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摘 要

本博士论文主要研究的对象是：有限张量范畴的稳定范畴和有限张量范畴的导出范畴，它们是张

量三角范畴的两个主要例子。具体来说，我希望找到 Hopf 代数（或更一般地说有限张量范畴）中三种

等价关系之间的联系。这三种等价关系分别是 gauge 等价（类似于张量范畴的森田等价）、稳定张量等

价和导出张量等价。

本文的第一个主要结果表明，有限维非半单Hopf代数的稳定张量等价在某些条件下能诱导 gauge等

价。接着，我利用幺半 t-结构从导出张量范畴重构出有限维 Hopf 代数。即有限维 Hopf 代数的导出张

量等价可以诱导 gauge 等价。由此我们还可以看出，有限维非半单 Hopf 代数的导出张量等价可以诱导

它们之间的稳定张量等价。以上所有结果都可以借助 Frobenius-Perron 维数推广到有限张量范畴中。

关键词: 张量三角范畴; 稳定张量等价; Frobenius-Perron 维数; 导出张量等价; 幺半 t-结构 ; 重构定理.
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Abstract

My dissertation focuses on the stable categories of finite tensor categories and the derived categories

of finite tensor categories, which are tensor triangulated categories. Specifically I look for relations

between three types of equivalences between Hopf algebras, or more general, between finite tensor

categories. These three types of equivalences are gauge equivalences which are analogue of Morita

equivalences for tensor categories, stable tensor equivalences and derived tensor equivalences.

My first two main results show that a stable tensor equivalence of finite-dimensional non-semisimple

Hopf algebras induces a gauge equivalence under certain conditions. Later on, I have used monoidal

t-structures to reconstruct a finite-dimensional Hopf algebra from its derived tensor category. Namely

a derived tensor equivalence of Hopf algebras induces a gauge equivalence of these Hopf algebras. At

this point we can also see that a derived tensor equivalence of finite-dimensional non-semisimple Hopf

algebras can induce a stable tensor equivalence of these Hopf algebras. All the above results can be

generalized into finite tensor categories with the help of Frobenius-Perron dimensions.

Keywords: Tensor triangulated categories; Stable tensor equivalences; Frobenius-Perron dimensions;

Derived tensor equivalences; Monoidal t-structures; Construction theorem.
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Chapter 1 Introduction

Tensor triangulated categories combine the structural insights of triangulated categories with the

operational framework of tensor categories. They are particularly prominent in modern homotopy

theory and motivic homotopy theory, providing a way for the study of stable homotopy categories of

spectra and derived categories of sheaves. In recent years, there has been tremendous interest in devel-

oping tensor triangulated categories. The spectrum of a tensor triangulated category was introduced

by Paul Balmer [7], providing an algebra-geometric method to the study of tensor triangulated cate-

gories. It establishes an abstract framework to build bridges among different branches of mathematics,

such as algebraic geometry, stable homotopy theory, modular representation theory, motivic theory,

non-commutative topology, and symplectic geometry [6].

There are a number of approaches to do research on tensor triangulated categories. So far, limited

work has been done in purely algebraic fields. Since tensor triangulated categories have both monoidal

and triangulated structures, in terms of triangulated categories, there are two entry points: stable

categories of Frobenius categories and derived categories. Much research on stable categories and

derived categories has been done. However, not much attention has been paid to the tensor structures

in these theories, such as derived Morita theory. Balmer established a classification of thick tensor ideal

in tensor triangulated categories [7]. Schwede and Shipley showed in [49] that stable model categories

with a single compact generator are equivalent to modules over a ring spectrum. Steen and Stevenson

provided a detailed exposition of the conditions such that tensor triangulated categories do not contain

thick tensor ideals admitting strong generators [50]. J. J. Zhang and J.-H. Zhou applied the Frobenius-

Perron theory to tensor triangulated structures of quiver representations in [59]. They defined the

concept of mtt-structure to recover a monoidal abelian equivalence from a derived tensor equivalence

under some conditions. Shahram Biglari gave a Künneth formula in tensor triangulated categories [10].

In representation theory, derived Morita theory helps classify algebras up to derived equivalences.

This classification is vital for understanding the structure of representation categories and their inter-

actions. I am interested in developing the tensor triangulated equivalences of stable categories and

derived categories, and exploring invariants under equivalences further.
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Problems and results

All finite tensor categories are Frobenius categories [19, Chapter 6], hence their stable categories

are tensor triangulated categories (see Lemma 2.3.2). An example of a finite tensor category is the

category of finite-dimensional representations of a finite-dimensional Hopf algebra [18]. As it happens,

Hopf algebras are self-injective algebras [36]. Moreover, the comultiplication and antipodes of Hopf

algebras provide the tensor structure of H-mod. Let H and H 1 be finite-dimensional non-semisimple

Hopf algebras.

Problem 1. If H-mod is equivalent to H 1-mod as a tensor triangulated category, then what are

the relations between H and H 1?

In order to compare two different equivalences between Hopf algebras: gauge equivalences (see

Section 2.1) and stable equivalences, we should first present the relations between Morita equivalences

(gauge equivalences are Morita equivalences) and stable equivalences. Ng and Schauenburg showed

in [39] that H and H 1 are gauge equivalent if and only if H-mod and H 1-mod are tensor equivalent. Even

if the stable categories of two finite-dimensional algebras are equivalent, the corresponding algebraic

structures may be quite different. For example, some direct sum of group algebras are not Morita

equivalent, although they are stably equivalent. Therefore, Broué proposed the concept of stable

equivalence of Morita type [12]. Linckelmann proved that a stable equivalence of Morita type between

two self-injective algebras can be lifted to a Morita equivalence if and only if the equivalence maps any

simple module to a simple module [32]. It is known that some stable equivalences can be induced by a

functor between two categories of representations over self-injective k-algebras which maps projective

modules to projective modules. If in addition, the functor is exact, then the two self-injective k-algebras

are stably equivalent of Morita type [46].

In [18], the Frobenius-Perron dimension of a tensor category C has been defined, which is invariant

under tensor equivalences. For a finite-dimensional Hopf algebra H, FPdim(H-mod) = dimk(H). The

invertibility of simple objects (see Section 3.2) and Frobenius-Perron dimension have been the main

methods in [56] to establish a criterion to get a tensor equivalence from a stable equivalence. These

results to be explained in Chapter 3 tell us that adding tensor structure attached to tensor triangulated

categories may lead to a new version of Morita theory.
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Proposition 1.0.1. ( Proposition 3.2.3 ) Let C and C1 be two non-semisimple finite tensor categories.
Suppose F : C Ñ C1 is an exact k-linear monoidal functor inducing a stable equivalence F : C Ñ C1.

If all simple objects in C and C1 are invertible, then F is a tensor equivalence.

For Hopf algebras, the corresponding result is:

Corollary 1.0.2. ( Corollary 3.2.4 ) Let H and H 1 be finite-dimensional non-semisimple Hopf algebras.
Suppose F : H-mod Ñ H 1-mod is an exact k-linear monoidal functor inducing a stable equivalence
F : H-mod Ñ H 1-mod.

If H and H 1 are basic, then H and H 1 are gauge equivalent.

As an invariant of tensor equivalences, Frobenius-Perron dimension (say FPdim for short) can

determine the equivalence between two tensor categories to some extend (see [18]). Thus by putting

conditions on FPdim we can also recover the tensor equivalence from a stable tensor equivalence.

Theorem 1.0.1. ( Theorem 3.2.12 ) Let C and C1 be two non-semisimple finite tensor categories having
no projective simple objects. Suppose F : C Ñ C1 is an exact k-linear monoidal functor inducing a
stable equivalence F : C Ñ C1.

If FPdim(C) = FPdim(C1), then F is a tensor equivalence.

For Hopf algebras, the corresponding result is:

Corollary 1.0.3. ( Corollary 3.2.13 ) Let H and H 1 be finite-dimensional non-semisimple Hopf algebras
having no simple projective modules. Suppose F : H-mod Ñ H 1-mod is an exact k-linear monoidal
functor inducing a stable equivalence F : H-mod Ñ H 1-mod.

If dimk(H) = dimk(H
1), then H and H 1 are gauge equivalent.

Morita theory for derived categories of algebras has developed well. A finite-dimensional algebra

derived equivalent to a self-injective algebra is itself self-injective [55]. However, derived equivalence

does not preserve the Hopf structure, that is a finite-dimensional algebra derived equivalent to a Hopf

algebra need not be a Hopf algebra. For example, a field k (Hopf algebra) and the n×n matrix over k

(not Hopf algebra since there is no counit) are derived equivalent. This means that tensor structures will

give another version of derived Morita theory. It is known that a bounded derived category of a finite

3
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tensor category also inherits a tensor structure (see Lemma 2.3.9). In particular, Db(H-mod) becomes a

tensor triangulated category. However, if H is not semisimple, then Kb(PH) is not a monoidal category

since it does not contain identity.

Problem 2. If Db(H-mod) is equivalent to Db(H 1-mod) as a tensor triangulated category, then

what are the relations between H and H 1?

Reconstruction results were already obtained by Bondal and Orlov in different context [11]. More

precisely, when considering a smooth algebraic variety V with ample either canonical or anticanonical

sheaf, the variety V is uniquely determined by its derived category of coherent sheaves. Furthermore,

Balmer showed that the derived category of coherent sheaves on a smooth variety, when considered as

a monoidal category in addition to its triangulated category structure (i.e. as a tensor triangulated

category), completely determines the variety uniquely [5]. As a corollary, a tensor triangulated equiv-

alence between the derived categories of the perfect complexes over two reduced noetherian schemes

induces an isomorphism between these two schemes.

As I mentioned before, in [59] Zhang and Zhou defined mtt-structures (latter on, we will give a

different version in Definition 4.1.6) on a tensor triangulated category. They observed that under certain

strong assumptions, the heart of an mtt-structure is a tensor category. Then they solved a version of

Problem 2 under some conditions in the case of hereditary weak bialgebras. We redefined monoidal

t-structures, and it happens that all the equivalent monoidal t-structures in a bounded derived category

with 0 contained in the set of deviation (see Section 4.1) are equal. Based on our latest results, it is

possible to reconstruct a finite-dimensional Hopf algebra from its derived tensor category by using the

monoidal t-structure in Chapter 4.

Theorem 1.0.2. ( Theorem 4.2.3 ) Let C and C1 be finite tensor categories. Db(C) is equivalent to
Db(C1) as a tensor triangulated category if only if C and C1 are tensor equivalent.

For Hopf algebras, the corresponding result is:

Corollary 1.0.3. ( Corollary 4.2.4 ) Let H and H 1 be finite-dimensional Hopf algebras. Db(H-mod)
is equivalent to Db(H 1-mod) as a tensor triangulated category if only if H and H 1 are gauge equivalent.

The stable categories and derived categories are not completely independent. For a finite-dimensional
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self-injective k-algebra A, there is a triangle equivalence [47]:

F : Db(A-mod)/Kb(PA) Ñ A-mod

where Kb(PA) is the homotopy category of bounded complexes over PA the full subcategory of finite

generated projective A-modules. In addition, if two finite-dimensional self-injective algebras are derived

equivalent then they are stably equivalent [47]. As a corollary of Theorem 1.0.2, we get the following

result:

Theorem 1.0.4. ( Theorem 4.2.10 ) Let C and C1 be two non-semisimple finite tensor categories. If
Db(C) » Db(C1) as tensor triangulated categories, then

C » C1

as tensor triangulated categories.

For Hopf algebras, the corresponding result is:

Corollary 1.0.5. ( Corollary 4.2.11 ) Let H and H 1 are two non-semisimple Hopf algebras. If
Db(H-mod) » Db(H 1-mod) as tensor triangulated categories, then

H-mod » H 1-mod

as tensor triangulated categories.

Problem 3. How closely is Problem 1 related to Problem 2 ?

In [7], Balmer defines the concept of thick tensor ideal. Given a tensor triangulated category C and a

thick tensor ideal I, one can deduce that the Verdier quotient C/I is still a tensor triangulated category.

It is direct to check that the essential image of the natural embedding Kb(PH) Ñ Db(H-mod) is a

thick tensor ideal, which means the quotient category Db(H-mod)/Kb(PH) is still a tensor triangulated

category. Then a triangle equivalent functor F above is indeed a monoidal functor in the case of Hopf

algebras, that is, Db(H-mod)/Kb(PH) is equivalent to H-mod as tensor triangulated categories. From

this perspective we can also obtain Corollary 4.2.11.

In order to better understand the tensor triangulated equivalences, I am also concerned about

the issue of invariants. The tensor structure of a tensor triangulated category equips Grothendieck
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(Green) groups with ring structures. Derived (stable) Grothendieck (Green) rings are invariants of

derived (stable) tensor equivalences between finite tensor categories. I have started to compute some

examples, such as Taft algebras. Work on the following problem is ongoing but not included in this

dissertation.

Problem 4. Are there computable invariants of a tensor triangulated equivalence?

Organization of the dissertation

This dissertation is built up as follows:

In Chapter 1, motivations, main problems and results are stated.

In Chapter 2, the elementary knowledge about tensor triangulated categories will be introduced.

The stable categories of finite tensor categories and the derived categories of finite tensor categories,

as two main examples of tensor triangulated categories, come into our picture accompanied by some

rich compatibility between tensor functors and translation functors.

Chapter 3 is devoted to the relations between finite tensor categories and the corresponding stable

tensor categories. We will see a stable equivalence between two finite tensor categories can induce

a correspondence between simple objects. The main results demonstrate that a stable equivalence

induced by an exact k-linear monoidal functor can be lifted to a tensor equivalence by utilizing the

invertibility of simple objects and the restriction of Frobenius-Perron dimensions.

Chapter 4 presents the definition of monoidal t-structure t and the deviation of t. After that, we

notice that all the equivalent monoidal t-structures on a tensor triangulated category are the same.

This leads to our reconstruction theory, spelled out: Bounded derived categories of two finite tensor

categories C and C1 are equivalent as tensor triangulated categories if only if C and C1 are tensor

equivalent. As a corollary, stable tensor equivalences can be realized from derived tensor equivalences

between finite tensor categories.

In Chapter 5, we will be concerned with a concrete example of Hopf algebras called Taft alegbras

Hn(q). Our purpose is to compute all the indecomposable complexes in Db(Hn(q)), and then describe

the derived Green ring in the case of Sweedler’s 4-dimensional Hopf algebra.

Throughout this dissertation, k is assumed to be an algebraically closed field. All vector spaces,

algebras, coalgebras, and Hopf algebras are over k. For any k-algebra, the category of finitely generated

6



modules over A is denoted by A-mod. All the categories we consider are k-linear essentially small

categories.
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Chapter 2 On tensor triangulated categories

Triangulated categories were introduced by Verdier [57]. These become tensor triangulated cat-

egories by adding tensor structures. In literature, slightly different definitions of tensor triangulated

categories are used. The authors considered symmetric tensor structures due to geometric reasons

in [6, 8, 24, 29, 34, 40, 50]. May proposed further compatibility axioms between tensor and octahe-

dra [34]. I emphasize that the definition of tensor triangulated categories in this dissertation will not

include the symmetric assumption. However, we can still obtain the coherence between tensor struc-

tures and cosyzygy functors in the case of stable tensor categories, and natural isomorphisms providing

compatibility between tensor structures and shift functors in the case of derived tensor categories.

In this chapter, I will firstly introduce two basic structures of tensor triangulated categories,

tensor categories and triangulated categories. In Section 2.1, some preliminaries on Hopf algebras and

tensor categories are presented (see [16, 18, 36] and the references given there). Section 2.2 is devoted

to the study of triangulated categories. I refer the readers to [4, 22, 31, 58] for details. In Section

2.2, I also summarize without proofs the relevant material on an condition allowing to recover an

equivalence between Frobenius categories from a stable equivalence. After that another main example

called derived categories will be given. Then the definition of tensor triangulated categories will be

introduced in Section 2.3, followed by giving concrete examples of tensor triangulated categories we

are studying, and some compatibility conditions between tensor bifunctors and translation functors.

§2.1 Tensor categories

This section is a mild touching on tensor categories. The main focus will be on the categories of

finitely generated modules over Hopf algebras, as an important example of tensor categories. Hence

some basic knowledge about Hopf algebra will firstly come into our picture. Next, the definition of a

tensor category is introduced, along with some important properties and results that we will use later.

• Algebra. An algebra H is a triple (H,m, u), where H is a k-vector space, and m : H bH Ñ H,

u : k Ñ H are linear maps, such that following diagrams both commute:

9



H b H b H

id bm

��

mbid // H b H

m

��
H b H m

// H

kb H
ubid //

–
&&MM

MMM
MMM

MM
H b H

m
��

H b k
id buoo

–
xxqqq

qqq
qqq

q

H

m and u are called the multiplication and the unit, respectively.

The definition of coalgebra is “dual” to the definition of algebra:

• Coalgebra. A coalgebra H is a triple (H,∆, ε), where H is a k-vector space, and ∆ : H Ñ HbH,

ε : H Ñ k are linear maps, such that the following diagrams both commute:

H

∆

��

∆ // H b H

∆bid
��

H b H
id b∆

// H b H b H

H

∆
��

–

xxqqq
qqq

qqq –

&&MM
MMM

MMM
M

k b H H b H
εbid
oo

id bε
// H b k

∆ and ε are called the comultiplication and the counit, respectively.

• Hopf algebra. Suppose that (H,m, u) is a k-algebra, and (H,∆, ε) is a k-coalgebra. H is said

to be a Hopf algebra over k, if

(1) ∆ and ε are both algebra maps (H is called a bialgebra);

(2) There is a linear map S : H Ñ H called the antipode, such that

m ˝ (S b id) ˝ ∆ = u ˝ ε = m ˝ (id bS) ˝ ∆

hold on H.

Some definitions in the case of Hopf algebras are also required. We use the symbols ∆, ε and

S respectively, for the comultiplication, counit and antipode of a Hopf algebra H, and write J =
řr

i=1 Ji b J i which is expressed J = Ji b J i using the Einstein summation convention for any element

in H b H.

A gauge transformation of a Hopf algebra H = (H,m, u,∆, ε, S) is an invertible element J = JibJ i

of H b H such that:

(J b 1)((∆ b id)(J)) = (1 b J)((id b∆)(J))

Define an algebra map ∆J : H Ñ H b H by

∆J(h) = J∆(h)J´1

10



and

SJ(h) = JiS(J
i)S(h)S((J´1)j)(J

´1)j

for each h P H. Then HJ = (H,m, u,∆J , ε, SJ) is also a Hopf algebra [16]. Two Hopf algebras H and

H 1 are said to be guage equivalent, if there is a gauge transformation J of H, such that H 1 and HJ

are isomorphic as Hopf algebras [16].

As we can see, Hopf algebras carry coalgebraic structures which gives their module categories

richer structures than abelian categories. More precisely, they admit tensor structures.

