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Abstract

In the view point of representation type, every finite-dimensional algebra exactly belongs to one

of following three kinds of algebras: algebras of finite representation type, algebras of tame types

and wild algebras. From then on, the classification for a given kind of algebras according to their

representation type has received considerable attention.

In the case of Hopf algebras, much effort was put in pointed Hopf algebras or their dual, that is,

elementary Hopf algebras. Moreover, Hopf algebras with the (dual) Chevalley property is a kind of

natural generalization of elementary (pointed) Hopf algebras. These Hopf algebras are interesting by

various reasons, one of which is their classification.

We try to classify Hopf algebras with the dual Chevalley property according to their corepresen-

tation type. The main tool we want to use is the link quiver. One of key points of this thesis is that

one can describe the structure of the link quiver by applying multiplicative matrices and primitive

matrices.

Let H be a finite-dimensional Hopf algebra over an algebraically closed field k with the dual

Chevalley property. The main results are described as follows.

At first, if H is non-cosemisimple, we prove that H is of finite corepresentation type if and only

if it is coNakayama, if and only if the link quiver Q(H) of H is a disjoint union of basic cycles, if and

only if the link-indecomposable component H(1) containing k1 is a pointed Hopf algebra and the link

quiver of H(1) is a basic cycle. If char(k) = 0, then H is of finite corepresentation type if and only if

either H is cosemisimple or H is not cosemisimple and H(1)
∼= A(n, d, µ, q). If char(k) = p, then H

is of finite corepresentation type if and only if either H is cosemisimple or H is not cosemisimple and

H(1)
∼= Cd(n).

Finally, if char(k) = 0, we show that grc(H) is of tame corepresentation type if and only if

grc(H) ∼= (k〈x, y〉/I)∗ ×H ′ for some finite-dimensional semisimple Hopf algebra H ′ and some special

ideals I. Then, by the method of link quiver and bosonization, we discuss which of the above ideals will

occur when (k〈x, y〉/I)∗×H0 is a Hopf algebra of tame corepresentation type under some assumptions.

Keywords: Hopf algebras; Dual Chevalley property; Corepresentation type.
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Chapter 1 Introduction

§1.1 Background

In the view point of representation type, every finite-dimensional algebra exactly belongs to one

of following three kinds of algebras: algebras of finite representation type, algebras of tame types and

wild algebras (See [24]). From then on, the classification for a given kind of algebras according to

their representation type has received considerable attention. See, for example, [8–10,23,26,37,62,63].

The category of finite-dimensional left (right) modules over a finite representation type algebra is

considered easiest to understand.

In the case of Hopf algebras, much effort was put in pointed Hopf algebras or their dual, that

is, elementary Hopf algebras. In the case of modular group algebras of finite groups, the authors

in [12,14,27,35] show that a block of such modular group algebra is of finite representation type if and

only if the corresponding defect groups are cyclic and while it is tame if and only if char k = 2 and

its defects groups are dihedral, semidihedral and generalized quaternion. The classification of small

quantum groups according to their representation type can be found in [20, 67, 70]. They show that

the only tame one is uq(sl2) and others are all wild. For cocommutative Hopf algebras, Farnsteiner

and his collaborators have classify all finite-dimensional cocommutative Hopf algebras, i.e., finite

algebraic groups, of finite representation type and tame type [29–33]. Liu and his collaborators get

the classification of elementary Hopf algebras according to their representation type from 2006 to

2013 [36, 42–44]. We note that there is indeed a common point in above classification: a finite-

dimensional (cocommutative, elementary) Hopf algebra is of finite representation type if and only if

it is a Nakayama algebra. We cannot help but hope that this observation holds true for more Hopf

algebras.

Among of these results, constructing Hopf algebras structures through using quivers was shown to

be a very effective way, which is due to the works of of Cibils-Rosso for pointed case and Green-Solberg

for elementary case [19, 21, 22, 34]. As a development, in [16, 57], the authors give a classification of

non-semisimple monomial Hopf algebras and get more. In 2007, the third author and Li [44] have

classified all finite-dimensional pointed Hopf algebras of finite corepresentation type and show that

they are all monomial Hopf algebras [44, Theorem 4.6].

At the same time, it is well known that in the representation of finite-dimensional algebras, the

Ext quiver is a fundamental tool. The Ext quiver of a coalgebra has been introduced by Chin and

Montgomery in [18] too. Montgomery also introduced the link quiver of coalgebra H by using the

wedge of simple subcoalgebras of H (see [55, Definition 1.1]). In [17, Definition 4.1], the definition of

link quiver has been modified. In addition, the authors of [17] unified the link quiver of a coalgebra

with the Ext quiver. Obviously, these quivers are not limited to elementary or pointed Hopf algebras.

More or less, one mainly focused on the classification of finite-dimensional basic (pointed) Hopf

algebras according to their (co)representation type. We know that the Hopf algebras with the (dual)

Chevalley property is a kind of natural generalization of elementary (pointed) Hopf algebras. These

1



Hopf algebras have been studied by many authors. See, for example, [1,3,40,41,45,47]. In [4,15,53,71],

the authors present some explicit examples of Hopf algebras with the dual Chevalley property.

Our motivation is to classify finite-dimensional Hopf algebras with the dual Chevalley property

according to their corepresentation type. Here by the dual Chevalley property we mean that the

coradical H0 is a Hopf subalgebra. The main tool we want to use is the link quiver. One of key

points of this thesis is that one can describe the structure of the link quiver by applying multiplicative

matrices and primitive matrices now, which are developed by the Li and his collaborator [40,41,45,47].

§1.2 Main results

Denote the set of all the simple subcoalgebras of a Hopf algebra H with the dual Chevallry

property by S. According to Corollary 3.1.16, we can view set CPD of a complete family of non-

trivial (C,D)-primitive matrices as the set of arrows from vertex D to vertex C. Denote CP =⋃
D∈S

CPD,PD =
⋃
C∈S

CPD,P =
⋃
C∈S

CP. We can also view PD as the set of arrows with start

vertex D and view CP as the set of arrows with end vertex C. This means that we can view Q(H) =

(S,P) as the link quiver of H.

At first, we characterize the link quiver of finite-dimensional Hopf algebras with the dual Chevalley

property of finite or tame corepresentation type. This appears as Theorem 4.2.1 in this thesis:

Theorem 1.2.1 Let k be an algebraically closed field and H a finite-dimensional Hopf algebra over

k with the dual Chevalley property. Denote 1S = {C ∈ S | k1 + C 6= k1 ∧ C}.

(1) H is of finite corepresentation type if and only if | 1P |= 1 and 1S = {kg} for some group-like

element g ∈ G(H).

(2) If H is of tame corepresentation type, then one of the following two cases appears:

(i) | 1P |= 2 and for any C ∈ 1S, dimk(C) = 1;

(ii) | 1P |= 1 and 1S = {C} for some C ∈ S with dimk(C) = 4.

(3) If one of the following holds, H is of wild corepresentation type.

(i) | 1P |≥ 3;

(ii) | 1P |= 2 and there exists some C ∈ 1S such that dimk(C) ≥ 4;

(iii) | 1P |= 1 and 1S = {C} for some C ∈ S with dimk(C) ≥ 9.

We attempt to generalize above stated result [44, Theorem 4.6] in order to give the structure of

finite-dimensional Hopf algebras with the dual Chevalley property of finite corepresentation type. See

Corollary 4.1.9, Theorems 5.1.1 and 5.2.1, stating that:

Corollary 1.2.2 A finite-dimensional Hopf algebra H over an algebraically closed field k with the

dual Chevalley property is of finite corepresentation type if and only if H is coNakayama.

2



Theorem 1.2.3 Let k be an algebraically closed field of characteristic 0. Then a finite-dimensional

Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type if and only

if either of the following conditions is satisfied:

(1) H is cosemisimple;

(2) H is not cosemisimple and H(1)
∼= A(n, d, µ, q).

Theorem 1.2.4 Let k be an algebraically closed field of positive characteristic p. Then a finite-

dimensional Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type

if and only if either of the following conditions is satisfied:

(1) H is cosemisimple;

(2) H is not cosemisimple and H(1)
∼= Cd(n).

Denote S1 = {C ∈ S | C + k1 6= C ∧ k1}. Note that| 1P |=| P1 | and C ∈ 1S if and only if

S(C) ∈ S1 (see Lemma 3.3.5). Using Theorem 1.2.1, we know that if H is of tame corepresentation

type, then one of the following three cases appears:

(i) | P1 |= 1 and S1 = {C} for some C ∈ S with dimk(C) = 4;

(ii) | P1 |= 2 and S1 = {kg} for some g ∈ G(H);

(iii) | P1 |= 2 and S1 = {kg,kh} for some g, h ∈ G(H).

Besides, we determine the structures of finite-dimensional coradically graded Hopf algebra with

the dual Chevalley property of tame corepresentation type completely. See Theorem 6.1.2, stating

that:

Theorem 1.2.5 Let k be an algebraically closed field of characteristic 0 and H a finite-dimensional

Hopf algebra over k with the dual Chevalley property. Then grc(H) is of tame corepresentation type

if and only if

grc(H) ∼= (k〈x, y〉/I)∗ ×H ′

for some finite-dimensional semisimple Hopf algebra H ′ and some ideal I which is one of the following

forms:

(1) I = (x2 − y2, yx− ax2, xy) for 0 6= a ∈ k;

(2) I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;

(3) I = (xn − yn, xy, yx) for n ≥ 2;

(4) I = (x2, y2, (xy)mx− (yx)my) for m ≥ 1.

3



According to [13, Theorem 4.1.2], if R is a Hopf algebra in H′

H′YD, then we can form the bosoniza-

tion R × H ′ which is a Hopf algebra. For an tame algebra A, above theorem does not imply the

existence of finite-dimensional semisimple Hopf algebra H ′ satisfying A∗ is a braided Hopf algebra

in H′

H′YD. That is to say, for the ideals I listed in the above theorem, we do not know whether

(k〈x, y〉/I)∗ ×H ′ is a Hopf algebra or not. By the method of link quiver and bosonization, we try to

discuss this question in the three cases separately.

We consider case (i) under some assumptions. See Proposition 6.3.8, stating that:

Proposition 1.2.6 Let grc(H) ∼= (k〈x, y〉/I)∗ × H0 be a finite-dimensional coradically graded Hopf

algebra over k with the dual Chevalley property of tame corepresentation type. Suppose P1 = {X},
S1 = {C} for some C ∈ S with dimk(C) = 4 and the invertible matrix K in Lemma 6.3.3 is diagonal,

namely

K =


α1

α2

α3

α4

 .

If in addition RH is generated by u, v, then

(1) I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;

(2) α1 = α4 = −1;

(3) a = (−1)m−1αm2 or a = (−1)m−1αm3 ;

(4) α2α3 is an mth primitive root of unity.

In fact, when we study the properties for the finite-dimensional coradically graded Hopf algebra

over k with the dual Chevalley property of tame corepresentation type, we only need to focus on its

link-indecomposable component containing k1. This appears as Proposition 6.2.5 in this thesis:

Proposition 1.2.7 Let H be a finite-dimensional coradically graded Hopf algebra over k with the

dual Chevalley property. Then H is of tame corepresentation type if and only if H(1) is of tame

corepresentation type.

With the help of the preceding proposition, we can consider cases (ii) and (iii). See Proposition

6.3.10, stating that:.

Proposition 1.2.8 Let grc(H) ∼= (k〈x, y〉/I)∗ × H0 be a finite-dimensional coradically graded Hopf

algebra over k with the dual Chevalley property of tame corepresentation type.

(1) If | P1 |= 2 and S1 = {kg} for some g ∈ G(H), then I = (x2, y2, xy + yx);

(2) If | P1 |= 2 and S1 = {kg,kh} for some g, h ∈ G(H), then I = (x2, y2, (xy)m − a(yx)m) for

0 6= a ∈ k and m ≥ 1.

4



§1.3 Organization

In this section, we give an outline of this thesis.

In Chapter 1 , we provide the research background and main results.

In Chapter 2 , we give a preparation of the following chapters.

In Chapter 3 , we provide the properties of a complete family of non-trivial (C,D)-primitive

matrices. Besides, we construct a complete family of non-trivial primitive matrices in two ways. Note

that the cardinal number of a complete family of non-trivial (C,D)-primitive matrices coincides with

the number of arrows from vertex D to vertex C in the link quiver. Then we discuss the properties

for the link quiver of a Hopf algebra with the dual Chevalley property.

In Chapter 4 , we characterize the link quiver of Hopf algebras with the dual Chevalley property

of finite or tame corepresentation type.

In Chapter 5 , we attempt to generalize [44, Theorem 4.6] in order to give the structure of

finite-dimensional Hopf algebras with the dual Chevalley property of finite corepresentation type. We

give a more accurate description for H(1) in the case that H is a finite-dimensional non-cosemisimple

Hopf algebra with the dual Chevalley property of finite corepresentation type.

In Chapter 6 , we determine the structures of coradically graded Hopf algebra H with the

dual Chevalley property of tame corepresentation type. We show that H is of tame corepresentation

type if and only if the link-indecomposable component H(1) containing k1 is of tame corepresentation

type. Next we discuss which ideal will occur when (k〈x, y〉/I)∗×H0 is a finite-dimensional coradically

graded Hopf algebra with the dual Chevalley property of tame corepresentation type under some

assumptions. At last, we give some examples and applications.
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Chapter 2 Preliminaries

In this chapter, we recall the most needed knowledge about coalgebras, Hopf algebras and based

rings. Throughout this thesis k denotes an algebraically closed field and all spaces are over k. The

tensor product over k is denoted simply by ⊗.

§2.1 Multiplicative matrices and primitive matrices

The concept of multiplicative matrices was introduced by Manin in [49]. Later in 2019, Li and

Zhu [47] introduced the concept of primitive matrices. Recently, more properties of multiplicative

matrices and primitive matrices have been observed. The authors of [40, 41, 45, 47] used these two

notions to generalize some results of pointed Hopf algebras to non-pointed ones.

Let us first recall the definition of multiplicative matrices.

Definition 2.1.1 ( [40, Definition 2.3]) Let (H,∆, ε) be a coalgebra over k.

(1) A square matrix G = (gij)r×r over H is said to be multiplicative, if for any 1 ≤ i, j ≤ r, we have

∆(gij) =
r∑
t=1

git ⊗ gtj and ε(gij) = δi,j, where δi,j denotes the Kronecker notation;

(2) A multiplicative matrix C is said to be basic, if its entries are linearly independent.

Multiplicative matrices over a coalgebra can be understood as a generalization of group-like

elements. We know that all the entries of a basic multiplicative matrix C span a simple subcoalgebra

C of H. Conversely, for any simple coalgebra C over k, there exists a basic multiplicative matrix

C whose entries span C (for details, see [47], [40]). And according to [40, Lemma 2.4], the basic

multiplicative matrix of the simple coalgebra C would be unique up to the similarity relation. More

specifically, suppose that C is a basic multiplicative matrix of the simple coalgebra C. Then C′ is also
a basic multiplicative matrix of C if and only if there exists an invertible matrix L over k such that

C′ = LCL−1.

Next we recall the definition of primitive matrices, which is a non-pointed analogue of primitive

elements.

Definition 2.1.2 ( [47, Definition 3.2] and [41, Definition 4.4]) Let (H,∆, ε) be a coalgebra over k.
Suppose C = (cij)r×r and D = (dij)s×s are basic multiplicative matrices over H.

(1) A matrix X = (xij)r×s over H is said to be (C,D)-primitive, if

∆(xij) =

r∑
k=1

cik ⊗ xkj +

s∑
t=1

xit ⊗ dtj

holds for any 1 ≤ i, j ≤ r;

(2) A primitive matrix X is said to be non-trivial, if there exists some entry of X which does not

belong to the coradical H0.

6



Recall that a finite-dimensional Hopf algebra is said to have the dual Chevalley property, if its

coradical H0 is a Hopf subalgebra. In this thesis, we still use the term dual Chevalley property to

indicate a Hopf algebra H with its coradical H0 as a Hopf subalgebra, even if H is infinite-dimensional.

In the following part, let H be a Hopf algebra over k with the dual Chevalley property. Let

C,D be the simple subcoalgebras spanned by the entries of basic multiplicative matrices C and D,
respectively. For any (C,D)-primitive matrix X , it is evident that all the entries of X must belong to

C ∧D and automatically belong to H1 := H0 ∧H0, where H0 is the coradical of H.

We say that two matrices A and A′ over H are similar, which is denoted by A ∼ A′ for simplicity,

if there exists an invertible matrix L over k such that A′ = LAL−1. Next we recall some notations.

For any matrix A = (aij)r×s and B = (bij)u×v over H, define A� B and A�′ B as follow

A� B =


a11B · · · a1sB
...

. . .
...

ar1B · · · arsB

 , A�′ B =


Ab11 · · · Ab1v
...

. . .
...

Abu1 · · · Abuv

 .

Some evident formulas on � and �′ should be noted for later computations.

Lemma 2.1.3 Let A,B be matrices over H and I be the identity matrix over k, then

(1) (L1AL2)�′ B = (L1 �′ I)(A�′ B)(L2 �′ I) holds for any invertible matrices L1, L2 over k;

(2) A� (L1BL2) = (I � L1)(A� B)(I � L2) holds for any invertible matrices L1, L2 over k;

(3) There exist invertible matrices K,K ′ over k such that K(A�B)K ′ = A�′ B. Moreover, if A,B
are square matrices, then A�′ B ∼ A� B.

Proofµ

(1) Suppose that B =


b11 · · · b1v
...

...

bu1 · · · buv

 , then

(L1AL2)�′ B =


L1AL2b11 · · · L1AL2b1v

...
...

L1AL2bu1 · · · L1AL2buv



=


L1Ab11L2 · · · L1Ab1vL2

...
...

L1Abu1L2 · · · L1AbuvL2



=


L1

. . .

L1



Ab11 · · · Ab1v
...

...

Abu1 · · · Abuv




L2

. . .

L2


= (L1 �′ I)(A�′ B)(L2 �′ I).
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(2) Consider the Hopf algebra Hop, whose multiplication is opposite to H. Using (1), we can get

this result.

(3) By [65, Theorem 8.26], there exist commutation matrices K,K ′ such that

K(A� B)K ′ = A�′ B,

where commutation matrix is defined in [65, Definition 8.1]. Moreover, from the proof of [65,

Theorem 8.24], we know that if A,B are square matrices, then

A�′ B ∼ A� B.

�

Let B,C,D ∈ S with basic multiplicative matrices B, C,D respectively. According to [40, Propo-

sition 2.6], there exists an invertible matrices LB,C over k such that

LB,C(B �′ C)L−1
B,C =


E1

. . .

Eu(B,C)

 ,

where E1, · · · , Eu(B,C) are the basic multiplicative matrices of E1, · · · , Eu(B,C) , respectively. In particu-

lar, let L1,C = LC,1 = I, where I is the identity matrix over k. Note that cosemisimple coalgebra BC

admits a decomposition into a direct sum of simple subcoalgebras and u(B,C) is exactly the number of

such simple subcoalgebras. Thus in fact u(B,C) does not depend on the choices of basic multiplicative

matrices B and C as well as the invertible matrix LB,C .

For any (C,D)-primitive matrix X , by [40, Proposition 2.6], there exist invertible matrices

LB,C , LB,D over k such that

(
LB,C

LB,D

)(
B �′

(
C X
0 D

))(
L−1
B,C

L−1
B,D

)

=

(
LB,C

LB,D

)(
B �′ C B �′ X

0 B �′ D

)(
L−1
B,C

L−1
B,D

)

=



E1 X11 · · · X1u(B,D)

. . .
...

...

Eu(B,C) Xu(B,C)1 · · · Xu(B,C)u(B,D)

F1

0
. . .

Fu(B,D)


, (2.1)

where E1, · · · , Eu(B,C) ,F1, · · · ,Fu(B,D)
are the given basic multiplicative matrices. Combining [40,
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Remark 2.5 and Lemma 2.7] and [47, Remark 3.2], we can show that each Xij is a (Ei,Fj)-primitive

matrix.

With the notations above, we have

Lemma 2.1.4 For any B,C,D ∈ S with basic multiplicative matrices B, C,D respectively. If X is a

non-trivial (C,D)-primitive matrix, then

(1) The set of all row vectors of B �′ X is linearly independent over H1/H0;

(2) The set of all column vectors of B �′ X is linearly independent over H1/H0;

(3) For each 1 ≤ i ≤ u(B,C), there is some 1 ≤ j ≤ u(B,D) such that Xij is non-trivial;

(4) For each 1 ≤ j ≤ u(B,D), there is some 1 ≤ i ≤ u(B,C) such that Xij is non-trivial.

ProofµThese four claims are exactly (i), (ii), (I), (II) appearing in the proof of [40, Lemma 3.12] in

the case of Hop. �

§2.2 Based ring

Let Z+ be the set of nonnegative integers. Some relevant concepts and results are recalled as

follows.

Definition 2.2.1 ( [56, Definitions 2.1 and 2.2]) Let A be an associative ring with unit which is free

as a Z-module.

(1) A Z+-basis of A is a basis B = {bi}i∈I such that bibj =
∑
t∈I c

t
ijbt, where ctij ∈ Z+.

(2) A ring with a fixed Z+-basis {bi}i∈I is called a unital based ring if the following conditions hold:

(i) 1 is a basis element.

(ii) Let τ : A→ Z denote the group homomorphism defined by

τ(bi) =

 1, if bi = 1,

0, if bi 6= 1.

There exists an involution i 7→ i∗ of I such that the induced map

a =
∑
i∈I

aibi 7→ a∗ =
∑
i∈I

aibi∗ , ai ∈ Z

is an anti-involution of A, and

τ(bibj) =

 1, if i = j∗,

0, if i 6= j∗.
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(3) A fusion ring is a unital based ring of finite rank.

It is straightforward to show the following lemma.

Lemma 2.2.2 (cf. [25, Exercise 3.3.2]) Suppose A is a unital based ring with Z+-basis I, then for

any X,Z ∈ I, there exist Y1, Y2 such that XY1 and Y1Z contain Z with a nonzero coefficient.

ProofµSince both XX∗ and Z∗Z contain 1 with a nonzero coefficient, we can take Y1 to be a suitable

summand of X∗Z and Y2 to be a suitable summand of ZX∗. �

Example 2.2.3 Let H be a cosemisimple Hopf algebra and F be the free abelian group generated by

isomorphism classes of finite-dimensional right H-comodules and F0 the subgroup of F generated by

all expressions [Y ] − [X] − [Z], where 0 → X → Y → Z → 0 is a short exact sequence of finite-

dimensional right H-comodules. Recall that the Grothendieck group Gr(H-comod) of the category of

finite-dimensional right H-comodules is defined by

Gr(H-comod) := F/F0.

