some nonzero constant c,
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a—ae{0,1,2,3,4,5,6},a,a # 0 and

(1) a=a, f(0,\) = so+ s1A,9(0,\) =0, where (sg,s1) # (0,0).
(i) a—a=1, f(0,\) = £0,9(d,\) = tA, where t # 0.
(iii) @ — o = 2 with a # —1, f(8,\) = sA2(20 + \), g(9,\) = 0, where s # 0.
(iv) @ =1and a=—1, f(9,\) = sA2(20 + \) — ct(0* — \?), g(0, \) = t(OX + \?),
where (s,t) # (0,0).
(v) & —a=3, f(O,\) = sON(0+ N),g(d,\) =0, where s # 0.
(vi) G—a =4, f(D,) = sA2(40° + 602\ — DN + arN®), g(9, \) = 0, where s # 0.
(vii) & = 1 and o = —4, f(0,\) = s(*N? — 100°\* — 170X> — 8X5),g(0,\) = 0

where s # 0.
(viti) o = I+ @ and oo = =2 + VI (9, 0) = s(0*A3 — (2004 3) 0PNt — 3002\ —

(a+1)8/\6 (a+ 3£)A ),( A) =0, where s # 0.

The value of dim(Ext(Vy g, Vag)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.

2. In the case when a = 0, where Q(0,A) = ¢(0 + 2X)(0 + M)A+ d(0 + 2A)0 for some
nonzero constants ¢,d, @ —« € {0,1,2,3,4,5,6},a, & # 0 and
(i) & =a, f(O,\) = s¢+ s1A,g(0, ) =0, where (so,s1) # (0,0).
(ii)) a—a=1, f(O,\) = —2OX— £, g(d,\) =t, where t # 0.
(i) & —a =2 with a # —1, f(9,\) = sA\?(20 4+ \), g(9,\) = 0, where s # 0.
(iv) a =1 and a = —1, f(O,\) = sA}(20 + \) + ctd*X + dt(0* — \?),g(d,\) =
t(0+ A), where (s,t) # (0,0).
(v) & —a=3, f(O,\) = sON(0+ \),g(d,\) = 0, where s # 0.
(vi) o —a =4, f(0,\) = sA2(40° + 60°\ — ON* + a1 \3), g(D, \) = 0, where s # 0.
(vii) & =1 and a = —4, f(0,\) = s(0*\* — 100°\* — 170X° — 8X%),g(0, ) = 0
where s # 0.
(viti) & = I + @ and o = =2 + 219, (0,A) = s(0*N* — (2a + 3)PPN\* — 3 d*N° —
(3a + 1)8/\6 (a+ 2£)A7),9(8,X) = 0, where s # 0.
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The value of dim(Ext(Vy 5, Vo)) is 2 in subcase (i) and (iv), and 1 in the other

subcases.

3. In the case when a = —1, where Q(9,\) = c(0 + 2X)9? + d(D + 2)\)(d + \)OA for
some nonzero constants ¢,d, @ —a € {0,1,2,3,4,5,6},a,& # 0 and
(i) @a=a, f(O,\) =so+ s1A,9(0,\) =0, where (s, s1) # (0,0).
(it) & — o =2 with a # —%, f(0,) = sA\2(20 + \), (0, ) = 0, where s # 0.
(i) @ =3 and o = —1, (9, \) = sA}(20+\) —2dt0* ) — ct(20° — \2), g(9, \) = t,
where (s,t) # (0,0).
(i) & —a =3 with a # —1, f(,\) = s9X2(0 + \), 9(d,\) = 0, where s # 0.
(v) a=2and a=—1, f(0,) = sON?(0 + A) — L(20°X + \*) — £(9% — 20\? —
2X%), g(0,\) = t(8 + 3)), where (s,t) # (0,0).
(vi) @ —a =4, f(0,\) = sA\?(40° + 60>\ — ON? + a1 \?), g(D, \) = 0, where s # 0.
(i) @ =1 and o = —4, f(D,\) = s(9*'\> — 1002\ — 17OX° — 8X%), g(9, \) =
where s # 0.
(viii) a =T+ Y1 and o = —3 £ Y10 £(9,)) = 5(0*N — (2 + 3)DN* — 32N> —

2 J

(3 + 1)8/\6 (a+ 3£)A7),9(0,X) = 0, where s # 0.