Definition 2.1.1. ( [18, Definition 2.2.8] ) A monoidal category is a sextuple (C,b, a,1, l, r) where

• C is a category with a bifunctor b : C ˆ C Ñ C called the tensor product bifunctor;

• a´,´,´ : (´ b ´) b ´
„
ÝÑ ´ b (´ b ´) is a natural isomorphism called associativity constraint;

• 1 is an object of C with two natural isomorphisms:

l´ : 1 b ´ Ñ ´ and r´ : ´ b 1 Ñ ´

called left and right unit constraints respectively;

subject to the following two axioms:

(1) pentagon axiom

((W b X) b Y ) b Z

(W b (X b Y )) b Z (W b X) b (Y b Z)

W b ((X b Y ) b Z) W b (X b (Y b Z))

aW,X,Y bidZ
aWbX,Y,Z

aW,XbY,Z aW,X,Y bZ

idW baX,Y,Z

(2) the triangle axiom
(X b 1) b Y X b (1 b Y )

X b Y

aX,1,Y

rXbidY idX blY

is commutative for all X,Y P C.

11



Definition 2.1.2. ( [18, Definition 2.4.1] ) Let (C,b, 1, a, l, r) and (C1,b1, 11, a1, l1, r1) be two monoidal
categories. A monoidal functor from C to C1 is a pair (F, J), where F : C Ñ C1 is a functor, and

J´,´ : F (´) b1 F (´)
„
ÝÑ F (´ b ´)

is a natural isomorphism, such that F (1) – 11 and the following diagram is commutative for all
X,Y, Z P C (the monoidal structure axiom)

(F (X) b1 F (Y )) b1 F (Z) F (X) b1 (F (Y ) b1 F (Z))

F (X b Y ) b1 F (Z) F (X) b1 F (Y b Z)

F ((X b Y ) b Z) F (X b (Y b Z)

a1
F (X),F (Y ),F (Z)

JX,Y b1idF (Z) idF (X) b1JY,Z

JXbY,Z JX,Y bZ

F (aX,Y,Z)

A monoidal functor is said to be an equivalence of monoidal categories if it is an equivalence of

ordinary categories.

Let (C,b, 1, a, l, r) be a monoidal category, and let X be an object of C. An object X˚ in C is said

to be a left dual of X if there exist morphisms evX : X˚ b X Ñ 1 and coevX : 1 Ñ X b X˚, called

the evaluation and coevaluation, such that the following compositions are the identity morphisms.

X
coevX b idX
ÝÝÝÝÝÝÝÑ (X b X˚) b X

aX,X˚,X
ÝÝÝÝÝÑ X b (X˚ b X)

idX b evX
ÝÝÝÝÝÝÑ X

X˚
idX˚ b coevX
ÝÝÝÝÝÝÝÝÑ X˚ b (X b X˚)

a´1

X˚,X,X˚
ÝÝÝÝÝÝÑ (X˚ b X) b X˚

evX b idX˚
ÝÝÝÝÝÝÑ X˚

Likewise, an object ˚X in C is said to be a right dual of X if there are morphisms ev1

X : Xb˚X Ñ 1

and coev1

X : 1 Ñ ˚X b X such that the following compositions are the identity morphisms.

X
idX b coev

1
X

ÝÝÝÝÝÝÝÑ X b (˚X b X)
a´1

X,˚X,X
ÝÝÝÝÝÑ (X b ˚X) b X

ev
1
X b idX

ÝÝÝÝÝÝÑ X

˚X
coev

1
X b id˚X

ÝÝÝÝÝÝÝÝÑ (˚X b X) b ˚X
a˚X,X,˚X
ÝÝÝÝÝÝÑ ˚X b (X b ˚X)

id˚X b ev
1
X

ÝÝÝÝÝÝÑ ˚X

An object in a monoidal category is called rigid if it has left and right dual. A monoidal category

is called rigid if every object of C is rigid.

Remark 2.1.3. (1) When a left (resp. right) dual of X P C exists, then the functor X˚ b ´ is the
left adjoint of X b ´ (resp. ˚X b ´ is the right adjoint of X b ´) ( [18, Proposition 2.10.8] ).

(2) If X P C has a left (resp. right) dual object, then it is unique up to isomorphism ( [18, Proposition
2.10.5] ).
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Definition 2.1.4. ( [18, Definition 1.8.5 and Definition 1.8.6] ) A k-linear abelian category A is said
to be finite if the following two conditions are satisfied:

(1) the k-linear space HomA(X,Y ) is finite dimensional for any two objects X,Y in A;

(2) every object in A has finite length;

(3) A has enough projectives; and

(4) there are only finitely many isomorphism classes of simple objects.

If A only satisfies the first two conditions, we call it locally finite.
Equivalently, a k-linear abelian category A is said to be finite if it is equivalent to A-mod over a

finite dimensional k-algebra.

Definition 2.1.5. ( [18, Definition 4.1.1] ) Let C be a locally finite k-linear abelian rigid monoidal
category. We call C a tensor category over k if the bifunctor b : C ˆ C Ñ C is bilinear on morphisms
and EndC(1) – k.

Lemma 2.1.6. ( [18, Propositin 4.2.1] ) The bifunctor in a tensor category is biexact.

Example 2.1.7. Considering a finite-dimensional Hopf algebra H over k, H-mod is a monoidal categoy
with bk being the tensor product of H-modules over k and the unit object k. Moreover, for any
H-module X, antipode S and S´1 define two different actions of H on the k-linear dual space X˚

making H-modules X˚ into the left and right dual of X respectively. To sum up, (H-mod,bk,k) is a
finite tensor category.

An exact and faithful k-linear functor between two tensor categories over k is called a tensor

functor if it is a monoidal functor. Recall that a tensor equivalence is a k-linear monoidal equivalence.

Gauge equivalences are closely related to tensor equivalences, which can be seen by the following lemma

which is the dual form of [48, Corollary 5.9]. Here I state [39, Theorem 2.2] in the case of Hopf algebras.

Lemma 2.1.8. ( [39, Theorem 2.2] ) Let H and H 1 be finite-dimensional Hopf algebras over k. If
H-mod and H 1-mod are tensor equivalent, then H is gauge equivalent to H as Hopf algebras.

Remark 2.1.9. Assume (F, ξ) is a tensor equivalence from H-mod to H 1-mod in Lemma 2.1.8, where
ξX,Y : F (X) b F (Y ) Ñ F (X b Y ) is a natural isomorphism for all X, Y P H-mod. One can verify
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J := ξ´1
H,H(k b k) is invertible in H b H, and then J is a gauge transformation of H. Hence H 1 is

isomorphic to HJ as Hopf algebras.

The following basic properties about tensor categories are used in Section 2.3 to help us understand

some concrete examples of tensor triangulated categories.

Lemma 2.1.10. ( [19, Proposition 2.3] ) Any projective object in a tensor category is also injective,
and vice versa.

Lemma 2.1.11. ( [27, Corollary 2, p.441] ) Let P be a projective object in a tensor category C. Then
P b X and X b P are both projective for any object X P C.

Now Grothendieck (Green) rings are brought into the picture.

Let C be an abelian category over k. We denote by [X] the isomorphism classes of any object X

in C. Let K be the free abelian group generated by the isomorphism classes of objects in C and K0 the

subgroup generated by [X] ´ [Y ] + [Z] for all short exact sequences

0 Ñ X Ñ Y Ñ Z Ñ 0.

Then the Grothendieck group Gr(C) is defined to be the factor group K/K0. Additionally, if we only

consider K0 generated by elements for all split short exact sequences, then the factor group K/K0 is

called Green group denoted by G0(C).

Moreover, if (C,b, 1) is a tensor category. Then the tensor product on C induces a natural multi-

plication on Gr(C) (or G0(C)) defined by [X][Y ] := [X b Y ] which is associative ( [18, Lemma 4.5.1] ).

Hence Gr(C) (or G0(C)) becomes a ring with unit [1] called a Grothendieck ring (Green ring).

Remark 2.1.12. For a tensor category C, the Grothendieck (Green) ring Gr(C) (G0(C)) possesses a
Z-basis given by isomorphism classes of simple (indecomposable) objects in C. Actually, G0(C) is a
quotient ring of Gr(C).

Remark 2.1.13. ( [18, Remark 4.5.6] ) Let C and C1 be tensor categories and let F : C Ñ C1 be a tensor
functor. Then F defines a homomorphism of rings [F ] : Gr(C) Ñ Gr(C1) ([F ] : G0(C) Ñ G0(C1))). If
moreover, F is an equivalence, then [F ] is an isomorphism.
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§2.2 Triangulated categories

§2.2.1 Definitions

Let C be an additive category and T : C Ñ C an automorphism called translation functor. A

sextuple (X,Y, Z, u, v, w) in C is X
u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ TX where X,Y, Z P C and u, v, w are morphisms in

C.

A morphism of sextuples from (X,Y, Z, u, v, w) to (X 1, Y 1, Z 1, u1, v1, u1) is a triple (f, g, h) of mor-

phisms such that the following diagram commutes:

X Y Z TX

X 1 Y 1 Z 1 TX 1

u

f

v

g

w

h Tf

u1 v1 w1

We call this morphism an isomorphism if f, g, h are isomorphisms in C.

A set E of sextuples in C is call triangulation of C if the following conditions are satisfied. The

element of E are then called triangles.

• (TR1)

(i) Every sextuple isomorphic to a triangle is a triangle.

(ii) Every morphism u : X Ñ Y in C can be embedded into a triangle X
u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ TX.

(iii) For any object X P C, X idX
ÝÝÑ X Ñ 0 Ñ TX is a triangle.

• (TR2) If X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ TX is a triangle, then so is Y

v
ÝÑ Z

w
ÝÑ TX

-Tu
ÝÝÑ TY .

• (TR3) Given two triangles (X,Y, Z, u, v, w), (X 1, Y 1, Z 1, u1, v1, w1) and the following commuta-

tive diagram:
X Y

X 1 Y 1

u

f g

u1

there exists a morphism (f, g, h) from (X,Y, Z, u, v, w) to (X 1, Y 1, Z 1, u1, v1, w1).

• (TR4) (The octahedral axiom) Suppose that X
u
ÝÑ Y

i
ÝÑ Z 1 i1

ÝÑ TX, Y v
ÝÑ Z

j
ÝÑ X 1 j1

ÝÑ TY and

X
vu
ÝÑ Z

k
ÝÑ Y 1 k1

ÝÑ TX are triangles in E . Then there exists f : Z 1 Ñ Y 1 and g : Y 1 Ñ X 1 such
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that Z 1 f
ÝÑ Y 1 g

ÝÑ X 1 (Ti)j1

ÝÝÝÑ TZ 1 is also a triangle in E and the following diagram is commutative.

X Y Z 1 TX

X Z Y 1 TX

X 1 X 1 TY

TY TZ 1

u i

v

i1

f

vu k

j

k1

g Tu

j1

j1

(Ti)j1

Ti

Definition 2.2.1. ( [22, Chapter I] ) An additive category C together with a translation functor T

and a triangulation E is called a triangulated category. We then call every triangle in E a distinguished
triangle.

Definition 2.2.2. ( [58, Definition 1.4.3] ) A full subcategory D of a triangulated category C = (C, T, E)
is called a triangulated subcategory if the following conditions are satisfied:

(1) D is closed under isomorphisms;

(2) T restricts to an automorphism of D;

(3) D is closed under extension. (i.e. if X Ñ Y Ñ Z Ñ TX P E and X,Z P D, then Y P D.)

Let (C, T, E) and (C1, T 1, E 1) be triangulated categories. An additive functor F : C Ñ C1 is called

exact if there exists a natural isomorphism φ : FT Ñ T 1F such that

F (X)
F (u)
ÝÝÑ F (Y )

F (v)
ÝÝÑ F (Z)

φF (X)˝F (w)
ÝÝÝÝÝÝÝÑ T 1F (X)

is in E whenever X
u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ TX is in E .

If an exact functor F : C Ñ C1 is an equivalence of categories, we call F a triangle equivalence. C

and C1 are then called triangle equivalent.

§2.2.2 Examples of triangulated categories

In this subsection, two commonly used triangulated categories will be introduced: stable category

and derived category. Readers can find relevant definitions and results in [4, 22,31,58].
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• Stable category

The first example of trianguated categories is coming from the stable categories of special categories

called Frobenius categories. Before working with this kind of triangulated category, I should first present

some of the definitions involved.

Let B be an additive category embedded as a full and extension closed subcategory in some abelian

category A. Following Quillen [42, Chapter 2] the pair (B,S) is called an exact category where S is

the set of exact sequences in A with terms in B. We call a morphism u : X Ñ Y in B a proper

monomorphism if there is an exact sequence 0
u
ÝÑ Y Ñ Z Ñ 0 in S. Similarly, a morphism v : Y Ñ Z

in B is proper epimorphism if there is an exact sequence 0 Ñ X Ñ Y
v

ÝÑ Z Ñ 0 in S.

An object P P B is called S-projective if for any proper epimorphism v : Y Ñ Z and morphism

f : P Ñ Z in B there exists g : P Ñ Y such that f = v ˝ g. Likewise, an object I P B is called

S-injective if for any proper monomorphism u : X Ñ Y and morphism f : X Ñ I in B there exists

g : Y Ñ I such that f = g ˝ u.

An exact category (B,S) is called a Frobenius category if (B,S) has enough S-projective objects

and enough S-injective objects, and an object is S-projective if and only if it is S-injective [23, p.386].

Note that here we say that (B,S) has enough S-projective objects means for any Y P B there exists

a proper epimorphism v : P Ñ Y with P an S-projective in B. In parallel, we say that (B,S) has

enough S-injective objects if for any X P B there exists a proper monomorphism u : X Ñ I with I an

S-injective in B.

Example 2.2.3. A finite tensor category is a Frobenius category by Lemma 2.1.10. Thus for a finite-
dimensional Hopf algebra H, H-mod is also a Frobenius category.

Recall that an artin algebra A is said to be self-injective if it is injective as an A-module. A-mod
is a Frobenius category where A is a self-injective algebra.

Let B be a Frobenius category. The stable category of B written as B is defined as follows: The

objects of B are the same as those of B; For any objects X,Y P B, the morphisms from X to Y are

given by the quotient space

HomB(X,Y ) = HomB(X,Y )/I(X,Y ),

where I(X,Y ) is the subspace of HomB(X,Y ) consisting of homomorphisms which factor through an
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injective object. We say two Frobenius categories B and B1 are stably equivalent, if B and B1 are k-linear

equivalent.

For simplicity of presentations, we stipulate the following notations.

Notation 2.2.1. We use A-mod to denote the stable category of A-mod where A is any self-injective
algebra. Talking about any stable categories B of a Frobenius category B, the following notations are
always used:

• For X,Y P B, let f denote the morphism in the quotient space HomB(X,Y ) represented by
f P HomB(X,Y ). We use the diagram below to indicate f = 0 :

f : X
i

Ñ I
j

Ñ Y,

where f = j ˝ i in HomB(X,Y ) and I is an injective object in B.

• Given a k-linear functor F : B Ñ B1, if F transforms injective objects to injective objects, then
it induces a functor from B to B1:

F : B Ñ B1, X ÞÑ F (X), f ÞÑ F (f),

where X P B and f is a morphism in B.

Lemma 2.2.2. ( [22, p.11] ) Assume that (B,S) is a Frobenius category and X P B. If

0 Ñ X
mX
ÝÝÑ I

pX
ÝÑ Coker(mX) Ñ 0 and 0 Ñ X

m1
X

ÝÝÑ I 1 p1
X

ÝÑ Coker(m) Ñ 0

are in S such that I, I 1 are S-injective, then Coker(mX) – Coker(m1
X) in B.

According to [4, p.125], we can define a cosyzygy functor Ω´1 : B Ñ B as follows. For any

objects X P B choose a fixed exact sequence in S: 0 Ñ X
mX
ÝÝÑ I(X)

pX
ÝÑ Coker(mX) Ñ 0 and define

Ω´1(X) := Coker(mX). Based on Lemma 2.2.2, Ω´1 is well-defined on objects. For any u : X Ñ Y in

B, there is a commutative diagram in B:

0 X I(X) Ω´1(X) 0

0 Y I(Y ) Ω´1(Y ) 0

mX

u

pX

I(u) Ω´1(u)

mY pY

where the existence of I(u) is based on the definition of S-injective I(X), and Ω´1(u) is given by the

universal property of cokernel. It is not difficult to see Ω´1(u) is independent of the choice of I(u) in
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B. So we can define Ω´1(u) := Ω´1(u). A result in [22, p.13] tells us that the cosyzygy functor Ω´1 is

an automorphism of B.

Let (B,S) as a subcategory in some abelian category A be a Frobenius category and B the stable

category. Suppose that X,Y P B and u P HomB(X,Y ). We consider the following commutative

diagram in B:
0 X I(X) Ω´1(X) 0

0 Y Cu Ω´1(X) 0

mX

u

pX

iu

v w

where I(X) is S-injective, and Cu is the pushout of u and mX . Since B is closed under extension in

A, the pushout Cu P B coincides with the pushout in A.

We call the sextuple X
u
ÝÑ Y

v
ÝÑ Cu

w
ÝÑ Ω´1(X) a standard triangle in B. Let E be the class of all

the sextuples which are isomorphic to standard triangles in B.

Theorem 2.2.4. ( [22, Chapter 2, Theorem 2.6] ) Let (B,S) be a Frobenius category. Then (B,Ω´1, E)
is a triangulated category where Ω´1 is the translation functor and E is the triangulation.

A great deal of mathematical effort in the representation theory of algebras has been devoted to

the study of self-injective algebras. The following proposition tells us when a stable equivalence can be

lifted to a Morita equivalence.

Lemma 2.2.5. ( [32, Proposition 2.5] ) Let A and A1 be self-injective k-algebras having no projective
simple modules and F : A-mod Ñ A1-mod be an exact functor. Suppose F induces a stable equivalence
F : A-mod Ñ A1-mod. Then F is an equivalence if and only if F maps any simple A-module to a
simple A1-module.

This result will prove extremely useful in Section 3.2 to help us get first two main theorems. It is

direct to give the category version of Lemma 2.2.5.

Lemma 2.2.6. Let B and B1 be Frobenius categories having no projective simple objects and F : B Ñ B1

be an exact functor. Suppose F induces a stable equivalence F : B Ñ B1. Then F is an equivalence if
and only if F maps any simple object to a simple object.

• Homotopy category
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Suppose A is an abelian category. A chain complex of objects in A is a diagram

X = ¨ ¨ ¨ ÝÑ Xn dn
X

ÝÑ Xn+1 dn+1
X

ÝÑ Xn+2 ÝÑ ¨ ¨ ¨

where Xn P A with maps dnX : Xn Ñ Xn+1 in A such that dn+1
X ˝ dnX = 0 for any n P Z. The map dnX

is called a differential of X. The kernel of dnX is called a n-cycle of X, denoted by Zn = Zn(X). The

image of dn´1
X is called a n-boundary of X, denoted by Bn = Bn(X). The n-th cohomology of X is the

subquotient Hn(X) = Zn/Bn of Xn, n P Z.

A morphism of chain complexes f : X Ñ Y is a family of maps fn : Xn Ñ Y n in A such that the

following diagram commutes.

. . . Xn´1 Xn Xn+1 . . .