From [25, Proposition 4.5.4] and [39, Theorem 2.7], Gr(H-comod) is a unital based ring with Z+-basis

V, where V is the set of all the isomorphism classes of simple right H-comodules.

§2.3 Comonomial Hopf algebras

Let Q = (Q0,Q1) be a finite quiver. Note that we read paths in Q from right to left. Denote by

kQa and kQc the path algebra of Q and the path coalgebra of Q, respectively.

Recall that the counit and comultiplication of path coalgebra kQc are defined by ε(e) = 1, ∆(e) =

e⊗ e for each e ∈ Q0, and for each nontrivial path p = an · · · a1, ε(p) = 0,

∆(an · · · a1) = p⊗ s(a1) +

n−1∑
i=1

an · · · ai+1 ⊗ ai · · · a1 + t(an)⊗ p.

Definition 2.3.1 ( [16, Definition 1.2])

(1) An algebra A is called monomial if there exits a quiver Q and an admissible ideal I generated by

some paths such that A ∼= kQa/I.

(2) A subcoalgebra C of kQc is called comonomial provided that the following conditions are satisfied:

(i) C contains all vertices and arrows in Q;

(ii) C is contained in subcoalgebra Cd(Q) :=
d−1⊕
i=0

kQ(i) for some d ≥ 2, where Q(i) is the set of

all paths of length i in Q;

(iii) C has a basis consisting of paths.

10



(3) A finite-dimensional Hopf algebra is called a monomial (resp. comonomial) Hopf algebra if it is

monomial (resp. comonomial) as an algebra (resp. coalgebra).

Remark 2.3.2 Note that comonomial Hopf algebra in [16] was called monomial Hopf algebra. In

order to not cause confusion, we recall the defintion of comonomial Hopf algebra.

One of the key observation we need is the following lemma which was proved in [16], which is

true no matter when the characteristic of k is equal to 0 or is equal to p.

Lemma 2.3.3 [16, Corollary 2.4] A non-semisimple Hopf algebra over k is a monomial Hopf algebra

if and only if it is elementary and Nakayama.

The authors of [16] classify non-cosemisimple comonomial Hopf algebras via group data when

the characteristic of k is zero. Let us briefly recall their results.

Let k be an algebraically closed field with characteristic 0, a group datum (see [16, Definition

5.3]) over k is defined to be a sequence α = (G, g, χ, µ) consisiting of

(1) a finite group G, with an element g in its center;

(2) a one-dimensional k-representation χ of G; and

(3) an element µ ∈ k such that µ = 0 if o(g) = o(χ(g)), and that if µ 6= 0, then χo(χ(g)) = 1.

For a group datum α = (G, g, χ, µ) over k, the authors of [16] give the corresponding Hopf

algebra structure A(α) as follow (for details, see [16, 5.7]). Define A(α) to be an associative algebra

with generators x and all h ∈ G, with relations

xd = µ(1− gd), xh = χ(h)hx, ∀h ∈ G,

with comultiplication ∆, counit ε, and the antipode S given by

∆(g) = g ⊗ g, ε(g) = 1, ∆(x) = x⊗ 1 + g ⊗ x, ε(x) = 0, S(g) = g−1, S(x) = −xg−1.

Let H be a non-semisimple comonomial Hopf algebra over k, [16, Lemma 5.2] permits us to

introduce the following notion. A group datum α(H) = (G, g, χ, µ) is called an induced group datum

of H (see [16, Definition 5.5] for details) provide that

(1) G = G(H), where G(H) is the set of all the group-like elements of H;

(2) there exists a non-trivial (1, g)-primitive element x in H such that

xd = µ(1− gd), xh = χ(h)hx, ∀h ∈ G,

where d is the multiplicative order of χ(g).
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It is not difficult to verify that H ∼= A(α(H)).

Denote by Zn the basic cycle of length n, i.e., a quiver with n vertices e0, e1, · · · , en−1 and n arrows

a0, a1, · · · an−1, where the arrow ai goes from the vertex ei to the vertex ei+1. In the following, denote

Cd(Zn) by Cd(n). According to [16, Lemma 5.8], we know that A(G, g, χ, µ) ∼= Cd(n) ⊕ · · · ⊕ Cd(n)

as coalgebras, where n = o(g) and d = o(χ(g)).

As mentioned above, let us illustrate it with an example.

Example 2.3.4 Let q ∈ k be an n-th root of unit of order d. In [6] and [59], Radford and Andruskiewitsch-

Schneider have considered the following Hopf algebra A(n, d, µ, q) which as an associative algebra is

generated by g and x with relations

gn = 1, xd = µ(1− gd), xg = qgx.

Its comultiplication ∆, counit ε, and the antipode S are given by

∆(g) = g ⊗ g, ε(g) = 1, ∆(x) = x⊗ 1 + g ⊗ x, ε(x) = 0, S(g) = g−1, S(x) = −xg−1.

In fact, (Zn, 1, χ, µ) with χ(1) = q is an induced group datum and A(n, d, µ, q) = A(Zn, 1, χ, µ).

The following results gives a classification of non-semisimple comonomial Hopf algebra over an

algebraically filed k of characteristic zero.

Lemma 2.3.5 ( [16, Theorem 5.9]) Let k be an algebraically closed field with characteristic 0, there

is a one-to-one corresponding between sets

{the isoclasses of non-cosemisimple comonomial Hopf algebras over k}

and

{the isoclasses of group data over k}.

Next, we focus on the above lemma in the case of that k is an algebraically closed field of

characteristic p. For any quiver Q, we define CdQ :=
⊕d−1

i=0 kQ(i) for d ≥ 2, where Q(i) is the set of

all paths of length i in Q(i). It is not difficult to show that CdQ is a subcoalgebra of path coalgabra

kQ (see [22] for the definition of path coalgebra). We denote the basic cycle of length n by Zn and

denote Cd(Zn) by Cd(n). By [48, Theorem 1], we know that Cd(n) admits a Hopf algebra structure if

and only if there exists a primitive d0-th root q ∈ k of unity with d0 | n and a natural number r ≥ 0

such that d = prd0.

Moreover, the authors of [48] have given a description of the structures of comonomial Hopf

algebras when the characteristic of k is not zero.

Lemma 2.3.6 ( [48, Theorem 4.2]) Let H be a non-cosemisimple comonomial Hopf algebra over an

algebraically closed field k of character p. Then there exists a d0-th primitive root q ∈ k of unit with
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d0 | n, r ≥ 0 and d = prd0 such that

H ∼= Cd(n)⊕ · · · ⊕ Cd(n)

as coalgebras and

H ∼= Cd(n)#k(G/N)

as Hopf algebras, where G = G(H), the set of group-like elements of H, and N = G(Cd(n)), the set

of group-like elements of Cd(n).
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Chapter 3 Properties for the link quiver

§3.1 Non-trivial primitive matrices and simple bicomodules over a

coalgebra

In this section, let (H,∆, ε) be a coalgebra over k. Denote the coradical filtration of H by

{Hn}n≥0 and the set of all the simple subcoalgebras of H by S. For any simple subcoalgebra C ∈ S,
we fix a basic multiplicative matrix C of C.

For any matrix X = (xij)r×s over H, denote the matrix (xij)r×s by X , where xij = xij +H0 ∈
H/H0. Besides, the subspace of H/H0 spanned by the entries of X is denoted by span(X ).

We start this section by giving the following lemma, which describes a property of simple bico-

modules.

Lemma 3.1.1 For any C,D ∈ S with dimk(C) = r2,dimk(D) = s2, ifM is a simple C-D-bicomodule,

then dimk(M) = rs.

ProofµSince C∗ and D∗ are central simple algebras, it follows that D∗⊗C∗op is also a central simple

algebra and

D∗ ⊗ C∗op ∼= Mrs(k)

as algebras, where Mrs(k) is a matrix algebra. It is known that the dimension of simple left Mrs(k)-

modules is rs. Besides, the category of finite-dimensional left D∗⊗C∗op-modules, the category of finite

dimensionalD∗-C∗-bimodules and the category of finite-dimensional C-D-bicomodules are isomorphic.

And the isomorphisms preserve the dimension. Hence the dimension of the simple C-D-bicomodule

M is rs. �

Let

π : H1 −→ H1/H0

be the quotient map. For any h ∈ H1/H0, define

ρL(h̄) = (Id⊗π)∆(h), ρR(h̄) = (π ⊗ Id)∆(h). (3.1)

It is evident that (H1/H0, ρL, ρR) is an H0-bicomodule. Now we turn to mention span(X ), where

X is a non-trivial (C,D)-primitive matrix.

Lemma 3.1.2 For any C,D ∈ S with dimk(C) = r2,dimk(D) = s2, if Xr×s = (xij)r×s is a non-

trivial (C,D)-primitive matrix, then span(X ) is a simple C-D-bicomodule. Moreover, dimk(span(X )) =

rs.

Proofµ By [40, Proposition 2.11], we know that xij /∈ H0 holds for all 1 ≤ i ≤ r and 1 ≤ j ≤ s.
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Notice that

ρL(xij) = (Id⊗π)∆(xij) =

r∑
k=1

cik ⊗ xkj ,

ρR(xij) = (π ⊗ Id)∆(xij) =

s∑
t=1

xit ⊗ dtj .

It is straightforward to show that (span(X ), ρL, ρR) is a C-D-bicomodule and

dimk(span(X )) ≤ rs.

But according to Lemma 3.1.1, the dimension of any C-D-sub-bicomodule is at least rs. Thus we

conclude that

dimk(span(X )) = rs

and span(X ) is a simple C-D-bicomodule. �

A direct consequence of this lemma is:

Corollary 3.1.3 If X and X ′ are non-trivial (C,D)-primitive matrices over H, then either span(X )∩
span(X ′) = 0 or span(X ) = span(X ′).

ProofµAccording to Lemma 3.1.2, it follows that span(X ) and span(X ′) are both C-D-bicomodules.

It is clear that span(X ) ∩ span(X ′) is a sub-C-D-bicomodule of span(X ). But since span(X ) is

simple, its sub-C-D-bicomodule span(X ) ∩ span(X ′) is either span(X ) or 0. In the previous case,

span(X ) ⊇ span(X ′). By the same taken, we can prove that span(X ) ⊆ span(X ′). �

Moreover, there are further properties for non-trivial primitive matrices.

Corollary 3.1.4 Let C,D ∈ S with basic multiplicative matrices Cr×r and Ds×s, respectively. Sup-

pose X := (xij)r×s is a (C,D)-primitive matrix. Then the followings are equivalent:

(1) X is non-trivial;

(2) xij /∈ H0 holds for all 1 ≤ i ≤ r and 1 ≤ j ≤ s;

(3) {xij | 1 ≤ j ≤ s} are linearly independent in H1/H0 (the quotient space) for each 1 ≤ i ≤ r, and
{xij | 1 ≤ i ≤ r} are linearly independent in H1/H0 for each 1 ≤ j ≤ s.

(4) {xij | 1 ≤ j ≤ s, 1 ≤ i ≤ r} are linearly independent in H1/H0.

ProofµThe equivalence of (1), (2) and (3) is by [40, Proposition 2.11]. And (4) clearly implies (1), (2)

and (3). To complete the proof, we only need to show that (1) implies (4). Note that if X is non-trivial,

it follows from Lemma 3.1.2 that span(X ) is a simple C-D-bicomodule and dimk(span(X )) = rs, which

means that {xij | 1 ≤ j ≤ s, 1 ≤ i ≤ r} are linearly independent in H1/H0. �
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Recall that {eC}C∈S is called a family of coradical orthonormal idempotents (see [60, Section 1])

in H∗, if

eC |D = δC,Dε|D, eCeD = δC,DeC (for any C,D ∈ S),
∑
C∈S

eC = ε.

The existence of a family of coradical orthonormal idempotents is affirmed in [60, Lemma 2].

About more properties of coradical orthonormal idempotents, the reader is referred to [47, Proposition

2.2] for details. We use the notations below for convenience:

Ch = h ↼ eC , hD = eD ⇀ h, ChD = eD ⇀ h ↼ eC (for any h ∈ H and C,D ∈ S),

where ⇀ and ↼ are hit actions of H∗ on H.

Moreover, let {eC}C∈S be a family of coradical orthonormal idempotents. If V is an H0-H0-

bicomodule with left comodule structure δL and right comodule structure δR, define

Cv = v ↼ eC = (eC ⊗ Id)δL(v), vD = eD ⇀ v = (Id⊗eD)δR(v),

CvD = eD ⇀ v ↼ eC (for any v ∈ V and C,D ∈ S).

With the notations above, we can establish the following decomposition of H1/H0 as a direct

sum.

Lemma 3.1.5 Suppose that V is an H0-H0-bicomodule, then V =
⊕

C,D∈S

CV D, where CV D = eD ⇀

V ↼ eC is a C-D-bicomodule. In particular, we have H1/H0 =
⊕

C,D∈S

C(H1/H0)D.

ProofµIt is straightforward to show that CV D is a C-D-bicomodule. For any v ∈ V , since
∑
C∈S

eC = ε,

we have

v = ε ⇀ v ↼ ε =
∑

C,D∈S

CvD.

Suppose 0 =
∑

C,D∈S
wC,D, where wC,D ∈ CV D for any C,D ∈ S. Note that for any E,F ∈ S, we have

0 = eE ⇀ 0 ↼ eF

= eE ⇀ (
∑

C,D∈S
wC,D) ↼ eF

=
∑

C,D∈S
eE ⇀ wC,D ↼ eF

= wF,E .

Thus we complete the proof. �

Besides, for any C,D ∈ S, since ∆(CH1
D) ⊆ C ⊗ CH1

D + CH1
D ⊗D, it follows that (CH1

D +

H0)/H0 is exactly a C-D-bicomodule with the bicomodule structure ρL, ρR defined in (3.1). Thus we

have another direct sum decomposition of H1/H0 and these two kinds of decomposition are related.
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Lemma 3.1.6 As an H0-H0-bicomodule, H1/H0 =
⊕

C,D∈S
(CH1

D+H0)/H0. Moreover, C(H1/H0)D =

(CH1
D +H0)/H0 holds for any C,D ∈ S.

ProofµFor any x ∈ H1, a direct computation follows that

eD ⇀ x ↼ eC =
∑
〈eC , x(1)〉x(2)〈eD, x(3)〉

=
∑
〈eC , x(1)〉x(2)〈eDx(3)〉

= eD ⇀ x ↼ eC

∈ (CH1
D +H0)/H0,

where we use the Sweedler notation ∆(x) =
∑
x(1) ⊗ x(2) for the comultiplication. So we have

C(H1/H0)D ⊆ (CH1
D +H0)/H0

and ⊕
C,D∈S

C(H1/H0)D = H1/H0 =
∑

C,D∈S
(CH1

D +H0)/H0.

The same proof with Lemma 3.1.5 can be applied to H1/H0, then we get

H1/H0 =
⊕

C,D∈S
(CH1

D +H0)/H0,

which implies that
C(H1/H0)D = (CH1

D +H0)/H0.

�

For the remaining of this section, let C,D ∈ S with basic multiplicative matrices C = (cij)r×r

and D = (dij)s×s, respectively.

Lemma 3.1.7 For any (C,D)-primitive matrix X , we have

span(X ) ⊆ (CH1
D +H0)/H0.

ProofµFor any x ∈ span(X ) ⊆ H1/H0, it follows from Lemma 3.1.1 that

ρL(x) ⊆ C ⊗ span(X )

and

ρR(x) ⊆ span(X )⊗D.
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According to Lemma 3.1.6, we have

x ∈
⊕
E,F∈S

(EH1
F +H0)/H0.

Note that (EH1
F +H0)/H0 is a E-F -bicomodule, for any E,F ∈ S. It follows that

x ∈ (CH1
D +H0)/H0,

which means that

span(X ) ⊆ (CH1
D +H0)/H0.

�

Next we consider the inverse.

Lemma 3.1.8 If W is a subspace of CH1
D + H0 such that W is a simple C-D-sub-bicomodule of

(CH1
D +H0)/H0, then there exists some non-trivial (C,D)-primitive matrix W such that span(W) =

W .

ProofµFor any nonzero w ∈W , without the loss of generality, we assume w ∈ CH1
D.

(1) If C 6= D, by [47, Theorem 3.1(1)] and its proof, we know that there exist rs (C,D)-primitive

matrices W(i′,j′) =
(
w

(i′,j′)
ij

)
r×s

(1 ≤ i′ ≤ r, 1 ≤ j′ ≤ s) such that

w =

r∑
i=1

s∑
j=1

w
(i,j)
ij ,

∆(w) =

r∑
i′,i=1

ci′i ⊗ x(i′)
i +

s∑
j,j′=1

y
(j′)
j ⊗ djj′ ,

and

∆(x
(i′)
i ) =

r∑
k=1

cik ⊗ x(i′)
k +

s∑
j,j′=1

w
(i′,j′)
ij ⊗ djj′ ,

where x(i′)
i , y

(j′)
j ∈ CH1

D ∩ ker ε for all 1 ≤ i′, i ≤ r, 1 ≤ j′, j ≤ s. Observe W is a C-D-sub-

bicomodule whose comodule structure is induced by comultiplication, namely,

ρL(w) = (Id⊗π)∆(w) ∈ C ⊗W, ρR(w) = (π ⊗ Id)∆(w) ∈W ⊗D.

As {cii′ | 1 ≤ i, i′ ≤ r} and {djj′ | 1 ≤ j, j′ ≤ s} are linearly independent, thus

x
(i′)
i , y

(j′)
j ∈W

18



for all i, i′, j, j′. According to a similar argument, for any i′, i, we have

ρR(x
(i′)
i ) ∈W ⊗D.

This means that w(i′,j′)
ij ∈W for all i, i′, j, j′. Hence we have

span(W(i′,j′)) ⊆W

for all i′, j′. Since w is nonzero, there must be some pair (i′0, j
′
0) such thatW(i′0,j

′
0) is a non-trivial

(C,D)-primitive matrix. However, note that W is a simple C-D-sub-bicomodule. It follows that

span(W(i′0,j
′
0)) = W.

(2) If C = D, according to [47, Theorem 3.1] or [45, Lemma 2.14(2)], we choose C = D, and there

exist rs (C,D)-primitive matrices W(i′,j′) =
(
w

(i′,j′)
ij

)
r×s

(1 ≤ i′ ≤ r, 1 ≤ j′ ≤ s) such that

w −
r∑
i=1

s∑
j=1

w
(i,j)
ij ∈ C.

Using [47, Lemma 3.1], we know that there exists an element c ∈ C such that

∆(w − c) ∈ C ⊗ (CH1
C)+ + (CH1

C)+ ⊗ C,

where (CH1
C)+ = CH1

C ∩ker ε. Then the same proof of (1) can be applied to the element w− c.
Thus we can find a non-trivial (C,D)-primitive matrix W(i′0,j

′
0) such that

span(W(i′0,j
′
0)) = W.

�

Clearly, a coalgebraH is cosemisimple if and only if the category of left (resp. right)H-comodules

is a semisimple category. This means that any C-D-bicomodule is cosemisimple. Applying Lemma

3.1.6 to the cosemisimple C-D-bicomodule (CH1
D+H0)/H0, we can decompose it into the direct sum

of simple C-D-sub-bicomodules as the following.

Corollary 3.1.9 There exists a family {X (γ)}γ∈Γ of non-trivial (C,D)-primitive matrices such that

C(H1/H0)D = (CH1
D +H0)/H0 =

⊕
γ∈Γ

span(X (γ)). (3.2)

Definition 3.1.10 A family of non-trivial (C,D)-primitive matrices {X (γ)}γ∈Γ satisfying the prop-

erty of (3.2) in Corollary 3.1.9 is said to be complete.

The corollary below is followed immediately by Lemma 3.1.1 and Corollary 3.1.9.
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Corollary 3.1.11 If {X (γ)}γ∈Γ is a complete family of non-trivial (C,D)-primitive matrices, where

Xγ = (x
(γ)
ij )r×s, then {x(γ)

ij | γ ∈ Γ , 1 ≤ i ≤ r, 1 ≤ j ≤ s} is a linear basis of (CH1
D +H0)/H0.

A complete family of non-trivial (C,D)-primitive matrices is the main tool to help us characterize

the link quiver of H in the subsequent sections. Thus some of its properties should be noticed.

Lemma 3.1.12 Suppose {X (λ)}λ∈Λ is a family of non-trivial (C,D)-primitive matrices such that the

sum
∑
λ∈Λ

span(X (λ)) in (CH1
D +H0)/H0 is direct. Then we can find a complete family of non-trivial

(C,D)-primitive matrices {X (γ)}γ∈Γ such that {X (λ)}λ∈Λ is a subset of {X (γ)}γ∈Γ .

Proofµ Let M be a complement of
⊕

λ∈Λ span(X (λ)) in (CH1
D + H0)/H0. According to Lemma

3.1.8, we can show that

M =
⊕
γ′∈Γ′

span(X (γ′))

for some non-trivial (C,D)-primitive matrices {X (γ′)}γ′∈Γ′ . Let

{X (γ)}γ∈Γ = {X (λ)}λ∈Λ ∪ {X (γ′)}γ′∈Γ′ .

Then {X (γ)}γ∈Γ is a complete family of non-trivial (C,D)-primitive matrices. �

The important property of a complete family of non-trivial (C,D)-primitive matrices in the vector

space spanned by all (C,D)-primitive matrices is summarized in the following proposition.

Proposition 3.1.13 Suppose {X (γ)}γ∈Γ is a complete family of non-trivial (C,D)-primitive matrices.

Then for any (C,D)-primitive matrix Y, we have Y =
∑
γ∈Γ

αγX (γ), where αγ ∈ k (γ ∈ Γ ) and only a

finite number of them are nonzero.

ProofµSuppose that X (γ) = (x
(γ)
ij )r×s and Y = (yij)r×s. By the definition of (C,D)-primitive matrix,

we have

∆(yij) =

r∑
k=1

cik ⊗ ykj +

s∑
l=1

yil ⊗ dlj .

According to Corollary 3.1.11, for any 1 ≤ i ≤ r, 1 ≤ j ≤ s, we can assume

yij =
∑
γ∈Γ

r∑
p=1

s∑
q=1

β(ij,γ)
pq x

(γ)
pq ,

where β(ij,γ)
pq ∈ k for any 1 ≤ p ≤ r, 1 ≤ q ≤ s, γ ∈ Γ , and only a finite number of them are nonzero.
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Then

ρL(yij) = (Id⊗π)∆(yij) =

r∑
k=1

cik ⊗ ykj

= ρL(
∑
γ∈Γ

r∑
p=1

s∑
q=1

β(ij,γ)
pq x

(γ)
pq )

=

r∑
p=1

r∑
k=1

cpk ⊗ (
∑
γ∈Γ

s∑
q=1

β(ij,γ)
pq x

(γ)
kq ).