The value of dim(Ext(V 3, Vap)) is 2 in subcase (i) and (v), and 1 in the other

subcases.

4. In the case when a = —4, where Q(,\) = c(d + 2X)(0 + A\)*N? for some nonzero
constant ¢, @ — « € {0,1,2,3,4,5,6,7}, o, # 0, and
(i) & =a, f(O,\) = s¢+ s1A,g(0, ) =0, where (so,s1) # (0,0).
(i1) & —a =2, f(0,\) = sA*(20 + \), g(0,\) = 0, where s # 0.
(ii)) a —a =3, f(9,\) = sON(D+ N),g(d,\) =0, where s # 0.
(iv) @ —a =4, f(0,\) = sA\2(40° + 60>\ — ON? + a1 \?), g(D,\) = 0, where s # 0.

_ . a+1)
(?}) a—a = b with o ¢ {—2 —4} f(@ )\) mCt@S)\s m t82)\4
MNatl)2atl) 4975 4 latD@ot) 436 09 \) = ¢, where t # 0.

10a(a+2)(a+4) 10(a+2)(oz+4)
(vi) @ =3 and a = =2, f(0,)) = 2ctd* N2 —3ctd? X' = STctON — 2ctX®, g(0, ) =,
where t # 0.
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(vii) & =1 and a = —4, f(0,\) = s(*")\? — 100°\* — 170X5 — 8)5),g(0,\) = 0

where s # 0.
(viti) & —a = 6 with a ¢ {2, -3 £ @} f(O,N) = —(2a+5)(2§2+10a+3 ctd*\? +
3(2a+3) 314 9(a+1)(2a+3 2 5 (a+1)(2a+1)(2a+3) 6
(2a15)(2a2 1 1001 3) A" — 5(2a+5)(2a2+ 100+ 3) ctd" A t 5@a+5)(2a?+10a+3) ctoX

%ﬁ?ﬂ?ﬁ(ﬁzﬂ?&iﬁ CW’Q(@ A) =t(0 — §A), where t #0.

(ir) =1 and o= =3, f(0,\) = 2&ctd®N? — 2Lctd3 M\ — BLctd? N> — 2B ctoN® +
22LctA", (0, ) = t(8 + 3X), where t # 0.
(r) a=T+Y0 gnda= -3+ (3 )) =50\ — (20 +3)P\* — 320°)° —
3a+ 1N — (a+ 2 )\7 g 8,/\ =0, where s # 0.
28
(xi) & =1 and a = —6, f(0,\) = 3zt X3 + 2ctd*'\* + Lctd* N + Zctd? N +
BtON + 2LctA®, (0, N) = t(0* + ZON + 2A?), where t # 0.

The value of dim(Ext(Vy, 3,Vag)) is 2 in subcase (i), and 1 in the other subcases.

5. In the case when a = —6, where Q(9,\) = ¢(0 + 2\)[11(0+ A\)* AT +2(0 + X)39?\?]
for some nonzero constant ¢, @ —a € {0,1,2,3,4,5,6,7,8}, a, & # 0, and
(Z) a = q, f<87 )‘> = 50 + Sl>\79<a7 )‘) = 07 where (807 81) 7& (07 0)
(ii) @ —a =2, f(0,\) = sA\*(20 + \),g(d,\) =0, where s # 0.
(iii) @ —a =3, f(0,\) = sON*(D + \),g(d,\) =0, where s # 0.
(iv) @ —a =4, f(0,\) = sA\2(40 + 60>\ — ON? + a1 )?), g(0,\) = 0, where s # 0.
(v) @ =1 and a = —4, f(0,\) = s(0*"\? — 100*°\* — 170X5 — 8X%),g(d,\) = 0
where s # 0.
(vi) a=1+ @ and o = =2 + 2197 (0,A) = s(0*N\3 — (2a + 3) PPN — 3D N5 —
(3o + 1)8)\6 (a+ 2£)A7),9(8,X) = 0, where s # 0.
(vii) & =4 £ @ and o = =3 + ﬁ , f(O,N) = — T +3 ctPN + %O:QQ) ct*\* +