. . . Y n´1 Y n Y n+1 . . .

fn´1 fn fn+1

We denote by C(A) the category of chain complexes in A. The objects are chain complexes and

morphisms are morphisms of chain complexes. The category of chain complexes C(A) is again an

abelian category. ( [54, Theorem 1.2.3] )

A complex X is bounded if there are only finitely many n such that Xn ‰ 0; upper-bounded (resp.

lower-bounded) if there is α (resp. β) such that Xn = 0 for all n ą α (resp. n ă β). The notations

Cb(A), C´(A), C+(A) are used to represent the full subcategories of C(A) consisting of all bounded

complexes, upper-bounded and lower-bounded complexes respectively.

Let f , g : X Ñ Y be two morphisms of chain complexes in C(A). A homotopy between f and g

is a sequence (sn)nPZ of morphisms sn : Xn Ñ Y n´1 such that for each n, there exists an equality:

fn ´ gn = dn´1
Y ˝ sn + sn+1 ˝ dnX .

In case there is such a homotopy, we call f and g are homotopic denoted by

s : f „ g.

If g = 0, then f is called null-homotopy (i.e. homotopic to zero) denoted f „ 0.

Let

Htp(X,Y ) := tf : X Ñ Y is a morphism of complexes and f „ 0u.

It is straightforward to see Htp(X,Y ) is an additive subgroup of HomC(A)(X,Y ).
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Now we are ready to define a homotopy category K(A), it is a category having the same objects

as C(A) with morphisms

HomK(A)(X,Y ) = HomC(A)(X,Y )/Htp(X, Y).

Similar to category of complexes, we can also define a ull subcategory K+(A) of K(A) called the

upper-bounded homotopy category of A, the lower-bounded homotopy category K´(A), and the bounded

homotopy category Kb(A).

Let us fix an abelian category A, its category of complexes C(A) and the homotopy category

K(A). The homotopy category K(A) is an additive category, but in general not abelian any more.

There is a fact saying that an abelian triangulated category is semisimple [21]. In the following, we

will know K(A) carries a triangular structure.

Let [1] be the shift funtor of C(A), that is for X P C(A), (X[1])n = Xn+1, dnX[1] = ´dn+1
X , @n P Z.

X = ¨ ¨ ¨ ÝÑ Xn dn
X

ÝÑ Xn+1 dn+1
X

ÝÑ Xn+2 ÝÑ ¨ ¨ ¨

X[1] = ¨ ¨ ¨ ÝÑ Xn+1 ´dn+1
X

ÝÑ Xn+2 ´dn+2
X

ÝÑ Xn+3 ÝÑ ¨ ¨ ¨

For morphism f : X Ñ Y , f [1] : X[1] Ñ Y [1] with (f [1])n = fn+1, @n P Z. In the same way, one can

define shift functor [´1] shifted right by one step.

Let X,Y be objects in C(A) and f : X Ñ Y a morphism. The mapping cone Cone(f) of f is the

following complex in C(A):

(Cone(f))n := Xn+1 ‘ Y n, @n P Z

dnCone(f) :=

´dn+1
X 0

fn+1 dnY

 : Xn+1 ‘ Y n Ñ Xn+2 ‘ Y n+1

Every mapping cone determines a sextuple which is a triangle:

X
f

ÝÝÑ Y
( 01 )
ÝÑ Cone(f) ( 1 0 )

ÝÑ X[1]

Let E be the class of all the sextuples which are isomorphic to the triangles constructed by mapping

cone in K(A).

Theorem 2.2.7. ( [31, Theorem 2.3.1] ) Let A be an abelian category. Then (K(A), [1], E) is a
triangulated category where [1] is the shift functor. Moreover [1] : K(A) Ñ K(A) is an automorphism
with inverse [´1].
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Remark 2.2.8. Kb(A), K+(A), K´(A) are triangulated subcategories.

The following definition is introduced to define derived categories.

Definition 2.2.9. ( [31, Definition 2.5.1] ) Suppose f : X Ñ Y is a morphism in K(A) and f induces
an isomorphism on cohomology, that is, Hn(f) : Hn(X) Ñ Hn(Y ) is an isomorphism in A for any
integer n. Then we call f a quasi-isomorphism. The objects X and Y are then called quasi-isomorphic.

• Derived category

Definition 2.2.10. ( [58, Definition 3.1.1] ) Let A be an additive category. A class of morphisms S

in A is called a multiplicative system if it satisfies the following conditios: (the notation “ñ” means
the morphism in S)

(S1) S is closed under composition and idX P S for any X P A.

(S2) For any diagram in A with s P S,
Z

X Y

s

f

there is t : W Ñ X in S and g : W Ñ Z such that the following diagram is commutative.

W Z

X Y

g

t s

f

Dually, for any diagram in A with s P S,

Z

X Y

s

f

there is a commutative diagram with t P S.

W Z

X Y

g

t s

f
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(S3) These is s P S such that the following diagram is commutative,

‚

‚

‚

gf

s

that means s ˝ f = s ˝ g, if and only if there is t P S such that the following diagram commute,

‚

‚

‚

t

gf

that is f ˝ t = g ˝ t.

Given an additive category A and a multiplicative system S. Let X,Y P A. A right roof (b, s)

from X to Y is a diagram of morphisms below:

X ‚ Ys b

Two right roofs are called equivalent denoted by (a, t) „ (b, s) if there exists the following commutative

diagram
‚

X ‚ Y

‚

t a
i

u u1

hs b

where u P S.

Lemma 2.2.11. ( [58, Lemma 3.2.1] ) The relation between right roofs from X to Y is an equivalence
relation.

The equivalence class of a right roof (a, t) from X to Y is denoted a˝t´1. If a˝t´1 is an equivalence

class of a right roof from X to Y and b ˝ s´1 is an equivalence class of a right roof from Y to Z, then
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we have the following diagram by (S2) in definition 2.2.10:

‚

‚ ‚

X Y Z

r c

t a s b

The composition is defined to be (b ˝ s´1) ˝ (a ˝ t´1) := (b ˝ c) ˝ (t ˝ r)´1.

Definition 2.2.12. ( [58, Definition 3.2.2] ) Let S be a multiplicative system in an additive category
A. The localization of A at S is the category S´1A, whose objects are the same as in A; for objects
X,Y P S´1A, HomS´1A(X,Y ) are the set of all equivalence classes of right roofs from X to Y .

Moreover, given two morphisms b ˝ s´1 and a ˝ t´1 in HomS´1A(X,Y ), we also the following

commutative diagram,
‚ ‚

‚ X

s1

t1 t

s

which means we can find r P S such that a˝t´1 = a1 ˝r´1, b˝s´1 = b1 ˝r´1. Namely, let r = t˝s1 = s˝t1,

a1 = a ˝ s1, and b1 = b ˝ t1.

Define the addition of two equivalence classes to be a ˝ t´1 + b ˝ s´1 := (a1 + b1) ˝ r´1 which is

well-defined by using (S2) and (S3) [58].

Fact 2.2.3. Let α = a ˝ s´1 P HomS´1A(X,Y ) where s P S. Then α is a zero morphism if and only if
there is t P S such that s ˝ t P S and a ˝ t is a zero morphism in A.

A localization functor F : A Ñ S´1A is defined as follows: for any object X P A, F (X) = X; for

any f P HomA(X,Y ), F (f) = f ˝ (idX)´1 P HomS´1A(X,Y ).

Lemma 2.2.13. ( [58, Lemma 3.2.6] ) Let S be a multiplicative system in an additive category A.
Then the quotient category S´1A is an additive category and the localization functor F is an additive
functor.

Here comes a question: when does S´1A become a triangulated category? Next we will see that for
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a special class of multiplicative systems, the quotient category S´1A becomes a triangulated category.

Definition 2.2.14. ( [58, Definition 3.5.1] ) A triangulated subcategory D of a triangulated category
(C, T, E) is called a thick subcategory if it satisfies the following condition: If X f

ÝÑ Y Ñ Z Ñ TX P E
with Z P D and f can factor through an object W P D, then X P D, Y P D.

Let D be a thick subcategory of a triangulated category (C, T, E). Then

S := ϕ(D) = tf : X Ñ Y | there is X
f
ÝÑ Y Ñ Z Ñ TX P E such that Z P Du

is a multiplicative system and D = kerF where F : C Ñ S´1C is the localization functor (see [58,

Lemma 3.5.5]). Under this situation, the Verdier quotient of a thick subcategory D with respect to C

is defined to be C/D := S´1C and the localization functor F : C Ñ C/D is called Verdier functor.

Theorem 2.2.15. ( [58, Theorem 3.4.2, Corollary 3.5.7] ) Let D be a thick subcategory of a triangulated
category (C, T, E) with S := ϕ(D). Then

(1) (C/D, T ) is also a triangulated category.

(2) Suppose that H : C Ñ C1 is an exact functor between triangulated categories, and H maps any
object in D into the zero object in C1. Then there is an unique exact functor G : C/D Ñ C1 such
that the follwoing diagram commute.

C C1

C/D

H

F G

(3) The Verdier functor F : C Ñ C/D is an exact functor and D = kerF. Moreover, F (f) is an
isomorphism if and only if f P S, and any morphism a ˝ s´1 P C/D is an isorphism if and only
if a P S.

Last, by applying the above localization theory to homotopy categories, we will see that the

subcategory D of objects with zero nth-cohomology for @n P Z in the homotopy category is exactly

a thick subcategory. Then its corresponding ϕ(D) is a multiplicative system that satisfies Theorem

2.2.15.
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Proposition 2.2.16. ( [58, Proposition 5.1.1] ) Let K˚(A) be a homotopy category of an abelian
category A where ˚ P tH, b,´,+u and D := tX P K˚(A) | Hn(X) = 0, @n P Zu. Then D is a thick
subcategory and ϕ(D) is the class of all quasi-isomorphism in K˚(A).

Let K˚(A) be a homotopy category of an abelian category A where ˚ P tH, b,´,+u and D = tX P

K˚(A) | Hn(X) = 0, @n P Zu. Define the (unbounded, bounded, upper-bounded, lower-bounded) de-

rived category D˚(A) to be the Verdier quotient D˚(A) := K˚(A)/D where ˚ P tH, b,´,+u. Theorem

2.2.15 tells us that they are triangulated categories.

Let P be the full subcategory consisting of projrctive objects. A full subcategory K´,b(P) of K(P)

includes all the complexes over P, which is upper-bounded with finitely many non-zero cohomologies.

Additionally, if A has enough projective objects, then Db(A) – K´,b(P) as triangulated categories [58].

Lemma 2.2.17. ( [26, Exercise 4.2, p.129] ) Let f : P Ñ Q be a chain map of projective complexes in
K´,b(P). Then f is a homotopy equivalence if and only if Hn(f) : Hn(P ) Ñ Hn(Q) is isomorphic for
each n P Z.

Example 2.2.18. Consider A-mod which is an abelian category for a finite-dimensional algebra A.
The categories of chain complexes C˚(A-mod) where ˚ P tH, b,´,+u contain all the chain complexes of
A-modules such that all the differentials are homomorphisms of A- modules. Then we can get the corre-
sponding homotopy categories K˚(A-mod) and derived categories D˚(A-mod) where ˚ P tH, b,´,+u.

§2.3 Tensor triangulated categories

According to [37], a tensor (monoidal) triangulated category is a triangulated category C having a

monoidal structure [33, Chapter VII]

b : C ˆ C Ñ C

and a unit object 1 P C, such that the bifunctor ´ b ´ is exact in each variable.

Two tensor triangulated categories C and C1 are said to be tensor triangulated equivalent if there

is a monoidal functor making C and C1 be triangulated equivalent.

It is also available to define the Grothendieck group in a triangulated category (C, T, E). We denote

by [X] the isomorphism classes of any object X in C. Let K be the free abelian group generated by
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the isomorphism classes of objects in C and K0 the subgroup generated by [X] ´ [Y ] + [Z] for all

distinguished triangles

X Ñ Y Ñ Z Ñ TX P E .

Then the Grothendieck group Gr(C) is defined to be the factor group K/K0. Additionally, if we only

consider K0 generated by elements for all split distinguished triangles, then the factor group K/K0 is

called Green group denoted by G0(C).

Furthermore, if now (C,b, T ) is a tensor triangulated category. Then the tensor product on C

induces a natural multiplication on K defined by [X][Y ] := [X b Y ] and K0 is an ideal as ´ b ´ is

biexact in C. Thus Gr(C) (or G0(C)) turns out to be a ring called a Grothendieck ring (Green ring) of

a tensor triangulated category.

§2.3.1 Stable tensor categories

In retrospect, all finite tensor categories are Frobenius categories by Lemma 2.1.10. Meanwhile

the stable categories of Frobenius categories are triangulated categories by Theorem 2.2.4. Our first

destination is to show the following basic fact.

Lemma 2.3.1. Let C be a finite tensor category. Then there are a natural isomorphism in C:

eX,Y : Ω´1(X b Y ) Ñ Ω´1(X) b Y, (X,Y P C)

θX,Y : Ω´1(X b Y ) Ñ X b Ω´1(Y ), (X,Y P C)

where Ω´1 is the cosyzygy functor.

Proof. We only prove the first natural isomorphism and will divide our proof in two steps. The first

step is to establish a natural transformation:

eX,Y : Ω´1(X b Y ) Ñ Ω´1(X) b Y.

For any morphisms f : X Ñ X 1 and g : Y Ñ Y 1 in C, we have the following commutative diagram:
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0 X b Y I(X b Y ) Ω´1(X b Y ) 0

0 X b Y I(X) b Y Ω´1(X) b Y 0

0 X 1 b Y 1 I(X 1 b Y 1) Ω´1(X 1 b Y 1) 0

0 X 1 b Y 1 I(X 1) b Y 1 Ω´1(X 1) b Y 1 0

iXbY pXbY

τX,Y

τX1,Y 1

iX1 bidY 1 pX1 bidY 1

where I(X) stands for the injective hull of any object X and all the four rows are exact sequences. The

monomorphisms τX1,Y 1 , τX,Y are given by the universal property of injective hull such that the front

and back squares commute. Furthermore, note that I(X 1 b Y 1), I(X 1) b Y 1 are injective, there exist

morphisms

I(f b g) : I(X b Y ) Ñ I(X 1 b Y 1),

I(f) b g : I(X) b Y Ñ I(X 1) b Y 1

making the top and right squares commute. The commutativity of the bottom square is routine to

verify.

Next, we complete the above diagram as follows:

0 X b Y I(X b Y ) Ω´1(X b Y ) 0

I(X) b Y Ω´1(X) b Y 0

I(X 1 b Y 1) Ω´1(X 1 b Y 1) 0

I(X 1) b Y 1 Ω´1(X 1) b Y 1 0

iXbY pXbY

τX,Y eX,Y

I(f)bg

τX1,Y 1 eX1,Y 1

pX1 bidY 1

By the universal property of cokernel, the morphisms

eX,Y : Ω´1(X b Y ) Ñ Ω´1(X) b Y,

eX1,Y 1 : Ω´1(X 1 b Y 1) Ñ Ω´1(X 1) b Y 1,

Ω´1(f b g) : Ω´1(X b Y ) Ñ Ω´1(X 1 b Y 1),
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Ω´1(f) b g : Ω´1(X) b Y Ñ Ω´1(X 1) b Y 1

are given to make the back, front, top and bottom squares commute. Indeed, they are well-defined

and unique in C. The right square is commutative since eX1,Y 1 ˝ Ω´1(f b g) and (Ω´1(f) b g) ˝ eX,Y

both satisfy the universal property of Ω´1(X b Y ) as the cokernel of iXbY . That is, eX,Y is a natural

transformation in both variable.

The second step is to verify eX,Y is in fact an isomorphism in C. By the construction of eX,Y ,

there is the following pullback diagram:

I(X b Y ) Ω´1(X b Y )

I(X) b Y Ω´1(X) b Y

pXbY

τX,Y eX,Y

pXbid

which induces the following split exact sequence:

0 Ñ I(X b Y ) Ñ Ω´1(X b Y ) ‘ (I(X) b Y ) Ñ Ω´1(X) b Y Ñ 0.

Hence we have

Ω´1(X b Y ) ‘ (I(X) b Y ) – I(X b Y ) ‘ (Ω´1(X) b Y )

in C. Moreover by Lemma 2.1.11, we have

Ω´1(X b Y ) – Ω´1(X) b Y

in C. Consequently, there is a natural isomorphism eX,Y in C:

eX,Y : Ω´1(X b Y ) – Ω´1(X) b Y

which completes the proof.

Using the above Lemma 2.3.1, we can obtain that:

Lemma 2.3.2. Let C be a finite tensor category, then C is a tensor triangulated catgegory.

Proof. Our problem reduces to prove C has a monoidal structure.

Firstly, there is a monodidal quotient functor F : C ÝÑ C being identity on objects and sending

every morphism f to f . Next, the tensor product on C written as b can be defined as follows:

b : C ˆ C Ñ C
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such that X bY = F (X b Y ) for any objects X,Y and f b g = F (f b g) for morphisms f, g. By

Lemma 2.1.11, it is straightforward to see the tensor product b is well-defined. Similarly, the unit

object, the associativity constraint, left and right unit constraints are given by

1 := F (1), aX,Y,Z := F (aX,Y,Z), lX := F (lX), rX := F (rX) (X P C).

Finally, the establishment of “the pentagon axiom” and “the triangle axiom” are obvious since F is a

functor.

Owing to Lemma 2.3.1, we conclude that ´ bY is an exact functor of C [22, Lemma 2.8] and the

exactness in the second variable is similar. Thus ´ b ´ is biexact in C. Hence C is a tensor triangulated

category.

Before proceeding further, we point out that the stable category of a finite tensor category also has

some rich compatibility between tensor functors and cosygyzy functors. The following commutative

diagram is usually called “coherence”.

Proposition 2.3.3. Let C be a finite tensor category. Then for any objects X,Y, Z P C, we deduce the
following commutative diagrams in C:

Ω´1((X bY )bZ) Ω´1(X bY )bZ (Ω´1(X)bY )bZ

Ω´1(X b (Y bZ)) Ω´1(X)b (Y bZ)

eXbY,Z

Ω´1(aX,Y,Z)

eX,Y b id

aΩ´1(X),Y,Z

eX,Y bZ

Ω´1((X bY )bZ) (X bY )bΩ´1(Z) X b (Y bΩ´1(Z))

Ω´1(X b (Y bZ)) X bΩ´1(Y bZ)

θXbY,Z

Ω´1(aX,Y,Z)

aX,Y,Ω´1(Z)

id b θX,Y

θX,Y bZ

Proof. We only give proof details of the first diagram. For any X,Y, Z P C, consider the following

three exact sequences:

0 Ñ X ↣ I(X) ↠ Ω´1(X) Ñ 0,

0 Ñ X b Y ↣ I(X b Y ) ↠ Ω´1(X b Y ) Ñ 0,

0 Ñ X b Y b Z ↣ I(X b Y b Z) ↠ Ω´1(X b Y b Z) Ñ 0.
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Since ´ b ´ is biexact in C, there are exact sequences:

0 Ñ X b Y b Z ↣ I(X) b Y b Z ↠ Ω´1(X) b Y b Z Ñ 0,

0 Ñ X b Y b Z ↣ I(X b Y ) b Z ↠ Ω´1(X b Y ) b Z Ñ 0.

According to the definition of ´b´, we only need to verify the following triangle is commutative in C.

