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Abstract

My dissertation focuses on the stable categories of finite tensor categories and the derived categories
of finite tensor categories, which are tensor triangulated categories. Specifically I look for relations
between three types of equivalences between Hopf algebras, or more general, between finite tensor
categories. These three types of equivalences are gauge equivalences which are analogue of Morita
equivalences for tensor categories, stable tensor equivalences and derived tensor equivalences.

My first two main results show that a stable tensor equivalence of finite-dimensional non-semisimple
Hopf algebras induces a gauge equivalence under certain conditions. Later on, I have used monoidal
t-structures to reconstruct a finite-dimensional Hopf algebra from its derived tensor category. Namely
a derived tensor equivalence of Hopf algebras induces a gauge equivalence of these Hopf algebras. At
this point we can also see that a derived tensor equivalence of finite-dimensional non-semisimple Hopf
algebras can induce a stable tensor equivalence of these Hopf algebras. All the above results can be

generalized into finite tensor categories with the help of Frobenius-Perron dimensions.

Keywords: Tensor triangulated categories; Stable tensor equivalences; Frobenius-Perron dimensions;

Derived tensor equivalences; Monoidal t-structures; Construction theorem.
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Chapter 1 Introduction

Tensor triangulated categories combine the structural insights of triangulated categories with the
operational framework of tensor categories. They are particularly prominent in modern homotopy
theory and motivic homotopy theory, providing a way for the study of stable homotopy categories of
spectra and derived categories of sheaves. In recent years, there has been tremendous interest in devel-
oping tensor triangulated categories. The spectrum of a tensor triangulated category was introduced
by Paul Balmer [[7], providing an algebra-geometric method to the study of tensor triangulated cate-
gories. It establishes an abstract framework to build bridges among different branches of mathematics,
such as algebraic geometry, stable homotopy theory, modular representation theory, motivic theory,

non-commutative topology, and symplectic geometry [(].

There are a number of approaches to do research on tensor triangulated categories. So far, limited
work has been done in purely algebraic fields. Since tensor triangulated categories have both monoidal
and triangulated structures, in terms of triangulated categories, there are two entry points: stable
categories of Frobenius categories and derived categories. Much research on stable categories and
derived categories has been done. However, not much attention has been paid to the tensor structures
in these theories, such as derived Morita theory. Balmer established a classification of thick tensor ideal
in tensor triangulated categories [7]. Schwede and Shipley showed in [49] that stable model categories
with a single compact generator are equivalent to modules over a ring spectrum. Steen and Stevenson
provided a detailed exposition of the conditions such that tensor triangulated categories do not contain
thick tensor ideals admitting strong generators [50]. J. J. Zhang and J.-H. Zhou applied the Frobenius-
Perron theory to tensor triangulated structures of quiver representations in [59]. They defined the
concept of mtt-structure to recover a monoidal abelian equivalence from a derived tensor equivalence

under some conditions. Shahram Biglari gave a Kiinneth formula in tensor triangulated categories [10].

In representation theory, derived Morita theory helps classify algebras up to derived equivalences.
This classification is vital for understanding the structure of representation categories and their inter-
actions. I am interested in developing the tensor triangulated equivalences of stable categories and

derived categories, and exploring invariants under equivalences further.
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Problems and results

All finite tensor categories are Frobenius categories [19, Chapter 6], hence their stable categories
are tensor triangulated categories (see Lemma ) An example of a finite tensor category is the
category of finite-dimensional representations of a finite-dimensional Hopf algebra [18]. As it happens,
Hopf algebras are self-injective algebras [B6]. Moreover, the comultiplication and antipodes of Hopf
algebras provide the tensor structure of H-mod. Let H and H’ be finite-dimensional non-semisimple

Hopf algebras.

Problem 1. If H-mod is equivalent to H'-mod as a tensor triangulated category, then what are

the relations between H and H'?

In order to compare two different equivalences between Hopf algebras: gauge equivalences (see
Section @) and stable equivalences, we should first present the relations between Morita equivalences
(gauge equivalences are Morita equivalences) and stable equivalences. Ng and Schauenburg showed
in [B9] that H and H' are gauge equivalent if and only if H-mod and H’-mod are tensor equivalent. Even
if the stable categories of two finite-dimensional algebras are equivalent, the corresponding algebraic
structures may be quite different. For example, some direct sum of group algebras are not Morita
equivalent, although they are stably equivalent. Therefore, Broué proposed the concept of stable
equivalence of Morita type [12]. Linckelmann proved that a stable equivalence of Morita type between
two self-injective algebras can be lifted to a Morita equivalence if and only if the equivalence maps any
simple module to a simple module [32]. It is known that some stable equivalences can be induced by a
functor between two categories of representations over self-injective k-algebras which maps projective
modules to projective modules. If in addition, the functor is exact, then the two self-injective k-algebras

are stably equivalent of Morita type [46].

In [1§], the Frobenius-Perron dimension of a tensor category C has been defined, which is invariant
under tensor equivalences. For a finite-dimensional Hopf algebra H, FPdim(H-mod) = dimy (H). The
invertibility of simple objects (see Section @) and Frobenius-Perron dimension have been the main
methods in [56] to establish a criterion to get a tensor equivalence from a stable equivalence. These
results to be explained in Chapter E tell us that adding tensor structure attached to tensor triangulated

categories may lead to a new version of Morita theory.
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Proposition 1.0.1. ( Proposition ) Let C and C' be two non-semisimple finite tensor categories.
Suppose F' : C — C' is an exact k-linear monoidal functor inducing a stable equivalence ' : C — C'.

If all simple objects in C and C' are invertible, then F is a tensor equivalence.

For Hopf algebras, the corresponding result is:

Corollary 1.0.2. ( Corollary ) Let H and H' be finite-dimensional non-semisimple Hopf algebras.
Suppose F' : H-mod — H’'-mod is an exact k-linear monoidal functor inducing a stable equivalence
F : H-mod — H’'-mod.

If H and H' are basic, then H and H' are gauge equivalent.

As an invariant of tensor equivalences, Frobenius-Perron dimension (say FPdim for short) can
determine the equivalence between two tensor categories to some extend (see [1§]). Thus by putting

conditions on FPdim we can also recover the tensor equivalence from a stable tensor equivalence.

Theorem 1.0.1. ( Theorem ) Let C and C' be two non-semisimple finite tensor categories having
no projective simple objects. Suppose F : C — C' is an exact k-linear monoidal functor inducing a
stable equivalence F : C — C'.

If FPdim(C) = FPdim(C’), then F' is a tensor equivalence.

For Hopf algebras, the corresponding result is:

Corollary 1.0.3. ( Corollary ) Let H and H' be finite-dimensional non-semisimple Hopf algebras
having no simple projective modules. Suppose F : H-mod — H’'-mod is an exact k-linear monoidal
functor inducing a stable equivalence F : H-mod — H’-mod.

If dimy (H) = dimy (H'), then H and H' are gauge equivalent.

Morita theory for derived categories of algebras has developed well. A finite-dimensional algebra
derived equivalent to a self-injective algebra is itself self-injective [b5]. However, derived equivalence
does not preserve the Hopf structure, that is a finite-dimensional algebra derived equivalent to a Hopf
algebra need not be a Hopf algebra. For example, a field k (Hopf algebra) and the nxn matrix over k
(not Hopf algebra since there is no counit) are derived equivalent. This means that tensor structures will

give another version of derived Morita theory. It is known that a bounded derived category of a finite
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tensor category also inherits a tensor structure (see Lemma ) In particular, D°(H-mod) becomes a
tensor triangulated category. However, if H is not semisimple, then K®(Py) is not a monoidal category

since it does not contain identity.

Problem 2. If D*(H-mod) is equivalent to D’(H’-mod) as a tensor triangulated category, then

what are the relations between H and H'?

Reconstruction results were already obtained by Bondal and Orlov in different context [11]. More
precisely, when considering a smooth algebraic variety V' with ample either canonical or anticanonical
sheaf, the variety V is uniquely determined by its derived category of coherent sheaves. Furthermore,
Balmer showed that the derived category of coherent sheaves on a smooth variety, when considered as
a monoidal category in addition to its triangulated category structure (i.e. as a tensor triangulated
category), completely determines the variety uniquely [5]. As a corollary, a tensor triangulated equiv-
alence between the derived categories of the perfect complexes over two reduced noetherian schemes
induces an isomorphism between these two schemes.

As T mentioned before, in [59] Zhang and Zhou defined mtt-structures (latter on, we will give a
different version in Definition ) on a tensor triangulated category. They observed that under certain
strong assumptions, the heart of an mtt-structure is a tensor category. Then they solved a version of
Problem 2 under some conditions in the case of hereditary weak bialgebras. We redefined monoidal
t-structures, and it happens that all the equivalent monoidal t-structures in a bounded derived category
with 0 contained in the set of deviation (see Section @) are equal. Based on our latest results, it is
possible to reconstruct a finite-dimensional Hopf algebra from its derived tensor category by using the

monoidal t-structure in Chapter H

Theorem 1.0.2. ( Theorem ) Let C and C' be finite tensor categories. D°(C) is equivalent to

D®(C") as a tensor triangulated category if only if C and C' are tensor equivalent.

For Hopf algebras, the corresponding result is:

Corollary 1.0.3. ( Corollary ) Let H and H' be finite-dimensional Hopf algebras. D’(H-mod)

is equivalent to D*(H'-mod) as a tensor triangulated category if only if H and H' are gauge equivalent.

The stable categories and derived categories are not completely independent. For a finite-dimensional

4



self-injective k-algebra A, there is a triangle equivalence [17]:
F: D*(A-mod)/K"(P4) — A-mod

where K°(P,) is the homotopy category of bounded complexes over P, the full subcategory of finite
generated projective A-modules. In addition, if two finite-dimensional self-injective algebras are derived
equivalent then they are stably equivalent [47]. As a corollary of Theorem , we get the following

result:

Theorem 1.0.4. ( Theorem ) Let C and C' be two non-semisimple finite tensor categories. If
D®(C) ~ D*(C’") as tensor triangulated categories, then

c~(C

as tensor triangulated categories.

For Hopf algebras, the corresponding result is:

Corollary 1.0.5. ( Corollary ) Let H and H' are two non-semisimple Hopf algebras. If
D*(H-mod) ~ D*(H’-mod) as tensor triangulated categories, then

H-mod ~ H'-mod

as tensor triangulated categories.

Problem 3. How closely is Problem 1 related to Problem 27

In [[7], Balmer defines the concept of thick tensor ideal. Given a tensor triangulated category C and a
thick tensor ideal Z, one can deduce that the Verdier quotient C/Z is still a tensor triangulated category.
It is direct to check that the essential image of the natural embedding K°(Py) — D’(H-mod) is a
thick tensor ideal, which means the quotient category D’(H-mod)/K®(Py) is still a tensor triangulated
category. Then a triangle equivalent functor F above is indeed a monoidal functor in the case of Hopf
algebras, that is, D*(H-mod)/K"(Py) is equivalent to H-mod as tensor triangulated categories. From
this perspective we can also obtain Corollary .

In order to better understand the tensor triangulated equivalences, I am also concerned about

the issue of invariants. The tensor structure of a tensor triangulated category equips Grothendieck
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(Green) groups with ring structures. Derived (stable) Grothendieck (Green) rings are invariants of
derived (stable) tensor equivalences between finite tensor categories. I have started to compute some
examples, such as Taft algebras. Work on the following problem is ongoing but not included in this

dissertation.

Problem /. Are there computable invariants of a tensor triangulated equivalence?

Organization of the dissertation

This dissertation is built up as follows:

In Chapter 1, motivations, main problems and results are stated.

In Chapter 2, the elementary knowledge about tensor triangulated categories will be introduced.
The stable categories of finite tensor categories and the derived categories of finite tensor categories,
as two main examples of tensor triangulated categories, come into our picture accompanied by some
rich compatibility between tensor functors and translation functors.

Chapter 3 is devoted to the relations between finite tensor categories and the corresponding stable
tensor categories. We will see a stable equivalence between two finite tensor categories can induce
a correspondence between simple objects. The main results demonstrate that a stable equivalence
induced by an exact k-linear monoidal functor can be lifted to a tensor equivalence by utilizing the
invertibility of simple objects and the restriction of Frobenius-Perron dimensions.

Chapter 4 presents the definition of monoidal t-structure ¢ and the deviation of t. After that, we
notice that all the equivalent monoidal t-structures on a tensor triangulated category are the same.
This leads to our reconstruction theory, spelled out: Bounded derived categories of two finite tensor
categories C and C’ are equivalent as tensor triangulated categories if only if C and C’ are tensor
equivalent. As a corollary, stable tensor equivalences can be realized from derived tensor equivalences
between finite tensor categories.

In Chapter 5, we will be concerned with a concrete example of Hopf algebras called Taft alegbras
H,(q). Our purpose is to compute all the indecomposable complexes in D°(H,(q)), and then describe
the derived Green ring in the case of Sweedler’s 4-dimensional Hopf algebra.

Throughout this dissertation, k is assumed to be an algebraically closed field. All vector spaces,

algebras, coalgebras, and Hopf algebras are over k. For any k-algebra, the category of finitely generated
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modules over A is denoted by A-mod. All the categories we consider are k-linear essentially small

categories.






Chapter 2 On tensor triangulated categories

Triangulated categories were introduced by Verdier [p7]. These become tensor triangulated cat-
egories by adding tensor structures. In literature, slightly different definitions of tensor triangulated
categories are used. The authors considered symmetric tensor structures due to geometric reasons
in [6,8, 24,29, 84, 10, 50]. May proposed further compatibility axioms between tensor and octahe-
dra [B4]. I emphasize that the definition of tensor triangulated categories in this dissertation will not
include the symmetric assumption. However, we can still obtain the coherence between tensor struc-
tures and cosyzygy functors in the case of stable tensor categories, and natural isomorphisms providing
compatibility between tensor structures and shift functors in the case of derived tensor categories.

In this chapter, I will firstly introduce two basic structures of tensor triangulated categories,
tensor categories and triangulated categories. In Section @, some preliminaries on Hopf algebras and
tensor categories are presented (see [[16,[18,B6] and the references given there). Section @ is devoted
to the study of triangulated categories. I refer the readers to [4, 22, B1, 58] for details. In Section
@, I also summarize without proofs the relevant material on an condition allowing to recover an
equivalence between Frobenius categories from a stable equivalence. After that another main example
called derived categories will be given. Then the definition of tensor triangulated categories will be
introduced in Section @, followed by giving concrete examples of tensor triangulated categories we

are studying, and some compatibility conditions between tensor bifunctors and translation functors.

§2.1 Tensor categories

This section is a mild touching on tensor categories. The main focus will be on the categories of
finitely generated modules over Hopf algebras, as an important example of tensor categories. Hence
some basic knowledge about Hopf algebra will firstly come into our picture. Next, the definition of a

tensor category is introduced, along with some important properties and results that we will use later.

o Algebra. An algebra H is a triple (H, m,u), where H is a k-vector space, and m: HQ H — H,

u : k — H are linear maps, such that following diagrams both commute:

9



m®id u®id id @u

HQH®H H®H  kH-2SHoHL® HQk
id®ml im ~ l/m/
H®H _ H H

m and u are called the multiplication and the unit, respectively.
The definition of coalgebra is “dual” to the definition of algebra:

o Coalgebra. A coalgebra H is a triple (H, A, €), where H is a k-vector space, and A : H > HRH,
¢ : H — k are linear maps, such that the following diagrams both commute:

A

H H®H H
. Joos S
HOH————~H@H@H  KOHgr HOH o Ok

A and ¢ are called the comultiplication and the counit, respectively.

o Hopf algebra. Suppose that (H,m,u) is a k-algebra, and (H, A, ¢) is a k-coalgebra. H is said
to be a Hopf algebra over k, if
(1) A and ¢ are both algebra maps (H is called a bialgebra);

(2) There is a linear map S : H — H called the antipode, such that
mo(S®id)oA=uoe=mo (id®S)o A
hold on H.