40(5a+1) 3v5 , 20(16a+11) 216 , 10(154a+101) 7 | 823a+539 8
7(at3) ctd A° 4+ W ctd A° + thaA +98(a—+30t/\ 79(8 A)

where t # 0.

vig) a =7 and o = —1, ,A) = —zct +=zct —:zct +zct ,glo, A) =
7 and 1, f(O, A 3 OON3 2 PN 2 o\ ? BN, g(0, \
t(0+ 2X), where t # 0.

(ir) @ =2 and @ = =6, f(O,\) = —2ctdN® — 3ctd°X* — 12ct0* N> — 24ctPPNS —
BOCtO?NT — 2ctoN® — 2N, g(0,\) = (0 + SX), where t # 0.
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The value of dim(Ewxt(Vy 5, Vag)) is 2 in subcase (i), and 1 in the other subcases.

Proof: Applying both sides of (5.15) and (5.16) to © and comparing the corresponding

coefficients, we obtain

FONO+ N+ ap+B)+ f(O+ )0+ ar+8) — f(O, )0+ p+aX+ )
=[O+ N0+ ap+B) = A=) [0, A+ 1)+ Q(=A—p,N)g(0, A+ p),
(5.30)

9GO+ X 1) @+ aX+ ) — g(8, )0+ p+ar+ 3) = ((a— DX — pu)g(d, X + ).
(5.31)

Setting A = 0 in (5.31) gives
9(0,n)(B — B) = 0.

If g(0,) = 0, then the result follows from Theorem 3.2 in [7] (or Theorem 2.7
in [21]). Now we assume g(0,\) # 0 so that 3 = 3. If no confusion is possible, we
replace d + by 0 in the sequel. By Proposition 3.8 and Corollary 3.10 in [21], for
a € {0,—1,—4,—6}, the nonzero solutions (up to a nonzero scalar t) of (5.31) are given

by

1, a—a=a—1,

9(0,7) = {0 — La), a—a=a-—2, (5.32)

GQ—ﬁ(1+2a)8/\—%aA2, a=a—2,a=1,

—a

and for a =1,

1, a—a=0,
A, a—a=-—1,
9(0,)) = (5.33)
O\ — aX?, a—a=—2,
\82>\ +30X2+2)3, a=-2,a=1.

Putting these results in (5.30), we can obtain the expression of f(0,A) as follows.
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(1) fa=1,a=a, (5.30) is writen as

FO,NO+ A+ ap)+ fF(O+ A, 1) 0+ aN)
=[O, )0+ p+aX) = f(O+ 1, )0+ au)
= A=) fON+p) +ct(A—p). (5.34)

By the nature of (5.34), we may assume that a solution to (5.34) is a homogeneous
polynomial in 0 and X of degree 0, that is, f(0,\) = s for some constant s. Taking it
in (5.34), we have ¢t = 0 which means ¢(9,A\) = 0 or Q(9,\) = 0. This contradiction

illustrates that the equation has no solution in this case.
(2)fa=1a—a= -1, (5.30) is writen as

FONO+ N+ pu+ap) + fF(O+ N u)0+a)) — f(O,u)(0+ N+ u+ al)
=[O+, N0+ ap) = (A= p)f(0, A+ p) + ct(A+ p)(A —p). (5.35)

By the nature of (5.35), we may assume that a solution to (5.35) is a homogeneous
polynomial in 9 and A of degree 1, that is, f(0, A) = $10+ s9A for some constant sy, so.
Taking it in (5.35), we have s; = £ with a # 0 which means f(0,\) = £ + s;\. For

other homogeneous parts, one can refer to the case that g(9,\) = 0.

