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Abstract

In the view point of representation type, every finite-dimensional algebra exactly belongs to one
of following three kinds of algebras: algebras of finite representation type, algebras of tame types
and wild algebras. From then on, the classification for a given kind of algebras according to their
representation type has received considerable attention.

In the case of Hopf algebras, much effort was put in pointed Hopf algebras or their dual, that is,
elementary Hopf algebras. Moreover, Hopf algebras with the (dual) Chevalley property is a kind of
natural generalization of elementary (pointed) Hopf algebras. These Hopf algebras are interesting by
various reasons, one of which is their classification.

We try to classify Hopf algebras with the dual Chevalley property according to their corepresen-
tation type. The main tool we want to use is the link quiver. One of key points of this thesis is that
one can describe the structure of the link quiver by applying multiplicative matrices and primitive
matrices.

Let H be a finite-dimensional Hopf algebra over an algebraically closed field k with the dual
Chevalley property. The main results are described as follows.

At first, if H is non-cosemisimple, we prove that H is of finite corepresentation type if and only
if it is coNakayama, if and only if the link quiver Q(H) of H is a disjoint union of basic cycles, if and
only if the link-indecomposable component H ;) containing k1 is a pointed Hopf algebra and the link
quiver of H(j) is a basic cycle. If char(k) = 0, then H is of finite corepresentation type if and only if
either H is cosemisimple or H is not cosemisimple and Hyy = A(n,d, i, q). If char(k) = p, then H
is of finite corepresentation type if and only if either H is cosemisimple or H is not cosemisimple and
Hy = Cq(n).

Finally, if char(k) = 0, we show that gr¢(H) is of tame corepresentation type if and only if
gre(H) = (k(z,y)/I)* x H' for some finite-dimensional semisimple Hopf algebra H' and some special
ideals I. Then, by the method of link quiver and bosonization, we discuss which of the above ideals will

occur when (k(x,y)/I)* x Hy is a Hopf algebra of tame corepresentation type under some assumptions.

Keywords: Hopf algebras; Dual Chevalley property; Corepresentation type.
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Chapter 1 Introduction

§1.1 Background

In the view point of representation type, every finite-dimensional algebra exactly belongs to one
of following three kinds of algebras: algebras of finite representation type, algebras of tame types and
wild algebras (See [24]). From then on, the classification for a given kind of algebras according to
their representation type has received considerable attention. See, for example, [8-10,23,26,37,62,63].
The category of finite-dimensional left (right) modules over a finite representation type algebra is
considered easiest to understand.

In the case of Hopf algebras, much effort was put in pointed Hopf algebras or their dual, that
is, elementary Hopf algebras. In the case of modular group algebras of finite groups, the authors
in [12,14,27,35] show that a block of such modular group algebra is of finite representation type if and
only if the corresponding defect groups are cyclic and while it is tame if and only if chark = 2 and
its defects groups are dihedral, semidihedral and generalized quaternion. The classification of small
quantum groups according to their representation type can be found in [20,67,70]. They show that
the only tame one is u4(slz) and others are all wild. For cocommutative Hopf algebras, Farnsteiner
and his collaborators have classify all finite-dimensional cocommutative Hopf algebras, i.e., finite
algebraic groups, of finite representation type and tame type [29-33|. Liu and his collaborators get
the classification of elementary Hopf algebras according to their representation type from 2006 to
2013 [36,42-44]. We note that there is indeed a common point in above classification: a finite-
dimensional (cocommutative, elementary) Hopf algebra is of finite representation type if and only if
it is a Nakayama algebra. We cannot help but hope that this observation holds true for more Hopf
algebras.

Among of these results, constructing Hopf algebras structures through using quivers was shown to
be a very effective way, which is due to the works of of Cibils-Rosso for pointed case and Green-Solberg
for elementary case [19,21,22,34]. As a development, in [16,57], the authors give a classification of
non-semisimple monomial Hopf algebras and get more. In 2007, the third author and Li [44] have
classified all finite-dimensional pointed Hopf algebras of finite corepresentation type and show that
they are all monomial Hopf algebras [44, Theorem 4.6].

At the same time, it is well known that in the representation of finite-dimensional algebras, the
Ext quiver is a fundamental tool. The Ext quiver of a coalgebra has been introduced by Chin and
Montgomery in [18] too. Montgomery also introduced the link quiver of coalgebra H by using the
wedge of simple subcoalgebras of H (see [55, Definition 1.1]). In [17, Definition 4.1], the definition of
link quiver has been modified. In addition, the authors of [17] unified the link quiver of a coalgebra
with the Ext quiver. Obviously, these quivers are not limited to elementary or pointed Hopf algebras.

More or less, one mainly focused on the classification of finite-dimensional basic (pointed) Hopf
algebras according to their (co)representation type. We know that the Hopf algebras with the (dual)

Chevalley property is a kind of natural generalization of elementary (pointed) Hopf algebras. These
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Hopf algebras have been studied by many authors. See, for example, [1,3,40,41,45,47|. In [4,15,53,71],
the authors present some explicit examples of Hopf algebras with the dual Chevalley property.

Our motivation is to classify finite-dimensional Hopf algebras with the dual Chevalley property
according to their corepresentation type. Here by the dual Chevalley property we mean that the
coradical Hy is a Hopf subalgebra. The main tool we want to use is the link quiver. One of key
points of this thesis is that one can describe the structure of the link quiver by applying multiplicative

matrices and primitive matrices now, which are developed by the Li and his collaborator [40,41,45,47].

§1.2 Main results

Denote the set of all the simple subcoalgebras of a Hopf algebra H with the dual Chevallry
property by S. According to Corollary 3.1.16, we can view set ¢PP of a complete family of non-
trivial (C,D)-primitive matrices as the set of arrows from vertex D to vertex C. Denote ‘P =
Upes PP, PP = Uees “PP.P = Uces ©P- We can also view PP as the set of arrows with start
vertex D and view “P as the set of arrows with end vertex C. This means that we can view Q(H) =
(8,P) as the link quiver of H.

At first, we characterize the link quiver of finite-dimensional Hopf algebras with the dual Chevalley

property of finite or tame corepresentation type. This appears as Theorem 4.2.1 in this thesis:

Theorem 1.2.1 Let k be an algebraically closed field and H a finite-dimensional Hopf algebra over
k with the dual Chevalley property. Denote 1S = {C € S|kl + C # k1 A C}.

(1) H is of finite corepresentation type if and only if | P |= 1 and 1S = {kg} for some group-like
element g € G(H).

(2) If H is of tame corepresentation type, then one of the following two cases appears:

(i) | *P |=2 and for any C € 1S, dimg(C) = 1;
(ii) | 1P |=1 and 18 = {C} for some C € S with dimy(C) = 4.
(8) If one of the following holds, H is of wild corepresentation type.
(i) |'P |=3;
(ii) | YP |= 2 and there exists some C € 'S such that dimy(C) > 4;
(iii) | 'P |=1 and 'S = {C} for some C € S with dimg(C) > 9.
We attempt to generalize above stated result [44, Theorem 4.6] in order to give the structure of

finite-dimensional Hopf algebras with the dual Chevalley property of finite corepresentation type. See
Corollary 4.1.9, Theorems 5.1.1 and 5.2.1, stating that:

Corollary 1.2.2 A finite-dimensional Hopf algebra H over an algebraically closed field k with the
dual Chevalley property is of finite corepresentation type if and only if H is coNakayama.



Theorem 1.2.3 Let k be an algebraically closed field of characteristic 0. Then a finite-dimensional
Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type if and only
if either of the following conditions is satisfied:

(1) H is cosemisimple;

(2) H is not cosemisimple and H1y = A(n,d, i, q).

Theorem 1.2.4 Let k be an algebraically closed field of positive characteristic p. Then a finite-
dimensional Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type
if and only if either of the following conditions is satisfied:

(1) H is cosemisimple;
(2) H is not cosemisimple and H(1y = Cq(n).

Denote S = {C € S | C +kl # C Akl}. Note that| 'P |=| P! | and C € 'S if and only if
S(C) € 8! (see Lemma 3.3.5). Using Theorem 1.2.1, we know that if H is of tame corepresentation

type, then one of the following three cases appears:

(i) | P! |=1and St = {C} for some C € S with dimy(C) = 4;
(i) | P! |=2 and S = {kg} for some g € G(H);
(iii) | Pt |=2 and St = {kg,kh} for some g,h € G(H).

Besides, we determine the structures of finite-dimensional coradically graded Hopf algebra with
the dual Chevalley property of tame corepresentation type completely. See Theorem 6.1.2, stating
that:

Theorem 1.2.5 Let k be an algebraically closed field of characteristic 0 and H a finite-dimensional
Hopf algebra over k with the dual Chevalley property. Then gr¢(H) is of tame corepresentation type
if and only if

gr’(H) = (k(z,y)/1)" x H'

for some finite-dimensional semisimple Hopf algebra H' and some ideal I which is one of the following

forms:

(1) T = (2% —y?,yx — ax? xy) for 0 # a € k;

(2) T = (2292 (xy)™ — a(yx)™) for 0 #a €k and m > 1;
(3) I=(z" —y" zy,yx) forn>2;

(4) T = (2?92 (zy)"x — (yz)™y) for m > 1.



According to [13, Theorem 4.1.2], if R is a Hopf algebra in gin, then we can form the bosoniza-
tion R x H' which is a Hopf algebra. For an tame algebra A, above theorem does not imply the
existence of finite-dimensional semisimple Hopf algebra H' satisfying A* is a braided Hopf algebra
in gin. That is to say, for the ideals I listed in the above theorem, we do not know whether
(k{(z,y)/I)* x H' is a Hopf algebra or not. By the method of link quiver and bosonization, we try to
discuss this question in the three cases separately.

We consider case (i) under some assumptions. See Proposition 6.3.8, stating that:

Proposition 1.2.6 Let gre(H) = (k{(z,y)/I)* x Hy be a finite-dimensional coradically graded Hopf
algebra over k with the dual Chevalley property of tame corepresentation type. Suppose Pt = {X},
St = {C} for some C € S with dimy(C) = 4 and the invertible matriz K in Lemma 6.3.5 is diagonal,
namely
aq
Q2
a3

o7

If in addition Ry is generated by u,v, then

(1) I = (2% 9% (zy)™ — a(yx)™) for 0 #a €k and m > 1;
(2) g =y = —1;

(3) a= (1" lag ora=(—)™lay;

(4) asas is an mth primitive root of unity.

In fact, when we study the properties for the finite-dimensional coradically graded Hopf algebra
over k with the dual Chevalley property of tame corepresentation type, we only need to focus on its

link-indecomposable component containing k1. This appears as Proposition 6.2.5 in this thesis:

Proposition 1.2.7 Let H be a finite-dimensional coradically graded Hopf algebra over k with the
dual Chevalley property. Then H is of tame corepresentation type if and only if Hy is of tame

corepresentation type.

With the help of the preceding proposition, we can consider cases (ii) and (iii). See Proposition

6.3.10, stating that:.

Proposition 1.2.8 Let gr¢(H) = (k{(z,y)/I)* x Hy be a finite-dimensional coradically graded Hopf

algebra over k with the dual Chevalley property of tame corepresentation type.
(1) If | P |=2 and S* = {kg} for some g € G(H), then I = (2*,y%, zy + yx);

(2) If | P! |= 2 and S' = {kg,kh} for some g,h € G(H), then I = (22,42, (zy)™ — a(yz)™) for
0#£a€ck and m>1.



§1.3 Organization

In this section, we give an outline of this thesis.

In Chapter 1 , we provide the research background and main results.

In Chapter 2 , we give a preparation of the following chapters.

In Chapter 3 , we provide the properties of a complete family of non-trivial (C,D)-primitive
matrices. Besides, we construct a complete family of non-trivial primitive matrices in two ways. Note
that the cardinal number of a complete family of non-trivial (C, D)-primitive matrices coincides with
the number of arrows from vertex D to vertex C in the link quiver. Then we discuss the properties
for the link quiver of a Hopf algebra with the dual Chevalley property.

In Chapter 4 , we characterize the link quiver of Hopf algebras with the dual Chevalley property
of finite or tame corepresentation type.

In Chapter 5 , we attempt to generalize [44, Theorem 4.6] in order to give the structure of
finite-dimensional Hopf algebras with the dual Chevalley property of finite corepresentation type. We
give a more accurate description for H(;) in the case that H is a finite-dimensional non-cosemisimple
Hopf algebra with the dual Chevalley property of finite corepresentation type.

In Chapter 6 , we determine the structures of coradically graded Hopf algebra H with the
dual Chevalley property of tame corepresentation type. We show that H is of tame corepresentation
type if and only if the link-indecomposable component H ;) containing k1 is of tame corepresentation
type. Next we discuss which ideal will occur when (k{x,y)/I)* x Hy is a finite-dimensional coradically
graded Hopf algebra with the dual Chevalley property of tame corepresentation type under some

assumptions. At last, we give some examples and applications.



Chapter 2 Preliminaries

In this chapter, we recall the most needed knowledge about coalgebras, Hopf algebras and based
rings. Throughout this thesis k denotes an algebraically closed field and all spaces are over k. The

tensor product over k is denoted simply by ®.

§2.1 Multiplicative matrices and primitive matrices

The concept of multiplicative matrices was introduced by Manin in [49]. Later in 2019, Li and
Zhu [47] introduced the concept of primitive matrices. Recently, more properties of multiplicative
matrices and primitive matrices have been observed. The authors of [40,41,45,47] used these two
notions to generalize some results of pointed Hopf algebras to non-pointed ones.

Let us first recall the definition of multiplicative matrices.

Definition 2.1.1 ( /40, Definition 2.3]) Let (H,A,¢€) be a coalgebra over k.

(1) A square matriz G = (gij)rxr over H is said to be multiplicative, if for any 1 <1i,j <r, we have
T

A(gij) = Y git @ gi; and €(gij) = 6; ;, where ; j denotes the Kronecker notation;
t=1

(2) A multiplicative matriz C is said to be basic, if its entries are linearly independent.

Multiplicative matrices over a coalgebra can be understood as a generalization of group-like
elements. We know that all the entries of a basic multiplicative matrix C span a simple subcoalgebra
C of H. Conversely, for any simple coalgebra C over k, there exists a basic multiplicative matrix
C whose entries span C (for details, see [47], [40]). And according to [40, Lemma 2.4], the basic
multiplicative matrix of the simple coalgebra C would be unique up to the similarity relation. More
specifically, suppose that C is a basic multiplicative matrix of the simple coalgebra C'. Then C’ is also
a basic multiplicative matrix of C' if and only if there exists an invertible matrix L over k such that
C'=LCL .

Next we recall the definition of primitive matrices, which is a non-pointed analogue of primitive

elements.

Definition 2.1.2 ( [47, Definition 3.2] and [41, Definition 4.4]) Let (H, A, €) be a coalgebra over k.

Suppose C = (¢ij)rxr and D = (d;j)sxs are basic multiplicative matrices over H.
(1) A matric X = (2;j)rxs over H is said to be (C,D)-primitive, if
Alxig) = ek @z + Y 2 @ dy
k=1 t=1

holds for any 1 <1i,5 <r;

(2) A primitive matriz X is said to be non-trivial, if there exists some entry of X which does not

belong to the coradical Hy.



Recall that a finite-dimensional Hopf algebra is said to have the dual Chevalley property, if its
coradical Hy is a Hopf subalgebra. In this thesis, we still use the term dual Chevalley property to
indicate a Hopf algebra H with its coradical Hy as a Hopf subalgebra, even if H is infinite-dimensional.

In the following part, let H be a Hopf algebra over k with the dual Chevalley property. Let
C, D be the simple subcoalgebras spanned by the entries of basic multiplicative matrices C and D,
respectively. For any (C, D)-primitive matrix X, it is evident that all the entries of X must belong to
C A D and automatically belong to Hy := Hy A Hy, where Hj is the coradical of H.

We say that two matrices A and A’ over H are similar, which is denoted by A ~ A’ for simplicity,
if there exists an invertible matrix L over k such that A’ = LAL~!. Next we recall some notations.

For any matrix A = (ai;)rxs and B = (b;;)uxv over H, define A® B and A @' B as follow

apnB - a1sB Abip -0 Abyy
arllg o a”I‘SB Abul T Abuv

Some evident formulas on ® and @’ should be noted for later computations.

Lemma 2.1.3 Let A, B be matrices over H and I be the identity matriz over k, then
(1) (L1 ALy) ©' B = (L1 @ I)(A® B)(Lz @ I) holds for any invertible matrices Ly, Lo over k;
(2) A (L1BLy) = (I ® L1)(A® B)(I ® L) holds for any invertible matrices L1, Lo over k;

(8) There exist invertible matrices K, K’ over k such that K(A® B)K' = A®' B. Moreover, if A,B
are square matrices, then A®' B~ A® B.

Proof:
bin -+ by
(1) Suppose that B = , then
bur  buw
Ly AL3byy -+ L1 ALsbyy,
(L1ALy) @' B =
LiALybyy -+ LiALsby,
LiAby 1Ly -+ LiAby, Lo
LiAby1 Ly -+ LiAbyyLo
Ly Abiy - Aby, Ly

Ll Abul e .Abm) LQ
= (L1 &' I)AG B)(Ly ®" I).



(2) Consider the Hopf algebra H°P, whose multiplication is opposite to H. Using (1), we can get

this result.

(3) By [65, Theorem 8.26], there exist commutation matrices K, K’ such that
K(AOB)K' =A& B,

where commutation matrix is defined in [65, Definition 8.1]. Moreover, from the proof of [65,

Theorem 8.24], we know that if A, B are square matrices, then
AG'B~A®B.

O

Let B,C, D € § with basic multiplicative matrices B, C, D respectively. According to [40, Propo-

sition 2.6], there exists an invertible matrices Lg ¢ over k such that

&
Lpc(BG' C)Lge =
E

w(s,c)

where &, - - - 75“(5= o, are the basic multiplicative matrices of En, -, By, o) respectively. In particu-
lar, let Ly ¢ = L¢1 = I, where [ is the identity matrix over k. Note that cosemisimple coalgebra BC'
admits a decomposition into a direct sum of simple subcoalgebras and uz ¢y is exactly the number of
such simple subcoalgebras. Thus in fact u s,y does not depend on the choices of basic multiplicative
matrices B and C as well as the invertible matrix Lgc.

For any (C,D)-primitive matrix X, by [40, Proposition 2.6], there exist invertible matrices

Lp.c,Lpp over k such that

Lsc 5o cC X Lze
Lsp 0 D Lo
_ Lic Bo'C Bo'X Lge
Lsp 0 Bo'D Lsp

&1 X1 t Xl"(B,D)
_ Cusey Xumol 7 Xugeyusn (2.1)
= , )
Ji
0
Fus o)
where &1, s oys F1s s Fuspy are the given basic multiplicative matrices. Combining [40,

8



Remark 2.5 and Lemma 2.7| and [47, Remark 3.2|, we can show that each X;; is a (&;, F;)-primitive
matrix.

With the notations above, we have

Lemma 2.1.4 For any B,C,D € § with basic multiplicative matrices B,C, D respectively. If X is a

non-trivial (C, D)-primitive matriz, then

(1) The set of all row vectors of B®' X is linearly independent over Hy/Hy;

(2) The set of all column vectors of B®' X is linearly independent over Hy/Hy;

(8) For each 1 <i <wpgyy, there is some 1 < j < wg py such that Xi; is non-trivial;

(4) For each 1 < j < g py, there is some 1 <i < gy such that Xi; is non-trivial.

Proof: These four claims are exactly (i), (ii), (I), (II) appearing in the proof of [40, Lemma 3.12] in
the case of H°P. O

§2.2 Based ring

Let Z, be the set of nonnegative integers. Some relevant concepts and results are recalled as

follows.

Definition 2.2.1 ( [56, Definitions 2.1 and 2.2]) Let A be an associative ring with unit which is free

as a Z-module.

