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摘 要

我们想将数论中重要的函数——完全乘性的数论函数一一对应到 Hopf 代

数的元素。在发现 Hopf 代数中的群似元只能是完全乘性的数论函数的子集后，

推广了 Hopf 代数的定义，主要是将其中张量积推广到了完全张量积 (complete

tensor)，使其可以与完全乘性的数论函数一一对应。这样就可以用 Hopf代数研

究数论函数中一系列重要的对象，比如 L-函数等。
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metic functions
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ABSTRACT
Wewant to give a bijection between the completely multiplicative arithmetic func-

tions and some elements of hopf algebras one by one. After finding that the group-like

elements in Hopf algebra only can be a subset of the completely multiplicative arith-

metic functions, we generalize the definition of Hopf algebra, mainly by extending the

tensor product to the complete tensor, so that it can include all completely multiplicative

arithmetic funtions. In this way, Hopf algebra can be used to study a series of important

objects in number theory, such as L-functions.
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Chapter 1 Introduction

In number theory, there are important functions, completemultiplicative arithmetic

functions. It is algebra maps from ℕ to ℂ where the symbols ℕ, ℂ denote the natural

numbers {1, 2, 3, ⋯ } and complex numbers respectively. In the set of completely mul-

tiplicative arithmetic functions, there is an essential multiplication, Dirichlet multipli-

cation[1]. Recalling the known knowledge of Hopf algebra[2], we guess that some set

on ℕ has a Hopf algebra structure.

We prove that a certain set 𝑉 based onℕ does form a Hopf algebra according to the

given comultiplication. It naturally occurs to us that the finite dual of this Hopf algebra

must be a Hopf algebra[3]. We give a bijection between 𝐴𝑙𝑔(𝑉 , ℂ) and the completely

multiplicative arithmetic function. Because we know the fact that a group-like element

of a Hopf algebra is an algbra map, a group-like element of finite dual is an algebra

map, which vanishes at infinite points.

So it is vital to find a larger set that can include all algebra maps. We think making

infinite points non-zero is the key. We change the tensor product in a Hopf algebra to a

complete tensor product[4], so that algebra maps are not necessary to be zero at infinite

points. Similarly, we verify that all generalized group-like elements in the so-called

generalized Hopf algebra is indeed 𝐴𝑙𝑔(𝑉 , ℂ) .
Conclusively, we get a bijection between generalized group-like elements and

complete multiplicative arithmetic functions. That means we can use Hopf algebra

tools to study a series of important objects in number theory, such as L-functions.
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Chapter 2 Preliminary

2.1 Some notations from Number theory

Here we recall some known notations and results from number theory for our con-

venience.

Definition 2.1 An arithmetic function is any function 𝑓 ∶ ℕ → ℂ.

Definition 2.2 An arithmetic function with 𝑓(1) ≠ 0 and

𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛),

whenever m and are coprime is called multiplicative. (Note that implies 𝑓(1) = 1.)
If f has this property not only for coprime 𝑚, 𝑛, but for all 𝑚, 𝑛 ∈ 𝑁 , then f is

called completely multiplicative arithmetic function.

Definition 2.3 The Dirichlet convolution product of arithmetic functions f and g is the

function 𝑓 ∗ 𝑔 defined by

𝑓 ∗ 𝑔 = ∑
𝑑|𝑛

𝑓(𝑑)𝑔(𝑛
𝑑 ).

Proposition 2.1 The Dirichlet convolution product is commutative and associative. In

other words,

𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 𝑎𝑛𝑑 (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ),

for any arithmetic functions f, g, and h.

Proof The sum in

∑
𝑑|𝑛

𝑓(𝑑)𝑔(𝑛
𝑑 ),

3



Chapter 2 Preliminary

runs over all pairs 𝑑, 𝑒 ∈ 𝑁 with 𝑑𝑒 = 𝑛, so it is equal to

∑
𝑑𝑒=𝑛

𝑓(𝑑)𝑔(𝑒),

and the latter expression is symmetric in f and g. To see that convolution is associative,

notice that

((𝑓 ∗ 𝑔) ∗ ℎ)(𝑛) = ∑
𝑐𝑑𝑒=𝑛

𝑓(𝑐)𝑔(𝑑)ℎ(𝑒)(𝑓 ∗ (𝑔 ∗ ℎ))(𝑛), ∀𝑛 ∈ 𝑁. ■

Definition 2.4 Define the arithmetic function I by 𝐼(1) = 1 and 𝐼(𝑛) = 0, ∀𝑛 > 1.

Proposition 2.2 For any arithmetic function f

𝑓 ∗ 𝐼 = 𝐼 ∗ 𝑓 = 𝑓.

Proof (𝑓 ∗ 𝐼)(𝑛) = ∑
𝑑|𝑛

𝑓(𝑑)𝐼(𝑛
𝑑 ) = 𝑓(𝑛)𝐼(1) = 𝑓(𝑛), since all the other summands

are zero by the definition of I. ■

Proposition 2.3 If f is an arithmetic function with 𝑓(1) ≠ 0, then there is a unique

arithmetic function g such that 𝑓 ∗ 𝑔 = 𝐼 . This function is denoted by 𝑓−1.

Proof The equation 𝑓 ∗ 𝑔(1) = 𝑓(1)𝑔(1) determines g(1). Then define g recursively

as follows. Assuming that 𝑔(1), ⋯ , 𝑔(𝑛 − 1) have been defined uniquely, the equation

(𝑓 ∗ 𝑔)(𝑛) = 𝑓(1)𝑔(𝑛) + ∑
𝑑|𝑛

𝑑>1

𝑓(𝑑)𝑔(𝑛
𝑑 ),

allows us to calculate 𝑔(𝑛) uniquely. ■

Definition 2.5 Let G be a finite Abelian group. A character of G is a homomorphism

𝜒 ∶ 𝐺 → (ℂ∗, ⋅)

4



2.1 Some notations from Number theory

The multiplicative group 𝐶∗ is ℂ\{0} equipped with the usual multiplication. For any

group, the map

𝜒0 ∶ 𝐺 → ℂ∗, 𝜒0(𝑔) = 1,

is a character by above, and we say it is the trival character.

Proposition 2.4 Let G be a finite Abelian group. Then the characters of G form

a group with respect to the multiplication

(𝜒 ⋅ 𝜙)(𝑔) = 𝜒(𝑔)𝜙(𝑔),

denoted ̂𝐺. The identity in ̂𝐺 is the trival character. The group is isomorphic to G.

In particular, any finite Abelian group G of order 𝑛 has exactly 𝑛 distinct character.

Definition 2.6 Given 1 < 𝑞 ∈ ℕ, let 𝐺 = 𝑈(ℤ/𝑞ℤ) and fix a character 𝜒 in ̂𝐺. Extend

𝜒 to a function X on ℕ by

𝑓(𝑥) =
⎧{
⎨{⎩

𝜒(𝑛), 𝑛 ∈ 𝑈(ℤ/𝑞ℤ),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The function X is called a Dirchlet character modulo q.

Theorem 2.1 A Dirichlet character is a completely multiplicative arithmetic function.

Proof Let 𝜒 be a Dirchlet character modulo 𝑞. If two integers 𝑚, 𝑛 are given, and at

least one of them is not coprime to 𝑞, then neither is the product 𝑚𝑛. Thus 𝜒(𝑚𝑛) =
𝜒(𝑚)𝜒(𝑛), otherwise, 𝑚 and 𝑛 both coprime to 𝑞, then

(𝑚 𝑚𝑜𝑑 𝑞) ⋅ (𝑛 𝑚𝑜𝑑 𝑞) = (𝑚𝑛 𝑚𝑜𝑑 𝑞).

𝜒 is group character, thatmeans𝜒 is a group homomorphism, then𝜒(𝑚𝑛) = 𝜒(𝑚)𝜒(𝑛).■

Definition 2.7 Let 𝜒 be a Dirichlet character. Define a complex function by

𝐿(𝑠, 𝜒) =
∞

∑
𝑛=1

𝜒(𝑛)
𝑛𝑠 ,

5



Chapter 2 Preliminary

where 𝑠 ∈ ℂ. Such functions are called L-funtions.

2.2 Some definitions of Hopf algebra

Definition 2.8 Let 𝕂 be a field. A 𝕂-algebra (with unit) is a 𝕂-vector space A together

with two 𝕂-linear maps, multiplication m: A⊗ A→A, and unit u: 𝕂→A, such that the

following diagrams are commutative:

a) associativity b) unit

𝐴 ⊗ 𝐴 ⊗ 𝐴 𝑚⊗𝐼𝑑 //

𝐼𝑑⊗𝑚

��

𝐴 ⊗ 𝐴

𝑚

��
𝐴 ⊗ 𝐴 𝑚 // 𝐴

𝐴 ⊗ 𝐴

𝑚

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

𝐴 ⊗ 𝕂𝐼𝑑⊗𝑢oo

𝜂

��
𝕂 ⊗ 𝐴

𝑢⊗𝐼𝑑

OO

𝜂 // 𝐴

the 𝐼𝑑 denotes the identity mapping, and the 𝜂 denotes the scalar multiplication.

Definition 2.9 For any 𝕂-space V and W, the twist map 𝜏 ∶ 𝑉 ⊗𝑊 → 𝑊 ⊗𝑉 , is given

by 𝜏(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣.

Obviously, A is commutative ⟺ 𝑚 ∘ 𝜏 = 𝑚 on 𝐴 ⊗ 𝐴.

Definition 2.10 A 𝕂-coalgebra (with counit) is a 𝕂-vector space C together with two

𝕂-linear maps, comultiplication Δ ∶ 𝐶 → 𝐶 ⊗ 𝐶 and counit 𝜖 ∶ 𝐶 → 𝕂, such that the
following diagrams are commutative:

a) coassociativity b) counit

𝐶 Δ //

Δ

��

𝐶 ⊗ 𝐶

Δ⊗𝐼𝑑

��
𝐶 ⊗ 𝐶 𝐼𝑑⊗Δ // 𝐶 ⊗ 𝐶 ⊗ 𝐶

𝐶

Δ

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

⊗1𝑘 //

1𝑘⊗

��

𝐶 ⊗ 𝕂

𝐼𝑑⊗𝜖

��
𝕂 ⊗ 𝐶 𝜖⊗𝐼𝑑 // 𝐶 ⊗ 𝐶

the two upper maps in b) are given by 𝑐 ↦ 1 ⊗ 𝑐, and 𝑐 ↦ 𝑐 ⊗ 1, for any 𝑐 ∈ 𝐶.

We say 𝐶 is cocommutataive if 𝜏 ∘ Δ = Δ.

6



2.2 Some definitions of Hopf algebra

Definition 2.11 Let 𝐶 be any coalgebra,and 𝑐 ∈ 𝐶.

a) 𝑐 is called group-like if Δ𝑐 = 𝑐 ⊗ 𝑐 and 𝜖(𝑐) = 1. The set of group-like elements in
𝐶 is denoted by 𝐺(𝐶).
b) For 𝑔, ℎ ∈ 𝐺(𝐶), 𝑐 is called g,h-primitive if Δ𝑐 = 𝑐 ⊗ 𝑔 + ℎ ⊗ 𝑐. The set of all
g,h-primitive elements is denoted by 𝑃𝑔,ℎ(𝐶). 𝑃1,1(𝐶) are simply called the primitive

elements of C, denoted by P(C).