Some definitions in the case of Hopf algebras are also required. We use the symbols A, ¢ and
S respectively, for the comultiplication, counit and antipode of a Hopf algebra H, and write J =
>v_, Ji® J* which is expressed J = J; ® J' using the Einstein summation convention for any element
in HR H.
A gauge transformation of a Hopf algebra H = (H, m,u, A, ¢, S) is an invertible element J = J;®.J*
of H® H such that:
(J®D(A®id)(J)) = (1®J)((id®A)(]))

Define an algebra map A’ : H — H® H by
A7 (h) = JA(h)J

10



and

S7(h) = JiS(T)S()S((T7) (I~
for each h € H. Then H' = (H,m,u, A7, ¢,S5”7) is also a Hopf algebra [16]. Two Hopf algebras H and
H' are said to be guage equivalent, if there is a gauge transformation J of H, such that H’ and H”’
are isomorphic as Hopf algebras [16].
As we can see, Hopf algebras carry coalgebraic structures which gives their module categories
richer structures than abelian categories. More precisely, they admit tensor structures.
Definition 2.1.1. ( [18, Definition 2.2.8] ) A monoidal category is a sextuple (C,®,a,1,l,r) where
e C is a category with a bifunctor ® : C x C — C called the tensor product bifunctor;
ca__(—-®-)®— = — ® (— ® —) is a natural isomorphism called associativity constraint;
e 1 is an object of C with two natural isomorphisms:
_:1®——>— and r_:—®1—> —
called left and right unit constraints respectively;
subject to the following two axioms:

(1) pentagon axiom

(WRX)®Y)® 2

WeXeY)®2z WeX)e(Y®2)

aw,XQY,Z AW, X, Y®Z

We(XQY)®2) ez WX Y®Z)

(2) the triangle axiom

ax,1,y

(X®1)®Y X®(1®Y)

TX@id\ %X@l)’

XQY

is commutative for all X,Y € C.

11



Definition 2.1.2. ( [18, Definition 2.4.1] ) Let (C,®,1,a,l,r) and (C',&’,1’,d’,I’,r") be two monoidal

categories. A monoidal functor from C to C’ is a pair (F,J), where F : C — (' is a functor, and
I F(=)® F(=) S F(-®-)

is a natural isomorphism, such that F(1) =~ 1’ and the following diagram is commutative for all

X,Y, Z € C (the monoidal structure axiom)

(F(X)® F(Y)) & F(2) "5 9 px) @f (F(Y) & F(2))

Ix,y®idp(z) fd”’” &' Jy,z
FIX®Y)® F(2) F(X)® F(Y®Z)
Ixey,z J/J;gy@z
F(XQY)® Z) P FIX® (Y ®Z)

A monoidal functor is said to be an equivalence of monoidal categories if it is an equivalence of
ordinary categories.

Let (C,®,1,a,l,7) be a monoidal category, and let X be an object of C'. An object X* in C is said
to be a left dual of X if there exist morphisms evy : X*® X — 1 and coevy : 1 —» X ® X*, called

the evaluation and coevaluation, such that the following compositions are the identity morphisms.

X coevy ®idx (X@X*)@X Ax x* x X®(X*®X) idx ®evx X

-1

1dx* ® coevx evx ®ldX*
— > — ="

X* X*

Likewise, an object * X in C is said to be a right dual of X if there are morphisms ev;( X®*X -1

and coev/X :1 — *X ® X such that the following compositions are the identity morphisms.
—1

X XQ(FXQ@X) 25 (X @*X)® X X
e coev y ®idg (*X@X)@*X A% x X, %X *X@(X@*X) idg yx @evy £ X

!’ !’
idx @ coev x evy ®idx
- - - —

An object in a monoidal category is called rigid if it has left and right dual. A monoidal category

is called rigid if every object of C is rigid.
Remark 2.1.3. (1) When a left (resp. right) dual of X € C exists, then the functor X* ® — is the
left adjoint of X ® — (resp. *X ® — is the right adjoint of X ® —) ( [18, Proposition 2.10.8] ).

(2) If X € C has a left (resp. right) dual object, then it is unique up to isomorphism ( [[L§, Proposition
2.10.5] ).

12



Definition 2.1.4. ( [18, Definition 1.8.5 and Definition 1.8.6] ) A k-linear abelian category A is said

to be finite if the following two conditions are satisfied:
(1) the k-linear space Hom4(X,Y") is finite dimensional for any two objects X,Y in A;
(2) every object in A has finite length;
(3) A has enough projectives; and
(4) there are only finitely many isomorphism classes of simple objects.
If A only satisfies the first two conditions, we call it locally finite.

Equivalently, a k-linear abelian category A is said to be finite if it is equivalent to A-mod over a

finite dimensional k-algebra.

Definition 2.1.5. ( [18, Definition 4.1.1] ) Let C be a locally finite k-linear abelian rigid monoidal
category. We call C a tensor category over k if the bifunctor @ : C x C — C is bilinear on morphisms

and End¢(1) = k.
Lemma 2.1.6. ( [L8§, Propositin 4.2.1] ) The bifunctor in a tensor category is biexact.

Example 2.1.7. Considering a finite-dimensional Hopf algebra H over k, H-mod is a monoidal categoy
with @y being the tensor product of H-modules over k and the unit object k. Moreover, for any
H-module X, antipode S and S~! define two different actions of H on the k-linear dual space X*
making H-modules X* into the left and right dual of X respectively. To sum up, (H-mod, ®, k) is a

finite tensor category.

An exact and faithful k-linear functor between two tensor categories over k is called a tensor
functor if it is a monoidal functor. Recall that a tensor equivalence is a k-linear monoidal equivalence.
Gauge equivalences are closely related to tensor equivalences, which can be seen by the following lemma

which is the dual form of [48, Corollary 5.9]. Here I state [39, Theorem 2.2] in the case of Hopf algebras.

Lemma 2.1.8. ( [B9, Theorem 2.2] ) Let H and H' be finite-dimensional Hopf algebras over k. If

H-mod and H'-mod are tensor equivalent, then H is gauge equivalent to H as Hopf algebras.

Remark 2.1.9. Assume (F,¢) is a tensor equivalence from H-mod to H’-mod in Lemma , where
Exy  FIX)®F(Y) - F(X®Y) is a natural isomorphism for all X, Y € H-mod. One can verify

13



J = §I}}H(Ik ® k) is invertible in H ® H, and then J is a gauge transformation of H. Hence H’ is

isomorphic to H” as Hopf algebras.

The following basic properties about tensor categories are used in Section @ to help us understand

some concrete examples of tensor triangulated categories.

Lemma 2.1.10. ( [19, Proposition 2.3] ) Any projective object in a tensor category is also injective,

and vice versa.

Lemma 2.1.11. ( [27, Corollary 2, p.441] ) Let P be a projective object in a tensor category C. Then
P® X and X @ P are both projective for any object X € C.

Now Grothendieck (Green) rings are brought into the picture.

Let C be an abelian category over k. We denote by [X] the isomorphism classes of any object X
in C. Let K be the free abelian group generated by the isomorphism classes of objects in C and K the
subgroup generated by [X] — [Y] 4 [Z] for all short exact sequences

0-X—->Y—>Z-—>0.

Then the Grothendieck group Gr(C) is defined to be the factor group K/Ky. Additionally, if we only
consider K, generated by elements for all split short exact sequences, then the factor group K/Kj is
called Green group denoted by Gg(C).

Moreover, if (C,®,1) is a tensor category. Then the tensor product on C induces a natural multi-
plication on Gr(C) (or Go(C)) defined by [X][Y] := [X ® Y] which is associative ( [18, Lemma 4.5.1] ).
Hence Gr(C) (or Go(C)) becomes a ring with unit [1] called a Grothendieck ring (Green ring).

Remark 2.1.12. For a tensor category C, the Grothendieck (Green) ring Gr(C) (Go(C)) possesses a
Z-basis given by isomorphism classes of simple (indecomposable) objects in C. Actually, Go(C) is a

quotient ring of Gr(C).

Remark 2.1.13. ( [1§, Remark 4.5.6] ) Let C and C’ be tensor categories and let ' : C — C’ be a tensor
functor. Then F defines a homomorphism of rings [F] : Gr(C) — Gr(C') ([F] : Go(C) — Go(C))). If

moreover, F' is an equivalence, then [F] is an isomorphism.
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§2.2 Triangulated categories
§2.2.1 Definitions

Let C be an additive category and 7' : C — C an automorphism called translation functor. A
sextuple (X,Y, Z,u,v,w) in Cis X %Y 5 Z % TX where X,Y, Z € C and u, v, w are morphisms in
C.

A morphism of sextuples from (XY, Z u,v,w) to (X', Y, Z' v/ ,v',u) is a triple (f, g, h) of mor-

phisms such that the following diagram commutes:

u Y v Z w

X TX
fJ{ gi hi Tfl
X' ’ '

’

LY = 7 S TX

We call this morphism an isomorphism if f, g, h are isomorphisms in C.
A set £ of sextuples in C is call triangulation of C if the following conditions are satisfied. The

element of £ are then called triangles.

o (TR1)

(i) Every sextuple isomorphic to a triangle is a triangle.

(ii) Every morphism u: X — Y in C can be embedded into a triangle X =Y - Z - TX.
(iii) For any object X € C, X M, X 505 TXisa triangle.

-Tu

¢ (TR2) IfX 5Y = Z-5TX is a triangle, thensois Y - Z > TX —5 TY.

o (TR3) Given two triangles (X,Y, Z, u,v,w), (X', Y', Z',u/,v',w’) and the following commuta-

tive diagram:
X ——=Y

A

’
u

X —— Y

there exists a morphism (f, g, h) from (X,Y, Z,u,v,w) to (X", Y', Z' v/, v, w').

« (TR4) (The octahedral axiom) Suppose that X 2 Y %> Z’ LR TX,Y % 725 X 2 TY and
X 25y 5 rX are triangles in £. Then there exists f : Z’ — Y’ and g : Y/ — X’ such
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that 2/ L v' % x' T, 77 is also a triangle in £ and the following diagram is commutative.

X 4,y L sz T 7X
H : if H
X W,z _k sy ¥ 7x

I
J 19 iTu
~

’

X —— X' L 7Y
i’ J{(Ti)j’
TY Ly 17

Definition 2.2.1. ( [22, Chapter I] ) An additive category C together with a translation functor T°
and a triangulation & is called a triangulated category. We then call every triangle in £ a distinguished

triangle.
Definition 2.2.2. ( [568, Definition 1.4.3] ) A full subcategory D of a triangulated category C = (C, T, )
is called a triangulated subcategory if the following conditions are satisfied:

(1) D is closed under isomorphisms;

(2) T restricts to an automorphism of D;

(3) D is closed under extension. (ie. if X - Y - Z ->TX e & and X,Z €D, then Y € D.)

Let (C,T,&) and (C',T',£’) be triangulated categories. An additive functor F' : C — C’ is called

exact if there exists a natural isomorphism ¢ : FT — T'F such that

F(u) F(v)
—

wr(x)oF (w)
)

F(X) F(Y) F(Z T'F(X)

is in £ whenever X %Y 5 7 % TX isin €.
If an exact functor F': C — C’ is an equivalence of categories, we call F' a triangle equivalence. C

and C’ are then called triangle equivalent.

§2.2.2 Examples of triangulated categories

In this subsection, two commonly used triangulated categories will be introduced: stable category

and derived category. Readers can find relevant definitions and results in [4,22,31,58].
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e Stable category

The first example of trianguated categories is coming from the stable categories of special categories
called Frobenius categories. Before working with this kind of triangulated category, I should first present
some of the definitions involved.

Let B be an additive category embedded as a full and extension closed subcategory in some abelian
category A. Following Quillen [42, Chapter 2] the pair (B,S) is called an ezact category where S is
the set of exact sequences in A with terms in B. We call a morphism v : X — Y in B a proper
monomorphism if there is an exact sequence 0 = Y — Z — 0 in S. Similarly, a morphism v : Y — Z
in B is proper epimorphism if there is an exact sequence 0 > X - Y % Z - 0in S.

An object P € B is called S-projective if for any proper epimorphism v : ¥ — Z and morphism
f P — Z in B there exists g : P — Y such that f = v og. Likewise, an object I € B is called
S-injective if for any proper monomorphism v : X — Y and morphism f : X — I in B there exists
g:Y — I such that f =gou.

An exact category (B,S) is called a Frobenius category if (B,S) has enough S-projective objects
and enough S-injective objects, and an object is S-projective if and only if it is S-injective [23, p.386].
Note that here we say that (B,S) has enough S-projective objects means for any Y € B there exists
a proper epimorphism v : P — Y with P an S-projective in B. In parallel, we say that (B,S) has
enough S-injective objects if for any X € B there exists a proper monomorphism v : X — I with I an

S-injective in B.

Example 2.2.3. A finite tensor category is a Frobenius category by Lemma . Thus for a finite-
dimensional Hopf algebra H, H-mod is also a Frobenius category.
Recall that an artin algebra A is said to be self-injective if it is injective as an A-module. A-mod

is a Frobenius category where A is a self-injective algebra.

Let B be a Frobenius category. The stable category of B written as B is defined as follows: The
objects of B are the same as those of BB; For any objects X,Y € B, the morphisms from X to Y are

given by the quotient space
Hom,(X,Y) = Homp(X,Y)/Z(X,Y),

where Z(X,Y) is the subspace of Homg(X,Y") consisting of homomorphisms which factor through an
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injective object. We say two Frobenius categories B and B’ are stably equivalent, if B and B’ are k-linear
equivalent.

For simplicity of presentations, we stipulate the following notations.

Notation 2.2.1. We use A-mod to denote the stable category of A-mod where A is any self-injective
algebra. Talking about any stable categories B of a Frobenius category B, the following notations are

always used:

e For X,Y € B, let f denote the morphism in the quotient space Homy(X,Y) represented by
J € Homp(X,Y). We use the diagram below to indicate f =0 :

f:X KN JER Y,
where f = joiin Homg(X,Y) and I is an injective object in B.
o Given a k-linear functor F': B — B’ if F' transforms injective objects to injective objects, then

it induces a functor from B to B':
F:B-pB, X FX), f—F(f),

where X € B and f is a morphism in B.

Lemma 2.2.2. ( [22, p.11] ) Assume that (B,S) is a Frobenius category and X € B. If
0— X 25 125 Coker(myx) — 0 and 0— X —5 ' 25, Coker(m) — 0

are in S such that I,1I' are S-injective, then Coker(my) = Coker(m/y) in B.

According to [4, p.125], we can define a cosyzygy functor Q' : B — B as follows. For any
objects X € B choose a fixed exact sequence in S: 0 — X 5 [(X) 2% Coker(myx) — 0 and define
Q71(X) := Coker(mx). Based on Lemma , Q! is well-defined on objects. For any v : X — Y in

B, there is a commutative diagram in B:

0 X 5 (X)) P o Y(X) ——0
uJ/ J/I(u) } [V (u)
0 Yy 25 1Y) 25 oY) —— 0

where the existence of I(u) is based on the definition of S-injective I(X), and Q~!(u) is given by the

universal property of cokernel. It is not difficult to see 27 !(u) is independent of the choice of I(u) in
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B. So we can define Q7' (u) := Q" (u). A result in [22, p.13] tells us that the cosyzygy functor Q" is
an automorphism of B.

Let (B,S) as a subcategory in some abelian category A be a Frobenius category and B the stable
category. Suppose that X,Y € B and v € Homg(X,Y). We consider the following commutative

diagram in B:

0 X 2 1(X) 25 0 (X)) —— 0
0 Yy —4—C, —2— QX)) —— 0

where I(X) is S-injective, and C,, is the pushout of u and mx. Since B is closed under extension in
A, the pushout C, € B coincides with the pushout in A.
We call the sextuple X = Y = C, = Q~Y(X) a standard triangle in B. Let £ be the class of all

the sextuples which are isomorphic to standard triangles in B.

Theorem 2.2.4. ( [22, Chapter 2, Theorem 2.6] ) Let (B,S) be a Frobenius category. Then (B,Q7 1 €)

is a triangulated category where Q' is the translation functor and £ is the triangulation.

A great deal of mathematical effort in the representation theory of algebras has been devoted to
the study of self-injective algebras. The following proposition tells us when a stable equivalence can be

lifted to a Morita equivalence.

Lemma 2.2.5. ( [32, Proposition 2.5] ) Let A and A’ be self-injective k-algebras having no projective
simple modules and F' : A-mod — A’-mod be an exact functor. Suppose F induces a stable equivalence
F : A-mod — A’-mod. Then F is an equivalence if and only if F' maps any simple A-module to a

simple A'-module.