(1) A Zy-basis of A is a basis B = {b;}icr such that bib; = 37, ci;bs, where cf; € Z.

(2) A ring with a fized Z-basis {b;}icr is called a unital based ring if the following conditions hold:
(i) 1 is a basis element.

(i) Let 7 : A — Z denote the group homomorphism defined by

1, if bi=1,

0, if b;#1.

7(b;) =

There exists an involution i — i* of I such that the induced map

a = Zalbl —a* = Zaibi*, a; €7
i€l el
is an anti-involution of A, and
L af i=j,
0, f i#j*

7(bibs) =



(8) A fusion ring is a unital based ring of finite rank.

It is straightforward to show the following lemma.

Lemma 2.2.2 (cf. [25, Exercise 3.3.2]) Suppose A is a unital based ring with Z -basis I, then for
any X,Z € 1, there exist Y1, Yy such that XY, and Y1Z contain Z with a nonzero coefficient.

Proof: Since both X X™* and Z*Z contain 1 with a nonzero coefficient, we can take Y7 to be a suitable

summand of X*Z and Y3 to be a suitable summand of ZX*. O

Example 2.2.3 Let H be a cosemisimple Hopf algebra and F be the free abelian group generated by
isomorphism classes of finite-dimensional right H-comodules and Fo the subgroup of F generated by
all expressions [Y] — [X] — [Z], where 0 = X — Y — Z — 0 is a short exact sequence of finite-
dimensional right H-comodules. Recall that the Grothendieck group Gr(H-comod) of the category of
finite-dimensional right H-comodules is defined by

Gr(H-comod) := F | Fp.

From [25, Proposition 4.5.4] and [39, Theorem 2.7], Gr(H-comod) is a unital based ring with Z. -basis

V, where V is the set of all the isomorphism classes of simple right H-comodules.

§2.3 Comonomial Hopf algebras

Let Q = (Qo, Q1) be a finite quiver. Note that we read paths in Q from right to left. Denote by
kQ® and kQ° the path algebra of Q and the path coalgebra of Q, respectively.
Recall that the counit and comultiplication of path coalgebra kQ€ are defined by e(e) = 1, A(e) =
e ® e for each e € Qg, and for each nontrivial path p = a,, - -a1,e(p) =0,
n—1
Alan--a1) =p® s(ar) +Zan~~ai+1 ®a;- a1 +tla,) @ p.
i=1

Definition 2.3.1 ( [16, Definition 1.2])

(1) An algebra A is called monomial if there exits a quiver Q and an admissible ideal I generated by

some paths such that A =kQ*/I.
(2) A subcoalgebra C of kQ€ is called comonomial provided that the following conditions are satisfied:

(i) C contains all vertices and arrows in Q;

d—1
(ii) C is contained in subcoalgebra Cq(Q) := @ kQ(3) for some d > 2, where Q(3) is the set of
i=0
all paths of length i in Q;

(ii) C has a basis consisting of paths.
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(8) A finite-dimensional Hopf algebra is called a monomial (resp. comonomial) Hopf algebra if it is

monomial (resp. comonomial) as an algebra (resp. coalgebra).

Remark 2.3.2 Note that comonomial Hopf algebra in [16] was called monomial Hopf algebra. In

order to not cause confusion, we recall the defintion of comonomial Hopf algebra.

One of the key observation we need is the following lemma which was proved in [16], which is

true no matter when the characteristic of k is equal to 0 or is equal to p.

Lemma 2.3.3 [16, Corollary 2.4] A non-semisimple Hopf algebra overk is a monomial Hopf algebra

if and only if it is elementary and Nakayama.

The authors of [16] classify non-cosemisimple comonomial Hopf algebras via group data when
the characteristic of k is zero. Let us briefly recall their results.

Let k be an algebraically closed field with characteristic 0, a group datum (see [16, Definition
5.3]) over k is defined to be a sequence a = (G, g, X, 1) consisiting of

(1) a finite group G, with an element ¢ in its center;
(2) a one-dimensional k-representation x of G; and
(3) an element p € k such that u = 0 if o(g) = o(x(g)), and that if z # 0, then y°X(¥) = 1.

For a group datum a = (G,g,x, 1) over k, the authors of [16] give the corresponding Hopf
algebra structure A(«) as follow (for details, see [16, 5.7]). Define A(a) to be an associative algebra

with generators  and all h € G, with relations
x? = p(1 — g%, xh=x(h)hz, Vh e G,
with comultiplication A, counit ¢, and the antipode S given by
Alg)=g®g, e(g)=1, Al@)=r@1+g®@x, x)=0, S(g) =g, S)=—-xg""

Let H be a non-semisimple comonomial Hopf algebra over k, [16, Lemma 5.2] permits us to
introduce the following notion. A group datum «(H) = (G, g, x, 1) is called an induced group datum
of H (see [16, Definition 5.5| for details) provide that

(1) G =G(H), where G(H) is the set of all the group-like elements of H;
(2) there exists a non-trivial (1, g)-primitive element x in H such that

% = p(1 — g%, xh=x(h)hz, Vh € G,

where d is the multiplicative order of x(g).

11



It is not difficult to verify that H = A(a(H)).

Denote by Z,, the basic cycle of length n, i.e., a quiver with n vertices eg, e, - - , e,_1 and n arrows
ap, a1, - an—1, where the arrow a; goes from the vertex e; to the vertex e;;1. In the following, denote
Ca(Z,) by Cy(n). According to [16, Lemma 5.8], we know that A(G,g,x,p) = Ca(n) @ -+ & Cq(n)
as coalgebras, where n = o(g) and d = o(x(g)).

As mentioned above, let us illustrate it with an example.

Example 2.3.4 Let q € k be an n-th root of unit of order d. In [6] and [59], Radford and Andruskiewitsch-
Schneider have considered the following Hopf algebra A(n,d, i, q) which as an associative algebra is

generated by g and x with relations
g"=1, 2'=p(l-g%), xg=qg.
Its comultiplication A, counit €, and the antipode S are given by

Alg)=9g®g, elg)=1, Al@)=z01+g®=, c(x)=0, Sg)=g", Sx)=-zg".

In fact, (Zn,1,x, 1) with x(1) = q is an induced group datum and A(n,d, p,q) = A(Zn,1,X, ).
The following results gives a classification of non-semisimple comonomial Hopf algebra over an

algebraically filed k of characteristic zero.

Lemma 2.3.5 ( [16, Theorem 5.9]) Let k be an algebraically closed field with characteristic 0, there

18 a one-to-one corresponding between sets
{the isoclasses of non-cosemisimple comonomial Hopf algebras over k}

and

{the isoclasses of group data over k}.

Next, we focus on the above lemma in the case of that k is an algebraically closed field of
characteristic p. For any quiver Q, we define C;Q := EB?;& kQ(7) for d > 2, where Q(%) is the set of
all paths of length 7 in Q(%). It is not difficult to show that CyQ is a subcoalgebra of path coalgabra
kQ (see [22] for the definition of path coalgebra). We denote the basic cycle of length n by Z, and
denote Cy(Z,) by C4(n). By [48, Theorem 1], we know that Cy(n) admits a Hopf algebra structure if
and only if there exists a primitive do-th root ¢ € k of unity with dy | n and a natural number r» > 0
such that d = p"dj.

Moreover, the authors of [48] have given a description of the structures of comonomial Hopf

algebras when the characteristic of k is not zero.

Lemma 2.3.6 ( [48, Theorem 4.2]) Let H be a non-cosemisimple comonomial Hopf algebra over an

algebraically closed field k of character p. Then there exists a dy-th primitive root q € k of unit with

12



do | m, r >0 and d = p"dy such that

H>Cy(n) @@ Cqy(n)

as coalgebras and

H = Cy(n) #k(G/N)

as Hopf algebras, where G = G(H), the set of group-like elements of H, and N = G(Cy(n)), the set
of group-like elements of Cyq(n).
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Chapter 3 Properties for the link quiver

§3.1 Non-trivial primitive matrices and simple bicomodules over a

coalgebra

In this section, let (H,A,e) be a coalgebra over k. Denote the coradical filtration of H by
{H,}n>0 and the set of all the simple subcoalgebras of H by S. For any simple subcoalgebra C' € S,
we fix a basic multiplicative matrix C of C.

For any matrix X' = (), by X, where Ty = xij + Ho €

H/H,. Besides, the subspace of H/Hj spanned by the entries of X is denoted by span(X).

over H, denote the matrix (7y;),.,
We start this section by giving the following lemma, which describes a property of simple bico-

modules.

Lemma 3.1.1 For any C,D € S with dimy(C) = 72, dimy (D) = s%, if M is a simple C-D-bicomodule,
then dimg (M) = rs.

Proof: Since C* and D* are central simple algebras, it follows that D* ® C*°P is also a central simple
algebra and

D* @ C*°P = M, (k)

as algebras, where M,.(k) is a matrix algebra. It is known that the dimension of simple left M,.¢(k)-
modules is rs. Besides, the category of finite-dimensional left D* @ C*°P-modules, the category of finite
dimensional D*-C*-bimodules and the category of finite-dimensional C-D-bicomodules are isomorphic.
And the isomorphisms preserve the dimension. Hence the dimension of the simple C-D-bicomodule
M is rs. g

Let
m: Hy —>H1/HO

be the quotient map. For any h € Hy/Hy, define

pu(h) = (1d@mAR), pr(h) = (r & 1A)A(R). (3.1)

It is evident that (Hy/Hy, pr, pr) is an Hyp-bicomodule. Now we turn to mention span(X’), where

X is a non-trivial (C, D)-primitive matrix.

Lemma 3.1.2 For any C,D € S with dimg(C) = 72, dimg(D) = s2, if Xpxs = (Tij),, 5 a non-

trivial (C, D)-primitive matriz, then span(X) is a simple C-D-bicomodule. Moreover, dimy(span(X)) =

rs.

Proof: By [40, Proposition 2.11|, we know that z;; ¢ Hj holds for all 1 < i <rand 1 <j <s.
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Notice that .
pr(Tij) = (Id@m)A(zi;) = Z Cikk ® Thj,
k=1

pr(Ti;) = (T @ Id)A(zy) = Y T ® dyy.
t=1
It is straightforward to show that (span(X), pr, pr) is a C-D-bicomodule and
dimg (span(X)) < rs.

But according to Lemma 3.1.1, the dimension of any C-D-sub-bicomodule is at least rs. Thus we
conclude that
dimy (span(X)) = rs

and span(X) is a simple C-D-bicomodule. O
A direct consequence of this lemma is:

Corollary 3.1.3 If X and X' are non-trivial (C, D)-primitive matrices over H, then either span(X)N
span(X’) = 0 or span(X) = span(X”).

Proof: According to Lemma 3.1.2, it follows that span(X) and span(&”) are both C-D-bicomodules.

It is clear that span(X) N span(X’) is a sub-C-D-bicomodule of span(X). But since span(X) is
simple, its sub-C-D-bicomodule span(X) N span(&”’) is either span(X) or 0. In the previous case,
span(X) 2 span(X”). By the same taken, we can prove that span(X) C span(X”). O

Moreover, there are further properties for non-trivial primitive matrices.

Corollary 3.1.4 Let C, D € S with basic multiplicative matrices Crx, and Dsyxs, respectively. Sup-

pose X := (z;;)rxs 15 a (C,D)-primitive matriz. Then the followings are equivalent:
(1) X is non-trivial;
(2) xi; ¢ Ho holds for all1 <i<r and1 <j<s;

(3) {xij | 1 < j < s} are linearly independent in Hy/Hy (the quotient space) for each 1 <1i <r, and

{zs; |1 <i <r} are linearly independent in Hy/Hy for each 1 < j <s.

(4) {zi; |1 <j <s,1<i<r} are linearly independent in H,/Hy.

Proof: The equivalence of (1), (2) and (3) is by [40, Proposition 2.11]. And (4) clearly implies (1), (2)
and (3). To complete the proof, we only need to show that (1) implies (4). Note that if X is non-trivial,

it follows from Lemma 3.1.2 that span(X’) is a simple C-D-bicomodule and dimy (span(X’)) = rs, which
means that {z;; | 1 < j <s,1 <i<r} are linearly independent in H;/H. O
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Recall that {ec}ces is called a family of coradical orthonormal idempotents (see [60, Section 1])
in H*, if
ec|p =9dc,pelp, ecep =0d¢c,pec (for any C,D € S), Z ec =¢.
ceS
The existence of a family of coradical orthonormal idempotents is affirmed in [60, Lemma 2].
About more properties of coradical orthonormal idempotents, the reader is referred to [47, Proposition

2.2] for details. We use the notations below for convenience:
Ch=h+—ec, WP =ep—h, ‘WP =ep —~h—ec (for any h € H and C, D € S),

where — and < are hit actions of H* on H.
Moreover, let {ec}ces be a family of coradical orthonormal idempotents. If V' is an Hy-Hop-

bicomodule with left comodule structure ¢;, and right comodule structure g, define

C D

v=v+—ec=(ec ®Id)o.(v), v" =ep —v=(Id®ep)ir(v),

CoP =ep ~v—ec (foranywv eV andC,D € S).

With the notations above, we can establish the following decomposition of H;/H, as a direct

sum.

Lemma 3.1.5 Suppose that V is an Ho-Ho-bicomodule, then V = @ VP, where VP =ep —
C,DeS

V + ec is a C-D-bicomodule. In particular, we have Hy/Hy = @ ©(H;/Hy)P.
C,DeS

Proof: It is straightforward to show that “ V' is a C-D-bicomodule. For any v € V, since > ec=¢,
ceS
we have

V=€ —V—eE= E C’UD.

C,DeS

Suppose 0 = Y we,p, where wo p € VP for any C, D € S. Note that for any E, F € S, we have

C,DeS
0 = eg — 0+ er
= ep—( E we,p) “— er
C,DeS
= E €gp — Wg,p “— €ef
C,DeS
= WFE-
Thus we complete the proof. O

Besides, for any C, D € S, since A(°H,P) C C ® “H\P + “H,P ® D, it follows that (“H; +
Hy)/Hy is exactly a C-D-bicomodule with the bicomodule structure pr, pr defined in (3.1). Thus we

have another direct sum decomposition of H;/Hy and these two kinds of decomposition are related.
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Lemma 3.1.6 As an Ho-Ho-bicomodule, Hi/Hy = @ (“H,P+Hy)/Hy. Moreover, (H,/Hy)P =
C,DeS

(“HP + Hy)/Hy holds for any C,D € S.

Proof: For any x € H;, a direct computation follows that

ep =T +—ec = Z<€C,$(1)>$(2)<€D7$(3)>

= Z(ec7fc(1)>x(2)<€D$(3)>
= ep —~zZ ec

(“H,P + Hy)/Hy,

m

where we use the Sweedler notation A(z) = ) x(1) ® 2(2) for the comultiplication. So we have
“(H1/Ho)? C (“Hy" + Ho)/Ho

and

P “(Hi/Ho)" = Hi/Hy= > (“H\” + Hy)/Hp.
C,DeS C,DeS

The same proof with Lemma 3.1.5 can be applied to Hy/Hp, then we get

H\/Hy= @ (“H:\" + Ho)/Ho,
C,.Des

which implies that
“(Hy/Ho)” = (“H\"” + H,)/Ho.

O

For the remaining of this section, let C, D € S with basic multiplicative matrices C = (¢;;)rxr

and D = (d;)sxs, respectively.

Lemma 3.1.7 For any (C,D)-primitive matriz X, we have

Span(f) - (CHlD + Ho)/HO

Proof: For any 7 € span(X) C H;/Hy, it follows from Lemma 3.1.1 that
p1(®) € C @ span(®)

and

pr(T) C span(X) ® D.
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According to Lemma 3.1.6, we have

S @ (EHlF + H())/HO
E,Fes

Note that (PH;¥ + Hy)/Hy is a E-F-bicomodule, for any E, F € S. It follows that
7 € (“H,P + Hy)/Ho,

which means that

span(X) C (CHlD + Hy)/H,.

Next we consider the inverse.

Lemma 3.1.8 If W is a subspace of “ H\P + Hy such that W is a simple C-D-sub-bicomodule of
(“H,P + Hy)/Hy, then there exists some non-trivial (C, D)-primitive matriz W such that span(W) =
wW.

Proof: For any nonzero @ € W, without the loss of generality, we assume w € ¢ H;P.

(1) If C # D, by [47, Theorem 3.1(1)] and its proof, we know that there exist rs (C, D)-primitive
matrices W) = (wg/’j/)) (1<i <r1<j <s)such that

TXS8

i=1 j=1

r

A(w) = Z C¢/¢®I5i)+ Z yé”@djj/,

i'yi=1 J,3'=1

and

v

i S
Al = > cik oz + > wii ) @ djy,
k=1

J,3'=1

where xy/),y](-j/) € “HiP Nkere forall 1 < ¢,i <r,1<j,j<s. Observe W is a C-D-sub-

bicomodule whose comodule structure is induced by comultiplication, namely,
pr(@) = (lde@m)A(w) € C@ W, pr(w) = (r®Id)A(w) € W @ D.

As {cii | 1 <i,7" <r}and {d;; | 1 <j,j/ < s} are linearly independent, thus

RO
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for all 7,4’, j,5’. According to a similar argument, for any ', 7, we have

This means that wg’j/) € W for all i,4’, 7, . Hence we have
span(W("i)) C W

for all 7/, j’. Since W is nonzero, there must be some pair (ip, jj) such that WUi0:40) is a non-trivial

(C, D)-primitive matrix. However, note that W is a simple C-D-sub-bicomodule. It follows that
span(W(i0:70)) = W.

(2) If C = D, according to [47, Theorem 3.1] or [45, Lemma 2.14(2)], we choose C = D, and there
exist rs (C, D)-primitive matrices Wi = (wg-,’jl)) (1 <# <r1<j <s)such that
TX$8

wfiiwg’j) eC.
i=1 j=1

Using [47, Lemma 3.1], we know that there exists an element ¢ € C such that
Alw—c)eCo (“H)T+(“H,9T w0,

where (“H,9)* = “H,;Y Nkere. Then the same proof of (1) can be applied to the element w — c.

Thus we can find a non-trivial (C, D)-primitive matrix W(:70) such that
span(W(i(/)Jé)) =W.
U

Clearly, a coalgebra H is cosemisimple if and only if the category of left (resp. right) H-comodules
is a semisimple category. This means that any C-D-bicomodule is cosemisimple. Applying Lemma
3.1.6 to the cosemisimple C-D-bicomodule (“ H;” + Hy)/Hp, we can decompose it into the direct sum

of simple C-D-sub-bicomodules as the following.

Corollary 3.1.9 There exists a family {X('Y)},yep of non-trivial (C, D)-primitive matrices such that

©(Hy/Ho)” = (“H," + Ho)/Ho = P span(X (). (3.2)

Definition 3.1.10 A family of non-trivial (C, D)-primitive matrices {XM},cr satisfying the prop-
erty of (3.2) in Corollary 3.1.9 is said to be complete.

The corollary below is followed immediately by Lemma 3.1.1 and Corollary 3.1.9.
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Corollary 3.1.11 If {X(W)}yep is a complete family of non-trivial (C, D)-primitive matrices, where
X, = (xgz))ms, then {xg) |y €M 1<i<r1<j<s}isalinear basis of (“H,P + Hy)/Hj.

A complete family of non-trivial (C, D)-primitive matrices is the main tool to help us characterize

the link quiver of H in the subsequent sections. Thus some of its properties should be noticed.

Lemma 3.1.12 Suppose {XMN}xcq is a family of non-trivial (C, D)-primitive matrices such that the

sum > span(X M) in (“H,P + Hy)/Hy is direct. Then we can find a complete family of non-trivial
AEA
(C, D)-primitive matrices { X} er such that {XM}yca is a subset of {X P}, er.