Definition 2.12 Let 𝐶 and 𝐷 be coalgebras, with comultiplication Δ𝐶 and Δ𝐷, and

counits 𝜖𝐶 and 𝜖𝐷, respectively. A coalgebra map 𝑓 ∶ 𝐶 → 𝐷 is a linear map, such

that Δ𝐷 ∘ 𝑓 = (𝑓 ⊗ 𝑓)Δ𝑐 and 𝜖𝐶 = 𝜖𝐷 ∘ 𝑓 , that means the following diagrams are

commutative

𝐶 𝑓 //

Δ

��

𝐷

Δ𝐷

��
Δ𝐶 ⊗ Δ𝐶

𝑓⊗𝑓 // Δ𝐷 ⊗ Δ𝐷

𝐶 𝑓 //

𝜖𝐶

  A
AA

AA
AA

AA
AA

AA
AA

A 𝐷

𝜖𝐷

��
𝐾.

Similarly, we have the definition of algebra map.

Definition 2.13 A 𝕂-space B is a bialgebra if (𝐵, 𝑚, 𝑢) is an algebra, (𝐵, Δ, 𝜖) is a
coalgebra, and either of the following (equivalent) conditions holds:

a) Δ and 𝜖 are algebra morphisms
b) 𝑚 and 𝑢 are coalgebra morphisms.

For example, noticing the multiplication of 𝐵 ⊗ 𝐵, we get following commutative dia-

grams from a)

𝐵 ⊗ 𝐵 Δ𝐵⊗Δ𝐵 //

𝑚

��

𝐵 ⊗ 𝐵 ⊗ 𝐵 ⊗ 𝐵

(𝑚⊗𝑚)∘(𝐼𝑑⊗𝜏⊗𝐼𝑑)

��
𝐵 Δ // 𝐵 ⊗ 𝐵

𝐵 ⊗ 𝐵 𝜖⊗𝜖 //

𝜖𝐶

��

𝐾 ⊗ 𝐾

𝑚′

��
𝐵 𝜖 // 𝐾.

7



Chapter 2 Preliminary

Theorem 2.2 Let C be a coalgebra and A an algebra. Then 𝐻𝑜𝑚𝕂(𝐶, 𝐴) becomes

an algebra under the convolution product 𝑓 ∗ 𝑔(𝑐) = 𝑚 ∘ (𝑓 ⊗ 𝑔)(Δ𝑐), ∀𝑓, 𝑔 ∈
𝐻𝑜𝑚𝕂(𝐶, 𝐴), 𝑐 ∈ 𝐶. The unit element in 𝐻𝑜𝑚𝕂(𝐶, 𝐴) is 𝑢𝜖.

Let 𝐶 be any coalgebra with comultiplication Δ ∶ 𝐶 → 𝐶 ⊗ 𝐶. The sigma nota-

tion for Δ is given as follows: for any 𝑐 ∈ 𝐶, we write

Δ𝑐 = 𝑐1 ⊗ 𝑐2.

The subscripts 1 and 2 are symbolic, and do not indicate particular elements of 𝐶,

this notation is analogous to notation used in physics. In these notes we usually simplify

the notation by omitting parentheses. In particular, the coassociativity diagram gives

that

𝑐1 ⊗ 𝑐21
⊗ 𝑐22

= 𝑐11
⊗ 𝑐12

⊗ 𝑐2,

this element is written as 𝑐1 ⊗ 𝑐2 ⊗ 𝑐3 = Δ2(𝑐).

Definition 2.14 Let (𝐻, 𝑚, 𝑢, Δ, 𝜖) be a bialgebra. Then 𝐻 is a Hopf algebra if there

exists an element 𝑆 ∈ 𝐻𝑜𝑚𝐾(𝐻, 𝐻), which is an inverse to 𝐼𝑑𝐻 under the convolution

∗. S is called an antipode for H. Note that in sigma notation, S satisfies

∑(𝑆ℎ1)ℎ2 = 𝜖(ℎ)1𝐻 = ∑ ℎ1(𝑆ℎ2), ∀ℎ ∈ 𝐻.

Definition 2.15 We also have the obvious definitions of morphisms and ideals: a map

𝑓 ∶ 𝐻 → 𝐾 of Hopf algebras is a Hopf morphism, if it is a bialgebra morphism and

𝑓(𝑆𝐻ℎ) = 𝑆𝐾𝑓(ℎ), ∀ℎ ∈ 𝐻 . A subspace I of H is a Hopf ideal if it is a biideal and

𝑆(𝐼) ⊂ 𝐼; in this situation 𝐻/𝐼 is a Hopf algebra with structure induced from H.

Proposition 2.5 Let H be a Hopf algebra with antipode S.

a) S is an anti-algebra morphism; that is

𝑆(ℎ𝑘) = 𝑆(𝑘)𝑆(ℎ), ∀ℎ, 𝑘 ∈ 𝐻, 𝑎𝑛𝑑 𝑆(1) = 1.

8



2.3 Filtered module

b) S is an anti-coalgebra morphism; that is

Δ ∘ 𝑆 = 𝜏 ∘ (𝑆 ⊗ 𝑆) ∘ Δ, 𝑎𝑛𝑑 𝜖 ∘ 𝑆 = 𝜖.

By sigma notation, b) means ∑(𝑆ℎ)1 ⊗ (𝑆ℎ)2 = ∑ 𝑆(ℎ2) ⊗ 𝑆(ℎ1).

2.3 Filtered module

Definition 2.16 Let k be a ring. A filtered module (A,F) is a k-module A equipped with

a filtration

𝐴 = 𝐹0𝐴 ⊃ 𝐹1𝐴 ⊃ 𝐹2𝐴 ⊃ ⋯ ⊃ 𝐹𝑘𝐴 ⊃ 𝐹𝑘+1𝐴 ⊃ ⋯

made up of submodules.

There are two examples: let 𝐼 be an ideal of the ring 𝑘 and 𝑀 be a k-module. Then the

submodules 𝐹𝑛𝑀 ∶= 𝐼𝑛𝑀 form a filtration of 𝑀 ; let 𝐹𝑛(𝑇 ) = 0, ∀𝑛 ⩾ 1, then any

k-module 𝑇 can be a filtered module. We name the filtration by trivial filtration.

Definition 2.17 A filtered map 𝑓 ∶ (𝐴, 𝐹) → (𝐵, 𝐺) between two filtered module is

an element of 𝐻𝑜𝑚𝑘(𝐴, 𝐵), that is a linear map preserving the respective filtration:

𝑓(𝐹𝑛𝐴) ⊂ 𝐺𝑛𝐵, for any 𝑛 ∈ 𝑁 = {0, 1, ⋯ }.

The induced filtration on the tensor product of two filtered modules 𝐴 and 𝐵 is

given by

𝐹𝑡(𝐴 ⊗ 𝐵) = ∑
𝑛+𝑚=𝑡

𝐼𝑚(𝐹𝑛𝐴 ⊗ 𝐺𝑚𝐵 → 𝐴 ⊗ 𝐵)

For any decreasing filtration 𝐴 = 𝐹0𝐴 ⊃ ⋯ induces a sequence of surjective

maps:

0 = 𝐴/𝐹0𝐴
𝑝0← 𝐴/𝐹1𝐴

𝑝1← 𝐴/𝐹2𝐴
𝑝2← ⋯ ,

where 𝑝𝑘 is the reduction modulo 𝐹𝑘𝐴. Its limit,denoted by:

̂𝐴 ∶= lim
𝑘∈𝑁

𝐴/𝐹𝑘𝐴,

9



Chapter 2 Preliminary

is made up of elements of the following form:

̂𝐴 = {(𝑥0, 𝑥1, ⋯ )|𝑥𝑘 ∈ 𝐴/𝐹𝑘𝐴, 𝑝𝑘(𝑥𝑘+1) = 𝑥𝑘}.

If we denote the structure maps by:

𝑞𝑘 ∶ ̂𝐴 ⟶ 𝐴/𝐹𝑘𝐴

(𝑥0, 𝑥1, ⋯ ) ↦ 𝑥𝑘

then the limit module ̂𝐴 is endowed with the following canonical filtration:

̂𝐹𝑘 ̂𝐴 ∶= 𝑘𝑒𝑟 𝑞𝑘 = (0, ⋯ , 0, 𝑥𝑛+1, 𝑥𝑛+2, ⋯ )

.

Let 𝜋𝑛 ∶ 𝐴 → 𝐴/𝐹𝑛𝐴 be the canonical projections. The canonical map 𝜋 ∶ 𝐴 →
̂𝐴, 𝑥 ↦ (𝜋0(𝑥), 𝜋1(𝑥), ⋯ ), associated to them, is filtered.

Definition 2.18 A complete module is a filtered module (A,F) such that the canonical

morphism

𝜋 ∶ 𝐴→ ̂𝐴 = lim
𝑛∈𝑁

𝐴/𝐹𝑛𝐴

is an isomorphism.

Definition 2.19 The complete tensor product of two completemodules (𝐴, 𝐹) and (𝐵, 𝐺)
is defined by the completion of their filtered tensor product

𝐴⊗̂𝐵 ∶= 𝐴 ⊗ 𝐵.

In addition, we wil show that when the two filtered modules are not necessarily

complete, the completion of their tensor product 𝐴 ⊗ 𝐵 is equal to ̂𝐴⊗̂𝐵̂ by the Theo-

rem 4.2.
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Chapter 3 Hopf structure of 𝑉

3.1 M- coefficient

We find a function is essential through explainning the Hopf algebra structure of

some set.

Definition 3.1 Define a function M

𝑀 ∶ ℕ × ℕ → ℕ

(𝑖, 𝑗) ↦
⎧{{
⎨{{⎩

1 𝑖 = 1 or 𝑗 = 1
𝑠

∏
𝑖=1

(𝑎𝑖 + 𝑏𝑖
𝑎𝑖

) 𝑖 ⩾ 2, 𝑗 ⩾ 2,

where 𝑖 = 𝑝𝑎1
1 ⋯ 𝑝𝑎𝑠𝑠 , 𝑗 = 𝑝𝑏1

1 ⋯ 𝑝𝑏𝑠𝑠 , 𝑖 ⩾ 2, 𝑗 ⩾ 2.
The image of (i, j) is called the M-coefficient of (i, j).

Lemma 3.1 M is a symmetric binary function.

Proof Just note that (𝑎𝑖 + 𝑏𝑖
𝑎𝑖

) = (𝑏𝑖 + 𝑎𝑖
𝑎𝑖

). ■

Lemma 3.2 The function M has the following equation:

𝑀(𝑖, 𝑗) = ∑
𝑑|𝑖,𝑛|𝑗
𝑑𝑛=𝑚

𝑀(𝑑, 𝑛)𝑀( 𝑖
𝑑 , 𝑗

𝑛), ∀𝑚 ∈ ℕ, 𝑚|𝑖𝑗.