This result will prove extremely useful in Section @ to help us get first two main theorems. It is

direct to give the category version of Lemma .

Lemma 2.2.6. Let B and B’ be Frobenius categories having no projective simple objects and F : B — B’
be an exact functor. Suppose F induces a stable equivalence F' : B — B’. Then F is an equivalence if

and only if F' maps any simple object to a simple object.

e Homotopy category
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Suppose A is an abelian category. A chain complex of objects in A is a diagram
X:..._>X"d_3L‘>X"+1'£Xn+2_)...
where X™ € A with maps d% : X™ — X"*! in A such that d’*' o d% = 0 for any n € Z. The map d%
is called a differential of X. The kernel of d% is called a n-cycle of X, denoted by Z™ = Z™(X). The
image of d’y ! is called a n-boundary of X, denoted by B™ = B"(X). The n-th cohomology of X is the
subquotient H"(X) = Z"/B™ of X", n € Z.
A morphism of chain complexes f : X — Y is a family of maps f™ : X™ — Y™ in A such that the

following diagram commutes.

L —— Xt X" Xt ———
[P P
L —— ynl YY" yrtl .

We denote by C(.A) the category of chain complezes in A. The objects are chain complexes and
morphisms are morphisms of chain complexes. The category of chain complexes C(A) is again an
abelian category. ( [64, Theorem 1.2.3] )

A complex X is bounded if there are only finitely many n such that X™ # 0; upper-bounded (resp.
lower-bounded) if there is « (resp. ) such that X” = 0 for all n > « (resp. n < ). The notations
Cb(A), C~(A), CT(A) are used to represent the full subcategories of C'(A) consisting of all bounded
complexes, upper-bounded and lower-bounded complexes respectively.

Let f, g : X — Y be two morphisms of chain complexes in C'(A). A homotopy between f and g

is a sequence (s™),cz of morphisms s" : X™ — Y"1 such that for each n, there exists an equality:
ff—gt=dytos" +s" T ody.
In case there is such a homotopy, we call f and g are homotopic denoted by
s: f~aqg.

If g =0, then f is called null-homotopy (i.e. homotopic to zero) denoted f ~ 0.
Let
Htp(X,Y) :={f : X — Y is a morphism of complexes and f ~ 0}.

It is straightforward to see Htp(X,Y") is an additive subgroup of Home(4)(X,Y).
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Now we are ready to define a homotopy category K(A), it is a category having the same objects

as C'(A) with morphisms
HOIIIK(A) (X, Y) = Homc(A) (X, Y)/Htp(X, Y)

Similar to category of complexes, we can also define a ull subcategory K*(A) of K(A) called the
upper-bounded homotopy category of A, the lower-bounded homotopy category K~ (A), and the bounded
homotopy category K°(A).

Let us fix an abelian category A, its category of complexes C(A) and the homotopy category
K(A). The homotopy category K(A) is an additive category, but in general not abelian any more.
There is a fact saying that an abelian triangulated category is semisimple [21]. In the following, we
will know K (A) carries a triangular structure.

Let [1] be the shift funtor of C(A), that is for X € C(A), (X[1])" = X", dy ) = —d¥t, Yn e Z.

an dn+1
L X 2X, Yyl IX o ynd2

P
I

_dn+1 _dn+2
X[l]:-~—>X"+1 X, xnt2 X, yntd L.

For morphism f: X — Y, f[1] : X[1] — Y[1] with (f[1])" = f**!, Vn € Z. In the same way, one can
define shift functor [—1] shifted right by one step.
Let X,Y be objects in C(A) and f: X — Y a morphism. The mapping cone Cone(f) of f is the
following complex in C'(A):
(Cone(f))" := X" @Y™, VneZ

m L _dT)L(—’_l O . Xn+1 @ Yn s Xn+2 @ Yn+1
Cone(f) " 11 :

ey
Every mapping cone determines a sextuple which is a triangle:

x Ly ) Cone(f) &% X1

Let £ be the class of all the sextuples which are isomorphic to the triangles constructed by mapping

cone in K(A).

Theorem 2.2.7. ( [B1l, Theorem 2.3.1] ) Let A be an abelian category. Then (K(A),[1],€) is a
triangulated category where [1] is the shift functor. Moreover [1] : K(A) — K(A) is an automorphism

with inverse [—1].
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Remark 2.2.8. K’(A), K*T(A), K~ (A) are triangulated subcategories.

The following definition is introduced to define derived categories.

Definition 2.2.9. ( [B1, Definition 2.5.1] ) Suppose f : X — Y is a morphism in K(A) and f induces
an isomorphism on cohomology, that is, H"(f) : H*(X) — H™(Y) is an isomorphism in A for any

integer n. Then we call f a quasi-isomorphism. The objects X and Y are then called quasi-isomorphic.

e Derived category

Definition 2.2.10. ( [b&, Definition 3.1.1] ) Let A be an additive category. A class of morphisms S
in A is called a multiplicative system if it satisfies the following conditios: (the notation “=" means

the morphism in S)
(S1) S is closed under composition and idx € S for any X € A.

(S2) For any diagram in A with s € S,

Z
x 1.y

thereist: W — X in S and g : W — Z such that the following diagram is commutative.

w—25 7

|l
X —

Dually, for any diagram in A with s € S,

N

f—
»

1&

X

there is a commutative diagram with ¢ € S.

S

S
~ N

:‘*>
fr—
»

2



(S3) These is s € S such that the following diagram is commutative,

that is fot=got.

Given an additive category A and a multiplicative system S. Let X,Y € A. A right roof (b,s)

from X to Y is a diagram of morphisms below:
X <—e—"Vv

Two right roofs are called equivalent denoted by (a,t) ~ (b, s) if there exists the following commutative

diagram

LN
NpA

where u € S.

Lemma 2.2.11. ( [68, Lemma 3.2.1] ) The relation between right roofs from X to'Y is an equivalence

relation.

The equivalence class of a right roof (a,t) from X to Y is denoted aot™!. If aot~! is an equivalence

class of a right roof from X to Y and bo s~! is an equivalence class of a right roof from Y to Z, then
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we have the following diagram by (S2) in definition :
.
VRN
o o
VR N
X Y Z
The composition is defined to be (hos ) o(aot™!):=(boc)o (tor) L

Definition 2.2.12. ( [58, Definition 3.2.2] ) Let S be a multiplicative system in an additive category
A. The localization of A at S is the category S~!.A, whose objects are the same as in A; for objects
X,Y € S7'A, Homg-14(X,Y) are the set of all equivalence classes of right roofs from X to Y.

Moreover, given two morphisms b o s7! and a o 7! in Homg-14(X,Y), we also the following

commutative diagram,

’
S

e — o
t/ﬂ t
o —= X
which means we can find 7 € S such that aot™! = a’or=!, bos™! = b or~!. Namely, let r = tos’ = sot/,
a =aos,and b =bot.
Define the addition of two equivalence classes to be a o t™t +bo s™! := (a’ + V') o r~! which is

well-defined by using (S2) and (S3) [b8].

Fact 2.2.3. Let « =aos ! € Homg-14(X,Y) where s € S. Then « is a zero morphism if and only if

there is t € S such that sot € S and a ot is a zero morphism in A.

A localization functor F : A — S™1 A is defined as follows: for any object X € A, F(X) = X; for
any f € Homu(X,Y), F(f) = fo(idx) ! € Homg-14(X,Y).

Lemma 2.2.13. ( [b8, Lemma 3.2.6] ) Let S be a multiplicative system in an additive category A.
Then the quotient category S™'A is an additive category and the localization functor F is an additive

functor.

Here comes a question: when does S~!A become a triangulated category? Next we will see that for
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a special class of multiplicative systems, the quotient category S—!'A becomes a triangulated category.

Definition 2.2.14. ( [58, Definition 3.5.1] ) A triangulated subcategory D of a triangulated category
(C,T,€) is called a thick subcategory if it satisfies the following condition: If X Ly szoTxe€
with Z € D and f can factor through an object W € D, then X e D, Y € D.

Let D be a thick subcategory of a triangulated category (C,T,£). Then
S:=¢(D)={f: X — Y | there is X LY - Z - TX e € such that Z € D}

is a multiplicative system and D = ker F where F' : C — S~!C is the localization functor (see [b§,
Lemma 3.5.5]). Under this situation, the Verdier quotient of a thick subcategory D with respect to C
is defined to be C/D := S~!C and the localization functor F : C — C/D is called Verdier functor.

Theorem 2.2.15. ( [68, Theorem 3.4.2, Corollary 3.5.7] ) Let D be a thick subcategory of a triangulated
category (C,T,E) with S := ¢(D). Then

(1) (C/D,T) is also a triangulated category.

(2) Suppose that H : C — C’ is an exact functor between triangulated categories, and H maps any
object in D into the zero object in C'. Then there is an unique exact functor G : C/D — C' such

that the follwoing diagram commute.

C a c

A

/D

(3) The Verdier functor F : C — C/D is an exact functor and D = ker F. Moreover, F(f) is an
isomorphism if and only if f € S, and any morphism ao s~ € C/D is an isorphism if and only

ifaes.

Last, by applying the above localization theory to homotopy categories, we will see that the
subcategory D of objects with zero n**-cohomology for Vn € Z in the homotopy category is exactly

a thick subcategory. Then its corresponding ¢(D) is a multiplicative system that satisfies Theorem
p.2.14
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Proposition 2.2.16. ( [58, Proposition 5.1.1] ) Let K*(A) be a homotopy category of an abelian
category A where % € {,b,—,+} and D :== {X € K¥*(A) | H*(X) =0, Vn € Z}. Then D is a thick
subcategory and ¢(D) is the class of all quasi-isomorphism in K*(A).

Let K*(.A) be a homotopy category of an abelian category A where * € {(J,b, —,+} and D = {X €
K*(A) | H*(X) =0, Vn € Z}. Define the (unbounded, bounded, upper-bounded, lower-bounded) de-
rived category D*(A) to be the Verdier quotient D*(A) := K*(A)/D where * € {(J,b, —, +}. Theorem
tells us that they are triangulated categories.

Let P be the full subcategory consisting of projrctive objects. A full subcategory K —°(P) of K(P)
includes all the complexes over P, which is upper-bounded with finitely many non-zero cohomologies.

Additionally, if A has enough projective objects, then D?(A) =~ K ~*(P) as triangulated categories [58].

Lemma 2.2.17. ( [26, Exercise 4.2, p.129] ) Let f : P — Q be a chain map of projective complezes in
K=*(P). Then [ is a homotopy equivalence if and only if H™(f) : H"(P) — H™(Q) is isomorphic for

each n € 7.

Example 2.2.18. Consider A-mod which is an abelian category for a finite-dimensional algebra A.
The categories of chain complexes C*(A-mod) where * € {(J, b, —, +} contain all the chain complexes of
A-modules such that all the differentials are homomorphisms of A- modules. Then we can get the corre-

sponding homotopy categories K*(A-mod) and derived categories D*(A-mod) where * € {(F,b, —, +}.

§2.3 Tensor triangulated categories

According to [B7], a tensor (monoidal) triangulated category is a triangulated category C having a

monoidal structure [33, Chapter VII]
®:CxC—=_C

and a unit object 1 € C, such that the bifunctor — ® — is exact in each variable.

Two tensor triangulated categories C and C’ are said to be tensor triangulated equivalent if there
is a monoidal functor making C and C’ be triangulated equivalent.

It is also available to define the Grothendieck group in a triangulated category (C,T, ). We denote
by [X] the isomorphism classes of any object X in C. Let K be the free abelian group generated by
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the isomorphism classes of objects in C and Kj the subgroup generated by [X]| — [Y] + [Z] for all

distinguished triangles

X—>Y—>Z->TXef.

Then the Grothendieck group Gr(C) is defined to be the factor group K/K,. Additionally, if we only
consider Ky generated by elements for all split distinguished triangles, then the factor group K /K is
called Green group denoted by Gg(C).

Furthermore, if now (C,®,T) is a tensor triangulated category. Then the tensor product on C
induces a natural multiplication on K defined by [X][Y] := [X ® Y] and K, is an ideal as — ® — is
biexact in C. Thus Gr(C) (or Go(C)) turns out to be a ring called a Grothendieck ring (Green ring) of

a tensor triangulated category.

§2.3.1 Stable tensor categories

In retrospect, all finite tensor categories are Frobenius categories by Lemma . Meanwhile
the stable categories of Frobenius categories are triangulated categories by Theorem . Our first

destination is to show the following basic fact.

Lemma 2.3.1. Let C be a finite tensor category. Then there are a natural isomorphism in C:
exy X ®Y) - QN X)®Y, (X,Ye()
Oxy: OHXRY) - XRQ (YY), (X,YeQ)

where Q™1 is the cosyzygy functor.

Proof. We only prove the first natural isomorphism and will divide our proof in two steps. The first

step is to establish a natural transformation:
exy : Qil<X ®Y) i Qil(X) ®Y

For any morphisms f: X — X’ and g: Y — Y’ in C, we have the following commutative diagram:
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00— X®Y 2 [(X®Y) 2% 0 (X QY) ——— 0

TX,Y |
|

N
N

N

0 — 5 XY o I(X'QY) — O '(X'®Y') —— 0

N
\\
T
’ N I X!y’
Ny N

00— XV X2 1(x) ey ™2y g 1x)@Y —— 0

N
N
N

where I(X) stands for the injective hull of any object X and all the four rows are exact sequences. The
monomorphisms 7x y+, Txy are given by the universal property of injective hull such that the front
and back squares commute. Furthermore, note that (X' ® Y'), I(X’) ® Y’ are injective, there exist

morphisms

I(f®g): [(X®Y) > I(X'®Y'),
I(H®g:I(X)®QY - I(X)®Y'

making the top and right squares commute. The commutativity of the bottom square is routine to
verify.

Next, we complete the above diagram as follows:

00— X®Y 2 [(X®Y) 2% 0 (X QY) ——— 0

|
TX,YI

I(X)QY ->o O (X)QY

~

I(X'QY) — O H(X' QYY) —— 0

N
N
TX!y! \\\ ex’ y!
Y

I(X)@Y' XN 01X @Y —— 0

I(f)®g

By the universal property of cokernel, the morphisms
exy QT (X ®Y) - 07H(X)®Y,
exy QX' QYY) - QX)) QY
QN (f®9): TI(XRY) - QTH(X'®Y),
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AR (X)) RY - Q0N X)®Y’

are given to make the back, front, top and bottom squares commute. Indeed, they are well-defined
and unique in C. The right square is commutative since exsy: 0 Q7 (f ® g) and (7 (f)®g) cexy
both satisfy the universal property of Q7'(X ® Y') as the cokernel of ixgy. That is, ex y is a natural
transformation in both variable.

The second step is to verify exy is in fact an isomorphism in C. By the construction of exy,

there is the following pullback diagram:

I(X®Y) 2% 0 4(XRY)

ITX,Y lEX,Y

I(X)®Y 2% o /(X)Y
which induces the following split exact sequence:
0-I(X®Y) > Q' XQY)®d(I(X)®Y) > Q2 (X)®Y —0.

Hence we have

QXY UI(X)RY)=2I(XQY)® (0 (X)®Y)
in C. Moreover by Lemma , we have
OHXRY) =20 H(X)®Y
in C. Consequently, there is a natural isomorphism ey ;- in C:
exy :HXRY) 2 N(X)QY

which completes the proof. O
Using the above Lemma , we can obtain that:

Lemma 2.3.2. Let C be a finite tensor category, then C is a tensor triangulated catgegory.

Proof. Our problem reduces to prove C has a monoidal structure.
Firstly, there is a monodidal quotient functor F' : C — C being identity on objects and sending

every morphism f to f. Next, the tensor product on C written as ® can be defined as follows:

®:CxC—C
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such that X®Y = F(X ®Y) for any objects X,Y and f®g = F(f ® g) for morphisms f,g. By
Lemma , it is straightforward to see the tensor product ® is well-defined. Similarly, the unit

object, the associativity constraint, left and right unit constraints are given by
1:=F(), Axy .y = Flaxyyz), lx:=F(x), rx:=F(rx) (Xel).

Finally, the establishment of “the pentagon axiom” and “the triangle axiom” are obvious since F' is a
functor.

