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Chapter 1 Introduction

In number theory, there are important functions, complete multiplicative arithmetic
functions. It is algebra maps from N to C where the symbols N, C denote the natural
numbers {1, 2, 3, --- } and complex numbers respectively. In the set of completely mul-
tiplicative arithmetic functions, there is an essential multiplication, Dirichlet multipli-
cation[1]. Recalling the known knowledge of Hopf algebra[2], we guess that some set
on N has a Hopf algebra structure.

We prove that a certain set V' based on N does form a Hopf algebra according to the
given comultiplication. It naturally occurs to us that the finite dual of this Hopf algebra
must be a Hopf algebra[3]. We give a bijection between Alg(V, C) and the completely
multiplicative arithmetic function. Because we know the fact that a group-like element
of a Hopf algebra is an algbra map, a group-like element of finite dual is an algebra
map, which vanishes at infinite points.

So it is vital to find a larger set that can include all algebra maps. We think making
infinite points non-zero is the key. We change the tensor product in a Hopf algebra to a
complete tensor product[4], so that algebra maps are not necessary to be zero at infinite
points. Similarly, we verify that all generalized group-like elements in the so-called
generalized Hopf algebra is indeed Alg(V,C) .

Conclusively, we get a bijection between generalized group-like elements and
complete multiplicative arithmetic functions. That means we can use Hopf algebra

tools to study a series of important objects in number theory, such as L-functions.






Chapter 2 Preliminary

2.1 Some notations from Number theory

Here we recall some known notations and results from number theory for our con-

venience.
Definition 2.1 An arithmetic function is any function f : N — C.

Definition 2.2 An arithmetic function with f(1) #+ 0 and

f(mn) = f(m)f(n),

whenever m and are coprime is called multiplicative. (Note that implies f(1) = 1.)
If f has this property not only for coprime m, n, but for all m,n € N, then fis

called completely multiplicative arithmetic function.

Definition 2.3 The Dirichlet convolution product of arithmetic functions f and g is the

function f * g defined by

frg= fld)g(%).
d|n

Proposition 2.1 The Dirichlet convolution product is commutative and associative. In

other words,

frg=gxf and  (fxg)xh=[fx(gxh),

for any arithmetic functions f, g, and h.

Proof The sum in

> fdg(5).
d|n

3



Chapter 2 Preliminary

runs over all pairs d, e € N with de = n, so it is equal to

> fld)gle)

de=n

and the latter expression is symmetric in f and g. To see that convolution is associative,

notice that

(fxg)xh)(n)= > fle (e)(f * (g% h))(n),¥n € N. m

cde=n

Definition 2.4 Define the arithmetic function [ by I(1) = 1 and I(n) = 0,Vn > 1.

Proposition 2.2 For any arithmetic function f

fxI=Ixf=f.
Proof ( Z f(d f(n)I(1) = f(n), since all the other summands
d|n
are zero by the definition of I. |

Proposition 2.3 If f'is an arithmetic function with f(1) # 0, then there is a unique

arithmetic function g such that f x g = 1. This function is denoted by f~'.

Proof The equation f x g(1) = f(1)g(1) determines g(1). Then define g recursively

as follows. Assuming that g(1),---, g(n — 1) have been defined uniquely, the equation

(f*g)(n) = f(Vg(n) + > f(d)g(-

d|n
a>1

allows us to calculate g(n) uniquely. [

Definition 2.5 Let G be a finite Abelian group. A character of G is a homomorphism

x:G— (C*)

4



2.1 Some notations from Number theory

The multiplicative group C* is C\{0} equipped with the usual multiplication. For any

group, the map

XO : G — C*7XO<9) = 17
is a character by above, and we say it is the trival character.

Proposition 2.4 Let G be a finite Abelian group. Then the characters of G form

a group with respect to the multiplication

denoted G. The identity in G is the trival character. The group is isomorphic to G.

In particular, any finite Abelian group G of order n has exactly n distinct character.

Definition 2.6 Given1 < q € N, let G = U(Z/qZ) and fix a character x in G. Extend

X to a function X on N by

fla) = x(n), neU(Z/qZ),

0, otherwise.

The function X is called a Dirchlet character modulo q.
Theorem 2.1 A Dirichlet character is a completely multiplicative arithmetic function.

Proof Let x be a Dirchlet character modulo q. If two integers m, n are given, and at
least one of them is not coprime to ¢, then neither is the product mn. Thus y(mn) =

x(m)x(n), otherwise, m and n both coprime to ¢, then
(mmod q) - (nmod q) = (mn mod q).

X is group character, that means Y is a group homomorphism, then x (mn) = x(m)x(n).H

Definition 2.7 Let x be a Dirichlet character. Define a complex function by

L(s,x) = i X<Z>,

n=1 n

5



Chapter 2 Preliminary

where s € C. Such functions are called L-funtions.

2.2 Some definitions of Hopf algebra

Definition 2.8 Let K be a field. A K-algebra (with unit) is a K-vector space A together
with two K-linear maps, multiplication m: AQ A—A, and unit u: K—A, such that the

following diagrams are commutative:

a) associativity b) unit
AQARAC  _A® A AQ A1 AgK
Idom m u®Id m n
AR A m A K® A ! A

the I/d denotes the identity mapping, and the n denotes the scalar multiplication.