B)fa=1l,a—a=—-2,set =0+, F(9,\) = f(0— 3, ), and (5.30) is writen

F(O,\)(0+ A+ 2u+ ap) + F(O+ X\, 1) (0 + aX) — F(0, 1)(0 + 2\ + p + a))
— FO+ 1, )@+ ap) = (A= p)F(9, A+ p) + ct(A = 1) (O + ) — a(A + p)?).

(5.36)

By the nature of (5.36), we may assume that a solution to (5.36) is a homogeneous
polynomial in 0 and \ of degree 2, that is, F(0,)\) = 510° + 5,0\ + s3A% for some
constant sy, sy, s3. Taking it in (5.36), we have a = 0, F(0,)\) = ctd* + 5,0\ and
a=—1,F(0,\) = —ct(0* — \2) + 55(O\ + A\?).

(4) Ifa=1a=-2a=1, set 0 = a—l—ﬁ,F(g,/\) = f(g—ﬂ,A), and (530) is
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writen as

F(O,\)(0+ A+ pu)+ F(O+ X\ pu)(0—2)\)
—F@,1) 0+ p+A) = F(O+p,2)(0 —2p)
= A=W FO,X+ u) + ct(A— ) (O* N+ p) + 30N + p)> + 2(A + p)*).  (5.37)

By the nature of (5.37), we may assume that a solution to (5.37) is a homogeneous
polynomial in 9 and A of degree 3, that is, F(0,\) = 5,0° + $90%\ + 530\2 + 543 for
some constant sy, Sa, s3, S4. Taking it in (5.37), we have ¢t = 0 and get a contradiction.

(5)Ifa=0,a—a=—1,set =0+ 6,F(0,\) = f(0— 3, ), and (5.30) is writen

as

FO,NO+A+pu+ap)+FO+N\u)0+aX) —FO,u)(0+ X+ p+al)
— F(0+ N0+ ap) = (A= ) F(9, A+ p) — ctAp(X — p) — dt(A + p) (A = p).
(5.38)

By the nature of (5.38), we may assume that a solution to (5.38) is a sum of homoge-
neous polynomials in 9, A of degree 1 and degree 2, that is, F(0,\) = $,0% + 520\ +
s3A% + 540 + ss\ for some constant sy, So, S3, S4, Ss. Taking it in (5.38), we have a # 0
and F(9,\) = —2OX + 530> — L9 + 55

6)Ifa=0,a—a=—2,set 0 =0+5,F(,)\) = f(0— 3, ), and (5.30) is writen

as

F(O,N) O+ X+2u+ap) +FO+ X\ u)(0+aX) — F(O,u)(0+ 2\ + u + al)
— F(0+ p, \) (0 + ap)
= A= F(O,\+p) —t(N— p)(chp +dX+du) (0 — aX — ap). (5.39)

By the nature of (5.39), we may assume that a solution to (5.39) is a sum of ho-
mogeneous polynomials in 9, A of degree 2 and degree 3, that is, F(9,)\) = 5,0° +
$90%\ + 53002 + 540\ + 5502 + 560\ + s7\? for some constant Sy, Sa, Ss, S4, S5, S, 7. Tak-
ing it in (5.39), we have a = 0, F(9,)\) = —ct0?\ + 530\ + 54A% — dt0? + sg0\ and
a=—1,F(0,)\) = ctd’\ + 530\% + s4\3 + dtd? + 560\ + (s — dt)\%.

