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ABSTRACT

The aim of this paper is to introduce a tensor structure for the Serre quotient cate-
gory of an abelian monoidal category with biexact tensor product in order to make the
canonical funtor a monoidal functor. In this tensor product, we prove that the quotient
category of a multiring category (resp. a multitensor category, resp. a multifusion cate-
gory) by a two-sided Serre tensor-ideal is still a multiring category (resp. a multitensor
category, resp. a multifusion category). In this case, a two-sided Serre tensor-ideal of a
tensor category is always trivial. This result can be generalized to any tensor product.
We show that if the canonical functor is a monoidal functor, then the corresponding
Serre subcategory of the tensor category is trivial.

Besides, we find that a two-sided Serre tensor-ideal of a multiring category with left
duals is a direct sum of the component subcategories. Consequently, the corresponding
quotient category is isomorphic to a subcategory of the original category. We also define
a tensor product for the category of fractions and show that, when the multiplicative
system is induced by a Serre subcategory, the Serre quotient category and the category

of fractions are isomorphic as monoidal categories.
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Chapter 1 Introduction

1.1 Background

The quotient category .A/C of an abelian category .A by a Serre subcategory C was
introduced by Gabriel in [1], which is sometimes called the Serre quotient categories.
Gabriel proved that the quotient category of an abelian category is still an abelian cat-
egory, and the canonical functor T : A — A/C is an exact functor. The process of
obtaining the quotient category of an abelian category is often called the localization of
an abelian category.

We collect several recent results about Serre quotient category as follows. An
analogue of the the fundamental homomorphism theorem, which builds up on Serre
quotient category, is introduced by Mohamed Barakat and Markus Lange-Hegermann
in [2]. They also show that the coimage of a Gabriel monad is a Serre quotient category
in [3], and research the Ext-computability of Serre quotient categories in [4]. Ramin
Ebrahimi shows that the natural map qg(’ 4 - Extil(X ,A) — ExtiA/C(q(X ), q(A)) is
invertible in [5], where ¢ is the canonical functor and X, A are objects in A.

More generally, localization is a process of adding inverse maps to an algebraic
structure. In particular, localization of a category means adding formal inverses to some
morphisms. A widely used approach is the calculus of fractions, see Definition 5.2.1
in [6] and Chapter 1 in [7]. In fact, calculus of fractions for triangulated category is of
great significance, and it is known as the Verdier quotient, see section 3.2 in [8] and
Chapter 2 in [9].

A tensor category is an abelian monoidal category with a more complicated struc-
ture. It has a very close relation with Hopf algebras, for example the reconstruction
theorem (see Theorem 5.3.12 in [10]). One can refer a systematic theory of tensor cat-

egory to [10]. Moreover, multitensor category appears in [11]. For more recent results



Chapter 1  Introduction

about tensor category, one can refer to [12]. Furthermore, monoidal category is close
to topological field theory, see [13] and [14].

The original motivation of this thesis is to construct a new finite dimensional Hopf
algebra via the reconstruction theorem for finite dimensional Hopf algebras. For a finite
dimensional Hopf algebra H, the reconstruction theorem tell us that the representation
category Rep(H) is a finite tensor category with a fiber functor. If the quotient category
of Rep(H ) by some Serre subcategory is still a finite tensor category, then it may be pos-
sible to construct a new finite dimensional Hopf algebra by applying the reconstruction

theorem on the quotient category.

1.2 Main results

To answer the original motivation, we show in section 6.2 that if the canonical
functor T : A — A/C is a monoidal functor, where A is a tensor category and C is a
Serre subcategory of A, then C is trivial. This declares that our original motivation is
trivial in the case of the canonical functor being a monoidal functor.

In addition to this, we define a tensor product for the quotient category of an abelian
monoidal category with biexact tensor product, and show that the quotient category of
a multiring category (resp. a multitensor category, resp. a multifusion category) by
a two-sided Serre tensor-ideal is a multiring category (resp. a multitensor category,
resp. a multifusion category). In this case, the canonical functor is a monoidal functor.
We also define a tensor product for the category of fractions and show that, when the
multiplicative system .S is induced by a Serre subcategory, the Serre quotient category

and the category of fractions are isomorphic as monoidal categories.

1.3 Organization

In Chapter 2, we present some basic definitions and results as preparation.
In Chapter 3, we reproduce the theory for the quotient category of an abelian cat-
egory, and we provide more details. We show that the quotient category of an abelian

category by a Serre subcategory is also an abelian category, and the canonical funtor is



1.3  Organization

an exact functor.

In Chapter 4, we show that a Serre subcategory can induce a multiplicative system.
Based on this, we show that the Serre quotient category and the category of fractions
are isomorphic when the multiplicative system is induced by the Serre subcategory.
Besides, we show that a multiplicative system can induce a Serre subcategory.

In Chapter 5, we focus on cases of abelian category. We show that the quotient
category of a locally finite abelian category is a locally finite abelian category, and that
the quotient category of a finite semisimple abelian category is still a finite semisimple
abelian category.

In Chapter 6, we focus on cases of monoidal category. We provide a definition for
tensor product in the quotient category of an abelian monoidal category with biexact ten-
sor product, and study the quotient category of a multiring category (resp. a multitensor
category, resp. a multifusion category) by a two-sided Serre tensor-ideal. Moreover,
we show that a two-sided Serre tensor-ideal of a multiring category with left duals must
be a direct sum of the component subcategories, and so be the corresponding quotient
category. This implies the corresponding quotient category is actually isomorphic to a
subcategory of the original category. In section 6.4, we define a tensor product for the
category of fractions and show that the isomorphism functor in Chapter 4 is a monoidal

functor.






Chapter 2 Preliminaries

Throughout the paper, k is an algebraically closed field. In this chapter, we recall

some basic concepts and facts, one can refer to [8], [10], [15], and [16] for more details.

2.1 Finite abelian category

Recall that an additive category A is said to be k-linear if for any objects X, Y
in A, Hom 4(X,Y) is equipped with a structure of a vector space over k such that the
composition of morphisms is k-linear. Besides, we say that an object X has finite length

if its Jordan-Holder series has finite length.

Definition 2.1 (Locally finite). A k-linear abelian category A is said to be locally finite

if the following two conditions are satisfied:

1. for any two objects X,Y in A, the vector space Hom (X ,Y) is finite dimen-
sional;

2. every object in A has finite length.

Definition 2.2 (Finite). 4 k-linear abelian category A is said to be finite if it is locally

finite and in addition

1. A has enough projectives, i.e. every simple object in A has a projective cover,

2. there are finitely many isomorphism classes of simple objects.

Recall that a finite k-linear abelian category is equivalent to the category A-mod of
finite dimensional modules over a finite dimensional k-algebra A, see [10] Definition

1.8.5.

2.2 Tensor category, ring category and fusion category

The following definitions refer to [10]
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Definition 2.3. 4 monoidal category is a quintuple (A, ®, a, 1,1) where A is a category,
® : AXA — Aisa bifunctor called the tensor product bifunctor. a : (—Q® —)Q® — —

— ® (— ® —) is a natural isomorphism:
axyyz XQ®Y)®Z->XQ®Y®Z), X.,Y,Ze€ A

called the associativity constraint (or associativity isomorphism), 1 € A is an object of

Aandi:1Q®1 — 1is an isomorphism, subject the following two axioms.

1. The pentagon axiom. The diagram

(WRX)QY)® Z

WWRXQY)®~Z WRX)QY ® Z)

J/QW,X®Y,Z AW . XYRZ J/

idy®axy z

WRXR®Y)R® Z) WRXQY®Z))

is commutative for all objects W, X,Y, Z in A.

2. The unit axiom. The functors

Li:X—>1Q®X and

R:X->X®l
of left and right multiplication by 1 are autoequivalences of A.

Recall the Definition 2.2.8 in [10]. It shows that a monoidal category can be alter-

natively defined as follows

Definition 2.4. 4 monoidal category is a sextuple (A, ®, a, 1,1,r) satisfying the pen-

tagon axiom, and the triangle axiom (that is, the following diagram is commutative)

ax.1y

XDH®Y — XR(UY)
XQ®Y

6



2.2 Tensor category, ring category and fusion category

forall X,Y € A.

Definition 2.5. Let A be a monoidal category. For any object X in A, an object X*
is said to be a left dual of X if there exist an evaluation evy : X* ® X — 1 and a

coevaluation coevy : 1 - X @ X™ such that the compositions

cerX®idX [dx®€UX

X OO X @ XN QX —X Xy X @ (X @ X) —2 20Xy X,

-1
idx*®C09UX aX*’X’X* evx®ldxr<

X' — = XX ®X) —— > X"®X)® X" ————— X~

are the identity morphisms.
. % . . . . . . ’ .
An object *X is said to be a right dual of X if there exist an evaluation ev :

X ® *X — 1 and a coevaluation cer:X : 1 > *X ® X such that the compositions

. -1 .
idx®coev’, Ay xx.x eU&@ldX

X —— 5 XQ(X®X) ————5 XQ®*X)®X —————> X

coev’, ®i id*X®eU/'X

d* ax *
X — R XXX — XX QX ®@FX) ——— X% *X

are the identity morphisms.

Furthermore, an object X in A is said to be rigid if it has both left and right duals.

A is said to be rigid if every object of A is rigid.

Next, we recall the definitions of a multiring category, a multitensor category and

a multifusion category.

Definition 2.6. A multiring category A over k is a locally finite k-linear abelian monoidal
category with bilinear and biexact tensor product. If in addition End 4(1) = k, we will

call A a ring category.

Definition 2.7. Let A be a locally finite k-linear abelian rigid monoidal category. We
will call A a multitensor category over k if the bifunctor ® : A X A — A is bilinear
on morphisms. If in addition End 4(1) = k, and A is indecomposable i.e. A is not
equivalent to a direct sum of nonzero multitensor categories, then we will call A a

tensor category.
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Definition 2.8. 4 multifusion category is a finite semisimple multitensor category. A
Jusion category A is a multifusion category with End 4(1) = k. i.e. a finite semisimple

tensor category.

By Proposition 4.2.1 in [10], any multitensor category is a multiring category, and
any tensor category is a ring category. One can easily observe from the definition that
any multifusion category ia s multitensor category, and any fusion category is a tensor

category.

2.3 Serre subcategory

Definition 2.9 (Serre subcategory). Let A be an abelian category. A non-empty full
additive subcategory C C A is a Serre subcategory provided that C is closed under

taking subobjects, quotients and extensions.

To be more precise, the definition is to say that for any exact sequence of .A

O-M —-M->M"-=D0,

M is an object in C if and only if M’ and M" are objects in C.

Now, we give an equivalent definition for Serre subcategory.

Lemma 2.1. 4 non-empty full additive subcategory C of A is a Serre subcategory if
and only if for any X' — X — X" exact in A with X', X" € C, then also X € C.