Definition 2.9 For any K-space V and W, the twistmap 7 : VQW — WV, is given
by T(v®w) =w .

Obviously, A is commutative <= mo7T =mon A ® A.

Definition 2.10 A K-coalgebra (with counit) is a K-vector space C together with two
K-linear maps, comultiplication A : C' — C ® C and counit € : C' — K, such that the

following diagrams are commutative:

a) coassociativity b) counit
C 2. 0eC c— " L CRK
A ARId 1,® A Id®e
CoCc—22. coCceC Kec—2 . ogC

the two upper maps in b) are givenby c = 1 ® c,and c = ¢ ® 1, forany ¢ € C.

We say C'is cocommutataive if 70 A = A.



2.2 Some definitions of Hopf algebra

Definition 2.11 Let C' be any coalgebra,and c € C.

a) c is called group-like if Ac = ¢ ® c and €(c) = 1. The set of group-like elements in
C is denoted by G(C).

b) For g,h € G(C), c is called g,h-primitive if Ac = ¢ ® g+ h ® c. The set of all
g h-primitive elements is denoted by P, ,(C). Py 1(C) are simply called the primitive
elements of C, denoted by P(C).

Definition 2.12 Let C' and D be coalgebras, with comultiplication A and Ap, and
counits €. and €p, respectively. A coalgebra map f : C' — D is a linear map, such

that Apo f = (f® f)A, and e = €p o f, that means the following diagrams are

commutative
C ! D c—7! _.p
A Ap o €p
Ap®An—T A eA, K.

Similarly, we have the definition of algebra map.

Definition 2.13 A4 K-space B is a bialgebra if (B, m,u) is an algebra, (B, A ¢€) is a
coalgebra, and either of the following (equivalent) conditions holds:

a) A and € are algebra morphisms

b) m and u are coalgebra morphisms.

For example, noticing the multiplication of B ® B, we get following commutative dia-

grams from a)

B®B-22%25  peB®B®B B®B—® K&K
m (m®m)o(Id®T®Id) €c m’
B A B® B B € K.




Chapter 2 Preliminary

Theorem 2.2 Let C be a coalgebra and A an algebra. Then Homy(C, A) becomes
an algebra under the convolution product f * g(c) = mo (f ® g)(Ac),Vf,g €
Homy (C, A),c € C. The unit element in Homy(C, A) is ue.

Let C' be any coalgebra with comultiplication A : C' — C' ® C'. The sigma nota-

tion for A is given as follows: for any ¢ € C, we write

Ac =c¢; ® c,.

The subscripts 1 and 2 are symbolic, and do not indicate particular elements of C,
this notation is analogous to notation used in physics. In these notes we usually simplify
the notation by omitting parentheses. In particular, the coassociativity diagram gives
that

Cl ® 021 ® C22 - Cll ® 612 ® 62,

this element is written as ¢; ® ¢, ® ¢3 = Ay(c).

Definition 2.14 Let (H,m,u, A, €) be a bialgebra. Then H is a Hopf algebra if there
exists an element S € Hom . (H, H), which is an inverse to 1d g under the convolution

x. S is called an antipode for H. Note that in sigma notation, S satisfies

> (Shi)hg = e(h)1y =Y hy(Shy),Vh € H.

Definition 2.15 We also have the obvious definitions of morphisms and ideals: a map
f+ H — K of Hopf algebras is a Hopf morphism, if it is a bialgebra morphism and
f(Sgh) = Sk f(h),Yh € H. A subspace I of H is a Hopf ideal if it is a biideal and
S(I) C I, in this situation H /I is a Hopf algebra with structure induced from H.

Proposition 2.5 Let H be a Hopf algebra with antipode .

a) S is an anti-algebra morphism; that is

S(hk) = S(k)S(h),Yh,k € H, and S(1) = 1.



2.3 Filtered module

b) S is an anti-coalgebra morphism, that is
AoS=70(S5®S)oA,and eo S =e.

By sigma notation, b) means Z(Sh)1 ® (Sh)y = Z S(hy) ® S(hy).

2.3 Filtered module

Definition 2.16 Let k be a ring. A filtered module (A,F) is a k-module A equipped with
a filtration

A=FADFADF,AD - --DFADF,_AD: -

made up of submodules.

There are two examples: let I be an ideal of the ring £ and M be a k-module. Then the
submodules F, M := I"M form a filtration of M; let F,(T") = 0,Vn > 1, then any

k-module 7" can be a filtered module. We name the filtration by trivial filtration.

Definition 2.17 A filtered map f : (A, F) — (B, G) between two filtered module is
an element of Hom,, (A, B), that is a linear map preserving the respective filtration:

f(F,A) C G,B, foranyn € N = {0,1,-- }.

The induced filtration on the tensor product of two filtered modules A and B is
given by
F(A®B)= Y Im(F,A®G,B— AQ®B)

n+m=t
For any decreasing filtration A = FyA D --- induces a sequence of surjective
maps:

0=A/F AL AJFAL AJFA L

where p,, is the reduction modulo F A. Its limit,denoted by:

A:=lim A/F, A
lim /FLA,

9



Chapter 2 Preliminary

is made up of elements of the following form:

~

A={(zg,zy, )|z € A/FLA,  pp(p) = 21}
If we denote the structure maps by:

(%a Ly, ) = T
then the limit module A is endowed with the following canonical filtration:

ﬁkA\ = kequ = (0, "',O,xn+17xn+27 )

Letm, : A — A/F, A be the canonical projections. The canonical map 7 : A —

Az (m(x), 7 (), ), associated to them, is filtered.