Here the associativity constraints are suppressed:

Ω´1(X b Y b Z) Ω´1(X b Y ) b Z

Ω´1(X) b Y b Z

eXbY,Z

eX,Y bZ

eX,Y bid

which implies the commutativity of the desired diagram.

Consider the following commutative diagram where all the three columns are exact sequences:

0

X b Y b Z X b Y b Z 0

X b Y b Z

I(X b Y b Z) I(X b Y ) b Z

I(X) b Y b Z

Ω´1(X b Y b Z) Ω´1(X b Y ) b Z

0 Ω´1(X) b Y b Z

0

iXbY bZ iXbY bid

iXbid
τXbY,Z

τX,Y bZ

pXbY bZ

h

pXbY bid

pXbid
eXbY,Z

eX,Y bZ

w

Note that monomorphisms

τXbY,Z : I(X b Y b Z) Ñ I(X b Y ) b Z,

τX,Y bZ : I(X b Y b Z) Ñ I(X) b Y b Z
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are obtained since I(X b Y b Z) is the injective hull of X b Y b Z. As I(X) b Y b Z is injective by

Lemma 2.1.11, there is a morphism

h : I(X b Y ) b Z Ñ I(X) b Y b Z

such that the middle triangle commute. An argument similer to one used in Lemma 2.3.1 shows that

all remaining parts are commutative. However, the morphism

w : Ω´1(X b Y ) b Z Ñ Ω´1(X) b Y b Z

is unique in C and besides

eX,Y b id : Ω´1(X b Y ) b Z Ñ Ω´1(X) b Y b Z

makes the following diagram commutes:

0 X b Y b Z I(X b Y ) b Z Ω´1(X b Y ) b Z 0

0 X b Y b Z I(X) b Y b Z Ω´1(X) b Y b Z 0

iXbY bid

τX,Y bid

pXbY bid

eX,Y bid

iXbid pXbid

Hence, w = eX,Y b id in C. Thus we arrive at the conclusion.

Remark 2.3.4. A stable equivalence induced by an exact monoidal functor is obviously a tensor
triangulated equivalence. We will call it a stable tensor equivalence.

Stable Grothendieck groups are the Grothendieck groups of stable categories as triangulated cate-

gories. They are invariant under stable equivalences. Moreover, in the case of the stable category of a

finite tensor category, the following lemma shows that a stable Grothendieck ring becomes an invariant

of a stable tensor equivalence.

Lemma 2.3.5. Let C and C1 be two non-semisimple finite tensor categories. Assume there is a stable
equivalence between them induced by an exact k-linear monoidal functor F . Then Gr(C) and Gr(C1)

are ring isomorphism.

Proof. Define φ : Gr(C) Ñ Gr(C1) such that φ([X]) = [F (X)] for all X P C.

• φ is well-defined, that is if [X] = [Y ], then [F (X)] = [F (Y )].
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• φ is a group homomorphism, that is

φ([X] + [Y ]) = φ([X]) + φ([Y ]).

Since there is a distinguished triangle

X Ñ X ‘ Y Ñ Y Ñ Ω´1(X),

we know
φ([X] + [Y ]) = φ([X ‘ Y ]) = [F (X ‘ Y )] = [F (X) ‘ F (Y )]

= [F (X)] + [F (Y )] = φ([X]) + φ([Y ]).

• φ is a ring homomorphism, that is

φ([X][Y ]) = φ([X])φ([Y ]).

For the reason that F is a monoidal functor,

φ([X][Y ]) = φ([XbY ]) = [F (XbY )] = [F (X)bF (Y )]

= [F (X)][F (Y )] = φ([X])φ([Y ]).

• φ is an isomorphism.

(1) φ is injective. If φ(X) = [F (X) = 0], then F (X) is a projective object. Since F induces a stable

equivalence, X is a projective objective, that is [X] = 0.

(2) φ is surjective. For any [Y 1] P Gr(C1), there is Y P C such that F (Y ) – Y 1, that is [F (Y )] = [Y 1]

and φ([Y ]) = [Y 1].

§2.3.2 Derived tensor categories

This subsection provides a detail exposition of an example of tensor triangulated categories: the

derived categories of finite tensor categories. In this case, we can also see some compatible relations

between tensor products and shift functors.
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Lemma 2.3.6. Given a finite tensor category C = (b, a, l, r, 1), the category of complexes Cb(C) is a
monoidal category.

Proof. Let X,Y P Cb(C),

X = ¨ ¨ ¨ ÝÑ Xn dn
X

ÝÑ Xn+1 dn+1
X

ÝÑ Xn+2 ÝÑ ¨ ¨ ¨

Y = ¨ ¨ ¨ ÝÑ Y n dn
Y

ÝÑ Y n+1 dn+1
Y

ÝÑ Y n+2 ÝÑ ¨ ¨ ¨

we define the tensor product of objects X rbY to be the total complex:

X rbY = ¨ ¨ ¨ ÝÑ (X rbY )n
dn

XĂbY
ÝÑ (X rbY )n+1

dn+1

XĂbY
ÝÑ (X rbY )n+2 ÝÑ ¨ ¨ ¨

where (X rbY )n :=
À

i+j=n

Xi b Y j and dn
X rbY

:=
À

i+j=n

diX b idY j +(´1)i idXi bdjY for any n P Z.

For two chain maps f : X Ñ Y and g : Z Ñ L in Cb(C), we define the tensor product of chain

maps to be f rbg where (f rbg)n :=
À

i+j=n

f i b gj for any n P Z, which is a chain map. Indeed, in each

degree n, there are
à

i+j=n+1

(f i b gj) ˝ (
à

i+j=n

diX b idZj +(´1)i idXi bdjZ)

=
à

i+j=n

(f i+1 ˝ diX) b gj + (´1)if i b (gj+1 ˝ djZ)

and
(

à

i+j=n

diY b idLj +(´1)i idY i bdjL˝)
à

i+j=n

(f i b gj)

=
à

i+j=n

(diY ˝ f i) b gj + (´1)if i b (djL ˝ gj).

They are equal since f and g are chain maps. Next, we follow the definition to show Cb(C) is a monoidal

category.

(1) Claim: ´ rb ´ is a bifunctor.

By the definition above, ´ rb ´ maps objects into objects and maps chain maps into chain maps.

Given f : X Ñ Y , g : Y Ñ Z, h : U Ñ V , l : V Ñ W , it happens

(g ˝ f)rb(l ˝ h) = (grbl) ˝ (f rbh).

Indeed, ((g ˝ f)rb(l ˝ h))n =
À

i+j=n

(g ˝ f)i b (l ˝ h)j and

((grbl) ˝ (f rbh))n = (
à

i+j=n

gi b lj) ˝ (
à

i+j=n

f i b hj) =
à

i+j=n

(g ˝ f)i b (l ˝ h)j .
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So ´ rb ´ preserves composition.

Given idX : X Ñ X and any object Z in Cb(C), it happens

idX rb idZ = idX rbZ .

Indeed, (idX rb idX)n =
À

i+j=n

idXi b idZj = idn
X rbZ . Hence ´ rb ´ preserves unit morphism:

(2) Associativity constraint.

Define raX,Y,Z : (X rbY )rbZ ÝÑ X rb(Y rbZ), where ranX,Y,Z :=
À

i+j+k=n

aXi,Y j ,Zk . Then raX,Y,Z is an

isomorphism as aXi,Y j ,Zk is an isomorphism for arbitrary i, j, k P Z. We need to verify raX,Y,Z is a

chain map and the naturality. It is enough to verify in each degree n P Z the following diagram

is commutative
((X rbY )rbZ)n ((X rbY )rbZ)n+1

(X rb(Y rbZ))n (X rb(Y rbZ))n+1

dn

(XĂbY )ĂbZ

ran
X,Y,Z ran+1

X,Y,Z

dn

XĂb(Y ĂbZ)

Actually,

dn
(X rbY )rbZ

=
à

i+j+k=n

(diX b idY j ) b idZk +(´1)i(idXi bdjY ) b idZk +(´1)i+j(idXi b idY j ) b dkZ

dn
X rb(Y rbZ)

=
à

i+j+k=n

diX b (idY j b idZk) + (´1)i idXi b(djY b idZk) + (´1)i+j idXi b(idY j bdkZ)

Hence, the above diagram is commutative by the naturality of each aXi,Y j ,Zk .

Next given f : X Ñ U , g : Y Ñ V , h : Z Ñ W , the following diagram is commutative.

((X rbY )rbZ)n (X rb(Y rbZ))n

((U rbV )rbW )n (U rb(V rbW ))n

ran
X,Y,Z

((f rbg)rbh)n (f rb(g rbh))n

ran
U,V,W

Indeed,

((f rbg)rbh)n =
à

i+j+k=n

(f i b gj) b hk

and

(f rb(grbh))n =
à

i+j+k=n

f i b (gj b hk).

The above diagram is commutative by the naturality of each aXi,Y j ,Zk .

35



(3) Unit object: 1 = ¨ ¨ ¨ ÝÑ 0 ÝÑ k ÝÑ 0 ÝÑ ¨ ¨ ¨ where k is in the zero degree.

(4) Left and right unit constraints.

Define rlX : 1rbX Ñ X and rrX : X rb1 Ñ X where rlnX = lXn , rrnX = rXn . By the naturality of each

lXn and rXn , we can get rlX and rrX are chain maps and the naturality. Take rlX for example, the

following diagram is commutative.

(1rbX)n (1rbX)n+1

Xn Xn+1

dn

1ĂbX

rlnX
rln+1
X

dn
X

Given any f : X Ñ U , k : 1 Ñ 1 where (k)0 P k and (k)n = 0 for n ‰ 0, the following diagram is

commutative.
(1rbX)n Xn

(1rbU)n Un

rlnX

(k rbf)n (f)n

rlnU

(5) The pentagon axiom.

In each degree, the following diagram is commutative by the pentagon axiom in C.

(((W rbX)rbY )rbZ)n

((W rb(X rbY )rbZ))n ((W rbX)rb(Y rbZ))n

(W rb((X rbY )rbZ))n (W rb(X rb(Y rbZ)))n

(raW,X,Y rb idZ)n ran

W ĂbX,Y,Z

ran

W,XĂbY,Z
ran

W,X,Y ĂbZ

(idW rbraX,Y,Z)n

(6) The triangle diagram.

In each degree, the following diagram is commutative by the triangle axiom in C.

((X rb1)rbY )n (X rb(1rbY ))n

(X rbY )n

ran
X,1,Y

(rrX rb idY )n (idX rb rlY )n

To sum up, Cb(C) is a monodial category.
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Lemma 2.3.7. Given a finite tensor category C = (b, a, l, r, 1), there are natural isomorphisms in
Cb(C):

eX,Y : X[1]rbY Ñ (X rbY )[1] (X,Y P Cb(A)),

and

θX,Y : X rbY [1] Ñ (X rbY )[1] (X,Y P Cb(A)).

Proof. Define

(eX,Y )
n :=

à

i+j=n,i1+j1=n+1

δi+1,i1δj,j1 idXi+1bY j :
à

i+j=n

Xi+1 b Y j Ñ
à

i1+j1=n+1

Xi1
b Y j1

which is a canonical isomorphism. It is direct to see e´,´ is a chain map and the naturality of e´,´.

While for θX,Y , we define

(θX,Y )
n :=

à

i+j=n,i1+j1=n+1

(´1)iδi,i1δj+1,j1 idXibY j+1 :
à

i+j=n

Xi b Y j+1 Ñ
à

i1+j1=n+1

Xi1
b Y j1

.

The additional sign makes θ a chain map. Indeed, for fixed i, j there are

à

i+j=n+1

(´1)i idXibY j+1 ˝
à

i+j=n

diX b idY j+1 +(´1)i idXi b(´dj+1
Y )

=
à

i+j=n+1

(´1)i+1diX b idY j +(´1)2i idXi b(´djY )

and
´ (

à

i+j=n+1

diX b idY j +(´1)i idXi bdjY ) ˝
à

i+j=n

(´1)i idXibY j+1

=
à

i+j=n+1

(´1)i+1diX b idY j +(´1)2i idXi b(´djY )

In other words, the following diagram is commuting.

(X rbY [1])n (X rbY [1])n+1

((X rbY )[1])n ((X rbY )[1])n+1

À

i+j=n
di
XbidY j+1 +(´1)i idXi b(´dj+1

Y )

(θX,Y )n (θX,Y )n+1

´(
À

i+j=n+1
di
XbidY j +(´1)i idXi bdj

Y )

The natuality of θ is obvious.
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Lemma 2.3.8. Let C be a finite tensor category. For X,Y P Cb(C), the following diagram is anti-
commutative in Cb(C).

X[1]rbY [1] (X rbY [1])[1]

(X[1]rbY )[1] (X rbY )[2]

eX,Y [1]

θX[1],Y θX,Y [1]

eX,Y [1]

Proof. We only need to verify in each degree n P Z the following diagram is anti-commutative.

(X[1]rbY [1])n ((X rbY [1])[1])n

((X[1]rbY )[1])n ((X rbY )[2])n

(eX,Y [1])
n

(θX[1],Y )n (θX,Y [1])n

(eX,Y [1])n

In fact,
(θX,Y [1])

n ˝ (eX,Y [1])
n = ´(

à

i+j=n+1

(´1)i idXibY j+1) ˝
à

i+j=n

idXi+1bY j+1

=
à

i+j=n

(´1)i+1 idXi+1bY j+1

and
(eX,Y [1])

n ˝ (θX[1],Y )
n = ´(

à

i+j=n+1

idXi+1bY j ) ˝
à

i+j=n

(´1)i+1 idXi+1bY j+1

=
à

i+j=n

(´1)i+2 idXi+1bY j+1 .

which complete the proof.

Lemma 2.3.9. Suppose that C = (b, a, l, r, 1) is a finite tensor category, the bounded derived category
Db(C) is a tensor triangulated category.

Proof. First, we show Kb(C) is a monoidal category whose tensor structure inherits ´ rb ´ from Cb(C).

It suffices to check that ´ rb ´ preserves null-homotopy.

Let f : X Ñ Y be homotopy to zero. That means there is s = tsnunPZ, where sn : Xn Ñ Y n´1,

such that fn = sn+1 ˝ dnX + dn´1
Y ˝ sn. For any chain map g : V Ñ W , we define rs = trsnunPZ where

rsn =
À

i+j=n

si b gj . Then

(f rbg)n = rsn+1 ˝ dn
X rbV

+ dn´1

Y rbW
˝ rsn,

that is f rbg is null-homotopy. Similarly, so is grbf . Thus Kb(C) is a tensor triangulated category.
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We have already known Db(C) is a triangulated category. Besides ´ rb ´ is an exact functor by

Lemma 2.3.7 and ´ b ´ is exact in C. Next, we show Db(C) is a monoidal category whose tensor

structure inherits ´ rb ´ from Kb(C). The task is now to show that ´ rb ´ preserves zero morphisms

in Db(C).

Given a zero morphism α = d ˝ t´1 : V ð U Ñ W P Db(C), where t is a quasi-isomorphism. Then

there is a quasi-isomorphism ρ : T Ñ U such that d ˝ ρ is a zero morphism in Kb(C) by Fact 2.2.3.

Hence there exists ϵ = tϵnunPZ, where ϵn : Tn Ñ Wn´1, such that (d ˝ ρ)n = ϵn+1 ˝ dnT + dn´1
W ˝ ϵn.

Let f = b ˝ u´1 : X ð Z Ñ Y be any morphism in Db(C) where u is a quasi-isomorphism. We

need to show αrbf is a zero morphism in Db(C) (The proof of f rbα is similar). Before that, we should

define the tensor product of right roofs. Let

(d ˝ t´1)rb(b ˝ u´1) := (drbb) ˝ (trbu)´1,

where trbu is a quasi-isomorphism by Acyclic Assembly Lemma in [54, Lemma 2.7.3]. This definition

is well-defined.

Hence we can find a quasi-isomorphism rρ = trρnunPZ and a morphism rϵ = trϵnunPZ where rρn =
À

i+j=n

ρi b idZj , rϵn =
À

i+j=n

ϵi b bj such that

((drbb) ˝ rρ)n = rϵn+1 ˝ dn
T rbZ

+ dn´1

W rbY
˝ rϵn.

Indeed,

rϵn+1 ˝ dn
T rbZ

+ dn´1

W rbY
˝ rϵn = (

à

i+j=n+1

ϵi b bj) ˝ (
à

i+j=n

diT b idZj +(´1)i idT i bdjZ)

+ (
à

i+j=n´1

diW b idY j +(´1)i idW i bdjY ) ˝ (
à

i+j=n

ϵi b bj)

=
à

i+j=n

(ϵi+1 ˝ diT ) b bj + (´1)iϵi b (bj+1 ˝ djZ)

+
à

i+j=n

(di´1
W ˝ ϵi) b bj + (´1)i´1ϵi b (djY ˝ bj)

=
à

i+j=n

(di ˝ ρi) b bj = ((drbb) ˝ rρ)n.

That is αrbf is a zero morphism in Db(C) which completes the proof.
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Remark 2.3.10. A tensor triangulated equivalence between two derived categories is called a derived
tensor equivalence.

According to [7, Definition 1.2], a thick tensor ideal X of a tensor triangulated category C is a thick

triangulated subcategory such that X is a (two-sided) tensor ideal: if X P X , A P C then X b A P X

and A b X P X .

Lemma 2.3.11. ( [40, Remark 4.0.6] ) Let X be a thick tensor ideal of a tensor triangulated category
C, then the Verdier quotient category C/X is still a tensor triangulated category.

Recall that Db(C) := Kb(C)/D where D = tX P Kb(C) | Hn(X) = 0, @n P Zu. By Acyclic

Assembly Lemma in [54, Lemma 2.7.3], we know D is a thick tensor ideal of Kb(C). Then by Lemma

2.3.11, wecanalsoknowDb(C) is a tensor triangulated category.
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Chapter 3 Stable equivalences between finite tensor categories

Our aim in this Chapter is to show that a tensor equivalence can be recovered by a stable equiv-

alence induced by an exact k-linear monoidal functor , as a special form of tensor triangulated equiv-

alences, under some certain conditions. Almost all the results in this Chapter can be found in [56].

In Section 3.1, I rephrased a statement about a functor inducing a stable equivalence between

non-semisimple finite Frobenius categories C and C1 gives the following one to one correspondence (see

Lemma 3.1.2):
$

&

%

Isoclasses of indecomposable

non-projective objects in C

,

.

-

Φ //

$

&

%

Isoclasses of indecomposable

non-projective objects in C1

,

.

-Ψ
oo .

Furthermore, if C and C1 have no projective simple objects, we can deduce that for two simple objects

L P C and L1 P C1, L is a subobject of Ψ(L1) if and only if L1 is a quotient object of Φ(L) (see Lemma

3.1.4). Additionally, the set of the indexes of the isoclasses of simple objects as a quotent object of

Φ(L) in C can cover the set of the indexes of the isoclasses of simple objects in C1 (see Lemma 3.1.5).

Section 3.2 is devoted to prove our first two main results (Proposition 3.2.3 and Theorem 3.2.12),

which establish the relation between tenor equivalences and stable tensor equivalences by utilizing the

invertibility of simple objects and the restriction of Frobenius-Perron dimensions..

§3.1 The isoclasses of simple objects under a stable equivalence

First, let us make some basic observations.