Proof. (&<=)If0 - X' - X - X” - Oexactin A, then X’ - X — X" exact

means X', X" €e C = X €(C;0 > X' - Xexactmeans X € C = X' € C;

X - X" - Oexactmeans X € C = X" € C.
(=) If

S x_f.

XI H‘X XN

is exact in .4, then we have the following short exact sequence.

8

0——=Imf X Img 0



2.3 Serre subcategory

Since Im f =~ X'/ker f is a quotient of X’ and Im g is a subobject of X”, we have

X'/ker f, Im g € C. Therefore, X € C. O

See Example 4.2.2 in [17] for the following example.

Example 2.1. The full subcategory of torsion abelian groups is a Serre subcategory of

abelian groups category.

Proof. Recall that an abelian group G is said to be torsion if every element of G has
finite order. Denote the full subcategory of torsion abelian groups by Tors. Given exact

sequence in the category of abelian groups

0-G -G-G"->0.

If G € Tors, its subgroup G’ and quotient G” are also in Tors. If G', G” € Tors, for
any element g € G, the image g has finite order in G” that implies 3 integer n such that

ng = 0 and then ng € G’ i.e. 3 integer m such that mng = 0. Thus, G is torsion. Il

The next example is a classical result for Noetherian modules as it is closed un-
der taking submodules, quotient modules and extensions. It is also correct for Artin

modules.

Example 2.2. The full subcategory of Noetherian modules is a Serre subcategory of

R-module category.
See Proposition 4.2.3 in [17] for the following example.

Example 2.3. Let F : A — B be an exact functor between abelian categories. Then

ker F is a Serre subcategory of A.

Proof. Let0 - M’ - M — M" — 0 be an exact sequence. Suppose M', M" are in

the kernel of F, apply F to the exact sequence and get

0--0->FM->0-0
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which means M is in the kernel of F. Conversely, if M is in the kernel of F, apply F

to the exact sequence and get

0—-FM -0—-FM" -0

so M’ and M"” are in ker F. O

In particular, let e be an idempotent element in an algebra A, the functor res, : A-
mod — B-mod by res,(—) = (—)e is an exact functor where B = eAe = End eA. The

exactness see 1.6.8 [18]. Hence, ker(res,) is a Serre subcategory of A-mod.

Recall also Theorem 4.3.8 in [10] as the following:

Theorem 2.1. 1. In a ring category with left duals, the unit object 1 is simple.
2. In a multiring category with left duals, the unit object 1 is semisimple, and is a

direct sum of pairwise non-isomorphic simple objects 1,.

Note that 1; is the image of p;, where {p; },c; 1s the set of primitive idempotents of
the algebra End(1). And 1 = @ 1,.
i€l
We also write down the definition of two-sided Serre tensor-ideal. In some liter-

ature, for example in [19], ’tensor-ideal’ is written as *®-ideal’, and it means one side

absorption. In some other literature, for example in [20], the name "tensor-ideal’ is used.

Definition 2.10. Let A be an abelian monoidal category. A Serre subcategory C of
A is called a two-sided Serre tensor-ideal of A if for any X € A, Y € C, we have
X®YeCandY @ X €C.

2.4 Directed quasi-ordered set

Definition 2.11. A set is said to be a quasi-ordered set if its order is reflexive and
transitive. A quasi-ordered set 1 is said to be directed if for any pair i, j € I, there is
an index k withi < k and j < k.

The following lemma is common. One can refer to [16].

10



2.5 Multiplicative system

Lemma 2.2. Let { A;, goi.} be a direct system of modules over a directed quasi-ordered
set 1. Suppose li_r)nA,- = ([ A)/S, where S =< {/quojai —Aja;jla; € A, andi < j} >

and 4; : A; = |1 A; is the ith injection, then

2. Ma;+S =0< @la; =0 forsomet>i.

2.5 Multiplicative system

Definition 2.12 (Multiplicative system). Let A be a category. A set of morphisms S in

A is said to be a left multiplicative system if:

1. S is closed under composition of morphisms, and all identity morphisms are in
S,‘

2. Every solid diagram

witht € S can be completed to a commutative diagram with s € S;
3. Forevery pair of morphisms f,g : X — Y and a morphismt . - — X in S such

that f ot = g ot, there exists a morphism s : Y — -in S suchthatseo f =sog.
A set of morphisms S in A is said to be a right multiplicative system if:

1. S is closed under composition of morphisms, and all identity morphisms are in
S,

2. Every solid diagram

with s € S can be completed to a commutative diagram witht € S;

11
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3. For every pair of morphisms f,g : X — Y and amorphisms . Y — -in S such

that s o f = s o g, there exists a morphismt . - — X in S such that f ot = got.

If' S is both a left multiplicative system and a right multiplicative system, it is said to be

a multiplicative system.
In the following, we will use the double arrow s : - = - to imply s € S.

Definition 2.13. Let A be a category, S be a multiplicative system of A, X,Y are

objects in A. A right fraction (or a right roof) from X to Y is a morphism diagram
X — L3,

which is denoted by (b, s). We say two right fractions (a,r) and (b, s) are equivalent if

there exists a commutative diagram as following.

4N

X<— ——>Y

N

We will denote the equivalent class of (b, s) by bls.

Definition 2.14. Let A be a category, S be a multiplicative system of A, we define the
quotient category S™' A by

1. ob(S™'A) = ob(A);

2. Morphisms in S™' A are equivalent classes of right fractions.

One can also define the morphisms in S~! A to be equivalent classes of left frac-
tions. In this article, we will use the right fractions. Besides, the quotient category
S~! A is also called as the localization of A. In the following text, we denote the local-
ization functor by Q : A — S~! A, which maps f to f/id.

Recall Proposition 3.6 in [7] Chapter 1.

Lemma 2.3. Let A be an abelian category. If S is a multiplicative system of A, then

the category S~ A is abelian and the functor Q : A — S™' A is exact.

12



Chapter 3 Quotient category of an abelian category

The aim of this chapter is to systematically recall the definition of localization for

an abelian category .A by a Serre subcategory C. One can refer to Part 3 in [1].

3.1 Definition of Serre quotient category

Given two objects M and N in A, let M' and N’ be subobjects of M and N

respectively. The canonical morphisms

M M’ > Mandp¥, ., : N - NIN'

induce a map

Hom (i}, p¥ /) : Hom (M, N) — Hom ((M', N/N").

To be more specific, for a morphismu : M — N, there is a morphism v’ : M’ —
!/

N/N' that is actually u’ =p%/N, ouoi% .

M/

!
|
!
Ll, |
!
¥ N

N/N’<LN

Claim 1. Given an abelian category A with a Serre subcategory C, consider two objects
M and N in A, The set {Hom 4(M', N/N")\M/M',N' € C}, in which M" and N'

are subobjects of M and N respectively, is a direct system.

13



Chapter 3 Quotient category of an abelian category

Proof. First, we define an order on the set {Hom 4(M', N/N")|M/M',N' € C} by

Hom (M, N/N{) < Hom (M}, N/N})if M} c M{,N| C N}

with M/M 1’, N 1’, M /Mz/, NQ’ € C. This definition is reasonable because of the follow-

ing commutative diagram.

i M
/ Ml / lM
M M| M
N/N!
1 N
, pN/Nz’ , pN/Nl'
N/N2 N/N1

By observing the commutative diagram, one can readily define a map

(MII’N/NII) . !/ / / /
(MJ.NIN]) Hom (M, N/N;) — Hom4(M,, N/N,)

¢

!

N M
f = PN oS Ciy
and obtain following commutative diagram.

(Ml’,N/Nl’)
! /
(MJ,NIN})

Hom (M|, N/N/) Hom (M3, N/Ny)

(Ml:,N/NI:) (M2:,N/N2:)
(M2,N/N2) (M3,N/N3)
Hom 4(M,, N/N,)
This means {Hom 4(M', N/N")|M/M', N’ € C} is a direct system. O

Definition 3.1 (Quotient Category). The category A/C is defined as follows:

1. the objects of AIC coincide with the objects of A.

2. the set of morphisms from M to N is defined by

Hom 4,(M,N) := h_r)n Hom 4(M', N/N')
M'.N'

14



3.1 Definition of Serre quotient category

in which M' and N' go through the subobjects of M and N respectively such
that MIM', N € C.

Figuring out the composition in .A/C is of great significance. Let f be an element

of Hom 4,-(M, N), and let g be an element of Hom ,,-(/V, P). Denote

Hom yc(M,N) = lim Hom,(M’, N/N") = (@) Hom ((M’, N/N")VI,;
M’ ,N'

Hom 4c(N, P) = lim Hom 4(N”, P/P') = (@) Hom ((N", PIP"))/1;
N//’Pl

Here, I, is the subgroup of @ Hom 4(M', N/N'") generated by

(M/!.NIN/) , '
A(M;’N/N;)d)(M,,N/N;)(fl) - A(M[/,N/Ni,)(fl') fOI’ all fi c HomA(Ml ’N/Ni ),

J

where Hom ,(M/, N/N/) < Hom 4(M, N/Njf), and A(Mir,N/Ni/) : Hom 4 (M/, N/N/) —
@ Hom 4(M', N/N') is the embedding. I, is the subgroup of € Hom 4(N", P/P"))
satisfying a similar condition of I;. Note that the indexed set is directed, thus Lemma
2.2 is valid here, and we obtain a morphism f : M’ — N/N' such that f = f + I,
and a morphism g : N” — P/P’ such that g = g+ I, with M/M', N', N/N", P" are

objects of C.

Recall that the sum of a family of subobjects (X;);c; of an object X is defined to
be

Y X, =mm@ x, - Xx),

i€l i€l
and the intersection of a family of subobjects (X;),c; of an object X is defined to be

() X, =ker(x - [] x7x).

iel iel

Note that (N” + N')/N' is the kernel of projection # : N/N' — N/(N” + N').
Let M" = ker(xo f). By the universal property, one can get ' : M" — (N"+N")/N’

and following commutative diagram.

15



Chapter 3 Quotient category of an abelian category

M//

7
7
/
12 /
;oo

g M’

/
e lf
¥

(N" + N')/N'—= N/N’ ~ - N/(N"+N")

In some papers, such as Gabriel’s thesis [1], M" is written as f~'(N” + N')/N").
Since

M'/M" = M//ker(ﬂ-of) o Im(ﬂ'Of) C N/(Nll +N’)

and note that
N/N”

N/(N" + N') ~ e,
( )= N NN

we have M'/M" € C. Also note that M/M' € C, the property of closing under taking

extension tells that M/M"” € C because of the following short exact sequence.