Owing to Lemma , we conclude that —®Y is an exact functor of C [22, Lemma 2.8] and the
exactness in the second variable is similar. Thus — ® — is biexact in C. Hence C is a tensor triangulated

category. O

Before proceeding further, we point out that the stable category of a finite tensor category also has
some rich compatibility between tensor functors and cosygyzy functors. The following commutative

diagram is usually called “coherence”.

Proposition 2.3.3. Let C be a finite tensor category. Then for any objects X,Y, Z € C, we deduce the

following commutative diagrams in C:

QN ((XRY)®7Z) 25 0 (X @)@ 2 B 0 (X)®Y)® 2
lﬂil(ﬂx,y,z) lﬂn—l(x),y,z
QO UXR(Y®2)) rer QLUX)R (Y ®Z)

0 (XQY)®©2) "% (x@V) @0 (77 N X o (Y @01 (2))
lQ_l(Qx,y,z) @@QX,Y

O I(XR(Y®Z) fover X0 (Y®2)

Proof. We only give proof details of the first diagram. For any X,Y,Z € C, consider the following

three exact sequences:

00— X—I(X)—>» Q1 X)—0,
O—»X@YH[(X@Y)—»Q_l(X®Y)—>O,

0> XRYRZ—I(XQRYRZ) QU (XRYR®Z)—D0.
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Since — ® — is biexact in C, there are exact sequences:
0-XRYRZ—IX)QYR®RZ -0 (X)QY ®Z — 0,

0->XRYRZ—IXRY)®RZ Q2 (XQY)®Z — 0.

According to the definition of —®—, we only need to verify the following triangle is commutative in C.

Here the associativity constraints are suppressed:

OCHUXRYRZ) ZEL 0 (XQY)®Z

ex,y®id

O NX)QY ®Z

which implies the commutativity of the desired diagram.

Consider the following commutative diagram where all the three columns are exact sequences:

0
XQYQR®Z =———XQYRZ 0
Y \
IXQYRZ iix®y®id XR®YRZ
I(XQY®Z) 2% [(XQY)® z ix®id
! S~ h
TX Y®Z} \\‘\\,\
PXRY®Z ipx@y@ld IX)®Y®Z
XY RZ) FELI0N(XRY)RZ px®id
exX,Y®z \\\\;
0 MX)RY®~Z

Note that monomorphisms
Txevz  I(XQ®RYR®Z) - I(XQY)®R Z,

Txyez I(X®YRZ) - IX) QY ®Z
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are obtained since I[(X ® Y ® Z) is the injective hull of X ® Y ® Z. As I(X) ® Y ® Z is injective by

Lemma , there is a morphism
h:I(XQY)®Z - I(X)QY®Z

such that the middle triangle commute. An argument similer to one used in Lemma shows that

all remaining parts are commutative. However, the morphism
w: N XRY)®Z -0 ' (X)QY®Z
is unique in C and besides
exy®id: QM XQRY)®Z - QM X)QY®~Z
makes the following diagram commutes:

00— XYeZ¥% N (xeY)® 2280 1(X®Y)®Z —— 0

H ITxyy®id J/EX,Y®id

00— XQY®ZZM 1)y ez 228 0 (X)) Y ®Z —— 0

Hence, w = ex,y ®id in C. Thus we arrive at the conclusion. O

Remark 2.3.4. A stable equivalence induced by an exact monoidal functor is obviously a tensor

triangulated equivalence. We will call it a stable tensor equivalence.

Stable Grothendieck groups are the Grothendieck groups of stable categories as triangulated cate-
gories. They are invariant under stable equivalences. Moreover, in the case of the stable category of a
finite tensor category, the following lemma shows that a stable Grothendieck ring becomes an invariant

of a stable tensor equivalence.

Lemma 2.3.5. Let C and C' be two non-semisimple finite tensor categories. Assume there is a stable
equivalence between them induced by an exact k-linear monoidal functor F. Then Gr(C) and Gr(C’)
are ring isomorphism.
Proof. Define ¢ : Gr(C) — Gr(C’) such that ¢([X]) = [F(X)] for all X € C.

o ¢ is well-defined, that is if [X] = [Y], then [F(X)] = [F(Y)].
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e ( is a group homomorphism, that is

Since there is a distinguished triangle
X->X®Y -Y - QYX),

we know
P((X]+[Y]) =p(XBY]) = [F(XBY)] = [F(X)DF(Y)]

For the reason that F' is a monoidal functor,
(X)[Y]) = p([X@Y]) = [F(X®Y)] = [F(X)QF (V)]
= [F(X)][F )] = o((XDe([Y]).
e ( is an isomorphism.

(1) ¢ is injective. If p(X) = [F'(X) = 0], then F(X) is a projective object. Since F' induces a stable

equivalence, X is a projective objective, that is [X] = 0.

(2)  is surjective. For any [Y'] € Gr(C’), there is Y € C such that F(Y) = Y”, that is [F(Y)] = [Y’]
and p([Y]) = [Y].

§2.3.2 Derived tensor categories

This subsection provides a detail exposition of an example of tensor triangulated categories: the
derived categories of finite tensor categories. In this case, we can also see some compatible relations

between tensor products and shift functors.
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Lemma 2.3.6. Given a finite tensor category C = (®, a,l,7,1), the category of complezes C°(C) is a

monotdal category.

Proof. Let X,Y € C*(C),
X=...—5 X" =X dx Xn+1 Xn+2

Y:_)wi Y Yn+1 Yn+2

we define the tensor product of objects X®Y to be the total complex:

~ ~ Ay ~ A7 ~
X®Y = — (XQY)" 25 (X®Y)"! 25 (XQY)"T? —
where (X®Y)" := @ X'®Y7 and dyey = @ dy ®idys +(—1)"idx ®d), for any n € Z.
i+j=n 1+j=n

For two chain maps f : X — Y and g : Z — L in C®(C), we define the tensor product of chain

maps to be f®g where ( f@g = P [f'®g’ for any n € Z, which is a chain map. Indeed, in each
i+j=n
degree n, there are

D (feg)o( @ dy®idy +(—1)"idx: ®d))

1+j=n+1 i+j=n
= @ (fTody)®¢ + (1) f'® (¢ 0dy)
i+j=n

and

(P di @idps +(—1)"idy: ®d}0) P (f ®g7)

i+j=n i+j=n
= @ (dyofHRF + (1)’ f ®(d], og’).
i+j=n

They are equal since f and g are chain maps. Next, we follow the definition to show C*(C) is a monoidal

category.

(1) Claim: —® — is a bifunctor.
By the definition above, — ® — maps objects into objects and maps chain maps into chain maps.

Given f: X ->Y g:Y > Z h:U—-V,[:V — W, it happens

(g0 [)R(I o h) = (¢RI) o (f&h).

Indeed, ((g o f)®(l o h)) +@ (9o f)® (loh)! and
(g o (fR)" "= (P gd@V)o (P ffeh)= P (gof)®(oh).
i+j=n i+j=n i+j=n
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(2)

~

So —® — preserves composition.
Given idy : X — X and any object Z in C*(C), it happens
idy ®idz = idygy -
Indeed, (idx ®idX)" = P dx:®idz = id?@Z. Hence — ® — preserves unit morphism:
i+j=n
Associativity constraint.

Define dxy 7 : (XQY)R®Z — XR(YRZ), where Uxyz = @ axiysiz Thendyyz is an
itjthk=n

isomorphism as axi ys z+ is an isomorphism for arbitrary i, j, k € Z. We need to verify dx y 7 is a

chain map and the naturality. It is enough to verify in each degree n € Z the following diagram

is commutative

(X&V)B2)" —2255 (XY )@2)™
| L |ass
(XBYB2)" 2 (X@(¥2)

Actually,
eviez = @D (dx ®idys) ®idge +(—1) (idx ®d)) ®idzr +(—1) (idx: ®idys) @ di
i+j+k=n

oren = @ dix ®(idys ®idze) + (—1) idx: ®(dfy ®ide) + (1) idx: ®(idys @d%)

i+j+k=n

Hence, the above diagram is commutative by the naturality of each axi yi z».

Next given f: X - U, g:Y -V, h: Z — W, the following diagram is commutative.

(X®Y)®Z)» —=22 5 (XB(Y®Z))"
l((f&)g)&)h)" l(f@(g@h))”
aZ,V,W

(URV)RW) — 2" (UQ(VRIW))™

Indeed,
(fR9)®n)"= P (FFegd)hn
it+j+hk=n
and
(f®(g®n)" = P [ h").
i+j+k=n

The above diagram is commutative by the naturality of each ax: yj zx.
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(3) Unit object: 1=+-+ — 0 —> k —> 0 —> -+ - where k is in the zero degree.

(4) Left and right unit constraints.

Define Iy : 1®X — X and 7y : X&1 — X where ZN} = lxn, 7% = rxn». By the naturality of each
Ix~» and rxn», we can get ZNX and Ty are chain maps and the naturality. Take lNX for example, the

following diagram is commutative.

- s -
(1®X)" —25 & 1R®X)"+!
i e
d%

Xn Xn+1

Given any f: X — U, k:1 — 1 where (k)° € k and (k)" = 0 for n # 0, the following diagram is
commutative.

A®x)" — & xn

l(l@f)“ l(f)"

vy — v pr
(5) The pentagon axiom.

In each degree, the following diagram is commutative by the pentagon axiom in C.

(WRX)@Y)&2)"
(ﬁw,x,y(@idz)”/ \anw(%;)z
(WR(XKY)®2))" (WRX)R(Y®Z))"
a&,x@y,zl a&,x,y@'z

(WR((XQY)®2))"

(idw ®dx,y,z)"
(6) The triangle diagram.

In each degree, the following diagram is commutative by the triangle axiom in C.

~n

(X®LRY)" (XSORY))"
(&@i% N 4 ®ly)"
(X®Y)"
To sum up, C*(C) is a monodial category. O
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Lemma 2.3.7. Given a finite tensor category C = (®,a,l,r,1), there are natural isomorphisms in
C*(0):

exy : X[1J®Y — (XQY)[1] (X,Y € C*(A)),
and

Oxy : XQY[1] - (XQY)[1] (X,Y € C°(A)).
Proof. Define

(CX,Y)n = @ 5i+1,i’6j,j' idXi+1®yj : @ Xi+1 ®Y] — @ Xi/ ®Y]/

i+j=n,i'+j'=n+1 i+j=n P45 =n-+1

which is a canonical isomorphism. It is direct to see e_ _ is a chain map and the naturality of e_ _.

While for 0x y, we define

(Qx’y)” = @ (_1)i5i,i’5j+1,j’ idxi®yj+1 . @ Xi ®Yj+1 — @ Xil ®Y‘7/

i+j=n,i’'+j'=n+1 i+j=n i'+j'=n+1

The additional sign makes 6 a chain map. Indeed, for fixed %, j there are

@ (—1)i idxigyi+1 0 @ diX ®idyj+1 +(_1)i idx: ®(_d§/+l)

i+j=n+1 i+j=n
= @ ()M ®idys +(—1)"idx: ®(—di)
i+j=n+1
and
—( P di®idy; +(—1)'idx: ®d}) o P (—1)'idxigyin
i+j=n+1 1+j=n
= @ ()" ®idys +(—1)"idx: ®(—di,)
i+j=n+1
In other words, the following diagram is commuting.
R @ di®idy 41 +(—1)"id y; ®(—dith) R
(X®Y[1)" = (X&Y[1)"*!
l(ex.w" . . , l(t‘)x,y)"+1
N —(v+ @ +1dlx®idy.7' +(=1)"id s ®d3) N
(XeY)[)" — (XeY)[a))+!
The natuality of 6 is obvious. O
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Lemma 2.3.8. Let C be a finite tensor category. For X,Y € C®(C), the following diagram is anti-

commutative in C*(C).

€X,Y[1]

(XY )]

lexm,y lex,Y[l]

(XY =25 (X&Y)[2]
Proof. We only need to verify in each degree n € Z the following diagram is anti-commutative.

(XY ) X (x@Y 1))

®
l(exm,yw i(ex,ym)"

(X[L&Y)[1))»

In fact,
(9X7y[].])n o (eX,y[l])” = —( @ (—]_)Z idxi@yj+1) o @ idX'i+1®Yj+1
i+j=n-+1 i+j=n
= P (-1)"Midxirigyin
i+j=n
and
(€X7y[1])n ©] (9_}([1]7)/)” = —( @ idxi+1®yj> O @ (—1>i+1 idxi+1®Yj+1
1+j=n+1 i+j=n
= @ (—1)2‘Jr2 idxivigyi+t .
i+j=n

which complete the proof. O

Lemma 2.3.9. Suppose that C = (®,a,l,r,1) is a finite tensor category, the bounded derived category

D®(C) is a tensor triangulated category.

Proof. First, we show K?(C) is a monoidal category whose tensor structure inherits —® — from C?(C).
It suffices to check that —® — preserves null-homotopy.

Let f: X — Y be homotopy to zero. That means there is s = {s"},cz, where s" : X" — Y"1,
such that f* = s"*! o d% + dy ' o s™. For any chain map g : V — W, we define 5 = {5"},,c; where
"= P s'®g’. Then

h (f®g)" = 5" odygy +dyg)y, 03",

that is f®g is null-homotopy. Similarly, so is g®f. Thus K°(C) is a tensor triangulated category.
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We have already known D°(C) is a triangulated category. Besides — ® — is an exact functor by
Lemma and — ® — is exact in C. Next, we show D’(C) is a monoidal category whose tensor
structure inherits —® — from K°(C). The task is now to show that —& — preserves zero morphisms
in D°(C).

Given a zero morphism o = dot™! : V <= U — W € D’(C), where t is a quasi-isomorphism. Then
there is a quasi-isomorphism p : T — U such that d o p is a zero morphism in K°(C) by Fact .
Hence there exists € = {€"},cz, where " : T" — W"~1 such that (do p)" = "t od}p + dpy ' o €™

Let f =bou™': X « Z — Y be any morphism in D’(C) where u is a quasi-isomorphism. We
need to show a®f is a zero morphism in D*(C) (The proof of f&@« is similar). Before that, we should
define the tensor product of right roofs. Let

(dot™")@(bou™) := (d&b) o (t@u) ",

where t®@u is a quasi-isomorphism by Acyclic Assembly Lemma in [b4, Lemma 2.7.3]. This definition
is well-defined.
~n

Hence we can find a quasi-isomorphism p = {p"},cz and a morphism € = {€"},c; where p" =

P P ®idgi, "= P € @V such that

i+j=n i+j=n
((d&b) 0 )" =& 0 dp iy, 0T

Indeed,

e odg, +dvl o =( @ €@V)o( P dr ®idz +(—1)" idr: @)

WY
t+j=n+1 i+j=n
+( P dy ®idy; +(—1)'idw: @d}) o (P € @)
i+j=n—1 i+j=n
= @ (€M ody) @V + (1) e @ (VT od))
i+j=n
+ @ (diy' o) @V + (—1)" e ® (d{, ob’)
i+j=n
= @D [@op)® = ((dRb) o p)".
i+j=n
That is a®f is a zero morphism in D’(C) which completes the proof. O
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Remark 2.3.10. A tensor triangulated equivalence between two derived categories is called a derived

tensor equivalence.

According to [[7, Definition 1.2], a thick tensor ideal X of a tensor triangulated category C is a thick
triangulated subcategory such that X is a (two-sided) tensor ideal: if X € X, A€ C then X ® Ae X
and A® X € X.

Lemma 2.3.11. ( [40, Remark 4.0.6] ) Let X be a thick tensor ideal of a tensor triangulated category
C, then the Verdier quotient category C/X is still a tensor triangulated category.

Recall that D(C) := K®(C)/D where D = {X € K®(C) | H"(X) = 0, Vn € Z}. By Acyclic
Assembly Lemma in [54, Lemma 2.7.3], we know D is a thick tensor ideal of K°(C). Then by Lemma
, wecanalsoknowD®(C) is a tensor triangulated category.
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Chapter 3 Stable equivalences between finite tensor categories

Our aim in this Chapter is to show that a tensor equivalence can be recovered by a stable equiv-
alence induced by an exact k-linear monoidal functor , as a special form of tensor triangulated equiv-
alences, under some certain conditions. Almost all the results in this Chapter can be found in [56].