Proof Let 𝑖 = 𝑝𝑎1
1 ⋯ 𝑝𝑎𝑠𝑠 , 𝑗 = 𝑝𝑏1

1 ⋯ 𝑝𝑏𝑠𝑠 , 𝑖 ⩾ 2, 𝑗 ⩾ 2. For 𝑚 is a divisor of 𝑖𝑗, we can
write 𝑚 = 𝑝𝑐1

1 ⋯ 𝑝𝑐𝑠𝑠 ,0 ⩽ 𝑐𝑖 ⩽ 𝑎𝑖 + 𝑏𝑖, then 𝑑 = 𝑝𝑔1
1 ⋯ 𝑝𝑔𝑠𝑠 , 𝑛 = 𝑝ℎ1

1 ⋯ 𝑝ℎ𝑠𝑠 . We have

∑
𝑑|𝑖,𝑛|𝑗
𝑑𝑛=𝑚

𝑀(𝑑, 𝑛)𝑀( 𝑖
𝑑 , 𝑗

𝑛)

11



Chapter 3 Hopf structure of 𝑉

= ∑
𝑔1+ℎ1=𝑐1

⋯ ∑
𝑔𝑠+ℎ𝑠=𝑐𝑠

(𝑔1 + ℎ1
𝑔1

) ⋯ (𝑔𝑠 + ℎ𝑠
𝑔𝑠

)(𝑎1 − 𝑔1 + 𝑏1 − ℎ1
𝑎1 − 𝑔1

) ⋯ (𝑎𝑠 − 𝑔𝑠 + 𝑏𝑠 − ℎ𝑠
𝑎𝑠 − 𝑔𝑠

)

= ∑
𝑚𝑎𝑥{0,𝑐𝑡−𝑏𝑡}⩽𝑔𝑡⩽𝑚𝑖𝑛{𝑐𝑡,𝑎𝑡}

(𝑔1 + ℎ1
𝑔1

) ⋯ (𝑎1 − 𝑔1 + 𝑏1 − ℎ1
𝑎1 − 𝑔1

) ⋯ (𝑎𝑠 − 𝑔𝑠 + 𝑏𝑠 − ℎ𝑠
𝑎𝑠 − 𝑔𝑠

)

= ∑
𝑚𝑎𝑥{0,𝑐1−𝑏1}⩽𝑔1⩽𝑚𝑖𝑛{𝑐1,𝑎1}

⋯ ∑
𝑚𝑎𝑥{0,𝑐𝑠−𝑏𝑠}⩽𝑔𝑠⩽𝑚𝑖𝑛{𝑐𝑠,𝑎𝑠}

𝑠
∏
𝑘=1

(𝑐𝑘
𝑔𝑘

)(𝑎𝑘 + 𝑏𝑘 − 𝑐𝑘
𝑎𝑘 − 𝑔𝑘

)

=
𝑠

∏
𝑘=1

⎛⎜
⎝

∑
𝑚𝑎𝑥{0,𝑐𝑘−𝑏𝑘}⩽𝑔𝑘⩽𝑚𝑖𝑛{𝑐𝑘,𝑎𝑘}

(𝑐𝑘
𝑔𝑘

)(𝑎𝑘 + 𝑏𝑘 − 𝑐𝑘
𝑎𝑘 − 𝑔𝑘

)⎞⎟
⎠

=
𝑠

∏
𝑘=1

(𝑎𝑘 + 𝑏𝑘
𝑎𝑘

)

For 𝑖 = 1 or 𝑗 = 1, since𝑀(𝑖, 𝑗) is a symmetric binary function, we only claim𝑀(1, 𝑗)
holds

𝑀(1, 𝑗) = ∑
𝑑|1,𝑛|𝑗
𝑑𝑛=𝑚

𝑀(𝑑, 𝑛)𝑀(1
𝑑 , 𝑗

𝑛) = 𝑀(1, 𝑚)𝑀(1, 𝑗
𝑚). ■

In that proof, we notice that

a) From

𝑔𝑖 + ℎ𝑖 = 𝑐𝑖

0 ⩽ 𝑐𝑖 ⩽ 𝑎𝑖 + 𝑏𝑖,

we have 𝑚𝑎𝑥{0, 𝑐𝑖 − 𝑏𝑖} ⩽ 𝑔𝑖 ⩽ 𝑚𝑖𝑛{𝑐𝑖, 𝑎𝑖}.
b) From (𝑥 + 1)𝑐𝑘(𝑥 + 1)𝑎𝑘+𝑏𝑘−𝑐𝑘 = (𝑥 + 1)𝑎𝑘+𝑏𝑘，comparing 𝑥𝑎𝑘 coefficients，we

have

∑
𝑚𝑎𝑥{0,𝑐𝑘−𝑏𝑘}⩽𝑔𝑘⩽𝑚𝑖𝑛{𝑐𝑘,𝑎𝑘}

(𝑐𝑘
𝑔𝑘

)(𝑎𝑘 + 𝑏𝑘 − 𝑐𝑘
𝑎𝑘 − 𝑔𝑘

) = (𝑎𝑘 + 𝑏𝑘
𝑎𝑘

),
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3.1 M- coefficient

then

0 ⩽ 𝑔𝑘 ⩽ 𝑐𝑘

0 ⩽ 𝑔𝑘
′ ⩽ 𝑎𝑘 + 𝑏𝑘 − 𝑐𝑘

𝑔𝑘 + 𝑔𝑘
′ = 𝑎𝑘.

Lemma 3.3 𝑀(𝑖, 𝑗)𝑀(𝑖𝑗, 𝑘) = 𝑀(𝑖, 𝑗𝑘)𝑀(𝑗, 𝑘), ∀𝑖, 𝑗, 𝑘 ∈ ℕ.

Proof For some special cases

𝑖 = 1, 𝑀(1, 𝑗)𝑀(𝑗, 𝑘) = 𝑀(1, 𝑗𝑘)𝑀(𝑗, 𝑘)

𝑗 = 1, 𝑀(𝑖, 1)𝑀(𝑖, 𝑘) = 𝑀(𝑖, 𝑘)𝑀(1, 𝑘)

𝑘 = 1, 𝑀(𝑖, 𝑗)𝑀(𝑖𝑗, 1) = 𝑀(1, 𝑗)𝑀(𝑗, 1).

In another case，assume

𝑖 = 𝑝𝑎1
1 ⋯ 𝑝𝑎𝑠𝑠 , 𝑗 = 𝑝𝑏1

1 ⋯ 𝑝𝑏𝑠𝑠 , 𝑘 = 𝑝𝑐1
1 ⋯ 𝑝𝑐𝑠𝑠 , 𝑖, 𝑗, 𝑘 ⩾ 2,

then

𝑀(𝑖, 𝑗) =
𝑠

∏
𝑘=1

(𝑎𝑘 + 𝑏𝑘
𝑎𝑘

), 𝑀(𝑖𝑗, 𝑘) =
𝑠

∏
𝑘=1

(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘
𝑎𝑘 + 𝑏𝑘

)

𝑀(𝑖, 𝑗𝑘) =
𝑠

∏
𝑘=1

(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘
𝑎𝑘

), 𝑀(𝑗, 𝑘) =
𝑠

∏
𝑘=1

(𝑏𝑘 + 𝑐𝑘
𝑏𝑘

).

Notice that

𝑀(𝑖, 𝑗)𝑀(𝑖𝑗, 𝑘) =(𝑎𝑘 + 𝑏𝑘
𝑎𝑘

)(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘
𝑎𝑘 + 𝑏𝑘

)

=(𝑎𝑘 + 𝑏𝑘)!
𝑎𝑘!𝑏𝑘!

(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘)!
(𝑎𝑘 + 𝑏𝑘)!𝑐𝑘!
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=(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘)!
𝑎𝑘!𝑏𝑘!𝑐𝑘!

=(𝑏𝑘 + 𝑐𝑘)!
𝑏𝑘!𝑐𝑘!

(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘)!
(𝑏𝑘 + 𝑐𝑘)!𝑎𝑘!

=(𝑏𝑘 + 𝑐𝑘
𝑏𝑘

)(𝑎𝑘 + 𝑏𝑘 + 𝑐𝑘
𝑎𝑘

)

=𝑀(𝑖, 𝑗𝑘)𝑀(𝑗, 𝑘).

So the lemma holds. ■

3.2 𝑉 is a Hopf algebra

Theorem 3.1 Let 𝑉 be a vector space on complex field, spanned by {𝑒𝑛|𝑛 ∈ ℕ}, and
define 𝑚(𝑒𝑖 ⊗ 𝑒𝑗) = 𝑀(𝑖, 𝑗)𝑒𝑖𝑗, 𝑢(𝑘) = 𝑘𝑒1,

Δ(𝑒𝑛) = ∑
𝑑|𝑛

𝑒𝑑 ⊗ 𝑒𝑛
𝑑
, 𝜖(𝑒𝑛) =

⎧{
⎨{⎩

1, 𝑛 = 1
0, 𝑛 ≠ 1.

Then V is a Hopf algebra under a given antipode S.

Proof Now we want to prove the theorem by the definition of Hopf algebra. We claim

𝑉 is an algebra, a coalgebra and give the definition of the antipode.

Firstly, 𝑉 is an algebra, that can be checked by following steps. Notice the diagram

of Definition 2.7 𝑎) 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦, and recall the lemma of M- coefficient, then

𝑚(𝑚 ⊗ 𝐼𝑑)(𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘) = 𝑚(𝑀(𝑖, 𝑗)𝑒𝑖𝑗 ⊗ 𝑒𝑘)

= 𝑀(𝑖, 𝑗)𝑚(𝑒𝑖𝑗 ⊗ 𝑒𝑘)

= 𝑀(𝑖, 𝑗)𝑀(𝑖𝑗, 𝑘)𝑒𝑖𝑗𝑘

= 𝑀(𝑖, 𝑗𝑘)𝑀(𝑗, 𝑘)𝑒𝑖𝑗𝑘

= 𝑀(𝑗, 𝑘)𝑚(𝑒𝑖 ⊗ 𝑒𝑗𝑘)
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= 𝑀(𝑖, 𝑗𝑘)𝑚(𝑒𝑖 ⊗ 𝑚(𝑒𝑗 ⊗ 𝑒𝑘))

= 𝑚(𝐼𝑑 ⊗ 𝑚)(𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘).

Similarly, check 𝑏) 𝑢𝑛𝑖𝑡 of the same diagram. Because the commutativity of multipli-

cation, we only prove the following equation:

𝑚(𝐼𝑑 ⊗ 𝑢)(𝑒𝑖 ⊗ 𝑘)∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐶

=𝑚(𝑒𝑖 ⊗ 𝑘𝑒1)

=𝑘𝑚(𝑒𝑖 ⊗ 𝑒1)

=𝑘𝑀(𝑖, 1)𝑒𝑖

=𝑘𝑒𝑖

=𝜂(𝑒𝑖 ⊗ 𝑘)

Next, we will show 𝑉 is a coalgebra. Notice that the diagram of Definition 2.9,and

check the 𝑎) 𝑐𝑜𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦

(Δ ⊗ 𝐼𝑑)Δ(𝑒𝑛) = (Δ ⊗ 𝐼𝑑)(∑
𝑑|𝑛

𝑒𝑑 ⊗ 𝑒𝑛
𝑑
)

= ∑
𝑑′|𝑑

∑
𝑑|𝑛

𝑒𝑑′ ⊗ 𝑒 𝑑
𝑑′

⊗ 𝑒𝑛
𝑑

= ∑
𝑝𝑞𝑟=𝑛

𝑒𝑝 ⊗ 𝑒𝑞 ⊗ 𝑒𝑟

= (𝐼𝑑 ⊗ Δ)(∑
𝑑|𝑛

𝑒𝑑 ⊗ 𝑒𝑛
𝑑
)

= (𝐼𝑑 ⊗ Δ)Δ(𝑒𝑛).