Since the entries of C are linearly independent, it follows that

ykj =
∑
γ∈Γ

s∑
q=1

β
(ij,γ)
iq x

(γ)
kq

holds for any 1 ≤ k ≤ r. Using the same argument as above, when we consider the right comodule

structure of span(Y), we get

yil =
∑
γ∈Γ

r∑
p=1

β
(ij,γ)
pj x

(γ)
pl

holds for any 1 ≤ l ≤ s. It follows that

ykl =
∑
γ∈Γ

s∑
q=1

β
(il,γ)
iq x

(γ)
kq =

∑
γ∈Γ

r∑
p=1

β
(kj,γ)
pj x

(γ)
pl ,

for any 1 ≤ k ≤ r, 1 ≤ l ≤ s. Because of the linear independence of

{x(γ)
ij | 1 ≤ i ≤ r, 1 ≤ j ≤ s, γ ∈ Γ}

in H1/H0, for any 1 ≤ i, k ≤ r, 1 ≤ j, l ≤ s, γ ∈ Γ , we have

β
(il,γ)
iq = 0

when q 6= l, and

β
(kj,γ)
pj = 0

when p 6= k. Moreover, when p = k, q = l,

β
(il,γ)
il = β

(kj,γ)
kj

holds for all 1 ≤ i, k ≤ r, 1 ≤ j, l ≤ s, γ ∈ Γ . This means that

Y =
∑
γ∈Γ

αγX (γ),

where αγ = β
(11,γ)
11 ∈ k for any γ ∈ Γ , and only a finite number of them are nonzero. �
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With the help of the preceding proposition, we can now prove:

Corollary 3.1.14 Let X be a non-trivial (C,D)-primitive matrix. Suppose PXQ is also a (C,D)-

primitive matrix, where P and Q are invertible matrices over k. Then PXQ = αX for some α ∈ k.

ProofµUsing Lemma 3.1.12, we can find a complete family of non-trivial (C,D)-primitive matrices

{X (γ)}γ∈Γ with some element X (γ1) = X . Then by Proposition 3.1.13,

PXQ =
∑
γ∈Γ

αγX (γ),

where αγ ∈ k (γ ∈ Γ ) and only a finite number of them are nonzero. However,

span(PXQ) ∩
( ∑
γ∈Γ\{γ1}

span(X (γ))
)

= 0.

This implies that αγ = 0 for all γ 6= γ1. Therefore,

PXQ = αγ1X .

�

Note that by [17, Theorem 4.1], we have

H1/H0
∼=

⊕
C,D∈S

(C ∧D)/(C +D),

where (C ∧D)/(C +D) is isomorphic to the following C-D-bicomodule

{h ∈ H1/H0 | ρL(h) ∈ C ⊗H1/H0, ρR(h) ∈ H1/H0 ⊗D},

which is exactly C(H1/H0)D. So we can now obtain the following lemma:

Lemma 3.1.15 If C,D ∈ S, then we have a C-D-bicomodule isomorphism:

(CH1
D +H0)/H0

∼= (C ∧D)/(C +D).

Combining Corollary 3.1.9 and Lemma 3.1.15, we obtain the following corollary.

Corollary 3.1.16 Let C,D ∈ S with basic multiplicative matrices Cr×r and Ds×s, respectively. If

{X (γ)}γ∈Γ is a complete family of non-trivial (C,D)-primitive matrices, then the cardinal number

| Γ |= 1

rs
dimk ((C ∧D)/(C +D)) . (3.3)
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The corollary above will help us transform the problem of number of arrows from vertex D to

vertex C in the link quiver of H to the problem of cardinal number of a complete family of non-trivial

(C,D)-primitive matrices in the subsequent sections.

Note that the number (3.3) in Corollary 3.1.16 does not depend on the choices of basic multi-

plicative matrices C and D as well as a complete family of non-trivial (C,D)-primitive matrices.

§3.2 Constructions of a complete family of non-trivial primitive matrices

In this section, let H be a Hopf algebra over k with the dual Chevalley property. Denote the

coradical filtration of H by {Hn}n≥0 and the set of all the simple subcoalgebras of H by S. LetM
denote the set of representative elements of basic multiplicative matrices over H for the similarity

class. It is clear that there is a bijection from S toM, mapping each simple subcoalgebra to its basic

multiplicative matrix, and S = {span(C) | C ∈ M}, where span(C) is the subspace of H0 spanned by

the entries of C.

The aim of this section is to construct a complete family of non-trivial (C,D)-primitive matrices

over H for any C,D ∈ S with basic multiplicative matrices C,D, respectively.

§3.2.1 The first construction

Denote 1S = {C ∈ S | k1 + C 6= k1 ∧ C}. For any C ∈ 1S with basic multiplicative matrix

C ∈ M, using Corollary 3.1.9, we can fix a complete family {X (γC)
C }γC∈ΓC

of non-trivial (1, C)-primitive

matrices.

Denote

1P :=
⋃
C∈1S

{X (γC)
C | γC ∈ ΓC}. (3.4)

Then for any non-trivial (1, C)-primitive matrix Y ∈ 1P and B ∈M, we have

(
I 0

0 LB,C

)(
B �′

(
1 Y
0 C

))(
I 0

0 L−1
B,C

)
=


B Y1 · · · Yu(B,C)

E1

0
. . .

Eu(B,C)

 , (3.5)

where E1, E2, · · · , Eu(B,C) ∈ M. According to Lemma 2.1.4, we know that Y1,Y2, · · · ,Yu(B,C) are non-

trivial.

Denote

BPY := {Yi | 1 ≤ i ≤ u(B,C)}, (3.6)

BP :=
⋃
Y∈1P

BPY , PY :=
⋃
B∈M

BPY . (3.7)
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We remark that
⋃
Y∈1P

1PY coincides with 1P defined in (3.4).

Moreover, denote

P :=
⋃
B∈M

BP =
⋃
Y∈1P

PY . (3.8)

Note that the elements in the set BPY depends on the choice of the invertible matrix LB,C in

(3.5). It will be shown in the following Lemma that the cardinal number | BPY | does not depend on

the choice of LB,C .

Lemma 3.2.1 The sum
∑

1≤i≤u(B,C)

span(Yi) is direct, where each Yi appears in (3.5).

ProofµWithout loss of generality, assume that

E1 = E2 = · · · = Et

for some 1 ≤ t ≤ uB,C , and
Ej 6= E1

when t < j ≤ u(B,C). In fact
∑

1≤i≤t
span(Yi) is a B-E1-sub-bicomodule of H1/H0. Let T0 be a maximal

subset of {1, 2, · · · , t} such that
∑
j∈T0

span(Yj) is direct. Suppose

⊕
j∈T0

span(Yj) $
∑

1≤i≤t

span(Yi).

Since for any 1 ≤ i ≤ t, span(Yi) is simple, there exists some s /∈ T0,

span(Ys) ∩ (
⊕
j∈T0

span(Yj)) = 0.

Thus

span(Ys) + (
⊕
j∈T0

span(Yj)) = span(Ys)⊕ (
⊕
j∈T0

span(Yj)),

which is a contradiction. Now we can get a subset {w1, · · · , wr} of {1, · · · , t} such that

t∑
i=1

span(Yi) =

r⊕
i=j

span(Ywj
).

Without loss of generality, assume that

{w1, w2, · · · , wr} = {1, 2, · · · , r}.

According to Lemma 3.1.12, there exists a complete family {X (γ)}γ∈Γ of non-trivial (B, E1)-primitive

matrices such that {Yi}1≤i≤r is a subset of {X (γ)}γ∈Γ . It follows from Proposition 3.1.13 that Yt is
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the linear combination of {X (γ)}γ∈Γ . Note that if t > r, then

span(Yt) ⊆
⊕

1≤i≤r

span(Yi).

According to Corollary 3.1.11, Yt is the linear combination of {Yi}1≤i≤r. This implies that the

column vectors of
(
Y1 Y2 · · · Yt

)
are linearly dependent over H/H0, which is in contradiction

with Lemma 2.1.4. Thus we have t = r and the sum
∑

1≤i≤t
span(Yi) is direct. Then by Corollary 3.1.9,

the proof is completed. �

Remark 3.2.2 The cardinal number | BPY |= uB,C , where BPY appears in (3.6).

Now we define an H0-bimodule structure on H1/H0 as follows:

h⊗ x 7→ h · x := hx, x⊗ h 7→ x · h := xh (h ∈ H0, x ∈ H1).

Thus H1/H0 becomes an H0-Hopf bimodule with the bicomodule structure defined in (3.1) and bi-

module structure defined obove.

Lemma 3.2.3 With the notations in (3.8), we have H1/H0 =
∑
X∈P

span(X ).

Proofµ It suffices us to prove that

H1/H0 ⊆
∑
X∈P

span(X ).

Applying the fundamental theorem of Hopf modules ( [68, Theorem 4.1.1]), we know that as a left

H0-Hopf module,

H0 ⊗ coH0(H1/H0) ∼= H1/H0,

where (H1/H0)coH0 is the left coinvariants of H0 in H1/H0. This isomorphism maps h⊗x to hx, where

h ∈ H0, x ∈ coH0(H1/H0). Using [45, Proposition 2.6(4)], we can obtain the direct sum decomposition

1H1 =
⊕
C∈S

1H1
C .

It follows that

(1H1 +H0)/H0 =
(
(
⊕
C∈S

1H1
C) +H0

)
/H0

= (
∑
C∈S

1H1
C +H0)/H0

=
∑
C∈S

(1H1
C +H0)/H0.
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Note that
∑
C∈S(1H1

C +H0)/H0 is direct and according to Corollary 3.1.9, we have

(1H1 +H0)/H0 =
⊕
C∈S

(1H1
C +H0)/H0 =

⊕
Y∈1P

span(Y). (3.9)

From the proof of [45, Proposition 3.9], we know that

(H1/H0)coH0 =
⊕
Y∈1P

span(Y). (3.10)

Moreover, the definition of P yields that

∑
X∈P

span(X ) =
∑
B∈M

∑
Y∈1P

span(B �′ Y).

In fact

H0 =
∑
B∈M

span(B). (3.11)

According to (3.9) and (3.11), one can get

H1/H0 = {h · x | h ∈ H0, x ∈ 1H1 +H0}

⊆
( ∑
B∈M

span(B)
)
·
( ⊕
Y∈1P

span(Y)
)

⊆
∑
B∈M

∑
Y∈1P

span(B �′ Y)

=
∑
X∈P

span(X ).

�

Lemma 3.2.4 With the notations in (3.7), for any C ∈ M and non-trivial (1, C)-primitive matrix

X ∈ 1P, we have ( ∑
W∈PX

span(W)

)
∩

 ∑
Z∈1P,Z6=X

∑
W∈PZ

span(W)

 = 0.

ProofµAccording to 3.10, we have

H0 ⊗ (H1/H0)coH0 =
⊕
Y∈1P

H0 ⊗ span(Y).

Moreover, the isomorphism

H0 ⊗ (H1/H0)coH0 ∼= H1/H0
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maps h⊗ x to h · x, where h ∈ H0, x ∈ coH0(H1/H0). By the definition of 1P, we know that

span(X ) ∩
( ∑
Z∈1P,Z6=X

span(Z)
)

= 0.

Then (
H0 ⊗ span(Y)

)
∩

H0 ⊗
( ∑
Z∈1P,Z6=X

span(Z)
) = 0,

which suggests that (
H0 · span(Y)

)
∩

H0 ·
( ∑
Z∈1P,Z6=X

span(Z)
) = 0,

where

H0 · span(Y) = {h · y | h ∈ H0, y ∈ Y},

H0 ·
( ∑
Z∈1P,Z6=X

span(Z)
)

= {h · z | h ∈ H0, z ∈
∑

Z∈1P,Z6=X

span(Z)}.

Therefore, by the definition of PX , we conclude that

( ∑
W∈PX

span(W)

)
∩

 ∑
Z∈1P,Z6=X

∑
W∈PZ

span(W)

 = 0.

�

A direct consequence of this lemma is:

Corollary 3.2.5 With the notations in (3.8), then the union P =
⋃
Y∈1P

PY is disjoint.

Now it is not difficult to verify the following theorem.

Theorem 3.2.6 Let C,D ∈ S with basic multiplicative matrices C,D ∈M respectively. Denote

CPD := {X ∈ P | X is a non-trivial (C,D)-primitive matrix}.

Then it is a complete family of non-trivial (C,D)-primitive matrices. Moreover, we have H1/H0 =⊕
X∈P span(X ).

ProofµBy the definition of P, we have

P =
⋃

C,D∈M

CPD,

which means that ∑
X∈P

span(X ) =
∑
C,D∈M

∑
X∈CPD

span(X ).
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According to Lemma 3.1.6, we know that

H1/H0 =
⊕

C,D∈S
(CH1

D +H0)/H0.

It follows from Lemma 3.1.7 that

∑
X∈CPD

span(X ) ⊆ (CH1
D +H0)/H0,

which implies that

∑
X∈P

span(X ) =
⊕
C,D∈M

( ∑
X∈CPD

span(X )
)

⊆
⊕

C,D∈S
(CH1

D +H0)/H0

= H1/H0.

By Lemma 3.2.3, we have

H1/H0 =
∑
X∈P

span(X ).

Therefore one can get

(CH1
D +H0)/H0 =

∑
X∈CPD

span(X ). (3.12)

Note that
CPY ⊆ PY .

Combining Lemmas 3.2.1 and 3.2.4, we can get

∑
Y∈1P

( ∑
X∈CPY

span(X )
)

=
∑
Y∈1P

( ⊕
X∈CPY

span(X )
)

=
⊕
Y∈1P

( ⊕
X∈CPY

span(X )
)
.

Thus it follows from
CPD ⊆

⋃
Y∈1P

CPY

that ∑
X∈CPD

span(X ) =
⊕
X∈CPD

span(X ),

and CPD is a family of non-trivial (C,D)-primitive matrices. Moreover, we have

H1/H0 =
⊕
X∈P

span(X ).
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Corollary 3.2.7 Let C,D ∈ S with basic multiplicative matrices C,D ∈M respectively. Denote

PD :=
⋃
C∈M

CPD,

which is a disjoint union of CPD (C ∈ M) defined in Theorem 3.2.6. Then

(H1
D +H0)/H0 =

⊕
X∈PD

span(X ).

Moreover, we have
CP =

⋃
D∈M

CPD,

which is also a disjoint union, and that

(CH1 +H0)/H0 =
⊕
X∈CP

span(X ).

Proofµ Note that by the definition of CPD, we know that CPD contains all the non-trivial (C,D)-

primitive matrices in P. It follows that

CP =
⋃
D∈M

CPD.

According to Lemma 3.1.6, we have

H1/H0 =
⊕

C,D∈S
(CH1

D +H0)/H0.

By (3.12) in the proof of Theorem 3.2.6, we know that

(CH1
D +H0)/H0 =

∑
X∈CPD

span(X ).

This means that these two unions

PD =
⋃
C∈M

CPD

and
CP =

⋃
D∈M

CPD

are both disjoint union.
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Using [45, Proposition 2.6(4)], we can obtain the direct sum decomposition

H1
D =

⊕
C∈S

CH1
D.

It follows that

(H1
D +H0)/H0 =

(
(
⊕
C∈S

CH1
D) +H0

)
/H0

= (
∑
C∈S

CH1
D +H0)/H0

=
∑
C∈S

(CH1
D +H0)/H0.

Then it follows from (3.12) in the proof of Theorem 3.2.6 that

(H1
D +H0)/H0 =

∑
C∈S

∑
X∈CPD

span(X )

=
∑
X∈PD

span(X )

=
⊕
X∈PD

span(X ),

the last equation is due to Theorem 3.2.6. The proof of

(CH1 +H0)/H0 =
⊕
X∈CP

span(X )

is similar. �

§3.2.2 The second construction

In this subsection, for any C,D ∈ S, we give another construction of a complete family of

non-trivial (C,D)-primitive matrices over H. We construct a set P ′ in the following way. Denote

S1 = {C ∈ S | C + k1 6= C ∧ k1}. For any C ∈ S1 with basic multiplicative matrix C ∈ M, according

to Corollary 3.1.9, we can fix a complete family {X ′(γ
′
C)

C }γ′C∈Γ ′
C
of non-trivial (C, 1)-primitive matrices.

Denote

P ′1 =
⋃
C∈S1

{X ′(γ
′
C)

C | γ′C ∈ Γ ′C}. (3.13)

Then for any non-trivial (C, 1)-primitive matrix Y ′ ∈ P ′1, we have

(
LB,C 0

0 I

)(
B �′

(
C Y ′

0 1

))(
L−1
B,C 0

0 I

)
=


E1 Y ′1

. . .
...

Eu(B,C) Y ′u(B,C)

0 B

 , (3.14)
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where I is the identity matrix over k and E1, E2, · · · , Eu(B,C) ∈M.

Denote

P ′BY′ = {Y ′i | 1 ≤ i ≤ u(B,C)}, (3.15)

P ′B =
⋃
Y′∈P′1

P ′BY′ , P ′Y′ =
⋃
B∈M

P ′BY′ , (3.16)

and

P ′ =
⋃
B∈M

P ′B =
⋃
Y′∈P1

P ′Y′ . (3.17)

The same proof with Remark 3.2.2 can be applied to | P ′BY′ |.

Remark 3.2.8 The cardinal number | P ′BY′ |= uB,C , where P ′BY′ appears in (3.15).

According to [59, Corollary 3.6], since H has the dual Chevalley property, the antipode S of H

is bijective. Then for the mixed Hopf module H1/H0 in HMH , we have

H0 ⊗ (H1/H0)coH0 ∼= H1/H0,

where (H1/H0)coH0 is the right coinvariants of H0 in H1/H0. And the isomorphism maps h ⊗ x to

h · x, where h ∈ H0, x ∈ (H1/H0)coH0 .

The proofs of the following theorem and corollary can be completed by the method analogous to

that used in the proofs of Theorem 3.2.6 and Corollary 3.2.7.

Theorem 3.2.9 Let C,D ∈ S with basic multiplicative matrices C,D ∈M respectively. Denote

CP ′D := {X ′ ∈ P ′ | X ′ is a non-trivial (C,D)-primitive matrix}.

Then it is a complete family of non-trivial (C,D)-primitive matrices. Moreover, we have H1/H0 =⊕
X ′∈P′ span(X ′).

Corollary 3.2.10 Let C,D ∈ S with basic multiplicative matrices C,D ∈M respectively. Denote

CP ′ :=
⋃
D∈M

CP ′D,

which is a disjoint union of CP ′D (D ∈M) defined in Theorem 3.2.6. Then

(CH1 +H0)/H0 =
⊕
X∈CP′

span(X ).
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Moreover, we have

P ′D =
⋃
C∈M

CP ′D,

which is also a disjoint union, and that

(H1
D +H0)/H0 =

⊕
X∈P′D

span(X ).

So far, for any C,D ∈ S with dimk(C) = r2,dim(D)k = s2, we have already constructed two

complete families of non-trivial (C,D)-primitive matrices over H. According to Corollary 3.1.16, the

cardinal number | CPD |=| CP ′D |= 1
rs dimk ((C ∧D)/(C +D)). Thus we can determine the number

1
rs dimk ((C ∧D)/(C +D)) by studying CPD and CP ′D.

§3.3 Link quiver

Let H be a Hopf algebra over k with the dual Chevalley property. For convenience, we still use

the notations in Section §3.2.

Let ZS be the free additive abelian group generated by the elements of S. For our purpose, let

us start by giving a unital based Z+-ring structure on ZS. The related definitions and properties of

Z+rings can be found in [56, Section 2] and [25, Chapter 3].

For any B,C ∈ S with basic multiplicative matrices B, C ∈ M respectively. Since H has the dual

Chevalley property, it follows from [40, Proposition 2.6(2)] that there exists an invertible matrix L

over k such that

L(B �′ C)L−1 =


E1 0 · · · 0

0 E2 · · · 0
...

...
. . .

...

0 0 · · · Et

 , (3.18)

where E1, E2, · · · , Et are basic multiplicative matrices over H.

Define a multiplication on ZS as follow: for B,C ∈ S,

B · C =

t∑
i=1

Ei,

where E1, · · · , Et ∈ S are well-defined with basic multiplicative matrices Ei ∈M as in (3.18).

With the multiplication defined above, now we can prove the following proposition by using

Lemma 2.1.3.

Proposition 3.3.1 Let H be a Hopf algebra over k with the dual Chevalley property and S be the set

of all the simple subcoalgebras of H. Then ZS is a unital based ring with Z+-basis S.
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Proofµ For any B,C,D ∈ S with basic multiplicative matrices B, C,D respectively. With the

notations in (3.18), we know that

(B · C) ·D =

t∑
i=1

Ei ·D.

By Lemma 2.1.3, we have


E1 �′ D 0 · · · 0

0 E2 �′ D · · · 0
...

...
. . .

...

0 0 · · · Et �′ D

 ∼


E1 �D 0 · · · 0

0 E2 �D · · · 0
...

...
. . .

...

0 0 · · · Et �D


= (L(B �′ C)L−1)�D

∼ (L(B �′ C)L−1)�′ D

∼ (B �′ C)�′ D.

Suppose that

C ·D =

s∑
i=1

Fi,

where Fi ∈ S for any 1 ≤ i ≤ s, which means that

L′(C �′ D)L′−1 =


F1 0 · · · 0

0 F2 · · · 0
...

...
. . .

...

0 0 · · · Fs


for some invertible matrix L′ over k. Then

B · (C ·D) =

s∑
i=1

B · Fi.

By Lemma 2.1.3, we have


B �′ F1 0 · · · 0

0 B �′ F2 · · · 0
...

...
. . .

...

0 0 · · · B �′ Fs

 = B �′


F1 0 · · · 0

0 F2 · · · 0
...

...
. . .

...

0 0 · · · Fs


= B �′

(
L′(C �′ D)L′−1

)
∼ B �

(
L′(C �′ D)L′−1

)
∼ B � (C �′ D)

∼ B �′ (C �′ D).
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As a conclusion, we have


E1 �′ D 0 · · · 0

0 E2 �′ D · · · 0
...

...
. . .

...

0 0 · · · Et �′ D

 ∼

B �′ F1 0 · · · 0

0 B �′ F2 · · · 0
...

...
. . .

...

0 0 · · · B �′ Fs

 .

It follows that the traces of these two matrices are equal. Thus a direct verification gives rise to the

fact that ZS is a unital Z+-ring. Let S be the antipode of H, then according to [39, Theorem 3.3],

we get an anti-involution C 7→ S(C) of S. It follows from [39, Theorem 2.7] that there is only one 1

in the summand of C · S(C), which means that ZS is a based ring. �

Given a finite-dimensional right comodule M over a coalgebra H ′, with comultiplication map

ρ : M → M ⊗H ′, let cf(M) be the coefficient coalgebra of M , which is the smallest subcoalgebra of

H ′ such that ρ(M) ⊆M ⊗ cf(M). One can show that:

Lemma 3.3.2 Let H be a Hopf algebra over k with the dual Chevalley property and S be the set of

all the simple subcoalgebras of H. Then Gr(H0-comod) is isomorphic to ZS as unital based rings.