In Section @, I rephrased a statement about a functor inducing a stable equivalence between

non-semisimple finite Frobenius categories C and C’ gives the following one to one correspondence (see
Lemma ):
Isoclasses of indecomposable o Isoclasses of indecomposable
—_—

. . . . <~ . . . .
non-projective objects in C v non-projective objects in C’

Furthermore, if C and C’ have no projective simple objects, we can deduce that for two simple objects
LeCand L' e, L is a subobject of ¥(L’) if and only if L’ is a quotient object of ®(L) (see Lemma
). Additionally, the set of the indexes of the isoclasses of simple objects as a quotent object of
®(L) in C can cover the set of the indexes of the isoclasses of simple objects in C’ (see Lemma )

Section @ is devoted to prove our first two main results (Proposition and Theorem ),

which establish the relation between tenor equivalences and stable tensor equivalences by utilizing the

invertibility of simple objects and the restriction of Frobenius-Perron dimensions..

§3.1 The isoclasses of simple objects under a stable equivalence

First, let us make some basic observations.

Lemma 3.1.1. Let C be a non-semisimple finite Frobenius k-linear abelian category.
(1) Let f: X — Y be an epimorphism in C. If f =0 in C, then f has the following form.:
FiX5PY)5y,
where (P(Y'),p) is a projective cover of Y and f = poi.

41



(2) Let g: X =Y be a monomorphism in C. If g =0 in C, then f has the following form.:

’

g X5 I1(x) By,

where (I(X),1') is an injective hull of X and g =p' oi'.

Proof.
(1) According to f = 0 in C, we can find a projective object P such that f = 3o «, where
fxasply

Moreover, since f is an epimorphism, so is 8. By the universal property of projective cover, there

exists an epimorphism h : P — P(Y') such that po h = f.

As a result, we know:
p

X8 pPy)Sy.

(2) We omit the proof, which is similar to (1). O

Next result is a categorical version of a result in representation theory of artin algebras.

Lemma 3.1.2. ( [4, cf. Proposition 1.1, p.336] ) Let C and C' be two non-semisimple finite k-linear
abelian categories and F : C — C' be a k-linear functor inducing a stable equivalence F : C — C'. Then
F gives a one to one correspondence between the isoclasses of indecomposable non-projective objects in

C and C'.

Proof. For the reason that C and C’ are finite k-linear abelian categories, we can assume C =~ A-mod,
C’ = A’-mod as k-linear abelian categories, where A and A’ are finite-dimensional k-algebras. For any
A-module X, we deduce the result that P(X,X) € radEnd4(X) if and only if X has no non-zero
projective direct summand (See [3, Proposition 2.5].). It follows that End(X) is local if and only if
Enda/ (X') is local where F/(X) =~ X'@® P’ satisfying that X’ has no non-zero projective direct summand
and P’ is projective. That is, X is indecomposable if only if X’ is indecomposable.

Hence we get the following one to one correspondence

Isoclasses of indecomposable P Isoclasses of indecomposable
-
non-projective A-modules k non-projective A’-modules
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Specifically, for any indecomposable non-projective A-module X, we define ®(X) = X’ satisfying that
F(X) = X'@® P’ for some projective A’-module P’. Conversely, for any indecomposable non-projective
A’-module Y’, we define ¥(Y"') =Y satisfying that F(Y) = Y’ ® Q' for some projective A’-module Q.
It is directly to see @ and ¥ are well-defined by Krull-Schmidt Theorem. Moreover, ® o ¥ = id and
W o ¢ = id. The proof is completed. 0

Under the assumption of Lemma BT, there is a pair of mutually inverse maps still denoted by ®

and ¥

Isoclasses of indecomposable P Isoclasses of indecomposable
-
non-projective objects in C ¥ non-projective objects in C’

Using the above lemma, we deduce the following result.

Lemma 3.1.3. Let C and C' be non-semisimple finite Frobenius k-linear abelian categories. Suppose

a k-linear functor F : C — C' induces a stable equivalence between C and C'.
1) For any indecomposable non-projective object X € C and any simple object L' € C', we get L' is a
Y ) 5 Y ] g

quotient object of ®(X) if and only if Hom,, (®(X), L") # 0.

(2) For any indecomposable non-projective object Y' € C' and any simple object L € C, we get L is a
subobject of W(Y') if and only if Hom,(L, ¥(Y")) # 0.

Proof.

(1) “Only if " part: We claim the epimorphism f : ®(X) — L’ satisfies f # 0, which would follow that
Hom,, (®(X), L") # 0. First, we note that L’ must be non-projective as ®(X) is indecomposable
and non-projective. Assume on the contrary that f has the following form:

fo(X) 5 PL) > L

where P(L') can be chosen as a projective cover of L’ by Lemma (1). Let us consider the
following commuting diagram:

{

B(X) P(L) — 5 Coker(3)



where (Coker(),t) is the cokernel of ¢ and (3, «) is the pushout of (j, ).

There are two cases which may happen:
(i) If N =0, then there is an epimorphism:
P(L") — Coker(i) ® L',
which follows another epimorphism:
P(L') = P(P(L")) - P(Coker(i))® P(L')

where P(P(L')) and P(Coker(i)) denote projective covers of P(L’) and Coker(7) respectively.
Thus, Coker(i) = 0 and consequently P(L’) is a direct summand of ®(X'), which contradicts
to the fact that ®(X) is indecomposable and non-projective.

(ii) If N # 0, since «o f =aojoi=fotoi=0, we find o = 0. This leads to a contradiction
that N = Im(a).

In conclusion, f # 0 and thus Hom,, (®(X), L") # 0.

“If” part: Conversely, Hom,, (®(X), L") # 0 makes Hom¢(®(X), L") # 0 which deduces that L’

is a quotient object of ®(X).

(2) The proof of this result is dual to that given above by using pullback instead and so is omitted. O

Corollary 3.1.4. Let C and C' be non-semisimple finite Frobenius k-linear abelian categories having
no projective simple objects. Suppose a k-linear functor F' : C — C’ induces a stable equivalence between
C and C'. For two simple objects L € C and L' € C', L is a subobject of W(L') if and only if L' is a
quotient object of ®(L).

Proof. Since F induces a stable equivalence,
Hom,(L,¥(L")) = Hom, (F (L), F(V(L"))) = Hom.,(®(L),®(¥(L"))) = Hom., (®(L), L").

Therefore Hom. (L, V(L’)) # 0 if and only if Hom. (®(L),L") # 0. The conclusion is obtained by

Lemma . 0
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Let C and C’ be non-semisimple finite Frobenius k-linear abelian categories having no projective
simple objects. Let {L;}ic; and {L/;};c; be the isoclasses of simple objects in C and C’ respectively. We

introduce the following notation

Ji ={j € J | Ljis a quotient object of ®(L;)} (i€ I).

Corollary 3.1.5. Let C and C' be non-semisimple finite Frobenius k-linear abelian categories having
no projective simple objects. Suppose a k-linear functor F : C — C’ induces a stable equivalence between
C and C'. Then J = JJ;.

iel
Proof. It is suffices to prove J < | JJ;. Indeed, let L; be a simple object in C’ and suppose that L; is
a simple subobject of W(L%). Therlgéore L’ is a simple quotient object of ®(L;) by Corollary . In

other words, j € J; for some i € I. O

§3.2 The main theorems

As we can see in Lemma , a stable equivalence induced by an exact functor F' between two
self-injective algebras can recover the original equivalence between module categories, if and only if F
maps simple modules to simple modules. So the crucial point to prove Proposition and Theorem
boils down to the following question:

Question: When does an exact k- linear functor maps simple objects to simple object?

§3.2.1 Invertibility of simple objects induces a tensor equivalence

In the begining, we turn to mention the relation between the Chevalley property and the existence
of simple projective objects. A Hopf algebra is said to have the Chevalley property, if the tensor product
of two simple modules is semisimple. Generally, let us say a tensor category has the Chevalley property
if the category of semisimple objects is a tensor subcategory [2, Definition 4.1].

The following lemma is contributed to simplify the assumptions of our results.
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Lemma 3.2.1. Let C be a non-semisimple finite tensor category with the Chevalley property. Then C

has no simple projective objects.

Proof. Otherwise, let L be a simple projective object in C. Since L ® L* is semisimple, 1 is a direct
summand of it. Moreover, Lemma tells us that L ® L* is projective as L is projective. This

implies 1 is also projective, then C is semisimple by [18, Corollary 4.2.13], a contradiction. O
A direct consequence of this lemma is:

Corollary 3.2.2. Let H be a finite-dimensional non-semisimple Hopf algebra with the Chevalley prop-

erty. Then H-mod has no simple projective modules.

Let C be a tensor category. An object X in C is invertible if evy : X*® X — 1 and coevy : 1 —
X ® X* are isomorphisms ( [1§, Definition 2.11.1] ). A tensor category in which every simple object
is invertible has the Chevalley property ( [18, Proposition 4.12.4] ). With this observation, we are in a

position to show our first main conclusion now:

Proposition 3.2.3. Let C and C' be two non-semisimple finite tensor categories. Suppose F' : C — C’
is an exact k-linear monoidal functor inducing a stable equivalence F' : C — C'. If all simple objects in

C and C' are invertible, then F is a tensor equivalence.

Proof. We claim F' maps simple objects to simple objects. Actually, for any simple object L € C, we

know

F(L*)® F(L) = F(L*® L) = F(k) = k.

Then

length(F(L*))length(F (L)) < length(F(L*) ® F(L)) = length(k) = 1,

where length(-) denotes the length of the Jordan-Holder series. Hence length(F'(L)) = 1, that is, F'(L)
is a simple object.

Since C and C’ are finite, we may assume C =~ A-mod, C’ =~ A’-mod as k-linear abelian categories,
where A and A’ are finite-dimensional k-algebras. In addition, as C and C’ are tensor categories, A and

A" also can be self-injective according to Lemma . Moreover, C and C" have no projective simple
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objects by Lemma . As a result, F'is a k-linear equivalence by Lemma . Consequently it is

a tensor equivalence. O

Note that a Hopf algebra H is basic if and only if every simple object in the tensor category of

finite-dimensional H-modules is invertible. So the following conclusion is directly obtained.

Corollary 3.2.4. Let H and H' be finite-dimensional non-semisimple basic Hopf algebras. Suppose
F : H-mod — H’-mod is an exact k-linear monoidal functor inducing a stable equivalence F' : H-mod —

H'-mod. Then H and H' are gauge equivalent.

Remark 3.2.5. We conclude this subsection by pointing out that: the inverse of Lemma is false.

Actually, consider a finite-dimensional Hopf algebra H; without the Chevalley property such as
Aé4 [b1] and a finite-dimensional non-semisimple Hopf algebra H, having the Chevalley property such
as Taft algebra, the tensor product of the two Hopf algebras has no the Chevalley property and all
projective modules are not simple. Indeed, the simple modules of H; ® Hs is the form V ® W for
unique simple modules V', W of H;,H, respectively [17, Theorem 3.10.2]. Besides, since Hs has no
simple projective modules by Lemma , neither does Hy ® Hs.

§3.2.2 The restriction of Frobenius-Perron dimensions induces a tensor

equivalence

An important technical tool in the study of tensor categories is Frobenius-Perron dimensions. We
mainly follow [[1§] for the standard notion of Frobenius-Perron dimension.

Let Z, denote the semi-ring of non-negative integers. A basis B = {b;};c; of a ring A which is
free as a Z-module is called a Z -basis if b;b; = %cfjbk with ¢}, € Zy. A Z,-ring is a ring with a fixed
7, -basis and with identity 1. Furthermore, A unital Z ring is a Z-ring such that 1 € B. Let A be
a transitive unital Z-ring of finite rank, namely a unital Z,-ring of finite rank satisfies the property:
For any X, Z € B there are Y7, Y5 € B such that XY; and Y2 X contain Z with a nonzero coefficient.

Now we are ready to give the definition of Frobenius-Perron dimension. Let A be a transitive

unitial Z-ring of finite rank with basis B = {b; };c; and |I| < c0. Each b; induces a linear operator

’b\iZA—>A, av—>bi-a
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The classical Frobenius-Perron theorem in [20, VIII.2] tells us the existence of maximal eigenvalue

spectral radius p(gz) of b;, that is
p(b;) == max{ |p| | pis an eigenvalue of b;}

is an eigenvalue of the linear operator b;.

Here I only introduce the Frobenius-Perron theorem described in [1§].

Theorem 3.2.6. ( [1§, Theorem 3.2.1] ) Let M be a square matriz with non-negtiva real entries. Then

M has a non-negative real eigenvalue and the spectral radius of B is an eigenvalue.

Define a group homomorphism
FPdim: A — C, FPdim(Eaibi) = Zaip(/l;i)
iel el
where «; € Z for i € I. The function FPdim is called the Frobenius-Perron dimension.

Regarding Frobenius-Perron dimension, here are some properties.

Lemma 3.2.7. ( [L§, Proposition 3.3.6] )

(1) The function FPdim : A — C is a ring homomorphism.

(2) FPdim is the unique character of A which takes non-negative values on I, and FPdim(X) < 1
for any X e 1.

Due to the following result, one can define the Frobenius-Perron dimensions of objects in a finite

tensor category C.

Lemma 3.2.8. ( [18, Proposition 4.5.4] ) If C is a finite tensor category, then Gr(C) is a transitive

unital Z -ring of finite rank.

To be specific, for each object X € C, FPdim(X) is the largest positive eigenvalue of the matrix
of left or right multiplication by X on the set of isomorphisc classes of simple objects. Furthermore,
FPdim is the unique additive and multiplicative map which takes positive values on all simple objects

of C. Here is a lemma which we will need later.
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Lemma 3.2.9. ( [1§, Proposition 4.5.7] ) Let C and C" be finite tensor categories. If F': C — C' is an
exact k-linear monoidal functor, then FPdim(F (X)) = FPdim(X) for any X € C.

Let {L;}icr be the set of isomorphic classes of simple objects of C, and P; denotes the projective

cover of L; for each 1.

Definition 3.2.10. ( [18, Definition 6.1.6] ) Let C be a finite tensor category. Then the Frobenius-

Perron dimension of C is defined by

FPdim(C) := ) FPdim(L;) FPdim(P,)
iel
For a finite dimensional Hopf algebra H, it is clear that FPdim(H-mod) = dimy (H), which can
be found in [18, Example 6.1.9].
The following theorem shows that Frobenius-Perron dimensions are invariant under tensor equiv-

alences, which gives us the hint to add the assumption of Frobenius-Perron dimensions.

Theorem 3.2.11. ( [18§, Proposition 6.3.3] ) Let C and C' be finite tensor categories. A tensor functor
F :C — (' is an equivalence if and only if FPdim(C) = FPdim(C’).

We now turn to prove one of the main theorems.

Theorem 3.2.12. Let C and C' be two non-semisimple finite tensor categories having no projective
simple objects such that FPdim(C) = FPdim(C"). Suppose F : C — C' is an exact k-linear monoidal

unctor inducing a stable equivalence F : C — C’, then F is a tensor equivalence.
g

Proof. Let {L;};cr and {L; }jes be the set of isoclasses of simple objects in C and C’ respectively, where
I and J are finite sets. Moreover, we use P; (resp. P]f ) to represent a projective cover of each simple
object L; (vesp. L}).

The trick of the proof is to show F' maps simple objects to simple objects. For any simple object
L;, we know F(L;) = ®(L;) ® Q) for some projective object @Q; by Lemma . In addition, as F is
an exact functor, there is an epimorphism F(P;) — P(®(L;)) for any i € I, where P(®(L;)) denotes a

projective cover of ®(L;).
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Consequently, we can get the following formula:

FPdim(C) = > FPdim(L,) FPdim(P,) = ) FPdim(F(L;)) FPdim(F(P,))
el i€l
= ) FPdim(®(L;) @ Q;) FPdim(F(P;))
el
> ) FPdim(®(L;)) FPdim(P(®(L;)))
el
> (> FPdim(L)))( ) FPdim(P})))
iel jed; Jj€Ji
> Y FPdim(L}) FPdim(P})  (by Corollary B.L3)
jedJ
— FPdim(C’).
By the condition that FPdim(C) = FPdim(C’), all the ¢ > ” above are in fact equalities. Due to
D FPdim(®(L;) @ Q;) FPdim(F(P;)) = > FPdim(®(L;)) FPdim(P(®(L,))),
el el

we can deduce that @} = 0 for any i € I. Moreover, by

> (O] FPdim(L)))( ) FPdim(P))) = > FPdim(L}) FPdim(P;),

i€l jed; jeJ; jeJ
it is clear that each J; has just one element for i € 1. Without loss of generality, let J; = {L;(i)} where
¢ : I — J is a surjection given by Corollary . At last,

> FPdim(L,;)) FPdim(P, ;) = »  FPdim(L}) FPdim(P})

el jedJ

_ZFPdlm L;)) FPdim(P(®(L;))),

el

it follows that FPdim(®(L;)) = FPdim(L/,,)) for i € I. Hence F(L;) = ®(L;) = L;

(i) for any i € I.