Proof: Let M be a complement of @, ., span(X™) in (“Hy” + Hy)/Ho. According to Lemma

3.1.8, we can show that

M = @ span(X ("))
~'er’

for some non-trivial (C, D)-primitive matrices {X )} crr. Let
{X}er = {AMhea U{X ) e,
Then {XM}. cp is a complete family of non-trivial (C, D)-primitive matrices. O

The important property of a complete family of non-trivial (C, D)-primitive matrices in the vector

space spanned by all (C, D)-primitive matrices is summarized in the following proposition.

Proposition 3.1.13 Suppose {X(V)}Vep is a complete family of non-trivial (C, D)-primitive matrices.
Then for any (C,D)-primitive matriz Y, we have Y = Y a, X, where oy €k (v € I') and only a

ner
finite number of them are nonzero.

Proof: Suppose that X(7) = (fﬂg))rm and Y = (¥ij)rxs. By the definition of (C, D)-primitive matrix,

we have

A(yij) = Z Cit @ Yrj + Z Y @ dy;.
k=1 =1

According to Corollary 3.1.11, for any 1 <i <r,1 < j < s, we can assume
T S
ZE BRI
~yel' p=1q=1
ij,7)

where 5},,1 €kforany 1 <p<r1<qg<s,v€l,and only a finite number of them are nonzero.
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Then

p(@;) = (1dem)A(yy) Z%@ym

Z Z Zﬁp” 'y) (’Y)

yel'p=1qg=1

> o (5 3 )

p=1k=1 yeI' g=1

Since the entries of C are linearly independent, it follows that
ij:7) (1)
- YA,

yel' g=1

holds for any 1 < k£ < r. Using the same argument as above, when we consider the right comodule

structure of span()), we get

y7:§:§:gmw<w
B pJj

yel p=1

holds for any 1 <1 < s. It follows that

Ui = Z Z*Bl(;l ) xkq Z Zﬂ(kj ) 1(77)7

yeI' g=1 yeI' p=1

for any 1 < k <r,1 <[ < s. Because of the linear independence of
(e |1<i<r1<j<syerl}
in Hy/Hyp, for any 1 <i,k <r,1<j,1<s,v€TI, wehave

6(7’[’7) 0

q

when ¢ # [, and
ﬂz(j;Jw) -0

when p # k. Moreover, when p = k,q = [,

B(llﬁ) ﬂ(k]ﬁ)

holds for all 1 < ¢,k <r,;1 < 4,1 <s,vy € I'. This means that
= Z a,yX('Y)7
yerl

(11,7)
11

where a, = € k for any v € I', and only a finite number of them are nonzero. O
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With the help of the preceding proposition, we can now prove:

Corollary 3.1.14 Let X be a non-trivial (C,D)-primitive matriz. Suppose PXQ is also a (C,D)-

primitive matriz, where P and Q are invertible matrices over k. Then PXQ = aX for some o € k.

Proof: Using Lemma 3.1.12, we can find a complete family of non-trivial (C, D)-primitive matrices

{X('V)},Yep with some element X("1) = X'. Then by Proposition 3.1.13,

PXQ =Y a,X0),
~yel

where o, € k (v € I') and only a finite number of them are nonzero. However,

span(PXQ)N (Y span(X™)) = 0.
YET\{71}

This implies that a, = 0 for all v # ;. Therefore,

PXQ=a,X.

Note that by [17, Theorem 4.1], we have

H\/Hy= @ (CAD)/(C+D),
C,DEeS

where (C'A D)/(C + D) is isomorphic to the following C-D-bicomodule
{h € Hi/Hy | pr(h) € C ® Hi/Hy, pr(h) € Hi/Ho® D},
which is exactly ©(H;/Hp)P. So we can now obtain the following lemma:
Lemma 3.1.15 If C, D € S, then we have a C-D-bicomodule isomorphism:
(“H,” + Hy)/Hy = (C AD)/(C + D).

Combining Corollary 3.1.9 and Lemma 3.1.15, we obtain the following corollary.

Corollary 3.1.16 Let C, D € S with basic multiplicative matrices Crx, and Dsys, respectively. If

{X('V)},Yep is a complete family of non-trivial (C, D)-primitive matrices, then the cardinal number
1
| I'|= — dims ((C A D)/(C + D)). (3.3)
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The corollary above will help us transform the problem of number of arrows from vertex D to
vertex C in the link quiver of H to the problem of cardinal number of a complete family of non-trivial
(C, D)-primitive matrices in the subsequent sections.

Note that the number (3.3) in Corollary 3.1.16 does not depend on the choices of basic multi-

plicative matrices C and D as well as a complete family of non-trivial (C, D)-primitive matrices.

§3.2 Constructions of a complete family of non-trivial primitive matrices

In this section, let H be a Hopf algebra over k with the dual Chevalley property. Denote the
coradical filtration of H by {H,},>0 and the set of all the simple subcoalgebras of H by S. Let M
denote the set of representative elements of basic multiplicative matrices over H for the similarity
class. It is clear that there is a bijection from S to M, mapping each simple subcoalgebra to its basic
multiplicative matrix, and S = {span(C) | C € M}, where span(C) is the subspace of Hy spanned by
the entries of C.

The aim of this section is to construct a complete family of non-trivial (C, D)-primitive matrices

over H for any C, D € S with basic multiplicative matrices C, D, respectively.

83.2.1 The first construction

Denote 'S = {C € S | k1l + C # k1 AC}. For any C € 'S with basic multiplicative matrix
C € M, using Corollary 3.1.9, we can fix a complete family {X((JVC) teer, of non-trivial (1, C)-primitive
matrices.

Denote

pi= J{x0 |ve e I} (3.4)
Cels

Then for any non-trivial (1,C)-primitive matrix Y € *P and B € M, we have

B yl e yu<gyc>
I 0 1 I 0 &
B ®/ y N — B (35)
0 Lgec 0 C 0 Lge 0
Cus.c)
where £1,E,++ , Eus ey € M. According to Lemma 2.1.4, we know that Y1, Vo, -+, Vs, are non-
trivial.
Denote

pr = {yz | 1 S ) S U(B,C)}v (36)
Bp:= |J PPy, Py:= | PPy (3.7)
Yelp BeM
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We remark that |J Py coincides with !P defined in (3.4).
yelp
Moreover, denote

P=J fP=|J Py (3.8)

BeM yelp

Note that the elements in the set 3733; depends on the choice of the invertible matrix Lg ¢ in
(3.5). It will be shown in the following Lemma that the cardinal number | 2Py | does not depend on

the choice of Lgc.

Lemma 3.2.1 The sum Y.  span());) is direct, where each }; appears in (5.5).
1<i<u(s,c)

Proof: Without loss of generality, assume that
Ei=Ey=---=F

for some 1 <t < wupc, and
E; # By

when ¢ < j <ugey. Infact > span();) is a B-Ei-sub-bicomodule of Hy/Hy. Let Ty be a maximal
1<i<t

subset of {1,2,---,t} such that Y. span());) is direct. Suppose
Jj€To

@ span(Y;) & Z span();).

j€To 1<i<t

Since for any 1 <14 < t, span());) is simple, there exists some s ¢ Ty,

span(Ys @ span(Y;)) = 0.
j€To
Thus
span(), @ span();)) = span(Ys) @ @ span());
j€To j€To
which is a contradiction. Now we can get a subset {wy,--- ,w,} of {1,---,¢} such that

Z span @ span yu;

Without loss of generality, assume that
{wlaw27"' >wr} = {1723"' ,7”}.

According to Lemma 3.1.12, there exists a complete family {X(¥ }we r of non-trivial (B, &;)-primitive

matrices such that {V;}1<i<, is a subset of {x },Yep It follows from Proposition 3.1.13 that ) is
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the linear combination of {X(},cpr. Note that if ¢ > r, then

span();) C @ span());).

1<i<r

According to Corollary 3.1.11, ) is the linear combination of {E}lgigr- This implies that the

column vectors of ( Vi Yo o Wi ) are linearly dependent over H/Hj, which is in contradiction

with Lemma 2.1.4. Thus we have ¢t = r and the sum Y. span()) is direct. Then by Corollary 3.1.9,
1<i<t

the proof is completed. O

Remark 3.2.2 The cardinal number | 5Py |= up ¢, where 5Py appears in (3.6).

Now we define an Hy-bimodule structure on Hy/Hj as follows:
h®@Twsh-T:=hr, TOh+—T-h:=zh (h € Hy,z € Hy).

Thus H;/Hy becomes an Hy-Hopf bimodule with the bicomodule structure defined in (3.1) and bi-
module structure defined obove.

Lemma 3.2.3 With the notations in (3.8), we have Hy/Hy = ) span(X).
XeP

Proof: It suffices us to prove that

H,/Hy C Z span(X).
XeP
Applying the fundamental theorem of Hopf modules ( [68, Theorem 4.1.1]), we know that as a left
Hy-Hopf module,
Ho ® “H°(Hy/Hy) = Hy/Ho,

where (H; /Hy)Ho is the left coinvariants of Hy in Hy /Hy. This isomorphism maps h®Z to hx, where

h € Hy,7 € “°Ho(H, /Hy). Using [45, Proposition 2.6(4)], we can obtain the direct sum decomposition

1H1:@1H10.

ces

It follows that

(‘Hy + Ho)/Hy = ((@1H1C)+Ho)/Ho
ces

(> 'Hi© + Hy)/Ho
Cces

> (*H,“ + Hy)/Ho.
ces

25



Note that Zces(lch + Hy)/Hy is direct and according to Corollary 3.1.9, we have

("Hy + Hy)/Hy = @ ("H:“ + Ho)/Ho = € span(D). (3.9)
ces Yelp

From the proof of [45, Proposition 3.9], we know that

(Hy/Ho)" = @B span(D). (3.10)

yelp

Moreover, the definition of P yields that

Z span(X) = Z Z span(B @' Y).

XeP BeMyelp

In fact

Hy = Z span(B). (3.11)
BeM

According to (3.9) and (3.11), one can get

Hl/HO = {h'f‘hEHo,.TlelHl—FHo}
- ( Z span(B)) . ( @ span(y))
BeMm yelp
C Z Z span(B © )
BeM yelp
= Z span(X).
XeP

Lemma 3.2.4 With the notations in (3.7), for any C € M and non-trivial (1,C)-primitive matriz
X € 1P, we have

< Z span(W)) N Z Z span(W) | = 0.

WePx ZclP,Z#£X WEP=

Proof: According to 3.10, we have

Hy @ (Hy/Ho)*" = @) Ho @ span().
yerp

Moreover, the isomorphism
Hy ® (Hy/Hp)*" = H, /H,
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maps h ® T to h - T, where h € Hy,Z € “°Ho(H; /Hy). By the definition of P, we know that
span(X) N ( Z span(Z)) = 0.
ZElP, 24X
Then

(Ho @ span(Y)) N | Ho @ ( Z span(Z)) | =0,
ZEVP,Z4X

which suggests that

(Ho -span(Y)) N | Ho - ( Z span(Z)) | =0,

ZelPZ#X
where
HO'Span(y> - {hy‘hEHaney}a
Hy - ( Z span(Z)) = {h-Z|h€ Hp,z€ Z span(Z)}.
ZEVP,Z4X ZelP Z#AX

Therefore, by the definition of Py, we conclude that

< Z span(W)) N Z Z span(W) | =0.

WEP ZElP, 24X WEP=

A direct consequence of this lemma is:

Corollary 3.2.5 With the notations in (3.8), then the union P = |J Py is disjoint.
yerp

Now it is not difficult to verify the following theorem.

Theorem 3.2.6 Let C, D € § with basic multiplicative matrices C,D € M respectively. Denote
PP .= (X € P | X is a non-trivial (C, D)-primitive matriz}.

Then it is a complete family of non-trivial (C, D)-primitive matrices. Moreover, we have Hy/Hy =

Drep span(d).
Proof: By the definition of P, we have
7) _ U CPD,
C,DeM

which means that

Z span(X) = Z Z span(X).

XeP C,DEM xcCpPD
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According to Lemma 3.1.6, we know that

Hi/Ho= P (°H\"” + Hy)/Ho.
C,DeS

It follows from Lemma 3.1.7 that

Z span(X) C (“H,” + Hy)/H,
XecpP

which implies that

Z span(X) = @ ( Z span(X))

Xep C,DeEM XxeCpD

P (©HP + Hy)/Hy
C,DeS
H,/Hj.

N

By Lemma 3.2.3, we have

H,/Hy = Z span(X).
XepP

Therefore one can get

(CHlD—l—HO)/HO: Z span(X).
xecpP

Note that
“Py C Py.

Combining Lemmas 3.2.1 and 3.2.4, we can get

Z( Z span(X)) = Z ( @ span(X))

YelP Xxefpy YelP Xxefpy

YEIP Xepy

Thus it follows from

that

Z span(X) = @ span(X),

xecpP XecpP

and PP is a family of non-trivial (C, D)-primitive matrices. Moreover, we have

H,/Hy = @ span(X).
xXepP
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Corollary 3.2.7 Let C,D € S with basic multiplicative matrices C, D € M respectively. Denote
PP .— U cpD,
ceM

which is a disjoint union of PP (C € M) defined in Theorem 3.2.6. Then

(H\” + Hy)/Ho = €P span(X).
XepPP

Moreover, we have

CP: U CPD,
DeM

which is also a disjoint union, and that

(“Hy + Ho)/Hy = € span(X).
Xecp

Proof: Note that by the definition of “PP, we know that PP contains all the non-trivial (C, D)-

primitive matrices in P. It follows that

CP: U CPD-
DeM

According to Lemma 3.1.6, we have

Hi/Ho= @ (“H:\"” + Hy)/Ho.
c.Des

By (3.12) in the proof of Theorem 3.2.6, we know that

(“H\” + Hy)/Ho = Y span(X).

xecpP
This means that these two unions
PD _ U Czp'D
ceM
and
Cr]) — U CPD
DeM

are both disjoint union.
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Using [45, Proposition 2.6(4)], we can obtain the direct sum decomposition

0" =g H".
ces

It follows that

(H\” + Ho)/Hy = (B “H:")+ Ho)/Ho
ces

= () “H\" + Hy)/Ho
ceS

> (“H," + Ho)/Ho.
ces

Then it follows from (3.12) in the proof of Theorem 3.2.6 that

Z Z span(X)

cgeS xecp?P

= Z span(X)

xXepP

= @ span(X),

XePpP

(H1D + Ho)/Ho

the last equation is due to Theorem 3.2.6. The proof of
(°Hy + Ho)/Hy = € span(X)
Xecp

is similar. 0

§3.2.2 The second construction

In this subsection, for any C,D € S, we give another construction of a complete family of
non-trivial (C,D)-primitive matrices over H. We construct a set P’ in the following way. Denote
S ={C € 8| C+kl #C Akl}. For any C € S! with basic multiplicative matrix C € M, according
to Corollary 3.1.9, we can fix a complete family {Xg%)}%e r. of non-trivial (C, 1)-primitive matrices.

Denote

Pl= | (x| 4 e T (3.13)
ceS,

Then for any non-trivial (C, 1)-primitive matrix )’ € P’} we have

& v

Lee 0N (g (€Y se 0 _ 5 (3.14)
O I 0 1 0 I (c/'u(B’C) y, ’

w(s,c)

0 B
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where I is the identity matrix over k and &;,&s, -+ , &, e M.

» Cus, )
Denote
pE = {y“lgiSU(B,c)}, (3.15)
PE = U P Py = P (3.16)
Y'ep BeM
and

7)/ — U 7)/8: U ,Pﬂjl (317)

BeMm yep?t

The same proof with Remark 3.2.2 can be applied to | P55 |.

Remark 3.2.8 The cardinal number | P{5 |= up,c, where P appears in (3.15).

According to [59, Corollary 3.6], since H has the dual Chevalley property, the antipode S of H
is bijective. Then for the mixed Hopf module H;/Hy in g M| we have

Hy ® (Hy/Hy)°H"o =~ H, /Hy,

where (H;/Hy)°H° is the right coinvariants of Hy in H;/Hy. And the isomorphism maps h ® Z to
h-%, where h € Hy,T € (Hy/Hp)“Ho.

The proofs of the following theorem and corollary can be completed by the method analogous to
that used in the proofs of Theorem 3.2.6 and Corollary 3.2.7.

Theorem 3.2.9 Let C, D € S with basic multiplicative matrices C, D € M respectively. Denote
CpP .= (X P | X' is a non-trivial (C,D)-primitive matriz}.

Then it is a complete family of non-trivial (C,D)-primitive matrices. Moreover, we have Hy/Hy =

@D v cpr span(X7).
Corollary 3.2.10 Let C, D € S with basic multiplicative matrices C,D € M respectively. Denote

CP/ = U CPID,
DeM

which is a disjoint union of PP (D € M) defined in Theorem 3.2.6. Then

(°H, + Hy)/Hy = @ span(X).
xecpr
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Moreover, we have

1D Cp!D
PP =] PP,
ceM

which is also a disjoint union, and that

(H,P” + Hy)/Hy = @ span(X).
XePpP'P

So far, for any C,D € S with dimy(C) = r2,dim(D), = s2, we have already constructed two
complete families of non-trivial (C, D)-primitive matrices over H. According to Corollary 3.1.16, the
cardinal number | PP |=| ¢P'P |= L dimy ((C A D)/(C + D)). Thus we can determine the number
L dimy ((C A D)/(C + D)) by studying PP and “P'P.

§3.3 Link quiver

Let H be a Hopf algebra over k with the dual Chevalley property. For convenience, we still use
the notations in Section §3.2.

Let ZS be the free additive abelian group generated by the elements of S. For our purpose, let
us start by giving a unital based Z,-ring structure on ZS. The related definitions and properties of
Z rings can be found in [56, Section 2] and [25, Chapter 3].

For any B, C € S with basic multiplicative matrices B,C € M respectively. Since H has the dual
Chevalley property, it follows from [40, Proposition 2.6(2)] that there exists an invertible matrix L

over k such that

& 0 - 0
0 & - 0
LBo'o)L Tt = |, (3.18)
0o 0 - &
where &£1,&s, - , & are basic multiplicative matrices over H.

Define a multiplication on ZS as follow: for B,C' € S,

t
B-C=)Y E,
i=1
where E,--- , F; € S are well-defined with basic multiplicative matrices & € M as in (3.18).

With the multiplication defined above, now we can prove the following proposition by using

Lemma 2.1.3.

Proposition 3.3.1 Let H be a Hopf algebra over k with the dual Chevalley property and S be the set
of all the simple subcoalgebras of H. Then ZS is a unital based ring with Z, -basis S.
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Proof: For any B,C,D € S with basic multiplicative matrices B,C,D respectively. With the

notations in (3.18), we know that
t

(B-C)-D=> E;-D.

i=1
By Lemma 2.1.3, we have
& O D 0 0 & 6D 0 0
0 E'D - 0 0 E&EOD - 0
0 0 e 5 O'D 0 0 e 500D

(LBe'C)L oD
(LB’ C)L Yo' D

i

~ (Be'C)e' D.
Suppose that
C-D=> F,
i=1
where F; € S for any 1 < i < s, which means that
Fi 0 -0
0 F -+ 0
L/(C ®/ D)L/—l _
0 O Fe

for some invertible matrix L’ over k. Then
B-(C-D)=) B-F,.
i=1

By Lemma 2.1.3, we have

BQ/.Fl 0 0 Fi 0
0 Bo' Fy - 0 0 F
= Bo'
0 0 - B&'F 0 0 - F

= Bo (Lo DL
~ Bo(L'(Ce' D)L
~ Bo (o' D)
~ Bo' (Ce' D).
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As a conclusion, we have

£ 0'D 0 0 Bo' F 0 0
0 EO'D - 0 0 B Fy o oo 0
0 0 e 50D 0 0 - B F

It follows that the traces of these two matrices are equal. Thus a direct verification gives rise to the
fact that ZS is a unital Z,-ring. Let S be the antipode of H, then according to [39, Theorem 3.3],
we get an anti-involution C' +— S(C) of S. It follows from [39, Theorem 2.7] that there is only one 1
in the summand of C' - S(C'), which means that ZS is a based ring. O

Given a finite-dimensional right comodule M over a coalgebra H’, with comultiplication map
p: M — M®H', let cf(M) be the coeflicient coalgebra of M, which is the smallest subcoalgebra of
H' such that p(M) C M ® c¢f(M). One can show that:

Lemma 3.3.2 Let H be a Hopf algebra over k with the dual Chevalley property and S be the set of

all the simple subcoalgebras of H. Then Gr(Hy-comod) is isomorphic to ZS as unital based rings.