0-M/M" > MIM" > M/IM' -0

On the other hand, by the universal property of cokernel, we can obtain a morphism

g" : N"/(N" nN'") - coker(g o i) such that the following diagram commute

N" AN’ i N N///(N/r n N’)
gJ/ e
P/P' e
s 8
ﬂ/l ya ’
A
coker(g o i)

where n” : P/P' — P/P" is the projection. In fact, coker(g i) is a quotient object of
P/P’, and P/P’ is a quotient object of P. Hence, coker(g o i) is a quotient object of P.
We can write that coker(g o i) =~ P/P"” where P" = ker(P — P/P’ — coker(g ° i)).
Note that g(N” n N') is an object of C since C is closed under taking subobject and
quotient. Because

P"/P' =ker(z')=g(N"nN') e C

16



3.1 Definition of Serre quotient category

and P’ € C, the exact sequence
0—-P - P"->P'|P >0

means that P” € C. In Gabriel’s thesis [1], P” is written as P’ + g(N”" n N').

Therefore, we get a composition
glovef' : M" - (N"+N')/N'"2N"(N"NnN") > P/P",

where v : (N” + N')/N" = N"/(N" n N') is the canonical isomorphism, with
M/M",P" € C. We want to define g f to be the image of g’ cve f’ in Hom 4,-(M, P).
It remains to check that the composition does not rely on the choice of f and g. One

can refer to section 3.2 in [21] for another proof.

Proposition 3.1. Let f be an element of Hom 4,-(M, N), and let § be an element of
Hom 4,-(N, P). The composition of f and g defined in the above manner does not rely

on the choice of f and g.
Proof. Denote

Hom ,c(M, P) = lim Hom ,(M", P/P") = (@ Hom ((M", P/P"))/1.
M//,P/

First of all, we prove that the composition of a morphism with a zero morphism is still

a zero morphism. Assume f is the zero morphism. By Lemma 2.2, there is (M|, N D

!/ !’
such that qb(M,’N/N,)( f) = 0. This means the following commutative diagram.
(M].N/IN))
M
’ "M ’
M, M
0 S
N/N{ —— N/N'
pN/N

NIN!



Chapter 3 Quotient category of an abelian category

One can also find the following commutative diagram, the back square commutes be-

cause it is the restriction of the front square.

Mlll( M”
/ I /
i !
M/ L M’
0 f!
0 i
(N” + N/)/N| . (N" + N")/N’
N/N! N/N'
1 NIN'
pN/Nl’

Thus, we have the following commutative diagram.

/ A

M" S (N"+N'))N' —= = N"(N"AN')—2 P/P"
i .

M/ O~ (N + N)))/N' —=—~ N"/(N" A N|) — P/P!

Thismeansg’af’+[:gio0+1:Ii,e_gofzo,

On the other hand, suppose § = 0, theng : N” — P/P’ € I,. By Lemma 2.2,

N" P/P")

NI P /Pl,)(g) = 0 i.e. the following diagram commutes.

there is (N, P) such that d)E

”
.N]

LNy
N "¢ N N "
1

P/P’

P/IP|

p/P’
PIP|

By the construction of composition, we have the following commutative diagram. The

18



3.1 Definition of Serre quotient category

back square commutes because it is the projection of the front square.

N{,/(Nl” N N’)C N"/(N"nN")
N”
R
N¢C N N
1
0 g’
0 g
PIP/ ‘ P/P"
/ /
!’ !/
P/P1 oot P/P
pP/Pl’

Consequently, we can induce a commutative diagram from the back square as following.

!/

f g

/
M"——~(N"+N)N ——~=N"[(N"nN") P/P"
p
fl
M Lo (N + N")/N’ N/(N'AN'")—2 P/P!

Thisimpliesg’of’+I=Oof1’+I:Ii,e, gof =0.
Now, we consider the composition of morphisms in general. Suppose f; = f, and

g, = §,. We want to show

gioef1i=8°/

Since f; — f, = & — & =0, it is clear that

g_1°(f1_f2)=0=(g_2—g_1)°f2-

Consequently,

g1°f1—g1°f2=g2°f_2_g_1°f2'
Thus,

giofi=8 0/
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Chapter 3 Quotient category of an abelian category

3.2 Serre quotient category is an abelian category

Proposition 3.2. Given an abelian category A with a Serre subcategory C, the quotient

category A/C is an additive category.

Proof. 1. The Hom-sets have structure of abelian group, because the direct limit of
abelian groups is also an abelian group.
2. The distributive law is also correct, because Proposition 3.1 has proven the com-
position does not rely on the choice.
3. Because A has all the finite coproducts, so does A/C.
O

The quotient functor (or say the canonical functor) T from A to A/C is defined to
be

TM = M for any object M € A

and for any morphism f € Hom 4(M, N)

T : Hom (M, N) — Hom 4,-(M,N)

f=f+1
Here, I is the subgroup of @@ Hom 4(M’, N/N") generated by

(M/,N/N/) , ,
’1(MJ.’,N/N;)¢(M( N/Nf)(fi) - ,I(MilyN/Nl_;)(fi) for all f; € Hom 4(M/, N/N/),
J’ J
where Hom ,(M/, N/N]) < HomA(MJf, N/Njf), and A NINY) Hom (M, N/N/!) —
@ Hom ,(M', N/N') is the embedding. Note that f + I is indeed in Hom 4,-(M, N),
because one can choose M’ = M and N’ = 0, hence M/M' = N’ = 0 € C and the

following diagram commutes

M =M -1y N =NIO=N/N'

1

M
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3.2 Serre quotient category is an abelian category

This implies that the quotient functor is well-defined.

In fact, the quotient functor T is an additive functor. One can refer to [1] Lemma
1 in Part 3. Additionally, Lemma 2.2 means that every morphism f can be written as
T f for some f in the direct system.

Next, we use the approach of [1] to show that A/C is an abelian category. Firstly,

we introduce a Lemma which is Lemma 2 in [1].
Lemma 3.1. Letu : M — N be a morphism of A, then

1. Tuiszero <= Imu e C;
2. Tu is a monomorphism <= keru € C;

3. Tu is an epimorphism < cokeru € C;

Proof. 1. (<) Suppose Im u € C, then we have u’ : M — N/Im(u) that is located in

the direct system satisfying the following commutative diagram.

M M
u' u
N/Im(u) N

Thus, u’ = 0, which means Tu = Tu' = 0.

(=) Tu = 0 means the following commutative diagram.

M’
M’ M
0 u
N/N' N
PNint

That is 0 = Im(0) = Im(pY, ., eueil’) = (u(M')+N')/N'. This implies u(M') ¢ N’

and then u(M") € C. Note that

w(M') = Im(ue iy = M'/ker(ue My = M'/(kerun M) = (ker u + M’ )/ker u,
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Chapter 3 Quotient category of an abelian category

Therefore, we get a short exact sequence

0-uM')>Imu— M/keru+ M") - 0.

Note that M/(ker u + M) is in C because it is a quotient of M/M'. Since C is closed
under taking extensions, Im u is in C.

2.(=>) Denote the embedding by i : keru — M. Itis clear uei = 0, which means
TueTi = 0. With the knowing that T'u is a monomorphism, the equation implies 7'i = 0.
By 1., we have keru = Imi € C.

(<) Given a morphism 0 # f : P — M in A/C, we want to show Tu e f # 0.
Choose an image f : P’ - M/M’ in direct system with P/P', M’ € C. We can
assume M’ contains ker u since it is lawful to replace M’ by M’ + ker u. Therefore,

u induces a monomorphism u’ : M/M' — N/u(M') such that the following diagram

commute.
M’ M M/M’
/
/
N /
7 u!
/
|
ﬂ,
N/u(M")

Note that f # 0, which implies Im f & C by 1.. This means Im(u’ o f) ¢ C since Im f
is a subobject of Im(u’ o f). Thus, Tu e f # 0.

3.Similar to the proof of 2. O

The following Lemma is Lemma 3 in [1].

Lemma 3.2. Let f : M — N be a morphism in A, then

ker(T f) = T'(ker f) and coker(T f) = T(coker f).

Proof. Denote ker f by (K, k), we have

(THTk)=T(fk)=T(0)=0.
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3.2 Serre quotient category is an abelian category

We now prove the universal property of kernel for (TK,Tk). If p : TP - TM

satisfies T f o p = 0, we want to find a g realizing the following commutative diagram.

TP
i~
// p
%/
TK— T _rm— " TN

Note that p = T'p is the image of a morphism p : P’ - M/M' where P/P', M’ € C,
and f induces f' : M/M’' — N/f(M’). Because of the following commutative

diagram

S MIM' ————— % 0

f/

v

\
z4<—=X

0 — f(M") > NIf(M") ———> 0,

the snake lemma indicates the following exact sequence

0 —— KnM' > K > ker(f') —— 0.

This means that ker(f') = K/(K n M"). Also note that k induces k' : K(KNM') -
M/M', then (K/(K n M"), k") is the kernel of f’.

Let P" = ker(f’ o p)and p’ : P” — M/M’ that is induced by p. Note that
T(f' o p) = (Tf)p = 0, which means Im(f’ o p) € C by Lemma 3.1. Consequently,
P'/P" = P'/ker(f" o p) =2 Im(f' o p) € C and P/P’' € C. The short exact sequence

0— P'/P" - PIP" - P/IP' -0

implies P/P" € C.

Denote by i : P” — P’ the injection. It is clear that f'p’ = (f'p)i = 0 and there
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Chapter 3 Quotient category of an abelian category

is a morphism q : P” — K/(K n M) making the following diagram commute

Pl/
q/ - g pl
A/ . k, fl
KI(KnM") MI/M’ N/f(M").

Thus, T'q is a morphism such that

p=T@") =Tk q)=TKk)T(q) =TKT(q).

This means we have proven the universal property, and then ker(T /) = T'(ker f).

One can prove coker(T f) = T(coker f) by a similar procedure. ]

We give an equivalent description for isomorphisms in .4/C, which is Lemma 4 in

[1].

Proposition 3.3. Letu : M — N be a morphism in A, then

Tu is an isomorphism <= ker u and cokernel u belong to C.

Proof. (=) By Lemma 3.1, it is obvious.

(«<=) Consider the canonical factorization of u.

K M 4 N C
q J
Coim u Imu

Note that Coimu = M/ker g = M/K. We know that idc;,, , € Hom 4(Coim u, M/K).

Since K € C, the image T'id ;i , 15 in Hom 4,-(Coim u, M). The following composi-
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3.2 Serre quotient category is an abelian category

tion means that T'id;, , 1s actually an inverse of T'q in Hom 4,-(Coim u, M).

M Coim u

id .
MK —2Cm e _ MUK id MIK

This shows that T'q is an isomorphism. Similarly, one can show that T'j is an isomor-
phism. Thus
Tu=TjoTv.Tq

1s an isomorphism. [

Theorem 3.1. Given an abelian category A with a Serre subcategory C, the quotient

category A/C is an abelian category.