Then check the 𝑏) 𝑐𝑜𝑢𝑛𝑖𝑡. Because of the cocommutativity of 𝑉 , we only prove the
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following equation:

(𝐼𝑑 ⊗ 𝜖)Δ(𝑒𝑛) = (𝐼𝑑 ⊗ 𝜖)(∑
𝑑|𝑛

𝑒𝑑 ⊗ 𝑒𝑛
𝑑
)

= ∑
𝑑|𝑛

𝑒𝑑 ⊗ 𝜖(𝑒𝑛
𝑑
)

= 𝑒𝑛 ⊗ 1.

Secondly we need to prove 𝑉 is a bialgebra by two conditions in Definiton 2.12.

It can be showed by following calculation. Δ is an algebra map,

(𝑚 ⊗ 𝑚)(𝐼𝑑 ⊗ 𝜏 ⊗ 𝑚)(Δ ⊗ Δ)(𝑒𝑖 ⊗ 𝑒𝑗)

=(𝑚 ⊗ 𝑚)(∑
𝑑|𝑖

∑
𝑛|𝑗

𝑒𝑑 ⊗ 𝑒𝑛 ⊗ 𝑒 𝑖
𝑑

⊗ 𝑒 𝑗
𝑛

)

= ∑
𝑑|𝑖,𝑛|𝑗

𝑑𝑛=𝑚′

𝑀(𝑑, 𝑛)𝑀( 𝑖
𝑑 , 𝑗

𝑛)𝑒𝑑𝑛 ⊗ 𝑒 𝑖𝑗
𝑑𝑛

=𝑀(𝑖, 𝑗) ∑
𝑚′|𝑖𝑗

𝑒′
𝑚 ⊗ 𝑒 𝑖𝑗

𝑚′

=Δ𝑚(𝑒𝑖 ⊗ 𝑒𝑗).

And 𝜖 is also an algebra map. We know 𝑖𝑗 = 1 ⟺ 𝑖 = 1, 𝑗 = 1, 𝑖, 𝑗 ∈ ℕ,

𝜖𝑚(𝑒𝑖 ⊗ 𝑒𝑗)

=𝑀(𝑖, 𝑗)𝜖(𝑒𝑖𝑗)

=𝛿𝑖𝑗,1

=𝜖(𝑒𝑖)𝜖(𝑒𝑗)

=𝑚(𝜖 ⊗ 𝜖)(𝑒𝑖 ⊗ 𝑒𝑗).

Finally, we claim the existence of the inverse 𝑆 of 𝐼𝑑. We give the construction

of the antipode 𝑆 recursively. For (𝐼𝑑 ∗ 𝑆)(𝑒1) = 𝑢𝜖(𝑒1), then 𝑆(𝑒1) = 𝑒1, and
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(𝐼𝑑 ∗ 𝑆)(𝑒2) = 𝑢𝜖(𝑒2), then 𝑆(𝑒2) = −𝑒2, ⋯ , then 𝑆(𝑒𝑛) = − ∑
𝑑|𝑛

𝑑>1

𝑒𝑑𝑆(𝑒𝑛
𝑑
).

Because 𝑉 is cocommutative, the antipode exists. Now, we give the expression

of 𝑆 explicitly. Since any prime 𝑝 only has a trivial decomposition, 𝑆(𝑒𝑝) = −𝑒𝑝.

Because S is an algebra map,

𝑆(𝑒𝑟
𝑝) = 𝑀(𝑝, 𝑝𝑟−1)−1𝑆(𝑒𝑝𝑒𝑟−1

𝑝 )∀𝑟 ∈ ℕ

= −1
𝑟𝑒𝑝𝑆(𝑒𝑟−1

𝑝 )

= (−1
𝑟𝑒𝑝)(− 1

𝑟 − 1𝑒𝑝𝑆(𝑒𝑟−2
𝑝 ))

= (−1
𝑟𝑒𝑝)(− 1

𝑟 − 1𝑒𝑝) ⋯ (−𝑒𝑝)

= (−1)𝑟𝑒𝑟
𝑝.

When 𝑖 ⩾ 2, 𝑖 ∈ 𝑁，write 𝑖 = 𝑝𝑎1
1 ⋯ 𝑝𝑎𝑠𝑠 , if 𝑝, 𝑞 is coprime，then 𝑀(𝑝, 𝑞) = 1,

𝑆(𝑒𝑖) = 𝑆(𝑒𝑝𝑎1
1 ⋯𝑝𝑎𝑠𝑠 )

= 𝑆(𝑒𝑝𝑎1
1

) ⋯ 𝑆(𝑒𝑝𝑎𝑠𝑠 )

= (−1)𝑎1+⋯+𝑎𝑠𝑒𝑖.

If we denote 1 as zero power of some prime numbers, we have

𝑆(𝑒𝑖) = (−1)𝑎1+⋯+𝑎𝑠𝑒𝑖, 𝑖 = 𝑝𝑎1
1 ⋯ 𝑝𝑎𝑠𝑠 , 𝑖 ∈ ℕ.

Now we have proved that V is a Hopf algebra by definition. ■

Naturally, we want to discuss some properties of V.

3.3 Properties of 𝑉

Proposition 3.1 V is a domain.
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Proof Assuming 𝑣1，𝑣2 are nonzero vectors of 𝑉，we claim 𝑣1𝑣2 is a nonzero vector

of 𝑉 . Let 𝑣1 =
𝑚

∑
𝑖=1

𝑘𝑖𝑒𝑖, 𝑘𝑚 ≠ 0, and 𝑣2 =
𝑛

∑
𝑖=1

ℎ𝑖𝑒𝑖, ℎ𝑛 ≠ 0. If 𝑣1𝑣2 = 0. comparing

the the highest degree, we have 𝑀(𝑚, 𝑛)𝑘𝑚ℎ𝑛 = 0, so 𝑀(𝑚, 𝑛) = 0. That is a

contradiction, then 𝑉 is a domain. ■

Proposition 3.2 V is not a PID.

Proof Assume < 𝑒2, 𝑒3 >=< 𝑐 >, where 𝑐 is a nonzero vector of 𝑉 , then

𝑒2 = 𝑘2𝑐, 𝑘2 ∈ 𝑉

𝑒3 = 𝑘3𝑐, 𝑘3 ∈ 𝑉 .

Set

𝑘2 =
𝑚2

∑
𝑗=1

𝑟𝑖𝑒𝑖, 𝑟𝑖 ∈ ℂ

𝑘3 =
𝑚3

∑
𝑗=1

𝑠𝑖𝑒𝑖, 𝑠𝑖 ∈ ℂ

𝑐 =
𝑛

∑
𝑖=1

𝑐𝑖𝑒𝑖, 𝑐𝑖 ∈ ℂ.

For 𝑒2 = 𝑘2𝑐, comparing the the highest degree，we have 𝑀(𝑟𝑚2
, 𝑐𝑛)𝑒𝑚2

𝑛 = 𝑒2,

then 𝑚2𝑛 = 2, so 𝑛 = 1 or 𝑛 = 2. When 𝑛 = 1，we have < 𝑐 >= 𝑉，but 𝑒1 is

not generated by 𝑒2 and 𝑒3; when 𝑛 = 2, we have 𝑚2 = 1, then 𝑘2 = 𝑟1𝑒1. Since

𝑒2 = 𝑘2𝑐，then 𝑘2 = 𝑟1𝑐，and 𝑒3 = 𝑘3𝑐，then 𝑒3 ∈< 𝑒2 >. It is a contradict.

Conclusively, 𝑉 is not a PID. ■

Proposition 3.3 V is a connected Hopf algebra.

Proof Let 𝑣 =
𝑛

∑
𝑖=1

𝑘𝑖𝑒𝑖 ∈ 𝑉 , 𝑣 ≠ 0, then

Δ(𝑣) =
𝑛

∑
𝑖=1

𝑘𝑖 ∑
𝑑|𝑖

𝑒𝑑 ⊗ 𝑒 𝑖
𝑑
.
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3.3 Properties of 𝑉

We know that any coalgebra generated by a nonzero vector must contain <𝑒1>，after

all 1 is a divisor of any positive integer. Because <𝑒1> has been a simple subcoalgebra,

any subcoalgebra strictly containing <𝑒1> is not simple, as the subcoalgebra contains

three distinct subcoalgebras at least.

That implies <𝑒1> is the unique simple subcoalgebra of 𝑉 . By definiton, 𝑉 is

pointed. ■

Group-like elements and primitive elements of 𝑉

We give all the group-like elements and primitive elements of 𝑉 .

a) group-like elements

Let 𝑐 =
𝑛

∑
𝑖=1

𝑘𝑖𝑒𝑖, 𝑐 ∈ 𝑉 , 𝑘𝑛 ≠ 0, then

Δ(𝑐) =
𝑛

∑
𝑖=1

𝑘𝑖Δ(𝑒𝑖)

= 𝑘𝑖 ∑
𝑑|𝑖

𝑒𝑑 ⊗ 𝑒 𝑖
𝑑

𝑐 ⊗ 𝑐 = (
𝑛

∑
𝑖=1

𝑘𝑖𝑒𝑖) ⊗ (
𝑛

∑
𝑖=1

𝑘𝑖𝑒𝑖).

Because Δ(𝑐) = 𝑐 ⊗ 𝑐, comparing coefficents of both sides, we have 𝑐 = 𝑘1𝑒1. Then

𝑒1 is the unique group-like element of 𝑉 .

b) primitive elements

Let 𝑐 be a 𝑔, ℎ-primitive element, where 𝑔, ℎ are group-like elements of 𝑉 . By the

definition ,we have 𝑔 = ℎ = 𝑒1, so Δ(𝑐) = 𝑐 ⊗ 𝑒1 + 𝑒1 ⊗ 𝑐. Let 𝑐 =
𝑛

∑
𝑖=1

𝑘𝑖𝑒𝑖, 𝑐 ∈
𝑉 , 𝑘𝑛 ≠ 0. From the definition

𝑛
∑
𝑖=1

𝑘𝑖Δ(𝑒𝑖) =
𝑛

∑
𝑖=1

𝑘𝑖Δ(𝑒𝑖 ⊗ 𝑒1) +
𝑛

∑
𝑖=1

𝑘𝑖Δ(𝑒1 ⊗ 𝑒𝑖).
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Chapter 3 Hopf structure of 𝑉

Moreover,

𝑛
∑
𝑖=1

𝑘𝑖 ∑
𝑑|𝑖

𝑒𝑑 ⊗ 𝑒 𝑖
𝑑

=
𝑛

∑
𝑖=1

𝑘𝑖Δ(𝑒𝑖 ⊗ 𝑒1) +
𝑛

∑
𝑖=1

𝑘𝑖Δ(𝑒1 ⊗ 𝑒𝑖).

Noticing the right side of the equation is the trivial decomposition of 𝑖, we have the fact
that the left side of the equation is also a trivial decomposition. That means 𝑖 is a prime

number. Trivial calculation show 𝑖 = 1 does not holds.

