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指导教师（姓名、职称）： 刘公祥 教授

摘 要

本文的目标是在带有双正合张量积的阿贝尔幺半范畴的 Serre商范畴上定义

一种张量结构，以使得典范函子为幺半函子。在这个张量积下，我们证明了对双

边 Serre张量理想作商时，多环范畴的商范畴是多环范畴，多张量范畴的商范畴

是多张量范畴，以及多融合范畴的商范畴是多融合范畴。在这种情况下，张量

范畴的双边 Serre张量理想总是平凡的。我们将这一结论推广到了任意的张量结

构，即如果典范函子是幺半函子，那么对应的张量范畴的 Serre子范畴是平凡的。

此外，我们发现有左对偶的多环范畴的双边 Serre张量理想是成分子范畴的

直和。因此，对应的商范畴同构于原来范畴的子范畴。我们也定义了分式范畴上

的张量积，并证明了当乘法系是由 Serre子范畴诱导时，Serre商范畴与分式范畴

作为幺半范畴是同构的。

关键词：局部化；商范畴；张量范畴
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ABSTRACT
The aim of this paper is to introduce a tensor structure for the Serre quotient cate-

gory of an abelian monoidal category with biexact tensor product in order to make the

canonical funtor a monoidal functor. In this tensor product, we prove that the quotient

category of a multiring category (resp. a multitensor category, resp. a multifusion cate-

gory) by a two-sided Serre tensor-ideal is still a multiring category (resp. a multitensor

category, resp. a multifusion category). In this case, a two-sided Serre tensor-ideal of a

tensor category is always trivial. This result can be generalized to any tensor product.

We show that if the canonical functor is a monoidal functor, then the corresponding

Serre subcategory of the tensor category is trivial.

Besides, we find that a two-sided Serre tensor-ideal of amultiring categorywith left

duals is a direct sum of the component subcategories. Consequently, the corresponding

quotient category is isomorphic to a subcategory of the original category. We also define

a tensor product for the category of fractions and show that, when the multiplicative

system is induced by a Serre subcategory, the Serre quotient category and the category

of fractions are isomorphic as monoidal categories.

KEYWORDS: Localization; Quotient category; Tensor category
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Chapter 1 Introduction

1.1 Background

The quotient category 𝒜/𝒞 of an abelian category 𝒜 by a Serre subcategory 𝒞 was

introduced by Gabriel in [1], which is sometimes called the Serre quotient categories.

Gabriel proved that the quotient category of an abelian category is still an abelian cat-

egory, and the canonical functor 𝑇 ∶ 𝒜 → 𝒜/𝒞 is an exact functor. The process of

obtaining the quotient category of an abelian category is often called the localization of

an abelian category.

We collect several recent results about Serre quotient category as follows. An

analogue of the the fundamental homomorphism theorem, which builds up on Serre

quotient category, is introduced by Mohamed Barakat and Markus Lange-Hegermann

in [2]. They also show that the coimage of a Gabriel monad is a Serre quotient category

in [3], and research the Ext-computability of Serre quotient categories in [4]. Ramin

Ebrahimi shows that the natural map 𝑞𝑖
𝑋,𝐴 ∶ Ext𝑖𝒜(𝑋, 𝐴) → Ext𝑖𝒜/𝒞(𝑞(𝑋), 𝑞(𝐴)) is

invertible in [5], where 𝑞 is the canonical functor and 𝑋, 𝐴 are objects in 𝒜.

More generally, localization is a process of adding inverse maps to an algebraic

structure. In particular, localization of a category means adding formal inverses to some

morphisms. A widely used approach is the calculus of fractions, see Definition 5.2.1

in [6] and Chapter 1 in [7]. In fact, calculus of fractions for triangulated category is of

great significance, and it is known as the Verdier quotient, see section 3.2 in [8] and

Chapter 2 in [9].

A tensor category is an abelian monoidal category with a more complicated struc-

ture. It has a very close relation with Hopf algebras, for example the reconstruction

theorem (see Theorem 5.3.12 in [10]). One can refer a systematic theory of tensor cat-

egory to [10]. Moreover, multitensor category appears in [11]. For more recent results

1



Chapter 1 Introduction

about tensor category, one can refer to [12]. Furthermore, monoidal category is close

to topological field theory, see [13] and [14].