ProofµDefine

F : Gr(H0-comod) → ZS,

M 7→ cf(M).

Next we show that F is a ring isomorphism. In fact, since H0 is cosemisimple, it follows that M

is a completely irreducible right H0-comodule. In other words, there are simple right H0-comodules

V1, V2, · · · , Vt such thatM =
⊕

1≤i≤t Vi. Note that for any simple right H0-comodule Vi, its coefficient

coalgebra cf(Vi) is a simple subcoalgebra of H. If Vi and Vj are non-isomorphic as right H0-comodules,

it is apparent that cf(Vi) and cf(Vj) are non-isomorphic as subcoalgebras. This means that F is

injective. Furthermore, for any C ∈ S, any simple right C-comodule X is a simple H0-comodule

and the coefficient coalgebra of X is C. One can show that F is surjective. Using the fact that the

coefficient coalgebra cf(Vi ⊗ Vj) of Vi ⊗ Vj is cf(Vi) cf(Vj), we get that F is a ring isomorphism. �

Note that if in addition H0 is finite-dimensional, it is clear that ZS is a fusion ring. In this

situation, we can study Frobenius-Perron dimensions in ZS. The reader is referred to [25, Chapter 3]

and [28, Section 3] for details.

For any C ∈ S, let FPdim(C) be the maximal non-negative eigenvalue of the matrix of left

multiplication by C. Since this matrix has non-negative entries, it follows from the Frobenius-Perron

theorem that FPdim(C) exists. Furthermore, FPdim is the unique character of ZS which takes non-

negative values on S.

Lemma 3.3.3 If H0 is finite-dimensional, then for any C ∈ S, we have FPdim(C) =
√

dimk(C).
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ProofµThis is because

C 7→
√

dimk(C)

is exactly the unique character of ZS which take non-negative values. �

In this section, let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property

and H1/H0 is finite-dimensional. Note that according to Lemma 3.2.3, we know that P is a finite set

in this situation. Besides, for any matrix A = (aij)m×n over H, denote the matrix AT := (aji)n×m

and S(A) := (S(aij))m×n, where S is the antipode of H.

Now let us recall the concept of link quiver.

Definition 3.3.4 ( [17, Definition 4.1]) Let H be a coalgebra over k. The link quiver Q(H) of H is

defined as follows: the vertices of Q(H) are the elements of S; for any simple subcoalgebra C,D ∈ S
with dimk(C) = r2,dimk(D) = s2, there are exactly 1

rs dimk((C ∧D)/(C +D)) arrows from D to C.

With the notations in Section §3.2, we can view CPD as the set of arrows from vertex D to vertex

C, view PD as the set of arrows with start vertex D and view CP as the set of arrows with end vertex

C. Similar statements can also be applied to P ′.

Now we start to study the properties for the link quiver of a Hopf algebra with the dual Chevalley

property.

Lemma 3.3.5 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

Denote 1S = {C ∈ S | k1 + C 6= k1 ∧ C}, S1 = {C ∈ S | C + k1 6= C ∧ k1}. Then

(1) | 1P |≥ 1;

(2) | 1P |=| P1 |;

(3) C ∈ 1S if and only if S(C) ∈ S1.

Proofµ

(1) At first, we try to find a non-trivial (1,F)-primitive matrix for some F ∈ M. This can be

obtained by the same reason in the proof of [45, Lemma 4.7(1)], but here we prove it in another

way. When H 6= H0, it follows from Lemma 3.2.3 that P 6= 0. So there exists some non-trivial

(C,D)-primitive matrix X ∈ P. Let KS(C)TK−1 ∈ M be the basic multiplicative matrix of

S(C), where K is some invertible matrix over k. Since S(C) · C contains k1 with a nonzero
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coefficient, by Lemma 2.1.3, we have

(KS(C)TK−1)�′
(
C X
0 D

)

= (K �′ I)

(
S(C)T �′

(
C X
0 D

))
(K−1 �′ I)

∼



E1 X1,1 · · · X1,u

. . .
...

...

Et Xt,1 · · · Xt,u
1 Xt+1,1 · · · Xt+1,u

F1

0
. . .

Fu


,

where I is the identity matrix over k, Ei,Fj ∈ M for any 1 ≤ i ≤ t, 1 ≤ j ≤ u. By Lemma 2.1.4,

there exists some k such that Xt+1,k is non-trivial, where 1 ≤ k ≤ u. Thus we get a non-trivial

(1,Fk)-primitive matrix Xt+1,k.

According to Lemma 3.1.7, we have

0 6= span(Xt+1,k) ⊆ (1H1
Fk +H0)/H0 ⊆ (1H1 +H0)/H0.

Consequently, it follows from Corollary 3.2.7 that

| 1P |≥ 1.

(2) For any C ∈ M, it is not difficult to verify that S(Y)T is a non-trivial (S(C)T , 1)-primitive matrix,

where Y ∈ 1P is a non-trivial (1, C)-primitive matrix. According to (3.12) in the proof of Theorem

3.2.6, we have

S
(
(1H1

C +H0)/H0

)
= S

( ⊕
Y∈1PC

span(Y)
)

⊆
∑
Y∈1PC

span(S(Y)T )

⊆ (S(C)H1
1 +H0)/H0,

the last inclusion is due to Lemma 3.1.7. It follows from [59, Corollay 3.6] that S is bijective.

Hence we have

dimk((1H1
C +H0)/H0)) ≤ dimk((S(C)H1

1 +H0)/H0).
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This implies that

| 1PC | =
1√

dimk(C)
dimk((1H1

C +H0)/H0))

≤ 1√
dimk(S(C))

dimk((S(C)H1
1 +H0)/H0))

= | KS(C)TK−1

P1 |,

where K is some invertible matrix over k such that KS(C)TK−1 ∈ M is a basic multiplicative

matrix of S(C). By Corollary 3.2.7 and the fact that S is a permutation on S, we have

| 1P | =
∑
C∈M

| 1PC |

≤
∑
C∈M

| KS(C)TK−1

P1 |

=
∑
C∈M

| CP1 |

= | P1 | .

Next we adopt the same procedure to deal with P ′1, we get

| P ′1 |≤| 1P ′ | .

According to Corollaries 3.2.7 and 3.2.10,

| 1P |=
∑
C∈M

| 1PC |=
∑
C∈M

| 1P ′C |=| 1P ′ | .

A similar arguments shows that

| P1 |=| P ′1 | . (3.19)

Thus the proof is completed.

(3) It is straightforward to know that

C ∈ 1S ⇐⇒ k1 + C 6= k1 ∧ C

⇐⇒ S(C) + k1 6= S(C) ∧ k1

⇐⇒ S(C) ∈ S1.

�

Lemma 3.3.6 Suppose that X is a non-trivial (C,D)-primitive matrix. For any B ∈ S,

(1) if B · C contains E with a nonzero coefficient, then there exists some arrow in Q(H) with end
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vertex E;

(2) if B ·D contains F with a nonzero coefficient, then there exists some arrow in Q(H) with start

vertex F .

ProofµWe only prove (1); the proof of (2) is similar. By [40, Proposition 2.6], there exist invertible

matrices LB,C , LB,D over k such that

(
LB,C

LB,D

)(
B �′

(
C X
0 D

))(
L−1
B,C

L−1
B,D

)

=

(
LB,C

LB,D

)(
B �′ C B �′ X

0 B �′ D

)(
L−1
B,C

L−1
B,D

)

=



E1 X11 · · · X1u(B,D)

. . .
...

...

Eu(B,C) Xu(B,C)1 · · · Xu(B,C)u(B,D)

F1

0
. . .

Fu(B,D)


, (3.20)

where E1, · · · , Eu(B,C) ,F1, · · · ,Fu(B,D)
are the given basic multiplicative matrices. According to Lemma

2.1.4, we know that for each 1 ≤ i ≤ u(B,C), there is some 1 ≤ j ≤ u(B,D) such that Xij is non-trivial;
and for each 1 ≤ j ≤ u(B,D), there is some 1 ≤ i ≤ u(B,C) such that Xij is non-trivial. Without loss of

generality, for any Ei contained in B · C, suppose that Xi1 is non-trivial. Note that

span(Xi1) ⊆ (EiH1
F1 +H0)/H0).

It follows from Lemma 3.1.16 that

dimk((Ei ∧ F1)/(Ei + F1)) > 0.

This means that there exists some arrow from F1 to Ei, the proof of (1) is complete. �

For convenience, denote S = {Ci | i ∈ I} be the set of all the simple subcoalgebras of H. For

any Ci, Cj ∈ S, let Ci ·Cj =
∑
t∈I

αti,jCt, where αti,j ∈ Z+. Moreover, we denoteM = {Cj | i ∈ I}, such

that each Cj ∈ M is the basic multiplicative matrix of Cj ∈ S. By Remarks 3.2.2 and 3.2.8, we can

show the following results.

Lemma 3.3.7 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

(1) For any Y ∈ 1P, where Y is a non-trivial (1, Cj)-primitive matrix and Cj ∈ M, let βij be the

cardinal number of CiPY . Then βij =
∑
t∈I

αti,j ≥ 1;
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(2) For any Y ′ ∈ P ′1, where Y ′ is a non-trivial (Cj , 1)-primitive matrix and Cj ∈ M, let β′ij be the

cardinal number of P ′CiY . Then β′ij =
∑
t∈I

αti,j ≥ 1.

For any Y ∈ 1P and Ci ∈M, denote

PCiY := PCi ∩ PY .

Using the lemma above, we can acquire further properties.

Corollary 3.3.8 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

Then for any non-trivial (1, Cj)-primitive matrix Y ∈ 1P, where Cj ∈M, we have

(1) | CiPY |≥ 1, | PCiY |≥ 1 hold for all Ci ∈M;

(2) | P1
Y |= 1.

Proofµ

(1) For any Ci ∈M, it is apparent from Lemma 3.3.7 that

βij =| CiPY |≥ 1.

Since ZS is a unital based ring, according to Lemma 2.2.2, there exists some simple subcolagebra

Ct ∈ S such that Ct · Cj contains Ci with a nonzero coefficient. Now we consider

(
I 0

0 LCt,Cj

)(
Ct �′

(
1 Y
0 Cj

))(
I 0

0 L−1
Ct,Cj

)
,

where I is the identity matrix over k and LCt,Cj is an invertible matrix over k which is defined

in Section §2.1. It follows from Lemma 2.1.4 that there exists some non-trivial (Ct, Ci)-primitive

matrix Z ∈ CtPY ⊆ PY , where Ct ∈ M. On the other hand, we know that Z ∈ CtPCi ⊆ PCi ,
where the last inclusion is due to Corollary 3.2.7. It follows that

Z ∈ PCi ∩ PY .

Thus

| PCiY |≥ 1.

(2) Choosing Ci = k1 in (1), we know that

| P1
Y | ≥ 1 =| 1PY |,

where
1PY = {Y}.

39



Since

P1 = P1 ∩ P =
⋃
Z∈1P

(P1 ∩ PZ),

it follows from Corollary 3.2.5 that

| P1 |=
∑
Z∈1P

| P1
Z |≥

∑
Z∈1P

| 1PZ |=| 1P | .

But by Lemma 3.3.5, we have

| P1 |=| 1P |,

which follows that the cardinal number | P1
Z | can only equal to 1 for each Z ∈ 1P. �

For any C,D ∈ S with basic multiplicative matrices C,D ∈ M respectively. Recall that C, D

are said to be directly linked in H if C + D is a proper subspace of C ∧ D + D ∧ C. Note that

by [40, Lemma 3.6 (2)] that C, D are directly linked in H if and if only there exists some (C,D)-

primitive or (D, C)-primitive matrix, which is non-trivial. We can use this notion to describe 1S and

S1.

The following proposition exactly recovers the definition of Hopf quiver.

Proposition 3.3.9 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley prop-

erty. If all the simple subcoalgebras directly linked to k1 are 1-dimensional, then we have | CP |=|
PC |=| 1P |, for any C ∈ M.

ProofµSuppose that y ∈ 1P is a non-trivial (1, g)-primitive matrix of size 1 for some g ∈ G(H). For

any C ∈ S, it is straightforward to show that Cg is also a simple subcoalgebra of H. By (3.6), we

know that for any C ∈ M,
CPY = {Cy} and 1PY = {y}.

This means that

| CPY |= 1 =| 1PY | .

Therefore, we have

| CP |=
∑
Y∈1P

| CPY |=
∑
Y∈1P

| 1PY |=| 1P | . (3.21)

By the same method as employed above, we can show that

| P ′C |=| P ′1 | . (3.22)

According to Corollaries 3.2.7 and 3.2.10, for any D ∈M, we have

| PD |=
∑
C∈M

| CPD |=
∑
C∈M

| CP ′D |=| P ′D | . (3.23)
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It follows from Lemma 3.3.5 that

| CP |(3.21)
= | 1P |=| P1 |(3.23)

= | P ′1 |(3.22)
= | P ′C |(3.23)

= | PC | .

�

Now let us focus on a special situation.

Corollary 3.3.10 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

Then the followings are equivalent:

(1) | CP |=| PC |= 1 holds for all C ∈M;

(2) | 1P |= 1 and the unique subcoalgebra C ∈ 1S is 1-dimensional.

ProofµIndeed, it follows from Proposition 3.3.9 that (2) implies (1). Conversely, assume that there

exists some simple subcoalgebra C ∈ S1 such that

dimk(C) > 1.

Suppose KS(C)TK−1 ∈M is a basic multiplicative matrix of S(C), where K is some invertible matrix

over k. Since there is only one 1 in the summand of S(C) ·C in ZS, it follows from Lemma 3.3.7 that

| KS(C)K−1

P |> 1,

which is a contradiction to the assumption in (1). �

According to Proposition 3.3.9, we know that if all the simple subcoalgebras directly linked to

k1 are 1-dimensional, we have

| 1P |
∣∣ | CP |

and

| CP |=| PC |,

for any C ∈ M.

According to [25, Propositions 3.3.6(2) and 3.3.11], there exists a unique, up to scaling, nonzero

element R ∈ ZS ⊗Z C such that X · R = FPdim(X)R for all X ∈ ZS, and it satisfies the equality

R · Y = FPdim(Y )R for all Y ∈ ZS. Such an element R is called a regular element of ZS. It is

straightforward to show that the element R =
∑
Y ∈I

FPdim(Y )Y is a regular element. We can obtain a

useful equation, which is needed in the next section.

Lemma 3.3.11 With the notations in Lemma 3.3.7, suppose that H0 is finite-dimensional. Then we

have the following equation

√
dimk(Ck)

(∑
i∈I

√
dimk(Ci)

)
=
∑
i∈I

√
dimk(Ci)βik.
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ProofµBy Lemma 3.3.3 and Lemma 3.3.7, we know that

βik =
∑
t∈I

αti,k

and

FPdim(Ci) =
√

dimk(Ci)

hold for any i ∈ I. It follows from [25, Propositions 3.3.6(2) and 3.3.11] that

R =
∑
i∈I

√
dimk(Ci)Ci

is a regular element and √
dimk(Ck)R = R · Ck.

This means that

√
dimk(Ck)

(∑
i∈I

√
dimk(Ci)Ci

)
=

(∑
i∈I

√
dimk(Ci)Ci

)
· Ck

=
∑
i∈I

∑
t∈I

√
dimk(Ci)α

t
i,kCt,

which follows that √
dimk(Ck)

√
dimk(Ct) =

∑
i∈I

√
dimk(Ci)α

t
i,k.

Thus we have √
dimk(Ck)

(∑
i∈I

√
dimk(Ci)

)
=
∑
i∈I

√
dimk(Ci)βik.

�

At the end of this section, we recall the concept of link-indecomposable components of coalgebra

H.

Definition 3.3.12 ( [55, Definition 1.1]) A subcoalgebra H ′ of coalgebra H is called link-indecomposable

if the link quiver Q(H ′) of H ′ is connected (as an undirected graph). A link-indecomposable component

of H is a maximal link-indecomposable subcoalgebra.

As a consequence, we obtain the following proposition.

Proposition 3.3.13 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley proper-

ty. If all the simple subcoalgebras directly linked to k1 are 1-dimensional, then the link-indecomposable

component H(1) containing k1 is a pointed Hopf algebra.

ProofµSuppose there exists a simple subcoalgebra B with dimk(B) > 1 such that some 1-dimensional

simple subcoalgebra kg contained in H(1) is directly linked to B, where g ∈ G(H). Without the loss of
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generality, we can assume that there exists some non-trivial (g,B)-primitive matrix for some B ∈M.

Now we consider

g−1 �′
(
g X
0 B

)
.

We can get a (1, g−1B)-primitive matrix g−1X , where g−1B is a multiplicative matrix of g−1B ∈ S. We

know that k1 is directly linked to the simple subcoalgebra g−1B, which is a contradiction. Therefore,

it is directly from [40, Theorem 4.8 (3)] that H(1) is a pointed Hopf algebra. �

Let Q(H) be the link quiver of H. For each arrow X : C → D in Q(H), let X−1 : D → C be

the formal reverse. Recall that a walk from C to D is a nonempty sequence of arrows X1,X2, · · · ,Xm
such that there exists a family of {λi}1≤i≤m such that X λ1

1 X
λ2
2 · · · X λm

m is a path from C to D, where

{λi | 1 ≤ i ≤ m} ⊆ {−1, 1}.

For each Ci ∈ S, λi ∈ {−1, 1}, define

Cλi
i =

 Ci , if λi = 1;

S(Ci), if λi = −1.

Recall that in [22, section 3], a Hopf quiver Q(G,χ) is connected if and only if the union ∪χC 6=0C
generates G. The following proposition generalizes this result.

Proposition 3.3.14 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the

dual Chevalley property. The link quiver Q(H) of H is connected if and only if for any D ∈ S,
there exist C1, · · · , Cn ∈ 1S such that Cλ1

1 · C
λ2
2 · · ·Cλn

n contains D with a nonzero coefficient, where

{λi | 1 ≤ i ≤ n} ⊆ {−1, 1}.

ProofµFor any D ∈ S, suppose that there exist C1, · · · , Cs ∈ 1S such that Cλ1
1 Cλ2

2 · · ·Cλs
s contains

D with a nonzero coefficient. We are going to find a walk from k1 to D.

When λ1 = 1 or λ1 = −1, we can find a walk from k1 to Cλ1
1 .

When λ2 = 1, there exists a non-trivial (1, C2)-primitive matrix X2. According to Lemma 3.3.6, we

know that for any summand E2 contained in Cλ1
1 · C2 with a nonzero coefficient, there exists some

arrow from E2 to Cλ1
1 . When λ2 = −1, there exists a non-trivial (K1S(C2)K−1

1 , 1)-primitive matrix

Y2, where K1 is some invertible matrix over k such that K1S(C2)K−1
1 ∈ M. It is a consequence of

Lemma 3.3.6 that for any summand E2 contained in Cλ1
1 · S(C2) with a nonzero coefficient, there

exists some arrow from Cλ1
1 to E2. It turns out that for any summand E2 contained in Cλ1

1 ·C
λ2
2 with

a nonzero coefficient, we can find a walk from k1 to E2.

Continuing by induction, we can finally find a walk from k1 to D. Therefore, Q(H) is connected.

Next we show the inverse. If Q(H) is connected, then for any D ∈ S, we can find a walk from k1 to

D which goes through vertices E0, E1, · · · , En, where

E0 = k1, En = D.
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Now we claim that for each Ei, i ≥ 1, there exists a family of {Cj}1≤j≤i such that Cλ1
1 Cλ2

2 · · ·C
λi
i

contains Ei with a nonzero coefficient, where C1, · · · , Ci ∈ 1S, λ1, · · · , λi ∈ {1,−1}. We prove the

claim by induction.

When i = 1, in the link quiver Q(H), there exists some arrow from E1 to k1 or from k1 to E1. If

there exists some arrow from E1 to k1, the claim is evident. If there exists some arrow from k1 to E1,

then by Lemma 3.3.5, we have S(E1) ∈ 1S. Let

C1 = S(E1),

the claim is proved.

Suppose that the claim holds for Ei, which means that there exists a family of {Cj}1≤j≤i such that

Cλ1
1 Cλ2

2 · · ·C
λi
i contains Ei with a nonzero coefficient. Now we consider Ei+1. We know that there

must be some arrow from Ei to Ei+1 or from Ei+1 to Ei. If there exists some arrow from Ei+1 to Ei,

it follows from Lemma 3.2.6 that there exists some non-trivial (Ei, Ei+1)-primitive matrix Xi ∈ P. By
the definition of P, we know that there exists some non-trivial (1,F)-primitive matrix Y ∈ 1P such

that Xi ∈ EiPY , where F ∈M. Let

Ci+1 = F,

it follows that Ei · Ci+1 contains Ei+1 with a nonzero coefficient.

If there exists some arrow from Ei to Ei+1, we can find some non-trivial (Ei, Ei+1)-primitive matrix

Xi. It is straightforward to show that S(Xi) is a non-trivial (S(Ei+1), S(Ei))-primitive matrix. This

means that

(S(Ei+1)H1
S(Ei) +H0)/H0 6= 0.

Let K1S(Ei)K−1
1 ,K2S(Ei+1)K−1

2 ∈M be the basic multiplicative matrices of S(Ei), S(Ei+1), respec-

tively, where K1,K2 are invertible matrices over k. From Lemma 3.2.6, there exists some non-trivial

(K1S(Ei)K−1
1 ,K2S(Ei+1)K−1

2 )-primitive matrix X ′i ∈ P. By the definition of P, we know that there

exists some non-trivial (1,F)-primitive matrix Y ∈ 1P such that X ′i ∈ K1S(Ei)K−1
1 PY . This means

that S(Ei) · F contains S(Ei+1) with a nonzero coefficient. Let

C0 = S(F ),

applying Lemma 3.3.1 yields that C−1
0 Ei contains Ei+1 with a nonzero coefficient. The proof is

completed. �
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Chapter 4 Corepresentation type

§4.1 Finite corepresentation type

One of the most important topics in representation theory is the classification of indecomposable

(co)modules over a (co)algebra. The reader is referred to [5] and [11] for general background knowledge

of representation theory.