Definition 2.18 A4 complete module is a filtered module (A,F) such that the canonical
morphism

7:A—>A=1lim A/F,A
neN
is an isomorphism.

Definition 2.19 The complete tensor product of two complete modules (A, F') and (B, G)

is defined by the completion of their filtered tensor product

J———

A@B = AR B.

In addition, we wil show that when the two filtered modules are not necessarily
complete, the completion of their tensor product A® Bis equal to A®B by the Theo-

rem 4.2.

10



Chapter 3 Hopf structure of V

3.1 M- coefficient

We find a function is essential through explainning the Hopf algebra structure of

some set.

Definition 3.1 Define a function M

M:NxN—N
1 1=1orj=1
<27j>|_> d . b.
H(az+ ) i>25>2
i=1 a;

where i = p{* - ps*,j = pll)l pe i =2, > 2.
The image of (i, j) is called the M-coefficient of (i, j).

Lemma 3.1 M is a symmetric binary function.

1), b. & a.
Proof Just note that (a’ + Z) = ( v +a’>. [ |

a; a;

Lemma 3.2 The function M has the following equation:

M(i,j) =Y M(d,n)M(%,%),Vme N, mlij.
dli,n|j
dn=m

Proof Leti = p{' - ps, j= plfl ---pgs,i > 2,7 > 2. For m is a divisor of 75, we can

write m = pt - pS.0 < ¢, < a, + b, thend = p* - pZ* n = p"* . p'*. We have
1 7 7 1 1

K3

> MM, L)

dli,n|j
dn=m

11



Chapter 3 Hopf structure of

_ Z Z g+h\ (9s+hs\(a1—g1+b—hy\ [(a,—g,+D
a; — as,—g

gl+h1:Cl gs+hs:Cs gl gs gl s

_ Z (91+h1) <a1—91+b1_h1) (as_gs+bs_hs
; 91 a; — 9 s — 9s

max{0,c,—b, }<g, <min{c,,a,}

H( )(ak+bk—ck>
max{0,c;—by }<gi<min{cy,a;} maz{0,c,—b,}<g;<min{c,,a,} k=1 Ik

:ﬁ ( Z <0k> (ak+bk_ck)>
k=1 \maz{0,c;,—b, }<gr<min{cy,a,} 9k A — gg

e
k=1 ag

Fori = 1lorj = 1, since M (i, j) is a symmetric binary function, we only claim M (1, j)

holds

1 J J
M(d,n)M(=,=) = M(1,m)M(1, —). [
d;j (507)=M(1,m)M(,~)
dn=m
In that proof, we notice that
a) From
g;+h;=¢
0<¢ <a;+0,,
we have maz{0,¢c;, — b;} < g; < min{¢;,a;}.

b) From (x + 1) (x + 1)“k+bk*‘3k = (v + 1)%*bx, comparing 2 coefficients, we

have

o
maxz{0,c,—b, }<g,<min{cy,a;} Ik k. — 9k Ak

12
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3.1 M- coefficient

then

O<9k<ck
0<gk/<ak+bk—ck

ge + 9 = ay.
Lemma 3.3 M (i,5)M (ij, k) = M (i, jk)M (4, k), Vi, j, k € N.
Proof For some special cases

i=1, M(1,7)M(j,k) = M(1,jk)M(j, k)
j=1, M(i,1)M(i, k) = M, k)M(1,k)

k=1, M(i,j)M(ij,1) = M(L,j)M(j,1).

In another case, assume
) . b b ..
i =pit s, j=pyt e pst k= pit e pst i, gk > 2,

then

[]

> (ak + by, + Ck)
kel ag + bk

wti g =TL (") mum =T ("),
k=1 k

Notice that

. . a, +0b a, +b, +c
MGG by = () ()

(ap +b)! (ay + by, +¢;.)!
ailb!  (a, + by)ley!

13



Chapter 3 Hopf structure of

(ak + bk + Ck)'
a b, lc,!

B bk;"'Ck; ak-i-bk-l-ck
a by, ag

=M (i, jk)M(j, k).

So the lemma holds. [ |

3.2 Vs a Hopf algebra

Theorem 3.1 Let V be a vector space on complex field, spanned by {e, |n € N}, and
define m(e; ® e;) = M(i, j)e; u(k) = ke,

A(en) = Zed ® €n, €<€n> =
dn ’ 0, n# 1.

Then V is a Hopf algebra under a given antipode S.

Proof Now we want to prove the theorem by the definition of Hopf algebra. We claim
V is an algebra, a coalgebra and give the definition of the antipode.
Firstly, V' is an algebra, that can be checked by following steps. Notice the diagram

of Definition 2.7 a) associativity, and recall the lemma of M- coefficient, then

m(m® Id)(e; ® e; ® ep) = m(M(i, je;; ® ey)



3.2 VisaHopfalgebra

= M (i, jk)m(e; ® m(e; ® ej,))

=m(Id®@m)(e; ®e; ®ey).