So primitive elements of the form ∑
𝑝∈𝑃

𝑘𝑝𝑒𝑝，where 𝑃 is the set of all prime num-

bers.
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Chapter 4 Dual of 𝑉

4.1 Bijection between algebra maps and completely multiplicative

arithmetic functions

There is a bijection between algebramaps of 𝑉 → ℂ and completelymultiplicative

arithmetic functions. Given an algebra morphism 𝑓 , such that 𝑓(𝑒𝑖𝑒𝑗) = 𝑓(𝑒𝑖𝑗)，we

define

̄𝑓(𝑛) = 𝑓(𝑒𝑝1
)𝑡1 ⋯ 𝑓(𝑒𝑝𝑟

)𝑡𝑟 , 𝑛 = 𝑝𝑡1
1 ⋯ 𝑝𝑡𝑟𝑟 .

Then ̄𝑓 is a completely multipicative arithmetic function, coinciding with 𝑓 at every

points of prime numbers.

Conversely, if 𝐹 is a completely multiplicative arithmetic function, which means

𝐹(𝑚𝑛) = 𝐹(𝑚)𝐹(𝑛). We define

𝑓(𝑒𝑛) = 1
(𝑡1)! ⋯ (𝑡𝑟)!𝐹 (𝑝1)𝑡1 ⋯ 𝐹(𝑝𝑟)𝑡𝑟 , 𝑛 = (𝑝1)𝑡1 ⋯ (𝑝𝑟)𝑡𝑟 ,

By the following calculation we can show 𝑓 is an algebra morphism from V to ℂ. For

𝑛 = (𝑝1)𝑡1 ⋯ (𝑝𝑟)𝑡𝑟 ,

𝑚 = (𝑝1)𝑠1 ⋯ (𝑝𝑟)𝑠𝑟 ,

we have

𝑓(𝑒𝑛𝑒𝑚) = 𝑀(𝑛, 𝑚)𝑓(𝑒𝑛𝑚)

= (𝑡1 + 𝑠1
𝑡1

) ⋯ (𝑡𝑟 + 𝑠𝑟
𝑡𝑟

) 1
(𝑡1 + 𝑠1)! ⋯ (𝑡𝑟 + 𝑠𝑟)!𝐹 (𝑝1)𝑡1+𝑠1 ⋯ 𝐹(𝑝𝑟)𝑡𝑟+𝑠𝑟
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Chapter 4 Dual of 𝑉

= (𝑡1 + 𝑠1)!
𝑡1!𝑠1! ⋯ (𝑡𝑟 + 𝑠𝑟)!

𝑡𝑟!𝑠𝑟!
1

(𝑡1 + 𝑠1)! ⋯ (𝑡𝑟 + 𝑠𝑟)!𝐹 (𝑝1)𝑡1+𝑠1 ⋯ 𝐹(𝑝𝑟)𝑡𝑟+𝑠𝑟

= 1
(𝑡1)! ⋯ (𝑡𝑟)!𝐹 (𝑝1)𝑡1 ⋯ 𝐹(𝑝𝑟)𝑡𝑟

1
(𝑠1)! ⋯ (𝑠𝑟)!𝐹 (𝑝1)𝑠1 ⋯ 𝐹(𝑝𝑟)𝑠𝑟

= 𝑓(𝑒𝑛)𝑓(𝑒𝑚).

Notice that the Dirichlet character function is a completelymultipicative arithmetic

function, then we get a corresponding algebra map from 𝑉 to ℂ.

Now we just need consider a set containing all algebra maps 𝑉 to ℂ. Luckly the

finite dula of V is nearly to what we want, though the elements of it will vanish at

infinite point. So we try extending 𝑉 ∗ ⊗ 𝑉 ∗ to make sure the operation Δ∗ is closed,

then the extended set will contain all algebra maps. In the process, we need some useful

properties of complete tensor.

4.2 Universal property of complete module

Theorem 4.1 The universal property of the limit ̂𝐴: any filtered map A
𝑓
→𝐵 where B is

a complete module , factor uniquely through the canonical map as following:

𝐴 𝑓 //

𝜋𝐴 ��

𝐵

𝐴
̄𝑓

? ?��������

Proof Note that B is complete ⇔ (𝐵, 𝐺) is a filtered module and 𝐵
𝜋𝐵⟶ 𝐵 is an

isomorphism.

Define

̄𝑓 ∶ ̂𝐴 → 𝐵

(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴1 ⋯) ↦ 𝜋−1
𝐵 (𝑓1(𝑎0) + 𝐺0𝐵, 𝑓(𝑎1) + 𝐺1𝐵2 ⋯).
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4.2 Universal property of complete module

a) The definition of ̄𝑓 is well defined. If

(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) = (𝑎′
0 + 𝐹0𝐴, 𝑎′

1 + 𝐹1𝐴, ⋯ ),

we have 𝑎𝑖 − 𝑎′
𝑖 ∈ 𝐹𝑖𝐴. Recall the definition of the filtered map, we have 𝑓(𝐹𝑖𝐴) ⊂

𝐺𝑖𝐵, so 𝑓(𝑎𝑖) − 𝑓(𝑎𝑖) ∈ 𝐺𝑖𝐵, then 𝑓(𝑎𝑖) − 𝑓(𝑎𝑖) ∈ 𝐺𝑖𝐵. Thus

(𝑓(𝑎0) + 𝐺0𝐵, 𝑓(𝑎1) + 𝐺1𝐵 ⋯ ) = (𝑓(𝑎′
0) + 𝐺0𝐵, 𝑓(𝑎′

1) + 𝐺1𝐵 ⋯ ).

b) We claim it is a commutative diagram. ̄𝑓𝜋𝐴(𝑎) = ̄𝑓(𝑎 + 𝐹0𝐴, 𝑎 + 𝐹1𝐴, ⋯ ) =
𝜋−1

𝐵 (𝑓(𝑎) + 𝐺0𝐵, 𝑓(𝑎) + 𝐺1𝐵, ⋯ ) = 𝑓(𝑎), ∀𝑎 ∈ 𝐴 then ̄𝑓𝜋𝐴 = 𝑓 .
c) ̄𝑓 is a filtered map. For any (0, ⋯ , 0, 𝑎𝑘+1 + 𝐹𝑘+1𝐴, 𝑎𝑘+2 + 𝐹𝑘+2𝐴, ⋯ ) ∈ ̂𝑓𝑘 ̂𝐴,

̄𝑓(0, ⋯ , 0, 𝑎𝑘+1 + 𝐹𝑘+1𝐴, 𝑎𝑘+2 + 𝐹𝑘+2𝐴, ⋯ )

=𝜋−1
𝐵 (0, ⋯ , 0, 𝑓(𝑎𝑘+1) + 𝐺𝑘+1𝐵, 𝑓(𝑎𝑘+2) + 𝐺𝑘+2𝐵, ⋯ )

∈𝜋−1
𝐵 ̂𝐺𝑘𝐵̂

⊂𝐺𝑘𝐵.

d) We will show it is the unique map satifying the conditions. Assume there is another

filtered map ̄𝑔 satisfying ̄𝑔𝜋𝐴 = 𝑓 , and ̄𝑔 ≠ ̄𝑓 . Then there exists (𝑎0 + 𝐹0𝐴, 𝑎1 +
𝐹1𝐴, ⋯ ) ∈ ̂𝐴, such that

𝜋𝐵 ̄𝑔(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ≠ 𝜋𝐵 ̄𝑓(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴 ⋯ ).

Note that 𝜋𝐵 is an isomorphism. Denote (𝑏0 + 𝐺0𝐵, ⋯ ) and (𝑏′
0 + 𝐺0𝐵, ⋯ ) for both

side respectively, there must be some 𝑘, such that 𝑏𝑘 + 𝐺𝑘𝐵 ≠ 𝑏′
𝑘 + 𝐺𝑘𝐵. Then

(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ , 𝑎𝑘 + 𝐹𝑘𝐴, 𝑎𝑘+1 + 𝐹𝑘+1𝐴, ⋯ )

=(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ , 𝑎𝑘 + 𝐹𝑘𝐴, 𝑎𝑘 + 𝐹𝑘+1𝐴, ⋯ ) + (0, ⋯ , 0, 𝑎𝑘+1 − 𝑎𝑘 + 𝐹𝑘+1𝐴)

=(𝑎𝑘 + 𝐹0𝐴, 𝑎𝑘 + 𝐹1𝐴, ⋯ , 𝑎𝑘 + 𝐹𝑘𝐴, 𝑎𝑘 + 𝐹𝑘+1𝐴, ⋯ ) + (0, ⋯ , 0, 𝑎𝑘+1 − 𝑎𝑘 + 𝐹𝑘+1𝐴)

=𝜋𝐴(𝑎𝑘) + (0, ⋯ , 0, 𝑎𝑘+1 − 𝑎𝑘 + 𝐹𝑘+1𝐴)
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We also have (0, ⋯ , 0, 𝑎𝑘+1 − 𝑎𝑘 + 𝐹𝑘+1𝐴) ∈ ̂𝐹𝑘 ̂𝐴, and 𝜋𝐵 ̄𝑓 , 𝜋𝐵 ̄𝑔 are filtered

maps, so the value of 𝑏𝑘 +𝐺𝑘𝐵 and 𝑏′
𝑘 +𝐺𝑘𝐵 depends on 𝜋𝐵 ̄𝑓𝜋𝐴(𝑎𝑘) and 𝜋𝐵 ̄𝑔𝜋𝐴(𝑎𝑘)

respectively. But we know 𝜋𝐵 ̄𝑓𝜋𝐴 = 𝜋𝐵 ̄𝑔𝜋𝐴. so 𝑏𝑘 + 𝐺𝑘𝐵 = 𝑏′
𝑘 + 𝐺𝑘𝐵, thus it

contradict with our assumption. Then ̄𝑓 is unique in this way. ■

Theorem 4.2 𝐴 ⊗ 𝐵 ≅ ̂𝐴⊗̂𝐵̂.

Proof For the complete module ̂𝐴⊗̂𝐵̂, we have a filtered map 𝜋 ̂𝐴⊗𝐵̂ ∘ 𝜋𝐴 ⊗ 𝜋𝐵. By

the universal property of the completion of 𝐴 ⊗ 𝐵, we get 𝜙 as following:

𝐴 ⊗ 𝐵𝜋𝐴⊗𝜋𝐵//

𝜋𝐴⊗𝐵
��

̂𝐴 ⊗ 𝐵̂ 𝜋𝐴̂⊗𝐵̂ // ̂𝐴⊗̂𝐵̂

𝐴 ⊗ 𝐵.
∃!𝜙

55jjjjjjjjjjjjjjjjjjj

Since the commutative map is unique, we just define 𝜙 so that 𝜙 satifies the commuca-

tive diagram.

𝜙(∑ 𝑎𝑖
0 ⊗ 𝑏𝑖

0 + 𝐹0𝐴 ⊗ 𝐵, ∑ 𝑎𝑖
1 ⊗ 𝑏𝑖

1 + 𝐹1𝐴 ⊗ 𝐵, ⋯ ) (4-1)

=(∑(𝑎𝑖
0 + 𝐹0𝐴, 𝑎𝑖

0 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏𝑖
0 + 𝐺0𝐵, 𝑏𝑖

0 + 𝐺1𝐵, ⋯ ) + 𝐹0( ̂𝐴 ⊗ 𝐵̂),

∑(𝑎𝑖
1 + 𝐹0𝐴, 𝑎𝑖

1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏𝑖
1 + 𝐺0𝐵, 𝑏𝑖

1 + 𝐺1𝐵, ⋯ ) + 𝐹1( ̂𝐴 ⊗ 𝐵̂), ⋯ ).