Proof: Define

F : Gr(Hg-comod) — ZS,
M —  cf(M).

Next we show that F' is a ring isomorphism. In fact, since Hy is cosemisimple, it follows that M
is a completely irreducible right Hp-comodule. In other words, there are simple right Hy-comodules
V1, Vo, -+, Vi such that M = @199 V;. Note that for any simple right Hy-comodule V;, its coefficient
coalgebra cf(V;) is a simple subcoalgebra of H. If V; and V; are non-isomorphic as right Hy-comodules,
it is apparent that cf(V;) and cf(V;) are non-isomorphic as subcoalgebras. This means that F is
injective. Furthermore, for any C € &, any simple right C-comodule X is a simple Hy-comodule
and the coefficient coalgebra of X is C. One can show that F' is surjective. Using the fact that the
coefficient coalgebra cf(V; ® V;) of V; ® V; is cf(V;) cf(V;), we get that F' is a ring isomorphism. O

Note that if in addition Hy is finite-dimensional, it is clear that ZS is a fusion ring. In this
situation, we can study Frobenius-Perron dimensions in ZS. The reader is referred to [25, Chapter 3]
and [28, Section 3] for details.

For any C' € S, let FPdim(C) be the maximal non-negative eigenvalue of the matrix of left
multiplication by C. Since this matrix has non-negative entries, it follows from the Frobenius-Perron
theorem that FPdim(C) exists. Furthermore, FPdim is the unique character of ZS which takes non-

negative values on S.

Lemma 3.3.3 If Hy is finite-dimensional, then for any C € S, we have FPdim(C) = /dimg(C).
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Proof: This is because
C— dln’l]k(C)

is exactly the unique character of ZS which take non-negative values. ([

In this section, let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property
and H;/Hj is finite-dimensional. Note that according to Lemma 3.2.3; we know that P is a finite set
in this situation. Besides, for any matrix A = (a;j)mxn over H, denote the matrix A7 := (a;;)nxm

and S(A) := (S(aij))mxn, where S is the antipode of H.

Now let us recall the concept of link quiver.

Definition 3.3.4 ( [17, Definition 4.1]) Let H be a coalgebra over k. The link quiver Q(H) of H is
defined as follows: the vertices of Q(H) are the elements of S; for any simple subcoalgebra C,D € S
with dimy(C) = 72, dimy (D) = s?, there are ezactly -= dimy((C A D)/(C + D)) arrows from D to C.

With the notations in Section §3.2, we can view PP as the set of arrows from vertex D to vertex
C, view PP as the set of arrows with start vertex D and view P as the set of arrows with end vertex

C. Similar statements can also be applied to P’.
Now we start to study the properties for the link quiver of a Hopf algebra with the dual Chevalley
property.

Lemma 3.3.5 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.
Denote 1S ={C €S |kl+C#KkIANC}, S'={C eS8 |C+kl+#CAkl}. Then

(1) [P = 1;
(2) |'P =P ;

(3) C €18 if and only if S(C) € S*.

Proof:

(1) At first, we try to find a non-trivial (1, F)-primitive matrix for some F € M. This can be
obtained by the same reason in the proof of [45, Lemma 4.7(1)], but here we prove it in another
way. When H # Hy, it follows from Lemma 3.2.3 that P # 0. So there exists some non-trivial
(C, D)-primitive matrix X € P. Let KS(C)TK~! € M be the basic multiplicative matrix of

S(C), where K is some invertible matrix over k. Since S(C) - C contains k1 with a nonzero
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coefficient, by Lemma 2.1.3, we have

(KS(O)TK™Y) o ( ¢ )

0 D
C X
= (Ko Dn|s©oTe (K o'I)
0 D
& X oo X
& Xep 0 A
~ 1 X o Xpiw |

Fy

Fu

where [ is the identity matrix over k, &;, F; € M for any 1 <1i <¢,1 <j < u. By Lemma 2.1.4,
there exists some k such that Xy i is non-trivial, where 1 < k& < u. Thus we get a non-trivial
(1, Fi,)-primitive matrix Xyiq k-

According to Lemma 3.1.7, we have
0 # span(Xy41x) € (*Hi™* + Ho)/Ho C (*Hy + Ho)/Ho.
Consequently, it follows from Corollary 3.2.7 that

| P> 1.

(2) For any C € M, it is not difficult to verify that S(Y)7 is a non-trivial (S(C)7, 1)-primitive matrix,
where ) € 1P is a non-trivial (1,C)-primitive matrix. According to (3.12) in the proof of Theorem
3.2.6, we have

S((*H\“ + Ho)/Hy) = S( €P span(D))

yel’PC
- Z span(S(Y)7T)
yel'pc
c (*9H'+ Hy)/Hy,

the last inclusion is due to Lemma 3.1.7. It follows from [59, Corollay 3.6] that S is bijective.

Hence we have

dimy (YH\© + Hy)/Hy)) < dimy ((°“YH,* 4 Hy)/Ho).
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This implies that
1 .
|'PC| = ——=dimy((*H\“ + Ho)/Ho))
dimy (9 Hy' + Ho)/Ho))

dimy (S(C))
‘ KS(C)TK’lfPl ,

where K is some invertible matrix over k such that KS(C)TK~! € M is a basic multiplicative

matrix of S(C). By Corollary 3.2.7 and the fact that S is a permutation on S, we have

Pl o= > |Pe

ceM

< Z |KS(C)TK’17)1 |
cem

- >R
cem
= |P.
Next we adopt the same procedure to deal with P!, we get
|zpll |§| LP/ | .

According to Corollaries 3.2.7 and 3.2.10,

|1P|:Z |1IPC‘:Z |1P/C|:|17D,|.

ceM ceM

A similar arguments shows that
| PLI= P (3.19)

Thus the proof is completed.
(3) It is straightforward to know that
CelS < kl+C#kIANC

— S(C)+kl#S(C)nkl
— S(C)es.

Lemma 3.3.6 Suppose that X is a non-trivial (C, D)-primitive matriz. For any B € S,
(1) if B - C contains E with a nonzero coefficient, then there exists some arrow in Q(H) with end
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vertex B;

(2) if B - D contains F' with a nonzero coefficient, then there exists some arrow in Q(H) with start

verter F.

Proof: We only prove (1); the proof of (2) is similar. By [40, Proposition 2.6|, there exist invertible

matrices Lg ¢, L p over k such that

Lsc 5o cC X Lze
Lsp 0 D Lo
_ Lic Bo'C Bo'X Lge
Lsp 0 Beo'D Lsp

&1 X1 T Xlu(s,p)
= Cusey Xumeor 7 Xugeyusn 7 (3.20)
Ji
0
Fus o)
where &1, -+, &y oy F1s 0 5 Fugs py are the given basic multiplicative matrices. According to Lemma

2.1.4, we know that for each 1 < i < up ), there is some 1 < j < u(g p) such that &j; is non-trivial;
and for each 1 < j < U(B,D)s there is some 1 < ¢ < U(B,C) such that Aj; is non-trivial. Without loss of

generality, for any F; contained in B - C, suppose that X;; is non-trivial. Note that

span(X;1) C (¥ H ™" + Ho)/Hy).
It follows from Lemma 3.1.16 that

This means that there exists some arrow from Fj to F;, the proof of (1) is complete. ]

For convenience, denote S = {C; | i € I} be the set of all the simple subcoalgebras of H. For

any C;,Cj € S, let C; - Cj = 3 of ;Cy, where of ; € Zy. Moreover, we denote M = {C; | i € I}, such
tel '

that each C; € M is the basic multiplicative matrix of C; € S. By Remarks 3.2.2 and 3.2.8, we can

show the following results.

Lemma 3.3.7 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

(1) For any Y € 'P, where Y is a non-trivial (1,C;)-primitive matriz and C; € M, let B;; be the

cardinal number of ©Py. Then Bij = > af ;> 1;
tel
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(2) For any V' € P, where V' is a non-trivial (C;,1)-primitive matriz and C; € M, let f3}; be the

cardinal number of P3§ Then f3; = Z:Iaij > 1.
t€

For any Y € 'P and C; € M, denote

PSS = PY NPy,

Using the lemma above, we can acquire further properties.

Corollary 3.3.8 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

Then for any non-trivial (1,C;)-primitive matriz Y € *P, where C; € M, we have

(1) | %Py |>1, | PJC;' |> 1 hold for all C; € M;

(2) | Py |=1.

Proof:

(1)

For any C; € M, it is apparent from Lemma 3.3.7 that
Bij = “Py |> 1.

Since ZS is a unital based ring, according to Lemma 2.2.2, there exists some simple subcolagebra

Cy € S such that Cy - C; contains C; with a nonzero coefficient. Now we consider

I 0 (1Y I 0
Ct © 1 )
0 Lec,c, 0 G 0 Le e,

where [ is the identity matrix over k and L¢, ¢; is an invertible matrix over k which is defined
in Section §2.1. It follows from Lemma 2.1.4 that there exists some non-trivial (Cy,C;)-primitive
matrix Z € ¢Py, C Py, where C; € M. On the other hand, we know that Z € ¢+PC¢ C PCi,

where the last inclusion is due to Corollary 3.2.7. It follows that
ZeP%n Py.

Thus
| PS> 1.

Choosing C; =kl in (1), we know that
| P31/ | > 1 :l 17)37 "

where

Py = {V}.
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Since

Pl=P'nP= ) (P nPz),
Zelp

it follows from Corollary 3.2.5 that

[P =D P> Y [Pz =[P,

Zelp Zelp
But by Lemma 3.3.5, we have
| P =P,
which follows that the cardinal number | P} | can only equal to 1 for each Z € 'P. O

For any C,D € S with basic multiplicative matrices C,D € M respectively. Recall that C', D
are said to be directly linked in H if C 4+ D is a proper subspace of C A D + D A C. Note that
by [40, Lemma 3.6 (2)] that C, D are directly linked in H if and if only there exists some (C,D)-
primitive or (D, C)-primitive matrix, which is non-trivial. We can use this notion to describe 'S and
St

The following proposition exactly recovers the definition of Hopf quiver.

Proposition 3.3.9 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley prop-
erty. If all the simple subcoalgebras directly linked to k1 are 1-dimensional, then we have | ¢P |=|

PC |=| P |, for any C € M.

Proof: Suppose that y € !P is a non-trivial (1, g)-primitive matrix of size 1 for some g € G(H). For
any C € S, it is straightforward to show that Cyg is also a simple subcoalgebra of H. By (3.6), we
know that for any C € M,

“Py ={Cy} and 'Py={y}.

This means that

[Py |=1=["Py|.

Therefore, we have

1CPI= > [“Pyl= D> ['"Py="P]. (3.21)

yerp yelp
By the same method as employed above, we can show that
| PC =P . (3.22)
According to Corollaries 3.2.7 and 3.2.10, for any D € M, we have

| PP =[PP I= > [P I=|PP|. (3.23)
ceM cemM
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It follows from Lemma 3.3.5 that

(3.21) (3.23) (3.22) (3.23)

[SPITE P = PHTET PETET POTET PO

Now let us focus on a special situation.

Corollary 3.3.10 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley property.

Then the followings are equivalent:
(1) | P |=| P€ |= 1 holds for all C € M;

(2) | P |=1 and the unique subcoalgebra C' € 1S is 1-dimensional.

Proof: Indeed, it follows from Proposition 3.3.9 that (2) implies (1). Conversely, assume that there

exists some simple subcoalgebra C' € §; such that
dlmk(C) > 1.

Suppose KS(C)T K~ € M is a basic multiplicative matrix of S(C), where K is some invertible matrix
over k. Since there is only one 1 in the summand of S(C) - C in ZS, it follows from Lemma 3.3.7 that

| KS(C)K_1«P |> 17

which is a contradiction to the assumption in (1). O

According to Proposition 3.3.9, we know that if all the simple subcoalgebras directly linked to

k1 are 1-dimensional, we have

PP

and

| “P =1 PC |,

for any C € M.

According to [25, Propositions 3.3.6(2) and 3.3.11], there exists a unique, up to scaling, nonzero
element R € ZS ®z C such that X - R = FPdim(X)R for all X € ZS, and it satisfies the equality
R-Y = FPdim(Y)R for all Y € ZS. Such an element R is called a regular element of ZS. It is
straightforward to show that the element R = > FPdim(Y)Y is a regular element. We can obtain a
useful equation, which is needed in the next se}éteién.

Lemma 3.3.11 With the notations in Lemma 3.5.7, suppose that Hy is finite-dimensional. Then we

have the following equation

\/ dimk(C’k) (Z \/ dlmk(cl)> = Z \/ dimk(Ci)ﬁik.

icl el
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Proof: By Lemma 3.3.3 and Lemma 3.3.7, we know that
Bir = Z ag,k
tel

and

FPdlm(Cl) = dlmk(Cl)

hold for any i € I. Tt follows from [25, Propositions 3.3.6(2) and 3.3.11] that

R= Z \ lel]k(C'Z)C'z

el

is a regular element and

\/dimk(Ck)R =R Ck.

This means that

Vaman (X vameye ) = (3 vamce) -

el el
= ZZ \/dimk(C’i)a;kCt7
i€l tel

which follows that

V/dimy (Cr) /dimy (Cy) =)~ /dimy (Ci)af .

i€l
Thus we have

dlm]k Ck (Z \/ dlm]k > Z \/ dun]k(C’L) ik -

i€l el

O
At the end of this section, we recall the concept of link-indecomposable components of coalgebra

H.

Definition 3.3.12 ( /55, Definition 1.1]) A subcoalgebra H' of coalgebra H is called link-indecomposable
if the link quiver Q(H') of H' is connected (as an undirected graph). A link-indecomposable component

of H is a mazimal link-indecomposable subcoalgebra.

As a consequence, we obtain the following proposition.

Proposition 3.3.13 Let H be a non-cosemisimple Hopf algebra over k with the dual Chevalley proper-
ty. If all the simple subcoalgebras directly linked to k1 are 1-dimensional, then the link-indecomposable

component Hyy containing k1 is a pointed Hopf algebra.

Proof: Suppose there exists a simple subcoalgebra B with dimy(B) > 1 such that some 1-dimensional

simple subcoalgebra kg contained in H) is directly linked to B, where g € G(H). Without the loss of
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generality, we can assume that there exists some non-trivial (g, B)-primitive matrix for some B € M.

—1 ! g ‘X
g O .

We can get a (1, g~ B)-primitive matrix gt X', where g~ B is a multiplicative matrix of g~!B € S. We

Now we consider

know that k1 is directly linked to the simple subcoalgebra g~' B, which is a contradiction. Therefore,
it is directly from [40, Theorem 4.8 (3)] that H(;) is a pointed Hopf algebra. O

Let Q(H) be the link quiver of H. For each arrow X : C — D in Q(H), let X~1: D — C be
the formal reverse. Recall that a walk from C to D is a nonempty sequence of arrows X7, Xs, -+, X
such that there exists a family of {\;}1<i<m such that XM X2 ... XA is a path from C to D, where
il1<i<myC{-1,1}

For each C; € S, \; € {—1,1}, define

Recall that in [22, section 3|, a Hopf quiver Q(G, x) is connected if and only if the union Uy, .oC

generates G. The following proposition generalizes this result.

Proposition 3.3.14 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the
dual Chevalley property. The link quiver Q(H) of H is connected if and only if for any D € S,
there exist Cy,--- ,Cy, € 'S such that Cl)‘1 . C’;‘2 - CM contains D with a nonzero coefficient, where

{N1<i<n}C{-1,1}.

Proof: For any D € S, suppose that there exist Cy,---,Cs € 1S such that Cl)“CzAQ .-~ C2s contains
D with a nonzero coefficient. We are going to find a walk from k1 to D.

When Ay =1 or Ay = —1, we can find a walk from k1 to C’l)‘l.

When Ay = 1, there exists a non-trivial (1,Cy)-primitive matrix X5. According to Lemma 3.3.6, we
know that for any summand FEs contained in Cfl - Cy with a nonzero coefficient, there exists some
arrow from Ey to C;'. When Ay = —1, there exists a non-trivial (K;S(Cy)K; ", 1)-primitive matrix
Va2, where K is some invertible matrix over k such that K;S(Co) K L'e M. It is a consequence of
Lemma 3.3.6 that for any summand E> contained in C’I\l - §(C%) with a nonzero coefficient, there
exists some arrow from O} to Ey. It turns out that for any summand Ey contained in O} - C3? with
a nonzero coefficient, we can find a walk from k1 to Fs.

Continuing by induction, we can finally find a walk from k1 to D. Therefore, Q(H) is connected.
Next we show the inverse. If Q(H) is connected, then for any D € S, we can find a walk from k1l to

D which goes through vertices Ey, F1,- - , Ey, where

Ey=kl,E, = D.
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Now we claim that for each Fj, i > 1, there exists a family of {C}}1<;<; such that C;*Cy? - O}
contains E; with a nonzero coefficient, where Cy,--- ,C; € 'S, A\1,---,\; € {1,—1}. We prove the
claim by induction.

When i = 1, in the link quiver Q(H), there exists some arrow from F; to kl or from k1l to Fy. If
there exists some arrow from F; to k1, the claim is evident. If there exists some arrow from k1 to F1,

then by Lemma 3.3.5, we have S(E;) € 'S. Let
C(1 = S(E1)7

the claim is proved.

Suppose that the claim holds for E;, which means that there exists a family of {C}}i<;j<; such that
C’f‘lC’Q’\2 C’Z)“ contains F; with a nonzero coefficient. Now we consider F;;1. We know that there
must be some arrow from F; to E; 1 or from F;;; to F;. If there exists some arrow from F; 1 to Fj;,
it follows from Lemma 3.2.6 that there exists some non-trivial (&;, £;+1)-primitive matrix &; € P. By
the definition of P, we know that there exists some non-trivial (1, F)-primitive matrix ) € P such
that X; € Py, where F € M. Let

Ciy1 =F,

it follows that F; - C;;1 contains F;;1 with a nonzero coefficient.
If there exists some arrow from FE; to F;;1, we can find some non-trivial (&;, £;41)-primitive matrix
X;. Tt is straightforward to show that S(X;) is a non-trivial (S(€;41), S(&;))-primitive matrix. This
means that

(SEie) 1 SED 4 [y)/Hy # 0.

Let K1S(&)K; Y, K2S(Ei41) Kyt € M be the basic multiplicative matrices of S(E;), S(E;1), respec-
tively, where K7, K5 are invertible matrices over k. From Lemma 3.2.6, there exists some non-trivial
(K1S(&)K Y, KyS(Ei41) Ky Y)-primitive matrix X7 € P. By the definition of P, we know that there
exists some non-trivial (1, F)-primitive matrix ) € 'P such that X € K1SEK 1793;. This means

that S(E;) - F' contains S(F;11) with a nonzero coefficient. Let

applying Lemma 3.3.1 yields that Cj 'E; contains E;y, with a nonzero coefficient. The proof is

completed. (]

44



Chapter 4 Corepresentation type

§4.1 Finite corepresentation type

One of the most important topics in representation theory is the classification of indecomposable
(co)modules over a (co)algebra. The reader is referred to [5] and [11] for general background knowledge
of representation theory.