Proof. By Proposition 3.2, A/C is an additive category. Given a morphism f : M —
N in A/C. We know that f is the image of f : M’ — N/N' where M/M’', N’ €
C. By Lemma 3.2, ker(f) = ker(Tf) = T(ker f) and coker(f) = coker(Tf) =

T (coker f) which exist since A is an abelian category. Also note that

coker ker f = T(coker ker f) = T'(ker coker f) = ker coker f.

Consequently, A/C is an abelian category. ]

In fact, we apply T on the canonical factorization of f, and then we can obtain the

canonical factorization of f as shown in the right side of the following diagram

7

M — S NIN M \ N
q J Tq Tj
Coim f —% % Tm f, T(Coim f) —L% % T(Im f).

By Lemma 3.1, T'v is an isomorphism, T'q is an epimorphism, and 7'j is a monomor-
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Chapter 3 Quotient category of an abelian category

phism. In addition,

Coim(f) = Coim(T f) = coker(ker(T f))

= T'(coker(ker f)) = T(Coim(f)),

and
Im(f) = Im(T f) = ker(coker(T f))

= T (ker(coker f)) = T(Im(f)).

Now, we have already known that the quotient category of an abelian category by
a Serre subcategory is also an abelian category. It follows that the canonical functor is

an exact functor.

Proposition 3.4. Let A be an abelian category, C be a Serre subcategory, then the

canonical functor T : A — AIC is an exact functor.

Proof. Recall that T is left exact if and only if T preserves kernels and T is right exact
if and only if T preserves cokernels. By Lemma 3.2, we obtain that T is an exact

functor. O]

In some viewpoints, the purpose of localization is to make some objects become
isomorphic. Now, we say that the zero objects in .4/C are actually those objects in C.

This proposition is a direct corollary of Lemma 3.1.

Proposition 3.5. Let A be an abelian category, C be a Serre subcategory of A. For
any M in A, M = 0in A/C if and only if M € C.

Proof: M =0 in A/C if and only if T'(id;) = 0 in A/C. By Lemma 3.1, T'(idy,;) = 0
in A/C if and only if M = Im(id,,) € C. 0]

For two abelian categories A and B, let F : A — B be an exact functor. By
Example 2.3, we know that ker F is a Serre subcategory of .A. As a result, we can
obtain a quotient category .A/ker F with a canonical functor T : A — Alker F. By
proposition 3.5, ker T = ker F. A natural question is under what conditions B is

equivalent to A/ker F. In order to study their relation, Gabriel proved the universal
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3.2 Serre quotient category is an abelian category

property for quotient category of an abelian category, refer to Corollary 2 and Corollary
3in[1].

Proposition 3.6. Let A be an abelian category, C be a Serre subcategory of A. Let F
be an exact functor from A to an abelian category B. If F(M) = 0 for any object M
in C, then there is a unique exact functor H : AIC — Bsuchthat F = H o T where T

is the canonical functor.

A—T s A
F ///
// H
)(/
B

However, the universal property does not answer the question directly. The fol-

lowing proposition is a rewrite of Proposition 5 in [1], which provides a condition to

make B =~ Alker F.

Proposition 3.7. Let A and B be abelian categories, and F : A — B be an exact
functor. Denote the canonical functor by T : A — Alker F. If there is a functor S
right adjoint to F such that F o S = idg is a natural isomorphism, then F induces an

equivalence between Alker F and B.

In fact, for abelian categories .A and /3, a functor .S : B — A is said to be a section
functor of an exact functor F : A — Bif S is aright adjoint to F such that Fo S = idg
is a natural isomorphism. We note that Proposition 3.3 in [2] is a more recent result, as

shown below.

Proposition 3.8. Let F : A — B be an exact and essentially surjective functor of
abelian categories which admits a section functor up to extension. Then F induces an

equivalence between Alker F =~ IB where ker F is a thick torsion subcategory of A.
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Chapter 4 Calculus of fractions

4.1 Multiplicative system from a Serre subcategory

Recall that proposition 3.3 said T'u is an isomorphism if and only ifker u, cokeru €
C. In calculus of fractions, we choose a set of morphisms to construct a multiplicative
system in order to make them into isomorphisms. One can refer the following proposi-

tion to Lemma 2.2.4 in [8].

Proposition 4.1. Let A be an abelian category and C be a Serre subcategory. Denote

by S = {f € MorAlker f, coker f € C}. Then S is a multiplicative system.
Proof. 1).

l. VX € A, keridy = cokeridy =0, thusidy € S.
2. Given

A-l.B % ¢

with f, g € S. Note that there is a commutative diagram

A—L~ B coker f—=0
gf g l
id

0 c“-C 0

By snake lemma, this implies an exact sequence

0 ker f ker(g f) ker g coker f —— coker(gf) —— coker g——0

which means

ker f —> kergf — ker g

coker f — coker gf — coker g
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Chapter 4 Calculus of fractions

exact. Note that ker f, ker g, coker f, coker g € C as f,g € S. By the above

lemma, ker g f and coker gf i.e. gf € S.

2).Given
B
c-tL-4
with s € S. Consider its pullback
xX—*-B
, l
c-l-a

which means an isomorphism ker t = ker s € C, and a monomorphism coker t —

coker s € C. This implies cokert € C and thent € S.

On the other hand, given

PN
im
oo

-
-

Q

with t € §. Consider its pushout

A5

~

B
X

c—.

which means an isomorphism coker s = coker ¢ € C, and an epimorphism ker # — ker s.

This implies ker s € C, and then s € S.

3).0On one hand, suppose

f

X t-y=—>17

with s f = 0 and s € S. By universal property, there is a g satisfying following com-
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4.1 Multiplicative system from a Serre subcategory

mutative diagram.

X
s
Ve
s
g 7
// f
Ve
Ve
. i N
ker s Y 4

Denote the inclusion by ¢ : ker g & X, we have ftr = igt = 0. Note that coker t =

X/ker g < ker s. Thismeanst € S.

On the other hand, suppose

z—tox_ 1.y

with ft = 0 with s € S. By universal property, there is a g satisfying following

commutative diagram.

Denote the projection by s : Y — coker g, we have sf = sgp = 0. Note that ker s =

Im g = g(coker ¢), thus s € S. L]

Remark that if M/M', N’ € C then i%,’p%w' € S. We now prove that A/C is
isomorphic to .S~! A by giving functors between them. In fact, this result is well-known.

It was mentioned in [7] Chapter 1 2.5 d).

Theorem 4.1. Let A be an abelian category, C be a Serre subcategory of A. Let S =
{f € MorAlker f, coker f € C} be the multiplicative system induced by C, then A/C

is isomorphic to ST A.

Proof. Given a morphism f : M — N in A/C, thereisan f : M' — N/N’ with
M/M', N' € C. Define F : A/IC — S~'A preserving objects and mapping f to
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Chapter 4 Calculus of fractions

idN/p%/N, ° f/i%, as following.

NN

N/N’

Define G : S~'.A — A/C preserving objects and mapping f/s to (T f) o (Ts).

Firstly, let us check that the definitions of F and G does not rely on the choice of

representative elements.

Suppose f, f' are in the direct system such that f = T f = T f’. Without loss of

generality, we may always assume the following diagram is commutative.

M”

MT M

f! S
N/N'

NIN" < NN" nN

Note that

; N 1M
ldN/pN/N” °f /ZM

MM
_ldN/pN/N” °(pN/N” °f °l )/l

. N NI/N' . . M" M
=ldN/pN/N” °pN/N///ldN/N’ °f/ldM’ ol //lM
=idy/ oid / lid o flid oM iM" og /l
N pN/N’ N/N' pN/N” pN/N” N/N' M’ M’ M’ M’

=idnIpYN nr © lidyp oidM,/i%

. N M
=ldN/pN/N, °o fliy,
This means the definition of F does not rely on the choice of representative elements.
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4.1 Multiplicative system from a Serre subcategory

Suppose f/s = f,/s1, we have the following commutative diagram

In fact, this means that there exists i and j such that fei = f]eoj,and sei =5,0j € S.

Therefore,
(Tf)o(Ts)y ' =TfoTio(Ti)y o (Ts)™!

=T(f oi)o(T(soi))™ ' =T(fyo))e(T(s;°j)"
=TfoTjo(Tj) " o (Ts))™ = (Tf)o(Ts).

This means the definition of G does not rely on the choice of representative elements.

Secondly, we want to show that F and G are functors. Because
F(f)=idyIp o fliny = QN )™ e OQ(f) e Q6N )",

F is actually the functor induced by the universal property in Proposition 3.6 satisfying

the following commutative diagram.

A—7T v qc

It remains to check G is a functor. For g/t : L - M, fls : M — N in S7'A,

consider their composition, there are two morphisms g’ and s’ € S such that the fol-
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lowing diagram commute.

In fact, this implies s o g’ = gos’. Hence, Ts o Tg' = Tg o Ts'. Consequently,
Tg' o(Ts') ' =Ts) ' oTg.

Because

G(flseglt)=G(fg'lts') =T(fg') o T(ts")™!
=TfoTg oT(s') ! o(TH™!
=Tfo(Ts) ' oTgo (T = G(fIs) G(g/t),

we obtain that G is a well-defined functor.

Thirdly, we show the compositions of F and G are identities. On one hand,

GF(f) = G(idnIpN, ., o f1iM)

= (@pN ) e T o (@it = 1.

On the other hand, given

Me—x-'.nN
we have
FG(fls)=F(Tf)Ts)™") = F(Tf)o F(Ts)™")
=F(Tf)o (FT(s))"' = flidy oidyls = fls.
This means F and G are isomorphism, and then .A/C is isomorphic to S~! A. [

By example 2.3, ker Q is a Serre subcategory since Q is an exact functor. We claim

that ker Q is equal to C.

Proposition 4.2. Let A be an abelian category, C be a Serre subcategory of A. Let
S = {f € MorAlker f, coker f € C} be the multiplicative system induced by C, then
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4.2 Serre subcategory from Multiplicative system

ker O = C.

Proof. On one hand, for any X € C, consider the zero morphism Oy, : X — 0.
Because ker Oy g = X € C and coker Oy = 0 € C, we know that Oy € S and
00y ) = 0 o/id y is an isomorphismin S~'A. Thus, X 2 0in S~ Aie. X € ker Q.
This means C C ker Q.

On the other hand, if X € ker Q i.e. Q(X) = 0. It is clear that
Homg-1 4(X, X) =0,

in particular, id y/idy = 0. It follows that G(id y/idy) = 01i.e. T(idy)° T(idx)_1 =0,
and then T'(idy) = 0. By Lemma 3.1, this means X = Im idy € C. Thus, ker Q C
C. ]

We end this section by giving a negligible proposition. This proposition rejects the
assumption that a multiplicative system induced by a Serre subcategory contains only

finitely many non-identity elements.

Proposition 4.3. Let S be a multiplicative system induced by a Serre subcategory C. If

S contains a non-identity element, then S contains infinite non-identity elements.