Similarly, check b) unit of the same diagram. Because the commutativity of multipli-

cation, we only prove the following equation:

m(IdQ@u)(e; @ k)Vie N, ke C
=m(e; ® key)
=km(e; ® e;)
=kM (i, 1)e,
=ke;

=n(e; ® k)

Next, we will show V' is a coalgebra. Notice that the diagram of Definition 2.9,and

check the a) coassociativity

(A®Id)Ae,) = (ARTd)() e;®ex)

din

:ZZed/@)e%@e%

d’|d dn

- Z ep®eg e,

pgr=n

= (Id®A)() e ®ex)
din

= (Id® A)Ale,,).

Then check the b) counit. Because of the cocommutativity of V', we only prove the

15



Chapter 3 Hopf structure of

following equation:

(Id®@e)A(e,) = (1d@e)(Y_eq®@ea)

d|n
=D ca®cley)
dln
=e,®1.

Secondly we need to prove V' is a bialgebra by two conditions in Definiton 2.12.

It can be showed by following calculation. A is an algebra map,

(mem)(Id®T@m)(A®A)(e; ®e;)
:(m®m)(ZZed ®e,®e;: ®6%)

dli n|j

iJ
= Z M<d;n>M<Eaﬁ>edn®e%

dli,n|j
dn=m’

=M(i,§) > €, ® €.,

m/'|ij

=Am(e; ® e;).
And € is also an algebra map. Weknowij =1 < i=1,7=1,4,5 € N,

em(e; ® e;)
=M (i, j)e(e])

=4

17,1

Finally, we claim the existence of the inverse .S of Id. We give the construction

of the antipode S recursively. For (Id = S)(e;) = ue(ey), then S(e;) = e, and

16



3.3 Properties of V

(Id % S)(ey) = ue(ey), then S(ey) = —ey, -+, then S(e,) = — > e,S(exn).

d|n
a>1

Because V' is cocommutative, the antipode exists. Now, we give the expression

of S explicitly. Since any prime p only has a trivial decomposition, S (ep) = —€,.

Because S is an algebra map,

= e, S

= (e, (e, S )
= (e, (o6 (—e,)
= (=1)7er,.

Wheni > 2,i € N, writei = p{* - ps®, if p, ¢ is coprime, then M (p,q) = 1,

S(e;) = Slepa. pae)

Ps

= S(epa ) S(eyes)

= (—1)ntraee,.

If we denote 1 as zero power of some prime numbers, we have

S(e;) = (—1)"Foe; i = pit - ps i € N,

(3

Now we have proved that V is a Hopf algebra by definition. |

Naturally, we want to discuss some properties of V.

3.3 Properties of V

Proposition 3.1 Vis a domain.

17



Chapter 3 Hopf structure of

Proof Assuming vl, v, are nonzero vectors of V', we claim v, v, 1s a nonzero vector

of V. Letv, = z:k:Z e;, k,, #0,and v, = th e;,h, # 0. If v,u, = 0. comparing
-1
the the highest degree we have M (m, n)k h = 0,s0 M(m,n) = 0. Thatis a

contradiction, then V' is a domain. |
Proposition 3.2 V' is not a PID.

Proof Assume < e,, e; >=< c >, where c is a nonzero vector of V/, then

62 - kQC, kz c V

63 - k3c, kg c V.

Set
kz—Z"’z e, r,€C
kS - Zsiei, 87; € G:
=1
n
c= Zciei, c; € C.
i1
For e; = kyc, comparing the the highest degree, we have M(r,, ,c,)e,, n = ey,

then myn = 2,son = lorn = 2. Whenn = 1, we have < ¢ >=V, bute, is
not generated by e, and e;; when n = 2, we have m, = 1, then ky = 7,e;. Since
ey = kyc, then ky =1 c, and e; = ksc, thene; €< ey >. Itis a contradict.

Conclusively, V' is not a PID. |
Proposition 3.3 Vis a connected Hopf algebra.

Proof Letv = Z k;e; € V,v # 0, then

i=1
Av) = ” /{:Zed@)e;.

=1 d|i

18



3.3 Properties of V'

We know that any coalgebra generated by a nonzero vector must contain <e;>, after
all 1 is a divisor of any positive integer. Because <e;> has been a simple subcoalgebra,
any subcoalgebra strictly containing <e,> is not simple, as the subcoalgebra contains

three distinct subcoalgebras at least.

That implies <e,;> is the unique simple subcoalgebra of V. By definiton, V' is

pointed. |

Group-like elements and primitive elements of V/

We give all the group-like elements and primitive elements of V.

a) group-like elements

Letc = Z kie;,c € V., k, # 0, then
i=1

Ac) = Z ki Ae;)
i=1
=k, Z eg®ei
d)i

c®c= (i ke;) ® (Z kie;).