Recall that a finite-dimensional algebra A is said to be of finite representation type provided there
are finitely many non-isomorphic indecomposable A-modules. We say that A is of tame representation
type or A is a tame algebra if A is not of finite representation type, whereas for any dimension
d > 0, there are finite number of A-k[T]-bimodules M; which are free of finite rank as right k[T]-
modules such that all but finite number of indecomposable A-modules of dimension d are isomorphic
to M; @y k[T]/(T — X) for A € k. A is of wild representation type or A is a wild algebra if there
is a finitely generated A-k[T]-bimodules B which is free as a right k(X,Y)-module such that the
functor B®yx,y)— from the category of finitely generated k(X,Y")-modules to the category of finitely
generated A-modules, preserves indecomposability and reflects isomorphisms. A finite-dimensional
coalgebra C is said to be of finite corepresentation type, if the dual algebra C* is of finite representation
type. C is defined to be of tame corepresentation type, if C* is a tame algebra. We say that C' is of
wild corepresentation type, if the dual algebra C* is a wild algebra. See [27,64].

Besides, an algebra A is said to be of infinite representation type, if A is not of finite representation
type. A finite-dimensional coalgebra C' is defined to be of infinite corepresentation type, if C* is of
infinite representation type.

Let A (resp. C) be an algebra (resp. coalgebra) over k and {M;};c; be the complete set of
isoclasses of simple left A-modules (resp. right C-comodules). The Ext quiver T'(A) (resp. T'(C)) of
A (resp. C) is an oriented graph with vertices indexed by I, and there are dimy Ext'(M;, M;) arrows
from i to j for any i, j € I. To avoid confusion, for any Hopf algebra H over k, we denote the algebra’s
version of Ext quiver of H by I'(H)* and denote the coalgebra’s version of Ext quiver of H by I'(H)°.

Now let us recall the definition of separated quiver.

Definition 4.1.1 (cf. [5, §X. 2]) Let A be a finite-dimensional algebra over k and I'(A) = (T'o,T'1)
be its Ext quiver, where I'o = {1,2,--- ,n}. The separated quiver I'(A)s of A has 2n wvertices

{1,2,---,n,1",2/,--- ,n'} and an arrow i — j' for every arrow i — j of T(A).

Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property. As mentioned
in Section §3.3, for any simple subcoalgebra C, D € S with dimg(C) = r? dimy (D) = s?, there are
exactly -1 dimg((C' A D)/(C + D)) arrows from D to C in the link quiver Q(H) of H. Moreover, we
have

PP [=| PP = dimy((C A D)/(C + D)),

and there are exactly | P | (=] “P’ |) arrows with end vertex C' and | PP | (=| P'P |) arrows with
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start vertex D in the link quiver Q(H) of H.

In order to solve the classification problems, we divide it into several different situations. Let us

consider the first case.

Proposition 4.1.2 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property. If | *P |> 2, then H is of infinite corepresentative type.

Proof: We know that the k-linear abelian category of finite-dimensional comodules over H is isomor-
phic to the category of finite-dimensional modules over H*. This means that the coalgebra’s version
of Ext quiver I'(H)® of H is the same as the algebra’s version of Ext quiver I'(H*)* of H*. According
to [17, Theorem 2.1 and Corollary 4.4], the link quiver Q(H) of H coincides with the algebra’s version
of Ext quiver I'(H*)* of H*.

Note that H* is Morita equivalent to a basic algebra B(H*). It suffices to prove that the basic algebra
B(H*) of H* is of infinite representative type. Let J be the ideal generated by all the arrows in Q(H ).

By the Gabriel’s theorem, there exists an admissible ideal I such that
KQ(H)/I = B(H"),
where Jt C I C J? for some integer ¢ > 2. Thus there exists an algebra epimorphism
f: BUH) — kQ(H) /2.

It is enough to show that kQ(H)/J? is of infinite representative type. Since the Jacobson radical of
kQ(H)/J? is J/J?, we know that kQ(H)/J? is an artinian algebra with radical square zero.

Now assume on the countrary that kQ(H)/J? is of finite representation type. It follows from [5, X.2
Theorem 2.6] that the separated quiver Q(H)s of kQ(H)/J? is a finite disjoint union of Dynkin
diagrams.

Since | 1P |> 2, it follows from Corollary 3.2.5 that
|“PI= D 1Py |2 'P 22 (4.1)
yerp
According to Corollary 3.3.8, we have
| POI= D IPY 2P |>2 (4.2)
yelp

for all C € M.
By a discussion on | 'S |, we aim to find a contradiction to Q(H), being a finite disjoint union of

Dynkin diagrams.
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i)

i)

When | 1S |= 1, then the separated quiver Q(H)s must contain

o—)’o k1’

as a sub-quiver. The above quiver is a Kronecker quiver whose underlying graph is not a Dynkin

diagram. We know that kQ(H)/J? is of infinite representation.

When | 1S |> 2, by (4.1) and (4.2), the separated quiver Q(H )4 contains a sub-quiver of the form

B, By
() [

. / \. / \.

D) k1’ D,

where F7 # E5 and there are 3 possible situation.

If D] = k1’ or D) = k1’, the separated quiver of Q(H) contains a Kronecker quiver as a sub-
quiver.

If D} = D} # k1’, the separated quiver of Q(H) contains a sub-quiver whose underlying graph
is A,, for some n > 3 and it is a Euclidean diagram. Therefore, kQ(H)/J? is of infinite represen-
tation type.

If D}, D}, k1’ are distinct from each other, the separated quiver Q(H ), contains the following

NN

Then if By = E; for some i = 1,2,3, it is evident that kQ(H)/J? is of infinite representation

sub-quiver

type. Otherwise, we repeat above process. Since S is a finite set, the separated quiver Q(H)s
either contains the Kronecker quiver as a sub-quiver or contains a sub-quiver whose underlying

graph is A, for some n > 3.

As a conclusion, kQ(H)/J? is of infinite representation type, and this implies that H is of infinite

corepresentative type. O

Recall that an algebra is said to be Nakayama, if each indecomposable projective left and right

module has a unique composition series. It is well-known that a basic algebra A is Nakayama if and

only if every vertex of the Ext quiver of A is the start vertex of at most one arrow and the end vertex

of at most one arrow (see [11, §V. 2. Theorem 2.6]).

Next we consider the second case.
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Proposition 4.1.3 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual
Chevalley property. If | P |= 1 and the unique subcoalgebra C € 'S is 1-dimensional, then H is of

finite corepresentative type.

Proof: From the proof of Proposition 4.1.2, we know that the link quiver Q(H) of H is the same as
the Ext quiver I'(H*)® of H*. Using Lemma 3.3.10, we can find

|¢P|=|PC =1, CeM,

which means that the basic algebra B(H*) is a Nakayama algebra. It follows from [5, §VI. Theorem
2.1] that the Nakayama algebra B(H*) is of finite representation type, which implies that H is of finite

corepresentation type. O

Note that since H is finite-dimensional, ZS is a fusion ring with Z . -basis S = {C; };c;. Suppose
that C; - C; = 3 aﬁjC’t, for any C;,C; € S. By the proof of Proposition 3.3.1, the involution of I is
tel
decided by S, that is C;« = S(C;).

Before proceeding further, let us give the following lemma.

Lemma 4.1.4 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual

Chevalley property. Let | P |=1 and Cy, be the unique subcoalgebra contained in *S.

(1) The number of arrows with end vertexz C; in Q(H) is equal to Zlozﬁk, and the number of arrows
te
with start vertex C; in Q(H) is equal to Y aly.;
tel

(2) The number of arrows from Cy to C; in Q(H) is equal to of, and we have of, = aly..

Proof:

(1) According to Lemma 3.3.5 (2) and (3.19) in its proof, we know that
| P =P = P =1
Suppose
P ={}

and

zpll — {yl}

Combining (3.7) and Lemma 3.3.7, we have

| P |=| “Py =D aly.

tel
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This means that the number of arrows with end vertex C; in Q(H) is equal to > af,. A similar
tel
argument shows that the number of arrows with start vertex C; in Q(H) is equal to Y at,..
tel

(2) In ZS, we have
S(Ck) - S(Ci) = alS(Ch) = D afi S(Ch).

tel tel

It follows from [25, Proposition 3.1.6] that

¢ & '
O = Oujn = Qe
Moreover, by (3.7), we can find that

Cip = Cipy.

It follows from Theorem 3.2.6 that

| SPC |= af.

Thus the number of arrows from C; to C; in Q(H) is equal to ;. O

Using Lemma 4.1.4, now we can turn to the last situation.

Proposition 4.1.5 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual
Chevalley property. Let | *P |= 1 and C}, be the unique subcoalgebra contained in *S. If dimy(Cy) > 4,

then H is of infinite corepresentative type.

Proof: Proceeding as in the proof of Proposition 4.1.2, we need only to observe the separated quiver
of kQ(H)/J?.
If dimg (C) > 9, since B1x = 1, it follows from Lemma 3.3.11 that there exists at least one subcoalgebra
C, such that

5uk = Zafik > 4.

tel
The separated quiver of Q(H) contains a vertex which is the end vertex of at least 4 arrows. Evidently,
the underlying graph of this separated quiver is not the union of Dynkin diagrams, thus H is of infinite
corepresentative type.
If dimg(Ck) = 4, we deal with this situation through classified discussion. In the following part, for
any n > 2, let S(n) be the set of all the n?-dimensional simple subcoalgebras of H and let G(H) be
the set of all the group-like elements. According to Lemma 4.1.4 (2), we know that the following two

numbers are equal:

- The number of C; contained in C; - Cy;

- The number of C; contained in C; - S(Cj).
Now let us start discussing different situations.
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(D

(IT)

Suppose that
S(Cy) - Cr =kl 4+ kg1 +kgs + kg3

in ZS, where g1,g2,93 € G(H). According to Lemma 4.1.4 (1), the separated quiver Q(H),
contains a vertex which is the end vertex of 4 arrows and it can not be a finite disjoint union of
Dynkin diagrams. We know that H is of infinite corepresentation type.

Note that if there exists some vertex in Q(H)s which is the end vertex or the start vertex of at
least 4 arrows, then a similar arguments shows that H is of infinite corepresentation type. For

simplicity, in the following proof, we will no longer consider the occurrence of this situation.

Suppose that in ZS, we have
S(Cy) - C, =kl +kgy + D',

for some g1 € G(H) and D§2) € S5(2).

i) If
D . S(Cy) = S(Cr) + kga + kgs,

where g2,93 € G(H). Using Lemma 4.1.4 (2), the separated quiver of kQ(H)/J? either

contains a sub-quiver of the form

or contains

]kgl D(2)

NS

S(Ck)

as a sub-quiver. The underlying graph of the sub-quiver in the latter case is D5 and it is an
Euclidean graph. Since the underlying graph of both of them are not Dynkin diagrams, it

follows that H is of infinite corepresentation type.
i) If
Dy - S(Cr) = 5(Cy) + Dy

for some Dg) € §(2), a similar argument shows that if
- Cp = D) + kg + kgs,

where g4, 95 € G(H), then H is of infinite corepresentation. If not, we can consider the case
that
DY . ¢, = DY + DY,

where D les (2). Continue the process, we know that either H is of infinite corepresen-
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tation type, or we can get a sub-quiver which contains infinite vertexes of kQ(H)/J? of the

following form

ko D(z D
\,/ AN
S(Cy)' D<2>

For the latter case, it is in contradiction with the fact that H is finite-dimensional.

(III) Finally, we focus on the case that
S(Cy) - C = k1 + DY

in ZS for some Dg?’) € 5(3).
i) I
DY - 5(Ci) = S(C) + DY + DSV,

where D§2), Df) € §(2), then
D . ¢, =D 1 kg,

and
DY - Cy = DY + ks,

where g1, g2 € G(H). It follows from Lemma 4.1.4 (2) that the separated quiver for kQ(H)/.J?
either contains the Kronecker quiver as a sub-quiver, a sub-quiver whose underlying graph

is A,, for some n > 3, or a sub-quiver of the following form

3
D( ) kgl kgz

\/M

D(2)/ D(Z)/

The underlying graph of the quiver in the latter case is Fg, which is an Euclidean graph.

This means that H is of infinite corepresentation type.
i) If
D . S(Cy) = S(Cx) + DS + kg,

where g1 € G(H) and Dé?’) € S(3), we know that kg; - C}, contains Dgg) with a nonzero
coefficient in ZS. But

\/dimk(]kgl) \/dlm]k(Ck) < \/m»

o1



iii)

this leads to a contradiction. Therefore, this situation never happen.

Suppose that
D . Ss(Cy) = S(Cr) + DY,

where DYL) € §(4), we can continue this process. Since H is finite-dimensional, an argument

similar to the one used in (2)(II) shows that there exists some n > 3 such that
DY 5%(C) = DY)+ D
holds for all 3 <4 < n, and
D"t geni(Cy) = D\ + B+ F,

where FE, F € S,DP = S(C’k),Dgi) € §() for 3 <i<mn+1and a; =0 when ¢ is even,
«; = 1 when 7 is odd.

When n = 2m for some m > 2, a similar argument shows that
dimg(E) =m+1, /dimg(F)=m+ 1.

Notice that E - Cy contains at least one subcoalgebra G with a nonzero coefficient besides

D§2m+1), where /dimg(G) = 1. Then we know that G - S(C%) contains F, which is in

contradiction with /dimy(E) > 3.
When n = 2m + 1 for some m > 1, since E - S(Cy) and F - S(C}) contain D§2m+2) with a

nonzero coefficient, it follows that

dimg(E) > m+1, /dimg(F)>m+ 1.
Without loss of generality, we can assume

dimg(E) =m+2, /dimg(F)=m+ 1.

Note that E - S(Cy) contains at least one subcoalgebra G with a nonzero coefficient besides
D§2m+2), where /dimg(G) < 2. Then we know that G - S(Cy) contains E, which means
that m =1 or m = 2 and \/W:Q.
Based on the consideration above, we need only to consider the situations of n = 3 and
n=>o.
When n = 3,

p\W.c,=D® +E+F

where E, F € S. Since E - S(C) and F - S(Cy) contains DYL) with a nonzero coefficient, it
follows that

\/dimk(E) 2 27 \/dimk(F) Z 2.

92



Without loss of generality, suppose that

Vdim (E) =3, +/dimy(F) =

Then we have

E-5(Cy) = DIV + DY,

and

D . S(Cy) = E +kqn,

where g1 € G(H), Dém € 8§(2). According to Lemma 4.1.4 (2), the separated quiver of
kQ(H)/J? either contains the Kronecker quiver as a sub-quiver, a sub-quiver whose under-

lying graph is A,, for some n > 3 or a sub-quiver of the following type

NS

The underlying graph of the sub-quiver in the latter case is E7 and it is an Euclidean graph,
which means that H is of infinite corepresentation type.
When n = 5, we have

D .c, =D + D,
D . 5(Cy) = DY + D

and

D .c, =D +E+F
Without loss of generality, we can assume
\ dlm]k(E) = 47 dlmk(F) =3.

It follows that
E-S(Cy) = D% + DY)

This means that the separated quiver for kQ(H)/J? either contains a sub-quiver whose

underlying graph is A,, for some n > 3 or a sub-quiver of the following type

D<3> D(s)

\/\/\//<

D(4)/ D(G)/ D(Q)/
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The underlying graph of the sub-quiver in the latter case is Fg and it is still an Euclidean

graph, which means that H is of infinite corepresentation type.

In conclusion, H is of infinite corepresentation type. O

Recall that a basic cycle of length n is a quiver with n vertices eg,e1, - ,e,_1 and n arrows
ag, a1, - an—1, where the arrow a; goes from the vertex e; to the vertex e;11. With the help of the

proceeding three propositions and Corollary 3.3.10, we can now obtain the following theorem.

Theorem 4.1.6 Let H be a finite-dimensional non-cosemisimple Hopf algebra over an algebraically
closed field k with the dual Chevalley property and Q(H) be the link quiver of H. Then the following

statements are equivalent:
(1) H is of finite corepresentation type;

(2) Every vertex in Q(H) is both the start vertex of only one arrow and the end vertex of only one

arrow, that is, Q(H) is a disjoint union of basic cycles;
(8) There is only one arrow C' — k1l in Q(H) whose end vertex is k1 and dimy(C) = 1;

(4) There is only one arrow k1l — D in Q(H) whose start vertex is k1l and dimg(D) = 1.

Proof: Combining Propositions 4.1.2, 4.1.3 and 4.1.5, we can prove the equivalence of (1) and (3).
According to Lemma 3.3.5 and Corollary 3.3.10, we know the equivalence of (2), (3), and (4). O

Let H(;y be the link-indecomposable component containing k1. Combining Proposition 3.3.13

and Theorem 4.1.6, we have:

Corollary 4.1.7 A finite-dimensional non-cosemisimple Hopf algebra H over k with the dual Cheval-
ley property is of finite corepresentation type if and only if H(yy is a pointed Hopf algebra and the link

quiver of H(yy is a basic cycle.

Recall that a finite-dimensional Hopf algebra H over k is said to have the Chevalley property, if radical
Rad(H) is a Hopf ideal. According to [3, Propersition 4.2], we know that H has the Chevalley property
if and only if H* has the dual Chevalley property.

Theorem 4.1.8 A finite-dimensional Hopf algebra H over an algebraically closed field k with the
Chevalley property is of finite representation type if and only if H is a Nakayama algebra.

Proof: The sufficiency follows immediately since it is known that every Nakayama algebra is of finite
representation type. Next we show the necessity. In fact if H has the Chevalley property, we know
that H* has the dual Chevalley property. According to the proof of Proposition 4.1.2, the Ext quiver
of H is the same as the link quiver of H*. If H is semisimple, the Ext quiver of H contains no arrows.
If H is not semisimple, it follows from Theorem 4.1.6 that the Ext quiver of H is a finite union of

basic cycles. Thus H is a Nakayama algebra. O
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Recall that a coalgebra C' is said to be coNakayama, if the dual algebra C* is a Nakayama algebra.

It is direct to see the following corollary.

Corollary 4.1.9 A finite-dimensional Hopf algebra H over an algebraically closed field k with the
dual Chevalley property is of finite corepresentation type if and only if H is coNakayama.

§4.2 Tame corepresentation type

Let H be a finite-dimensional non-cosemisimple Hopf algebra k with the dual Chevalley property.

Now we can characterize the link quiver of H when it is of finite or tame corepresentation type.

Theorem 4.2.1 Let k be an algebraically closed field and H a finite-dimensional Hopf algebra over
k with the dual Chevalley property. Denote 'S = {C € S |kl +C #k1 AC}.

(1) H is of finite corepresentation type if and only if | 'P |= 1 and 'S = {kg} for some group-like
element g € G(H).

(2) If H is of tame corepresentation type, then one of the following two cases appears:

(i) | 1P |=2 and for any C € 1S, dimy(C) = 1;
(ii) | 1P |=1 and 'S = {C} for some C € S with dimy(C) = 4.

(8) If one of the following holds, H is of wild corepresentation type.

(i) |'P = 3;
(ii) | *P |= 2 and there exists some C € 'S such that dimy(C) > 4;

(i) | 'P |=1 and 'S = {C} for some C € S with dimg(C) > 9.

Proof: Indeed, (1) follows directly from Theorem 4.1.6. Clearly, (2) < (3). So it is enough to prove
(3).

We know that the k-linear abelian category of finite-dimensional comodules over H is isomorphic
to the category of finite-dimensional modules over H*. This means that the coalgebra’s version of
Ext quiver T'(H)¢ of H is the same as the algebra’s version of Ext quiver I'(H*)* of H*. According
to [17, Theorem 2.1 and Corollary 4.4], the link quiver Q(H) of H coincides with the algebra’s version
of Ext quiver I'(H*)* of H*. Note that H* is Morita equivalent to a basic algebra B(H*). Let J be
the ideal generated by all the arrows in Q(H). By the Gabriel’s theorem, there exists an admissible
ideal I such that

kQ(H)/I = B(H"),

where J* C I C J? for some integer ¢ > 2. Thus there exists an algebra epimorphism
f:B(H*) = kQ(H)/J?.
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It is enough to show that kQ(H)/J? is of wild representation type. Since the Jacobson radical of
kQ(H)/J? is J/J?, we know that kQ(H)/J? is an artinian algebra with radical square zero.