Proof. Suppose s : X — Y is a non-identity element in .S. Note that ker(s @ s) =
ker s @ ker s, and coker(s @ s) = coker s @ coker s. It follows that s @ s € S.
Similarly, one can show that all finite direct sum of s are in .S that implies .$' contains

at least infinite non-identity elements. [

4.2 Serre subcategory from Multiplicative system

Let A be an abelian category, .S be a multiplicative system of .4. Recall Lemma
2.3 that the localization functor Q : A — S™' A is an exact functor. Example 2.3 tells
us that ker Q is a Serre subcategory of .A. The following proposition describes ker Q

accurately.
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Proposition 4.4. Let S be a multiplicative system of an abelian category A, denote the

localization functor of A to S™' A by Q. We have
ker Q = { X = coker s for some s € S} = { X|X = ker t for somet € S}.
Proof. For X = coker s, consider
A == B —X coker s,

there exists a morphism ¢ € .S such that tx = 0 which can be seen in the following
diagram.

A == B —Z cokers —=> -

Since 7 is an epimorphism, we have t = 0 € .S. Consequently, coker s = 0in S~ A
1.e. X = coker s € ker Q. In addition, coker s = kert fort =0 € Sie X =Kkert.
Conversely, suppose X € ker Q. It means id y/idy is zero in S~!A. There is a

commutative diagram

“’/1\

N4

which implies s : - — X is zero. Since coker s = X/Im s = X, we conclude that
X = coker s for some s € S.

Besides, suppose X = ker ¢, consider
kert -~ A= B.
Since ti = 0 there is a morphism s € .S such that is = 0.
=2 kert—>A=>B

Because i is a monomorphism, this means s = 0 € S. Thus, ker # = coker s. Il
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4.2 Serre subcategory from Multiplicative system

Let S be a multiplicative system of an abelian category .4, denote the localization
functor of A to S~'.A by Q. Since ker Q is a Serre subcategory, and we know that we

can get a new multiplicative system from the Serre subcategory ker Q, which is

S’ = {f € MorAlker f, coker f € ker Q}.

It is routine to show S C S’. However, it is unexpected that this inclusion could be
proper because it is not necessary for .’ to contain all isomorphisms.

However, a saturated multiplicative system contains all isomorphisms. It may be
beneficial to mention that 3.6 in [7] chapter 1, there is a one-to-one correspondence
between the set of thick subcategories of .4 and the set of saturated subsets of morphisms

in A which admit a calculus of left and right fractions, if .A is an abelian category.
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Chapter 5 Localization and finiteness

The purpose of this chapter is to provide a basis for studying the quotient category
of a multiring category (resp. multitensor category, resp. multifusion category). We
know that multiring category, multitensor category and multifusion category are locally
finite k-linear abelian categories. Besides, a multifusion category is finite semisim-
ple. Therefore, it is inevitable to study the quotient category of a locally finite k-linear

abelian category and the quotient category of a finite semisimple abelian category.

5.1 Localization preserves locally finiteness

Given an abelian category .4 with a Serre subcategory C. Theorem 3.1 says that
A/C is an abelian category. This allows us to discuss the length of an object in A/C.

We have the following lemma about simple objects in .A/C.
Lemma 5.1. Every simple object in A has length 1 or 0 in A/C.

Proof. Suppose X is a simple object in A, consider its subobject Y in .A/C, and denote
the corresponding monomorphism by f : Y — X.

We also view Y as an object in .A. Because

Y’ X'

where Y/Y', X' € C, there exists a subobject ¥} of Y such that Y/Y; € C such that the

following diagram commute

TY, .- TY
Tfi lf
TX —TX

39



Chapter 5 Localization and finiteness

where T is the canonical functor, i is the injection, and f : ¥; — X is an epimorphism

since X is simple in .A. Thus, we have the following exact sequence

f

0——Ker f Y, X 0.

Because the canonical functor T is exact, we have the following exact sequence

0—>TKer f —=TY, —~TX —>0.

This means T f is an epimorphism in .A/C. Note that 7'i is an isomorphism in .A/C and
f is a monomorphism, we know T'f = f o T'i is a monomorphism. Therefore, T f is
an isomorphism. Consequently, f is an isomorphism. Thus, every monomorphism in
A/C to X is an isomorphism in A/C. It shows that X has length 1 or 0 in A/C. Note

that the case of length O means X is in C, and it is zero in A/C. ]

Next, we prove that the localization preserves finite length.

Proposition 5.1. Suppose every object in A has finite length, then every object in A/C
has finite length.

Proof. For an arbitrary object X in A, it has finite length in .A and one can assume its

Jordan-Hdlder series as following without loss of generality.

0=XpCcX,CcCX,1CX,=X

Since X, /X, is a simple object in A, it has length 1 or 0 in .4/C by the above lemma.
Because

(X)) =1(X) +1(X;11/X;), forall 0<i<n—1,
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5.1 Localization preserves locally finiteness

we know that
I(X)=1(X,) =1(X,_)) + (X, /X,_))

=1(X,_,) + (X, /T,_,) + 1(X,_,/T,)

n—1

= ZI(XHl/Xi)

i=0
< .

This means X has finite length in .4/C, which is actually smaller than its length in
A. O

In order to show that the quotient category of a locally finite abelian category is
locally finite, we are required to prove that the Hom-spaces of the quotient category are

finite dimensional.

Lemma 5.2. Let A be a locally finite k-linear abelian category, then Hom 4,-(M, N')

is a finite dimensional vector space, where M, N are objects in A.

Proof. By definition, Hom 4,-(M, N) is obviously a vector space. We now prove
Hom 4,-(M, N) is finite dimensional by induction on the lengths of M, N in A. Firstly,
suppose (M) = I(N) = 1. If M € Cor N € C, then Hom 4, (M,N) = 0. If
M,N & C, it is clear that Hom 4,-(M, N) = Hom 4(M, N), which is finite dimen-
sional.

Secondly, we want to show Hom 4,-(M, N) is a finite dimensional vector space
for /() = 1. We prove it by induction on the length of M, suppose Hom 4,-(M, N)
is finite dimensional for all M, N such that /(M) < m and I[(N) = 1. Now we
consider the case of M) = m+ 1 and /(N) = 1. On one hand, if there is a sub-
object X of M such that 0 < /(X)) < m and M/X € C, we know that Tij(d is an

isomorphism in .A4/C, where iff/[

: X — M is the monomorphism. This means that
Hom 4,-(M, N) = Hom 4,-(X, N), which is finite dimensional by the induction as-
sumption. On the other hand, if for any subobject X of M satisfying 0 < /(X) < m,
M/X & C. It follows that Hom 4,-(M, N) = Hom 4(M, N), which is finite dimen-

sional. Therefore, Hom 4,-(M, N) is a finite dimensional vector space for /(N) = 1.
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Chapter 5 Localization and finiteness

Similarly, Hom 4,-(M, N) is a finite dimensional vector space for /(M) = 1.

Thirdly, given two positive integers m,n > 1, suppose Hom 4,-(M, N) is a finite
dimensional vector space for /(M) < mand /[(N) < n+ 1 and for /(M) < m + 1 and
[(N) < n. We consider the case of (I M)=m+ 1land [((N)=n+1.

If there is a subobject X of M such that 0 < /(X) < m and M/X € C, then

X .
M

Hom 4,-(M, N) = Hom 4,-(X, N) since Tif\(/l is an isomorphism in .A4/C, where i
X — M is the monomorphism. By the induction assumption, Hom 4,-(M, N) =
Hom 4,-(X, N) is finite dimensional.

If there is a subobject Y of N suchthat 1 < I(Y) < n+ 1l and Y € C, then
Hom 4,-(M, N) = Hom 4,-(M, N/Y) since Tp%/y 1s an isomorphism in A/C, where
p% y - N — N/Y isthe epimorphism. By the induction assumption, Hom 4,-(M, N) =
Hom 4,-(M, N/Y) is finite dimensional.

If for any subobject X of M and any subobject Y of N satisfying 0 < I(X) < m
and 1 <I(Y)<n+1, M/X,Y & C. It follows that Hom 4,-(M, N) = Hom ,(M, N),
which is finite dimensional.

In summary, Hom 4,-(M, N) is a finite dimensional vector space for /(M) = m+1

and /(N) = n+ 1. Consequently, we obtain that Hom 4,-(M, N) is a finite dimensional

vector space for any objects M, N in A. ]
It follows directly from Proposition 5.1 and Lemma 5.2 that A/C is locally finite.

Proposition 5.2. The quotient category A/C of a locally finite k-linear abelian category

A is a locally finite k-linear abelian category.

5.2 Localization of a finite semisimple abelian category

In this section, we show that the quotient category of a finite semisimple abelian
category is still finite semisimple. Firstly, we give a description for the structure of a

Serre subcategory of a finite semisimple abelian category.

Lemma 5.3. Let A be a finite semisimple abelian category. Any Serre subcategory C

of A consists of all finite direct sums of some simple objects in A.
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5.2 Localization of a finite semisimple abelian category

Proof. We denote the isomorphism classes of simple objects in A by { M, -, M,}.

Because A is finite, there is no infinite direct sums in .A. Let
I ={i|lM; € C}.
For any X € C, since A is semisimple, X can be written as

X = @ Ml.r'i,where J is a subset of {1, -+, n}.
i€l

Here, Ml.ni is the direct sum of n; copies of M;. Forany j € J, M; is a subobject of X,

whence M; € C. This means j € I. Thus, J C I. Consequently, we may always write

X:@M{”‘

iel

where some n;s can be 0. Thus,

C C all finite direct sums of {M,},c;.
On the other hand, it is clear that

all finite direct sums of { M, },c; C C.

Therefore,

C = all finite direct sums of { M, },;.

O

Proposition 5.3. Let A be a finite semisimple abelian category. For any Serre subcat-

egory C of A, A/IC is a finite semisimple abelian category.

Proof. Consider an arbitrary object Y in A,

v =@ mHPED M.

iel jel
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Chapter 5 Localization and finiteness

Let
Y/ _ nj
- @MJ ’

it follows that

Yy =@m" ec.

iel
This means

Tili;, : Y’ = Y is an isomorphism in A/C.

Consequently, every object in .A/C can be written as a finite direct sum of elements in
{M;|j & I}. This implies A/C is also a semisimple abelian category.

In fact, A/C is finite. Because A is a finite semisimple abelian category, it is the
category of finite dimensional modules over a finite dimensional semisimple k-algebra

A. Hence, by the Wedderburn-Artin theorem,
A = Mat, kX - XMat, k

Because a left module of Mat, k X -+ X Mat, k is actually a direct sum of Ny, -+, N,
where N; is a left module of Mat, k, we know that a simple left module of Mat,, kx---X
Mat, k is a simple left module S, of Mat, k for some i. Let D be the set of all mutually
non-isomorphic simple modules of Mat, kX ---xMat, k. As mentioned above, a Serre
subcategory C of A consists of all finite direct sums of elements in a subset E of D.
Then A/C consists of all finite direct sum of simple modules in the complement of E
in D.