Since C and C’ are finite, using the same method used in proof of Proposition , we can
assume C =~ A-mod, C' =~ A’-mod as k-linear abelian categories, where A and A’ are finite-dimensional
self-injective k-algebras. By Lemma , F is a k-linear equivalence. Consequently it is a tensor

equivalence. 0

It is direct to see the following corollary.
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Corollary 3.2.13. Let H and H' be finite-dimensional non-semisimple Hopf algebras having no simple
projective modules such that dimy (H) = dimy (H'). If an ezact k-linear monoidal functor F : H-mod —

H’-mod induces a stable equivalence F : H-mod — H'-mod, then H and H' are gauge equivalent.

Proof. By FPdim(H-mod) = dimy (H) we can get the conclusion. O

Remark 3.2.14. We end this section by pointing out that: The condition “the functor F' is monoidal”
can not be removed in Theorem . Let us illustrate it with an example. Consider the n?-
dimensional Taft algebras H,,(¢;) and H,(q2), where ¢; and ¢» are primitive n-th roots of unity (The
specific definition of Taft algebras will be introduced in Chapter a) [28, Corollary 3.3] tells us that
H,(q1) and H,(q2) are gauge equivalent if and only if ¢; = ¢o. As the fact that H,(q;) and H,(q2) are
isomorphic as algebras, they are Morita equivalent inducing a functor from H,,(q;)-mod to H,,(g2)-mod.

This functor satisfies the assumptions of Theorem , except that F' is a monoidal functor when
Q1 7# qo-
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Chapter 4 Monoidal t-structures on tensor triangulated cate-

gories

The concept of t-structure was introduced by Beilinson, Bernstein and Deligne to construct the
category of perverse sheaves over an algebraic or analytic variety [§]. Many evidences show that t-
structures play a key role in under standing the structure of triangulated categories such as derived
categories. Alonso Tarrio, Jeremias Lépez and Souto Salorio showed that Rickard’ theorem, that
characterizes when two bounded derived categories of rings are equivalent, can be deduced from t-
structure constructed in [563]. Psaroudakis and Vitéria established a derived Morita theory for abelian
categories with a projective generator or injective cogenerator by using realization functor associated

to t-structure in triangulated categories [{1].

In [59] Zhang and Zhou defined mtt-structures (i.e. monoidal triangulated t-structure) on tensor
triangulated categories. They observed that under certain conditions of strength, the heart of a mtt-
structure manifests as a tensor category. By using this result, they also gave an statement that derived
tensor equivalences between two finite-dimensional hereditary weak bialgebras can recover the monoidal
abelian equivalences between categories of modules if one the the weak bialgebras is bialgebra. Inspired
by these ideas, we would like to understand if we can give a new description of t-structures in tensor
triangulated categories, in order to express the equivalences of derived tensor equivalences without

adding conditions of hereditary.

Section @ is intended to motivate the investigation of monoidal t-structures. It is worth pointing
out that the Grothendieck ring of the heart of a monoidal t-structure carries all the information of the
Grothendieck ring of the triangulated category itself (see Proposition ) We emphasize that the
property of integral make two equivalent monoidal t-structures equal (see Theorem ) Section @
established the relations between tensor equivalences (gauge equivalences), derived tensor equivalences

and stable tensor equivalences by using the tool of monoidal t-structures defined in Section @ (see

Theorem and Theorem )
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§4.1 Deviation and uniqueness of monoidal t-structures

I firstly recalled some basic definitions and properties related to t-structures. References are made

to [9,113,B0]. Let (7,X) be a triangulated category where ¥ is the translation functor.

Definition 4.1.1. ( [J, Definition 1.3.1] ) A pair of full subcategories t = (D<%,D>') in T is said to

be a t-structure on T, if they satisfy the following conditions:
(T1) £D<0 € D=0 and D>! C D>,
(T2) Homy(D<°, D>1) = 0;
(T3) For any object X € T, there is a distinguished triangle
X< L X & x> L nxs0,
where X<0 e D<Y and X>! € D=1

The subcategories D<? and D>! are called the aisle and coaisle of t respectively.

Let t = (D<°, D>!) be a t-structure on 7. The following are some definitions and notations we

will need later.

e For any n € Z, let DS" := X~ DSV D>ntl .= $1-nD>1 and B¢ := (D", D> ). If t is a
t-structure, so is ¥t for any n € Z ( [30, Remark 10.1.2] ).

o H; :=D<""D>Yis called the heart of ¢, which is an abelian category ( [30, Proposition 10.1.11]).
There is a cohomological functor HY : T — H, (i.e. a functor sending distinguished triangles in

T to long exact sequences in H,) defined by:
H)(X) = 75%7%(X) =~ 7775%(X) for any X € T,

where 70 and 77° are the truncation functors (i.e. the left and right adjoint functor respectively
of the inclusions of D<? and D>° in T). In the same way, one can also define functors 7.~", 72"

n . ~<0_20ymn ~ Y <n_=n
and H := 707008 = ¥nrstr2™ [B0).

o Let t7 := v Dz" ¢ = v Ds" and t° ;= t* Nt~ t is called bounded below (resp. bounded
ne ne

above, bounded) if t* = T (resp. t~ =T, t® =T).
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o Let t = (D<0,D>!) and t; = (D5, D7') be t-structures on 7. t and t, are called equivalent
if there exist m < n € Z such that D= < D% < D= (if and only if D>™ 2 D7’ 2 D>"

see [13, Lemma 4.1]). Tt is clear that t is equivalent to X"t for any n € Z.

Example 4.1.2. Let A be an abelian category. We consider the standard t-structure t 4 := (Djo, Dil)
on its derived category D*(A) as follow where = € {(J, +, —, b}:

DY :={X eD*(A) | H(X)=0,Yi > 1}, D3' :={X € D*(A) | H(X) = 0,Vi < 0}.

In this case, the heart of t 4 is equivalent to A [B0]. When # is + (resp. —, b), the standard t-structure
t.4 is bounded below (resp. bounded above, bounded).

A t-structure on D*(A) is called intermediate if it is equivalent to the standard t-structure.

Lemma 4.1.3. ( [30, Proposition 10.1.6] ) Let t = (D<°,D>') be a t-structure on a triangulated
category T .

(1) If X € D™ (resp. X € D>"), then 7~"X =~ X (resp. 77" X =~ X).

(2) Let X € T. Then X € D" (resp. X € D") if and only if 77" X =0 (resp. 7,."X = 0).

Lemma 4.1.4. Let t be a bounded t-structure on a triangulated category T with heart Hy and n € Z.
Then

(1) X =0 if and only if H(X) = 0 for any i € 7Z.

(2) X € D" (resp. X € D>") if and only if H{(X) =0 (resp. H:(X) =0) for anyi > n+1 (resp.

i<n-—1).

Proof. By [13, Lemma 2.4], (1) holds. Here we only prove the first statement in (2). Let X € D<"
and i = n+ 1. Then XX € DS~!. Hence

H{(X)=H)(%'X)=0.

For another direction, we suppose that X € T satisfying H/(X) = 0 for any ¢ = n + 1. There is a
distinguish triangle:

XS X — x>l mxsn,
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By taking the cohomology funtor we get the exact sequence for any ¢ € 7
Hz(Xén) SN Hz(X) _ Hi(XZn-H) N Hi+1(X<n) in /Hm'

For any i > n + 1, H/(X<") = 0 by Lemma . Hence H'(X) = H(X>"!). Tt follows by the
assumption H (X>"T1) =0 for any i > n+ 1. We also know H*(X>"!) = 0 for any i < n by Lemma

[1.1.d. Hence Hi(X>"1) = 0 for all i € Z, and X>"*! = 0 by (1), which implies X = X<" € D<". [

The following lemma states that the information of Grothendieck group of the heart of a bounded

t-structure can cover the information of the Grothendieck group of the triangulated category.

Lemma 4.1.5. ( [, Proposition A.9.5] ) Let t be a bounded t-structure on a triangulated category T
with heart Hy. Then Gr(Hy) = Gr(T) as groups.

Now we are in the position to give one of the main definitions in this Chapter.

Definition 4.1.6. A bounded t-structure t = (DS, D>1) on a tensor triangulated category C is called

monoidal t-structure if there exists n € Z such that
(M1) DS° @ Ds™ < DSY;
(M2) D>° @ D>" < D>Y.

The set of integer satisfies the conditions in Definition is called the deviation of t, and is
denoted by dev(t).

Lemma 4.1.7. Let t be a monoidal t-structure on a tensor triangulated category C. For any k € 7,
Y*t ds also a monoidal t-structure on C. Moreover, if n € dev(t), then n — k € dev(X~%t) for any
keZ.

Proof. Since t is a monoidal t-structure, there exist n € dev(t) such that

DS @ D" < DSV and DZ° @ D>" < D>,

Hence for any k € Z
DSk ® D<k+nfk c DSk and DZk ® D2k+nfk c DZk

which means that YX*t is also a monoidal t-structure with n — k € dev(X"t). O
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Due to Lemma , even if the deviation of a monoidal t-structure t may not contain 0, we
can always find a integer k such that 0 € dev(X~*t). Hence it is not harmful for us to assume that
0 € dev(t).

If t = (D<Y,D>!) is a monoidal t-structure with 0 € dev(t), it is clear that the heart H; is closed
under ®, namely Hy ® Hy S Hy. Thus I rephrase the following useful Kiinneth formula with respect
to t.

Theorem 4.1.8. ( [10, Theorem 4.1] ) Let C be a tensor triangulated category and t be a monoidal

t-structure on C with 0 € dev(t). Then for any n € Z, there is a natural isomorphism

HMNXQ®Y)= P H(X)QH{(Y) forall X,Y €C.

i+j=n

Proposition 4.1.9. Let t be a monoidal t-structure on a triangulated category C with 0 € dev(t).
Then Hy is a monoidal abelian category with unit HY(1). Furthermore, the Grothendieck group Gr(H)
is a ring and Gr(Hy) = Gr(T) as rings.

Proof. Let X € Hy. We know H{(X) = 0 for any i # 0. According to Proposition and Lemma
, we deduce
X2H)(X)2H(1®X)=>H(1)Q@H)(X) =~ H)(1)® X.

Since H; is closed under ®, it is a monoidal category. By Lemma we can get Ko(Hy) = Ko(T)

as rings. 0

Remark 4.1.10. For a monoidal t-structure t, we know H?(1) # 0. Otherwise for any X € H,
X >~ H)(1) ® X =~ 0, hence H; = 0, which is impossible for a bounded t-structure on 7.

Following by [35, Definition 9.14], a t-structure is called stable if D<? = D<?. But the heart of a
stable t-structure is {0} (see [13, Lemma 2.5]). Hence a monoidal t-structure must not be stable. Here

I remind readers that for a t-structure t which is not stable, there are a,b € Z such that a < b if and

only if DS® ¢ Db,

Definition 4.1.11. A monoidal category C is called integral if X ® Y = 0 if and only if X = 0 or
Y =0 for any object X,Y € C.
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Example 4.1.12. ( [18, Example 4.3.12] ) We consider the category C of finite-dimensional represen-
tations of the quiver of type Az, which is a monidal category. Such representations are triples (V, W, 1)
where V', W are finite-dimensional vector space, and 7 : V. — W is a linear operator. The tensor

product on such triples is defined by
(V7 I/I/v 7—) ® (Vlv le T/) = (V ®]k Vlv W ®]k le T ®]k T/)
with unit object (k,k,id). Then C is not integral.
Lemma 4.1.13. We assume that t is a monoidal t-structure on a tensor triangulated category C with

0 € dev(t) and heart Hy is an integral monoidal category.

(1) Let X € DS™, Y € DS"™ where m,n € Z such that H"(X) # 0 and H(Y) # 0. Then
X ®Y € D™t with H" (X ®Y) # 0..

(2) Let X € D™ and Y € D>" where m,n € 7 such that H"(X) # 0 and H(Y) # 0. Then
XQ®Y e D>l with H"™™(X ®Y) # 0..

Proof. We only show the first statement. By using Proposition , we know
H(X®Y)> @ HI(X)®H(Y).
i+j=n

Since X € D™, we know H}(X) = 0 for any j = m + 1. Likewise H}(Y) = 0 for any j = n+ 1. Hence
H} (X ®Y) =0 for any j = m + n + 2, which implies X ® Y € D<"*+"+1 by Lemma .1.4. Note that
H, is integral and H™(X), H(Y) are not zero, so H"™"(X ® Y) # 0. O

Proposition 4.1.14. Let t be a monoidal t-structure on a tensor triangulated category C such that

0 € dev(t) and Hy is an integral monoidal category. Then dev(t) contains only one element 0.

Proof. Otherwise, assume a € dev(t) and a # 0. If a > 0, then we know DS ® D<® < DS, Let
X € D=0 with H(X) # 0 and Y € D=* with H¢(X) # 0. By Lemma [£.1.13, we know H3(X®Y) # 0.

Hence X ® Y can not be in D<’. Dually we can show that the case a < 0 is also impossible. O

The following result will prove extremely useful in Section @
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Theorem 4.1.15. Let t be a monoidal t-structure on a tensor triangulated category C such that
0 € dev(t) and Hy is an integral monoidal category. If t is equivalent to any monoidal t-structure t,

on C, then t = t;.

Proof. We can assume that 0 € dev(t;). Since t and ¢, are equivalent, there exist a < b € Z such
that D¢ < D’ < D<t. Here we can choose b (resp. a)to be the minimum (resp. maximal) integer
satisfies this condition, namely, there doesn’t exist a integer & < b (resp. k > a) such that DF° < Dk
(resp. D=F < D). In this case, there are X,Y € D5 such that both HZ(X) and H?(Y') are non zero.

If a = b, then t; = X7%. We can deduce that a = 0. Indeed, t; = X%t and t; is a monoidal
t-structure with 0 € dev(t;), which implies —a € dev(t). By Proposition , a=0.

If @ < b, then one of the following two cases must occur: b > 0 or a < 0.

i) Let b > 0. By Lemma H?(Y ®Y) # 0. Hence Y ®Y is not contained in D%, which is a
() y ) t 1

contradiction.

(ii) Let a < 0. By Lemma , H2?*(X ® X) # 0. Hence X ® X is not contained in D7°, which is

a contradiction.

To sum up, the only possible case is a = b = 0. O

§4.2 Derived equivalences between finite tensor categories

In this section, we will see finite tensor categories are integral. So all the statements in Section

@ are available in the case of derived categories of finite tensor categories.

§4.2.1 Reconstruction of a finite tensor category from a derived tensor

category

Lemma 4.2.1. Suppose that C is a finite tensor category and X,Y € C. Then is integral.

Proof. By using Frobenius-Perron dimension, it is clear to get C is integral. (|
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The lemma below is used to prove our main Theorem in this subsection.

Lemma 4.2.2. ( [13, Example 4.5] ) Let t be a bounded t-structure on a triangulated category C such
that heart Hy is a finite abelian category. Then all the bounded t-structures on T are equivalent to t.
In particular, for a finite dimensional algebra A, all bounded t-structures on D*(A-mod) are equivalent

to the standard t-structure.

Proof. Let {S;}icr be the set of non-isomorphism simple object in H; where I is a finite set, and let
t; be another bounded t-structure on 7. Since [ is a finite set, there exists n < m € 7 such that
{Si}icr € D™ A D;”". Note that D™ nD;>" is closed under extensions. Hence H, € D™ N D;~",

which means D<" € D € D<™ and then t, is equivalent to t. O

Theorem 4.2.3. Let C and C' be finite tensor categories. If D(C) and D*(C’) are tensor triangulated

equivalent, then C and C' are equivalent as tensor categories.