=1

Because A(c) = ¢ ® ¢, comparing coefficents of both sides, we have ¢ = k;e;. Then
e, 1s the unique group-like element of V.

b) primitive elements

Let c be a g, h-primitive element, where g, h are group-like elements of V. By the

n
definition ,we have g = h = €1, 50 A(¢) = c®e; +e; ®c. Letc = Z k;e;,c €
i=1

V', k,, # 0. From the definition

n n

Zn: kiA(e;) = Z kA(e; ®eq) + Z k;Ale; ®e;).

i=1 i=1

19



Chapter 3 Hopf structure of

Moreover,

n n
1= 1

Z ks Zed Qei = z”: kiA(e; ®eq) + Z kiAe; ®¢€;).
1

L dfi i= i=

Noticing the right side of the equation is the trivial decomposition of 7, we have the fact
that the left side of the equation is also a trivial decomposition. That means ¢ is a prime
number. Trivial calculation show ¢ = 1 does not holds.

So primitive elements of the form Z k,e,» where P is the set of all prime num-

peP
bers.

20



Chapter 4 Dual of VV

4.1 Bijection between algebra maps and completely multiplicative

arithmetic functions

There is a bijection between algebra maps of V' — C and completely multiplicative
arithmetic functions. Given an algebra morphism f, such that f(e;e;) = f(e;;), we

define

fn) = fle, ) fle, )tr, m=pip.

Then f is a completely multipicative arithmetic function, coinciding with f at every

points of prime numbers.

Conversely, if F' is a completely multiplicative arithmetic function, which means

F(mn) = F(m)F(n). We define

fle,) = WF(M“ = F(py)tr, = (p)" - (p)'r,

By the following calculation we can show f is an algebra morphism from V to C. For

n = (py)" - (p,)",

m = (py)* - (p,)"r,

we have
fleney,) = M(n,m)f(ey,,,)

ty+ 5 t,.+s 1 t
T r F 1+81 W F t,+s,
( ) ( t'r’ ) (tl +81)'<t7’+57~>' <p1) (pr)
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Chapter 4 Dual of V

<t +S >' <tr+ST>! 1 ti+s t.+s,.
= ;1!51!1 PP R T py e 8T>!F(p1> 151 F(p,. )it
1 ) . 1 ) )
= (tl)!---(tT)!F(pl) 1. F(p,) T( 1)!“'(8r)!F<p1> 1 F(p,)r
= flen) flem)

Notice that the Dirichlet character function is a completely multipicative arithmetic

function, then we get a corresponding algebra map from V' to C.

Now we just need consider a set containing all algebra maps V' to C. Luckly the
finite dula of V is nearly to what we want, though the elements of it will vanish at
infinite point. So we try extending V* ® V* to make sure the operation A* is closed,
then the extended set will contain all algebra maps. In the process, we need some useful

properties of complete tensor.

4.2 Universal property of complete module

~ !
Theorem 4.1 The universal property of the limit A: any filtered map A— B where B is

a complete module , factor uniquely through the canonical map as following:

A-1.B

A

Proof Note that B is complete < (B, G) is a filtered module and B % Bisan
isomorphism.

Define

f: A— B
(ag + FoA,a; + F1 A, ) = 75 (fi(ag) + GoB, f(a;) + G By ).
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4.2 Universal property of complete module

a) The definition of f is well defined. If
(ag + FoA,ay + F1A, ) = (ag + FpA, a1 + F1 A, ),

we have a;, — a; € F;A. Recall the definition of the filtered map, we have f(F;A) C
G,B,so f(a;) — f(a;) € G;B, then f(a;) — f(a;) € G;B. Thus

(flag) + GoB, flay) + G1B-+) = (f(ag) + GoB, f(a1) + G, B ).

b) We claim it is a commutative diagram. fr,(a) = f(a + FyA,a + F|A,-) =
75 (f(a) + GyB, f(a) + G1B, ) = f(a),Va € Athen fr, = f.
c) f is a filtered map. For any (0,-+,0,a; 1 + Fj 1A, G0 + Find, ) € fkfi,

f(07..-,0)ak+1 + Fk+1A,ak+2 + Fk+2A7“'>
:71-51(07 ) 0) f(ak+1) + Gk—O—lBﬂ f(ak—i-Q) -+ Gk+2B7 )
Eﬂgléké

CG,.B.

d) We will show it is the unique map satifying the conditions. Assume there is another
filtered map g satistying gm4 = f, and g # f. Then there exists (ag + FyA,aq +
F,A,-) € A, such that

mpglag + FyA,ay + FLA, ) # mpflag + FyA,a, + F{A--).

Note that 7 is an isomorphism. Denote (b, + G B, - ) and (b, + G B, ---) for both
side respectively, there must be some £, such that b, + G, B # b, + G, B. Then

(CLO + F()A,al + F1A7 "',ak + F]CA7 ak+1 + Fk-‘rlA?“.)
:(CLO + FOA,al + FlA,"',ak + FkA, ak + Fk+1A,"‘) + (0,"',O,ak+1 — ak + Fk+1A)
:(ak + FOA7ak + FlAa At FkA>ak + Fk—i—lAv ) + (Oa "'707ak+1 —ap+ Fk+1A)

=m(ay) +(0,,0,a1 —ap + Fy 1 A)
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Chapter 4 Dual of V

We also have (0,--,0,a;,; —a, + F.;A) € kai, and T f, mpg are filtered
maps, so the value of b, + G, B and b}, + G}, B depends on 7 f7 4 (ay,) and 7 5g7 4 (ay,)
respectively. But we know m5fm, = mpgm4. S0 by + GLB = bj, + G, B, thus it

contradict with our assumption. Then f is unique in this way. |
Theorem 4.2 A® B =~ A®D.