(M Ifa=0,a=-2,a=1,set d =0+ B, F(0,\) = f(0—B,)\), and (5.30) is
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writen as

FO,N O+ X+p)+FO+ X p)(0—2)\) —F(O, )0+ X+ p) — F(O+ 1, \) (0 — 2u)
= (A= p)F(O, A + ) — t(A — p)(eAp + dX + dp) (0% + 30N + p) + 2(\ + p)?).
(5.40)

By the nature of (5.40), we may assume that a solution to (5.40) is a sum of homoge-
neous polynomials in 9, X of degree 3 and degree 4, that is, F(9,\) = >0, 8;0° A"~ +
S o 5:0°7IN0 for some constant s;,i = 1,2,---,9. Taking it in (5.40), we have
ct = dt = 0 and get a contradiction.
®)Ifa=—-l,a—a=-2setd=0+pB,F(,\ = f(O—B,)), and (5.30) is

writen as

F(O,\)(0+ X+ 2u+au) + F(O+ X u)(0+a)) — F(O,u)(0+ 2\ + 1+ al)
— F(0+ p, \) (0 + ap)
= A=W FO,X+ ) +ctA — )N+ p)? + dtdp(A — ) (A + p). (5.41)

By the nature of (5.41), we may assume that a solution to (5.41) is a sum of homoge-
neous polynomials in 9, X of degree 2 and degree 3, that is, F(9,)\) = 5,0° + s,0%\ +
5302 + 5403 4 550 + 560\ + 5702 for some constant sq, o, S, S4, S5, 56, S7. Laking it in
(5.41), we have o = —1 and F(9,\) = —2dt0? A+ s30X\* + 5403 — 2ct0? + 560N + (56 +
ct)\2.

9) Ifa=—-l,a—a=-3,setd=0+B,F(,\) = f(0— B,)), and (5.30) is

writen as

FO,N) O+ X+3u+au)+ FO+ X u) 0+ a)) — F(, )0+ 3\ + u+ al)
— F(0+ p, \) (0 + )
= (A= W) F DA+ )+ t(N2 — 1) (dM + X + ) (9 — %A - %u). (5.42)

By the nature of (5.42), we may assume that a solution to (5.42) is a sum of homoge-
neous polynomials in 9, X of degree 3 and degree 4, that is, F(9,\) = >0, 8;0° A"~ +
S o 5:0°7IN0 for some constant s;,i = 1,2,---,9. Taking it in (5.42), we have

o = —1, F(é, )\) = —%53)\ + 8352/\2 + 845)\3 — %(83 — 84+ %))\4 — %53 + 8752>\ + (87 +
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ct)ON? + (s7 + ct) N2,
(10)Ifa=—1l,a=-3a=1,set =0+ 3,F(0,\) = f(0— B,)), and (5.30) is

writen as

F(O,N) O+ X+ )+ F(O+ X\ pu)(0—3)\) — FO,u)(0+ A+ p) — F(O+ u,\) (0 — 3p)
= A=) F(O,A+ p) +t(\ — 1) (A + cp + dip)(0* + ga(A + ) + g(A + 1)?).
(5.43)

By the nature of (5.43), we may assume that a solution to (5.43) is a sum of homoge-
neous polynomials in 9, X of degree 4 and degree 5, that is, F/(9,\) = 30| 5,05 A"~ +
ZZ - 5,017\ for some constant s;,4 = 1,2,---,11. Taking it in (5.43), we have

= dt = 0, a contradiction.

(1) Ifa=—4,aa—a=-5set =0+, F(,\) = f(0—B,\), and (5.30) is

writen as

F(O, N0+ X+5u+au)+ FO+ X u)(0+aX) — F(9, )0+ 5\ + u+ al)
—FO+ N0+ ap) = (A= ) FO, A+ ) — et P\ — p). (5.44)

By the nature of (5.44), we may assume that a solution to (5.44) is a sum of homo-
geneous polynomials in d, A of degree 6, that is, F(0,\) = 5,0° + 520°\ + 530*\? +
5403 X34 5502 N1+ 560\° + 57\ for some constant sy, - -+ , s7. Taking it in (5.44), we have
a= -2 F(0, )\) = 3ct0* N +540° N3+ 2 (s —ct)éz)\4+4—3;)(1234 19¢t)ON° + £ (54— 2ct) X
and o ¢ {0,-2,—4}, F(9,)) = s30'N + (X sy — B c) PN + (2fLsy +
ST WV‘ + (5555 — arrsrn 0N + (5w + Toramin N