In particular, we get

𝜙((𝑎0 ⊗ 𝑏0 + 𝐹0𝐴 ⊗ 𝐵), ∑(𝑎1 ⊗ 𝑏1 + 𝐹1𝐴 ⊗ 𝐵), ⋯ )

=((𝑎0 + 𝐹0𝐴, 𝑎0 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏0 + 𝐺1𝐵, ⋯ ) + 𝐹0( ̂𝐴 ⊗ 𝐵̂),

(𝑎1 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏1 + 𝐺0𝐵, 𝑏1 + 𝐺1𝐵, ⋯ ) + 𝐹1( ̂𝐴 ⊗ 𝐵̂), ⋯ ).

a) We claim the definition is well-defined. When

(∑ 𝑎𝑖
0 ⊗ 𝑏𝑖

0 + 𝐹0𝐴 ⊗ 𝐵, ∑ 𝑎𝑖
1 ⊗ 𝑏𝑖

1 + 𝐹1𝐴 ⊗ 𝐵, ⋯ )

=(∑ 𝑐𝑖
0 ⊗ 𝑐𝑖

0 + 𝐹0𝐴 ⊗ 𝐵, ∑ 𝑑𝑖
1 ⊗ 𝑑𝑖

1 + 𝐹1𝐴 ⊗ 𝐵, ⋯ ),
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we get

∑ 𝑎𝑖
𝑘 ⊗ 𝑏𝑖

𝑘 − ∑ 𝑏𝑖
𝑘 ⊗ 𝑐𝑖

𝑘 ∈ 𝐹,(𝐴 ⊗ 𝐵) = ∑
𝑚+𝑛=𝑘

𝐼𝑚(𝐹𝑚𝐴 ⊗ 𝐺𝑛𝐵 → 𝐴 ⊗ 𝐵).

From the following equations, the definiton is well-defined.

∑(𝑎𝑖
𝑘 + 𝐹0𝐴, 𝑎𝑖

𝑘 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏𝑖
𝑘 + 𝐺0𝐵, 𝑏𝑖

𝑘 + 𝐺0𝐵, ⋯ )

− ∑(𝑏𝑖
𝑘 + 𝐹0𝐴, 𝑏𝑖

𝑘 + 𝐹1𝐴, ⋯ ) ⊗ (𝑑𝑖
𝑘 + 𝐺0𝐵, 𝑑𝑖

𝑘 + 𝐺0𝐵, ⋯ )

=𝜋𝐴 ⊗ 𝜋𝐵(∑ 𝑎𝑖
𝑘 ⊗ 𝑏𝑖

𝑘 − ∑ 𝑐𝑖
𝑘 ⊗ 𝑑𝑖

𝑘)

∈𝐹𝑘( ̂𝐴 ⊗ 𝐵̂).

b) Now, we say 𝜙 is a filtered map.

𝜙(0, ⋯ , 0, ∑ 𝑎𝑖
𝑘+1 ⊗ 𝑏𝑖

𝑘+1 + 𝐹𝑘+1(𝐴 ⊗ 𝐵), ⋯ )

=(0, ⋯ , 0, ∑ 𝑎𝑖
𝑘+1 + 𝐹0𝐴, 𝑎𝑖

𝑘+1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏𝑖
𝑘+1 + 𝐺0𝐵, 𝑏𝑖

𝑘+1 + 𝐺1𝐵, ⋯ )+

𝐹𝑘+1( ̂𝐴 ⊗ 𝐵̂, ⋯ )

∈𝐹𝑘( ̂𝐴 ⊗ 𝐵̂).

So 𝜙 is a filtered map, and obviously 𝜙𝜋𝐴⊗𝐵 = 𝜋 ̂𝐴⊗𝐵̂(𝜋𝐴 ⊗ 𝜋𝐵).
c) We want to show 𝜙 is a inverse map by giving the inverse map explicitly. We will

use the universal property again, after all the ̂𝐴⊗̂𝐵̂ is a completion of ̂𝐴 ⊗ 𝐵̂.

̂𝐴 ⊗ 𝐵̂ 𝑓 //

𝜋𝐴̂⊗̂𝐵̂
��

𝐴 ⊗ 𝐵

̂𝐴⊗̂𝐵̂.
∃!𝜙

::uuuuuuuuu

We just need to define 𝑓 , then get a map from ̂𝐴⊗̂𝐵̂ to ̂𝐴 ⊗ 𝐵̂. Define 𝑓 as

𝑓(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏1 + 𝐺1𝐵, ⋯ )

=(𝑎0 ⊗ 𝑏0 + 𝐹0(𝐴 ⊗ 𝐵), 𝑎1 ⊗ 𝑏1 + 𝐹1(𝐴 ⊗ 𝐵), ⋯ ).
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Notice that

𝑎𝑘+1 ⊗ 𝑏𝑘+1 − 𝑎𝑘 ⊗ 𝑏𝑘

=𝑎𝑘+1 ⊗ 𝑏𝑘+1 − 𝑎𝑘 ⊗ 𝑏𝑘+1 + 𝑎𝑘 ⊗ 𝑏𝑘+1 − 𝑎𝑘 ⊗ 𝑏𝑘

∈𝐹𝑘𝐴 ⊗ 𝐺0𝐵 + 𝐹0𝐴 ⊗ 𝐺𝐾𝑏

⊂𝐹𝑘(𝐴 ⊗ 𝐵),

so 𝑓 is well defined. Now we claim 𝑓 is a filtered map.

When 𝑚 + 𝑛 = 𝑘, for any(0, ⋯ , 0, 𝑎𝑚+1 + 𝐹𝑚+1𝐴, 𝑎𝑚+2 + 𝐹𝑚+2𝐴, ⋯ ) ⊗
(0, ⋯ , 0, 𝑎𝑚+1 + 𝐹𝑚+1𝐴, 𝑎𝑚+2 + 𝐹𝑚+2𝐴, ⋯ ) ∈ ∑𝑚+𝑛=𝑘 𝐹𝑚𝐴 ⊗ 𝐺𝑛𝐵. By the def-

inition of 𝑓 ,

𝑓((0, ⋯ , 0, 𝑎𝑚+1 + 𝐹𝑚+1𝐴, 𝑎𝑚+2 + 𝐹𝑚+2𝐴, ⋯ )⊗

(0, ⋯ , 0, 𝑎𝑚+1 + 𝐹𝑚+1𝐴, 𝑎𝑚+2 + 𝐹𝑚+2𝐴, ⋯ ))

=(𝑐0 + 𝐹0(𝐴 ⊗ 𝐵), 𝑐1 + 𝐹1(𝐴 ⊗ 𝐵), ⋯ ).

When 𝑡 ⩽ 𝑚𝑎𝑥{𝑚, 𝑛}, 𝑐𝑡 = 0; when 𝑡 > 𝑚𝑎𝑥{𝑚, 𝑛},𝑐𝑡 = 𝑎𝑡 ⊗ 𝑏𝑡 ∈ 𝐹𝑚𝐴 ⊗ 𝐺𝑛𝐵 ⊂
𝐹𝑘(𝐴 ⊗ 𝐵). That means (𝑐0 + 𝐹0(𝐴 ⊗ 𝐵), 𝑐1 + 𝐹1(𝐴 ⊗ 𝐵), ⋯ ) ∈ 𝐹𝑘(𝐴 ⊗ 𝐵), thus 𝑓
is a filtered map. Thus we get 𝜓 and 𝜓𝜋 ̂𝐴⊗𝐵̂ = ̂𝑓 .

Finally we get the diagram

ℎ𝐴 ⊗ 𝐵𝜋𝐴⊗𝜋𝐵//

𝜋𝐴⊗𝐵 %%KK
KK

KK
KK

K
̂𝐴 ⊗ 𝐵̂ 𝜋𝐴̂⊗𝐵̂ //

𝑓
��

̂𝐴⊗̂𝐵̂
∃!𝜙
zzuuu

uu
uu
uu

𝐴 ⊗ 𝐵.
∃!𝜓

::uuuuuuuuu

Notice that

(𝜓𝜙)𝜋𝐴⊗𝐵 =𝜓(𝜙𝜋𝐴⊗𝐵)

=𝜓(𝜋 ̂𝐴⊗𝐵̂(𝜋𝐴 ⊗ 𝜋𝐵))

=(𝜓𝜋 ̂𝐴⊗𝐵̂)(𝜋𝐴 ⊗ 𝜋𝐵)

=𝑓(𝜋𝐴 ⊗ 𝜋𝐵)
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=𝜋𝐴⊗𝐵.

Using the universal property of 𝐴 ⊗ 𝐵, we get 𝜓𝜙 = 𝐼𝑑.
Besides,

𝜙𝑓(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏1 + 𝐺1𝐵, ⋯ )

=𝜙(𝑎0 ⊗ 𝑏0 + 𝐹0𝐴 ⊗ 𝐵, 𝑎1 ⊗ 𝑏1 + 𝐹1(𝐴 ⊗ 𝐵), ⋯ )

=((𝑎0 + 𝐹0𝐴, 𝑎0 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏0 + 𝐺1𝐵, ⋯ ) + 𝐹0( ̂𝐴 ⊗ 𝐵̂), ⋯ ),

and

𝜋 ̂𝐴⊗𝐵̂(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏1 + 𝐺1𝐵, ⋯ )

=((𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏1 + 𝐺1𝐵, ⋯ ) + 𝐹0( ̂𝐴 ⊗ 𝐵̂), ⋯ ).

Since

(𝑎0 + 𝐹0𝐴, 𝑎 + 𝐹1𝐴, ⋯ ) − (𝑎𝑘 + 𝐹0𝐴, 𝑎𝑘 + 𝐹1𝐴, ⋯ )

=(0, ⋯ , 0, 𝑎𝑘+1 − 𝑎𝑘 + 𝐹𝑘+1𝐴, ⋯ ) ∈ ̂𝐹𝑘 ̂𝐴

(𝑏0 + 𝐺0𝐵, 𝑏 + 𝐺1𝐵, ⋯ ) − (𝑏𝑘 + 𝐺0𝐵, 𝑏𝑘 + 𝐺1𝐵, ⋯ )

=(0, ⋯ , 0, 𝑏𝑘+1 − 𝑏𝑘 + 𝐺𝑘+1𝐵, ⋯ ) ∈ ̂𝐺𝑘𝐵̂,

we have

(𝑎0 + 𝐹0𝐴, 𝑎1 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏0 + 𝐺0𝐵, 𝑏1 + 𝐺1𝐵, ⋯ ) + 𝐹𝑘( ̂𝐴 ⊗ 𝐵̂), ∀𝑘

−(𝑎𝑘 + 𝐹0𝐴, 𝑎𝑘 + 𝐹1𝐴, ⋯ ) ⊗ (𝑏𝑘 + 𝐺0𝐵, 𝑏𝑘 + 𝐺1𝐵, ⋯ ) + 𝐹𝑘( ̂𝐴 ⊗ 𝐵̂)

∈ ̂𝐹𝑘 ̂𝐴 ⊗ ̂𝐺0𝐵̂ + ̂𝐹0 ̂𝐴 ⊗ ̂𝐺𝑘𝐵̂

⊂𝐹𝑘( ̂𝐴 ⊗ 𝐵̂).
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So 𝜙𝑓 = 𝜋 ̂𝐴⊗𝐵̂, and then

𝜙𝜓𝜋 ̂𝐴⊗𝐵̂ =𝜙(𝜓𝜋 ̂𝐴⊗𝐵̂)

=𝜙𝑓

=𝜋 ̂𝐴⊗𝐵̂.