Write the complement of E in D as {Sr1 Sy, }, then A/C is the representation
category of Matnr1 kXX Matnr, k, which is finite dimensional. Hence, A/C is a finite

abelian category. O

Example 5.1. Let S5 be the symmetric group on 3 letters, k be an algebraically closed
field satisfying char k } |S;|, we know kS5 is semisimple by Maschke’s Theorem. It is
clear that the category of finite dimensional modules of kS5, which we denote by A, is

a finite semisimple abelian category. As a special case of the above example, we know
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5.2 Localization of a finite semisimple abelian category

that A/C is also a finite semisimple abelian category for any Serre subcategory C. We
now discuss more details in this case.

1t is well-known that there are three irreducible representations in the category of
finite dimensional representations of k.SS5. They are trivial representation V), alternat-
ing representation V,, and standard representation V5. Using the approach mentioned

in [22] gives that
ks; = Pr-Pri-

Similar to the steps in the proof of Wedderburn-Artin theorem,

kS3 = End(V}) X End(V3) X End(V;")

=~ Mat; (k) X Mat; (k) X Mat, (k).

Let C be the Serre subcategory of A consists of finite direct sums of V5. Then A/C
consists of all finite direct sums of V| and V,. Therefore, A/C is the category of finite
dimensional representations of M (k) X M (k) = k X k. Note that k X k is isomorphic

to kZ,, because we can construct an isomorphism as following:

@ kxXk—>kZ,

a+b+a—b

b
(@.b) > — 7

Also recall that Z, = S3/As. Thus, in this case, A/C is actually the category of finite

dimensional representations of kZ,.

Note that, in the above example, we did not take the tensor structure into consid-

eration.
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Chapter 6 Tensor product in quotient category

6.1 Tensor product in quotient category

In order to give a definition for tensor product in the quotient category of an abelian

monoidal category, we first introduce a lemma.

Lemma 6.1. Let A be an abelian monoidal category, C be a two-sided Serre tensor-
ideal of A. Suppose f,g are morphisms in A such that ker f, ker g belong to C, then
ker(f ® g) belongs to C. Similarly, if coker f, coker g belong to C, then coker(f ® g)

belongs to C.

Proof. Consider
f:M—->Nandg : X - Y.

Note that there is a composition
id id
feg:Mex PU Negx M Ney,

and there is a commutative diagram

MeX L2 N@ X — coker(f ® id) — 0

oo e ]

0— S N®Y “ S N®Y — 30

By snake lemma, this implies an exact sequence

ker(f ® id) ——ker(f ® g) ——=ker(id ® g)

coker(f ® id) —— coker(f ® g) —— coker(id ® g)
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Chapter 6 Tensor product in quotient category

which means

ker(f ® id) — ker(f ® g) — ker(id ® g)

coker(f ® id) — coker(f ® g) — coker(id ® g)

exact. Note that ker(f ® id) = ker f ® X € C, and ker(id @ g) = N Q kerg € C
provided ker f, ker g belong to C. By Lemma 2.1, we know ker(f ® g) € C. Similarly,
coker(f ® g) € C provided coker f, coker g belong to C. Il

In the following, we study the tensor product of two subobjects (resp. quotient

objects).

Lemma 6.2. Let A be an abelian monoidal category with biexact tensor product. Let
M, X be two objects in A, M' be a subobject of M, X' be a subobject of X, then
M’ ® X' is a subobject of M ® X.

Proof. Consider monomorphisms i; : M’ — M and i, : X' — X, and exact se-

quences

0 M M coker i; —=0;

0 X —2ox coker iy —=0.

Because the tensor product is biexact, we have two following exact sequences

- @id
OHM’@X’&M®X’*>COkeri1®X’*>O;

i
0*>M®X’ﬂ>M®X*>M®cokeri2*>0.

This means
o A
WL Mex L vex % yex
is a monomorphism. Hence, M’ ® X' is a subobject of M ® X. O]

Lemma 6.3. Let A be an abelian monoidal category with biexact tensor product. Let

N, Y be two objects in A, NIN' be a quotient object of N, Y/Y' be a quotient object
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6.1 Tensor product in quotient category

of Y, then NIN' @ Y/Y' is a quotient object of N ® Y.

Proof. Consider epimorphisms p; : N - N/N'andp, : Y — Y/Y’, and exact
sequences

0 N’ N L N/IN'—0;

12}

0 Y’ Y Y/Y' 0;

Because the tensor product is biexact, we have two following exact sequences

0—-N @YY —NeYY "ENIN @ YIY —>0:

0——=NQ®Y' NQY—=NQY/Y' 0.

This means

id id
1 ®p NQY BB Neviy 224 NN @YY

is an epimorphism. Hence, N/N’ ® Y/Y' is a quotient object of N ® Y. O

In fact, we have an isomorphism
N/IN'"Q®Y/Y' = N ® Y/ker(p; ® p,).

Now, we can prove that T(f ® g) € Hom 4,-(M ® X, N ® Y) for any f=Tf":

M- N,§=Tg:X - Y inAC.

Proposition 6.1. Let A be an abelian monoidal category with biexact tensor product,
C be a two-sided Serre tensor-ideal of A. Let f : M — N, g : X — Y be two
morphisms in AIC. Then T(f @ g) is a morphism in Hom ,(M @ X, N @ Y') where

f, g are in direct systems, and T is the canonical functor.

Proof. Suppose f : M' - N/N',g : X' - Y/Y' with M/M', N', X/X',Y' are in
C. It follows that

f®g: M'®X - N/IN QY/Y'.

49



Chapter 6 Tensor product in quotient category

Denotei; : M' - M,i, : X' — X tobeinclusions. Since T'i;, T'i, are isomorphisms
in A/C, we know that coker i, coker i, belong to C. By Lemma 6.1, coker(i; ®i,) € C.
This means (M @ X)/(M' ® X') € C.

Denote p; : N — N/N', p, : Y - Y/Y'. We have already known that N/N' ®
Y/Y' 2% N ® Y/ker(p; ® p,). Since Tp,, T p, are isomorphisms in .A/C, we know that
ker p;, ker p, are in C. By Lemma 6.1, it follows that ker(p; ® p,) € C.

In summary, f ® g is in the direct system. Therefore, T(f ® g) € Hom 4,-(M ®
X, NQY). O

Next, we show that T'(f ® g) does not rely on the choice of representative elements.

Proposition 6.2. Let A be an abelian monoidal category with biexact tensor product, C
be a two-sided Serre tensor-ideal of A. Let f : M — N, g : X — Y be two morphisms

in AIC. Suppose f =Tf =Tf,andg=Tg=Tg, then T(f @ g) = T(f; ® gy).

Proof. First of all, we claim that
T(id®g)=T(id ® g).

Suppose g : X' — Y/Y', g; : X — Y/Y/. Since the direct system in the definition
of quotient categroty is directed, we can obtain a morphism g, : X é - Y/Yz’ such that

the following diagrams commute:

z'X%
x5 —X 5 x'

b
YIY) & YIY'
PY/Y

/
Y/ Y2

and

X
i

1 X : i
XZ Xl

\ng \Lgl
YY) &— YIY].
Y/Y1

p

/
2
/

/
Y/ Y2
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6.1 Tensor product in quotient category

Thus, we obtain two commutative diagrams:

/
X5

id®i
MeX, — M®X'

\Lid®g2

and
/!

id®iX2,

M®X, —>

\Lid®g2

Jrae

MQX|

\Lid®g1

M QYY) &— MYy,

i 1
ld®pY/Y’
2
x! M®X’ x! M®X, , , vy’
. P 2 . 2. 2 . Y/Y_M@Y/Y . [
Because id®iy) = i),y ld®lX1, = 1M®X1,, ld®py/Y2, = PM®Y/Y2, andza’®pY/Y2, =
MY/Y] btain ¢ v d .
P ey v} we obtain two commutative diagrams:
MeX]
1
MeXx'
\Ljd®g2 \Lid@g
MQYY) «<— MQY/Y'
MY/Y
MeY/Y)
and
MeX]
, wex; ,
M®X; —— M®X|
\Lid@gg \Lid®gl
M ® Y/Yzl %, M ® Y/Yl,'
MeY/Y,
pM®Y/Y2’
This means

T(id®g) =T(id® gy =T(id ® g).
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The claim has been proven, and similarly one can obtain that

T(f ®id) = T(f, ® id).

Therefore,
T(f®g=T(f®id)-(id ® g))

=T(f®id)oT(id ®g)
=T(f, ®id)>T(id ® g;)
=T((f, ®id)e(id ® g)))
=T(f1 ®g&p).
O

Hence, we can define the tensor product of two morphisms in the quotient category.

The propositions above guarantee that the following definition is well-defined.

Definition 6.1. Let A be an abelian monoidal category with biexact tensor product, C
be a two-sided Serre tensor-ideal of A. Define the tensor product of objects in AIC by

the same tensor product in A, and define the tensor product of morphisms in AIC by

f®::=T(f®¢g)

where f,g are in direct systems, and T is the canonical functor. It is clear from the

definition that

Tf®Teg=T(f ®g).

Additionally, we define the associativity constraint in AIC by

axyz=Taxy 7

1t is also clear that the left and right unit isomorphisms in A/C are Tly and Tr y where

Iy and ry are the left and right unit isomorphisms in A.

We finish this section by considering an example of two-sided Serre tensor-ideal.
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6.2 Localization of multiring categories

Example 6.1. Let I be a finite indexed set, A = @ Matni (Vec), where Matni (Vec) is the
category whose objects are n;-by-n; matrices o}ef;nite dimensional vector spaces. The
tensor product of two objects from distinct direct summands is defined to be zero. One
can observe that A is a multitensor category, and each Mat, (Vec) is a two-sided Serre

tensor-ideal of A. In fact, let C = Matni (Vec) to be such a two-sided Serre tensor-ideal,

then AIC = @ Mat, (Vec)
jeni} !

6.2 Localization of multiring categories

In this section, we will discuss the quotient categories of a multiring category, a

multitensor category, and a multifusion category, respectively.

Proposition 6.3. Let A be an abelian monoidal category with biexact tensor product,

C be a two-sided Serre tensor-ideal of A, then AIC is a monoidal category.

Proof. Consider the following pentagon axiom diagram of A:

(WRX)®Y)® Z
yywd/ m
WRXQY)®Z WRX)®(Y ®Z)
law,)@y,z aW,X,Y@Zl
idy Qa
We(XeY)® 2) — WeXeWYe2)
Applying the canonical functor T" gives that
WRX)®Y)® Z
<5W,X/,Y‘3”'d/ W
WRXQY)®Z WRXQY®Z)
léW,X(X)Y,Z dW,X,Y@Zl
idy ®axy z
WR((X®Y)® Z) WeXYRQ2Z)).