(12) If a = 4,0 —a = —6, set d = 0+ B, F(9,\) = f(0 — B,\), and (5.30) is

writen as

F(O,\)(0+ A+ 6p+ ap)+ FO+ X\ p)(0+ aX) — F(O, 1) (0 + 6\ + p + a))
— PO+ p N0+ ap) = (A= wF@ A+ p) = ctN (= 1) (0 = TA = Zp).
(5.45)

By the nature of (5.45), we may assume that a solution to (5.45) is a sum of homo-

geneous polynomials in 9, \ of degree 7, that is, F(9,\) = .0, 5,05 A\"~! for some
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63665 ct 85 )\2

ZEct) PN + (254 — BLct) 2N + (254 — gégct)ﬁ)\(i (354 + 125 ct) N

constant sq,---,ss. Taking it in (5.45), we have a = —3, F(9,)\) =
8454>\3 + (284 —

113 665 € 1862
(Bat+4

and a ¢ {=3, =3 + 9}, F(9,)) = s30°N + (Setsss — marmmerrmars DN +

5(40+3) (2a+3) 314 5042 9(a+1)(2a+3) 25 6at1

<3(2a+5) 53 1 Gat5)(2a2+10a53) ct)OPA + +(5a558 — 5(2a+5)(2a2+ 1001 3) ct)OPN° + (3 2a++5) S+

(a+1)(2041)(20+3) 6
5(2a+5)(2 a2+10a+3) )aA

(13)Ifa=—4,a=—6,a=1,set d =0+ 3,F(0,\) = f(0— B,)), and (5.30) is

writen as

a(a+1)(2a+1)(204-3) 7
( 3301553 ~ T0(2015) 202+ 10a13)C ct)A".

FO, N0+ X+ p)+ F(O+ X\ p)(0—6)) — FO,u)(0+ X+ ) — F(O+ u,\) (0 — 6p)

= A=) FO,\+ p) — a NP\ — ) (0* + %5@ + 1) + g()\ + p)?). (5.46)

By the nature of (5.46), we may assume that a solution to (5.46) is a sum of homo-
geneous polynomials in 9, A of degree 8, that is, F'(0,\) = Z?:1 5,097 A1 for some
constant s;,4 = 1,2,---,9. Taking it in (5.46), we have F(9,\) = s30°\% + (55 +
2 ct) 0PN + (R sy 4 2ct) 0N + (955 + 32ct) 03N + (53 + Lct)9? N0 + (5155 + SSct)ONT +
(253 4+ rct)AS.

(14)Ifa= 6,0 —a=—7,set d =0+ B,F(0,\) = f(0—3,)\), and (5.30) is

writen as

F(O, N0+ A+ Tu+ap)+ FO+ X \p)(0+ aX) — F(O,u)(0+ T\ + p+ a))
— F(O+ 1, \)(O + ap) = (A — ) F(O, A+ 1) + ct( A — p) (1INt — 20313 (N + p)?).
(5.47)

By the nature of (5.47), we may assume that a solution to (5.47) is a sum of ho-

mogeneous polynomials in 9, \ of degree 8, that is, F(0,\) = 3.0, 5,0°\"~! for

some constant s;,¢ = 1,2,---,9. Taking it in (5.47), we have o = -3 £ @ ,F(0,0) =
5305024 (3a+583_ 40 Ct)85>\3+(5(a+1)83+ 100(a+2)ct)a4/\4 (5a+383+40(5a+1)ct)83)\5

a+3 T(a+3) a+3 T(a+3) a+3 7(a+3)
3a+1 20(16a+11) 216 Ta+1 10(154a+101 T4 8234539 8
(aizss + 7(a+3) ct)O N + (7(a+3) $3+ “io(ar ct)ON + ( a+3) 83 1 08(a+13) ct) A%,