Now assume on the countrary that kQ(H)/J? is of tame representation type. It follows from
the proof of [5, X.2 Theorem 2.6| that the separated quiver of kQ(H)/J? coincides with the quiver of
(kQ(H)/J?)/(J].T%) 0

J/J? (kQ(H)/J?)/(J/.T?)
and Y are stably equivalent, it follows that kQ(H)/J? is of tame representation type if and only if
> is of tame representation type. This means that Q(H), of kQ(H)/J? is a finite disjoint union of

the hereditary algebra > = < ) . Note that kQ(H)/J?

Euclidean diagrams.

(i) If | 1P |> 3, we deal with this situation through classified discussion.

(a) Suppose that there exists some C' € 'S such that | !P¢ |> 3. Then the separated quiver
Q(H)s must contain

C.—).]k]_/
T

as a sub-quiver. The underlying graph of this sub-quiver is not a Euclidean diagram. It

turns out that H is of wild corepresentation type.

(b) Suppose that there exist some Cy,Cy € 1S such that | 1Pt |[> 2 and | !PC |> 1. Then the

separated quiver Q(H)s must contain

Ch .—).kll

02.

as a sub-quiver. The underlying graph of this sub-quiver is not a Euclidean diagram and
thus H is of wild corepresentation type.

(c) Suppose that there exist some Cy,Cy, C3 € 1S such that | 1P% |> 1 for any 1 <14 < 3. This
means that for any 1 < i < 3, there exists some non-trivial (1, C;)-primitive matrix &X; € *P.

Combining Lemmas 3.2.5 and 3.3.8, for any 1 < i < 3, we know that

| PS

C; C; C;
2| Py |+ 1Py |+ 1Py, |23

In such a case, there exist at least 3 vertexes which are the start vertex of 3 arrows and 1
vertex which is the end vertex of 3 arrows in the separated quiver Q(H)s. As a result, the

underlying diagram of Q(H)s is not a Euclidean diagram and H is of wild corepresentation

type.

(ii) Suppose that
P = {x, 9},
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(iii)

where X is a non-trivial (1,C)-primitive matrix and ) is a non-trivial (1, D)-primitive matrix for

some C, D € §. With loss of generality, assume dimg(C) > 4.

(a)

(a)

If dimg(C) > 9, it follows from Lemma 3.3.11 that there exists some E € S such that
| €Px |> 4. According to Lemmas 3.2.5 and 3.3.8, we know that

|€P |=| *Px | + | ¥Py |> 5.

This implies that Q(H), contains at least one vertex E which is the end vertex of at least 5
arrows. It follows that the underlying graph of this sub-quiver is not a union of Euclidean
diagram, and consequently H is of wild corepresentation type.

If dimy(C) = 4, Lemma 3.3.11 implies that there exists some E € S such that | Py |> 3.
If | €Px |> 4, as in the case of dimy(C) > 9, Q(H)s contains at least one vertex E which
is the end vertex of at least 5 arrows. This indicates H is of wild corepresentation type. If

| Py |= 3, using Lemma 3.3.11, we have
E-C=C1+Cy+C3g (43)

for some Cp,C5,C3 € §. According to Lemma 4.1.4, we know that for any 1 < i < 3,
C; - S(C) contains E with a nonzero coefficient. Suppose that /dimy(E) = n. If for any
1 <i <3, we have

C;-S(C)=E.

It means that

V/dimz (C1) = /dimy (Cz) = \/dimg (C3) = %

But (4.3) implies that 2n = 2n, which is impossible. Thus there exists at least one C; such
that C; - S(C) contains some F' € S with a nonzero coefficient besides E, where 1 < j < 3.

Combining Lemmas 3.2.5 and 3.3.8, we have

3
[EP =D [EPE [+ 5Py >4
=1
and
| P> EP% | + | TPS |> 2.

As a result, there exist at least one vertex which is the end vertex of 4 arrows and one
vertex which is the start vertex of 4 arrows in Q(H)s. It is easy to see that H is of wild

corepresentation type.

Note that if dimy(C) > 16, it follows from Lemma 3.3.11 that there exists some E € S such
that | €P |> 5. This means that the separated quiver Q(H), contains a vertex which is the
end vertex of 5 arrows and it cannot be a finite disjoint union of Euclidean diagram. We

know that H is of wild corepresentation type.
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(b) If dimg(C) = 9, it follows from Lemma 3.3.11 that there exists some E € S such that
| P |> 4. If | €P |> 5, a similar argument shows that H is of wild corepresentation type.

We only need to consider the case that | £P |= 4. In this case, Lemma 3.3.11 implies that
E-C=C+Cy+ C5+Cy, (4.4)

where C; € S for 1 < i < 4. Applying Lemma 4.1.4 yields that for any 1 <7 <4, C; - S(C)
contains E with a nonzero coefficient. Suppose that /dimg(E) = n. If for any 1 < i < 4,

we have
C;-S(C)=E.
It means that
dimy (C;) = g

for 1 < i < 4. But (4.4) implies that 3n = 4n, which leads to a contradiction. Thus there
exists at least one C; such that C; - S(C) contains some F' € S with a nonzero coefficient
besides E, where 1 < j < 4. A similar argument shows that Q(H), contains at least one
vertex which is the end vertex of 4 arrows and one vertex which is the start vertex of 4 arrows.
Clearly, the underlying graph of this sub-quiver is not a Euclidean graph. Consequently, H

is of wild corepresentation type. O

As a corollary, we have

Corollary 4.2.2 Let H be a finite-dimensional non-cosemisimple Hopf algebra over k with the dual
Chevalley property of finite or tame corepresentation type. Then we have | P | ‘ | €P |, for any
CeM.

Proof: Note that for any C € 18, if dimy(C) = 1, it follows from Proposition 3.3.9 that
P I=I<P .
If | 1P |= 1 and dimy(C) = 4, where C' € 'S. According to Lemma 3.3.11, we have
L=|'P|]|°P].

The proof is completed. O
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Chapter 5 Hopf algebras with the dual Chevalley property

of finite corepresentation type

Next we give a more accurate description for H(;y in the case that H is a finite-dimensional
non-cosemisimple Hopf algebra with the dual Chevalley property of finite corepresentation type.

It is known that a finite-dimensional Hopf algebra H over an algebraically closed field is pointed if
and only if H* is elementary. And according to the proof of Proposition 4.1.2, the link quiver Q(H1))
of H(yy agrees with the Ext quiver I'(/{*)* of H*. Thus the following corollary is a direct consequence
of Corollary 4.1.7 and Lemma 2.3.3.

Corollary 5.0.3 Let H be a finite-dimensional non-cosemisimple Hopf algebra with the dual Cheval-
ley property over an algebraically closed field k. Then H is of finite corepresentation type if and only

if Hyy is a comonomial Hopf algebra.

§5.1 Char(k) =0

Now we prove the following theorem of finite-dimensional Hopf algebras over an algebraically
closed field k with characteristic 0 with the dual Chevalley property of finite corepresentation type,

which is a generalization of [44, Theorem 4.6].

Theorem 5.1.1 Letk be an algebraically closed field with characteristic zero. Then a finite-dimensional
Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type if and only

if either of the following conditions is satisfied:
(1) H is cosemisimple;

(2) H is not cosemisimple and Hy = A(n,d, i, q).

Proof: Since A(n,d, i, q) is a comonomial Hopf algebra, the if implication follows immediately from
Corollary 5.0.3. It suffices to prove the only if part. According to Lemma 2.3.5, it is enough to find
the induced datum of H(;y. Let G(H(1)) be the set of group-like elements of H(yy. If H is a non-
cosemisimple Hopf algebra of finite corepresntation type, it follows from Theorem 4.1.6 and Corollary
4.1.7 that H(y) is a pointed Hopf algebra and there exists a unique non-trivial (1, g)-primitive element

x for some g € G(H(1)). Without loss of generality, assume
| G(H(y) [=n.

Due to H(yy is link-indecomposable, the link quiver of H(;) is connected. This means that G(H(y)) is
a cyclic group whose generator is g. Thus the induced group datum of H(y) is ({g), g, x, ¢) and we

have

Hay = A((9),9,x: 1) = A(n, d, i, q).
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Remark 5.1.2 Let k be an algebraically closed field with characteristic zero.

(1) Andruskiewitsch and Schneider conjectured that any finite-dimensional pointed Hopf algebra over
k is generated in degree 1 of its coradical filtration, i.e., by grouplike and skew-primitive elements
[7]. Suppose H is a finite-dimensional Hopf algebra over k with the dual Chevalley property of
finite corepresentation type. According to Theorem 5.1.1 and [40, Corollary 4.10], we can show

that H is generated in degree 1 of its coradical filtration.

(2) Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property. Recall that
the rank of H is defined to be n if dimgx(k ®p, H1) = n+ 1 and H is generated by Hy as
an algebra [38]. It is not difficult to show that H is of rank one if and only if H is of finite

corepresentation type.

Let us first give a example which is of finite corepresentation type.

Example 5.1.3 Letk be an algebraically closed field of characteristic zero and H be the Hopf algebra
over k of dimension 16 appeared in [15, Theorem 5.1]. As an algebra, H is generated by ¢, b, x,y with

relations:
1
A=1, ¥¥=1, 22 = 5(1+c+b—cb),
cb =bec, xrc=br, xb=cz,
2

y° =0, yc=—cy, yb=—-by, yr=+v—lcxy.

The coalgebra structure and antipode are given by:
Alc)=c®c, elc) =1, S(c) =c,

A(b) =b®b, €(b) =1, S(b)=b,
A(x):%(x®x+bx®x+w®cx—bx®cx), e(r) =1, S(x) ==,
Aly)=coy+y®l, ely) =0, S(y)=—c'y.

Denote E = span{x, bx, cx,bcx}, then S = {k1,ke, kb, kbe, E}. We give the corresponding multiplica-

5—1 T+ bx T — bx
2 cr —bex cx + bex .

We know that ZS is a unital based ring and its multiplication table is shown below:

tive matrixz £ of E, where
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left action | k1 | ke | kb | kbe E
k1 k1l | ke | kb | kbc E
ke ke | k1 | kbe | kb E
kb kb | kbe | k1 | ke E
kbe kbc | kb | ke | ki E
E E E E E | k1 + ke+kb+ kbe

And in this example, P = {(y), (cy), (by), (bey), X'}, where

Y 1 zy + bxy xy — bxy
2\ bexy —cxy —cxy — bexy

is a non-trivial (€, E)-primitive matriz. In this example, the link quiver of H is shown below:

k.C ki)c
(y) (cy) (by) (bey) X @. E
Kl Kb

It follows from Theorem 4.1.6 that H is of finite corepresentation type. Moreover, due to

T+ bx

ad(—5—)(c) =b ¢ Hqy,

we know that Hyy is not normal in H. Thus this example gives a negative answer to /40, Question

4.13].

§5.2 Char(k)=p

Finally, we focus on the above theorem in the case of that k is an algebraically closed field of

characteristic p. We can obtain the following theorem immediately.

Theorem 5.2.1 Let k be an algebraically closed field of positive characteristic p. Then a finite-

dimensional Hopf algebra H over k with the dual Chevalley property is of finite corepresentation type

if and only if either of the following conditions is satisfied:
(1) H is cosemisimple;

(2) H is not cosemisimple and H1y = Cq(n).
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Chapter 6 Coradically graded Hopf algebras with the dual

Chevalley property of tame corepresentation type

In this chapter, we work over an algebraically closed field k of characteristic zero. The main
aim of this chapter is to describe the structures of coradically graded Hopf algebras with the dual

Chevalley property of tame corepresentation type.

§6.1 Characterization

Let H, H' be Hopf algebras and 7 : H — H’ and i : H — H Hopf homomorphisms. Assume

that m o4 = idy-, so that 7 is surjective and i is injective. Define
R:={he H|(id®m)A(h) =h®1}.
According to [61, Theorem 3|, we know that
H>~RxH

as Hopf algebras, where “x" was called biproduct in [61] and bosonization in [50]. Note that as a
linear space,

H2RxH =R®H'.

Its multiplication and comultiplication are usual smash product and smash coproduct respectively. In
addition, R is a braided Hopf algebra in gin, the category of Yetter-Drinfeld modules over H'. See,
for example, [6,50,61].

Let H be a finite-dimensional Hopf algebra with the Chevalley property and Jy its Jacobson
radical. Denote gr*(H) its radically graded algebra, i.e.,

g(H)=H/Jg © Jg/Jg @& Ty,

if Jj# = 0. According to [42, Lemma 5.1|, we know that gr*(H) is a radically graded Hopf algebra.
Clearly, H/Jg = gr*(H)(0) is a Hopf subalgebra of gr*(H) and there exists a natural Hopf algebra
epimorphism

7w gr®(H) — H/Jg
with a retraction of the inclusion. Define
Ag i ={hegr®(H) | (id®7*)A(h) = h® 1}.

By [61, Theorem 3|, we know that
gr®(H) 2 Ay x H/Jy
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as Hopf algebras.

Proposition 6.1.1 Letk be an algebraically closed field of characteristic 0 and H a finite-dimensional
Hopf algebra over k with the Chevalley property. Then

(1) Ag and gr®(H) have the same representation type;

(2) Ag is a local graded Frobenius algebra.

Proof:

(1) Note that as an algebra,
gr*(H) = Au#H/ Ju,

and the multiplication of Ag# H/Jy is usual smash product. Since H/Jy is a finite-dimensional
semisimple Hopf algebra, it follows from [46, Theorem 3.3] that H/Jg is cosemisimple. Thus (1)

is a direct consequence of [42, Theorem 4.5].

(2) This can be obtained by the same reason in the proof of [42, Proposition 5.3 (ii)]. O

Let H be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote gr¢(H) by
the coradically graded Hopf algebra of H, i.e., gr¢(H) = @nzo H,/H,_1, where H_; = 0. In fact,

there exists a natural Hopf algebra epimorphism
T gr’(H) — Ho
with a retraction of the inclusion. Define
Ry :={heg(H)| (idon°)A(h) =h®1}.
It follows from [61, Theorem 3] that

gr’(H) = Ry x Hy

as Hopf algebras.
The next conclusion will give us the structure of coradically graded Hopf algebras with the dual

Chevalley property of tame corepresentation type.

Theorem 6.1.2 Let k be an algebraically closed field of characteristic 0 and H a finite-dimensional
Hopf algebra over k with the dual Chevalley property. Then gr¢(H) is of tame corepresentation type
if and only if

gr’(H) = (k(z,y)/1)" x H'

for some finite-dimensional semisimple Hopf algebra H' and some ideal I which is one of the following

forms:
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(1) T = (2% —y?,yx — ax? xy) for 0 #a € k;
(2) 1= (2%9y% (xy)™ — alyx)™) for 0 #a €k and m > 1;
(3) I=(a"—y", xy,yz) forn >2;

(4) I = (292, (xy)™x — (yz)™y) form > 1.

Proof: “If part": Combining [42, Theorem 3.1] and [43, Lemma 4.2], we know that k(z,y)/I is a
tame algebra. Because of the fact that a finite-dimensional Hopf algebra H’ is semisimple if and only
if it is cosemisimple, the desired conclusion is got from [42, Theorem 4.5].

“Only if part":Using Proposition 6.1.1, we know that gr®*(H*) is of tame representation type if

and only if Ay« is of tame representation type. Since
gr(H) = (gr*(H"))"

as Hopf algebra, one can conclude that gré(H) is of tame corepresentation type if and only if Agy-« is
of tame representation type. According to [42, Theorem 3.1] and [43, Lemma 4.2|, as a tame local
graded Frobenius algebra,

A+ 2 k(z,y)/1.

It follows from [52, Theorem 5.1] that
gr(H) = (gr"(H"))" = (Ap- x H*/Jpg+)" = (Ag.)" x Hy.

O

According to [13, Theorem 4.1.2], if R is a Hopf algebra in gin, then we can form the bosoniza-
tion R x H’ which is a Hopf algebra. For a tame local graded Frobenius algebra A, above theorem does
not imply the existence of finite-dimensional semisimple Hopf algebra H' satisfying A* is a braided
Hopf algebra in gin. That is to say, for the ideals I listed in the above theorem, we do not know

weather (k(z,y)/I)* x H' is a Hopf algebra or not.

Question 6.1.3 For a tame local graded Frobenius algebra A, give an efficient method to determine
that whether there is a cosemisimple Hopf algebra H' satisfying A is a braided Hopf algebra in giyp.
If such H' exists, then find all of them.

The question above exactly recovers [42, Problem 5.1]. We will discuss this question in the
subsequent sections.
§6.2 Link-indecomposable component containing k1

We have the following characterization of the coradical of the link-indecomposable component

H ;) containing k1.
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Lemma 6.2.1 Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property.
Then the coradical of the link-indecomposable component H(1y containing k1 is generated by {span(C') |
C €18} u{span(S(0)) | C € 1S}.

Proof: It is directly from [40, Theorem 4.8 (3)] that H ;) is a link-indecomposable Hopf algebra. This
means that the link quiver Q(H(y)) of H(yy is connected. Using Proposition 3.3.14, we can complete

the proof. O

Now we discuss the relation between the corepresentation type of H and H ).

Lemma 6.2.2 Let H be a finite-dimensional Hopf algebra over k with the dual Chevalley property
of tame corepresentation type. Then the link-indecomposable component H (1) contating k1 is of tame

corepresentation type.

Proof: Since H is of tame corepresentation type, it follows from Theorem 4.2.1 that either
['P|>1

or

dlmk(C) >1

for C € 'S. This implies that H, (1) is not of finite corepresentation type. On the other hand, there
is an inclusion from the category of finite-dimensional right H(;)-comodules to the category of finite-
dimensional right H-comodules. Suppose that H(;) is of wild corepresentation type. It follows that
H(*l) is a wild algebra. Hence by [64, Theorem 1.11|, H* is a wild algebra, which means that H
is of wild corepresentation type. This leads to a contradiction. We remark that H(;) is of tame

corepresentation type by the fundamental result of [24]. O

In the following part, let H = @?:0 H () be a finite-dimensional coradically graded Hopf algebra
over k with the dual Chevalley property. Denote the coradical filtration of H by {H,, }»>0 and the set
of all the simple subcoalgebras of H by S. Note that there exists a natural Hopf algebra epimorphism

m:H — Hy

with a retraction of the inclusion. Next we give a more accurate description for the structures of Ry,
where

Ry={heH|(idom)Ah)=ho1}.

Firstly, we have the following lemma.

Lemma 6.2.3 Let H be a finite-dimensional coradically graded Hopf algebra over k with the dual
Chevalley property. Then we have Ry C H(y).
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Proof: At first, let us introduce an equivalence relation on S, defining that C' and D are related if
CH(1y = DH(y. Let § € S be a full set of chosen non-related representatives with respect to this

equivalence relation. By [40, Corollary 4.10], we have

H= (P CHy).
CeSy

For any non-zero x € CHyy, where C' € Sp \ {k1}. According to [40, Theorem 4.8 (3)], we know that

(idem)Ax) = (d® W)A(Z CilYi)

(id e m)(> Ale)Ay)
=1
(id & W)(CH(l) & CH(l))

N

Using the fact that H is a coradical graded Hopf algebra, we obtain
m(CHy (i) = 0

for ¢ > 1, where

Hy (@) = Hay N H ().

According to Lemma 3.3.1, we know that ZS is a unital based ring. It follows that
1 ¢ CH(1)7

which means that « ¢ Ry and thus Ry C Hyy. ]

In fact, H(yy = @;_, H(1)(é) is also a finite-dimensional coradically graded Hopf algebra over k
with the dual Chevalley property, where H(y)(i) = Hy N H(i). Let

'+ Hay = (Hay)o
be a natural Hopf algebra epimorphism with a retraction of the inclusion and
R = {7“ S H(l) | (id@)ﬂ'/)A(T) =rQ 1}.