By uniqueness, we have 𝜙𝑓 = 𝐼𝑑. ■

4.3 Completion of 𝑈 and 𝑈 ⊗ 𝑈

Lemma 4.1 Let 𝑈 =< 𝑒∗
1, 𝑒∗

2, ⋯ >, and 𝐹𝑛(𝑈) =< 𝑒∗
𝑖 |𝑖 > 𝑛 >. Then ̂𝑈 ≅ 𝑉 ∗.

Proof When 𝑓 ∈ 𝑉 ∗, we have

𝑓 =
∞

∑
𝑖=1

𝑓(𝑒𝑖)𝑒∗
𝑖 .

The left expression is well defined, for every element of 𝑉 is a finite sum.

We define an isomorphism explicityly as

𝑉 ∗ → 𝑈
∞

∑
𝑖=1

𝑓(𝑒𝑖)𝑒∗
𝑖 ↦ (0, 𝑓(𝑒1)𝑒∗

1 + 𝑈/𝐹1(𝑈), ...),

with its inverse is defined as

̂𝑈 → 𝑉 ∗

(𝑎0 + 𝑈/𝐹0(𝑈), 𝑎1 + 𝑈/𝐹1(𝑈), 𝑎2 + 𝑈/𝐹2(𝑈), ⋯ , ) ↦ ∑ 𝑎𝑖.

When

(𝑎0 + 𝑈/𝐹0(𝑈), 𝑎1 + 𝑈/𝐹1(𝑈), 𝑎2 + 𝑈/𝐹2(𝑈), ⋯ , )
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=(𝑏0 + 𝑈/𝐹0(𝑈), 𝑏1 + 𝑈/𝐹1(𝑈), 𝑏2 + 𝑈/𝐹2(𝑈), ⋯ , ),

we have

𝑎𝑖 − 𝑏𝑖 ∈ 𝐹𝑖(𝑈), ∀𝑖,

which implies 𝑎𝑟(𝑒𝑟) = 𝑏𝑟(𝑒𝑟), then

∑ 𝑎𝑖(𝑒𝑟) = 𝑎𝑟(𝑒𝑟) = 𝑏𝑟(𝑒𝑟) = ∑ 𝑏𝑖(𝑒𝑟),

so the map is well-defined. Now, we can prove the lemma. ■

From Theorem4.2, 𝑈 , 𝑉 not necessarily complete module. Let ̂𝑈 = 𝑋, and ̂𝑉 =
𝑌 , then

𝑈 ⊗ 𝑉 = 𝑋 ⊗ 𝑌 .

Recall the definition of induced filtration of 𝑈 ⊗ 𝑈 is

𝐹𝑘(𝑈 ⊗ 𝑈) = ∑
𝑛+𝑚=𝑘

𝐼𝑚(𝐹𝑛𝐴 ⊗ 𝐹𝑚𝐴 ↪ 𝑈 ⊗ 𝑈)

Similarly, we claim that 𝑈 ⊗ 𝑈 = (𝑉 ⊗ 𝑉 )∗ by

𝜎 ∶ (𝑉 ⊗ 𝑉 )∗ → 𝑈 ⊗ 𝑈 (4-2)
∞

∑
𝑖=1
𝑗=1

𝑓(𝑒𝑖 ⊗ 𝑒𝑗)𝑒∗
𝑖 ⊗ 𝑒∗

𝑗 ↦ (0, 0, 𝑓(𝑒1 ⊗ 𝑒1)𝑒∗
1 ⊗ 𝑒∗

1, ...),

is an isomorphism.

Corollary 4.1 𝑉 ∗⊗̂𝑉 ∗ ≅ (𝑉 ⊗ 𝑉 )∗

Proof

𝑉 ∗⊗̂𝑉 ∗ 𝑈̂=𝑉 ∗

≅ ̂𝑈⊗̂ ̂𝑈 𝑇 ℎ𝑚4.2≅ 𝑈 ⊗ 𝑈 ≅ (𝑉 ⊗ 𝑉 )∗ ■

Conclusively, we find a set is closed under Δ∗. In the next section, we will give the

definiton of generalized Hopf algebra.
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5.1 Definition of generalized Hopf algebra

Now we can formally give the definition to generalized Hopf algebra, after the

following lemmas.

Lemma 5.1 Given filtered maps 𝑓 ∶ 𝑀 → 𝑀 ′ and 𝑔 ∶ 𝑁 → 𝑁 ′, there is a map called

𝑓⊗̂𝑔, making the following diagram commutates.

𝑀 ⊗ 𝑁 𝑓⊗𝑔 //

𝜋𝑀⊗𝑁
��

𝑀 ′ ⊗ 𝑁 ′𝜋𝑀′⊗𝑁′// 𝑀̂ ′⊗̂ ̂𝑁 ′

𝑀̂⊗̂ ̂𝑁.
∃!𝑓⊗̂𝑔

44hhhhhhhhhhhhhhhhhhhhhh

Lemma 5.2 If (A,F) is complete, then 𝜋−1 is also a filtered map, thus we have

𝜋𝐴(𝐹𝑛𝐴) = ̂𝐹 ̂𝐴.

Proof For any (0, ⋯ , 0, 𝑎𝑘+1 + 𝐹𝑘+1𝐴, ⋯ ) ∈ ̂𝐹 ̂𝐴,

𝜋−1(0, ⋯ , 0, 𝑎𝑘+1 + 𝐹𝑘+1𝐴, ⋯ )

= 𝜋−1(𝜋(𝑎𝑘+1))

= 𝑎𝑘+1.

Notice 𝑎𝑘+1 + 𝐹𝑘 = 0, thus 𝜋−1( ̂𝐹𝑘 ̂𝐴) ⊂ 𝐹𝑘𝐴, then 𝜋𝐴(𝐹𝑛𝐴) = ̂𝐹 ̂𝐴. ■

Definition 5.1 We call a map which is a k-module isomorphism and keeps filtrations,

a filtered isomorphism.

Corollary 5.1 ̂𝐴 ≅ 𝐵̂, if there exist a filtered isomorphism between A and B.
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Lemma 5.3 𝐴⊗̂𝐵 ≅ 𝐶⊗̂𝐷, if there exist filtered isomorphisms f, g between A and B,

C and D.

Proof 𝑓⊗̂𝑔 works. ■

Lemma 5.4 Let (A,F) be a filtered module then ̂̂𝐴 ⊗ 𝐴 ⊗ 𝐴 ≅ ̂𝐴 ⊗ 𝐴 ⊗ 𝐴.

Proof Using lemma 5.2, we have ̂̂𝐴 ≅ ̂𝐴 is filtered isomorphism.

̂̂𝐴 ⊗ 𝐴 ⊗ 𝐴
̂𝐴≅ ̂̂𝐴 ⊗ 𝐴⊗̂ ̂̂𝐴

≅ 𝐴 ⊗ 𝐴⊗̂ ̂𝐴(𝐿𝑒𝑚𝑚𝑎 5.3)

≅ ̂(𝐴 ⊗ 𝐴) ⊗ 𝐴

≅ ̂𝐴 ⊗ (𝐴 ⊗ 𝐴)(𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 5.1)

≅ ̂𝐴 ⊗ 𝐴 ⊗ 𝐴

■

Because of the Lemma 5.4, we can identify ̂𝐴 ⊗ 𝐴 ⊗ 𝐴 = ̂𝐴⊗̂ ̂𝐴⊗̂ ̂𝐴with ̂̂𝐴 ⊗ 𝐴 ⊗ 𝐴
and ̂𝐴 ⊗ 𝐴 ⊗ 𝐴. Now we can definite generalized 𝕂-algebra almost word for word by

the concepts of 𝕂-algebra as following:

Definition 5.2 A generalized 𝕂 algebra (with unit) is a 𝕂-vector space (A,F) together
with two 𝕂-filtered maps, multiplication m: ̂𝐴⊗̂ ̂𝐴 → ̂𝐴 ( where ̂𝐴⊗̂ ̂𝐴 = 𝑋 ⊗ 𝑋, 𝑋 =

̂𝐴) and unit 𝑢 ∶ 𝕂̂ → ̂𝐴, such that the following diagrams are commutative:

a) associativity b) unit

̂𝐴⊗̂ ̂𝐴⊗̂ ̂𝐴 𝑚⊗̂𝐼𝑑 //

𝐼𝑑⊗̂𝑚

��

̂𝐴⊗̂ ̂𝐴

𝑚

��
̂𝐴⊗̂ ̂𝐴 𝑚 // ̂𝐴

̂𝐴⊗̂ ̂𝐴

𝑚

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

̂𝐴⊗̂ 𝕂̂𝐼𝑑⊗̂𝑢oo

𝜂

��

𝕂̂⊗̂ ̂𝐴

𝑢⊗̂𝐼𝑑

OO

𝜂 // ̂𝐴.
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The 𝐼𝑑 denotes the identity mapping from ̂𝐴 to ̂𝐴, and the 𝜂 dentoes the filtered

map induced by scalar multiplication from 𝕂 to A, where we endow 𝕂 with the trivial

filtration.

Definition 5.3 A generalized 𝕂-coalgebra (with counit) is a 𝕂-vector space (C,F) to-
gether with two 𝕂-linear maps, comultiplicationΔ ∶ ̂𝐶 → ̂𝐶⊗̂ ̂𝐶 and counit𝜖 ∶ ̂𝐶 → 𝕂̂,
such that the following diagrams are commutative:

a) coassociativity b) counit

̂𝐶 Δ //

Δ

��

̂𝐶⊗̂ ̂𝐶

Δ⊗̂𝐼𝑑

��
̂𝐶⊗̂ ̂𝐶 𝐼𝑑⊗̂Δ // ̂𝐶⊗̂ ̂𝐶⊗̂ ̂𝐶,

̂𝐶

Δ

""E
EE

EE
EE

EE
EE

EE
EE

EE
E

⊗̂1𝑘 //

1𝑘⊗̂

��

̂𝐶⊗̂𝕂̂

𝐼𝑑⊗̂𝜖

��

𝕂̂⊗̂ ̂𝐶 𝜖⊗̂𝐼𝑑 // ̂𝐶⊗̂ ̂𝐶,

where the two upper maps in b) are given by 𝑐 ↦ 1⊗̂𝑐 and 𝑐 ↦ 𝑐⊗̂1, for any
𝑐 ∈ 𝐶.

Similarly, we can give the definiton of generalized algebra map and generalized

bialgebra, and generalized convolution product.

Then we have the definition of generalize Hopf algebra:

Definition 5.4 Let (𝐻, 𝐹 , 𝑚, 𝑢, Δ, 𝜖) be a generalized bialgebra. Then H is a gener-

alized Hopf algebra if there exists an element 𝑆 ∈ 𝐻𝑜𝑚𝕂(𝐻̂, 𝐻̂), which is an inverse

to 𝐼𝑑𝐻̂ under the generalized convolution product.