Lemma 3.1.1. Let C be a non-semisimple finite Frobenius k-linear abelian category.

(1) Let f : X Ñ Y be an epimorphism in C. If f = 0 in C, then f has the following form:

f : X
i

Ñ P (Y )
p
↠ Y,

where (P (Y ), p) is a projective cover of Y and f = p ˝ i.
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(2) Let g : X Ñ Y be a monomorphism in C. If g = 0 in C, then f has the following form:

g : X
i1

↣ I(X)
p1

Ñ Y,

where (I(X), i1) is an injective hull of X and g = p1 ˝ i1.

Proof.

(1) According to f = 0 in C, we can find a projective object P such that f = β ˝ α, where

f : X
α

Ñ P
β
↠ Y.

Moreover, since f is an epimorphism, so is β. By the universal property of projective cover, there

exists an epimorphism h : P ↠ P (Y ) such that p ˝ h = β.

As a result, we know:

f : X
hα
Ñ P (Y )

p
↠ Y.

(2) We omit the proof, which is similar to (1).

Next result is a categorical version of a result in representation theory of artin algebras.

Lemma 3.1.2. ( [4, cf. Proposition 1.1, p.336] ) Let C and C1 be two non-semisimple finite k-linear
abelian categories and F : C Ñ C1 be a k-linear functor inducing a stable equivalence F : C Ñ C1. Then
F gives a one to one correspondence between the isoclasses of indecomposable non-projective objects in
C and C1.

Proof. For the reason that C and C1 are finite k-linear abelian categories, we can assume C – A-mod,

C1 – A1-mod as k-linear abelian categories, where A and A1 are finite-dimensional k-algebras. For any

A-module X, we deduce the result that P(X,X) Ď rad EndA(X) if and only if X has no non-zero

projective direct summand (See [3, Proposition 2.5].). It follows that EndA(X) is local if and only if

EndA1(X 1) is local where F (X) – X 1 ‘P 1 satisfying that X 1 has no non-zero projective direct summand

and P 1 is projective. That is, X is indecomposable if only if X 1 is indecomposable.

Hence we get the following one to one correspondence
$

&

%

Isoclasses of indecomposable

non-projective A-modules

,

.

-

Φ //

$

&

%

Isoclasses of indecomposable

non-projective A1-modules

,

.

-Ψ
oo .
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Specifically, for any indecomposable non-projective A-module X, we define Φ(X) = X 1 satisfying that

F (X) – X 1 ‘P 1 for some projective A1-module P 1. Conversely, for any indecomposable non-projective

A1-module Y 1, we define Ψ(Y 1) = Y satisfying that F (Y ) – Y 1 ‘Q1 for some projective A1-module Q1.

It is directly to see Φ and Ψ are well-defined by Krull-Schmidt Theorem. Moreover, Φ ˝ Ψ = id and

Ψ ˝ Φ = id. The proof is completed.

Under the assumption of Lemma 3.1.2, there is a pair of mutually inverse maps still denoted by Φ

and Ψ
$

&

%

Isoclasses of indecomposable

non-projective objects in C

,

.

-

Φ //

$

&

%

Isoclasses of indecomposable

non-projective objects in C1

,

.

-Ψ
oo .

Using the above lemma, we deduce the following result.

Lemma 3.1.3. Let C and C1 be non-semisimple finite Frobenius k-linear abelian categories. Suppose
a k-linear functor F : C Ñ C1 induces a stable equivalence between C and C1.

(1) For any indecomposable non-projective object X P C and any simple object L1 P C1, we get L1 is a
quotient object of Φ(X) if and only if HomC1(Φ(X), L1) ‰ 0.

(2) For any indecomposable non-projective object Y 1 P C1 and any simple object L P C, we get L is a
subobject of Ψ(Y 1) if and only if HomC(L,Ψ(Y 1)) ‰ 0.

Proof.

(1) “Only if ” part: We claim the epimorphism f : Φ(X) Ñ L1 satisfies f ‰ 0, which would follow that

HomC1(Φ(X), L1) ‰ 0. First, we note that L1 must be non-projective as Φ(X) is indecomposable

and non-projective. Assume on the contrary that f has the following form:

f : Φ(X)
i

Ñ P (L1)
j
↠ L1

where P (L1) can be chosen as a projective cover of L1 by Lemma 3.1.1 (1). Let us consider the

following commuting diagram:

Φ(X) P (L1) Coker(i)

L1 N

i t

j β

α
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where (Coker(i), t) is the cokernel of i and (β, α) is the pushout of (j, t).

There are two cases which may happen:

(i) If N = 0, then there is an epimorphism:

P (L1) ↠ Coker(i) ‘ L1,

which follows another epimorphism:

P (L1) = P (P (L1)) ↠ P (Coker(i)) ‘ P (L1)

where P (P (L1)) and P (Coker(i)) denote projective covers of P (L1) and Coker(i) respectively.

Thus, Coker(i) = 0 and consequently P (L1) is a direct summand of Φ(X), which contradicts

to the fact that Φ(X) is indecomposable and non-projective.

(ii) If N ‰ 0, since α ˝ f = α ˝ j ˝ i = β ˝ t ˝ i = 0, we find α = 0. This leads to a contradiction

that N = Im(α).

In conclusion, f ‰ 0 and thus HomC1(Φ(X), L1) ‰ 0.

“If ” part: Conversely, HomC1(Φ(X), L1) ‰ 0 makes HomC(Φ(X), L1) ‰ 0 which deduces that L1

is a quotient object of Φ(X).

(2) The proof of this result is dual to that given above by using pullback instead and so is omitted.

Corollary 3.1.4. Let C and C1 be non-semisimple finite Frobenius k-linear abelian categories having
no projective simple objects. Suppose a k-linear functor F : C Ñ C1 induces a stable equivalence between
C and C1. For two simple objects L P C and L1 P C1, L is a subobject of Ψ(L1) if and only if L1 is a
quotient object of Φ(L).

Proof. Since F induces a stable equivalence,

HomC(L,Ψ(L1)) – HomC1(F (L), F (Ψ(L1))) – HomC1(Φ(L),Φ(Ψ(L1))) – HomC1(Φ(L), L1).

Therefore HomC(L,Ψ(L1)) ‰ 0 if and only if HomC1(Φ(L), L1) ‰ 0. The conclusion is obtained by

Lemma 3.1.3.
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Let C and C1 be non-semisimple finite Frobenius k-linear abelian categories having no projective

simple objects. Let tLiuiPI and tL1
jujPJ be the isoclasses of simple objects in C and C1 respectively. We

introduce the following notation

Ji = tj P J | L1
j is a quotient object of Φ(Li)u (i P I).

Corollary 3.1.5. Let C and C1 be non-semisimple finite Frobenius k-linear abelian categories having
no projective simple objects. Suppose a k-linear functor F : C Ñ C1 induces a stable equivalence between
C and C1. Then J =

Ť

iPI

Ji.

Proof. It is suffices to prove J Ă
Ť

iPI

Ji. Indeed, let L1
j be a simple object in C1 and suppose that Li is

a simple subobject of Ψ(L1
j). Therefore L1

j is a simple quotient object of Φ(Li) by Corollary 3.1.4. In

other words, j P Ji for some i P I.

§3.2 The main theorems

As we can see in Lemma 2.2.5, a stable equivalence induced by an exact functor F between two

self-injective algebras can recover the original equivalence between module categories, if and only if F

maps simple modules to simple modules. So the crucial point to prove Proposition 3.2.3 and Theorem

3.2.12 boils down to the following question:

Question: When does an exact k- linear functor maps simple objects to simple object?

§3.2.1 Invertibility of simple objects induces a tensor equivalence

In the begining, we turn to mention the relation between the Chevalley property and the existence

of simple projective objects. A Hopf algebra is said to have the Chevalley property, if the tensor product

of two simple modules is semisimple. Generally, let us say a tensor category has the Chevalley property

if the category of semisimple objects is a tensor subcategory [2, Definition 4.1].

The following lemma is contributed to simplify the assumptions of our results.
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Lemma 3.2.1. Let C be a non-semisimple finite tensor category with the Chevalley property. Then C
has no simple projective objects.

Proof. Otherwise, let L be a simple projective object in C. Since L b L˚ is semisimple, 1 is a direct

summand of it. Moreover, Lemma 2.1.11 tells us that L b L˚ is projective as L is projective. This

implies 1 is also projective, then C is semisimple by [18, Corollary 4.2.13], a contradiction.

A direct consequence of this lemma is:

Corollary 3.2.2. Let H be a finite-dimensional non-semisimple Hopf algebra with the Chevalley prop-
erty. Then H-mod has no simple projective modules.

Let C be a tensor category. An object X in C is invertible if evX : X˚ b X Ñ 1 and coevX : 1 Ñ

X b X˚ are isomorphisms ( [18, Definition 2.11.1] ). A tensor category in which every simple object

is invertible has the Chevalley property ( [18, Proposition 4.12.4] ). With this observation, we are in a

position to show our first main conclusion now:

Proposition 3.2.3. Let C and C1 be two non-semisimple finite tensor categories. Suppose F : C Ñ C1

is an exact k-linear monoidal functor inducing a stable equivalence F : C Ñ C1. If all simple objects in
C and C1 are invertible, then F is a tensor equivalence.

Proof. We claim F maps simple objects to simple objects. Actually, for any simple object L P C, we

know

F (L˚) b F (L) – F (L˚ b L) – F (k) – k.

Then

length(F (L˚))length(F (L)) ď length(F (L˚) b F (L)) = length(k) = 1,

where length(-) denotes the length of the Jordan-Hölder series. Hence length(F (L)) = 1, that is, F (L)

is a simple object.

Since C and C1 are finite, we may assume C – A-mod, C1 – A1-mod as k-linear abelian categories,

where A and A1 are finite-dimensional k-algebras. In addition, as C and C1 are tensor categories, A and

A1 also can be self-injective according to Lemma 2.1.10. Moreover, C and C1 have no projective simple
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objects by Lemma 3.2.1. As a result, F is a k-linear equivalence by Lemma 2.2.5. Consequently it is

a tensor equivalence.

Note that a Hopf algebra H is basic if and only if every simple object in the tensor category of

finite-dimensional H-modules is invertible. So the following conclusion is directly obtained.

Corollary 3.2.4. Let H and H 1 be finite-dimensional non-semisimple basic Hopf algebras. Suppose
F : H-mod Ñ H 1-mod is an exact k-linear monoidal functor inducing a stable equivalence F : H-mod Ñ

H 1-mod. Then H and H 1 are gauge equivalent.

Remark 3.2.5. We conclude this subsection by pointing out that: the inverse of Lemma 3.2.1 is false.
Actually, consider a finite-dimensional Hopf algebra H1 without the Chevalley property such as

A
2

C4
[51] and a finite-dimensional non-semisimple Hopf algebra H2 having the Chevalley property such

as Taft algebra, the tensor product of the two Hopf algebras has no the Chevalley property and all
projective modules are not simple. Indeed, the simple modules of H1 b H2 is the form V b W for
unique simple modules V , W of H1,H2 respectively [17, Theorem 3.10.2]. Besides, since H2 has no
simple projective modules by Lemma 3.2.1, neither does H1 b H2.

§3.2.2 The restriction of Frobenius-Perron dimensions induces a tensor
equivalence

An important technical tool in the study of tensor categories is Frobenius-Perron dimensions. We

mainly follow [18] for the standard notion of Frobenius-Perron dimension.

Let Z+ denote the semi-ring of non-negative integers. A basis B = tbiuiPI of a ring A which is

free as a Z-module is called a Z+-basis if bibj =
ř

kPI

ckijbk with ckij P Z+. A Z+-ring is a ring with a fixed

Z+-basis and with identity 1. Furthermore, A unital Z+ring is a Z+-ring such that 1 P B. Let A be

a transitive unital Z+-ring of finite rank, namely a unital Z+-ring of finite rank satisfies the property:

For any X,Z P B there are Y1, Y2 P B such that XY1 and Y2X contain Z with a nonzero coefficient.

Now we are ready to give the definition of Frobenius-Perron dimension. Let A be a transitive

unitial Z+-ring of finite rank with basis B = tbiuiPI and |I| ă 8. Each bi induces a linear operator

pbi : A Ñ A, a ÞÑ bi ¨ a
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The classical Frobenius-Perron theorem in [20, VIII.2] tells us the existence of maximal eigenvalue

spectral radius ρ(pbi) of pbi, that is

ρ(pbi) := maxt |µ| | µ is an eigenvalue of pbiu

is an eigenvalue of the linear operator pbi.

Here I only introduce the Frobenius-Perron theorem described in [18].

Theorem 3.2.6. ( [18, Theorem 3.2.1] ) Let M be a square matrix with non-negtiva real entries. Then
M has a non-negative real eigenvalue and the spectral radius of B is an eigenvalue.

Define a group homomorphism

FPdim : A Ñ C, FPdim(
ÿ

iPI

αibi) :=
ÿ

iPI

αiρ(pbi)

where αi P Z for i P I. The function FPdim is called the Frobenius-Perron dimension.

Regarding Frobenius-Perron dimension, here are some properties.

Lemma 3.2.7. ( [18, Proposition 3.3.6] )

(1) The function FPdim : A Ñ C is a ring homomorphism.

(2) FPdim is the unique character of A which takes non-negative values on I, and FPdim(X) ď 1

for any X P I.

Due to the following result, one can define the Frobenius-Perron dimensions of objects in a finite

tensor category C.

Lemma 3.2.8. ( [18, Proposition 4.5.4] ) If C is a finite tensor category, then Gr(C) is a transitive
unital Z+-ring of finite rank.

To be specific, for each object X P C, FPdim(X) is the largest positive eigenvalue of the matrix

of left or right multiplication by X on the set of isomorphisc classes of simple objects. Furthermore,

FPdim is the unique additive and multiplicative map which takes positive values on all simple objects

of C. Here is a lemma which we will need later.
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Lemma 3.2.9. ( [18, Proposition 4.5.7] ) Let C and C1 be finite tensor categories. If F : C Ñ C1 is an
exact k-linear monoidal functor, then FPdim(F (X)) = FPdim(X) for any X P C.

Let tLiuiPI be the set of isomorphic classes of simple objects of C, and Pi denotes the projective

cover of Li for each i.

Definition 3.2.10. ( [18, Definition 6.1.6] ) Let C be a finite tensor category. Then the Frobenius-
Perron dimension of C is defined by

FPdim(C) :=
ÿ

iPI

FPdim(Li)FPdim(Pi)

For a finite dimensional Hopf algebra H, it is clear that FPdim(H-mod) = dimk(H), which can

be found in [18, Example 6.1.9].

The following theorem shows that Frobenius-Perron dimensions are invariant under tensor equiv-

alences, which gives us the hint to add the assumption of Frobenius-Perron dimensions.

Theorem 3.2.11. ( [18, Proposition 6.3.3] ) Let C and C1 be finite tensor categories. A tensor functor
F : C Ñ C1 is an equivalence if and only if FPdim(C) = FPdim(C1).

We now turn to prove one of the main theorems.

Theorem 3.2.12. Let C and C1 be two non-semisimple finite tensor categories having no projective
simple objects such that FPdim(C) = FPdim(C1). Suppose F : C Ñ C1 is an exact k-linear monoidal
functor inducing a stable equivalence F : C Ñ C1, then F is a tensor equivalence.

Proof. Let tLiuiPI and tL1
jujPJ be the set of isoclasses of simple objects in C and C1 respectively, where

I and J are finite sets. Moreover, we use Pi (resp. P 1
j) to represent a projective cover of each simple

object Li (resp. L1
j).

The trick of the proof is to show F maps simple objects to simple objects. For any simple object

Li, we know F (Li) – Φ(Li) ‘ Q1
i for some projective object Q1

i by Lemma 3.1.2. In addition, as F is

an exact functor, there is an epimorphism F (Pi) ↠ P (Φ(Li)) for any i P I, where P (Φ(Li)) denotes a

projective cover of Φ(Li).
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Consequently, we can get the following formula:

FPdim(C) =
ÿ

iPI

FPdim(Li)FPdim(Pi) =
ÿ

iPI

FPdim(F (Li))FPdim(F (Pi))

=
ÿ

iPI

FPdim(Φ(Li) ‘ Q1
i)FPdim(F (Pi))

ě
ÿ

iPI

FPdim(Φ(Li))FPdim(P (Φ(Li)))

ě
ÿ

iPI

(
ÿ

jPJi

FPdim(L1
j))(

ÿ

jPJi

FPdim(P 1
j)))

ě
ÿ

jPJ

FPdim(L1
j)FPdim(P 1

j) (by Corollary 3.1.5)

= FPdim(C1).

By the condition that FPdim(C) = FPdim(C1), all the ‘‘ ě ” above are in fact equalities. Due to

ÿ

iPI

FPdim(Φ(Li) ‘ Q1
i)FPdim(F (Pi)) =

ÿ

iPI

FPdim(Φ(Li))FPdim(P (Φ(Li))),

we can deduce that Q1
i = 0 for any i P I. Moreover, by

ÿ

iPI

(
ÿ

jPJi

FPdim(L1
j))(

ÿ

jPJi

FPdim(P 1
j)) =

ÿ

jPJ

FPdim(L1
j)FPdim(P 1

j),

it is clear that each Ji has just one element for i P I. Without loss of generality, let Ji = tL1
φ(i)u where

φ : I Ñ J is a surjection given by Corollary 3.1.5. At last,
ÿ

iPI

FPdim(L1
φ(i))FPdim(P 1

φ(i)) =
ÿ

jPJ

FPdim(L1
j)FPdim(P 1

j)

=
ÿ

iPI

FPdim(Φ(Li))FPdim(P (Φ(Li))),

it follows that FPdim(Φ(Li)) = FPdim(L1
φ(i)) for i P I. Hence F (Li) – Φ(Li) – L1

φ(i) for any i P I.

Since C and C1 are finite, using the same method used in proof of Proposition 3.2.3, we can

assume C – A-mod, C1 – A1-mod as k-linear abelian categories, where A and A1 are finite-dimensional

self-injective k-algebras. By Lemma 2.2.5, F is a k-linear equivalence. Consequently it is a tensor

equivalence.

It is direct to see the following corollary.
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Corollary 3.2.13. Let H and H 1 be finite-dimensional non-semisimple Hopf algebras having no simple
projective modules such that dimk(H) = dimk(H

1). If an exact k-linear monoidal functor F : H-mod Ñ

H 1-mod induces a stable equivalence F : H-mod Ñ H 1-mod, then H and H 1 are gauge equivalent.

Proof. By FPdim(H-mod) = dimk(H) we can get the conclusion.