Proof For the complete module A@E, we have a filtered map 7 5,5 0o 74 ® Tp. By

the universal property of the completion of A ® B, we get ¢ as following:

A®B™Er Ag B2 &R

\LWA®%’

A® B.

Since the commutative map is unique, we just define ¢ so that ¢ satifies the commuca-

tive diagram.

s> ah @by + FLA® B, ai @b+ AR B, ) (4-1)

=D (a} + FyA, aj + Fy A, ) ® (b + GoB, b + G B, ) + Fy(A® B),

~

S (0} + FyA,al + F A, ) @ (b + GyB, bl + G, B, ) + F(A® B), ).
In particular, we get

$((ag® by + FoA® B), Y (a0, @b, + AR B), )

~ ~

:((ao + FyA,ag + FL A, ) ® (bo + GyB,by + G, B, )+ FO(A ® B),

~ ~

(ay + Fod,ay + F1 A, ) ® (by + GoB,by + G B, ) + F1(A® B), ).
a) We claim the definition is well-defined. When

(Z ap ® bf + FOA’@B; Zaﬁ ® bl + FlAT@)\B, )

= ch@ch+ FRA®B,> di®d +FAQB, ),
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4.2 Universal property of complete module

we get

> a @b, —> bi®cic F(A®B)= »_ Im(F,A®G,B— A® B).

m+n=k

From the following equations, the definiton is well-defined.

> (aj, + FoA, af + F1A, ) ® (b}, + Gy B, bj, + GoB, )
—Z(b;; + Fy A b + F A, ) ® (di + Gy B, di + GyB, )
=ma®@mp(>_a, @by — Y ¢l ®dj)

€F,(A® B).
b) Now, we say ¢ is a filtered map.

¢(0a"'7072a§g+1®b}ig+1+Fk+1(A®B>7'”)
:(0,---,0,Za}'€+1+F0A,a§€+1+F1A,---)®(b}'€+1+G0B,b};+1+GlB,---)+
Fk+1<A®B7>

€EF.(A® B).

So ¢ is a filtered map, and obviously @7 gg5 = T 4, 5(7T4 @ 7).
c) We want to show ¢ is a inverse map by giving the inverse map explicitly. We will

use the universal property again, after all the A®Bisa completion of A® B.

J———

B-l-A®B

]

A
A R

We just need to define f, then get a map from A®Bto A ® B. Define f as

f(aO +FOA7a1 +F1A7) ® (bO +GOB7b1 +GlB7>

=(ag ® by + Fy(A® B),a; ® b, + F1(A® B), ).
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Chapter 4 Dual of V

Notice that

U1 @ by —ay ® by,
=01 ® b1 — 4, @by + 0, @by —a, @Dy,
€FLAQ GyB+ FyA® Ggb

so f is well defined. Now we claim f is a filtered map.
When m + n = k, for any(0,---,0,a,,,1 + F,, 14,0, 9 + F,104,) ®
(0,,0, @01+ Fpp 1 A Qo + B0 Ay ) €50 FLA® G, B. By the def-

inition of f,

FU0,,0,ap, 1+ Fi1A ap, 0+ Fi0A - )®
(0,-,0,Gp11 + Fryi1Asapy 0 + Frpy0Ay )

:<CO + FO(A® B)acl + F1<A®B)v>

When t < max{m,n}, c, = 0; whent > max{m,n},c, =a,®b, € F,,AQ G, B C
F,(A® B). That means (¢, + Fy(A® B),c; + F,(A® B), ) € F,(A® B), thus f
is a filtered map. Thus we get ¢ and Y7 ;5 = f

Finally we get the diagram

TAQT g

hA® B2%"2 Ao B2 A®R

TA®B f i

PR

AQ® B.

Notice that

(V)T apB =V (T agp)
=(T 105(Ta ®TR))
=T zo5) (T4 ® Tp)
=f(ra®7p)

26



4.2 Universal property of complete module

:7TA®B'

Using the universal property of A’?QZ)\B, we get Yo = Id.

Besides,

¢f(a0 +FOA7G1 +F1A7) ® (bO +GOBvbl +GlBa)
=¢(ay ® by + FyA® B,a; ® b; + F1(A® B), )

~ ~

=((ag + FypA,aq + F1 A, ) ® (by + GoB,byg + G B, ) + Fy(A® B), ),

and
7,4@@(@0 + FyA,ay + F1 A, ) ® (by + GoB,by + G1 B, -+)
=((ag + FyA,ay + F1A, ) ® (by + Gy B, by + G1 B, -+ ) + Fo(f‘I ® B),-).
Since
(ag + FyA,a+ F1A, ) — (a, + FyA,a, + FL A, )
=(0,--,0,a,,1 —a, + F, 1 A,-) € ﬁkﬁ
(b() + GOBab + GlBa> - (bk + G0B7 bk + G1B7)
:(0’ "'707bk+1 - bk + sz+1Bv ) < ékB7
we have
(ag+ FyA,ay + Fy A, ) ® (by + Gy B, by + G, B, ) + Fi(A® B), Vk
—(a, + FyA, a, + FA, ) ® (b + Gy B, b, + G, B, ) + F;(A® B)
eFL ARG B+ F,A® G,B
CF.(A® B).
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Chapter 4 Dual of V

So ¢f = T ;4. and then

QYT o =P(UT 4 3)
=of

—TAeB

By uniqueness, we have ¢ f = Id.