The original motivation of this thesis is to construct a new finite dimensional Hopf

algebra via the reconstruction theorem for finite dimensional Hopf algebras. For a finite

dimensional Hopf algebra 𝐻 , the reconstruction theorem tell us that the representation

category Rep(𝐻) is a finite tensor category with a fiber functor. If the quotient category

of Rep(𝐻) by some Serre subcategory is still a finite tensor category, then it may be pos-

sible to construct a new finite dimensional Hopf algebra by applying the reconstruction

theorem on the quotient category.

1.2 Main results

To answer the original motivation, we show in section 6.2 that if the canonical

functor 𝑇 ∶ 𝒜 → 𝒜/𝒞 is a monoidal functor, where 𝒜 is a tensor category and 𝒞 is a

Serre subcategory of 𝒜, then 𝒞 is trivial. This declares that our original motivation is

trivial in the case of the canonical functor being a monoidal functor.

In addition to this, we define a tensor product for the quotient category of an abelian

monoidal category with biexact tensor product, and show that the quotient category of

a multiring category (resp. a multitensor category, resp. a multifusion category) by

a two-sided Serre tensor-ideal is a multiring category (resp. a multitensor category,

resp. a multifusion category). In this case, the canonical functor is a monoidal functor.

We also define a tensor product for the category of fractions and show that, when the

multiplicative system 𝑆 is induced by a Serre subcategory, the Serre quotient category

and the category of fractions are isomorphic as monoidal categories.

1.3 Organization

In Chapter 2, we present some basic definitions and results as preparation.

In Chapter 3, we reproduce the theory for the quotient category of an abelian cat-

egory, and we provide more details. We show that the quotient category of an abelian

category by a Serre subcategory is also an abelian category, and the canonical funtor is

2



1.3 Organization

an exact functor.

In Chapter 4, we show that a Serre subcategory can induce a multiplicative system.

Based on this, we show that the Serre quotient category and the category of fractions

are isomorphic when the multiplicative system is induced by the Serre subcategory.

Besides, we show that a multiplicative system can induce a Serre subcategory.

In Chapter 5, we focus on cases of abelian category. We show that the quotient

category of a locally finite abelian category is a locally finite abelian category, and that

the quotient category of a finite semisimple abelian category is still a finite semisimple

abelian category.

In Chapter 6, we focus on cases of monoidal category. We provide a definition for

tensor product in the quotient category of an abelianmonoidal categorywith biexact ten-

sor product, and study the quotient category of a multiring category (resp. a multitensor

category, resp. a multifusion category) by a two-sided Serre tensor-ideal. Moreover,

we show that a two-sided Serre tensor-ideal of a multiring category with left duals must

be a direct sum of the component subcategories, and so be the corresponding quotient

category. This implies the corresponding quotient category is actually isomorphic to a

subcategory of the original category. In section 6.4, we define a tensor product for the

category of fractions and show that the isomorphism functor in Chapter 4 is a monoidal

functor.

3





Chapter 2 Preliminaries

Throughout the paper, 𝑘 is an algebraically closed field. In this chapter, we recall

some basic concepts and facts, one can refer to [8], [10], [15], and [16] for more details.

2.1 Finite abelian category

Recall that an additive category 𝒜 is said to be 𝑘-linear if for any objects 𝑋, 𝑌

in 𝒜, Hom𝒜(𝑋, 𝑌 ) is equipped with a structure of a vector space over 𝑘 such that the

composition of morphisms is 𝑘-linear. Besides, we say that an object𝑋 has finite length

if its Jordan-Hölder series has finite length.

Definition 2.1 (Locally finite). A 𝑘-linear abelian category 𝒜 is said to be locally finite

if the following two conditions are satisfied:

1. for any two objects 𝑋, 𝑌 in 𝒜, the vector space Hom𝒜(𝑋, 𝑌 ) is finite dimen-

sional;

2. every object in 𝒜 has finite length.

Definition 2.2 (Finite). A 𝑘-linear abelian category 𝒜 is said to be finite if it is locally

finite and in addition

1. 𝒜 has enough projectives, i.e. every simple object in 𝒜 has a projective cover;

2. there are finitely many isomorphism classes of simple objects.

Recall that a finite 𝑘-linear abelian category is equivalent to the category𝐴-mod of

finite dimensional modules over a finite dimensional 𝑘-algebra 𝐴, see [10] Definition

1.8.5.