Recall that a finite-dimensional algebra A is said to be of finite representation type provided there

are finitely many non-isomorphic indecomposable A-modules. We say that A is of tame representation

type or A is a tame algebra if A is not of finite representation type, whereas for any dimension

d > 0, there are finite number of A-k[T ]-bimodules Mi which are free of finite rank as right k[T ]-

modules such that all but finite number of indecomposable A-modules of dimension d are isomorphic

to Mi ⊗k[T ] k[T ]/(T − λ) for λ ∈ k. A is of wild representation type or A is a wild algebra if there

is a finitely generated A-k[T ]-bimodules B which is free as a right k(X,Y )-module such that the

functor B⊗k(X,Y )− from the category of finitely generated k(X,Y )-modules to the category of finitely

generated A-modules, preserves indecomposability and reflects isomorphisms. A finite-dimensional

coalgebra C is said to be of finite corepresentation type, if the dual algebra C∗ is of finite representation

type. C is defined to be of tame corepresentation type, if C∗ is a tame algebra. We say that C is of

wild corepresentation type, if the dual algebra C∗ is a wild algebra. See [27,64].

Besides, an algebra A is said to be of infinite representation type, if A is not of finite representation

type. A finite-dimensional coalgebra C is defined to be of infinite corepresentation type, if C∗ is of

infinite representation type.

Let A (resp. C) be an algebra (resp. coalgebra) over k and {Mi}i∈I be the complete set of

isoclasses of simple left A-modules (resp. right C-comodules). The Ext quiver Γ(A) (resp. Γ(C)) of

A (resp. C) is an oriented graph with vertices indexed by I, and there are dimk Ext1(Mi,Mj) arrows

from i to j for any i, j ∈ I. To avoid confusion, for any Hopf algebra H over k, we denote the algebra’s
version of Ext quiver of H by Γ(H)a and denote the coalgebra’s version of Ext quiver of H by Γ(H)c.

Now let us recall the definition of separated quiver.

Definition 4.1.1 (cf. [5, §X. 2]) Let A be a finite-dimensional algebra over k and Γ(A) = (Γ0,Γ1)

be its Ext quiver, where Γ0 = {1, 2, · · · , n}. The separated quiver Γ(A)s of A has 2n vertices

{1, 2, · · · , n, 1′, 2′, · · · , n′} and an arrow i→ j′ for every arrow i→ j of Γ(A).

LetH be a finite-dimensional Hopf algebra over k with the dual Chevalley property. As mentioned

in Section §3.3, for any simple subcoalgebra C,D ∈ S with dimk(C) = r2,dimk(D) = s2, there are

exactly 1
rs dimk((C ∧D)/(C +D)) arrows from D to C in the link quiver Q(H) of H. Moreover, we

have

| CPD |=| CP ′D |= 1

rs
dimk((C ∧D)/(C +D)),

and there are exactly | CP | (=| CP ′ |) arrows with end vertex C and | PD | (=| P ′D |) arrows with
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start vertex D in the link quiver Q(H) of H.

In order to solve the classification problems, we divide it into several different situations. Let us

consider the first case.

Proposition 4.1.2 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property. If | 1P |≥ 2, then H is of infinite corepresentative type.

ProofµWe know that the k-linear abelian category of finite-dimensional comodules over H is isomor-

phic to the category of finite-dimensional modules over H∗. This means that the coalgebra’s version

of Ext quiver Γ(H)c of H is the same as the algebra’s version of Ext quiver Γ(H∗)a of H∗. According

to [17, Theorem 2.1 and Corollary 4.4], the link quiver Q(H) of H coincides with the algebra’s version

of Ext quiver Γ(H∗)a of H∗.

Note that H∗ is Morita equivalent to a basic algebra B(H∗). It suffices to prove that the basic algebra

B(H∗) of H∗ is of infinite representative type. Let J be the ideal generated by all the arrows in Q(H).

By the Gabriel’s theorem, there exists an admissible ideal I such that

kQ(H)/I ∼= B(H∗),

where J t ⊆ I ⊆ J2 for some integer t ≥ 2. Thus there exists an algebra epimorphism

f : B(H∗)→ kQ(H)/J2.

It is enough to show that kQ(H)/J2 is of infinite representative type. Since the Jacobson radical of

kQ(H)/J2 is J/J2, we know that kQ(H)/J2 is an artinian algebra with radical square zero.

Now assume on the countrary that kQ(H)/J2 is of finite representation type. It follows from [5, X.2

Theorem 2.6] that the separated quiver Q(H)s of kQ(H)/J2 is a finite disjoint union of Dynkin

diagrams.

Since | 1P |≥ 2, it follows from Corollary 3.2.5 that

| CP |=
∑
Y∈1P

| CPY |≥| 1P |≥ 2. (4.1)

According to Corollary 3.3.8, we have

| PC |=
∑
Y∈1P

| PCY |≥| 1P |≥ 2 (4.2)

for all C ∈ M.

By a discussion on | 1S |, we aim to find a contradiction to Q(H)s being a finite disjoint union of

Dynkin diagrams.
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i) When | 1S |= 1, then the separated quiver Q(H)s must contain

k1′

as a sub-quiver. The above quiver is a Kronecker quiver whose underlying graph is not a Dynkin

diagram. We know that kQ(H)/J2 is of infinite representation.

ii) When | 1S |≥ 2, by (4.1) and (4.2), the separated quiver Q(H)s contains a sub-quiver of the form

E1

k1′

E2

D′1D′2 ,

where E1 6= E2 and there are 3 possible situation.

If D′1 = k1′ or D′2 = k1′, the separated quiver of Q(H) contains a Kronecker quiver as a sub-

quiver.

If D′1 = D′2 6= k1′, the separated quiver of Q(H) contains a sub-quiver whose underlying graph

is Ãn for some n ≥ 3 and it is a Euclidean diagram. Therefore, kQ(H)/J2 is of infinite represen-

tation type.

If D′1, D′2,k1′ are distinct from each other, the separated quiver Q(H)s contains the following

sub-quiver
E1

k1′

E2

D′1D′2

E3E4

.

Then if E4 = Ei for some i = 1, 2, 3, it is evident that kQ(H)/J2 is of infinite representation

type. Otherwise, we repeat above process. Since S is a finite set, the separated quiver Q(H)s

either contains the Kronecker quiver as a sub-quiver or contains a sub-quiver whose underlying

graph is Ãn for some n ≥ 3.

As a conclusion, kQ(H)/J2 is of infinite representation type, and this implies that H is of infinite

corepresentative type. �

Recall that an algebra is said to be Nakayama, if each indecomposable projective left and right

module has a unique composition series. It is well-known that a basic algebra A is Nakayama if and

only if every vertex of the Ext quiver of A is the start vertex of at most one arrow and the end vertex

of at most one arrow (see [11, §V. 2. Theorem 2.6]).

Next we consider the second case.
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Proposition 4.1.3 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property. If | 1P |= 1 and the unique subcoalgebra C ∈ 1S is 1-dimensional, then H is of

finite corepresentative type.

ProofµFrom the proof of Proposition 4.1.2, we know that the link quiver Q(H) of H is the same as

the Ext quiver Γ(H∗)a of H∗. Using Lemma 3.3.10, we can find

| CP |=| PC |= 1, C ∈ M,

which means that the basic algebra B(H∗) is a Nakayama algebra. It follows from [5, §VI. Theorem

2.1] that the Nakayama algebra B(H∗) is of finite representation type, which implies that H is of finite

corepresentation type. �

Note that since H is finite-dimensional, ZS is a fusion ring with Z+-basis S = {Ci}i∈I . Suppose
that Ci · Cj =

∑
t∈I

αtijCt, for any Ci, Cj ∈ S. By the proof of Proposition 3.3.1, the involution of I is

decided by S, that is Ci∗ = S(Ci).

Before proceeding further, let us give the following lemma.

Lemma 4.1.4 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property. Let | 1P |= 1 and Ck be the unique subcoalgebra contained in 1S.

(1) The number of arrows with end vertex Ci in Q(H) is equal to
∑
t∈I

αtik, and the number of arrows

with start vertex Ci in Q(H) is equal to
∑
t∈I

αtik∗ ;

(2) The number of arrows from Ct to Ci in Q(H) is equal to αtik and we have αtik = αitk∗ .

Proofµ

(1) According to Lemma 3.3.5 (2) and (3.19) in its proof, we know that

| P ′1 |=| P1 |=| 1P |= 1.

Suppose
1P = {Y}

and

P ′1 = {Y ′}.

Combining (3.7) and Lemma 3.3.7, we have

| CiP |=| CiPY |=
∑
t∈I

αtik.
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This means that the number of arrows with end vertex Ci in Q(H) is equal to
∑
t∈I

αtik. A similar

argument shows that the number of arrows with start vertex Ci in Q(H) is equal to
∑
t∈I

αtik∗ .

(2) In ZS, we have

S(Ck) · S(Ci) =
∑
t∈I

αtikS(Ct) =
∑
t∈I

αt
∗

k∗i∗S(Ct).

It follows from [25, Proposition 3.1.6] that

αtik = αt
∗

k∗i∗ = αitk∗ .

Moreover, by (3.7), we can find that
CiP = CiPY .

It follows from Theorem 3.2.6 that

| CiPCt |= αtik.

Thus the number of arrows from Ct to Ci in Q(H) is equal to αtik. �

Using Lemma 4.1.4, now we can turn to the last situation.

Proposition 4.1.5 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property. Let | 1P |= 1 and Ck be the unique subcoalgebra contained in 1S. If dimk(Ck) ≥ 4,

then H is of infinite corepresentative type.

ProofµProceeding as in the proof of Proposition 4.1.2, we need only to observe the separated quiver

of kQ(H)/J2.

If dimk(Ck) ≥ 9, since β1k = 1, it follows from Lemma 3.3.11 that there exists at least one subcoalgebra

Cu such that

βuk =
∑
t∈I

αtuk ≥ 4.

The separated quiver of Q(H) contains a vertex which is the end vertex of at least 4 arrows. Evidently,

the underlying graph of this separated quiver is not the union of Dynkin diagrams, thus H is of infinite

corepresentative type.

If dimk(Ck) = 4, we deal with this situation through classified discussion. In the following part, for

any n ≥ 2, let S(n) be the set of all the n2-dimensional simple subcoalgebras of H and let G(H) be

the set of all the group-like elements. According to Lemma 4.1.4 (2), we know that the following two

numbers are equal:

- The number of Ct contained in Ci · Ck;

- The number of Ci contained in Ct · S(Ck).

Now let us start discussing different situations.
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(I) Suppose that

S(Ck) · Ck = k1 + kg1 + kg2 + kg3

in ZS, where g1, g2, g3 ∈ G(H). According to Lemma 4.1.4 (1), the separated quiver Q(H)s

contains a vertex which is the end vertex of 4 arrows and it can not be a finite disjoint union of

Dynkin diagrams. We know that H is of infinite corepresentation type.

Note that if there exists some vertex in Q(H)s which is the end vertex or the start vertex of at

least 4 arrows, then a similar arguments shows that H is of infinite corepresentation type. For

simplicity, in the following proof, we will no longer consider the occurrence of this situation.

(II) Suppose that in ZS, we have

S(Ck) · Ck = k1 + kg1 +D
(2)
1 ,

for some g1 ∈ G(H) and D(2)
1 ∈ S(2).

i) If

D
(2)
1 · S(Ck) = S(Ck) + kg2 + kg3,

where g2, g3 ∈ G(H). Using Lemma 4.1.4 (2), the separated quiver of kQ(H)/J2 either

contains a sub-quiver of the form

,

or contains

k1 kg1 D
(2)
1

S(Ck)′ kg′2 kg′3

as a sub-quiver. The underlying graph of the sub-quiver in the latter case is D̃5 and it is an

Euclidean graph. Since the underlying graph of both of them are not Dynkin diagrams, it

follows that H is of infinite corepresentation type.

ii) If

D
(2)
1 · S(Ck) = S(Ck) +D

(2)
2

for some D(2)
2 ∈ S(2), a similar argument shows that if

D
(2)
2 · Ck = D

(2)
1 + kg4 + kg5,

where g4, g5 ∈ G(H), then H is of infinite corepresentation. If not, we can consider the case

that

D
(2)
2 · Ck = D

(2)
1 +D

(2)
3 ,

where D(2)
3 ∈ S(2). Continue the process, we know that either H is of infinite corepresen-
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tation type, or we can get a sub-quiver which contains infinite vertexes of kQ(H)/J2 of the

following form

k1 kg1 D
(2)
1

S(Ck)′ D
(2)′

2

D
(2)
3

· · ·

.

For the latter case, it is in contradiction with the fact that H is finite-dimensional.

(III) Finally, we focus on the case that

S(Ck) · Ck = k1 +D
(3)
1

in ZS for some D(3)
1 ∈ S(3).

i) If

D
(3)
1 · S(Ck) = S(Ck) +D

(2)
1 +D

(2)
2 ,

where D(2)
1 , D

(2)
2 ∈ S(2), then

D
(2)
1 · Ck = D

(3)
1 + kg1

and

D
(2)
2 · Ck = D

(3)
1 + kg2,

where g1, g2 ∈ G(H). It follows from Lemma 4.1.4 (2) that the separated quiver for kQ(H)/J2

either contains the Kronecker quiver as a sub-quiver, a sub-quiver whose underlying graph

is Ãn for some n ≥ 3, or a sub-quiver of the following form

k1 D
(3)
1 kg1 kg2

S(Ck)′ D
(2)′
1 D

(2)′
2 .

The underlying graph of the quiver in the latter case is Ẽ6, which is an Euclidean graph.

This means that H is of infinite corepresentation type.

ii) If

D
(3)
1 · S(Ck) = S(Ck) +D

(3)
2 + kg1,

where g1 ∈ G(H) and D
(3)
2 ∈ S(3), we know that kg1 · Ck contains D(3)

1 with a nonzero

coefficient in ZS. But

√
dimk(kg1)

√
dimk(Ck) <

√
dimk(D

(3)
1 ),
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this leads to a contradiction. Therefore, this situation never happen.

iii) Suppose that

D
(3)
1 · S(Ck) = S(Ck) +D

(4)
1 ,

where D(4)
1 ∈ S(4), we can continue this process. Since H is finite-dimensional, an argument

similar to the one used in (2)(II) shows that there exists some n ≥ 3 such that

D
(i)
1 · Sαi(Ck) = D

(i−1)
1 +D

(i+1)
1 ,

holds for all 3 ≤ i ≤ n, and

D
(n+1)
1 · Sαn+1(Ck) = D

(n)
1 + E + F,

where E,F ∈ S, D(2)
1 = S(Ck), D

(i)
1 ∈ S(i) for 3 ≤ i ≤ n + 1 and αi = 0 when i is even,

αi = 1 when i is odd.

When n = 2m for some m ≥ 2, a similar argument shows that

√
dimk(E) = m+ 1,

√
dimk(F ) = m+ 1.

Notice that E · Ck contains at least one subcoalgebra G with a nonzero coefficient besides

D
(2m+1)
1 , where

√
dimk(G) = 1. Then we know that G · S(Ck) contains E, which is in

contradiction with
√

dimk(E) ≥ 3.

When n = 2m + 1 for some m ≥ 1, since E · S(Ck) and F · S(Ck) contain D(2m+2)
1 with a

nonzero coefficient, it follows that

√
dimk(E) ≥ m+ 1,

√
dimk(F ) ≥ m+ 1.

Without loss of generality, we can assume

√
dimk(E) = m+ 2,

√
dimk(F ) = m+ 1.

Note that E · S(Ck) contains at least one subcoalgebra G with a nonzero coefficient besides

D
(2m+2)
1 , where

√
dimk(G) ≤ 2. Then we know that G · S(Ck) contains E, which means

that m = 1 or m = 2 and
√

dimk(G) = 2.

Based on the consideration above, we need only to consider the situations of n = 3 and

n = 5.

When n = 3,

D
(4)
1 · Ck = D

(3)
1 + E + F,

where E,F ∈ S. Since E · S(Ck) and F · S(Ck) contains D(4)
1 with a nonzero coefficient, it

follows that √
dimk(E) ≥ 2,

√
dimk(F ) ≥ 2.
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Without loss of generality, suppose that

√
dimk(E) = 3,

√
dimk(F ) = 2.

Then we have

E · S(Ck) = D
(4)
1 +D

(2)
2 ,

and

D
(2)
2 · S(Ck) = E + kg1,

where g1 ∈ G(H), D(2)
2 ∈ S(2). According to Lemma 4.1.4 (2), the separated quiver of

kQ(H)/J2 either contains the Kronecker quiver as a sub-quiver, a sub-quiver whose under-

lying graph is Ãn for some n ≥ 3 or a sub-quiver of the following type

k1 D
(3)
1 E F kg

S(Ck)′ D
(4)′
1 D

(2)′
2 .

The underlying graph of the sub-quiver in the latter case is Ẽ7 and it is an Euclidean graph,

which means that H is of infinite corepresentation type.

When n = 5, we have

D
(4)
1 · Ck = D

(3)
1 +D

(5)
1 ,

D
(5)
1 · S(Ck) = D

(4)
1 +D

(6)
1

and

D
(6)
1 · Ck = D

(5)
1 + E + F.

Without loss of generality, we can assume

√
dimk(E) = 4,

√
dimk(F ) = 3.

It follows that

E · S(Ck) = D
(6)
1 +D

(2)
3 .

This means that the separated quiver for kQ(H)/J2 either contains a sub-quiver whose

underlying graph is Ãn for some n ≥ 3 or a sub-quiver of the following type

k1 D
(3)
1 D

(5)
1 E F

S(Ck)′ D
(4)′
1 D

(6)′
2 D

(2)′
3 .
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The underlying graph of the sub-quiver in the latter case is Ẽ8 and it is still an Euclidean

graph, which means that H is of infinite corepresentation type.

In conclusion, H is of infinite corepresentation type. �

Recall that a basic cycle of length n is a quiver with n vertices e0, e1, · · · , en−1 and n arrows

a0, a1, · · · an−1, where the arrow ai goes from the vertex ei to the vertex ei+1. With the help of the

proceeding three propositions and Corollary 3.3.10, we can now obtain the following theorem.

Theorem 4.1.6 Let H be a finite-dimensional non-cosemisimple Hopf algebra over an algebraically

closed field k with the dual Chevalley property and Q(H) be the link quiver of H. Then the following

statements are equivalent:

(1) H is of finite corepresentation type;

(2) Every vertex in Q(H) is both the start vertex of only one arrow and the end vertex of only one

arrow, that is, Q(H) is a disjoint union of basic cycles;

(3) There is only one arrow C → k1 in Q(H) whose end vertex is k1 and dimk(C) = 1;

(4) There is only one arrow k1→ D in Q(H) whose start vertex is k1 and dimk(D) = 1.

ProofµCombining Propositions 4.1.2, 4.1.3 and 4.1.5, we can prove the equivalence of (1) and (3).

According to Lemma 3.3.5 and Corollary 3.3.10, we know the equivalence of (2), (3), and (4). �

Let H(1) be the link-indecomposable component containing k1. Combining Proposition 3.3.13

and Theorem 4.1.6, we have:

Corollary 4.1.7 A finite-dimensional non-cosemisimple Hopf algebra H over k with the dual Cheval-

ley property is of finite corepresentation type if and only if H(1) is a pointed Hopf algebra and the link

quiver of H(1) is a basic cycle.

Recall that a finite-dimensional Hopf algebra H over k is said to have the Chevalley property, if radical

Rad(H) is a Hopf ideal. According to [3, Propersition 4.2], we know that H has the Chevalley property

if and only if H∗ has the dual Chevalley property.

Theorem 4.1.8 A finite-dimensional Hopf algebra H over an algebraically closed field k with the

Chevalley property is of finite representation type if and only if H is a Nakayama algebra.

ProofµThe sufficiency follows immediately since it is known that every Nakayama algebra is of finite

representation type. Next we show the necessity. In fact if H has the Chevalley property, we know

that H∗ has the dual Chevalley property. According to the proof of Proposition 4.1.2, the Ext quiver

of H is the same as the link quiver of H∗. If H is semisimple, the Ext quiver of H contains no arrows.

If H is not semisimple, it follows from Theorem 4.1.6 that the Ext quiver of H is a finite union of

basic cycles. Thus H is a Nakayama algebra. �
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Recall that a coalgebra C is said to be coNakayama, if the dual algebra C∗ is a Nakayama algebra.

It is direct to see the following corollary.

Corollary 4.1.9 A finite-dimensional Hopf algebra H over an algebraically closed field k with the

dual Chevalley property is of finite corepresentation type if and only if H is coNakayama.

§4.2 Tame corepresentation type

Let H be a finite-dimensional non-cosemisimple Hopf algebra k with the dual Chevalley property.

Now we can characterize the link quiver of H when it is of finite or tame corepresentation type.

Theorem 4.2.1 Let k be an algebraically closed field and H a finite-dimensional Hopf algebra over

k with the dual Chevalley property. Denote 1S = {C ∈ S | k1 + C 6= k1 ∧ C}.

(1) H is of finite corepresentation type if and only if | 1P |= 1 and 1S = {kg} for some group-like

element g ∈ G(H).

(2) If H is of tame corepresentation type, then one of the following two cases appears:

(i) | 1P |= 2 and for any C ∈ 1S, dimk(C) = 1;

(ii) | 1P |= 1 and 1S = {C} for some C ∈ S with dimk(C) = 4.

(3) If one of the following holds, H is of wild corepresentation type.

(i) | 1P |≥ 3;

(ii) | 1P |= 2 and there exists some C ∈ 1S such that dimk(C) ≥ 4;

(iii) | 1P |= 1 and 1S = {C} for some C ∈ S with dimk(C) ≥ 9.

ProofµIndeed, (1) follows directly from Theorem 4.1.6. Clearly, (2)⇔ (3). So it is enough to prove

(3).

We know that the k-linear abelian category of finite-dimensional comodules over H is isomorphic

to the category of finite-dimensional modules over H∗. This means that the coalgebra’s version of

Ext quiver Γ(H)c of H is the same as the algebra’s version of Ext quiver Γ(H∗)a of H∗. According

to [17, Theorem 2.1 and Corollary 4.4], the link quiver Q(H) of H coincides with the algebra’s version

of Ext quiver Γ(H∗)a of H∗. Note that H∗ is Morita equivalent to a basic algebra B(H∗). Let J be

the ideal generated by all the arrows in Q(H). By the Gabriel’s theorem, there exists an admissible

ideal I such that

kQ(H)/I ∼= B(H∗),

where J t ⊆ I ⊆ J2 for some integer t ≥ 2. Thus there exists an algebra epimorphism

f : B(H∗)→ kQ(H)/J2.
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It is enough to show that kQ(H)/J2 is of wild representation type. Since the Jacobson radical of

kQ(H)/J2 is J/J2, we know that kQ(H)/J2 is an artinian algebra with radical square zero.

Now assume on the countrary that kQ(H)/J2 is of tame representation type. It follows from

the proof of [5, X.2 Theorem 2.6] that the separated quiver of kQ(H)/J2 coincides with the quiver of

the hereditary algebra
∑

=

(
(kQ(H)/J2)/(J/J2) 0

J/J2 (kQ(H)/J2)/(J/J2)

)
. Note that kQ(H)/J2

and
∑

are stably equivalent, it follows that kQ(H)/J2 is of tame representation type if and only if∑
is of tame representation type. This means that Q(H)s of kQ(H)/J2 is a finite disjoint union of

Euclidean diagrams.