Lemma 6.2.4 With the notations above, we have R’ = Ry and Hy = Ry x (H(1))o-

Proof: Because of the fact that

we can show that



It is a concequence of Lemma 6.2.3 that

R = Ry.
Now the lemma follows directly by [61, Theorem 3. O
With the help of the preceding lemmas, we can now prove:
Proposition 6.2.5 Let H be a finite-dimensional coradically graded Hopf algebra over k with the

dual Chevalley property. Then H is of tame corepresentation type if and only if Hy is of tame

corepresentation type.

Proof: The “only if" implication follows immediately by Lemma 6.2.2. Next we show the “if"

implication. Since H yy is of tame corepresentation type, it follows from Theorem 6.1.2 that
Hay = (k(z,y)/1)" x (Hy)o
for some I listed in Theorem 6.1.2. According to Lemma 6.2.4, one can show that
H = (k(z,y)/I)* x Hy.

From Theorem 6.1.2, we have H is of tame corepresentation type. O

The above proposition implies that when we study the properties for the finite-dimensional corad-
ically graded Hopf algebra over k with the dual Chevalley property of tame corepresentation type, we

only need to focus on its link-indecomposable component contained k1.

§6.3 Characterization of Ry

In this section, we discuss which ideal in Theorem 6.1.2 will occur when (k(x,y)/I)* x Hp is a
finite-dimensional coradically graded Hopf algebra with the dual Chevalley property of tame corepre-
sentation type.

Let H be a finite-dimensional Hopf algebra with the dual Chevalley property. Denote the coradical
filtration of H by {H,}»>0 and the set of all the simple subcoalgebras of H by S. In fact, there exists
a natural Hopf algebra epimorphism

7w egr’(H) — Hy

with a retraction of the inclusion

i: Hy— gr°(H).

Denote
Ry :={hegr’(H)| (idom)A(h) =h®1}.

We will give a more accurate description for the structure of Ry .

Firstly, let us recall some properties of biproduct.
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Set II = id * (i o S o m), where S is the antipode of gr®(H) and * is the convolution product.
According to [61, Theorem 3], we know that Ry = II(gr¢(H)) and Ry has a unique coalgebra structure
such that II is a coalgebra map. Let j : Ry — gr¢(H) be the inclusion. Then the map

n: Ry x Hy — gr°(H), rxhw1rjh)

is an isomorphism of Hopf algebras.

Moreover, it follows from [61, Theorem 2 (b)] that the following diagrams

gre(H)
/ \
RH n HO
ﬂ‘HO
HRH
RH X HO
and
gre(H)
STON
Ry n Hy
k\ i
RH X HO
commute, where
Mg, : rxhere(h),
JRy @ T T X1,
iHU : h—1x h,
T, : rXhee(r)h,

for any h € Hy,r € Ry.

With the notations above, we have

Lemma 6.3.1 For any r € Ry, we know that
Apy (r) = (g on™") @ id)A(r),

where A and Agr,, are the comultiplications of H and Ry, respectively.
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Proof: According to the proof of [61, Theorem 3], we know that

Ap,(r) = I ®id)A(r).

This means that

I ®id)A(r)
I®id)A

)A
)

(
(
(

= (Hgr, ®n
(g, ®@n
(

(HRH on-

where A’ is the comultiplications of Ry x Hp.

(n(r x 1))

I ®id)(n®@n)A'(r x 1)
"(rx1)

(" @n HA(r)
b @id)A(r),

O

As stated in the previous section, we know that gr®(H*) is a finite-dimensional radically graded

Hopf algebra over k with the Chevalley property. There exists a natural Hopf algebra epimorphism

T:gr*(H*) — H*/Jg-~

with a retraction of the inclusion, where Jg« is the radical of H*.

gr(H")

where

A= {h € gr®(H*) | (id ® 7)A(h)

Lemma 6.3.2 With the notations above, we have

Ry = (Ag-)*

as coalgebras.

Proof: We have
gr(H) = (gr*(H"))"

as Hopf algebra. It follows from [52, Theorem 5.1] that
RH X HO = (AH* X H*/JH*)*
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Furthermore, we have

—h®1}.

= (AH*)* X Ho.



According to [61, Theorem 3|, we know that
Ry = (Ag~+)*

as coalgebras. O

In the following part, let gr¢(H) be a finite-dimensional Hopf algebra with the dual Chevalley
property of tame corepresentation type. Combining Lemma 3.3.5 and Theorem 4.2.1, we know that

one of the following three cases appears:

(i) | P! |=1and S' = {C} for some C € S with dimy(C) = 4;
(ii) | P! |=2 and S' = {kg} for some g € G(H);
(iii) | Pt |=2 and S* = {kg,kh} for some g,h € G(H).

We need to determine which ideal in Theorem 6.1.2 can make Ry = (k(x,y)/I)* as coalgebras in the

three cases. Next, we discuss these three cases separately.

§6.3.1 Cases (i)

Suppose P! = {X} and S! = {C}, where

Alu) = 1 ®@utce®v+u®l,
Aw) = 1 Q@utcp®v+vel

It is apparent that the subalgebra U of gr¢(H) generated by u, v is contained in Ry . We need to know
Ag,, (r) for any r € U.

Before proceeding further, let us give the following lemma.

Lemma 6.3.3 With the notations above, we have {c;ju | 1 < i,j < 2} U{c;v |1 < 4,5 <2} are
linearly independent in gre(H). Moreover, there exists an invertible matriz K = (k;j)axa over k such
that

CO'X=KXol),

70



namely,

C11u  Ci2U ki1 ko ks ki uciy ucCi2
C21U  C22u | ka1 koo ko kas UCa1  UC22
c11v  C12v k31 ks ksz ka3 Vel UCi2
€21V C22V ka1 ki kaz kas VC21 VC22

Proof: By [40, Proposition 2.6], there exists an invertible matrix L over k such that

(e (D)

( LC® C) L™ LIC® X) )

C
D,
Do LCo X)
D,
C
where Dy, - - - , D, are the given basic multiplicative matrices. Using Corollary 3.1.4 and Lemma 3.2.1,

we can show that {c;;u |1 <4,j <2} U{c;v |1 <14,j <2} are linearly independent in gre(H).
Let

o O O =
o = O O
oS O = O
= o O O

be an invertible matrix over k, we know that

Jco'oyJJt=coc.

()

( LI"HC®C)JL™' LJ-Y(X®C) )
C

It follows that

D,
D, LITY(X ®C)
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(1)

Suppose
C-C=EWY,

where E(Y) € S is a 16-dimensional simple subcoalgebra. We know that both L(C @' X) and
LJ~Y(X ®C) are non-trivial (£, C)-primitive matrices, where £* € M is the basic multiplica-
tive matrix of ). From Corollary 3.1.14, there exists an invertible matrix P, = al over k such
that

P(LC® X)) =LJ Y (X oC).

Suppose
C-C=kg+E®

for some group-like element g € G(H) and some 9-dimensional simple subcoalgebra EG) ¢ S.

According to Corollary 3.1.14, there exists an invertible matrix

aq
(&)
(&%)

over k such that
P(L(CO X)) = LJ*I(X ©0).

Suppose
c.-c=E® +EY

for some 4-dimensional simple subcoalgebras E£2),E§2) € S and E{Q) # Eéz). Using Corollary

3.1.14, we obtain an invertible matrix

P; =
Q2
(&%)

over k such that
Py(L(C O X)) = LI ' (X o0).

Suppose
C-C=2E®

for some 4-dimensional simple subcoalgebra E(?) € S. It follows from Proposition 3.1.13 that
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there exists an invertible matrix

a3 Oy

as e

over k such that

PyL(C® X)) =LI (X Q).

(5) Suppose
C-C =kg +kgz +kgs +kgy

for some group-like elements g1, g2, g3, 94 € G(H). Note that g1, go, g3, g4 are different with each

other, otherwise the link quiver of gr¢(H) is not a Euclid diagram. By Corollary 3.1.14, there

exists an invertible matrix
(€3]

Ps

as
Qy
over k such that

Ps(L(CO' X)) = LI Y (X ©C).

Based on the above argument, there exists some 1 < i < 5 such that invertible matrix X = L~'P,LJ !
over k satisfying

CO'X=KXaol).

O

In fact, for any r € U, Ag,, (r) is determined by the invertible matrix K in Lemma 6.3.3. Next

we consider case (i) under the assumption that K is a diagonal matrix.

Lemma 6.3.4 Let gr¢(H) = (k{z,y)/I)* x Hy be a finite-dimensional coradically graded Hopf algebra
over k with the dual Chevalley property of tame corepresentation type. If P* = {X}, S' = {C} for

some C € S with dimg(C) = 4 and the invertible matriz K in Lemma 6.3.3 is diagonal, namely

aq
Q2
[e%:}

ay
Then I # (2% — y?,yx — az?, xy), where 0 # a € k.

73



Proof: It follows by direct computations that

A(uv) = cr1em1 ® u? + ¢11Co9 @ UV + €191 @ VU + C12C9 RV +uv ® 1
+C11V @ U+ €120 ® U + Ucy1 @ U + ucaz @ v,

Alvu) = corc11 @ U + 1610 @ UV + ca2¢11 @ VU + Coac1z @ V2 Fvu® 1
021U @ U+ C20u ® v + v QU+ ve12 R v,

A(w?) = ;U + e @uu+ e ®vu+cl, @02+ 0’ ®1
+c11u @ u+ c12u @ v +ucyy @ u+ ucja @0,

A(v2) = cgl ® u? + 9199 @ UV + Co9Ca1 ®vu+c§2 @ +12®1

+C210 @ U+ €220 RV + VCa1 X U + VCra K V.

According to Lemma 6.3.1, we have

If

then

It follows that

Thus we have

We know that

Hence

Ap () =1Quwv+uwl+azv@u+uwv,
Ap,(vu) =1Q@vu+vu®@ 1+ wuev+vQu,
Ar, (1) =10 u? +u®> @1+ (a1 + 1)u®u,
Ar,(1®) =101+’ ®@1+ (as + v @w.
dimy (Rp) = dim((k(z,y)/(2® — y*, yz — az®, zy))*)

u?, 0% uv, vu € k{(2%)*}.

1
a1:a4:—1, Qg — —.

(u*)? = (v*)? =0, u*v* = apv*u’.

oy
m*
1%

k(z,y)/ (2, v, zy — azyz),
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which indicates that

I 7& (xQ - y27y$ - a$2733y)7
where 0 # a € k. O

Next we consider whether or not I = (z™ — y", zy, yx) in this case.

Lemma 6.3.5 Let gr¢(H) = (k(z,y)/I)* x Hy be a finite-dimensional coradically graded Hopf algebra
over k with the dual Chevalley property of tame corepresentation type. Suppose P' = {X}, St = {C}
for some C € § with dimg(C) = 4 and the invertible matriz K in Lemma 6.3.3 is diagonal, namely

aq
(&)
0%}

Qg

If in addition Ry is generated by u,v, then I # (z™ —y™, xy, yx), where n > 2.

Proof: If n = 2, using the same argument as in the proof of Lemma 6.3.4, we can easily carry out
the proof of this lemma.

If n > 3, we know that

(k{z,y)/1)*(2) = k{(=*)", (¥*)"}

and

A((@*)*) = (@)'®1+10 @) +2" @,
AW?)) = ) el1+10@) +y oy

Without loss of generality, suppose that

u = k" + koy", (6.5)
v = ksz¥+ kay”, (6.6)
u? = ks(a?)" +ke(y?)" (6.7)
v o= kr(a?) + ks(y®)” (6.8)
w = ko(2?)* + kio(y?)*, (6.9)
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vu = k(@) + kia(y?)",

where k; € k for 1 < ¢ < 12. By substituting (6.5-6.10) into (6.1-6.4), we obtain

(1 + DE2zx* @2* = ksa* @,
(a1 + Dkykaz* @ y* = 0,
(a1 + Dkrkoy* @ 2* = 0,
(a1 + Dk3y* @y* = key* @y,
(g + DE2x* @ 2* = kea* @,
(s + Dkskyzr* @ y* = 0,
(g + Dkskay* @ 2 = 0,
(a+ Dk ©y" = ksy" @y~
(g + Dk1ksz* @ 2" = kox* ® x™,
(a2kiks + kokz)z™ @y™ = 0,
(agkoks + k1ky)y" @ 2™ = 0,
(a2 + Dkoksy" @y* = koy" @y",
(as + Dk1ksz* @ z* = kpa* @a”,
(ashkoks + k1ky)z* @ y* = 0,
(askiky + koks)y” @ x* = 0,
(a3 + Dkokay* @ y* = kipy" @y

Comparing the coefficients of the both side, we have

(a1 + ].)klkg =0.

If

since

(askiks + koks) =0,

it follows that
ko=0

or

which is in contradiction with the fact that u and v are linearly independent. A similar

shows that
ki #0
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for 1 <4 < 4. Tt follows from (6.11) that

o = —1.

Moreover, because of the fact that

(044 + 1)k‘3k‘4 =0,

we obtain
Qg = -1
This indicates that
W =12=0
We claim that
(65) 7é -1
Otherwise
ko =kio=0
Hence
uv =0,

a contradiction. Note that

Ozg(agkzkg + k1k4) - (a2k1k4 + kzkg) =0,

direct computations shows that

Qo = 1.
Using the same argument, we can obtain
a3 = 1
Thus we have
Uv = vu,
which is a contradiction to dimyg(Rg(2)) = 2. The proof is completed. O

Now we turn to I = (22,92, (zy)"x — (yz)™y).

Lemma 6.3.6 Let gr¢(H) = (k{z,y)/I)* x Hy be a finite-dimensional coradically graded Hopf algebra
over k with the dual Chevalley property of tame corepresentation type. Suppose P! = {X}, S = {C}

for some C € § with dimg(C) = 4 and the invertible matriz K in Lemma 6.3.3 is diagonal, namely

aq
Qo
a3

(o7
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If in addition Ry is generated by u,v, then I # (22,y%, (xy)™x — (yx)™y), where m > 1.

Proof: Suppose that

u = kix* + kay”,
v = ksz*+ kay",
u? = ks(2®) +ke(y®)",
U2 —_ k7(.’1]2)* +k8(y2>*7

where k; € k for 1 < i < 8. Similar to the proof of Lemma 6.3.5, we have

(n + 1k = 0,
(aq + Dkike = ks,
(1 +Dkika = ke,

(1 +1k3 = 0,

(g +1)k3 = 0,
(g + Vksks = ky,
(g + Vksky = ks,

(g +1E2 = 0.

It is straightforward to show that
o =y =—1

and thus

Since (wv)™u, (vu)™v € k{((zy)™z)*}, it follows that
(uv)™u = kg(vu)™v
for some kg € k. Note that

A(uv)™u) = (A(uv))™A(u)

2 2
= (011621 R uU” 4+ c11C22 X UV + C12C21 X VU + C12C20 R VT + UV K 1

(6.12)

Fe110 QU+ ¢120 @V 4 uco @ U+ ucaa @)™ (e11 Qu+ 12 @ v+ u® 1),

A(vu)™0) = (Alvu))™Av)

2 2
= (021611 ® U 4 ca1¢12 @ UV + €22C11 @ VU + Co9C12 RV +vu® 1

F021U @ U+ Coou @V + ve11 @ U+ ve12 V) (C21 U c22 @V +v® 1).
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It follows from (6.12) that
((wv)™ 11 + 11 (vu)™) @ u = ko((vu) ™1 + ca1(uv)™) @ u.
This means that
(Mg o™ ") @ id)(((uv)™e11 + e11(vu)™) @ u) = ko((Tg 0 ™) @ id) (((vu) " car + co1 (uv)™) © w).

It turns out that
((w0)™ + (=1)" " (vu)™) = 0.

This contradicts the fact that Ry is generated by u,v and
dimg (Ry (2m)) = dimg ((k{z, y)/12)(2m)) = 2.

Thus
I# (2,97, (zy) ™z — (yz)"y),

where m > 1. O

For our purpose, we need to consider the following combinatorial functors:

! A
Him,1,1) = > amm
0<m;<ma<---<my<m—lI
l _ .
Hy(m,l,t) = Z $2i= (I 1=i)ns
0<ni+ng+-+n;<m-—I
Hiy(m,l,t) = t™ 3 i =iy 3 i (i 1=i)ns
0<ni+ng+--+n;_1<m-—lI 0<ny+no+--4+n;<m—1
Here m,l € Z,,0 <l <m,my,--- ,my,ny,---,n; € Nand ¢ is an indeterminant.

Lemma 6.3.7 ( [36, Lemma 3.1, Proposition 3.2]) We have
(1) Hi(m,l,t) = Ha(m,l,t) = H3z(m,1,t);
(2) Hi(m,l,t) =0 for all 0 <1 < m if and only if t is an mth primitive root of unit.

With the help of the preceding lemmas, we can get the main result for case (i).

Proposition 6.3.8 Let gr¢(H) = (k{(z,y)/I)* x Hy be a finite-dimensional coradically graded Hopf
algebra over k with the dual Chevalley property of tame corepresentation type. Suppose Pt = {X},
St = {C} for some C € S with dimy(C) = 4 and the invertible matriz K in Lemma 6.3.3 is diagonal,
namely
aq
o
3

(o7
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If in addition Ry is generated by u,v, then

(1) I = (2% 9% (zy)™ — a(yx)™) for 0 £ a €k and m > 1;
(2) a1 =g = —1;

(3) a=(=1)""1ad ora=(-1)""ta};

(4) asas is an mth primitive root of unity.

Proof:

(1) Combining Theorem 6.1.2, Lemmas 6.3.4, 6.3.5 and 6.3.6, we know that
I= (%", (zy)™ — alyz)™)

for 0 #a €k and m > 1.

(2) An argument similar to the one used in the proof of Lemma 6.3.6 shows that

and

(3) Note that

A((w)™) = (A(uw))™
= (cr1621 @ U” + €11022 @ UV + C12091 ® VU + C12022 ® V7 +uv @ 1
110 @ U+ ¢120 @ v + uce1 @ U + ucay @ v)™,
A((vu)™) = (A(vu))™
= (ca1011 @ U” + C21012 @ UV + 22011 @ VU 22012 @V F VU ® 1

U @ U~ C2ou @V + ve1 ® U+ vepa ® v)™.
Besides, in (k(z,y)/(22,92, (zy)™ — a(yz)™))*, we have

A(((zy)™*) = 1@ ((xy)™)* + 2* @ (y(zy)™ 1)* + (zy)* @ ((xy)™ 1)
et ((2y)) @ (@)™ + ((2y)'2)* @ (y(ay)™ )"
ot (@) @yt + ((ey)) @1

(1@ ((y2)™)" +y* @ (z(yz)™ )" + (y)* @ ((yx)" )"
A () @ ((h2)™ ™) + ((yo)'y)* @ (e(yx)™ 1 7H)*
+o A (o)™ ) @2t 4 (yo)™)* @ 1).

ISR

N
N
N
N
N
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Suppose that

u=kiz* + kay", (6.13)
v = k3z* + kay”, (6.14)
(vu)™ = ks (((xy)™)"), (6.15)

where k; € k for 1 < i < 5. By substituting (6.13) and (6.14) into (6.15), we obtain

(k1 (vu)™ o + k3 (o)™ (=)™ tu(vu)™ 1) @ 2*
¥ ® (kl(ag)m(—l)m_l(vu)m_lv + kgu(vu)m_l)

1 — * *
ks (y)™ )" © 0",
z* @ ks((yx)"'y)*.

It follows that

and

If k1 = 0 and k3 # 0, then

If k¢ 7& 0 and kg = 0, then

If k1 # 0 and k3 # 0, then

for some kg € k. It follows from

that

(uwv)™ tucgr + c11(vu)™ 1) @ u = ke((vu)™ tvery + o (wv)™ ) @ u

and

((uwv)™ Mucgy + c1o(vu)™ o) @ v = ke ((vu)™ tvers + con(uv)™ tu) ® v.
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Thus we have

((TIg o 77_1) ® id)(((uv)m_1u021 + cll(vu)m_lv) ®u)
= ko((Igo 7771) ® id)(kg((vu)mflvcn + 021(uv)m*1v) ® u),

and

(Mg on™") @ id)(((uv)™ M ucyy + cra(vu)™ o) © v) @ u)
= ko((TTg o™ @ id) (ke((vu)™ tveis + coo(uv)™ 1u) @ v).