4.3 Completionof U and U @ U

Lemma 4.1 Let U =< et e, >, and F,(U) =< €t|i >n >. Then U = V*.

Proof When f € V*, we have

The left expression is well defined, for every element of V' is a finite sum.

We define an isomorphism explicityly as

VU

S Hedet s (0, fer)e} + U/FL(D), ),

=1

with its inverse is defined as

UV

(ag +U/Fy(U),ay + U/Fy(U),ay + U/FH(U HZG
When

(ag +U/Fy(U),ay +U/F(U),ay + U/ Fy(U), )
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4.3 Completion of U and U @ U

=(bg + U/Fy(U),by + U/F(U),by + U/F5(U), - ,),
we have
a;, — b, € F,(U), Vi,
which implies a,.(e,.) = b,.(e,.), then
Z a;(e,) = a,(e,) =b,(e,) = Z bi(e,),

so the map is well-defined. Now, we can prove the lemma.

From Theorem4.2, U, V' not necessarily complete module. Let U=X,andV =

Y, then
URV=XQY.

Recall the definition of induced filtration of U ® U is

FU®U)= Y Im(F,A®F,A<UQU)

n+m==k
Similarly, we claim that U @ U = (V ® V))* by

S

o (VeV) >UQU

Zf(ei ®e;le; ® e; (0,0, f(e; ® eq)e] ® e, ...),

1
1

j
is an isomorphism.
Corollary 4.1 V*®@V* =~ (V@ V)*

Proof

~ U h

4.2

=V m —
o =~ UQU=(VV)*

C A AT
UeU

(4-2)

Conclusively, we find a set is closed under A*. In the next section, we will give the

definiton of generalized Hopf algebra.
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Chapter 5 Generalized Hopf algbra

5.1 Definition of generalized Hopf algebra

Now we can formally give the definition to generalized Hopf algebra, after the

following lemmas.

Lemma 5.1 Given filtered maps f : M — M’ and g : N — N, there is a map called

f®g, making the following diagram commutates.

M® N -T2 07 @ NN NI/ N

71'M®Ni /
Nf®g

M®N.
Lemma 5.2 If (4,F) is complete, then w—' is also a filtered map, thus we have

~

TA(F A) = FA.

~ ~

Proof Forany (0,---,0,a,,; + F},,1A,-) € FA,

7T_1<0, "‘,0,ak+1 + FkJrlA, )
=7 (m(ags1))
= Ofy1-

~

Notice a;,,; + £}, = 0, thus 7 L(F,A) C F A, then ,(F,A) = FA. |

Definition 5.1 We call a map which is a k-module isomorphism and keeps filtrations,

a filtered isomorphism.

Corollary 5.1 A=~ B, if there exist a filtered isomorphism between A and B.
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Chapter 5 Generalized Hopf algbra

Lemma 5.3 A®B =~ C®D, if there exist filtered isomorphisms f. g between A and B,
Cand D.

Proof f®g works. |

—

Lemma 5.4 Let (4,F) be a filtered module then ARARA~ AR A® A.
Proof Using lemma 5.2, we have A =~ Ais filtered isomorphism.

A®ARA

= A@A@A(Lemm@ 5.3)

—

~(ARA)Q®A

A ®/(‘A\® A)(Corollary 5.1)
AQAgA

—

Because of the Lemma 5.4, we can identify A QARA=ARARAWiIthA® A® A

and A® A ® A. Now we can definite generalized K-algebra almost word for word by

the concepts of K-algebra as following:

Definition 5.2 A4 generalized K algebra (with unit) is a K-vector space (A,F) together
with two K-filtered maps, multiplication m: ARA — A ( where ARA = XTG-BTX, X =

/D and unitu : K — A, such that the following diagrams are commutative:

a) associativity b) unit
ARARA "SI . j&A ARA11 A3k
Id&m m u®Id n
AgA—m ] ReAd— 1A
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5.1 Definition of generalized Hopf algebra

The Id denotes the identity mapping from A to A, and the 1 dentoes the filtered
map induced by scalar multiplication from K to A, where we endow K with the trivial

filtration.

Definition 5.3 A generalized K-coalgebra (with counit) is a K-vector space (C,F) to-
gether with two K-linear maps, comultiplication : C — C&C and counite : C — K,

such that the following diagrams are commutative:

a) coassociativity b) counit
é A 0&C 6 . &R
A A®Id 1,® 2 Id®e
&0 —122. GacecC, k&G —21 . GeC,

where the two upper maps in b) are given by ¢ — 1Qc and ¢ +— c®1, for any

ceC.

Similarly, we can give the definiton of generalized algebra map and generalized
bialgebra, and generalized convolution product.