5.1.1 𝑉 ∗ is a generalized Hopf algebra

Recall the definition of 𝑉 , which is a Hopf algebra with (𝑚0, 𝑢0, Δ0, 𝜖0, 𝑆0) and
𝑈 . We say the (𝑈, 𝐹𝑛) is a generalized Hopf algebra with 𝐹𝑛𝑈 =< 𝑒∗

𝑖 |𝑖 > 𝑛 >.

Firstly, we claim it is a generalized algebra. We give a homomorphism
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̂𝑉 ∗ ⊗ 𝑉 ∗ → (𝑉 ⊗ 𝑉 )∗

(𝑎0, 𝑎1, ⋯ ) ↦ 𝑓,

in that equation

𝑓 ∶ (𝑉 ⊗ 𝑉 ) → 𝐶

∑ 𝑘𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 ↦ ∑
𝑛

∑
𝑖+𝑗=𝑛

𝑘𝑖𝑗𝑎𝑛(𝑒𝑖 ⊗ 𝑒𝑗).

Then we have

𝑚 ∶ ̂𝑉 ∗ ⊗ 𝑉 ∗ → 𝑉 ∗

(𝑎0, 𝑎1, ⋯ ) ↦ 𝑓 ∘ Δ

𝑢 ∶ ̂𝐶 → 𝑉 ∗

(𝑐0, 𝑐1, ⋯ ) ↦ ∑ 𝑐𝑖𝜖0.

We claim the 𝑉 ∗ is a generalized algebra.

a)We prove the associativity of generalized algebra by its definition. If 𝑓 = (0, ∑ 𝑓 (1)
𝑖 ⊗

𝑔(1)
𝑖 , ⋯ ), then

(𝑚⊗̂)𝐼𝑑(𝑓)(𝑒𝑠 ⊗ 𝑒𝑡) = (0, ∑ 𝑓 (1)
𝑖 Δ0 ⊗ 𝑔(1)

𝑖 , ⋯ )(𝑒𝑠 ⊗ 𝑒𝑡)

= ∑ 𝑓 (𝑖0+𝑗0)
𝑖 Δ0 ⊗ 𝑔(𝑛)

𝑖 (𝑒𝑠 ⊗ 𝑒𝑡)

= 𝑓(Δ0 ⊗ 𝐼𝑑)(𝑒𝑠 ⊗ 𝑒𝑡).
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By this equation, we can calculate

𝑚(𝑚⊗̂𝐼𝑑)(𝑓)(𝑒𝑛) = ∑
𝑑|𝑛

((𝑚⊗̂𝐼𝑑)𝑓)(𝑒𝑑 ⊗ 𝑒 𝑑
𝑛

), ∀𝑓 ∈ ̂𝑉 ∗⊗̂ ̂𝑉 ∗⊗̂ ̂𝑉 ∗

= ∑
𝑑|𝑛

𝑓(Δ0 ⊗ 𝐼𝑑)(𝑒𝑑 ⊗ 𝑒 𝑑
𝑛

)

= 𝑓(Δ0 ⊗ 𝐼𝑑)Δ0(𝑒𝑛)

= 𝑓(𝐼𝑑 ⊗ Δ0)Δ0(𝑒𝑛)

= 𝑚(𝐼𝑑⊗̂𝑚)(𝑓)(𝑒𝑛).

b) Using the definition, we show its unit. Let 𝑔 = (0, ∑ 𝑐(1)
𝑖 ⊗ 𝑎(1)

𝑖 , ⋯ )

(𝑢⊗̂𝐼𝑑)𝑔(𝑒𝑠 ⊗ 𝑒𝑡)

=(0, ∑ 𝑐(1)
𝑖 𝜖0 ⊗ 𝑎(1)

𝑖 , ⋯ )(𝑒𝑠 ⊗ 𝑒𝑡)

= ∑ 𝑐(𝑠+𝑡)
𝑖 𝜖0(𝑒𝑠) ⊗ 𝑎(𝑠+𝑡)

𝑖 (𝑒𝑡)

=𝑔(𝜖0 ⊗ 𝐼𝑑)(𝑒𝑠 ⊗ 𝑒𝑡).

Note that we have an isomorphism,

𝐶⊗̂𝑉 ∗ → (𝐶 ⊗ 𝑉 )∗

(0, ∑ 𝑐(1)
𝑖 ⊗ 𝑎(1)

𝑖 , ⋯ ) ↦ 𝑓

where

𝑓 ∶ 𝐶 ⊗ 𝑉 → 𝐶

∑ 𝑘𝑛 ⊗ 𝑒𝑛 ↦ ∑ 𝑐(𝑛)
𝑖 𝑘𝑛𝑎(𝑛)

𝑖 (𝑒𝑛),
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thus

𝑚(𝑢⊗̂𝐼𝑑)(𝑔)(𝑒𝑛) = (𝑢⊗̂𝐼𝑑)𝑔Δ(𝑒𝑛)

= 𝑔(𝜖0 ⊗ 𝐼𝑑)Δ(𝑒𝑛)

= 𝑔(1 ⊗ 𝑒𝑛)

= ∑ 𝑐(𝑛)
𝑖 𝑎(𝑛)

𝑖 (𝑒𝑛)

= 𝜂(𝑔)(𝑒𝑛).

By our definition, it is a generalized algebra.

Similarly, we can prove it is a coalgebra and the antipode is 𝑆∗
0, thus it is a gener-

alized Hopf algebra.

Generally, a dual of a Hopf algebra which has countable basis is a generalized Hopf

algebra by similar way.

5.1.2 A Hopf algebra is a generalized Hopf algebra

Another important example is Hopf algebra. For aHopf algebra𝐻(𝑚0, 𝑢0, Δ0, 𝜖0, 𝑆0),
we give a trivial filtration 𝐹𝑛𝐻 = 0, 𝑛 ⩾ 1, then it become a generalized Hopf algebra.

Taking 𝑚0 as an example, we will see the 𝑚 by the universal property in the fol-

lowing diagram

𝐻 ⊗ 𝐻 𝑚0 //

��

𝐻

��

𝐻 ⊗ 𝐻 𝑚 // 𝐻̂.

Similarly, we can get 𝑢, Δ, and 𝜖, and 𝑆, thus we can verify it is a generalized

Hopf algebra.

5.2 Group-like elements of a generalized Hopf algebra 𝑉 ∗

In the final section of this article, we will show the generalized group-like ele-

ments in the generalized Hopf algebra is exactly the algebra maps from 𝑉 to ℂ, which
completely meet our goal.
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Definition 5.5 Let (𝐻, 𝐹)(𝑚, 𝑢, Δ, 𝜖) be a generalized bialgebra. 𝑐 is called group-

like if Δ𝑐 = 𝑐⊗̂𝑐 and 𝜖(𝑐) = 1.

Now, we recall maps from equations (4-1) and (4-2), then we have

(𝑉 ⊗ 𝑉 )∗ 𝜎→ 𝑈 ⊗ 𝑈
𝜙
→ 𝑉 ∗⊗̂𝑉 ∗.

The Δ in 𝑉 ∗ is the transport of 𝑚 defined in 𝑉 .

Δ(𝑥)

=𝜙𝜎(𝑥𝑚)

=𝜙(0, 𝑥𝑚(𝑒1 ⊗ 𝑒1)𝑒∗
1 ⊗ 𝑒∗

1 + 𝐹1(𝑈1 ⊗ 𝑈1),

𝑥𝑚(𝑒1 ⊗ 𝑒1)𝑒∗
1 ⊗ 𝑒∗

1+

𝑥𝑚(𝑒1 ⊗ 𝑒2)𝑒∗
1 ⊗ 𝑒∗

2 + 𝑥𝑚(𝑒2 ⊗ 𝑒1)𝑒∗
2 ⊗ 𝑒∗

1 + 𝐹2(𝑈1 ⊗ 𝑈1), ⋯ )

=((0, ⋯ , 0) ⊗ (0, ⋯ , 0) + 𝐹0(𝑉 ∗ ⊗ 𝑉 ∗),

(𝑥𝑚(𝑒1 ⊗ 𝑒1)𝑒∗
1, 0, ⋯ , 0) ⊗ (𝑒∗

1, 0, ⋯ , 0) + 𝐹1(𝑉 ∗ ⊗ 𝑉 ∗),

(𝑥𝑚(𝑒1 ⊗ 𝑒2)𝑒1∗, 0, ⋯ , 0) ⊗ (0, 𝑒∗
2, 0, ⋯ , 0)+

(0, 𝑥𝑚(𝑒2 ⊗ 𝑒1)𝑒∗
2, 0, ⋯ , 0) ⊗ (𝑒∗

1, 0, ⋯ , 0), ⋯ ),

and by the definition of filtration of 𝑉 ∗ ⊗ 𝑉 ∗, 𝐹𝑛(𝑉 ∗ ⊗ 𝑉 ∗) = ∑
𝑖+𝑗=𝑛

𝐹𝑖(𝑉 ∗)𝐹𝑗(𝑉 ∗),

then

𝑥⊗̂𝑥

=((𝑥(𝑒1), 𝑥(𝑒2), ⋯ ) ⊗ (𝑥(𝑒1), 𝑥(𝑒2), ⋯ ) + 𝐹0(𝑉 ∗ ⊗ 𝑉 ∗),

(𝑥(𝑒1), 𝑥(𝑒2), ⋯ ) ⊗ (𝑥(𝑒1), 𝑥(𝑒2), ⋯ ) + 𝐹1(𝑉 ∗ ⊗ 𝑉 ∗),

(𝑥(𝑒1), 𝑥(𝑒2), ⋯ ) ⊗ (𝑥(𝑒1), 𝑥(𝑒2), ⋯ ) + 𝐹2(𝑉 ∗ ⊗ 𝑉 ∗) ⋯ )

=((0, ⋯ , 0) ⊗ (0, ⋯ , 0) + 𝐹0(𝑉 ∗ ⊗ 𝑉 ∗),

(𝑥(𝑒1)𝑒∗
1, 0, ⋯ ) ⊗ (𝑥(𝑒1)𝑒∗

1, 0, ⋯ ) + 𝐹1(𝑉 ∗ ⊗ 𝑉 ∗),
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(𝑥(𝑒1)𝑒∗
1, 0, ⋯ ) ⊗ (𝑥(𝑒1)𝑒∗

1, 0, ⋯ ) + (𝑥(𝑒1)𝑒∗
1, 0, ⋯ ) ⊗ (0, 𝑥(𝑒2)𝑒∗

2, 0, ⋯ )+

(0, 𝑥(𝑒2)𝑒∗
2, 0, ⋯ ) ⊗ (𝑥(𝑒1)𝑒∗

1, 0, ⋯ ) + 𝐹2(𝑉 ∗ ⊗ 𝑉 ∗).

⋯ ).

If 𝑥 is a generalized group like element, then 𝑥(𝑒𝑖𝑒𝑗) = 𝑥(𝑒𝑖)𝑥(𝑒𝑗). Considering the

basis of 𝑉 ∗ ⊗ 𝑉 ∗, we get 𝑥 is a algebra homomorphism. Surely when 𝑥 is an algebra

homomorphism, Δ(𝑥) = 𝑥⊗̂𝑥. Since 𝑥(𝑒1) ≠ 0, 𝑥(𝑒1) = 1, thus 𝜖(𝑥) = 𝑥(𝑒1) = 1,
where 𝜖 is the transpose of 𝑢 in 𝑉 . So

𝐺(𝑉 ∗) = 𝐴𝑙𝑔(𝑉 , 𝐶).
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