(i) If | 1P |≥ 3, we deal with this situation through classified discussion.

(a) Suppose that there exists some C ∈ 1S such that | 1PC |≥ 3. Then the separated quiver

Q(H)s must contain

k1′C

as a sub-quiver. The underlying graph of this sub-quiver is not a Euclidean diagram. It

turns out that H is of wild corepresentation type.

(b) Suppose that there exist some C1, C2 ∈ 1S such that | 1PC1 |≥ 2 and | 1PC2 |≥ 1. Then the

separated quiver Q(H)s must contain

k1′C1

C2

as a sub-quiver. The underlying graph of this sub-quiver is not a Euclidean diagram and

thus H is of wild corepresentation type.

(c) Suppose that there exist some C1, C2, C3 ∈ 1S such that | 1PCi |≥ 1 for any 1 ≤ i ≤ 3. This

means that for any 1 ≤ i ≤ 3, there exists some non-trivial (1, Ci)-primitive matrix Xi ∈ 1P.
Combining Lemmas 3.2.5 and 3.3.8, for any 1 ≤ i ≤ 3, we know that

| PCi |≥| PCiX1
| + | PCiX2

| + | PCiX3
|≥ 3.

In such a case, there exist at least 3 vertexes which are the start vertex of 3 arrows and 1

vertex which is the end vertex of 3 arrows in the separated quiver Q(H)s. As a result, the

underlying diagram of Q(H)s is not a Euclidean diagram and H is of wild corepresentation

type.

(ii) Suppose that
1P = {X ,Y},
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where X is a non-trivial (1, C)-primitive matrix and Y is a non-trivial (1,D)-primitive matrix for

some C,D ∈ S. With loss of generality, assume dimk(C) ≥ 4.

(a) If dimk(C) ≥ 9, it follows from Lemma 3.3.11 that there exists some E ∈ S such that

| EPX |≥ 4. According to Lemmas 3.2.5 and 3.3.8, we know that

| EP |=| EPX | + | EPY |≥ 5.

This implies that Q(H)s contains at least one vertex E which is the end vertex of at least 5

arrows. It follows that the underlying graph of this sub-quiver is not a union of Euclidean

diagram, and consequently H is of wild corepresentation type.

(b) If dimk(C) = 4, Lemma 3.3.11 implies that there exists some E ∈ S such that | EPX |≥ 3.

If | EPX |≥ 4, as in the case of dimk(C) ≥ 9, Q(H)s contains at least one vertex E which

is the end vertex of at least 5 arrows. This indicates H is of wild corepresentation type. If

| EPX |= 3, using Lemma 3.3.11, we have

E · C = C1 + C2 + C3 (4.3)

for some C1, C2, C3 ∈ S. According to Lemma 4.1.4, we know that for any 1 ≤ i ≤ 3,

Ci · S(C) contains E with a nonzero coefficient. Suppose that
√

dimk(E) = n. If for any

1 ≤ i ≤ 3, we have

Ci · S(C) = E.

It means that √
dimk(C1) =

√
dimk(C2) =

√
dimk(C3) =

n

2
.

But (4.3) implies that 2n = 3
2n, which is impossible. Thus there exists at least one Cj such

that Cj · S(C) contains some F ∈ S with a nonzero coefficient besides E, where 1 ≤ j ≤ 3.

Combining Lemmas 3.2.5 and 3.3.8, we have

| EP |≥
3∑
i=1

| EPCi

X | + |
EPY |≥ 4

and

| PCj |≥| EPCj | + | FPCj |≥ 2.

As a result, there exist at least one vertex which is the end vertex of 4 arrows and one

vertex which is the start vertex of 4 arrows in Q(H)s. It is easy to see that H is of wild

corepresentation type.

(iii) (a) Note that if dimk(C) ≥ 16, it follows from Lemma 3.3.11 that there exists some E ∈ S such

that | EP |≥ 5. This means that the separated quiver Q(H)s contains a vertex which is the

end vertex of 5 arrows and it cannot be a finite disjoint union of Euclidean diagram. We

know that H is of wild corepresentation type.
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(b) If dimk(C) = 9, it follows from Lemma 3.3.11 that there exists some E ∈ S such that

| EP |≥ 4. If | EP |≥ 5, a similar argument shows that H is of wild corepresentation type.

We only need to consider the case that | EP |= 4. In this case, Lemma 3.3.11 implies that

E · C = C1 + C2 + C3 + C4, (4.4)

where Ci ∈ S for 1 ≤ i ≤ 4. Applying Lemma 4.1.4 yields that for any 1 ≤ i ≤ 4, Ci · S(C)

contains E with a nonzero coefficient. Suppose that
√

dimk(E) = n. If for any 1 ≤ i ≤ 4,

we have

Ci · S(C) = E.

It means that √
dimk(Ci) =

n

3
,

for 1 ≤ i ≤ 4. But (4.4) implies that 3n = 4
3n, which leads to a contradiction. Thus there

exists at least one Cj such that Cj · S(C) contains some F ∈ S with a nonzero coefficient

besides E, where 1 ≤ j ≤ 4. A similar argument shows that Q(H)s contains at least one

vertex which is the end vertex of 4 arrows and one vertex which is the start vertex of 4 arrows.

Clearly, the underlying graph of this sub-quiver is not a Euclidean graph. Consequently, H

is of wild corepresentation type. �

As a corollary, we have

Corollary 4.2.2 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property of finite or tame corepresentation type. Then we have | 1P |
∣∣ | CP |, for any

C ∈ M.

ProofµNote that for any C ∈ 1S, if dimk(C) = 1, it follows from Proposition 3.3.9 that

| 1P |=| CP | .

If | 1P |= 1 and dimk(C) = 4, where C ∈ 1S. According to Lemma 3.3.11, we have

1 =| 1P |
∣∣ | CP | .

The proof is completed. �
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Chapter 5 Hopf algebras with the dual Chevalley property

of finite corepresentation type

Next we give a more accurate description for H(1) in the case that H is a finite-dimensional

non-cosemisimple Hopf algebra with the dual Chevalley property of finite corepresentation type.

It is known that a finite-dimensional Hopf algebra H over an algebraically closed field is pointed if

and only if H∗ is elementary. And according to the proof of Proposition 4.1.2, the link quiver Q(H(1))

of H(1) agrees with the Ext quiver Γ(H∗)a of H∗. Thus the following corollary is a direct consequence

of Corollary 4.1.7 and Lemma 2.3.3.

Corollary 5.0.3 Let H be a finite-dimensional non-cosemisimple Hopf algebra with the dual Cheval-

ley property over an algebraically closed field k. Then H is of finite corepresentation type if and only

if H(1) is a comonomial Hopf algebra.

§5.1 Char(k) = 0

Now we prove the following theorem of finite-dimensional Hopf algebras over an algebraically

closed field k with characteristic 0 with the dual Chevalley property of finite corepresentation type,

which is a generalization of [44, Theorem 4.6].

Theorem 5.1.1 Let k be an algebraically closed field with characteristic zero. Then a finite-dimensional

Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type if and only

if either of the following conditions is satisfied:

(1) H is cosemisimple;

(2) H is not cosemisimple and H(1)
∼= A(n, d, µ, q).

ProofµSince A(n, d, µ, q) is a comonomial Hopf algebra, the if implication follows immediately from

Corollary 5.0.3. It suffices to prove the only if part. According to Lemma 2.3.5, it is enough to find

the induced datum of H(1). Let G(H(1)) be the set of group-like elements of H(1). If H is a non-

cosemisimple Hopf algebra of finite corepresntation type, it follows from Theorem 4.1.6 and Corollary

4.1.7 that H(1) is a pointed Hopf algebra and there exists a unique non-trivial (1, g)-primitive element

x for some g ∈ G(H(1)). Without loss of generality, assume

| G(H(1)) |= n.

Due to H(1) is link-indecomposable, the link quiver of H(1) is connected. This means that G(H(1)) is

a cyclic group whose generator is g. Thus the induced group datum of H(1) is (〈g〉, g, χ, µ) and we

have

H(1)
∼= A(〈g〉, g, χ, µ) ∼= A(n, d, µ, q).
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Remark 5.1.2 Let k be an algebraically closed field with characteristic zero.

(1) Andruskiewitsch and Schneider conjectured that any finite-dimensional pointed Hopf algebra over

k is generated in degree 1 of its coradical filtration, i.e., by grouplike and skew-primitive elements

[7]. Suppose H is a finite-dimensional Hopf algebra over k with the dual Chevalley property of

finite corepresentation type. According to Theorem 5.1.1 and [40, Corollary 4.10], we can show

that H is generated in degree 1 of its coradical filtration.

(2) Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property. Recall that

the rank of H is defined to be n if dimk(k ⊗H0
H1) = n + 1 and H is generated by H1 as

an algebra [38]. It is not difficult to show that H is of rank one if and only if H is of finite

corepresentation type.

Let us first give a example which is of finite corepresentation type.

Example 5.1.3 Let k be an algebraically closed field of characteristic zero and H be the Hopf algebra

over k of dimension 16 appeared in [15, Theorem 5.1]. As an algebra, H is generated by c, b, x, y with

relations:

c2 = 1, b2 = 1, x2 =
1

2
(1 + c+ b− cb),

cb = bc, xc = bx, xb = cx,

y2 = 0, yc = −cy, yb = −by, yx =
√
−1cxy.

The coalgebra structure and antipode are given by:

∆(c) = c⊗ c, ε(c) = 1, S(c) = c,

∆(b) = b⊗ b, ε(b) = 1, S(b) = b,

∆(x) =
1

2
(x⊗ x+ bx⊗ x+ x⊗ cx− bx⊗ cx), ε(x) = 1, S(x) = x,

∆(y) = c⊗ y + y ⊗ 1, ε(y) = 0, S(y) = −c−1y.

Denote E = span{x, bx, cx, bcx}, then S = {k1,kc,kb,kbc, E}. We give the corresponding multiplica-

tive matrix E of E, where

E =
1

2

(
x+ bx x− bx
cx− bcx cx+ bcx

)
.

We know that ZS is a unital based ring and its multiplication table is shown below:
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left action k1 kc kb kbc E

k1 k1 kc kb kbc E

kc kc k1 kbc kb E

kb kb kbc k1 kc E

kbc kbc kb kc k1 E

E E E E E k1 + kc+ kb+ kbc

And in this example, P = {(y), (cy), (by), (bcy),X}, where

X =
1

2

(
xy + bxy xy − bxy
bcxy − cxy −cxy − bcxy

)

is a non-trivial (E , E)-primitive matrix. In this example, the link quiver of H is shown below:

kc

k1

kbc

kb

EX(y) (cy) (by) (bcy)

It follows from Theorem 4.1.6 that H is of finite corepresentation type. Moreover, due to

adr(
x+ bx

2
)(c) = b /∈ H(1),

we know that H(1) is not normal in H. Thus this example gives a negative answer to [40, Question

4.13].

§5.2 Char(k) = p

Finally, we focus on the above theorem in the case of that k is an algebraically closed field of

characteristic p. We can obtain the following theorem immediately.

Theorem 5.2.1 Let k be an algebraically closed field of positive characteristic p. Then a finite-

dimensional Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type

if and only if either of the following conditions is satisfied:

(1) H is cosemisimple;

(2) H is not cosemisimple and H(1)
∼= Cd(n).
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Chapter 6 Coradically graded Hopf algebras with the dual

Chevalley property of tame corepresentation type

In this chapter, we work over an algebraically closed field k of characteristic zero. The main

aim of this chapter is to describe the structures of coradically graded Hopf algebras with the dual

Chevalley property of tame corepresentation type.

§6.1 Characterization

Let H,H ′ be Hopf algebras and π : H → H ′ and i : H ′ → H Hopf homomorphisms. Assume

that π ◦ i = idH′ , so that π is surjective and i is injective. Define

R := {h ∈ H | (id⊗ π)∆(h) = h⊗ 1}.

According to [61, Theorem 3], we know that

H ∼= R×H ′

as Hopf algebras, where “×" was called biproduct in [61] and bosonization in [50]. Note that as a

linear space,

H ∼= R×H ′ = R⊗H ′.

Its multiplication and comultiplication are usual smash product and smash coproduct respectively. In

addition, R is a braided Hopf algebra in H′

H′YD, the category of Yetter-Drinfeld modules over H ′. See,

for example, [6, 50,61].

Let H be a finite-dimensional Hopf algebra with the Chevalley property and JH its Jacobson

radical. Denote gra(H) its radically graded algebra, i.e.,

gra(H) = H/JH ⊕ JH/J2
H ⊕ · · · ⊕ Jm−1

H ,

if JmH = 0. According to [42, Lemma 5.1], we know that gra(H) is a radically graded Hopf algebra.

Clearly, H/JH = gra(H)(0) is a Hopf subalgebra of gra(H) and there exists a natural Hopf algebra

epimorphism

πa : gra(H)→ H/JH

with a retraction of the inclusion. Define

AH := {h ∈ gra(H) | (id⊗ πa)∆(h) = h⊗ 1}.

By [61, Theorem 3], we know that

gra(H) ∼= AH ×H/JH
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as Hopf algebras.

Proposition 6.1.1 Let k be an algebraically closed field of characteristic 0 and H a finite-dimensional

Hopf algebra over k with the Chevalley property. Then

(1) AH and gra(H) have the same representation type;

(2) AH is a local graded Frobenius algebra.

Proofµ

(1) Note that as an algebra,

gra(H) ∼= AH#H/JH ,

and the multiplication of AH#H/JH is usual smash product. Since H/JH is a finite-dimensional

semisimple Hopf algebra, it follows from [46, Theorem 3.3] that H/JH is cosemisimple. Thus (1)

is a direct consequence of [42, Theorem 4.5].

(2) This can be obtained by the same reason in the proof of [42, Proposition 5.3 (ii)]. �

Let H be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote grc(H) by

the coradically graded Hopf algebra of H, i.e., grc(H) =
⊕

n≥0Hn/Hn−1, where H−1 = 0. In fact,

there exists a natural Hopf algebra epimorphism

πc : grc(H)→ H0

with a retraction of the inclusion. Define

RH := {h ∈ grc(H) | (id⊗ πc)∆(h) = h⊗ 1}.

It follows from [61, Theorem 3] that

grc(H) ∼= RH ×H0

as Hopf algebras.

The next conclusion will give us the structure of coradically graded Hopf algebras with the dual

Chevalley property of tame corepresentation type.

Theorem 6.1.2 Let k be an algebraically closed field of characteristic 0 and H a finite-dimensional

Hopf algebra over k with the dual Chevalley property. Then grc(H) is of tame corepresentation type

if and only if

grc(H) ∼= (k〈x, y〉/I)∗ ×H ′

for some finite-dimensional semisimple Hopf algebra H ′ and some ideal I which is one of the following

forms:
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(1) I = (x2 − y2, yx− ax2, xy) for 0 6= a ∈ k;

(2) I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;

(3) I = (xn − yn, xy, yx) for n ≥ 2;

(4) I = (x2, y2, (xy)mx− (yx)my) for m ≥ 1.

Proofµ “If part": Combining [42, Theorem 3.1] and [43, Lemma 4.2], we know that k〈x, y〉/I is a

tame algebra. Because of the fact that a finite-dimensional Hopf algebra H ′ is semisimple if and only

if it is cosemisimple, the desired conclusion is got from [42, Theorem 4.5].

“Only if part":Using Proposition 6.1.1, we know that gra(H∗) is of tame representation type if

and only if AH∗ is of tame representation type. Since

grc(H) ∼= (gra(H∗))∗

as Hopf algebra, one can conclude that grc(H) is of tame corepresentation type if and only if AH∗ is

of tame representation type. According to [42, Theorem 3.1] and [43, Lemma 4.2], as a tame local

graded Frobenius algebra,

AH∗ ∼= k〈x, y〉/I.

It follows from [52, Theorem 5.1] that

grc(H) ∼= (gra(H∗))∗ ∼= (AH∗ ×H∗/JH∗)∗ ∼= (AH∗)
∗ ×H0.

�

According to [13, Theorem 4.1.2], if R is a Hopf algebra in H′

H′YD, then we can form the bosoniza-

tion R×H ′ which is a Hopf algebra. For a tame local graded Frobenius algebra A, above theorem does

not imply the existence of finite-dimensional semisimple Hopf algebra H ′ satisfying A∗ is a braided

Hopf algebra in H′

H′YD. That is to say, for the ideals I listed in the above theorem, we do not know

weather (k〈x, y〉/I)∗ ×H ′ is a Hopf algebra or not.

Question 6.1.3 For a tame local graded Frobenius algebra A, give an efficient method to determine

that whether there is a cosemisimple Hopf algebra H ′ satisfying A is a braided Hopf algebra in H′

H′YD.
If such H ′ exists, then find all of them.

The question above exactly recovers [42, Problem 5.1]. We will discuss this question in the

subsequent sections.

§6.2 Link-indecomposable component containing k1

We have the following characterization of the coradical of the link-indecomposable component

H(1) containing k1.
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Lemma 6.2.1 Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property.

Then the coradical of the link-indecomposable component H(1) containing k1 is generated by {span(C) |
C ∈ 1S} ∪ {span(S(C)) | C ∈ 1S}.

ProofµIt is directly from [40, Theorem 4.8 (3)] that H(1) is a link-indecomposable Hopf algebra. This

means that the link quiver Q(H(1)) of H(1) is connected. Using Proposition 3.3.14, we can complete

the proof. �

Now we discuss the relation between the corepresentation type of H and H(1).

Lemma 6.2.2 Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property

of tame corepresentation type. Then the link-indecomposable component H(1) contating k1 is of tame

corepresentation type.

ProofµSince H is of tame corepresentation type, it follows from Theorem 4.2.1 that either

| 1P |> 1

or

dimk(C) > 1

for C ∈ 1S. This implies that H(1) is not of finite corepresentation type. On the other hand, there

is an inclusion from the category of finite-dimensional right H(1)-comodules to the category of finite-

dimensional right H-comodules. Suppose that H(1) is of wild corepresentation type. It follows that

H∗(1) is a wild algebra. Hence by [64, Theorem 1.11], H∗ is a wild algebra, which means that H

is of wild corepresentation type. This leads to a contradiction. We remark that H(1) is of tame

corepresentation type by the fundamental result of [24]. �

In the following part, let H =
⊕n

i=0H(i) be a finite-dimensional coradically graded Hopf algebra

over k with the dual Chevalley property. Denote the coradical filtration of H by {Hn}n≥0 and the set

of all the simple subcoalgebras of H by S. Note that there exists a natural Hopf algebra epimorphism

π : H → H0

with a retraction of the inclusion. Next we give a more accurate description for the structures of RH ,

where

RH = {h ∈ H | (id⊗ π)∆(h) = h⊗ 1}.

Firstly, we have the following lemma.

Lemma 6.2.3 Let H be a finite-dimensional coradically graded Hopf algebra over k with the dual

Chevalley property. Then we have RH ⊆ H(1).
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ProofµAt first, let us introduce an equivalence relation on S, defining that C and D are related if

CH(1) = DH(1). Let S0 ⊆ S be a full set of chosen non-related representatives with respect to this

equivalence relation. By [40, Corollary 4.10], we have

H =
⊕
C∈S0

CH(1).

For any non-zero x ∈ CH(1), where C ∈ S0 \ {k1}. According to [40, Theorem 4.8 (3)], we know that

(id⊗ π)∆(x) = (id⊗ π)∆(

n∑
i=1

ciyi)

= (id⊗ π)(

n∑
i=1

∆(ci)∆(yi))

⊆ (id⊗ π)(CH(1) ⊗ CH(1))

Using the fact that H is a coradical graded Hopf algebra, we obtain

π(CH(1)(i)) = 0

for i ≥ 1, where

H(1)(i) = H(1) ∩H(i).

According to Lemma 3.3.1, we know that ZS is a unital based ring. It follows that

1 /∈ CH(1),

which means that x /∈ RH and thus RH ⊆ H(1). �

In fact, H(1) =
⊕n

i=0H(1)(i) is also a finite-dimensional coradically graded Hopf algebra over k
with the dual Chevalley property, where H(1)(i) = H(1) ∩H(i). Let

π′ : H(1) → (H(1))0

be a natural Hopf algebra epimorphism with a retraction of the inclusion and

R′ = {r ∈ H(1) | (id⊗ π′)∆(r) = r ⊗ 1}.

Lemma 6.2.4 With the notations above, we have R′ = RH and H(1)
∼= RH × (H(1))0.

ProofµBecause of the fact that

π′ = π |H(1)
,

we can show that

R′ ⊆ RH .
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It is a concequence of Lemma 6.2.3 that

R′ = RH .

Now the lemma follows directly by [61, Theorem 3]. �

With the help of the preceding lemmas, we can now prove:

Proposition 6.2.5 Let H be a finite-dimensional coradically graded Hopf algebra over k with the

dual Chevalley property. Then H is of tame corepresentation type if and only if H(1) is of tame

corepresentation type.

Proofµ The “only if" implication follows immediately by Lemma 6.2.2. Next we show the “if"

implication. Since H(1) is of tame corepresentation type, it follows from Theorem 6.1.2 that

H(1)
∼= (k〈x, y〉/I)∗ × (H(1))0

for some I listed in Theorem 6.1.2. According to Lemma 6.2.4, one can show that

H ∼= (k〈x, y〉/I)∗ ×H0.

From Theorem 6.1.2, we have H is of tame corepresentation type. �

The above proposition implies that when we study the properties for the finite-dimensional corad-

ically graded Hopf algebra over k with the dual Chevalley property of tame corepresentation type, we

only need to focus on its link-indecomposable component contained k1.

§6.3 Characterization of RH

In this section, we discuss which ideal in Theorem 6.1.2 will occur when (k〈x, y〉/I)∗ ×H0 is a

finite-dimensional coradically graded Hopf algebra with the dual Chevalley property of tame corepre-

sentation type.

LetH be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote the coradical

filtration of H by {Hn}n≥0 and the set of all the simple subcoalgebras of H by S. In fact, there exists

a natural Hopf algebra epimorphism

π : grc(H)→ H0

with a retraction of the inclusion

i : H0 → grc(H).

Denote

RH := {h ∈ grc(H) | (id⊗ π)∆(h) = h⊗ 1}.

We will give a more accurate description for the structure of RH .

Firstly, let us recall some properties of biproduct.
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Set Π = id ∗ (i ◦ S ◦ π), where S is the antipode of grc(H) and ∗ is the convolution product.

According to [61, Theorem 3], we know that RH = Π(grc(H)) and RH has a unique coalgebra structure

such that Π is a coalgebra map. Let j : RH → grc(H) be the inclusion. Then the map

η : RH ×H0 → grc(H), r × h 7→ rj(h)

is an isomorphism of Hopf algebras.