Direct computations shows that

(~)" g = ke,

It follows that

(OéQO&g)m =1.

Note that for any element f(u,v) generated by w,v, we can always write uniquely A(f(u,v)) in

the following form:

flu,0) @1+ (f(u,0))u @+ (f (4, 0))0 @ v+ (F (1, 0))uo @ uv + - -

+ (f(u7 U))(uu)z ® (U’U)Z + (f(u, ’U));u ® (vu)’ + (f(u, U))(m))lu ® (u’[})zu
+ (f(1,0) (ouyio @ (vu)'v 4.

Since

(uv)™ = (=1)" "oy (vu)™,
it follows that
(Mg on ' @id)A((ww)™) = (Mg oy~ " @id)A((=1)""'ag (vu)™).

But

6(612) = 8(621) = 0,

this means that we only need to focus on
(c11C22 @ UV +uv ® 1 4 €110 @ u + ucaa @ V)™

and

(ca2¢11 @ vu+vu ® 1+ coou @ v + veyy @ u)™.
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Note that for any 0 < I < m, u and v should appear alternately in the left items in (uv)E" )i By

uv

this observation, the items starting with u in (uv)(’{:v), are just

Z (uv)"lcncgg (U’U)n2011022 - C11C22 (uv)"lcllcgg (uv)”‘“ .
0<ni+na+--+n;<m-—1

But the items starting with u in (U“)?Zu)l is 0. This indicates that

Z (uv)" er1ege(uv) ™ er1c22 - - - cr1ca2(uv) ™ erreg (uv) M1
0<ni+ngs+--+n;<m—I
= Z (ap0i3)™ (a0 72 - (ugag )2t (611622)l(uv)m4

0<ni+ng+--+n <m—I

= Hg (m, l, agag)(cucgg)l(uv)m_l

= 0.

Using Lemma 6.3.7, we know that asag is an mth primitive root of unity. O

Corollary 6.3.9 With the notations in Proposition 6.3.8, if m > 2, then

C11C12 = C12C11 = C21C22 = C22C21 = 0.

Proof: According to the proof of Proposition 6.3.8, we know that u? = v? = 0. This means that

A(u2) = c?l @ u? + 11612 @ uv + c13¢11 @ vu + 0%2 @vP+ul®1
+eriu @ u+ cou ®@ v 4+ ucy; @ u + ucio @ v
= 0,
A(?) = 3 @u® + ca1620 @ UV + Ca2C21 @ VU + oy DV F 07 @1
+C210 @ U + €220V QU+ vVC21 QU+ VCog @V
= 0.

Since m > 2, it follows that uwv,vu are linearly independent. Thus we have

€11C12 = C12C11 = C21C22 = C22C21 = 0.
O

To conclude, we only consider case (i) under the assumption that K in Lemma 6.3.3 is a diagonal
matrix in this subsection. Indeed, at present, we do not know which ideal in Theorem 6.1.2 will occur

without this assumption. But if K is given, we can solve it by the same way.
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§6.3.2 Cases (ii) and (iii)

Proposition 6.3.10 Let gr¢(H) = (k(z,y)/I1)* x Hy be a finite-dimensional coradically graded Hopf

algebra over k with the dual Chevalley property of tame corepresentation type.
(1) If | P! |=2 and S* = {kg} for some g € G(H), then I = (2?,y* xy + yx);

(2) If | P! |=2 and S* = {kg,kh} for some g,h € G(H), then I = (22,42, (zy)™ — a(yz)™).

Proof: It follows from Proposition 6.2.5 that the link-indecomposable component (gr(H))(;) con-
taining k1 is of tame corepresentation type. According to Proposition 3.3.13, in case (ii) and (iii), we
have (gr(H))(1) is a pointed Hopf algebra. So the desire conclusion comes from [36, Theorems 4.9 and
4.16]. O

Indeed, Proposition 6.3.10 can be obtained by the same reason in the proof of Lemmas 6.3.4, 6.3.5,
6.3.6 and Proposition 6.3.8. Moreover, using the same argument as in the proof of Proposition 6.3.8,

we can easily carry out the proof of the following remark.

Remark 6.3.11 Let gr¢(H) = (k(z,y)/I)* X Hy be a finite-dimensional coradical graded Hopf algebra
with the dual Chevalley property of tame corepresentation type.

(1) If| P! |=2 and S' = {kg} for some g € G(H), suppose that gu = ayug+asvg, gv = azug—+auvg

for some a1, a0, a3,a4 €k. Then a; = g = —1, 5 = a3 = 0;

(2) If | P! |= 2 and S' = {kg,kh} for some g,h € G(H), assume that gu = Bug, gv = Bavg, hu =
Bsuh, hv = Byvh for some 1, B2, B3, B4 € k. Then

(i) Br=Ps=-1;
(ii) a in Proposition 6.3.10 equals (—1)™"1fy or (—=1)™18;;

(11i) Ba2f3 is an mth primitive root of unity.

It should be pointed out that the above remark coincides with [36, Lemma 4.8, Proposition 4.15].

§6.4 Examples

As stated in the previous section, if H is a finite-dimensional coradically graded Hopf algebra
over k with the dual Chevalley property of tame corepresentation type, one of the following three

cases appears:
(i) | P! |=1and S' = {C} for some C € S with dimy(C) = 4;
(i) | P! |=2 and 8! = {kg} for some g € G(H);

(iii) | P! |=2 and S' = {kg,kh} for some g,h € G(H).
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Using Proposition 6.2.5, we know that H is of tame corepresentation type if and only if H(y) is of
tame corepresentation type. In this section, we attempt to give several examples of finite-dimensional
coradically graded link-indecomposable Hopf algebras over k with the dual Chevalley property of tame
corepresentation type in the three cases.

In fact, if H is link-indecomposable, it follows from Lemma 6.2.1 that the coradical of H is
generated by {span(C) | C € 'S} U {span(S(C)) | C € 'S}. In particular, combining [36, Lemma 2.1]
and Proposition 3.3.13, we know that (H(y))o is an abelian group in cases (ii) and (iii).

According to [36, Remark 4.10], we have

Lemma 6.4.1 Let H be the algebra which is generated by g,u,v satisfying the following relations:

gu = —ug, gv=—vg, uww = —vu, u’=1v>=0,

where n is an even number.

Moreover, the coalgebra structure and antipode are given by:
Alg)=g®g, elg)=1, S(g)=g7",
Alu)=g@ut+u®l, eu)=0, Su)=—g 'u,

Aw)=g@v+v®l, e(v)=0, Sk)=—-g v

Then H is a coradically graded Hopf algebra of tame corepresentation type with | Pt |= 2 and S' =

{kg}. Moreover, we have
H = (k(z,y)/ (2, 5%, oy + yo))* x kg).

From [36, Remark 4.17(2)], we know that
Example 6.4.2 Let H be the algebra which is generated by g, h, u, v satisfying the following relations:
gh=hg, ¢g"* =h" =1,
gu = —ug, gv=avg, hu= Buh, hv= —vh,

u? =02 =0, (w)™ = (=)™ 8™ (vu)™

where ny,ne € Z, af is an mth primitive root of unit and m | l.c.m(nq,nz).

Moreover, the coalgebra structure and antipode are given by:
Alg)=g®yg, g)=1, Sg)=97",

A(h)y=h®h, e(h)=1, S(h)=h"",
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Aw)=g@ut+u®l, eu)=0, Su)=-g 'y,
Aw)=h@v+v®l, ev)=0 Sw)=—-h"tv.

Then H is a coradically graded Hopf algebra of tame corepresentation type with | Pt |= 2 and S' =
{kg,kh}. Moreover, we have

H = (k(z,y)/ (2%, %, (zy)™ — (=)™ 8™ (yz)™))* x kg, h).

In case (ii) and (iii), according to Proposition 6.3.10 and Remark 6.3.11, we know that only some
special ideals of {(22, 9%, (xy)™ — a(yx)™) | 0 # a € k,m > 1} can appear and if one of them appears,
then we can construct coradically graded Hopf algebra of tame corepresentation type over H' = kG
for some G = G(H) in Examples 6.4.1 and 6.4.2. However, in case (i), we do not know how to find
all H' such that (k(z,y)/I)* x H' is a Hopf algebra for some special ideals I listed in Theorem 6.1.2,
even if the invertible matrix K in Lemma 6.3.3 is diagonal.

In the following part, we will give some examples of link-indecomposable coradically graded Hopf
algebras of tame corepresentation type over 8-dimensional non-pointed cosemisimple Hopf algebras,
such that the invertible matrix K in Lemma 6.3.3 is diagonal.

According to [51, Theorem 2. 13|, we have

Lemma 6.4.3 Non-pointed 8-dimensional semisimple Hopf algebras over k consist of 3 isomorphic

classes, which are represented by
(kD8)*7 (kQS)* 7H87

where Dg = (z,y | #* = y*> = 1,yx = a2~ y) is the dihedral group and Qs = (z,y | 2* = 1,y =
2%, yx = = ty) is the quaternion group. Among these Hy is the unique one that is neither commutative
nor cocommutative, and is generated as an algebra by x,y, z with relations

2?=y?=1, 2

1
= 5(1+x+y—xy), Yr = xY, 2T =Yz, 2y = TZ; (6.16)

the coalgebra structure and antipode are given by:

Alz) =2z, Aly) =yQuy, e(z) =¢c(y) =1, (6.17)
A(z):%(1®1+1®x+y®1—y®x)(z®z), (z) =1, (6.18)
S(z) ==z, Sy) =y, S(z) =z (6.19)

According to Lemma 6.2.1, when we consider link-indecomposable coradically graded Hopf algebras of
tame corepresentaion type over 8-dimensional non-pointed cosemisimple Hopf algebras, we only need

to consider case (i).
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§6.4.1 Hopf algebras of tame corepresentation type over (kDg)*

Let {epq}p=0,1,2,3:9=0,1 be the basis of (kDs)*, dual to the basis {2Py?},=0.1,2,3;9=0,1 of kDg. The

multiplication and unit are given, respectively, by
€p1a1€pagz = Op1,p20q1,q2€prans 1= Z €pqs (6.20)
p.q

the coalgebra structure and antipode are given by

A(epq) = Z Cpra ® Epagzs (621)

p1+p2+291p2= p mod 4
q1+q2= q mod 2

5(epq) = 517,0511,07 (622)

S(epg) = epq,where p+p' +2¢p"' = 0 mod 4, ¢+¢ = 0 mod 2. (6.23)

It is easy to check that elements

X = Z(_l)pepqv

pq

Yy = Z(*l)qem

pq

are group-like elements of order 2. Let

c11 = ego—V—leig — ez + V—1les,
ciz = V—lep +enn — V—1lea — ez,
co1 = —V—leor +enn +vV—1lea — ez,
cos = epo+V—1lew — ez — vV —lesg,

€11 C12
C =
C21 €22

is a basic multiplicative matrix of C', where C' = span{ci1, ¢12, ¢21, c22} Thus the simple subcoalgebras
in (kDg)* are k1,kX kY, kXY, C.

then

Next we try to construct a link-indecomposable coradically graded Hopf algebra H of tame
corepresentaion type over (kDg)* such that the invertible matrix K in Lemma 6.3.3 is diagonal.

Namely, suppose there exists an diagonal invertible matrix K = (k;j)ax4 over k such that

Co' X =K(XoC),
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where

u
X =
v
is a non-trivial (C,k1)-primitive matrix, and

aq
o%)
[e %}

Qy

According to Proposition 6.3.8, if
Ry={heH|(idom)A(h)=h1}

is generated by u, v, we know that

Since

c11C22 + C12021 = 1,
then

(c11€22 + cr2c21)u =  —asu(ciicar + c12¢21)

= wu(cricaz + ciaca1).

It follows that

Qg = —1.

Next we consider

(c11€22 + c12€21)v,

a similar argument shows that

a3 = —1.

Besides, we also have

2 2
c11c22 — C12C21 =Y, ¢y — ¢jp = X,

thus (kDg)* is generated by span(C') and
Xu=uX, Yu=uY, Xv=vX, Yv=0Y.
As a summary, we have

Example 6.4.4 Let H be a Hopf algebra generated as an algebra by {epq}p=0,1,2,3:q=0,1, ¥, v satisfying
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(6.20) and the following relations:
CO'X=KXo0),

u2=v2:0, uv +vu =0,

o[ ez ) _ [ oo V—lewp —e +v—leso v—leor +e11 —v—lear —es
—V—Tegr + €11 + vV —Tea — ez e +v/—Lewg — ezp — vV—Tlezg )

and

The coalgebra structure and antipode are given by (6.21-6.23) and
Alu)=c11 @u+tc12@v+u®l,

Aw)=c1 Qu+cpvt+ov®l,

S(u) = —(ego — V—1leso — e20 — vV —1Lewo)u — (V—legr + e11 — vV —1leas — e31)v,
S(U) = _(_ \% _1601 +e11 + \/jlezl — 631)U — (600 + v —1630 — €20 — V —1610)’[1.

One can show that H = (k(x,y)/(z2, 42, (zy)? + (y2)?))* x (kDg)*, and it is a link-indecomposable

coradically graded Hopf algebra of tame corepresentaion type over (kDg)*.

§6.4.2 Hopf algebras of tame corepresentation type over (kQg)*

Let {epq}p=0.1,2,3:9=0,1 be the basis of (kQs)*, dual to the basis {zPy?},=01,2,3.=0,1 of kQs. The

s L4 1494

multiplication and unit are given, respectively, by
€p1g1€p2az = Op1,p20g1,02€prars 1= Z €pq> (6.24)
p.q

the coalgebra structure and antipode are given by

A(ePQ) = Z Eprg1 ® €pagas (625)

p1+p2+291(p2+4q2)= p mod 4
q1+q2= g mod 2
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5(epq) = 5p’05q’0, (626)

S(epg) = epq,wherep+p +2¢(p'+¢)= 0 mod 4, ¢+¢ = 0 mod 2. (6.27)

It is easy to check that elements

X = Z(—l)pem,

pq

Y = Z(_l)qepq

pq

are group-like elements of order 2. Let

c11 = ego+V—legr — ez — V—leat,
ciz = V—lew+enn —vV—1les — es1,
e = V—lew —e1r — V—1leso + €31,
c22 = ego—V—1legr — ez + vV —1lean,

i1 C12
C =
C21  C22

is a basic multiplicative matrix of C', where C' = span{ci1, ¢12, ¢21, 22} Thus the simple subcoalgebras
in (kQs)* are k1, kX,kY,kXY,C.

then

Next we try to construct a link-indecomposable coradically graded Hopf algebra H of tame
corepresentaion type over (kDg)* such that the invertible matrix K in Lemma 6.3.3 is diagonal.

Namely, there exists an diagonal invertible matrix K = (k;;)ax4 over k such that

Co' X =K(XoC),

()

is a non-trivial (C,k1)-primitive matrix, and

where

aq
Qg
0%}

Qy

Suppose that
Rp={heH|(idom)Ah)=h®1}
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is generated by u,v. Since

C11C22 — C12€21 = 1,
an argument similar to the one used in Example 6.4.4 shows that

aiz—l

for 1 <4 < 4. We also have

crica + C1aco1 = X, &) — iy =Y,
it follows that (kDg)* is generated by span(C) and

Xu=uX, Yu=uY, Xv=vX, Yv=0Y.

Based on the above argument, we have

Example 6.4.5 Let H be a Hopf algebra generated as an algebra by {epq}p=01,2,3:=0,1, U, v satisfying
(6.24) and the following relations:
CO'X=KXao0),

u2=v2:0, uv +ovu =0,

c_ cin ¢z \ [ eoo+V—legr —ez0 —v—lear V—ley +enn —v—leso — ez )
V—=Teor — e11 —v/—Teso + ez1 egp — vV—TLegr — eap + vV—lear )

and

The coalgebra structure and antipode are given by (6.21-6.23) and
Alu)=c11 @u+c12@v+u®l,

AW)=c1 Qu+cvt+v®l,

S(u) = —(600 + vV —1leas —egg — V —1601)u — (\/ —lesgg +e31 — \/jlelo — 611)’[},
S(U) = —(\/jego —e31 —VvV—leyg+ 611)’LL — (600 —vV—=lesy — ez + vV —1601)’0.
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One can show that H = (k(z,y)/(z%,vy?%, (zy)? + (yx)?))* x (kQs)*, and it is a link-indecomposable
coradically graded Hopf algebra of tame corepresentaion type over (kQs)*.

§6.4.3 Hopf algebras of tame corepresentation type over Hg

Note that the simple subcoalgebras in Hg are k1, ke, kb, kbe, C; where C' = span{z, bz, cx, bex}.

We give a corresponding basic multiplicative matrix C of C, where

c c 1 T+ bz z — bz
C— 11 12 _ - ) (628)
C21  Cao 2\ cx—bex cx+bex
Suppose there exists a link-indecomposable coradically graded Hopf algebra H of tame corepresentaion

type over Hg such that the invertible matrix K in Lemma 6.3.3 is diagonal. Namely, there exists an

diagonal invertible matrix K = (k;j)axa4 over k such that

CO'X=KXnoCl),

(1)

is a non-trivial (C,k1)-primitive matrix, and

where

aq
o)
[e%:}

o7

Note that

Alcpiu) = (1 ®ecnn+e2®ca)(cnn@utc12@v+u®l)
= 0?1 ® c11U + €12€11 @ C21U + €11C12 @ €11V + C?g & c21v

+c1iu ® e + c12u ® coa,

A(uci1)) = (c1®@u+cre®@v+u®1)(c11 ®c11 + 12 ® ¢o1)
= 0%1 @ ucyy + c11¢12 @ ucay + €12¢11 @ veyy + 0?2 ® veap

Fuci; ® 11 + uci2 @ Ca1.

According to Lemma 6.3.3, we know that coju, c11v are linearly independent. It follows that

C11C12 = C12€C11,
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which is a contradiction. Thus there exists no link-indecomposable coradically graded Hopf algebra H

of tame corepresentaion type over Hg such that the invertible matrix K in Lemma 6.3.3 is diagonal.

However, we have a link-indecomposable coradically graded Hopf algebra of tame corepresentaion

type over Hg such that K in Lemma 6.3.3 is not diagonal.

Example 6.4.6 ( [66, Definition 5.18]) Let H be a Hopf algebra generated as an algebra by x,y, z, p1, p2
with relations (6.4.3) and

p? =p3 =0, pipapips + p2pip2p1 = 0,

Ip1 = p1x, Yp1 = p1y, Tp2 = —pP2x, Yp2 = —pP2y,

zZp1 = —p12, zp2 = V—lpaxz.

The coalgebra structure and antipode of H are given by (6.17-6.19) and

A(p1) = (foo = V=1f11)2 @ p1 + (fio + V—=1f01)2 @ p2 +p1 ® 1,
A(p2) = (foo + V=1fu)z @ p2 + (fro = V=-1for)z @ p1 + p2 @ 1,
e(p1) = e(p2) =0,

S(p1) = —2(foo — V=1f11) = z(fio + V=Lfor)p2,

S(p2) = —2(foo + \/—71f11)172 — 2(f10 — \/jlfm)ph

L+ (=1L + (=1)ky],4,5 =0,1.

We know that
X — ( P1+ P2 )
—V—=1(p1 — p2)

is a non-trivial (C, 1)-primitive matriz, where C is defined in (6.28). In this case,

where fij =

1 V=T /1 1
2 2 2 2
V-1 1 _1 _v-1
K = 2 2 2 2
V=1 1 1 V=1 ’
2 2 2 2
1 V=1 _v=1 @ _1
2 2 2 2
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and we can show that
H = (k(z,y)/(z%, 4%, (zy)? + (y2)?))* x Hs.

This means that H is of tame corepresentation type.
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