Remark 3.2.14. We end this section by pointing out that: The condition “the functor F is monoidal”
can not be removed in Theorem 3.2.12. Let us illustrate it with an example. Consider the n2-
dimensional Taft algebras Hn(q1) and Hn(q2), where q1 and q2 are primitive n-th roots of unity (The
specific definition of Taft algebras will be introduced in Chapter 5). [28, Corollary 3.3] tells us that
Hn(q1) and Hn(q2) are gauge equivalent if and only if q1 = q2. As the fact that Hn(q1) and Hn(q2) are
isomorphic as algebras, they are Morita equivalent inducing a functor from Hn(q1)-mod to Hn(q2)-mod.
This functor satisfies the assumptions of Theorem 3.2.12, except that F is a monoidal functor when
q1 ‰ q2.
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Chapter 4 Monoidal t-structures on tensor triangulated cate-
gories

The concept of t-structure was introduced by Beilinson, Bernstein and Deligne to construct the

category of perverse sheaves over an algebraic or analytic variety [9]. Many evidences show that t-

structures play a key role in under standing the structure of triangulated categories such as derived

categories. Alonso Tarrío, Jeremías López and Souto Salorio showed that Rickard’ theorem, that

characterizes when two bounded derived categories of rings are equivalent, can be deduced from t-

structure constructed in [53]. Psaroudakis and Vitória established a derived Morita theory for abelian

categories with a projective generator or injective cogenerator by using realization functor associated

to t-structure in triangulated categories [41].

In [59] Zhang and Zhou defined mtt-structures (i.e. monoidal triangulated t-structure) on tensor

triangulated categories. They observed that under certain conditions of strength, the heart of a mtt-

structure manifests as a tensor category. By using this result, they also gave an statement that derived

tensor equivalences between two finite-dimensional hereditary weak bialgebras can recover the monoidal

abelian equivalences between categories of modules if one the the weak bialgebras is bialgebra. Inspired

by these ideas, we would like to understand if we can give a new description of t-structures in tensor

triangulated categories, in order to express the equivalences of derived tensor equivalences without

adding conditions of hereditary.

Section 4.1 is intended to motivate the investigation of monoidal t-structures. It is worth pointing

out that the Grothendieck ring of the heart of a monoidal t-structure carries all the information of the

Grothendieck ring of the triangulated category itself (see Proposition 4.1.9). We emphasize that the

property of integral make two equivalent monoidal t-structures equal (see Theorem 4.1.15). Section 4.2

established the relations between tensor equivalences (gauge equivalences), derived tensor equivalences

and stable tensor equivalences by using the tool of monoidal t-structures defined in Section 4.1 (see

Theorem 4.2.3 and Theorem 4.2.10).
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§4.1 Deviation and uniqueness of monoidal t-structures

I firstly recalled some basic definitions and properties related to t-structures. References are made

to [9, 13,30]. Let (T ,Σ) be a triangulated category where Σ is the translation functor.

Definition 4.1.1. ( [9, Definition 1.3.1] ) A pair of full subcategories t = (Dď0,Dě1) in T is said to
be a t-structure on T , if they satisfy the following conditions:

(T1) ΣDď0 Ď Dď0 and Dě1 Ď ΣDě1;

(T2) HomT (Dď0,Dě1) = 0;

(T3) For any object X P T , there is a distinguished triangle

Xď0 Ñ X Ñ Xě1 Ñ ΣXď0,

where Xď0 P Dď0 and Xě1 P Dě1.

The subcategories Dď0 and Dě1 are called the aisle and coaisle of t respectively.

Let t = (Dď0,Dě1) be a t-structure on T . The following are some definitions and notations we

will need later.

• For any n P Z, let Dďn := Σ´nDď0, Děn+1 := Σ´nDě1 and Σ´nt := (Dďn,Děn+1). If t is a

t-structure, so is Σnt for any n P Z ( [30, Remark 10.1.2] ).

• Ht := Dď0 XDě0 is called the heart of t, which is an abelian category ( [30, Proposition 10.1.11]).

There is a cohomological functor H0
t
: T Ñ Ht (i.e. a functor sending distinguished triangles in

T to long exact sequences in Ht) defined by:

H0
t
(X) := τď0

t
τě0
t

(X) – τě0
t

τď0
t

(X) for anyX P T ,

where τď0
t and τě0

t are the truncation functors (i.e. the left and right adjoint functor respectively

of the inclusions of Dď0 and Dě0 in T ). In the same way, one can also define functors τďn
t , τěn

t

and Hn
t
:= τď0

t τě0
t Σn – Σnτďn

t τěn
t [30].

• Let t+ := Y
nPZ

Děn, t´ := Y
nPZ

Dďn and tb := t+ X t´. t is called bounded below (resp. bounded

above, bounded) if t+ = T (resp. t´ = T , tb = T ).
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• Let t = (Dď0,Dě1) and t1 = (Dď0
1 ,Dě1

1 ) be t-structures on T . t and t1 are called equivalent

if there exist m ď n P Z such that Dďm Ď Dď0
1 Ď Dďn (if and only if Děm Ě Dě0

1 Ě Děn

see [13, Lemma 4.1]). It is clear that t is equivalent to Σnt for any n P Z.

Example 4.1.2. Let A be an abelian category. We consider the standard t-structure tA := (Dď0
A ,Dě1

A )

on its derived category D˚(A) as follow where ˚ P tH,+,´, bu:

Dď0
A := tX P D˚(A) | H i(X) = 0,@i ě 1u , Dě1

A := tX P D˚(A) | H i(X) = 0,@i ď 0u.

In this case, the heart of tA is equivalent to A [30]. When ˚ is + (resp. ´, b), the standard t-structure
tA is bounded below (resp. bounded above, bounded).

A t-structure on D˚(A) is called intermediate if it is equivalent to the standard t-structure.

Lemma 4.1.3. ( [30, Proposition 10.1.6] ) Let t = (Dď0,Dě1) be a t-structure on a triangulated
category T .

(1) If X P Dďn (resp. X P Děn), then τďn
t X – X (resp. τěn

t X – X).

(2) Let X P T . Then X P Dďn (resp. X P Děn) if and only if τąn
t

X = 0 (resp. τăn
t

X = 0).

Lemma 4.1.4. Let t be a bounded t-structure on a triangulated category T with heart Ht and n P Z.
Then

(1) X = 0 if and only if H i
t
(X) = 0 for any i P Z.

(2) X P Dďn (resp. X P Děn) if and only if H i
t
(X) = 0 (resp. H i

t
(X) = 0) for any i ě n+ 1 (resp.

i ď n ´ 1).

Proof. By [13, Lemma 2.4], (1) holds. Here we only prove the first statement in (2). Let X P Dďn

and i ě n+ 1. Then ΣiX P Dď´1. Hence

H i
t
(X) = H0

t
(ΣiX) = 0.

For another direction, we suppose that X P T satisfying H i
t
(X) = 0 for any i ě n + 1. There is a

distinguish triangle:

Xďn ÝÑ X ÝÑ Xěn+1 ÝÑ ΣXďn.
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By taking the cohomology funtor we get the exact sequence for any i P Z

H i(Xďn) ÝÑ H i(X) ÝÑ H i(Xěn+1) ÝÑ H i+1(Xďn) in Ht.

For any i ě n + 1, H i(Xďn) = 0 by Lemma 4.1.3. Hence H i(X) = H i(Xěn+1). It follows by the

assumption H i(Xěn+1) = 0 for any i ě n+ 1. We also know H i(Xěn+1) = 0 for any i ď n by Lemma

4.1.3. Hence H i(Xěn+1) = 0 for all i P Z, and Xěn+1 = 0 by (1), which implies X – Xďn P Dďn.

The following lemma states that the information of Grothendieck group of the heart of a bounded

t-structure can cover the information of the Grothendieck group of the triangulated category.

Lemma 4.1.5. ( [1, Proposition A.9.5] ) Let t be a bounded t-structure on a triangulated category T
with heart Ht. Then Gr(Ht) – Gr(T ) as groups.

Now we are in the position to give one of the main definitions in this Chapter.

Definition 4.1.6. A bounded t-structure t = (Dď0,Dě1) on a tensor triangulated category C is called
monoidal t-structure if there exists n P Z such that

(M1) Dď0 b Dďn Ď Dď0;

(M2) Dě0 b Děn Ď Dě0.

The set of integer satisfies the conditions in Definition 4.1.6 is called the deviation of t, and is
denoted by dev(t).

Lemma 4.1.7. Let t be a monoidal t-structure on a tensor triangulated category C. For any k P Z,
Σkt is also a monoidal t-structure on C. Moreover, if n P dev(t), then n ´ k P dev(Σ´kt) for any
k P Z.

Proof. Since t is a monoidal t-structure, there exist n P dev(t) such that

Dď0 b Dďn Ď Dď0 and Dě0 b Děn Ď Dě0.

Hence for any k P Z

Dďk b Dďk+n´k Ď Dďk and Děk b Děk+n´k Ď Děk,

which means that Σkt is also a monoidal t-structure with n ´ k P dev(Σ´kt).
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Due to Lemma 4.1.7, even if the deviation of a monoidal t-structure t may not contain 0, we

can always find a integer k such that 0 P dev(Σ´kt). Hence it is not harmful for us to assume that

0 P dev(t).

If t = (Dď0,Dě1) is a monoidal t-structure with 0 P dev(t), it is clear that the heart Ht is closed

under b, namely Ht b Ht Ď Ht. Thus I rephrase the following useful Künneth formula with respect

to t.

Theorem 4.1.8. ( [10, Theorem 4.1] ) Let C be a tensor triangulated category and t be a monoidal
t-structure on C with 0 P dev(t). Then for any n P Z, there is a natural isomorphism

Hn
t
(X b Y ) –

à

i+j=n

H i
t
(X) b Hj

t (Y ) for all X,Y P C.

Proposition 4.1.9. Let t be a monoidal t-structure on a triangulated category C with 0 P dev(t).
Then Ht is a monoidal abelian category with unit H0

t
(1). Furthermore, the Grothendieck group Gr(Ht)

is a ring and Gr(Ht) – Gr(T ) as rings.

Proof. Let X P Ht. We know H i
t
(X) = 0 for any i ‰ 0. According to Proposition 4.1.8 and Lemma

4.1.3, we deduce

X – H0
t
(X) – H0

t
(1b X) – H0

t
(1) b H0

t
(X) – H0

t
(1) b X.

Since Ht is closed under b, it is a monoidal category. By Lemma 4.1.5 we can get K0(Ht) = K0(T )

as rings.

Remark 4.1.10. For a monoidal t-structure t, we know H0
t
(1) ‰ 0. Otherwise for any X P Ht,

X – H0
t
(1) b X – 0, hence Ht = 0, which is impossible for a bounded t-structure on T .

Following by [35, Definition 9.14], a t-structure is called stable if ΣDď0 = Dď0. But the heart of a

stable t-structure is t0u (see [13, Lemma 2.5]). Hence a monoidal t-structure must not be stable. Here

I remind readers that for a t-structure t which is not stable, there are a, b P Z such that a ă b if and

only if Dďa Ĺ Dďb.

Definition 4.1.11. A monoidal category C is called integral if X b Y = 0 if and only if X = 0 or
Y = 0 for any object X,Y P C.
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Example 4.1.12. ( [18, Example 4.3.12] ) We consider the category C of finite-dimensional represen-
tations of the quiver of type A2, which is a monidal category. Such representations are triples (V,W, τ)

where V , W are finite-dimensional vector space, and τ : V Ñ W is a linear operator. The tensor
product on such triples is defined by

(V,W, τ) b (V 1,W 1, τ 1) = (V bk V
1,W bk W

1, τ bk τ
1)

with unit object (k,k, id). Then C is not integral.

Lemma 4.1.13. We assume that t is a monoidal t-structure on a tensor triangulated category C with
0 P dev(t) and heart Ht is an integral monoidal category.

(1) Let X P Dďm, Y P Dďn where m,n P Z such that Hm
t
(X) ‰ 0 and Hn

t
(Y ) ‰ 0. Then

X b Y P Dďm+n+1 with Hm+n
t (X b Y ) ‰ 0..

(2) Let X P Děm and Y P Děn where m,n P Z such that Hm
t
(X) ‰ 0 and Hn

t
(Y ) ‰ 0. Then

X b Y P Děm+n´1 with Hm+n
t (X b Y ) ‰ 0..

Proof. We only show the first statement. By using Proposition 4.1.8, we know

Hn
t
(X b Y ) –

à

i+j=n

H i
t
(X) b Hj

t(Y ).

Since X P Dďm, we know Hj
t (X) = 0 for any j ě m+1. Likewise Hj

t (Y ) = 0 for any j ě n+1. Hence

Hj
t (X b Y ) = 0 for any j ě m+ n+ 2, which implies X b Y P Dďm+n+1 by Lemma 4.1.4. Note that

Ht is integral and Hm
t
(X), Hn

t
(Y ) are not zero, so Hm+n

t (X b Y ) ‰ 0.

Proposition 4.1.14. Let t be a monoidal t-structure on a tensor triangulated category C such that
0 P dev(t) and Ht is an integral monoidal category. Then dev(t) contains only one element 0.

Proof. Otherwise, assume a P dev(t) and a ‰ 0. If a ą 0, then we know Dď0 b Dďa Ď Dď0. Let

X P Dď0 with H0
t
(X) ‰ 0 and Y P Dďa with Ha

t
(X) ‰ 0. By Lemma 4.1.13, we know Ha

t
(X bY ) ‰ 0.

Hence X b Y can not be in Dď0. Dually we can show that the case a ă 0 is also impossible.

The following result will prove extremely useful in Section 4.2.
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Theorem 4.1.15. Let t be a monoidal t-structure on a tensor triangulated category C such that
0 P dev(t) and Ht is an integral monoidal category. If t is equivalent to any monoidal t-structure t1
on C, then t = t1.

Proof. We can assume that 0 P dev(t1). Since t and t1 are equivalent, there exist a ď b P Z such

that Dďa Ď Dď0
1 Ď Dďb. Here we can choose b (resp. a)to be the minimum (resp. maximal) integer

satisfies this condition, namely, there doesn’t exist a integer k ă b (resp. k ą a) such that Dď0
1 Ď Dďk

(resp. Dďk Ď Dď0
1 ). In this case, there are X,Y P Dď0

1 such that both Ha
t
(X) and Hb

t
(Y ) are non zero.

If a = b, then t1 = Σ´at. We can deduce that a = 0. Indeed, t1 = Σ´at and t1 is a monoidal

t-structure with 0 P dev(t1), which implies ´a P dev(t). By Proposition 4.1.14, a = 0.

If a ă b, then one of the following two cases must occur: b ą 0 or a ă 0.

(i) Let b ą 0. By Lemma 4.1.13, H2b
t
(Y b Y ) ‰ 0. Hence Y b Y is not contained in Dď0

1 , which is a

contradiction.

(ii) Let a ă 0. By Lemma 4.1.13, H2a
t
(X b X) ‰ 0. Hence X b X is not contained in Dě0

1 , which is

a contradiction.

To sum up, the only possible case is a = b = 0.

§4.2 Derived equivalences between finite tensor categories

In this section, we will see finite tensor categories are integral. So all the statements in Section

4.1 are available in the case of derived categories of finite tensor categories.

§4.2.1 Reconstruction of a finite tensor category from a derived tensor
category

Lemma 4.2.1. Suppose that C is a finite tensor category and X,Y P C. Then is integral.

Proof. By using Frobenius-Perron dimension, it is clear to get C is integral.
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The lemma below is used to prove our main Theorem 4.2.3 in this subsection.

Lemma 4.2.2. ( [13, Example 4.5] ) Let t be a bounded t-structure on a triangulated category C such
that heart Ht is a finite abelian category. Then all the bounded t-structures on T are equivalent to t.
In particular, for a finite dimensional algebra A, all bounded t-structures on Db(A-mod) are equivalent
to the standard t-structure.

Proof. Let tSiuiPI be the set of non-isomorphism simple object in Ht where I is a finite set, and let

t1 be another bounded t-structure on T . Since I is a finite set, there exists n ď m P Z such that

tSiuiPI Ď Dďm
1 X D1

ěn. Note that Dďm
1 X D1

ěn is closed under extensions. Hence Ht Ď Dďm
1 X D1

ěn,

which means Dďn Ď Dď0
1 Ď Dďm and then t1 is equivalent to t.

Theorem 4.2.3. Let C and C1 be finite tensor categories. If Db(C) and Db(C1) are tensor triangulated
equivalent, then C and C1 are equivalent as tensor categories.

Proof. Let F : Db(C) ÝÑ Db(C1) be a tensor triangulated equivalence. A pair of full subcategories in

Db(C1) is denoted by

U := tX P Db(C1) | DX̃ P Dď0
C such that F (X̃) – Xu,

V := tY P Db(C1) | DỸ P Dě1
C such that F (Ỹ ) – Y u

where (Dď0
C ,Dě1

C ) is the standard t-structure which is a monoidal t-structure in C. Since F induces a

tensor triangulated equivalence, t = (U ,V) is a monoidal t-structure on Db(C1) and the restriction

F |C : C Ñ Ht

is a monoidal abelian equivalence. By Lemma 4.2.2 and Theorem 4.1.15, t is nothing but the standard

t-structure tC1 , hence Ht = C1.

Corollary 4.2.4. Let H and H 1 be finite dimensional Hopf algebras. If Db(H-mod) and Db(H 1-mod)
are tensor triangulated equivalent, then H and H 1 are gauge equivalent.
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§4.2.2 Stable tensor equivalences induced by derived tensor equivalences

Rickard’s Morita theorem for derived categories gives a necessary and sufficient condition for two

algebras to be derived equivalent 4.2.6. This condition is based on the existence of a tilting complex. If

the algebras are self-injective, then the derived equivalence is closely connected with a stable equivalence

4.2.7. The purpose of this Chapter is to explore whether Rickard’s theorems are still true under the

setting on derived tensor categories. I will only state Rickard’s theorems in category version as follows

without mentioning tilting complexes.

Theorem 4.2.5. ( [45, Theorem 6.4] ) Let A and A1 be two finite k-linear abelian categories. We
use P and P 1 to denote the full subcategories consisting of projective objects, then the following are
equivalent:

(1) Kb(P) and Kb(P 1) are equivalent as triangulated categories;

(2) Db(A) and Db(A1) are equivalent as triangulated categories.

Theorem 4.2.6. ( [47, Theorem 2.1] ) Let A be a finite Frobenius k-linear abelian category. The
essential image of the natural embedding

Kb(P) Ñ Db(A)

is a thick subcategory. The quotient category Db(A)/Kb(P) is equivalent to the stable category A as a
triangulated category.

Theorem 4.2.7. ( [47, Corollary 2.2] ) Let A and A1 be finite Frobenius k-linear abelian categories.
If A and A1 are derived equivalent then they are stably equivalent.

Firstly, Theorem 4.2.6 will be realized in the case of derived tensor categories.

Lemma 4.2.8. Let C be a finite tensor category. The essential image of the natural embedding

Kb(P) Ñ Db(C)

is a thick tensor ideal. Moreover, Db(C)/Kb(P) is a tensor triangulated category.
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Proof. We already known that Kb(P) is a thick subcategory by Theorem 4.2.6. The only thing we

need to verify is that Kb(P) is a tensor ideal. As the localization functor is a monoidal functor, so we

deduce that Db(C) is equivalent to K´,b(P) as tensor triangulated categories.

Let P P Kb(P) and Q P K´,b(P). Then P , Q can be written as follows respectively:

P : 0 Ñ P´l Ñ P´l+1 Ñ ¨ ¨ ¨ Ñ P 0 Ñ ¨ ¨ ¨ Ñ P s Ñ 0,

Q : ¨ ¨ ¨ Ñ Q´t Ñ Q´t+1 Ñ ¨ ¨ ¨ Ñ Q0 Ñ ¨ ¨ ¨ Ñ Qm Ñ 0

where the n-th homology object of Q is zero when n ă ´t. By using Lemma 2.1.11 and Lemma 4.1.8

we know that Q b P is quasi-isomorphic to a complex G in Kb(P). Moreover, Lemma 2.2.17 tells us

that P b Q and G are also homotopy equivalent, which means P b Q P Kb(P).