This is actually the pentagon axiom of A/C.
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Chapter 6 Tensor product in quotient category

Consider the following triangle axiom diagram of A:

ax.1y

XY -~ XQ(U®Y)
XQ®Y

Applying the canonical functor 7" gives that

ax,1y
X®DHeY XQ®(1®Y)
TM\ /@Y
XQY
Thus, .A/C is a monoidal category. [

Recallthat Tf @ Tg = T(f ® g), this implies that T is a monoidal functor. Next,
we study the quotient category of a multiring category (resp. a multitensor category,

resp. a multifusion category) by a two-sided Serre tensor-ideal.

Proposition 6.4. Let A be a multiring category, C be a two-sided Serre tensor-ideal of

A. Then A/C is a multiring category.

Proof. By Proposition 5.2 and Proposition 6.3, the quotient category of a locally finite
k-linear abelian monoidal category is a locally finite k-linear abelian monoidal category.
Therefore, it suffices to show that the tensor product ® : A/C X .A/C — A/C is bilinear

and biexact.

Firstly, we show that the tensor product is bilinear. Note that the canonical functor

T is linear, thus

fi+/)®e=Tfi+Tf)QTg=T(f{+[)®Tg
=T((f1+/)®=T(1 Qg+ /,®)=T(/1®8+T(f, %)
=T(f)RTg+T(f,)®Tg=F 05+, ®¢%
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6.2 Localization of multiring categories

and similarly

f_®(g_1 +8H)=TfQRTg +Tg)=TfQRT(g +&)
=T(f®E+8)=T(®g+/®&)=T(Rg)+T(f &)

=TfRTgy+TfQTe,=fQ& + Q8.

Furthermore, for any a € k, we have

af @g=dTf@Tg=T(af)@Tg=T(af ®g)
=T(f®ag)=Tf®T(ag)=Tf ®aTg = f @ ag.

This implies @ : A/C X A/C — A/C is bilinear on morphisms.

Secondly, we show that the tensor product is biexact. Consider the following exact

sequence

Lo m-2-N.

Because we can write § = T'g, f = T f, the exact sequence means that

ker(T'g) = Im(T f).

By Lemma 3.2, it follows that

T(ker g) = T(Im f).

Because T is an exact functor, the short exact sequence

0 S Imf ——% kerg —=% ker g/Im f —3 0
implies that

0 — TImf —°% Tker g —=% T(ker g/lm f) —> 0
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Chapter 6 Tensor product in quotient category

is exact. Consequently,
T (ker(g)/Im(f)) = T'(ker g)/T(Im f) =01in A/C,

which means ker(g)/Im(f) € C.

For any object A in A, since A ® — is exact in A, we have the following short

exact sequence

0 — A@Im/f 4% 4 @kerg “ %% A ® (ker g/lmf) — 0.

Note that there is a short exact sequence

00— A®Im/f ““% A @kerg —2% (A @ ker g)/(A ® Im[f) — 0.

Therefore,

(AQker g)/(AQImf) = AQ (ker g/lmf) € C.

Now, we claim that

AQ@ker g =ker(idy, ® g).

Consider the following exact sequence

0 ker g M

applying A ® — gives the following exact sequence

00— AQkerg—— A M XA N.

This indicates that

A @ ker g = ker(id4 ® g).

Besides, note that

AQImf = Im(id, ® f).
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It follows that

ker(idy ® g)/Im(id, @ f) = (A @ ker g)/(AQ Imf) € C.

This implies that
T (ker(id 4 ® g)/Im(id, ® f)) =0

1.€.

T (ker(id4 ® g)/T(Im(id4 ® f)) =0

i.e.

T'(ker(idy ® g)) = T(Im(id 4 ® f))

By Lemma 3.2, this means

ker(T(id, ® g)) = Im(T(id 4, ® f))

1.€.

ker(id , @ Tg) = Im(id, T f)

1.€.

ker(id, ® §) = Im(id 4, ® f).

This means A ® — is exact in .A/C. Similarly, one can show — ® A is exact in A/C. As

a result, the tensor product is biexact in .A/C. Thus, A/C is a multiring category. ]

Proposition 6.5. Let A be a multitensor category, C be a two-sided Serre tensor-ideal

of A, then AIC is a multitensor category.

Proof. Asproved in the above proposition, we know that A/C is a locally finite k-linear
abelian monoidal category with bilinear tensor product. Therefore, it suffices to show
A/C is rigid.

For any object X in .A/C, it has a left dual X*, which means there exist an eval-

uation evy : X* ® X — 1 and a coevaluation coevy : 1 -» X ® X such that the
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compositions

CO@UX®idX idx®eUX

X OO X @XHR®X N X @ (X* @ X) — Xy X,

idx*®C0€UX evx®idX*

a;(]* X *
X H XX ®X) /5 X*®X)® Xt ——— X*
are the identity morphisms. Applying T gives that the compositions

TCOeUx®idX ldX®TeUX

X O X @ X R X N X @ (X* @ X) — Xy X,

——1
TeUX®[dx*

X* idX*®Tcoev§ X* ® (X ® X*) aX*,X,g* (X* ® X) ® X* ) X*

are the identity morphisms. As a result, every object in .A/C has a left dual. Similarly,
one can show every object in .4/C has a right dual. Thus, .A/C is rigid. Consequently,

A/C is a multitensor category. [

Proposition 6.6. Let A be a multifusion category, C be a two-sided Serre tensor-ideal

of A, then AIC is a multifusion category.

Proof. We have already know that .4/C is a multitensor category. By proposition 5.3,
A/C is a finite semisimple abelian category. As a result, .A/C is a multifusion category.

]

The following proposition shows that a two-sided Serre tensor-ideal of a tensor

category is always trivial.

Proposition 6.7. Let A be a tensor category, C be a two-sided Serre tensor-ideal of A,

then C is trivial.

Proof. Suppose C is not zero, choose a non-zero object B in C. Because C is a two-sided

Serre tensor-ideal, B* ® B € C. Note that

eUB:B*®B—)1
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1s a non-zero epimorphism in A, since 1 is simple and the composition (idp ® evp) °

ap p+ g ° (coevyg @ idp) is identity. Therefore, 1 € C. Consequently, A = C. [

This proposition means that .A/C could only be zero or A itself.

However, someone may be interested in other definitions on tensor structures of
A/C in order to make .A/C be a monoidal category. Interestingly, we will prove next
that no matter how we define the tensor structure, the canonical functor being monoidal

implies the Serre subcategory is trivial.

Proposition 6.8. Let A be a tensor category, C be a Serre subcategory of A. Suppose

the canonical functor T is a monoidal functor, then C is trivial.

Proof. We prove it by contradiction. Assume C is non-trivial. Choose a non-zero object
B in C, we know that TB = 0 in A/C. Thismeans T(B*® B) = TB*® TB =0 in
A/C. However,

evg : B"® B— 1

1s a non-zero epimorphism in A because 1 is a simple object in A. Therefore,

T(evy) : T(B*® B)~TB*QTB=0—TI1

is an epimorphism by Lemma 3.1. Since T is a monoidal functor, 71 # 0 in A/C.

However, this contradicts T'(evg) is an epimorphism in .A/C. O

Now, we consider the representation category of kZ,.

Example 6.2. Consider Z, = {1, g} and a field k such that char k { 2, and denote
the representation category of kZ, by A. As is well known, A is semisimple and it has
only two irreducible representations W| = k(1 — g) and W, = k(1 + g). Define a

homomorphism by

@ k(1 -g)@k(l—g) —k(l+g)
al-g)®@(1—-g) ra(l+yg)

where a € k.
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Chapter 6 Tensor product in quotient category

Let C be a Serre subcategory containing W,. We now show that if A/C is a tensor
category, then C = A. Since W € C, we know that TW| = 0 in A/C. It follows that
0=TW,QTW, =2T(W; ® W) in AIC. This implies W; @ W € C. Consequently,
W, = k(1+g) € C because ¢ : W, @ W, — W, is a kZ,-isomorphism. Thus, both
W, and W, are in C, and C = A.

In order to make AIC be a tensor category, it is clear that W, = k(1 + g) cannot

be in C, because W, = k(1 + g) is the unit object in A.

6.3 Two-sided Serre tensor-ideal of a multiring category

The goal of this section is to show that a two-sided Serre tensor-ideal of a multiring
category is actually a direct sum of some component subcategories. First of all, recall
that a multiring category .4 can be written as a direct sum of its component subcategories

A= P A;j,where A;; =1, ® A® 1; and I is an indexed set such that 1 = P 1.

ijel iel
Lemma 6.4. Let A be a multiring category with left duals, C be a two-sided Serre

tensor-ideal of A, then C N A, ; is either A; ; or 0, where A, ; is a component subcate-

gory of A.

Proof. Suppose CNA,; ; # 0. Choose X #0inCNA,; ;, weknowthat X = 1, X ®1,;.

A

Because X" =(1;@ X ®1)"=17® X" ® 17 =1;® X" ® 1;, one can observe that
L,®X®1)®L,®X®1,eCnA,,

We claim that Im(evy) = 1 j- Assume 1 is a direct summand of Im(ev y ), where

k # j. Consider the exact sequence

X*®X —X Im(evy) — O.

Tensoring this sequence with 1, on the left, we obtain an exact sequence

id1k®eUX

LOX X 31,

~
e
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6.3 Two-sided Serre tensor-ideal of a multiring category

Since

L®X'®X=,01,X*®1,0,X®1;=0,

the above exact sequence means 1, = 0, which is absurd. Therefore, 1, is not a direct
summand of Im(evy ). Because evy : X*® X — 1 is non-zero, we get that Im(evy) =

1;. Consequently, 1; € C. This implies A; ; C C,andthusCNA;; = A, ;. ]

In fact, if A; ; € C, one can know 1 ; €C from the above proof. As a result,
A;;cCand A;; C Cforall/ € I. Similar to the process of the above proof, if we
consider

coevy 11> XX =1,0XR1,01, X" ®1,;,

then we can obtain 1; € C. Consequently, A;; CCand A;, C Cforalll € I.
In particular, if O # Ai’j CC,then0# A;; CC,0+# .Aj,j c C,and 0 # Aj,,- cC.

Besides,

It follows from the above lemma that C is a direct sum of A, ;’s.
The following proposition provides a deeper understanding for two-sided Serre

tensor-ideal.

Proposition 6.9. Let A be a multiring category with left duals, C be a two-sided Serre
tensor-ideal of A. Let J = {i € I|1; € C}, then A;; =0, Ay; =0 forallk & J,

ieJ.