Then we have the definition of generalize Hopf algebra:

Definition 5.4 Let (H, F',m,u, A, €) be a generalized bialgebra. Then H is a gener-
alized Hopf algebra if there exists an element S € H omk(ﬁ , H ), which is an inverse

to 1d y under the generalized convolution product.

5.1.1 V*is a generalized Hopf algebra

Recall the definition of V, which is a Hopf algebra with (m, ug, Ay, €9, Sy) and
U. We say the (U, F,,) is a generalized Hopf algebra with F,,U =< e|i > n >.

Firstly, we claim it is a generalized algebra. We give a homomorphism
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Chapter 5 Generalized Hopf algbra

VEQVE = (Ve V)

(ag,ay, ) = f,

in that equation

f:(VeV)—=C

Z kie; ®e; > Z Z kija,(e; ® ej).

n i+j=n

Then we have

We claim the V* is a generalized algebra.
a) We prove the associativity of generalized algebra by its definition. If f = (0, > fi(l) ®

ggl), .-+ ), then

(m@)Id(f)e,®e,) = (0,3 A @ g, (e, ®e,)
=N FIA @ g (e, @ ey)

= (Ao @ 1d)(e;®¢,).
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5.1 Definition of generalized Hopf algebra

By this equation, we can calculate

AAAAA
d|n

=D f(A®Td)(e;®es)

d|n
= [(Ag® Id)Aj(e,)
= f(Id® Ag)Ag(ey,)

= m(Id&m)(f)(e,).

b) Using the definition, we show its unit. Let g = (0, > c§1> ®alt), - )

%

(uSId)g(e, ® e,)
=(0,Y Ve @al, e, ®e,)
=" egle) @ al M (ey)

=g(eq ® Id)(e, ® €,).
Note that we have an isomorphism,

CRV* = (CRV)*
(O’ZC§1> ®a§:1)’...> = f

where

f:CV =>C
Z k, ®e, chn)knagn)(en),
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Chapter 5 Generalized Hopf algbra

thus

m(u®Id)(g)(e,) = (u®Id)gA(e,)
= g€y ® Id)A(e,,)
=g(1®e,)
- S e,

=n(g)(e,)-

By our definition, it is a generalized algebra.

Similarly, we can prove it is a coalgebra and the antipode is S;;, thus it is a gener-
alized Hopf algebra.

Generally, a dual of a Hopf algebra which has countable basis is a generalized Hopf

algebra by similar way.

5.1.2 A Hopf algebra is a generalized Hopf algebra

Another important example is Hopfalgebra. For a Hopfalgebra H (my, ugy, Ay, €9, Sp)»
we give a trivial filtration F,, H = 0, n > 1, then it become a generalized Hopf algebra.

Taking m, as an example, we will see the m by the universal property in the fol-
lowing diagram

HoH™ . H

|

HH™-H.
Similarly, we can get u, A, and €, and S, thus we can verify it is a generalized

Hopf algebra.

5.2 Group-like elements of a generalized Hopf algebra V*

In the final section of this article, we will show the generalized group-like ele-
ments in the generalized Hopf algebra is exactly the algebra maps from V to C, which

completely meet our goal.
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Definition 5.5 Let (H, F')(m,u, A, €) be a generalized bialgebra. c is called group-
like if Ac = c®c and €(c) =

Now, we recall maps from equations (4-1) and (4-2), then we have
o —_ ¢ ~
VRV -UU — V*QV*.
The A in V* is the transport of m defined in V.

A(x)
=¢o(xm)
=¢(0,zm(e; @ ey)e] @ e] + F1 (U, @ Uy),

xm(e; @eq)e; @ e+

m(e; ® ey)el ® el +axm(e, ® eq)es @ el + Fo(U; U, ), )

=((0,--,0) ® (0,--,0) + F,(V* ® V*),

(xm(e; ® eq)e},0,-+,0) @ (e},0,+,0) + FL (V@ V™),

(xm(e; ® e5)e x,0,+,0) ® (0,€3,0,--,0)+

(0,zm(ey ® €1)e5,0,-+-,0) ® (€7,0,---,0),-),

and by the definition of filtration of V* @ V*, F, (V* ® V*) = Z F,(V*)F;(V*),

then

rQx
=(((e1),x(e), ) ® (2(e1), x(eg), ) + Fo (VT @ V™),
(z(eq), z(ez), ) @ (x(er), 2(ez), ) + Fy (VT @ V7),
(z(eq), z(ez), ) @ (x(er), x(e), ) + Fp (V@ V7))
=((0,--,0) ® (0,--,0) + Fp,(V* @ V™),
(x(ey)er,0,-) ® (x(eq)ef, 0, ) + F (V¥ V™),
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Chapter 5 Generalized Hopf algbra

(x(€1>ey{a07'") ® <$<61>6>{,0, ) + (x(61>8T707 ) ® (0=$<62)€§707 >+
(0’51:(62)63707 ) ® (x<61)61’07"') + FQ(V* ® V*>

).

If z is a generalized group like element, then z(e;e;) = x(e;)x(e;). Considering the
basis of V* ® V*, we get x is a algebra homomorphism. Surely when z is an algebra
homomorphism, A(z) = 2®xz. Since z(e;) # 0, z(e;) = 1, thus e(z) = z(e;) = 1,

where € is the transpose of  in V. So

G(V*) = Alg(V,O).
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