Next, we consider O P K´,b(P) which is homotopic equivalent to a complex P P Kb(P) and any

Q P K´,b(P). The tensor product functor preserves the quasi-isomorphism (also homotopy equivalence

in this case) due to Lemma 2.2.17 and Lemma 4.1.8. Hence O b Q is homotopy equivalent to P b Q.

we know known that P b Q P Kb(P) which shows that O b Q P Kb(P).

Applying the same process on the other side, we get the conclusion the essential image of the

natural embedding Kb(P) Ñ Db(C) is a thick tensor ideal. Lemma 2.3.11 helps us complete the

proof.

Lemma 4.2.9. Let C be a finite tensor category. The essential image of the natural embedding

Kb(P) Ñ Db(C)

is a thick tensor ideal. The Verdier quotient category Db(C)/Kb(P) is equivalent as a tensor triangulated
category to the stable tensor category C.

Proof. By Theorem 4.2.6 and Lemma 4.2.8, it remains to prove that the equivalence functor F : C Ñ

Db(C)/Kb(P) in the proof of Theorem 4.2.6 is also a monoidal functor. Recall that F is given by the

following diagram:
F 1 : C Db(C) Db(C)/Kb(P)

C
F

62



where F 1 is obtained by composing the natiral embedding of C into Db(C) with the Verdier functor.

Note that F 1 is obviously a monoidal functor, and the tensor products in Db(C)/Kb(P) and C are

derived from the b in C. It is a routine to verify F is a monoidal functor.

Let F : C Ñ C1 be an tensor triangulated functor between two tensor triangulated C and C1.

Suppose that I, I 1 are thick tensor ideal of C, C1 respectively such that F (I) Ă I 1, F induces a tensor

triangulated functor F : C/I Ñ C1/I 1 such that the following diagram commute by Theorem 2.2.15:

C C1

C/I C1/I 1

F

F

If moreover, F (I) » I 1, then we know F is also equivalent.

Theorem 4.2.10. Given two finite tensor categories C and C1. If Db(C) » Db(C1) as tensor triangulated
categories, then

C » C1

as tensor triangulated categories.

Proof. By Theorem 4.2.3 or directly by the above statement and Lemma 4.2.9.

Given two finite-dimensional non-semisimple Hopf algebras H and H 1.

Corollary 4.2.11. If Db(H-mod) » Db(H 1-mod) as tensor triangulated categories, then

H-mod » H 1-mod

as tensor triangulated categories.
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Chapter 5 The bounded derived categories of Taft algebras

Throughout this Chapter, we work over a fixed field k with an n-th primitive root of unity q for

some positive integer n. For n ě 1, the n2-dimensional Hopf algebra Hn(q) constructed by Taft in [52] is

one of the frequently used Hopf algebras called Taft alegbras. When n = 2, H2(q) is known as Sweedler’s

4-dimensional Hopf algebras [36]. See [44] for more details about Taft algebras. Cibils in [15] gave the

indecomposable modules over the Taft algebra Hn(q), and the decomposition formula of the tensor

product of two indecomposable modules over Hn(q). In [14], the authors described the structure of the

Green rings of the Taft algebras, and it turns out that the Green rings of Taft algebras are commutative

even if Taft algebras are not quasitriangular in the case n ą 2 (not even almost cocommutative [15]).

Derived Green rings (or derived representation rings) of a class of finite-dimensional Hopf algebras

constructed from the Nakayama truncated algebras kZn/J
2 were introduced in [25]. However, the

authors did not determine the final form of the rings. When n = 2, the Nakayama truncated algebra

kZ2/J
2 is the Sweedler’s 4-dimensional Hopf algebras.

In Section 5.1 I will discuss the case of bounded derived categories of Taft algebras Db(Hn(q)), with

an intention to give all the indecomposable complexes in Db(Hn(q)). Scetion 5.2 deals with the derived

Green ring of Sweedler’s 4-dimensional Hopf algebras Db(H2(q)), Theorem 5.2.3 gives a description of

the ring structure of G0(D
b(H2(q))).

§5.1 Indecomposable objects in the bounded derived categories of Taft
algebras

Given an integer n ě 2. The Taft algebra Hn(q) is generated by two elements g and x subject to

the relations

gn = 1, xn = 0, xg = qgx.

The coalgebra structure and antipode of Hn(q) are determined by

∆(g) = g b g, ∆(x) = x b g + 1 b x,
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ϵ(g) = 1, ϵ(x) = 0,

S(g) = g´1 = gn´1, S(x) = ´q´1gn´1x.

We know a decomposition of the regular module as follows:

Hn(q) =
n´1
à

i=0

Hn(q)ei

where for any 0 ď i ď n ´ 1

ei =
1

n

n´1
ÿ

j=0

q´ijgj ,

and Hn(q)ei = spantei, xei, ¨ ¨ ¨ , xn´1eiu. Indeed te0, e1, ¨ ¨ ¨ , en´1u is a set of orthogonal idempotents

such that
n´1
ÿ

i=0

ei = 1

and

gei = qiei, x
n´1ei ‰ 0.

Let M j
i = Hn(q)ei/ktxn´1ei, ¨ ¨ ¨ , xjeiu. Hence up to isomorphism,

tM j
i | 1 ď j ď n, 0 ď i ď n ´ 1u

are n2 indecomposable finite-dimensional Hn(q)-modules. Specially, tMn
i u0ďiďn´1 are all non-isomorphic

indecomposable projective Hn(q)-modules denoted by Pi := Mn
i for any 0 ď i ď n ´ 1, and they are

the projective covers of all the simple Hn(q)-modules which are denoted by tSiu0ďiďn´1.

Note that for any 0 ď i ď n ´ 1, we know the following short exact sequences:

0 ÝÑ M j´k

i´k
ÝÑ M j

i ÝÑ Mk
i ÝÑ 0 (0 ď k ď j),

and

0 ÝÑ Mk
i ÝÑ M j

i´k+j
ÝÑ M j´k

i´k+j
ÝÑ 0 (0 ď k ď j),

where i ´ k denotes module n residue class. In particular, there are exact sequences:

0 ÝÑ Mn´k

i´k
ÝÑ Pi

πk
i

ÝÑ Mk
i ÝÑ 0 (0 ď k ď n),

and

0 ÝÑ Mk
i

τk
i

ÝÑ Pi´k ÝÑ Mn´k

i´k
ÝÑ 0 (0 ď k ď n).
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Lemma 5.1.1. For any 0 ď i ď n ´ 1 and 1 ď k ď j ď n, we know

dim HomHn(q)(M
j
i ,M

k
i ) = 1.

Proof. For any f P HomHn(q)(M
j
i ,M

k
i ) and l ě k, f(xlei) = 0 as xlf(ei) = 0. While for l ď k ´ 1, we

claim f(xlei) = αxlei for some α P k. First, we deal with l = k ´ 1. By xf(xk´1ei) = 0, we can deduce

that

f(xk´1ei) P kxk´1ei.

Hence

f(xk´1ei) = αk´1xk´1ei.

Next, since x2f(xk´2ei) = 0, we know

f(xk´2ei) P kxk´1ei ‘ kxk´2ei.

We assume

f(xk´2ei) = βxk´1ei + γxk´2ei. (5.1.1)

where α, γ P k. Then we action g on both sides

g ¨ f(xk´2ei) = g ¨ (βxk´1ei + γxk´2ei).

we know

q´(k´2)+if(xk´2ei) = q´(k´1)+iβxk´1ei + q´(k´2)+iγxk´2ei.

Hence

f(xk´2ei) = q´1βxk´1ei + γxk´2ei.

Combine with formula 2.1.10, we can get

(1 ´ q´1)βxk´1ei = 0

that is β = 0. Moreover we know γ = αk´1 by xf(xk´2ei) = f(xk´1ei). Similarly, f(xlei) = αk´1xlei

for l ď k´1. Let the quotient map h : M j
i ↠ Mk

i be xlei ÞÑ xlei where 0 ď l ď n´1. Thus f = αk´1h,

in other words

dim HomHn(q)(M
j
i ,M

k
i ) = 1.
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Remark 5.1.2. we have konwn that the category of modules over Taft algebra Hn(q) is a tensor cate-
gory. Besides, the left dual functor is exact and fully faithful. As linear space, there is an isomorphism
for 0 ď k ď j ď n, 0 ď i ď n ´ 1

HomHn(q)(M
k
i ,M

j

i´k+j
) – HomHn(q)((M

j

i´k+j
)˚, (Mk

i )
˚).

Hence

dim HomHn(q)(M
k
i ,M

j

i´k+j
) = 1.

We use the following morphisms to represent the ”standard” basis:

πi´j
i : Pi ↠ M i´j

i xlei ÞÑ xlei 0 ď l ď n ´ 1.

τ i´j
i : M i´j

i ↣ Pj xlei ÞÑ xn´i´jxlej 0 ď l ď i ´ j ´ 1.

Then any non-zero morphism f P HomHn(q)(Pi, Pj), f can factor through M i´j
i and have the

following form

HomHn(q)(Pi, Pj) = k(Pi

πi´j
i↠ M i´j

i

τ i´j
i↣ Pj).

Indeed, f has the following decomposation

f : Pi ↠ Im(f) ↣ Pj ,

we can deduce Im(f) must be M i´j
i and choose the standard basis τ i´j

i ˝ πi´j
i of HomHn(q)(Pi, Pj).

Notation 5.1.1. For convenience, let us introduce a new notation “Pi Pj” to denote the linear

basis Pi

πi´j
i↠ M i´j

i

τ i´j
i↣ Pj for 0 ď i, j ď n ´ 1.

Lemma 5.1.3. Pi Pj Pk = Pi Pk if and only if one of the three conditions is satisfied
$

’

’

&

’

’

%

i ď j ď k,

k ă i ď j,

j ď k ă i.

Proof. In fact, the equality related to the composition of morphisms can be esteblished iff there is one
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of the following commutative diagrams where the composition of morphism is non zero

Pi
//

"" ""E
EE

E Pj
//

$$ $$JJ
JJJ

J Pk

M i´j
i

::

::uuuuuu

$$ $$HH
HHH

M j´k
j

<<
<<xxxx

M i´k
i

::
::vvvvv

iff there are n ´ i ´ j ă j ´ k, i ´ k ď i ´ j and i ´ k ď j ´ k. There are six cases may happen:

(1) i ď j ď k:
$

’

’

&

’

’

%

n ´ (n+ i ´ j) ă n+ j ´ k ô k ă n+ i,

n+ (i ´ k) ď n+ (i ´ j) ô j ď k,

n+ (i ´ k) ď n+ (j ´ k) ô i ď j.

(2) i ď k ă j:
$

&

%

n+ (i ´ k) ď n+ (i ´ j) ô j ď k which is a contradiction,

n+ (i ´ k) ď j ´ k ô n+ i ď j which is a contradiction.

(3) j ď k ă i:
$

’

’

&

’

’

%

n ´ (i ´ j) ă n+ j ´ k ô k ă i,

i ´ k ď i ´ j ô j ď k,

i ´ k ď n+ (j ´ k) ô i ď n+ j.

(4) j ă i ď k:
$

&

%

n+ (i ´ k) ď i ´ j ô n ď k ´ j which is a contradiction,

n+ (i ´ k) ď n+ (j ´ k) ô i ď j which is a contradiction.

(5) k ă i ď j:
$

’

’

&

’

’

%

n ´ (n+ i ´ j) ă j ´ k ô k ă i,

i ´ k ď n+ (i ´ j) ô j ď n+ k,

i ´ k ď j ´ k ô i ď j.

(6) k ă j ă i:
$

&

%

i ´ k ď i ´ j ô j ď k which is a contradiction,

i ´ k ď j ´ k ô i ď j which is a contradiction.

Thus the three cases satisfied are what we need.
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Lemma 5.1.4. Let I = t0, 1, ¨ ¨ ¨ , n´1u and A,B be two nonempty subsets of I satisfying AXB = H.
There is (j, l) P A ˆ B such that if k P I satisfies one of the following cases

$

’

’

&

’

’

%

j ă k ă l, (˚)

l ă j ă k, (˚˚)

k ă l ă j, (˚ ˚ ˚)

then k R A Y B.

Proof. Otherwise, for any j P A and l P B, there is k P I such that t(j, k), (k, l)u X (A ˆ B) ‰ H.

There are three cases (˚), (˚˚) and (˚ ˚ ˚).

Case 1: If k satisfies (˚). There is k1 P I satisfies (˚), whether (j, k) P A ˆ B or (k, l) P A ˆ B.

Repeating this process we get uncountable numbers which is in contradiction to the finiteness of I.

Case 2: If k satisfies (˚˚). Two cases are going to happen. One is (j, k) P AˆB. Due to the Case

1, contradiction can be obtained. The other is (k, l) P AˆB. Then there is k1 P I such that l ă k ă k1

or k1 ă l ă k.

If l ă k ă k1 and (k, k1) P A ˆ B. Back to Case 1, we get contradiction. If (k1, l) P A ˆ B, we

repeat Case 2 until (˚˚) happens. If only (˚˚) appears in the next steps, we repeat this process getting

uncountable numbers which is in contradiction to the finiteness of I. Otherwise we repeat this process

until (˚ ˚ ˚) is happening which is also in contradiction to the finiteness of I.

If k1 ă l ă k is happening that is case 3.

Case 3: If k satisfies (˚ ˚ ˚). Two cases are going to happen. One is (k, l) P AˆB. Back to Case 1,

contradiction can be obtained. The other is (j, k) P A ˆ B. Then there is k1 P I such that k ă j ă k1

or k1 ă k ă j. We can get contradiction from the same reason in Case 2.

Lemma 5.1.5. Let I = t0, 1, ¨ ¨ ¨ , n´1u and A,B,C be three nonempty subsets of I satisfying AXB =

H and B X C = H. Suppose that (j, k) P B ˆ C is given by Lemma 5.1.4 and (i, j, k) does not satisfy
Lemma 5.1.3 for any i P A, then we can find l P A such that (l, j) satisfies Lemma 5.1.4.
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Proof. As (i, j, k) does not satisfy Lemma 5.1.3, we deduce the following three situations:
$

’

’

&

’

’

%

j ă i ď k, (˚)

i ď k ă j, (˚˚)

k ă j ă i. (˚ ˚ ˚)

If j ă k, only (˚) will happen. We choose the the largest l P A. Then (l, j) must satisfy Lemma

5.1.4.

If j ą k and there is i P A satisfying (˚˚). We choose the largest l P A such that l ă k. Then (l, j)

must satisfy Lemma 5.1.4. Otherwise, each i P A satisfies (˚ ˚ ˚). We also choose the largest l P A,

then (l, j) must satisfy Lemma 5.1.4.

Proposition 5.1.6. Let Pi i P t0, ¨ ¨ ¨ , n ´ 1u be all non-isomorphic indecomposable Hn(q)-modules.
All non-isomorphism indecomposable objects in Db(Hn(q)-mod) are like (adding shift ones):

If X is a bounded complex, X must be isomorphic to

0 ÝÑ Pk´t
Pk´t´1

¨ ¨ ¨Pk´1
Pk0

ÝÑ 0;

If X is a unbounded complex, X must be isomorphism to

¨ ¨ ¨ ÝÑ Pk´3
Pk´2

Pk´1
Pk0

ÝÑ 0

where all ki P t0, ¨ ¨ ¨ , n ´ 1u and any (ks, ks+1, ks+2) in X does not satisfy the conditions in Lemma
5.1.3.

Proof. Denoted by P the additive full subcategory of all projective objects in Hn(q)-mod. For the

reason that Db(Hn(q)-mod) » K´,b(P), it is equivalent to determine all the indecompasoble objects in

K´,b(P).

Let

X : ¨ ¨ ¨ ÝÑ
n´1
à

k=0

P vk
k ÝÑ

n´1
à

k=0

P ik
k

d
ÝÑ

n´1
à

k=0

P jk
k ÝÑ 0

be the indecomposable object in K´,b(P). We might assume that the differentials between non-zero

homogeneous components are non-zero, otherwise X is decompasoble.

Step 1: There is no harm in supposing that X has no direct summand being shaped like

0 ÝÑ Pk
id

ÝÑ Pk ÝÑ 0
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which is zero object in K´,b(P).

Step 2: Any differential d in X does not contain isomorphic component α idPh
(α P kˆ) for some

0 ď h ď n ´ 1. Otherwise, d can be written asα idPh
d12

d21 d22


There is an isomorphism between complexes by applying elementary transformations to d.

¨ ¨ ¨
n´1
À

k=0

P γk

k Ph ‘ (
n´1
À

k=0

P
l1
k

k ) Ph ‘ (
n´1
À

k=0

P
m1

k

k )
n´1
À

k=0

P uk

k ¨ ¨ ¨

¨ ¨ ¨
n´1
À

k=0

P γk

k Ph ‘ (
n´1
À

k=0

P
l1
k

k ) Ph ‘ (
n´1
À

k=0

P
m1

k

k )
n´1
À

k=0

P uk

k ¨ ¨ ¨

(
α idPh

d12

d21 d22

)

– –( idPh
0

0 ˚

)

where
$

&

%

l1k = lk(k ‰ h), l1h = lh ´ 1,

m1
k = mk(k ‰ h), m1

h = mh ´ 1.

Then X can be written as

¨ ¨ ¨
n´1
À

k=0

P γk

k Ph ‘ (
n´1
À

k=0

P
l1
k

k ) Ph ‘ (
n´1
À

k=0

P
m1

k

k )
n´1
À

k=0

P uk

k ¨ ¨ ¨

(
f
g

) ( idPh
0

0 ˚

)
( a b )

idPh
0

0 ˚

f

g

 = 0,
(
a b

)idPh
0

0 ˚

 = 0,

So f = 0 and a = 0. Hence X has direct summand

0 ÝÑ Ph
id

ÝÑ Ph ÝÑ 0

which contradicts to Step 1.

Step 3: There is no such direct summand Ph in
n´1
À

k=0

P jk
k such that the corresponding component is

n´1
À

k=0

P ik
k

0
ÝÑ Ph. Otherwise, there exist

X : ¨ ¨ ¨ ÝÑ
n´1
à

k=0

P vk
k ÝÑ

n´1
à

k=0

P ik
k

d
ÝÑ Ph ‘ (

n´1
à

k=0

P
j1
k

k ) ÝÑ 0

where j1
k = jk when k ‰ h and j1

h = jh ´ 1. Then the direct summand 0 Ñ Ph ÝÑ 0 appears in X.
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Step 4: d :
n´1
À

k=0

P ik
k ÝÑ

n´1
À

k=0

P jk
k ÝÑ 0 must be shaped like

Pj Pl 0

0 ˚


where j, l are given by Lemma 5.1.4 and ˚ is consisted of some elements in k(¨ ¨).