(15) If a = =6, — & = =8, set8:8+ﬁ, (0,\) = f(0—B,)), and (5.30) is

writen as

F(O,\)(0+ A+ 8u+ ap) + F(O+ X\ u)(0+a))
— F(0, 1) (0 + 8\ + p1 + aX) — F(O+ p, \) (0 + au)
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= A=W F@, A+ p) + ctN — ) (1IN " = 201 (A + 1)) (9 — %A - %u)-

(5.48)

By the nature of (5.48), we may assume that a solution to (5.48) is a sum of homoge-
neous polynomials in 9, \ of degree 9, that is, F/(9,\) = 3212, 5,0 \i~! for some con-
stant s;,4 = 1,2,---,10. Taking it in (5.48), we have v = —1, F(0, A) = s30" A2+ (Ls3—
2et) 0N +(Lss+2ct) 0P AN — (Lss+2ct)0* N — (Ls3— 2ct) PN — 5307 N — L 530M8 — L 53 A7
and o = —6, F(0, ) = 530" N+ (Zs3— 2ct) N+ (1853 —3ct) PN + (L 53— 12ct) ' N° +
(Zs3 — 24ct)DPNC + (8sy — L2ct) 2N + (5555 — 2ct)ON + (Ss5 — Zct) N,

(16) fa= —6,a0=—8,a=1,set =0+ B, F(,N\ = f(d— B\, and (5.30) is

written as

F(O,N) O+ X+ )+ F(O+ X\ pu)(0—8)\) — F(O,u)(0+ A+ p) — F(O+ u, \) (0 — 8p)
= (A= F(@,X+p)
et — ) (1IN — 2N3 3O+ 1)?) (2 4+ ?5@ Fu) gu + 2.
(5.49)

By the nature of (5.49), we may assume that a solution to (5.49) is a sum of homo-
geneous polynomials in 9, A of degree 10, that is, F(9,\) = 3.0, 5,0 A\""! for some
constant s;,7 = 1,2,---,11. Taking it in (5.49), we have ¢t = 0 and get a contradiction.

The final results follow from Lemma 5.2.5 and Theorem 3.2 in [7] (or Theorem 2.7

in [21]).
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YL, RO A O R . A % ], RS BT A IHhEE, 7EIE DA,
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Bk, TR FITRAO A ST A BB B R R O . X ISR P i 2
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RREAE, AERAHZAUR I I A T BRI, 1328 TSI R0 S, RS T 2
MER VOA 2% KRR A, THES5T E45%%K Lepowsky SR80 %7 %
RBR S, U2 MR ACHOAR 55 T B2 ARLEF . S 0 DL BR P A2 R i, TR T 2 N8
RHFFITFIN VOA RV, SedisON RS ST FHa 0 T 718, 45514 FRAIRA L, #020
2 AR SR AR SRR O AR, M2 TR MO 45 S Ml KT 5 AR SR 22 8 T
S K B IRTE SR B LR RTAT . RO T ST SR R R ITTE L R T
06 5, ST T T T 205 T TR, R S, A5 240 B SR 57 T S
B RARE, RN 2 O R IR IR ST . RO IE 77 Sk A 7 B [ e Ao R 5
WD RS R A A6 2 14 SR S 00, IS PR T T A
FOBEAR. FRUHRR R T E 0 T A T 1HE 5. R 03K 8 i T 28 1 30 O 0 B
T2 2 T RRMO SR R SO RO B B R R RHIFER G, DR A AT BN
B R BI . B I8 A SR B 0T 4 R S T 20, e SOn o F 3 T AR A s

RS S IR A GRS R, AR . T4 (R TS, v . 2R
A, A SIS T RN EE . BT G X BTN e
B (RIS R TR TR M AR R S LR, X R T ST A
U R R S R R A Ao L ZE TR B BRSNS T, AERRISRI A 7
FOMTFSCERHE. R T R4 T B ShE S5 080, IS R TV AN 220 g 45 0 1 T L 2
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