Proof. Let F : D*(C) — D"(C’) be a tensor triangulated equivalence. A pair of full subcategories in
D*(C’) is denoted by

U:={X e D"C)|3X e D° such that F(X) = X},

V:={Y e D*(C’) | 3Y € DZ' such that F(Y) = Y}

where (D5, DZ') is the standard t-structure which is a monoidal t-structure in C. Since F induces a

tensor triangulated equivalence, t = (U, V) is a monoidal t-structure on D°(C’) and the restriction
F|C : C i Hm

is a monoidal abelian equivalence. By Lemma and Theorem , t is nothing but the standard
t-structure t¢r, hence Hy = C’. O

Corollary 4.2.4. Let H and H' be finite dimensional Hopf algebras. If D*(H-mod) and D*(H’-mod)

are tensor triangulated equivalent, then H and H' are gauge equivalent.
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§4.2.2 Stable tensor equivalences induced by derived tensor equivalences

Rickard’s Morita theorem for derived categories gives a necessary and sufficient condition for two
algebras to be derived equivalent . This condition is based on the existence of a tilting complex. If
the algebras are self-injective, then the derived equivalence is closely connected with a stable equivalence
. The purpose of this Chapter is to explore whether Rickard’s theorems are still true under the
setting on derived tensor categories. I will only state Rickard’s theorems in category version as follows

without mentioning tilting complexes.

Theorem 4.2.5. ( [45, Theorem 6.4] ) Let A and A’ be two finite k-linear abelian categories. We
use P and P’ to denote the full subcategories consisting of projective objects, then the following are

equivalent:
(1) K°(P) and K°(P') are equivalent as triangulated categories;

(2) Db(A) and D*(A") are equivalent as triangulated categories.

Theorem 4.2.6. ( [47, Theorem 2.1] ) Let A be a finite Frobenius k-linear abelian category. The

essential image of the natural embedding
K*(P) — D"(A)

is a thick subcategory. The quotient category D*(A)/K®(P) is equivalent to the stable category A as a

triangulated category.

Theorem 4.2.7. ( [47, Corollary 2.2] ) Let A and A’ be finite Frobenius k-linear abelian categories.
If A and A’ are derived equivalent then they are stably equivalent.

Firstly, Theorem will be realized in the case of derived tensor categories.

Lemma 4.2.8. Let C be a finite tensor category. The essential image of the natural embedding
K"(P) — D*(C)
is a thick tensor ideal. Moreover, D*(C)/K®(P) is a tensor triangulated category.
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Proof. We already known that K°(P) is a thick subcategory by Theorem . The only thing we
need to verify is that K°(P) is a tensor ideal. As the localization functor is a monoidal functor, so we
deduce that D?(C) is equivalent to K ~*(P) as tensor triangulated categories.

Let Pe K*(P) and Q € K—*(P). Then P, Q can be written as follows respectively:

P: 0->P'Sp' 5...5pP0 ... P,

Q: ..._)Q—t_,Q—tH_>..._>Q0_)..._>Qm_)0

where the n-th homology object of @) is zero when n < —t. By using Lemma and Lemma
we know that Q ® P is quasi-isomorphic to a complex G in K’(P). Moreover, Lemma tells us
that P ® Q and G are also homotopy equivalent, which means P ® Q € K°(P).

Next, we consider O € K—*(P) which is homotopic equivalent to a complex P € K°(P) and any
Q € K—*(P). The tensor product functor preserves the quasi-isomorphism (also homotopy equivalence
in this case) due to Lemma and Lemma . Hence O ® @ is homotopy equivalent to P ® Q.
we know known that P ® @ € K°(P) which shows that O ® Q € K*(P).

Applying the same process on the other side, we get the conclusion the essential image of the
natural embedding K°(P) — DP(C) is a thick tensor ideal. Lemma helps us complete the
proof. O

Lemma 4.2.9. Let C be a finite tensor category. The essential image of the natural embedding
K"(P) — D*(C)

is a thick tensor ideal. The Verdier quotient category D*(C)/K(P) is equivalent as a tensor triangulated

category to the stable tensor category C.

Proof. By Theorem and Lemma , it remains to prove that the equivalence functor F': C —
D*(C)/K*(P) in the proof of Theorem is also a monoidal functor. Recall that F' is given by the

following diagram:

: C —— D) — D*(C)/K"(P)
\ /
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where F’ is obtained by composing the natiral embedding of C into D®(C) with the Verdier functor.
Note that F’ is obviously a monoidal functor, and the tensor products in D*(C)/K®(P) and C are
derived from the &® in C. It is a routine to verify F' is a monoidal functor.

O

Let F' : C — (' be an tensor triangulated functor between two tensor triangulated C and C’.
Suppose that I, I” are thick tensor ideal of C, C' respectively such that F(I) < I’, F induces a tensor
triangulated functor F': C/T — C'/I' such that the following diagram commute by Theorem :

c——%

| |

/I ———— T

If moreover, F(I) ~ I, then we know F is also equivalent.

Theorem 4.2.10. Given two finite tensor categories C and C'. If D*(C) ~ D®(C') as tensor triangulated

categories, then

c~C
as tensor triangulated categories.
Proof. By Theorem or directly by the above statement and Lemma . O

Given two finite-dimensional non-semisimple Hopf algebras H and H'.

Corollary 4.2.11. If D*(H-mod) ~ D*(H’-mod) as tensor triangulated categories, then
H-mod ~ H'-mod

as tensor triangulated categories.
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Chapter 5 The bounded derived categories of Taft algebras

Throughout this Chapter, we work over a fixed field k with an n-th primitive root of unity ¢ for
some positive integer n. For n > 1, the n®-dimensional Hopf algebra H,(q) constructed by Taft in [52] is
one of the frequently used Hopf algebras called Taft alegbras. When n = 2, H5(q) is known as Sweedler’s
4-dimensional Hopf algebras [36]. See [44] for more details about Taft algebras. Cibils in [15] gave the
indecomposable modules over the Taft algebra H,(q), and the decomposition formula of the tensor
product of two indecomposable modules over H,(q). In [14], the authors described the structure of the
Green rings of the Taft algebras, and it turns out that the Green rings of Taft algebras are commutative
even if Taft algebras are not quasitriangular in the case n > 2 (not even almost cocommutative [15]).
Derived Green rings (or derived representation rings) of a class of finite-dimensional Hopf algebras
constructed from the Nakayama truncated algebras kZ,/J? were introduced in [25]. However, the
authors did not determine the final form of the rings. When n = 2, the Nakayama truncated algebra
kZ,/J? is the Sweedler’s 4-dimensional Hopf algebras.

In Section @ I will discuss the case of bounded derived categories of Taft algebras D*(H,,(q)), with
an intention to give all the indecomposable complexes in D*(H,,(q)). Scetion @ deals with the derived
Green ring of Sweedler’s 4-dimensional Hopf algebras D°(Hz(q)), Theorem gives a description of
the ring structure of Go(D°(Hz(q))).

§5.1 Indecomposable objects in the bounded derived categories of Taft

algebras

Given an integer n = 2. The Taft algebra H,(q) is generated by two elements g and x subject to

the relations

g"=1, z" =0, zg=qgx.
The coalgebra structure and antipode of H,,(q) are determined by

Alg) =9®g, Alr) =r®9+1Qu,

65



We know a decomposition of the regular module as follows:

n—1

H,(q) = @ Hu(g)e:

=0

where forany 0 <i<n—1

1n—1

6=~ —ij g
nzq g,
7=0

and H,(q)e; = span{e;,xe;, - ,x" 'e;}. Indeed {eg,e1, - ,e,_1} is a set of orthogonal idempotents
such that

n—1

Z €, = 1

i=0
and

ge; = qiei7 2" le; # 0.

Let M/ = H,(q)e;/k{z" 'e;,--- ,x7e;}. Hence up to isomorphism,
(M |1<j<n0<i<n-—1}

are n? indecomposable finite-dimensional H,,(g)-modules. Specially, { M"}o<i<,_1 are all non-isomorphic
indecomposable projective H,(q)-modules denoted by P; := M* for any 0 < ¢ < n — 1, and they are
the projective covers of all the simple H,(g)-modules which are denoted by {S;}o<i<n_1-

Note that for any 0 < ¢ < n — 1, we know the following short exact sequences:
O—>Mg“—>Mf—>Mf—>o 0<k<j),
and

0— MF— Mij_kﬂ — Mij_’k’“ﬂ —0 (0<k<j),

where i — k denotes module n residue class. In particular, there are exact sequences:
ok
0— M2F — P, =5 M —0 (0<k<n),

and

T.k
0— M} =5 P — M2~ — 0 (0<k<n).
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Lemma 5.1.1. Forany0<i<n—1and1 <k <j<n, weknow

dim Homp, 4 (M7, M) = 1.

Proof. For any f € Homp, (M}, MF) and | > k, f(z'e;) = 0 as 2! f(&;) = 0. While for I < k—1, we
claim f(zle;) = axle; for some « € k. First, we deal with [ = k — 1. By zf(z*~1e;) = 0, we can deduce

that

f(xF-le;) € kak—1e;.

Hence

f(ab—te;) = ag_rakle,.

Next, since 22 f(z%2e;) = 0, we know

f(zF—2e;) € kak—le; @ kak—2e;.

We assume

f(aF—2e;) = Bak—le; + yak—2e,. (5.1.1)

where «,~ € k. Then we action g on both sides

g- [(xF=2e;) = g - (BaxF—le; +yah—2e;).

we know

qf(kfz)ﬂf(z’“—%i) — q*(k*1)+iﬁxk—lei + qf(k*2)+i,yxk—2ei'

Hence

f(zkh=2¢;) = g~ Bak—1le; + yzk—2e;.
Combine with formula , we can get
(1—q ")pak-te; =0

that is § = 0. Moreover we know v = ay_1 by zf(zF—2¢;) = f(zF=1e;). Similarly, f(zle;) = ap_12le;
for | < k—1. Let the quotient map h : MZJ — MF be 2le; — xte; where 0 <1 < n—1. Thus f=ag_1h,
in other words

dim Homp,, () (M7, MF) = 1.
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Remark 5.1.2. we have konwn that the category of modules over Taft algebra H,(q) is a tensor cate-
gory. Besides, the left dual functor is exact and fully faithful. As linear space, there is an isomorphism
for0<k<j<n0<i<n—1

HomHn(Q)(Mik? M

i*k*‘rj) = HomHn(q)((Mj )*7(Mzk)*)

i—k+j

Hence

dim Homp, () (M}, M) = 1.

i—k+j

We use the following morphisms to represent the ”standard” basis:

w7 P M7 alej s ale; 0<I<n—1.

Tele; 0<Ii<i—j—1

Then any non-zero morphism f € Homy, o)(P;, P;), f can factor through MZTJ and have the

following form
HomHn(‘I) (P“ PJ) = ]k(Pl -

Indeed, f has the following decomposation

we can deduce Im(f) must be M;TJ and choose the standard basis 7/ 7 o /77 of Homp, () (P, P;)-

Notation 5.1.1. For convenience, let us introduce a new notation “FP; —6— P;” to denote the linear

T .
basis P, — M, ~— P;for 0<i,j <n-—1.

Lemma 5.1.3. P, —6—~ P; -6+ P, = P, —6— P if and only if one of the three conditions is satisfied

Proof. In fact, the equality related to the composition of morphisms can be esteblished iff there is one
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of the following commutative diagrams where the composition of morphism is non zero

Oy
N~

P; P; O Py,
Ny %// N 7
M MI*

N

ik
M;

iff therearen —t1—j <j—k,i—k <i—jandi¢—k < j— k. There are six cases may happen:

(1) i<j<k
n—n+i—j)<n+j—kesk<n+i,
nt(i—k)<n+(i—j)=j<k,
n+(i—k)<n+(j—Fk) =i<].

(2) i <k <j:
n+(i—k) <n+ (i—j) < j <k which is a contradiction,
n+(i—k)<j—k<n+i<j which is a contradiction.
(3) j<k<i
n—@G—j)<n+j—k<k<i,
i—k<i—-jej<k,
i—k<n+({—k)ei<n+j.
4) j<i<k
n+ (i—k) <i—j< n<k—j which is a contradiction,
n+(i—k)<n-+(j—k)<i<j which is a contradiction.
(5) k<i<y:
n—(n+i—j)<j—kek<i,
i—k<n+(i—j)<j<n+k,
i—k<j—kei<j
6) k<j<i:

i—k <i—j< j<k which is a contradiction,
i—k < j—k< i< j which is a contradiction.

Thus the three cases satisfied are what we need.
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Lemma 5.1.4. Let I ={0,1,--- ,n—1} and A, B be two nonempty subsets of I satisfying AnB = .
There is (j,1) € A x B such that if k € I satisfies one of the following cases

J<k<l, (%
l<j<k, (%)
E<l<yg, (%)

then k¢ AU B.

Proof. Otherwise, for any j € A and [ € B, there is k € I such that {(j,k), (k,1)} n (A x B) # .
There are three cases (x), (s%) and (# * *).

Case 1: If k satisfies (*). There is k; € I satisfies (*), whether (j,k) € A x B or (k,l) € A x B.
Repeating this process we get uncountable numbers which is in contradiction to the finiteness of I.

Case 2: If k satisfies (). Two cases are going to happen. One is (j,k) € A x B. Due to the Case
1, contradiction can be obtained. The other is (k,l) € A x B. Then there is k; € I such that | < k < k;
ork; <l<k.

If ] <k <k and (k, k1) € A x B. Back to Case 1, we get contradiction. If (k1,l) € A x B, we
repeat Case 2 until (#*) happens. If only (##) appears in the next steps, we repeat this process getting
uncountable numbers which is in contradiction to the finiteness of I. Otherwise we repeat this process
until (* * ) is happening which is also in contradiction to the finiteness of I.

If k1 <l < k is happening that is case 3.

Case 3: If k satisfies (s * *). Two cases are going to happen. One is (k,l) € A x B. Back to Case 1,
contradiction can be obtained. The other is (j,k) € A x B. Then there is k; € I such that k < j < k;

or k; < k < j. We can get contradiction from the same reason in Case 2. O

Lemma 5.1.5. Let [ = {0,1,--- ,n—1} and A, B, C be three nonempty subsets of I satisfying AnB =
& and B C = . Suppose that (j,k) € B x C is given by Lemma and (i,j,k) does not satisfy
Lemma for any i€ A, then we can find | € A such that (I,j) satisfies Lemma .
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Proof. As (i, j, k) does not satisfy Lemma , we deduce the following three situations:
J<i<k, ()
i <k<j, (%)
k<j<i. (%)

If j <k, only (%) will happen. We choose the the largest [ € A. Then (I, j) must satisfy Lemma

514,
If j > k and there is ¢ € A satisfying (*%). We choose the largest | € A such that I < k. Then (I, j)
must satisfy Lemma . Otherwise, each i € A satisfies (* * %). We also choose the largest | € A,

then (I, j) must satisfy Lemma . O]

Proposition 5.1.6. Let P, i € {0,--- ,n — 1} be all non-isomorphic indecomposable H, (q)-modules.
All non-isomorphism indecomposable objects in D*(H,(q)-mod) are like (adding shift ones):

If X is a bounded complex, X must be isomorphic to
00— Pk_t —9—)Pk_t_1 —— "'Pk_1 —9—)Pk0 —>O;

If X is a unbounded complex, X must be isomorphism to

. —>Pk73 )Pk7 )Pk

, s Py, — 0

-1

where all k; € {0,--- ,n — 1} and any (ks, ks+1,ks2) in X does not satisfy the conditions in Lemma

br.d

Proof. Denoted by P the additive full subcategory of all projective objects in H,,(q)-mod. For the
reason that D°(H,(q)-mod) ~ K—*(P), it is equivalent to determine all the indecompasoble objects in

K—(P).
Let
n—1 n—1 ) J n—1 )
X — PP —>PP—>PPr—0
k=0 k=0 k=0

be the indecomposable object in K ~*(P). We might assume that the differentials between non-zero
homogeneous components are non-zero, otherwise X is decompasoble.

Step 1: There is no harm in supposing that X has no direct summand being shaped like

0— P, 5% P —50
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which is zero object in K—°(P).
Step 2: Any differential d in X does not contain isomorphic component aidp, (o € k*) for some

0 < h <n—1. Otherwise, d can be written as

(6] idph d12

d21 d22

There is an isomorphism between complexes by applying elementary transformations to d.