Moreover, it follows from [61, Theorem 2 (b)] that the following diagrams

grc(H)

Πzz

π

$$
RH H0

RH ×H0

ΠRH

dd
η

OO

πH0

::

and

grc(H)

RH

j
::

jR $$

H0

i
dd

iH0zz
RH ×H0

η

OO

commute, where

ΠRH
: r × h 7→ rε(h),

jRH
: r 7→ r × 1,

iH0
: h 7→ 1× h,

πH0
: r × h 7→ ε(r)h,

for any h ∈ H0, r ∈ RH .

With the notations above, we have

Lemma 6.3.1 For any r ∈ RH , we know that

∆RH
(r) = ((ΠR ◦ η−1)⊗ id)∆(r),

where ∆ and ∆RH
are the comultiplications of H and RH , respectively.
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ProofµAccording to the proof of [61, Theorem 3], we know that

∆RH
(r) = (Π⊗ id)∆(r).

This means that

∆RH
(r) = (Π⊗ id)∆(r)

= (Π⊗ id)∆(η(r × 1))

= (Π⊗ id)(η ⊗ η)∆′(r × 1)

= (ΠRH
⊗ η)∆′(r × 1)

= (ΠRH
⊗ η)(η−1 ⊗ η−1)∆(r)

= ((ΠRH
◦ η−1)⊗ id)∆(r),

where ∆′ is the comultiplications of RH ×H0. �

As stated in the previous section, we know that gra(H∗) is a finite-dimensional radically graded

Hopf algebra over k with the Chevalley property. There exists a natural Hopf algebra epimorphism

τ : gra(H∗)→ H∗/JH∗

with a retraction of the inclusion, where JH∗ is the radical of H∗. Furthermore, we have

gra(H∗) ∼= AH∗ ×H∗/JH∗ ,

where

AH∗ := {h ∈ gra(H∗) | (id⊗ τ)∆(h) = h⊗ 1}.

Lemma 6.3.2 With the notations above, we have

RH ∼= (AH∗)
∗

as coalgebras.

ProofµWe have

grc(H) ∼= (gra(H∗))∗

as Hopf algebra. It follows from [52, Theorem 5.1] that

RH ×H0
∼= (AH∗ ×H∗/JH∗)∗ ∼= (AH∗)

∗ ×H0.
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According to [61, Theorem 3], we know that

RH ∼= (AH∗)
∗

as coalgebras. �

In the following part, let grc(H) be a finite-dimensional Hopf algebra with the dual Chevalley

property of tame corepresentation type. Combining Lemma 3.3.5 and Theorem 4.2.1, we know that

one of the following three cases appears:

(i) | P1 |= 1 and S1 = {C} for some C ∈ S with dimk(C) = 4;

(ii) | P1 |= 2 and S1 = {kg} for some g ∈ G(H);

(iii) | P1 |= 2 and S1 = {kg,kh} for some g, h ∈ G(H).

We need to determine which ideal in Theorem 6.1.2 can make RH ∼= (k〈x, y〉/I)∗ as coalgebras in the

three cases. Next, we discuss these three cases separately.

§6.3.1 Cases (i)

Suppose P1 = {X} and S1 = {C}, where

X =

(
u

v

)

and C is a 4-dimensional simple subcoalgebra with basic multiplicative matrix

C =

(
c11 c12

c21 c22

)
.

By the definition of primitive matrix, we have

∆(u) = c11 ⊗ u+ c12 ⊗ v + u⊗ 1,

∆(v) = c21 ⊗ u+ c22 ⊗ v + v ⊗ 1.

It is apparent that the subalgebra U of grc(H) generated by u, v is contained in RH . We need to know

∆RH
(r) for any r ∈ U.

Before proceeding further, let us give the following lemma.

Lemma 6.3.3 With the notations above, we have {ciju | 1 ≤ i, j ≤ 2} ∪ {cijv | 1 ≤ i, j ≤ 2} are

linearly independent in grc(H). Moreover, there exists an invertible matrix K = (kij)4×4 over k such

that

C �′ X = K(X � C),
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namely, 
c11u c12u

c21u c22u

c11v c12v

c21v c22v

 =


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44




uc11 uc12

uc21 uc22

vc11 vc12

vc21 vc22

 .

ProofµBy [40, Proposition 2.6], there exists an invertible matrix L over k such that

(
L

I

)
(C �′

(
C X

1

)
)

(
L−1

I

)

=

(
L(C �′ C)L−1 L(C �′ X )

C

)

=



D1

D2 L(C �′ X )

. . .

Du
C


,

where D1, · · · ,Du are the given basic multiplicative matrices. Using Corollary 3.1.4 and Lemma 3.2.1,

we can show that {ciju | 1 ≤ i, j ≤ 2} ∪ {cijv | 1 ≤ i, j ≤ 2} are linearly independent in grc(H).

Let

J =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


be an invertible matrix over k, we know that

J(C �′ C)J−1 = C � C.

It follows that (
LJ−1

I

)
(

(
C X

1

)
� C)

(
JL−1

I

)

=

(
LJ−1(C � C)JL−1 LJ−1(X � C)

C

)

=



D1

D2 LJ−1(X � C)
. . .

Du
C


.

71



(1) Suppose

C · C = E(4),

where E(4) ∈ S is a 16-dimensional simple subcoalgebra. We know that both L(C �′ X ) and

LJ−1(X �C) are non-trivial (E(4), C)-primitive matrices, where E(4) ∈M is the basic multiplica-

tive matrix of E(4). From Corollary 3.1.14, there exists an invertible matrix P1 = αI over k such

that

P1(L(C �′ X )) = LJ−1(X � C).

(2) Suppose

C · C = kg + E(3)

for some group-like element g ∈ G(H) and some 9-dimensional simple subcoalgebra E(3) ∈ S.
According to Corollary 3.1.14, there exists an invertible matrix

P2 =


α1

α2

α2

α2


over k such that

P2(L(C �′ X )) = LJ−1(X � C).

(3) Suppose

C · C = E
(2)
1 + E

(2)
2

for some 4-dimensional simple subcoalgebras E(2)
1 , E

(2)
2 ∈ S and E

(2)
1 6= E

(2)
2 . Using Corollary

3.1.14, we obtain an invertible matrix

P3 =


α1

α1

α2

α2


over k such that

P3(L(C �′ X )) = LJ−1(X � C).

(4) Suppose

C · C = 2E(2)

for some 4-dimensional simple subcoalgebra E(2) ∈ S. It follows from Proposition 3.1.13 that
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there exists an invertible matrix

P4 =


α1 α2

α1 α2

α3 α4

α3 α4


over k such that

P4(L(C �′ X )) = LJ−1(X � C).

(5) Suppose

C · C = kg1 + kg2 + kg3 + kg4

for some group-like elements g1, g2, g3, g4 ∈ G(H). Note that g1, g2, g3, g4 are different with each

other, otherwise the link quiver of grc(H) is not a Euclid diagram. By Corollary 3.1.14, there

exists an invertible matrix

P5 =


α1

α2

α3

α4


over k such that

P5(L(C �′ X )) = LJ−1(X � C).

Based on the above argument, there exists some 1 ≤ i ≤ 5 such that invertible matrixK = L−1PiLJ
−1

over k satisfying

C �′ X = K(X � C).

�

In fact, for any r ∈ U, ∆RH
(r) is determined by the invertible matrix K in Lemma 6.3.3. Next

we consider case (i) under the assumption that K is a diagonal matrix.

Lemma 6.3.4 Let grc(H) ∼= (k〈x, y〉/I)∗×H0 be a finite-dimensional coradically graded Hopf algebra

over k with the dual Chevalley property of tame corepresentation type. If P1 = {X}, S1 = {C} for

some C ∈ S with dimk(C) = 4 and the invertible matrix K in Lemma 6.3.3 is diagonal, namely

K =


α1

α2

α3

α4

 .

Then I 6= (x2 − y2, yx− ax2, xy), where 0 6= a ∈ k.
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Proofµ It follows by direct computations that

∆(uv) = c11c21 ⊗ u2 + c11c22 ⊗ uv + c12c21 ⊗ vu+ c12c22 ⊗ v2 + uv ⊗ 1

+c11v ⊗ u+ c12v ⊗ v + uc21 ⊗ u+ uc22 ⊗ v,

∆(vu) = c21c11 ⊗ u2 + c21c12 ⊗ uv + c22c11 ⊗ vu+ c22c12 ⊗ v2 + vu⊗ 1

+c21u⊗ u+ c22u⊗ v + vc11 ⊗ u+ vc12 ⊗ v,

∆(u2) = c211 ⊗ u2 + c11c12 ⊗ uv + c12c11 ⊗ vu+ c212 ⊗ v2 + u2 ⊗ 1

+c11u⊗ u+ c12u⊗ v + uc11 ⊗ u+ uc12 ⊗ v,

∆(v2) = c221 ⊗ u2 + c21c22 ⊗ uv + c22c21 ⊗ vu+ c222 ⊗ v2 + v2 ⊗ 1

+c21v ⊗ u+ c22v ⊗ v + vc21 ⊗ u+ vc22 ⊗ v.

According to Lemma 6.3.1, we have

∆RH
(uv) = 1⊗ uv + uv ⊗ 1 + α3v ⊗ u+ u⊗ v, (6.1)

∆RH
(vu) = 1⊗ vu+ vu⊗ 1 + α2u⊗ v + v ⊗ u, (6.2)

∆RH
(u2) = 1⊗ u2 + u2 ⊗ 1 + (α1 + 1)u⊗ u, (6.3)

∆RH
(v2) = 1⊗ v2 + v2 ⊗ 1 + (α4 + 1)v ⊗ v. (6.4)

If

dimk(RH) = dimk((k〈x, y〉/(x2 − y2, yx− ax2, xy))∗) = 4,

then

u2, v2, uv, vu ∈ k{(x2)∗}.

It follows that

α1 = α4 = −1, α2 =
1

α3
.

Thus we have

u2 = v2 = 0, uv = α2vu.

We know that

(u∗)2 = (v∗)2 = 0, u∗v∗ = α2v
∗u∗.

Hence

R∗H
∼= k〈x, y〉/(x2, y2, xy − α2yx),
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which indicates that

I 6= (x2 − y2, yx− ax2, xy),

where 0 6= a ∈ k. �

Next we consider whether or not I = (xn − yn, xy, yx) in this case.

Lemma 6.3.5 Let grc(H) ∼= (k〈x, y〉/I)∗×H0 be a finite-dimensional coradically graded Hopf algebra

over k with the dual Chevalley property of tame corepresentation type. Suppose P1 = {X}, S1 = {C}
for some C ∈ S with dimk(C) = 4 and the invertible matrix K in Lemma 6.3.3 is diagonal, namely

K =


α1

α2

α3

α4

 .

If in addition RH is generated by u, v, then I 6= (xn − yn, xy, yx), where n ≥ 2.

Proofµ If n = 2, using the same argument as in the proof of Lemma 6.3.4, we can easily carry out

the proof of this lemma.

If n ≥ 3, we know that

(k〈x, y〉/I)∗(2) = k{(x2)∗, (y2)∗}

and

∆((x2)∗) = (x2)∗ ⊗ 1 + 1⊗ (x2)∗ + x∗ ⊗ x∗,

∆((y2)∗) = (y2)∗ ⊗ 1 + 1⊗ (y2)∗ + y∗ ⊗ y∗.

Without loss of generality, suppose that

u = k1x
∗ + k2y

∗, (6.5)

v = k3x
∗ + k4y

∗, (6.6)

u2 = k5(x2)∗ + k6(y2)∗, (6.7)

v2 = k7(x2)∗ + k8(y2)∗, (6.8)

uv = k9(x2)∗ + k10(y2)∗, (6.9)
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vu = k11(x2)∗ + k12(y2)∗, (6.10)

where ki ∈ k for 1 ≤ i ≤ 12. By substituting (6.5-6.10) into (6.1-6.4), we obtain

(α1 + 1)k2
1x
∗ ⊗ x∗ = k5x

∗ ⊗ x∗,

(α1 + 1)k1k2x
∗ ⊗ y∗ = 0,

(α1 + 1)k1k2y
∗ ⊗ x∗ = 0,

(α1 + 1)k2
2y
∗ ⊗ y∗ = k6y

∗ ⊗ y∗,

(α4 + 1)k2
3x
∗ ⊗ x∗ = k7x

∗ ⊗ x∗,

(α4 + 1)k3k4x
∗ ⊗ y∗ = 0,

(α4 + 1)k3k4y
∗ ⊗ x∗ = 0,

(α4 + 1)k2
4y
∗ ⊗ y∗ = k8y

∗ ⊗ y∗.

(α2 + 1)k1k3x
∗ ⊗ x∗ = k9x

∗ ⊗ x∗,

(α2k1k4 + k2k3)x∗ ⊗ y∗ = 0,

(α2k2k3 + k1k4)y∗ ⊗ x∗ = 0,

(α2 + 1)k2k4y
∗ ⊗ y∗ = k10y

∗ ⊗ y∗,

(α3 + 1)k1k3x
∗ ⊗ x∗ = k11x

∗ ⊗ x∗,

(α3k2k3 + k1k4)x∗ ⊗ y∗ = 0,

(α3k1k4 + k2k3)y∗ ⊗ x∗ = 0,

(α3 + 1)k2k4y
∗ ⊗ y∗ = k12y

∗ ⊗ y∗.

Comparing the coefficients of the both side, we have

(α1 + 1)k1k2 = 0. (6.11)

If

k1 = 0,

since

(α3k1k4 + k2k3) = 0,

it follows that

k2 = 0

or

k3 = 0,

which is in contradiction with the fact that u and v are linearly independent. A similar argument

shows that

ki 6= 0
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for 1 ≤ i ≤ 4. It follows from (6.11) that

α1 = −1.

Moreover, because of the fact that

(α4 + 1)k3k4 = 0,

we obtain

α4 = −1.

This indicates that

u2 = v2 = 0.

We claim that

α2 6= −1.

Otherwise

k9 = k10 = 0.

Hence

uv = 0,

a contradiction. Note that

α2(α2k2k3 + k1k4)− (α2k1k4 + k2k3) = 0,

direct computations shows that

α2 = 1.

Using the same argument, we can obtain

α3 = 1.

Thus we have

uv = vu,

which is a contradiction to dimk(RH(2)) = 2. The proof is completed. �

Now we turn to I = (x2, y2, (xy)mx− (yx)my).

Lemma 6.3.6 Let grc(H) ∼= (k〈x, y〉/I)∗×H0 be a finite-dimensional coradically graded Hopf algebra

over k with the dual Chevalley property of tame corepresentation type. Suppose P1 = {X}, S1 = {C}
for some C ∈ S with dimk(C) = 4 and the invertible matrix K in Lemma 6.3.3 is diagonal, namely

K =


α1

α2

α3

α4

 .
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If in addition RH is generated by u, v, then I 6= (x2, y2, (xy)mx− (yx)my), where m ≥ 1.

ProofµSuppose that

u = k1x
∗ + k2y

∗,

v = k3x
∗ + k4y

∗,

u2 = k5(x2)∗ + k6(y2)∗,

v2 = k7(x2)∗ + k8(y2)∗,

where ki ∈ k for 1 ≤ i ≤ 8. Similar to the proof of Lemma 6.3.5, we have

(α1 + 1)k2
1 = 0,

(α1 + 1)k1k2 = k5,

(α1 + 1)k1k2 = k6,

(α1 + 1)k2
2 = 0,

(α4 + 1)k2
3 = 0,

(α4 + 1)k3k4 = k7,

(α4 + 1)k3k4 = k8,

(α4 + 1)k2
4 = 0.

It is straightforward to show that

α1 = α4 = −1

and thus

u2 = v2 = 0.

Since (uv)mu, (vu)mv ∈ k{((xy)mx)∗}, it follows that

(uv)mu = k9(vu)mv (6.12)

for some k9 ∈ k. Note that

∆((uv)mu) = (∆(uv))m∆(u)

= (c11c21 ⊗ u2 + c11c22 ⊗ uv + c12c21 ⊗ vu+ c12c22 ⊗ v2 + uv ⊗ 1

+c11v ⊗ u+ c12v ⊗ v + uc21 ⊗ u+ uc22 ⊗ v)m(c11 ⊗ u+ c12 ⊗ v + u⊗ 1),

∆((vu)mv) = (∆(vu))m∆(v)

= (c21c11 ⊗ u2 + c21c12 ⊗ uv + c22c11 ⊗ vu+ c22c12 ⊗ v2 + vu⊗ 1

+c21u⊗ u+ c22u⊗ v + vc11 ⊗ u+ vc12 ⊗ v)m(c21 ⊗ u+ c22 ⊗ v + v ⊗ 1).
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It follows from (6.12) that

((uv)mc11 + c11(vu)m)⊗ u = k9((vu)mc21 + c21(uv)m)⊗ u.

This means that

((ΠR ◦ η−1)⊗ id)(((uv)mc11 + c11(vu)m)⊗ u) = k9((ΠR ◦ η−1)⊗ id)(((vu)mc21 + c21(uv)m)⊗ u).

It turns out that

((uv)m + (−1)mαm3 (vu)m) = 0.

This contradicts the fact that RH is generated by u, v and

dimk(RH(2m)) = dimk((k〈x, y〉/I2)(2m)) = 2.

Thus

I 6= (x2, y2, (xy)mx− (yx)my),

where m ≥ 1. �

For our purpose, we need to consider the following combinatorial functors:

H1(m, l, t) =
∑

0≤m1≤m2≤···≤ml≤m−l

t
∑l

i=1mi ,

H2(m, l, t) =
∑

0≤n1+n2+···+nl≤m−l

t
∑l

i=1(l+1−i)ni ,

H3(m, l, t) = tm−l
∑

0≤n1+n2+···+nl−1≤m−l

t
∑l−l

i=1(l−i)ni +
∑

0≤n1+n2+···+nl≤m−l

t
∑l

i=1(l+1−i)ni .

Here m, l ∈ Z+, 0 < l < m,m1, · · · ,ml, n1, · · · , nl ∈ N and t is an indeterminant.

Lemma 6.3.7 ( [36, Lemma 3.1, Proposition 3.2]) We have

(1) H1(m, l, t) = H2(m, l, t) = H3(m, l, t);

(2) H1(m, l, t) = 0 for all 0 < l < m if and only if t is an mth primitive root of unit.

With the help of the preceding lemmas, we can get the main result for case (i).

Proposition 6.3.8 Let grc(H) ∼= (k〈x, y〉/I)∗ × H0 be a finite-dimensional coradically graded Hopf

algebra over k with the dual Chevalley property of tame corepresentation type. Suppose P1 = {X},
S1 = {C} for some C ∈ S with dimk(C) = 4 and the invertible matrix K in Lemma 6.3.3 is diagonal,

namely

K =


α1

α2

α3

α4

 .
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If in addition RH is generated by u, v, then

(1) I = (x2, y2, (xy)m − a(yx)m) for 0 6= a ∈ k and m ≥ 1;

(2) α1 = α4 = −1;

(3) a = (−1)m−1αm2 or a = (−1)m−1αm3 ;

(4) α2α3 is an mth primitive root of unity.

Proofµ

(1) Combining Theorem 6.1.2, Lemmas 6.3.4, 6.3.5 and 6.3.6, we know that

I = (x2, y2, (xy)m − a(yx)m)

for 0 6= a ∈ k and m ≥ 1.

(2) An argument similar to the one used in the proof of Lemma 6.3.6 shows that

α1 = α4 = −1

and

u2 = v2 = 0.

(3) Note that

∆((uv)m) = (∆(uv))m

= (c11c21 ⊗ u2 + c11c22 ⊗ uv + c12c21 ⊗ vu+ c12c22 ⊗ v2 + uv ⊗ 1

+c11v ⊗ u+ c12v ⊗ v + uc21 ⊗ u+ uc22 ⊗ v)m,

∆((vu)m) = (∆(vu))m

= (c21c11 ⊗ u2 + c21c12 ⊗ uv + c22c11 ⊗ vu+ c22c12 ⊗ v2 + vu⊗ 1

+c21u⊗ u+ c22u⊗ v + vc11 ⊗ u+ vc12 ⊗ v)m.

Besides, in (k〈x, y〉/(x2, y2, (xy)m − a(yx)m))∗, we have

∆(((xy)m)∗) = 1⊗ ((xy)m)∗ + x∗ ⊗ (y(xy)m−1)∗ + (xy)∗ ⊗ ((xy)m−1)∗

+ · · ·+ ((xy)i)∗ ⊗ ((xy)m−i)∗ + ((xy)ix)∗ ⊗ (y(xy)m−1−i)∗

+ + · · ·+ ((xy)m−1x)∗ ⊗ y∗ + ((xy)m)∗ ⊗ 1

+
1

a
(1⊗ ((yx)m)∗ + y∗ ⊗ (x(yx)m−1)∗ + (yx)∗ ⊗ ((yx)m−1)∗

+ · · ·+ ((yx)i)∗ ⊗ ((yx)m−i)∗ + ((yx)iy)∗ ⊗ (x(yx)m−1−i)∗

+ + · · ·+ ((yx)m−1y)∗ ⊗ x∗ + ((yx)m)∗ ⊗ 1).
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Suppose that

u = k1x
∗ + k2y

∗, (6.13)

v = k3x
∗ + k4y

∗, (6.14)

(vu)m = k5(((xy)m)∗), (6.15)

where ki ∈ k for 1 ≤ i ≤ 5. By substituting (6.13) and (6.14) into (6.15), we obtain

(k1(vu)m−1v + k3(α3)m(−1)m−1u(vu)m−1)⊗ x∗ = k5
1

a
((yx)m−1y)∗ ⊗ x∗,

x∗ ⊗ (k1(α3)m(−1)m−1(vu)m−1v + k3u(vu)m−1) = x∗ ⊗ k5((yx)m−1y)∗.

It follows that

k1(α3)m(−1)m−1 =
1

a
k1

and

k3 = k3(α3)m(−1)m−1 1

a
.

If k1 = 0 and k3 6= 0, then

a = (−1)m−1(α3)m.

If k1 6= 0 and k3 = 0, then

a = (−1)m−1(α2)m.

If k1 6= 0 and k3 6= 0, then

a = (−1)m−1(α3)m = (−1)m−1(α2)m.

(4) We shall adopt the same procedure as in the proof of Lemma 6.3.6. Suppose that

(uv)m = k6(vu)m,

for some k6 ∈ k. It follows from

∆((uv)m) = k6∆((vu)m)

that

((uv)m−1uc21 + c11(vu)m−1v)⊗ u = k6((vu)m−1vc11 + c21(uv)m−1v)⊗ u

and

((uv)m−1uc22 + c12(vu)m−1v)⊗ v = k6((vu)m−1vc12 + c22(uv)m−1u)⊗ v.
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Thus we have

((ΠR ◦ η−1)⊗ id)(((uv)m−1uc21 + c11(vu)m−1v)⊗ u)

= k0((ΠR ◦ η−1)⊗ id)(k6((vu)m−1vc11 + c21(uv)m−1v)⊗ u),

and

((ΠR ◦ η−1)⊗ id)(((uv)m−1uc22 + c12(vu)m−1v)⊗ v)⊗ u)

= k0((ΠR ◦ η−1)⊗ id)(k6((vu)m−1vc12 + c22(uv)m−1u)⊗ v).