Indeed, from Step 2 we can deduce that any two objects in different degrees are disjoint. Here by

Lemma 5.1.4 we can shoose 0 ď j, l ď n ´ 1 such that Pj , Pl are direct summand of
n´1
À

k=0

P ik
k ,

n´1
À

k=0

P jk
k

respectively. And for k P t0, 1, ¨ ¨ ¨ , n ´ 1u satisfying one of cases (˚), (˚˚), (˚ ˚ ˚) in Lemma 5.1.4, we

know the coefficient of Pj Pk and Pk Pl are all zero. Then d can be shaped liked1

d2

 :
n´1
à

k=0

P ik
k ÝÑ Pl ‘ (

n´1
à

k=0

P
j1
k

k ) ÝÑ 0

where j1
k = jk when k ‰ l and j1

l = jl ´ 1. By Step 2 and Step 3, d1 :
n´1
À

k=0

P ik
k Ñ Pl can be written as

d1 = (α?(P? Pl), ¨ ¨ ¨ , α?(Pj Pl), ¨ ¨ ¨ , α?(Pj Pl), 0, ¨ ¨ ¨ , 0, α?(Pi Pl), ¨ ¨ ¨ , ˚)

or

d1 = (0, ¨ ¨ ¨ , 0, α?(Pj Pl), ¨ ¨ ¨ , α?(Pj Pl), α?(Pi Pl), ¨ ¨ ¨ , ˚)

or

d1 = (α?(P? Pl), ¨ ¨ ¨ , α?(Pj Pl), ¨ ¨ ¨ , α?(Pj Pl), 0, ¨ ¨ ¨ , 0, )

where not all α? P k are equal to zero. By Lemma 5.1.3 there is α?(Pj Pl) ‰ 0 which can eliminate

all the other terms through column transformation. In other words, d1 can be transformed into

d1 = (Pj Pl, 0, ¨ ¨ ¨ , 0).

Furthermore, for any direct summand Pk of
n´1
À

k=0

P jk
k such that Pj Pk ‰ 0, we know (j, l, k) meets

conditions in Lemma 5.1.3. Then d can be transformed intoPj Pl 0

0 ˚


where ˚ is consisted of some elements in k(¨ ¨).
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Actually there is an isomorphism between complexes by applying elementary transformations to

d.

¨ ¨ ¨
n´1
À

k=0

P vk

k Pj ‘ (
n´1
À

k=0

P
i1
k

k ) Pl ‘ (
n´1
À

k=0

P
j1
k

k ) 0

¨ ¨ ¨
n´1
À

k=0

P vk

k Pj ‘ (
n´1
À

k=0

P
i1
k

k ) Pl ‘ (
n´1
À

k=0

P
j1
k

k ) 0

(
Pj Pl ˚

˚ ˚

)

– –(
Pj Pl 0

0 ˚

)

Step 5: According to previous discussion, we assume X is an indecomposable object in K´,b(P)

X : ¨ ¨ ¨ ÝÑ Xt
dt
X

ÝÑ Xt´1

dt´1
X

ÝÑ ¨ ¨ ¨ ÝÑ X0 Ñ 0

and for s ă t, all dsX are shaped like Pks
Pks+1

0

0 ˚

 (5.1.2)

where ˚ is consisted of some elements in k(¨ ¨). If Xt = 0, as X is indecomposable then X must

be isomorphic to complex like

X : 0 ÝÑ Pk´t
Pk´t´1

¨ ¨ ¨Pk´1
Pk0

ÝÑ 0

where 0 ď k0, k1, ¨ ¨ ¨ , kt ď n´1 and any (ks, ks+1, ks+2) in X does not satisfy the conditions in Lemma

5.1.3. Moreover, Endk(X) – k.

Next we claim: If Xn ‰ 0, then dtX can be transformed into a form similar to the matrix (5.1.2).

By Step 4, X is isomorphism to the following complex

¨ ¨ ¨ Pj ‘ (
n´1
À

k=0

P
η1
k

k ) Pl ‘ (
n´1
À

k=0

P
β1
k

k ) Pm ‘ (
n´1
À

k=0

P
γ1
k

k ) ¨ ¨ ¨

(
Pj Pl ˚

˚ ˚

) (
Pl Pm 0

0 ˚

)

where Xt, Xt´1, Xt´2 are isomorphism to
n´1
À

k=0

P ηk

k ,
n´1
À

k=0

P βk

k ,
n´1
À

k=0

P γk

k respectively and (j, l), (l,m) satisfy

the premise of lemma 5.1.4. Note that we can find (j, l) due to Lemma 5.1.5 and the composition of

differential is zero. Then by applying column transformation there is an isomorphism of complexes:

¨ ¨ ¨ Pj ‘ (
n´1
À

k=0

P
η1
k

k ) Pl ‘ (
n´1
À

k=0

P
β1
k

k ) Pm ‘ (
n´1
À

k=0

P
γ1
k

k ) ¨ ¨ ¨

¨ ¨ ¨ Pj ‘ (
n´1
À

k=0

P
η1
k

k ) Pl ‘ (
n´1
À

k=0

P
β1
k

k ) Pm ‘ (
n´1
À

k=0

P
γ1
k

k ) ¨ ¨ ¨

(
Pj Pl ˚

˚ ˚

) (
Pl Pm 0

0 ˚

)

(
Pj Pl 0

˚ ˚

) (
Pl Pm 0

0 ˚

)
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Next we apply row transformation to Pj Pl 0

˚ ˚

 .

In the meanwhile, we need to make sure that the differentials on the right side still are diagonal

matrixes. We get the following commutative diagram:

Pj ‘ (
n´1
À

k=0

P
η1
k

k ) Pl ‘ (
n´1
À

k=0

P
β1
k

k ) Pm ‘ (
n´1
À

k=0

P
γ1
k

k ) ¨ ¨ ¨

Pj ‘ (
n´1
À

k=0

P
η1
k

k ) Pl ‘ (
n´1
À

k=0

P
β1
k

k ) Pm ‘ (
n´1
À

k=0

P
γ1
k

k ) ¨ ¨ ¨

(
Pj Pl 0

˚ ˚

) (
Pl Pm 0

0 ˚1

)

( 1 0
c 1 )

(
1 0
d1 1

)
(
Pj Pl 0

0 ˚

) (
Pl Pm 0

0 ˚1

)

where c =


αs1(Pl Ps1)

αs2(Pl Ps2)
...

αse(Pl Pse)

, tPs1 , ¨ ¨ ¨ , Pseu are all direct summands in
n´1
À

k=0

P
β1
k

k and 1 are identity

matrixes of different orders. In addition, we need to find d1 such that 1 0

d1 1

Pl Pm 0

0 ˚1

 =

Pl Pm 0

0 ˚1

1 0

c 1

 ,

that is  Pl Pm 0

d1(Pl Pm) ˚1

 =

Pl Pm 0

˚1c ˚1

 .

In other words, matrix d1 need satisfies

d1(Pl Pm) = ˚1c.

Since for any Pk1 as a direct summand of
n´1
À

k=0

P
γ1
k

k or
n´1
À

k=0

P
β1
k

k , we know (l,m, k1) meets conditions in

Lemma 5.1.3. Moreover,

˚1c =


α?(Ps1 Pk1

) ¨ ¨ ¨ α?(Pse Pk1
)

α?(Ps1 Pk2
) ¨ ¨ ¨ α?(Pse Pk2

)
... ¨ ¨ ¨

...

α?(Ps1 Pkq
) ¨ ¨ ¨ α?(Pse Pkq

)

 ¨


αs1(Pl Ps1)

αs2(Pl Ps2)
...

αse(Pl Pse)

 =


αk1

(Pl Pk1
)

αk2
(Pl Pk2

)
...

αkq
(Pl Pkq

)

 .
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Here tPk1
, ¨ ¨ ¨ , Pkq

u are all direct summands in
n´1
À

k=0

P
γ1
k

k and it may happen

Pl Psi Pkj
= 0

where i P t1, ¨ ¨ ¨ , eu, j P t1, ¨ ¨ ¨ , qu, then some αkj
could be zero. Therefore, we can choose

d1 =


αk1

(Pm Pk1
)

αk2
(Pm Pk2

)
...

αkq
(Pm Pkq

)


which will make the second square commute. Continue the discussion above, there are d2, d3, ¨ ¨ ¨

making squares commute. Thus X is isomorphism to the following complex:

¨ ¨ ¨ Pj ‘ (
n´1
À

k=0

P
η1
k

k ) Pl ‘ (
n´1
À

k=0

P
β1
k

k ) Pm ‘ (
n´1
À

k=0

P
γ1
k

k ) ¨ ¨ ¨

(
Pj Pl 0

0 ˚

) (
Pl Pm 0

0 ˚

)

where all differentials are shaped like Pki
Pkj

0

0 ˚

 .

If X is unbounded complex, X must be isomorphism to

¨ ¨ ¨ ÝÑ Pk´3
Pk´2

Pk´1
Pk0

ÝÑ 0

where all ki P t0, ¨ ¨ ¨ , n ´ 1u and any (ks, ks+1, ks+2) in X does not satisfy the conditions in Lemma

5.1.3.

§5.2 Derived Green ring of Sweedler’s 4-dimensional Hopf algebra

Since Taft algebras Hn(q) are finite-dimensional Hopf algebras, Hn(q)-mod are finite tensor cat-

egories. Then Db(Hn(q)-mod) is a tensor triangulated categories by Lemma 2.3.9. In [43], Radford

proved that Sweedler’s 4-dimensional Hopf algebra is quasitriangular (see [16] for definition). Since

the module category of a quasitriangular Hopf algebra H is braided, there is a natural isomorphism

cX,Y : XbY
„
ÝÑ Y bX for any X, Y P H-mod such that hexagonal diagrams commute (see [18, Chapter
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8]). In this section, I will only consider the case of Sweedler’s 4-dimensional Hopf algebra H2(´1)-mod,

and compute the Green ring of Db(H2(´1)-mod).
Proposition 5.1.6 describes the indecomposable complexes in Db(Hn(´1)-mod). I present all the

indecomposable complexes in the case of Db(H2(´1)-mod) as follows.

Let P0, P1 be the projective cover of two simple modules S0 and S1 in H2(´1)-mod. I use the

notations Xl and Yl to denote the bounded indecomposable complexes with the first non-zero object

(from the right) in degree zero:

Xl : 0 ÝÑ P?
τ?π?
ÝÝÑ ¨ ¨ ¨

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1 ÝÑ 0,

Yl : 0 ÝÑ P?
τ?π?
ÝÝÑ ¨ ¨ ¨

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0 ÝÑ 0

where

πi : Pi ↠ Si, xkei ÞÑ xkei i, k P t0, 1u

τi : Si ↣ Pj , ei ÞÑ x2´i´jej i, j P t0, 1u

and l is the number of non-zero objects in each indecomposable complex.

For the unbounded case

X8 : ¨ ¨ ¨
τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1 ÝÑ 0,

Y8 : ¨ ¨ ¨
τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0 ÝÑ 0

which are the projective resolutions of simple objects S1 and S0 respectively. That means X8, Y8

are isomorphic to S1, S0 in Db(H2(´1)-mod). So all non-isomorphic indecomposable complexes in

Db(H2(´1)-mod) are

Xl [i], Yl [i], S1 [i], S0 [i] (l ě 0, i P Z).

Folloing the same notation in Section 5.1, the following statement tells us that the tensor product

of two projective objects in Hn(q)-mod is isomorphic Hn(q) itself.

Proposition 5.2.1. ( [14, Proposition 3.2] ) Let i, j P Zn and 1 ď k ď n. There are isomorphisms of
Hn(q)-modules

(i) Mk
i b Sj – Sj b Mk

i – Mk
i+j

,

(ii) Pi b Pj – Pj b Pi –
Àn´1

k=0 Pk.
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Applying Proposition 5.2.1 to H2(´1)-mod, we know the following isomorphisms where j P Z2:

S0 b S0 – S0 – S1 b S1,

S1 b S0 – S1 – S0 b S1,

S0 b Pj – Pj – Pj b S0,

S1 b Pj – Pj+1 – Pj b S1.

That is there are isomorphisms in Db(H2(´1)-mod):

Y8
rbY8 – Y8 – X8

rbX8,

X8
rbY8 – X8 – Y8

rbX8,

Y8
rbXl – Xl – Xl rbY8, Y8

rbYl – Yl – Yl rbY8

X8
rbXl – Yl – Xl rbX8, X8

rbYl – Xl – Yl rbX8.

Lemma 5.2.2. For Sweedler’s 4-dimensional Hopf algebra H2(´1)-mod and X, Y P Db(H2(´1)-mod),
there is an isomorphim

X rbY – Y rbX

in Db(H2(´1)-mod) where rb is the tensor product inherited from H2(´1)-mod.

Proof. It is sufficient to consider the indecomposable case. So we assume X and Y are indecomposable

complexes. Firstly, if either of X or Y is unbounded, we have already known the results by above

statements. Next, we only need to deal with bounded cases. Let Xl, Xm, Ys and Yt be indecomposable

bounded complexes in Db(H2(´1)-mod) where l ď m ď s ď t. There are three different cases:

Xl rbXm – Xm rbXl, Ys rbYt – Yt rbYs and Xm rbYs – Ys rbXm. I only verify the first case, the others are

the same.

Claim: Xl rbXm – Xm rbXl.

If

Xl : 0 ÝÑ P?
τ?π?
ÝÝÑ ¨ ¨ ¨

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1 ÝÑ 0,

Xm : 0 ÝÑ P?
τ?π?
ÝÝÑ ¨ ¨ ¨

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1

τ1π1
ÝÝÑ P0

τ0π0
ÝÝÑ P1 ÝÑ 0,
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Recall that Xl rbXm and Xm rbXl are total complexes

Xl rbXm : 0 ÝÑ (Xl rbXm)´l´m+2
d´l´m+2

Xl
ĂbXm

ÝÝÝÝÝÑ ¨ ¨ ¨
d´2

Xl
ĂbXm

ÝÝÝÝÝÑ P0 b P1 ‘ P0 b P1

d´1

Xl
ĂbXm

ÝÝÝÝÝÑ P1 b P1 ÝÑ 0

Xm rbXl : 0 ÝÑ (Xm rbXl)
´l´m+2

d´l´m+2

XmĂbXl
ÝÝÝÝÝÑ ¨ ¨ ¨

d´2

XmĂbXl
ÝÝÝÝÝÑ P0 b P1 ‘ P0 b P1

d´1

XmĂbXl
ÝÝÝÝÝÑ P1 b P1 ÝÑ 0

where

(Xl rbXm)n =
à

i+j=n

Pi+1 b Pj+1

dn
Xl rbXm

=
à

i+j=n

(τi+1πi+1) b idPj+1
+(´1)i idPi+1

b(τj+1πj+1)

for any n P Z. Similar for Xm rbXl. Notice that there are natural isomorphisms

cPi,Pj
: Pi b Pj Ñ Pj b Pi, i, j P Z2

which give a isomorphic chain map between Xl rbXm and Xm rbXl.

By the above lemma, we know that G0(D
b(H2(´1)-mod)) is commutative ring.

Theorem 5.2.3. The derived Green ring G0(D
b(H2(´1)-mod)) of Sweedler’s 4-dimensional Hopf

algebra H2(´1)-mod is commutative and is generated by elements s[k], yi[k] where k P Z subject to the
relations

s2 = 1,

yi[k]yj [l] = yiyj [k + l] = yj [k + l] + siyj [i ´ 1 + k + l], if i ě j ě 1.

Proof. In order to decompose the tensor product of indecomposable complexes into the direct sum of

indecomposable complexes, we should describe the morphisms of the decomposition in H2(´1)-mod.

f0,1 : P0 b P1 ÝÑ P0 ‘ P1, f1,0 : P1 b P0 ÝÑ P0 ‘ P1

e0 b xe1 ÞÝÑ (e0, 0) xe1 b e0 ÞÝÑ (e0, 0)

xe0 b xe1 ÞÝÑ (xe0, 0) xe1 b xe0 ÞÝÑ (xe0, 0)

e0 b e1 ÞÝÑ (0, e1) e1 b e0 ÞÝÑ (0, e1)

xe0 b e1 ÞÝÑ (e0,´xe1) e1 b xe0 ÞÝÑ (e0,´xe1)
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f0,0 : P0 b P1 ÝÑ P0 ‘ P1, f0,0 : P1 b P1 ÝÑ P0 ‘ P1

xe0 b e0 ÞÝÑ (0, e1) e1 b xe1 ÞÝÑ (0, e1)

xe0 b xe0 ÞÝÑ (0, xe1) xe1 b xe1 ÞÝÑ (0, xe1)

e0 b e0 ÞÝÑ (e0, 0) e1 b e1 ÞÝÑ (e0, 0)

e0 b xe0 ÞÝÑ (xe0,´e1) e1 b xe1 ÞÝÑ (´xe0, e1).

We only deal with the case Xi rbXj . Using fi,j one can get X1 rbX2 is isomorphic to the following

complex

0 P1 b P0 P1 b P1 0

0 P0 ‘ P1 P0 ‘ P1 0

idP1
bτ0π0

f1,0 f1,1(
0 0

τ0π0 idP1

)

Repeating this process, we know all the correspondence between the differentials in the total complexes

and the differentials in the “new” complexes. Namely, there are the following correspondence:(
idP1

bτ0π0

τ1π1bid p0

)
Ø

(
0 0

τ0π0 idP1
0 0
0 idP1

)
,

(
´ idP1

bτ1π1

τ0π0bid p1

)
Ø

(
0 ´τ1π1

0 idP1
0 -τ1π1

τ0π0 idP1

)
(

idP1
bτ1π1

τ1π1bid p0

)
Ø

(
idP0

0
τ0π0 0
idP0

τ1π1

´τ0π0 0

)
,

(
´ idP0

bτ0π0

τ1π1bid p0

)
Ø

(
´ idP0

τ1π1

0 0
idP0

0
0 0

)
Regarding the “new” complex, it is more convenient for us to deduce the decomposition. Using the

same method for other total complexes and applying Künneth formula in Theorem 4.1.8, we get the

following relations i ě j ě 1:

(1) Xi rbYj –

$

&

%

Xj b Xj [i ´ 1], when i is even,

Xj b Yj [i ´ 1], when i is odd.

(2) Yi rbXj –

$

&

%

Xj b Xj [i ´ 1], when i is even,

Xj b Yj [i ´ 1], when i is odd.

(3) Xi rbXj –

$

&

%

Yj b Yj [i ´ 1], when i is even,

Yj b Xj [i ´ 1], when i is odd.

(4) Yi rbYj –

$

&

%

Yj b Yj [i ´ 1], when i is even,

Yj b Xj [i ´ 1], when i is odd.
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Hence for i ě j ě 1., we can deduce the following isomorphisms:

(1) Xi rbYj – Xj ‘ (S
rb

i

1
rbXj [i ´ 1]);

(2) Yi rbXj – Xj ‘ (S
rb

i

1
rbXj [i ´ 1]);

(3) Xi rbXj – Yj ‘ (S
rb

i

1
rbYj [i ´ 1]);

(4) Yi rbYj – Yj ‘ (S
rb

i

1
rbYj [i ´ 1]).

That means Xi rbYj – Yi rbXj and Xi rbXj – Yi rbYj . Then we view S1[k], Yi[k] as generators s and

yi[k], which completes the proof.
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