(03 idp d12
n—1 n—1 , d21h’ dos n—1 ! n—1
'%@m%%ﬁ®(ﬂﬁﬁ %MN@&ﬁ%@Wk%m
k=0 k=0 k=0 k=0
n—1 -1, (idé”h 2) 1 n—1
—— @B — PO (D ) P®(®P") — @B — -
k=0 k=0 k=0 k=0

where
r=Wk#h), =11,

mj, = mg(k # h), mj =my — 1.

Then X can be written as

= ()

n—1 , (idPh O) n—1
—— @ P —5 Po(@ P
k=0 k=0

"+, P@ (P P

k=0

(ab)

n—1
@ P — -
k=0

id 0 id 0
Pn f = 0, (a b) Fn = 0,
0 = g 0 =
So f =0 and a = 0. Hence X has direct summand
0— P, —5 P, — 0
which contradicts to Step 1.
n—1 i
Step 3: There is no such direct summand P, in @ P!* such that the corresponding component is
k=0
n—1 .
@ P 2 p,. Otherwise, there exist
k=0

n—1 n—1 n—1 .
Xi—@PPr—PP-LPO@Pr) —0
k=0 k=0 k=0
where j;. = jr when k # h and j;, = j, — 1. Then the direct summand 0 — P, — 0 appears in X.
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n—1 n—1
Step 4: d: P P — P P* — 0 must be shaped like
k=0 k=0

P—o->PF 0
0 *

where j,1 are given by Lemma and #* is consisted of some elements in k(- —6— -).

Indeed, from Step 2 we can deduce that any two objects in different degrees are disjoint. Here by
Lemma we can shoose 0 < 7,1 < n — 1 such that P;, P, are direct summand of né—)l Pé’“,@Pg’“
respectively. And for k € {0,1,--- ,n — 1} satisfying one of cases (x), (sx), (* % %) in Lg;loma , we

know the coefficient of P; —6— P, and P, —6— P, are all zero. Then d can be shaped like

d n—1 ) n—1 .
| @R —Rre@PH)—0
dy k=0 k=0

n—1 .
where j;, = ji when k # [ and j; = j; — 1. By Step 2 and Step 3, d; : @ P;* — P, can be written as
k=0
dl = (Oé?(P?—e—)Pl),"' aa?(Pj _e_)Pl)a ,Oé?(Pj _e_)ljl)707 703057(1375_6_)3)"“ 7*)

or

dl = (Oa 707a?(Pj_e_)Pl)7"' 7a?(Pj_e_)Pl)7a?(Pi_e_)Pl)a"' a*)

or

d = (a2(Py == Py), -+, an(P; =6 B), -+ ,aa(P =63 B),0,- -+ ,0,)

where not all a; € k are equal to zero. By Lemma there is o (P; —6— P;) # 0 which can eliminate

all the other terms through column transformation. In other words, d; can be transformed into
dl = (Pj_e_)Baov"' 70)

n—1 .

Furthermore, for any direct summand Py, of @ PJ* such that P; =6+ P, # 0, we know (j, [, k) meets
k=0

conditions in Lemma . Then d can be transformed into

Pj—6—>Pl 0
0 *

where = is consisted of some elements in k(- —&- -).
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Actually there is an isomorphism between complexes by applying elementary transformations to

d.
n—1 n-1 (Pj'?PlI) n—1
- @B —— Ko (d R r® (@R —0
k=0 k=0 k=0
n—1 n—1 P (Pj ?Pz 2) n—1
'%’@JPI?’“%E@(@)PJ) H®(;@)ng)4>0

Step 5: According to previous discussion, we assume X is an indecomposable object in K ~*(P)

d di; !
X:“‘—>Xt—X>Xt_1i)"'—>X0_)0

and for s < t, all d% are shaped like

0
o (5.1.2)

0 *

P,, —— Py

where # is consisted of some elements in k(- —e— -). If X; =0, as X is indecomposable then X must

be isomorphic to complex like
X20—>P]€7‘—9—)Pk7171—9—) "'Pkil—e—)PkU —> 0

where 0 < ko, k1, -,k <n—1and any (ks, ksy1, ksi2) in X does not satisfy the conditions in Lemma
. Moreover, Endy (X) = k.
Next we claim: If X,, # 0, then d’ can be transformed into a form similar to the matrix (5.1.9).

By Step 4, X is isomorphism to the following complex

n—1 , (Pj—e)Pl* n—1 , (Pl_eO)PmO) n—1 ,
= PO(@ ) —— Re(® R % Pn® (@ P —
k=0 k=0 k=0
n—1 n—1 n—1
where Xy, X;_1, X;_5 are isomorphism to @ P,*, @ P,f’“, @ P]* respectively and (4,1), (I, m) satisfy

k=0 k=0 k=0
the premise of lemma . Note that we can find (j,!) due to Lemma and the composition of

differential is zero. Then by applying column transformation there is an isomorphism of complexes:
-1 , (Pj—e)Pl *) n—1 B/ (Pl—eO)Pm 0)
y . *
- —— PO(@ R ——— RO (D B)
k=0

n
k=0

n—1 ,
CF ) e m
k=0

n—1 ,
Pn@® (@D P*) — -
k=0

n—t (Pj—e)Pl 0
F— K@ (D R

k=0

("R o (R o
) Pm®(19)PZk)*>"'
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Next we apply row transformation to

P,——+PF 0
* *
In the meanwhile, we need to make sure that the differentials on the right side still are diagonal
matrixes. We get the following commutative diagram:
n—-1 (Pj - P 0 nol
k * * k
P @ (@ P*) P& (D pP*)
k=0 k=0
| (+9)] (49
et (Pj—e)PLO) et (PL—eO)Pm 0)
*7,
F®(@ R ——— Ro(® R

k=0

(")

n—1 ,
Pu® (@ P — -
k=0

n—1 ,
Pn®(@® P*) — -
k=0

aSl ('Pl o7 'Psl)
OéSQ(Pl -G?PSQ) n—1 5l
where ¢ = _ , {Ps,, -+, P } are all direct summands in @@ P,* and 1 are identity
: k=0
as, (P Ps,)
matrixes of different orders. In addition, we need to find d; such that
1 0 PP, 0 PP, 0 1 0
dl 1 0 *q 0 *q c 1
that is
P, e P, 0 PP, 0
di(P, - Py,) #; e %

In other words, matrix d; need satisfies
di(P, o Py,) = #c.

’ n—1 ’
Pl* or P Pkﬁ"', we know (I,m,k’) meets conditions in

n—1
Since for any Py as a direct summand of @

k=0 k=0
Lemma . Moreover,
OZ?(PSl_e)P’fl) a?(PSe_e)P/ﬁ) Oésl(Pl_e)Psl) O[kl(Pl_e)Pkl)
a7(P€1 _e)Pk'Q) a?(RSe_e)sz) aS2(B_e)P92) ak’z(ljl_e)sz)
*16 = . . ’ . = .
Oé7(PSl -S)qu) Oz?(Pse-G)qu) ase(Pl'e)Pse) Oékq(Pl-G)qu)
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n—1 ,
Here {Py,,- -+ , Py, } are all direct summands in @ P.* and it may happen
k=0
P - P, o P, =0

where i € {1,--- ,e},j € {1,--- ,q}, then some oy, could be zero. Therefore, we can choose

O‘kl(Pm'e)Pkl)

Ay (Pm - Pk2>

ag, (Pm - qu)

which will make the second square commute. Continue the discussion above, there are ds,ds,- -

making squares commute. Thus X is isomorphism to the following complex:

(Pj—e,)Pl 0

o) nd e (TR
— Lo (D h")
k=0

*

n—1 , n—1 ’
-%Pj@(k@opgk) Pm®(gpgk)4>"'

where all differentials are shaped like

P, ——~ Pk] 0
0 %

If X is unbounded complex, X must be isomorphism to

C— Pk73 > Pk7 > Pk

2 )Pk0—>0

—1

where all k; € {0,--- ,n — 1} and any (kg, ksy1,ksi2) in X does not satisfy the conditions in Lemma

b.1.4

§5.2 Derived Green ring of Sweedler’s 4-dimensional Hopf algebra

Since Taft algebras H,(q) are finite-dimensional Hopf algebras, H,(¢)-mod are finite tensor cat-

egories. Then DY(H,(q)-mod) is a tensor triangulated categories by Lemma . In [43], Radford

proved that Sweedler’s 4-dimensional Hopf algebra is quasitriangular (see [16] for definition). Since

the module category of a quasitriangular Hopf algebra H is braided, there is a natural isomorphism

cxy : XQY = Y®X forany X, Y € H-mod such that hexagonal diagrams commute (see [18, Chapter
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8]). In this section, I will only consider the case of Sweedler’s 4-dimensional Hopf algebra Hs(—1)-mod,
and compute the Green ring of D®(Hy(—1)-mod).

Proposition describes the indecomposable complexes in D®(H,,(—1)-mod). I present all the
indecomposable complexes in the case of D°(Hy(—1)-mod) as follows.

Let P, P, be the projective cover of two simple modules Sy and S; in Hy(—1)-mod. I use the
notations X; and Y; to denote the bounded indecomposable complexes with the first non-zero object

(from the right) in degree zero:

T2 T ToT T TOT
XZIO—>P? L PO °ro Pl e PO °ro P1—>0,

To T TO T T1T TOTT T
YE:O—>P? e me . T0To Pl 171 PO 070 Pl 171 P0—>0

where

T R —» Si, xkei —> xke,; i, ke {0, 1}
TiZSiHPj, 671"—>.’E2_i?j€j 1, ]6{0,1}

and [ is the number of non-zero objects in each indecomposable complex.

For the unbounded case

T1T TOT T17 TOT
X@:"' 171 PO 070 Pl 1771 PO 070 P] O7

TO T T1T TOTT T1T
YOO: - 070 P1 1771 PO 070 P1 1701 PO 0

which are the projective resolutions of simple objects S; and Sy respectively. That means Xy, Yy
are isomorphic to Si, Sy in D’(Hy(—1)-mod). So all non-isomorphic indecomposable complexes in
DP(Hy(—1)-mod) are

X, [i], Yi[i], Sili], So[i] (1=0,i€Z).

Folloing the same notation in Section @, the following statement tells us that the tensor product
of two projective objects in H,(gq)-mod is isomorphic H,(q) itself.
Proposition 5.2.1. ( [14, Proposition 3.2] ) Let i, j € Z, and 1 < k < n. There are isomorphisms of
H,(q)-modules
(i) Pi®P; = P;® Py = @}~y i
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Applying Proposition to Hy(—1)-mod, we know the following isomorphisms where j € Zs:
So ® Sp = Sp = 51 ® S,

S1® Sy = 51 = 5y ® S,
So®Pj§PjEPj®SQ,
Sl®P];Pm;P]®Sl

That is there are isomorphisms in D°(Hy(—1)-mod):
You®Yo = Vi = X, ®X o,

Xoo®Yop = Xop = Voo ®Xop,
YVo®X; = X; = X;®Y,, YRV 2V, = V®Y,

X@@)Xl = YE = XZ®X007 X@@)Y} = Xl = K@Xoo

Lemma 5.2.2. For Sweedler’s 4-dimensional Hopf algebra Hy(—1)-mod and X, Y € D(H,(—1)-mod),

there is an isomorphim

X®Y >~ YR®X

in DY(Hy(—1)-mod) where & is the tensor product inherited from Hy(—1)-mod.

Proof. It is sufficient to consider the indecomposable case. So we assume X and Y are indecomposable
complexes. Firstly, if either of X or Y is unbounded, we have already known the results by above
statements. Next, we only need to deal with bounded cases. Let X;, X,,, Y; and Y; be indecomposable
bounded complexes in DY(Hy(—1)-mod) where | < m < s < t. There are three different cases:
X,®X,, ~ m(;)Xl, Y.®Y; =~ V,®Y, and X,,®Y, =~ V.®X,,. only verify the first case, the others are
the same.

Claim: X,®X,, = X,,®X.

If

X:0—p X5 B gy B0 opp BT By 25 P — 0,

ToT? T ToT T ToT
XmZO—>P'_7 UE P() oro P1 e PO °ro P1—>O,
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Recall that X;®X,, and X,,®X; are total complexes

—l-m+42 —2 -1
Xi®X: 00— (Xi®X,,) "7 = 2 RQP@OPR QP —— PLQP — 0
—l-mi2 -2 -1
Xp®X;: 00— (X,@X)7'7m+? =225, .. 22 RRPORRP — PP — 0
where
(Xi®X)" = @ Py ® Prpy
i+j=n
7;(1®Xm = @ (Tmﬂ'm) X ldpm +(—1)Z ldpm ®(Tm7rm)
i+j=n
for any n € Z. Similar for X,,®X,. Notice that there are natural isomorphisms
cpp  BE®P; > P®P;, i, j€ L
which give a isomorphic chain map between X,®0X,, and X,,&0X;.
O

By the above lemma, we know that Go(D?(Hy(—1)-mod)) is commutative ring.

Theorem 5.2.3. The derived Green ring Go(D°(Hy(—1)-mod)) of Sweedler’s j-dimensional Hopf
algebra Hy(—1)-mod is commutative and is generated by elements s|k], y;[k] where k € Z subject to the

relations

vilkly; [l = viy;lk + 1) = ylk + |+ s'y;[i — 1+ k+1), if i > j > 1.

Proof. In order to decompose the tensor product of indecomposable complexes into the direct sum of

indecomposable complexes, we should describe the morphisms of the decomposition in Hy(—1)-mod.

fo1: Ph®@P, — Py® Py, fio: AP — B ® P
eo ® re; —> (eg,0) xer ® eg — (e, 0)
xey ® xey —> (zeq, 0) xrer ® xeg — (zeq,0)
eo®ep —> (0,e1) e1®ey—> (0,e1)
zeg ® e; — (e, —xeq) e1 ® xeg —> (eq, —xeq)
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foo: Po®@P, — By® P, foo: PAQP, — Ph® P,

xeg ® eg —> (0,e1) e1 ®@xe; —> (0,eq)
xeg ® xeg — (0, zeq) xe; @ xey —> (0, zeq)
eo ® eg —> (eg,0) e1® e — (e, 0)
eo ® xreg —> (weg, —eq) e1 @ xe; —> (—xeg,eq).

We only deal with the case X,;C;)Xj. Using f;; one can get X;®X, is isomorphic to the following

complex

idp, ®Tomo

0*)P1®P0 P1®P1*>O

o o gy I

Tomo idp,
0*)P0<‘BP1 P()@Pl*)()
Repeating this process, we know all the correspondence between the differentials in the total complexes

and the differentials in the “new” complexes. Namely, there are the following correspondence:

0 dO 0 *5171'1
idp, ®Tomo Tomo idpy —idp, ®T1m1 0 idp,
(T1ﬂ1®idpo ) < 8 0 ’ Tomo®id p1 g 0 -mm

idPl TOTO idpl

idp, 0 —idp, 7171
idp, ®T1m1 PN om0 0 —idp, ®T0™0o - 0 0
T1m1®id po idp, mim1 | T m1®id po idp, 0
—T0T0 0 0 0

Regarding the “new” complex, it is more convenient for us to deduce the decomposition. Using the
same method for other total complexes and applying Kiinneth formula in Theorem , we get the

following relations ¢ > j > 1:

1) X8 X,; ® X;[i — 1], when i is even,
1) Xi®Y;

le

X, ®Y;[i —1], when iis odd.
X,; ® X;[i — 1], when i is even,
X, ®Y;[i —1], when iis odd.
Y; ®Y;[i — 1], when i is even,
Y; ® X;[i — 1], when 7 is odd.
N Y; ®Y;[i — 1], when i is even,
(1) Y, =
Y; ® X,;[i — 1], when i is odd.
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Hence for i > j > 1., we can deduce the following isomorphisms:
(1) X.®Y; = X; @ (5 &X;[i — 1));
(2) Yi®X; = X; @ (SF ®X;li — 1));
(8) X.®X, =Y, ® (P &Y, [i — 1))
(4) Yi®Y; = ;@ (5P ®Y;li — 1)).

That means Xl(;)Yj ~ YZ-C;)XJ- and XiC;)Xj ~ Yz@)YJ Then we view Si[k], Y;[k] as generators s and

y;[k], which completes the proof. O
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