Direct computations shows that

(−1)m−1αm3 = k6,

1 = k6(−1)m−1αm2 .

It follows that

(α2α3)m = 1.

Note that for any element f(u, v) generated by u, v, we can always write uniquely ∆(f(u, v)) in

the following form:

f(u, v)⊗ 1 + (f(u, v))u ⊗ u+ (f(u, v))v ⊗ v + (f(u, v))uv ⊗ uv + · · ·

+ (f(u, v))(uv)i ⊗ (uv)i + (f(u, v))ivu ⊗ (vu)i + (f(u, v))(uv)iu ⊗ (uv)iu

+ (f(u, v))(vu)iv ⊗ (vu)iv + · · · .

Since

(uv)m = (−1)m−1αm3 (vu)m,

it follows that

(ΠR ◦ η−1 ⊗ id)∆((uv)m) = (ΠR ◦ η−1 ⊗ id)∆((−1)m−1αm3 (vu)m).

But

ε(c12) = ε(c21) = 0,

this means that we only need to focus on

(c11c22 ⊗ uv + uv ⊗ 1 + c11v ⊗ u+ uc22 ⊗ v)m

and

(c22c11 ⊗ vu+ vu⊗ 1 + c22u⊗ v + vc11 ⊗ u)m.

82



Note that for any 0 < l < m, u and v should appear alternately in the left items in (uv)m(uv)l . By

this observation, the items starting with u in (uv)m(uv)l are just

∑
0≤n1+n2+···+nl≤m−l

(uv)n1c11c22(uv)n2c11c22 · · · c11c22(uv)nlc11c22(uv)nl+1 .

But the items starting with u in (vu)m(vu)l is 0. This indicates that∑
0≤n1+n2+···+nl≤m−l

(uv)n1c11c22(uv)n2c11c22 · · · c11c22(uv)nlc11c22(uv)nl+1

=
∑

0≤n1+n2+···+nl≤m−l

(α2α3)n1(α2α3)n1+n2 · · · (α2α3)n1+n2+···+nl(c11c22)l(uv)m−l

= H2(m, l, α2α3)(c11c22)l(uv)m−l

= 0.

Using Lemma 6.3.7, we know that α2α3 is an mth primitive root of unity. �

Corollary 6.3.9 With the notations in Proposition 6.3.8, if m ≥ 2, then

c11c12 = c12c11 = c21c22 = c22c21 = 0.

ProofµAccording to the proof of Proposition 6.3.8, we know that u2 = v2 = 0. This means that

∆(u2) = c211 ⊗ u2 + c11c12 ⊗ uv + c12c11 ⊗ vu+ c212 ⊗ v2 + u2 ⊗ 1

+c11u⊗ u+ c12u⊗ v + uc11 ⊗ u+ uc12 ⊗ v

= 0,

∆(v2) = c221 ⊗ u2 + c21c22 ⊗ uv + c22c21 ⊗ vu+ c222 ⊗ v2 + v2 ⊗ 1

+c21v ⊗ u+ c22v ⊗ v + vc21 ⊗ u+ vc22 ⊗ v

= 0.

Since m ≥ 2, it follows that uv, vu are linearly independent. Thus we have

c11c12 = c12c11 = c21c22 = c22c21 = 0.

�

To conclude, we only consider case (i) under the assumption that K in Lemma 6.3.3 is a diagonal

matrix in this subsection. Indeed, at present, we do not know which ideal in Theorem 6.1.2 will occur

without this assumption. But if K is given, we can solve it by the same way.
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§6.3.2 Cases (ii) and (iii)

Proposition 6.3.10 Let grc(H) ∼= (k〈x, y〉/I)∗ ×H0 be a finite-dimensional coradically graded Hopf

algebra over k with the dual Chevalley property of tame corepresentation type.

(1) If | P1 |= 2 and S1 = {kg} for some g ∈ G(H), then I = (x2, y2, xy + yx);

(2) If | P1 |= 2 and S1 = {kg,kh} for some g, h ∈ G(H), then I = (x2, y2, (xy)m − a(yx)m).

Proofµ It follows from Proposition 6.2.5 that the link-indecomposable component (gr(H))(1) con-

taining k1 is of tame corepresentation type. According to Proposition 3.3.13, in case (ii) and (iii), we

have (gr(H))(1) is a pointed Hopf algebra. So the desire conclusion comes from [36, Theorems 4.9 and

4.16]. �

Indeed, Proposition 6.3.10 can be obtained by the same reason in the proof of Lemmas 6.3.4, 6.3.5,

6.3.6 and Proposition 6.3.8. Moreover, using the same argument as in the proof of Proposition 6.3.8,

we can easily carry out the proof of the following remark.

Remark 6.3.11 Let grc(H) ∼= (k〈x, y〉/I)∗×H0 be a finite-dimensional coradical graded Hopf algebra

with the dual Chevalley property of tame corepresentation type.

(1) If | P1 |= 2 and S1 = {kg} for some g ∈ G(H), suppose that gu = α1ug+α2vg, gv = α3ug+α4vg

for some α1, α2, α3, α4 ∈ k. Then α1 = α4 = −1, α2 = α3 = 0;

(2) If | P1 |= 2 and S1 = {kg,kh} for some g, h ∈ G(H), assume that gu = β1ug, gv = β2vg, hu =

β3uh, hv = β4vh for some β1, β2, β3, β4 ∈ k. Then

(i) β1 = β4 = −1;

(ii) a in Proposition 6.3.10 equals (−1)m−1β2 or (−1)m−1β3;

(iii) β2β3 is an mth primitive root of unity.

It should be pointed out that the above remark coincides with [36, Lemma 4.8, Proposition 4.15].

§6.4 Examples

As stated in the previous section, if H is a finite-dimensional coradically graded Hopf algebra

over k with the dual Chevalley property of tame corepresentation type, one of the following three

cases appears:

(i) | P1 |= 1 and S1 = {C} for some C ∈ S with dimk(C) = 4;

(ii) | P1 |= 2 and S1 = {kg} for some g ∈ G(H);

(iii) | P1 |= 2 and S1 = {kg,kh} for some g, h ∈ G(H).
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Using Proposition 6.2.5, we know that H is of tame corepresentation type if and only if H(1) is of

tame corepresentation type. In this section, we attempt to give several examples of finite-dimensional

coradically graded link-indecomposable Hopf algebras over k with the dual Chevalley property of tame

corepresentation type in the three cases.

In fact, if H is link-indecomposable, it follows from Lemma 6.2.1 that the coradical of H is

generated by {span(C) | C ∈ 1S} ∪ {span(S(C)) | C ∈ 1S}. In particular, combining [36, Lemma 2.1]

and Proposition 3.3.13, we know that (H(1))0 is an abelian group in cases (ii) and (iii).

According to [36, Remark 4.10], we have

Lemma 6.4.1 Let H be the algebra which is generated by g, u, v satisfying the following relations:

gu = −ug, gv = −vg, uv = −vu, u2 = v2 = 0,

gn = 1,

where n is an even number.

Moreover, the coalgebra structure and antipode are given by:

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1,

∆(u) = g ⊗ u+ u⊗ 1, ε(u) = 0, S(u) = −g−1u,

∆(v) = g ⊗ v + v ⊗ 1, ε(v) = 0, S(v) = −g−1v.

Then H is a coradically graded Hopf algebra of tame corepresentation type with | P1 |= 2 and S1 =

{kg}. Moreover, we have

H ∼= (k〈x, y〉/(x2, y2, xy + yx))∗ × k〈g〉.

From [36, Remark 4.17(2)], we know that

Example 6.4.2 Let H be the algebra which is generated by g, h, u, v satisfying the following relations:

gh = hg, gn1 = hn2 = 1,

gu = −ug, gv = αvg, hu = βuh, hv = −vh,

u2 = v2 = 0, (uv)m = (−1)m−1βm(vu)m,

where n1, n2 ∈ Z, αβ is an mth primitive root of unit and m | l.c.m(n1, n2).

Moreover, the coalgebra structure and antipode are given by:

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1,

∆(h) = h⊗ h, ε(h) = 1, S(h) = h−1,
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∆(u) = g ⊗ u+ u⊗ 1, ε(u) = 0, S(u) = −g−1u,

∆(v) = h⊗ v + v ⊗ 1, ε(v) = 0, S(v) = −h−1v.

Then H is a coradically graded Hopf algebra of tame corepresentation type with | P1 |= 2 and S1 =

{kg,kh}. Moreover, we have

H ∼= (k〈x, y〉/(x2, y2, (xy)m − (−1)m−1βm(yx)m))∗ × k〈g, h〉.

In case (ii) and (iii), according to Proposition 6.3.10 and Remark 6.3.11, we know that only some

special ideals of {(x2, y2, (xy)m− a(yx)m) | 0 6= a ∈ k,m ≥ 1} can appear and if one of them appears,

then we can construct coradically graded Hopf algebra of tame corepresentation type over H ′ = kG
for some G = G(H) in Examples 6.4.1 and 6.4.2. However, in case (i), we do not know how to find

all H ′ such that (k〈x, y〉/I)∗ ×H ′ is a Hopf algebra for some special ideals I listed in Theorem 6.1.2,

even if the invertible matrix K in Lemma 6.3.3 is diagonal.

In the following part, we will give some examples of link-indecomposable coradically graded Hopf

algebras of tame corepresentation type over 8-dimensional non-pointed cosemisimple Hopf algebras,

such that the invertible matrix K in Lemma 6.3.3 is diagonal.

According to [51, Theorem 2. 13], we have

Lemma 6.4.3 Non-pointed 8-dimensional semisimple Hopf algebras over k consist of 3 isomorphic

classes, which are represented by

(kD8)∗, (kQ8)∗ , H8,

where D8 = 〈x, y | x4 = y2 = 1, yx = x−1y〉 is the dihedral group and Q8 = 〈x, y | x4 = 1, y2 =

x2, yx = x−1y〉 is the quaternion group. Among these H8 is the unique one that is neither commutative

nor cocommutative, and is generated as an algebra by x, y, z with relations

x2 = y2 = 1, z2 =
1

2
(1 + x+ y − xy), yx = xy, zx = yz, zy = xz; (6.16)

the coalgebra structure and antipode are given by:

∆(x) = x⊗ x, ∆(y) = y ⊗ y, ε(x) = ε(y) = 1, (6.17)

∆(z) =
1

2
(1⊗ 1 + 1⊗ x+ y ⊗ 1− y ⊗ x)(z ⊗ z), ε(z) = 1, (6.18)

S(x) = x, S(y) = y, S(z) = z. (6.19)

According to Lemma 6.2.1, when we consider link-indecomposable coradically graded Hopf algebras of

tame corepresentaion type over 8-dimensional non-pointed cosemisimple Hopf algebras, we only need

to consider case (i).
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§6.4.1 Hopf algebras of tame corepresentation type over (kD8)∗

Let {epq}p=0,1,2,3;q=0,1 be the basis of (kD8)∗, dual to the basis {xpyq}p=0,1,2,3;q=0,1 of kD8. The

multiplication and unit are given, respectively, by

ep1q1ep2q2 = δp1,p2δq1,q2ep1q1 , 1 =
∑
p,q

epq, (6.20)

the coalgebra structure and antipode are given by

∆(epq) =
∑

p1+p2+2q1p2≡ p mod 4

q1+q2≡ q mod 2

ep1q1 ⊗ ep2q2 , (6.21)

ε(epq) = δp,0δq,0, (6.22)

S(epq) = ep′q′ ,where p+ p′ + 2qp′ ≡ 0 mod 4, q + q′ ≡ 0 mod 2. (6.23)

It is easy to check that elements

X =
∑
pq

(−1)pepq,

Y =
∑
pq

(−1)qepq

are group-like elements of order 2. Let

c11 = e00 −
√
−1e10 − e20 +

√
−1e30,

c12 =
√
−1e01 + e11 −

√
−1e21 − e31,

c21 = −
√
−1e01 + e11 +

√
−1e21 − e31,

c22 = e00 +
√
−1e10 − e20 −

√
−1e30,

then

C =

(
c11 c12

c21 c22

)

is a basic multiplicative matrix of C, where C = span{c11, c12, c21, c22} Thus the simple subcoalgebras

in (kD8)∗ are k1,kX,kY,kXY,C.

Next we try to construct a link-indecomposable coradically graded Hopf algebra H of tame

corepresentaion type over (kD8)∗ such that the invertible matrix K in Lemma 6.3.3 is diagonal.

Namely, suppose there exists an diagonal invertible matrix K = (kij)4×4 over k such that

C �′ X = K(X � C),
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where

X =

(
u

v

)

is a non-trivial (C,k1)-primitive matrix, and

K =


α1

α2

α3

α4

 .

According to Proposition 6.3.8, if

RH = {h ∈ H | (id⊗ π)∆(h) = h⊗ 1}

is generated by u, v, we know that

α1 = α4 = −1.

Since

c11c22 + c12c21 = 1,

then

(c11c22 + c12c21)u = −α2u(c11c22 + c12c21)

= u(c11c22 + c12c21).

It follows that

α2 = −1.

Next we consider

(c11c22 + c12c21)v,

a similar argument shows that

α3 = −1.

Besides, we also have

c11c22 − c12c21 = Y, c211 − c212 = X,

thus (kD8)∗ is generated by span(C) and

Xu = uX, Y u = uY, Xv = vX, Y v = vY.

As a summary, we have

Example 6.4.4 Let H be a Hopf algebra generated as an algebra by {epq}p=0,1,2,3;q=0,1, u, v satisfying
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(6.20) and the following relations:

C �′ X = K(X � C),

u2 = v2 = 0, uv + vu = 0,

where

C =

(
c11 c12

c21 c22

)
=

(
e00 −

√
−1e10 − e20 +

√
−1e30

√
−1e01 + e11 −

√
−1e21 − e31

−
√
−1e01 + e11 +

√
−1e21 − e31 e00 +

√
−1e10 − e20 −

√
−1e30

)
,

X =

(
u

v

)
,

and

K =


−1

−1

−1

−1

 .

The coalgebra structure and antipode are given by (6.21-6.23) and

∆(u) = c11 ⊗ u+ c12 ⊗ v + u⊗ 1,

∆(v) = c21 ⊗ u+ c22 ⊗ v + v ⊗ 1,

ε(u) = ε(v) = 0,

S(u) = −(e00 −
√
−1e30 − e20 −

√
−1e10)u− (

√
−1e01 + e11 −

√
−1e21 − e31)v,

S(v) = −(−
√
−1e01 + e11 +

√
−1e21 − e31)u− (e00 +

√
−1e30 − e20 −

√
−1e10)v.

One can show that H ∼= (k〈x, y〉/(x2, y2, (xy)2 + (yx)2))∗ × (kD8)∗, and it is a link-indecomposable

coradically graded Hopf algebra of tame corepresentaion type over (kD8)∗.

§6.4.2 Hopf algebras of tame corepresentation type over (kQ8)∗

Let {epq}p=0,1,2,3;q=0,1 be the basis of (kQ8)∗, dual to the basis {xpyq}p=0,1,2,3;q=0,1 of kQ8. The

multiplication and unit are given, respectively, by

ep1q1ep2q2 = δp1,p2δq1,q2ep1q1 , 1 =
∑
p,q

epq, (6.24)

the coalgebra structure and antipode are given by

∆(epq) =
∑

p1+p2+2q1(p2+q2)≡ p mod 4

q1+q2≡ q mod 2

ep1q1 ⊗ ep2q2 , (6.25)
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ε(epq) = δp,0δq,0, (6.26)

S(epq) = ep′q′ ,where p+ p′ + 2q(p′ + q′) ≡ 0 mod 4, q + q′ ≡ 0 mod 2. (6.27)

It is easy to check that elements

X =
∑
pq

(−1)pepq,

Y =
∑
pq

(−1)qepq

are group-like elements of order 2. Let

c11 = e00 +
√
−1e01 − e20 −

√
−1e21,

c12 =
√
−1e10 + e11 −

√
−1e30 − e31,

c21 =
√
−1e10 − e11 −

√
−1e30 + e31,

c22 = e00 −
√
−1e01 − e20 +

√
−1e21,

then

C =

(
c11 c12

c21 c22

)

is a basic multiplicative matrix of C, where C = span{c11, c12, c21, c22} Thus the simple subcoalgebras

in (kQ8)∗ are k1,kX,kY,kXY,C.

Next we try to construct a link-indecomposable coradically graded Hopf algebra H of tame

corepresentaion type over (kD8)∗ such that the invertible matrix K in Lemma 6.3.3 is diagonal.

Namely, there exists an diagonal invertible matrix K = (kij)4×4 over k such that

C �′ X = K(X � C),

where

X =

(
u

v

)

is a non-trivial (C,k1)-primitive matrix, and

K =


α1

α2

α3

α4

 .

Suppose that

RH = {h ∈ H | (id⊗ π)∆(h) = h⊗ 1}
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is generated by u, v. Since

c11c22 − c12c21 = 1,

an argument similar to the one used in Example 6.4.4 shows that

αi = −1

for 1 ≤ i ≤ 4. We also have

c11c22 + c12c21 = X, c211 − c212 = Y,

it follows that (kD8)∗ is generated by span(C) and

Xu = uX, Y u = uY, Xv = vX, Y v = vY.

Based on the above argument, we have

Example 6.4.5 Let H be a Hopf algebra generated as an algebra by {epq}p=0,1,2,3;q=0,1, u, v satisfying

(6.24) and the following relations:

C �′ X = K(X � C),

u2 = v2 = 0, uv + vu = 0,

where

C =

(
c11 c12

c21 c22

)
=

(
e00 +

√
−1e01 − e20 −

√
−1e21

√
−1e10 + e11 −

√
−1e30 − e31

√
−1e01 − e11 −

√
−1e30 + e31 e00 −

√
−1e01 − e20 +

√
−1e21

)
,

X =

(
u

v

)
,

and

K =


−1

−1

−1

−1

 .

The coalgebra structure and antipode are given by (6.21-6.23) and

∆(u) = c11 ⊗ u+ c12 ⊗ v + u⊗ 1,

∆(v) = c21 ⊗ u+ c22 ⊗ v + v ⊗ 1,

ε(u) = ε(v) = 0,

S(u) = −(e00 +
√
−1e21 − e20 −

√
−1e01)u− (

√
−1e30 + e31 −

√
−1e10 − e11)v,

S(v) = −(
√
−1e30 − e31 −

√
−1e10 + e11)u− (e00 −

√
−1e21 − e20 +

√
−1e01)v.
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One can show that H ∼= (k〈x, y〉/(x2, y2, (xy)2 + (yx)2))∗ × (kQ8)∗, and it is a link-indecomposable

coradically graded Hopf algebra of tame corepresentaion type over (kQ8)∗.

§6.4.3 Hopf algebras of tame corepresentation type over H8

Note that the simple subcoalgebras in H8 are k1,kc,kb,kbc, C, where C = span{x, bx, cx, bcx}.
We give a corresponding basic multiplicative matrix C of C, where

C =

(
c11 c12

c21 c22

)
=

1

2

(
x+ bx x− bx
cx− bcx cx+ bcx

)
. (6.28)

Suppose there exists a link-indecomposable coradically graded Hopf algebraH of tame corepresentaion

type over H8 such that the invertible matrix K in Lemma 6.3.3 is diagonal. Namely, there exists an

diagonal invertible matrix K = (kij)4×4 over k such that

C �′ X = K(X � C),

where

X =

(
u

v

)

is a non-trivial (C,k1)-primitive matrix, and

K =


α1

α2

α3

α4

 .

Note that

∆(c11u) = (c11 ⊗ c11 + c12 ⊗ c21)(c11 ⊗ u+ c12 ⊗ v + u⊗ 1)

= c211 ⊗ c11u+ c12c11 ⊗ c21u+ c11c12 ⊗ c11v + c212 ⊗ c21v

+c11u⊗ c11 + c12u⊗ c21,

∆(uc11) = (c11 ⊗ u+ c12 ⊗ v + u⊗ 1)(c11 ⊗ c11 + c12 ⊗ c21)

= c211 ⊗ uc11 + c11c12 ⊗ uc21 + c12c11 ⊗ vc11 + c212 ⊗ vc21

+uc11 ⊗ c11 + uc12 ⊗ c21.

According to Lemma 6.3.3, we know that c21u, c11v are linearly independent. It follows that

c11c12 = c12c11,
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which is a contradiction. Thus there exists no link-indecomposable coradically graded Hopf algebra H

of tame corepresentaion type over H8 such that the invertible matrix K in Lemma 6.3.3 is diagonal.

However, we have a link-indecomposable coradically graded Hopf algebra of tame corepresentaion

type over H8 such that K in Lemma 6.3.3 is not diagonal.

Example 6.4.6 ( [66, Definition 5.18]) Let H be a Hopf algebra generated as an algebra by x, y, z, p1, p2

with relations (6.4.3) and

p2
1 = p2

2 = 0, p1p2p1p2 + p2p1p2p1 = 0,

xp1 = p1x, yp1 = p1y, xp2 = −p2x, yp2 = −p2y,

zp1 = −p1z, zp2 =
√
−1p2xz.

The coalgebra structure and antipode of H are given by (6.17-6.19) and

∆(p1) = (f00 −
√
−1f11)z ⊗ p1 + (f10 +

√
−1f01)z ⊗ p2 + p1 ⊗ 1,

∆(p2) = (f00 +
√
−1f11)z ⊗ p2 + (f10 −

√
−1f01)z ⊗ p1 + p2 ⊗ 1,

ε(p1) = ε(p2) = 0,

S(p1) = −z(f00 −
√
−1f11)− z(f10 +

√
−1f01)p2,

S(p2) = −z(f00 +
√
−1f11)p2 − z(f10 −

√
−1f01)p1,

where fij = 1
4 [1 + (−1)ix][1 + (−1)ky], i, j = 0, 1.

We know that

X =

(
p1 + p2

−
√
−1(p1 − p2)

)

is a non-trivial (C, 1)-primitive matrix, where C is defined in (6.28). In this case,

K =


− 1

2

√
−1
2 −

√
−1
2

1
2

−
√
−1
2 − 1

2 − 1
2 −

√
−1
2√

−1
2 − 1

2 − 1
2

√
−1
2

1
2

√
−1
2 −

√
−1
2 − 1

2

 ,
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and we can show that

H ∼= (k〈x, y〉/(x2, y2, (xy)2 + (yx)2))∗ ×H8.

This means that H is of tame corepresentation type.
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