Proof. Assume A;, # 0 foragiveni € J and k ¢ J. Since 1; € C, we know that
Ay CC. Forany 0 # X € A, we can obtain Im(evy) = 1, € C from a process
similar to the proof of Lemma 6.4. This contradicts k & J. Thus, A; , = 0. Similarly,
A =0. O]

Let A be a multiring category with left duals, the above proposition implies that a
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Chapter 6 Tensor product in quotient category

two-sided Serre tensor-ideal C of A can be written as C = P A, ;, where J = {i €
ijes
I|1; € C}. Furthermore, for any 0 # X € A, the above proposition indicates that

x=Puexel)

i,jel
=Pueoxe)PPueoxel).
INC i,j€J

Let
X=@Puexel)mX" =P1Lexel)
iLjgJ ijel
it is clear that X” € C and X' = X in A/C. Therefore, A/C = @J A
i3
Conversely, given a suitable subset J of I, is G} A;ja t\jvgi)-sided Serre tensor-
ideal? We show next that the answer is yes. e

Proposition 6.10. Let A be a multiring category with left duals, J C I satisfying that
Ay =0 A, =0forallk ¢ J,i € J. ThenC = @ A; j is a two-sided Serre

ijes
tensor-ideal of A.

Proof. 1t suffices to show C is a Serre subcategory. Forany X € C, let Y be a subobject
of X. We know that

0 S Y S\ X

is exact. Forp & J org & J, tensoring 1, and 1, on the left and right respectively gives

that

00— 1,Y®1, — 1,8X®1,

is exact. Because lp RX® lq 1s 0, we obtain lp RY ® lq = (0. Thismeans Y € C.
Hence, C is closed under taking subobjects. Similarly, C is closed under taking quotient

objects. Now, suppose there is an exact sequence

where X,Z € C. Forp & J or q & J, tensoring 1, and 1, on the left and right

62



6.3 Two-sided Serre tensor-ideal of a multiring category

respectively gives that

00— 1,08X®1, —> 1,Y®l, —> 1,8 Z®1, — 0

is exact. Because lp RX® lq =0= 1p RZ lq, we obtain that lp RY® 1q =0.
This means Y € C. Hence, C is closed under taking extensions. It follows that C is a

Serre subcategory. [

In summary, on one hand for J C [ satisfying that A;, = 0, A;; = 0 for all

k& J,ield,C= @ A; j 1s a two-sided Serre tensor-ideal of .A. On the other hand,
every two-sided Se;ze’:E tJensor-ideal of A can be written as C = EBJ A; jforsome J C I.
ije

Consider the two-sided Serre tensor-ideal C = @ A; j. One can observe that
the restriction of the canonical functor 7' on @ A,IJJTSJ both an isomorphism and a
monoidal functor. This implies the corresporll’(Ji?nJg quotient category A/C is actually
isomorphic to @ A; ; which is a subcategory of A. Furthermore, it is easy to see that
T(1,) = T(éjij) = P 1,. Since T is a monoidal functor, 1 4, =T(14) = P ;. In
fact, fori,j & J, A, ; liija component subcategory of A/C. “

Now, we claim that the image of another two-sided Serre tensor-ideal C’ is a two-

sided Serre tensor-ideal of the quotient category. Let C = @ A, »C '= P A ; be

ijel ijed’
two two-sided Serre tensor-ideals of A. Because A/IC = P A, ;,T(C)= D A;;
Ljg] ijeJ\J

in A/C. We know that A;;, =0, A;; = 0forallk ¢ J',i € J'. Hence A;; =0,
Ay =0forall k ¢ J'\J, i € J'\J. This means the image of C’ is a two-sided Serre
tensor-ideal of A/C.

We end this chapter by discussing two-sided Serre tensor-ideals from a groupoid,

one can refer the following example to section 4.13 in [10].

Example 6.3. Let G = (X, G, u, s,t,u,i) be a groupoid whose set of objects X is finite
and let C(G) be the category of finite dimensional vector spaces graded by the set G of

morphisms of G i.e. vector spaces of the form V = € V. Introduce a tensor product
geG
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Chapter 6 Tensor product in quotient category

on C(G) by the formula

vew,= @ Vv, ew,.

(81.82):8182=8
where V., W are objects in C(G).
We know that C(G) is a multitensor category. Suppose A € X is an object in G
such that Homg(A, B) is empty for all B # A. For convenience, we denote G(A) =
Homg(A, A). Now, we show that {V = & Vg1 is a two-sided Serre tensor-ideal of

geG(A)
C(Q). For any object W in C(G),

( @ Vo) @ W)y = @ ( @ Velg, ® W,

geG(A) (81.82):8182=k g€G(A)

Note that ( € Ve)g, ® W, is not zero only if g1 € G(A). Consequently, it is not zero

8EG(A)
only if k € G(A). This means that ( @ Vo) @W € {V = D V,}. Similarly,
geG(A) g€eG(A)
W Vy) € {V = &b Vy}. Thus, {V = b V,} is a two-sided Serre
gEG(A) 8EG(A) gEG(A)
tensor-ideal of C(G).

In fact, {V = € V,} is also a two-sided Serre tensor-ideal of C(G) if G is the
geqG’
morphism set of a connected component of G. The above example is the case of a

connected component consisting of one object.

6.4 Another view of tensor product in quotient category

Now, we turn our attention to the localization of a monoidal category by a multi-
plicative system, and we would like to define the tensor product on the quotient cate-

gory. In this section, we still consider the right fraction.

Definition 6.2. Let A be a monoidal category, and S be a multiplicative system of A,
and S is closed under tensor product. Define the tensor product of objects in S™' A by
the same tensor product in A, and define the tensor product of two morphisms als and

bitin STTA by (a @ b)I(s 1)
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6.4 Another view of tensor product in quotient category

Next, we show that the tensor product for S~! A is well-defined. If a,/s; = a,/s,,

which means that there is a commutative diagram

i.e. there exist two morphisms i, j such that

aji = ayj

sji=s,j €S

then the following diagram is commutative

S1®l [ll®b
iQid

S2®l j®l [12®b

where b/t is another morphism in S~ A. Asaresult, (a;®b)/(s,®1) = (a, @b)/(5,]1).
This indicates that a;/s; @ b/t = a,/s, @ b/t. Similarly, one can show b/t @ a;/s; =

b/t @ a,/s,. Consequently, the tensor product is well-defined.

In addition, we define the associativity constraint in S~! A by
ay xylldwexey - WRX)Q®Y - W R(XQY),

where W, X,Y are objects in .A and aw xy is the associativity constraint in A. It is
also clear that the left and right unit isomorphisms in S~! A are I /id 1@x and ry/idy e

where [y and ry are the left and right unit isomorphisms in A.
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Chapter 6 Tensor product in quotient category

Proposition 6.11. Let A be a monoidal category, and S be a multiplicative system of

A, and S is closed under tensor product. Then S™' A is a monoidal category.

Proof. Recall the pentagon axiom for A

WRX)®Y)® Z

R XQY)Q®Z R X)Q(Y ® 2)
AW XQY,Z l \LaW,X,Y®Z
idy ®a
WR(X®Y)® 2) r o WeX®Y®2Z)),

we want to show that the pentagon axiom for S~ A is also held, i.e.

idy @axy.z aw X®Y.Z ay xy ®idy
o

ldygxerez) Mdwexeryez Hwexerez
AQw XYRZ AQwexY,Z

dwexerez) Mdwexeyez

Because of the composition rule, the above equation is

(idy ®axy z)eaw xev.z° @y xy ®ldz) aw xyez°dwexy.z
idiw g x)01)©2 idiw g x)81)®2

The pentagon axiom for .A states that

(idy Qaxy z)eaw xgv.z° (aw xy ®idz) = ay x yoz ° Awex.y.z

thus the pentagon axiom for S~! A is proved. As to the triangle axiom for S~' A, we

need to show that
(ldx/ldX ® ly/ld1®Y) o aX’Ly/id(X®1)®Y = rx/ld(X®1) ® idy/idY,

which is
(ldX ® ly) o aXJ,Y/id(X®1)®Y =ryx ® ldY/ld(X®])®Y
This follows from the triangle axiom for .A. [
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6.4 Another view of tensor product in quotient category

Let A be an abelian monoidal category with biexact tensor product, C be a two-
sided Serre tensor-ideal of .A. We can obtain a multiplicative system S = {f €
MorA|ker f, coker f € C} from C by Proposition 4.1. Recall Theorem 4.1 that S~ A

is isomorphic to .A/C via

F:AlC—S'A
f - idN/p]]:/HN, ° f/i%,
and
G:S'A- AcC
fls = T(f)eT(s)™
where T is the canonical functor.

Next, we show that the tensor product for S~ .A coincide with the tensor product

for A/C that we gave in Definition 6.1.

Proposition 6.12. Let A be an abelian monoidal category with biexact tensor product,
C be a two-sided Serre tensor-ideal of A, and S be the multiplicative system induced

by C. Then F and G are monoidal functors.

Proof. It suffices to show that F(f ® g§) = F(f) ® F(g) and G(a/s @ b/t) = G(als) ®
G(b/t),where f : Ay > A,, & : B, — B, are morphismsin .A/C, a/s, b/t are morphisms
in S™1A.

Firstly, f is the image of f : A} — A,/A] and g is the image of g : B] — B,/B,
ie. f =Tf,§ = Tg where T is the canonical functor. For convenience, we denote

/ /
Al B

. ' . . . , ) A ‘ ’
lAl : Al - A1 by Iy, 131 . Bl - By by Iy, pAi/Aé : A2 - A2/A2 by 2P and
pg2/3’ : By = B,/B, by p,. We know that
205
FT(f®g)=idl(py@py)e(f Qg ®i,)
and

F(Tf)® F(Tg) = (id/p, e fliy)  (id/p, o gli,).
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Chapter 6 Tensor product in quotient category

Because

(p1 ® pp) o ((id/p; ° f1i)) @ (idlp, ° gliy)) = fli} ® gliy = (f ® g)/(i} ® iy),

it follows that

((idlpy = fliy) @ (id/p, ° gliy)) = id/(p; @ py) o (f @ )i} ® i3)

i.e.
FTHQFTg) =FT(f®g).
Secondly, we know that
Gals @b =G(a@b(sR@)=T@®b) o T(s @1)""
and
G(als) @ G(blt) = (Ta+(Ts)™H) Q (Tho(TH)™).
Because
(Tao(Ts) ™)@ (Tho(Tt)™ ) T(s ®1)

=((Ta~(Ts)™)Q (Tbe (T e (Ts®T)

=Ta@®@Tb=T(a®Q b),
this means

(Tas(Ts) @ (Tbo(THY H=T@®b)T(s 1)

i.e.

G(als) @ G(blt) = G(als @ blt).
]

Therefore, S~'.A and A/C are isomorphic as monoidal categories when the mul-

tiplicative system S is induced by the Serre subcategory C.
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