2.2 Tensor category, ring category and fusion category

The following definitions refer to [10]
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Chapter 2 Preliminaries

Definition 2.3. Amonoidal category is a quintuple (𝒜, ⊗, 𝑎, 1, 𝜄) where 𝒜 is a category,

⊗ ∶ 𝒜 × 𝒜 → 𝒜 is a bifunctor called the tensor product bifunctor. 𝑎 ∶ (− ⊗ −) ⊗ − →

− ⊗ (− ⊗ −) is a natural isomorphism:

𝑎𝑋,𝑌 ,𝑍 ∶ (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 → 𝑋 ⊗ (𝑌 ⊗ 𝑍), 𝑋, 𝑌 , 𝑍 ∈ 𝒜

called the associativity constraint (or associativity isomorphism), 1 ∈ 𝒜 is an object of

𝒜 and 𝜄 ∶ 1 ⊗ 1 → 1 is an isomorphism, subject the following two axioms.

1. The pentagon axiom. The diagram

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍
𝑎𝑊 ,𝑋,𝑌 ⊗𝑖𝑑𝑍

ttiiii
iiii

iiii
iiii

i 𝑎𝑊 ⊗𝑋,𝑌 ,𝑍

**VVV
VVVV

VVVV
VVVV

VV

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍
𝑎𝑊 ,𝑋⊗𝑌 ,𝑍
��

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍)
𝑎𝑊 ,𝑋,𝑌 ⊗𝑍

��
𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

𝑖𝑑𝑊 ⊗𝑎𝑋,𝑌 ,𝑍 // 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

is commutative for all objects 𝑊 , 𝑋, 𝑌 , 𝑍 in 𝒜.

2. The unit axiom. The functors

𝐿1 ∶ 𝑋 → 1 ⊗ 𝑋 and

𝑅1 ∶ 𝑋 → 𝑋 ⊗ 1

of left and right multiplication by 1 are autoequivalences of 𝒜.

Recall the Definition 2.2.8 in [10]. It shows that a monoidal category can be alter-

natively defined as follows

Definition 2.4. A monoidal category is a sextuple (𝒜, ⊗, 𝑎, 1, 𝑙, 𝑟) satisfying the pen-

tagon axiom, and the triangle axiom (that is, the following diagram is commutative)

(𝑋 ⊗ 1) ⊗ 𝑌
𝑎𝑋,1,𝑌 //

𝑟𝑋⊗𝑖𝑑𝑌 ''OO
OOO

OOO
OOO

𝑋 ⊗ (1 ⊗ 𝑌 )

𝑖𝑑𝑋⊗𝑙𝑌wwooo
ooo

ooo
oo

𝑋 ⊗ 𝑌

6



2.2 Tensor category, ring category and fusion category

for all 𝑋, 𝑌 ∈ 𝒜.

Definition 2.5. Let 𝒜 be a monoidal category. For any object 𝑋 in 𝒜, an object 𝑋∗

is said to be a left dual of 𝑋 if there exist an evaluation 𝑒𝑣𝑋 ∶ 𝑋∗ ⊗ 𝑋 → 1 and a

coevaluation 𝑐𝑜𝑒𝑣𝑋 ∶ 1 → 𝑋 ⊗ 𝑋∗ such that the compositions

𝑋 (𝑋 ⊗ 𝑋∗) ⊗ 𝑋 𝑋 ⊗ (𝑋∗ ⊗ 𝑋) 𝑋,𝑐𝑜𝑒𝑣𝑋⊗𝑖𝑑𝑋 𝑎𝑋,𝑋∗,𝑋 𝑖𝑑𝑋⊗𝑒𝑣𝑋

𝑋∗ 𝑋∗ ⊗ (𝑋 ⊗ 𝑋∗) (𝑋∗ ⊗ 𝑋) ⊗ 𝑋∗ 𝑋∗𝑖𝑑𝑋∗⊗𝑐𝑜𝑒𝑣𝑋 𝑎−1
𝑋∗,𝑋,𝑋∗ 𝑒𝑣𝑋⊗𝑖𝑑𝑋∗

are the identity morphisms.

An object ∗𝑋 is said to be a right dual of 𝑋 if there exist an evaluation 𝑒𝑣′
𝑋 ∶

𝑋 ⊗ ∗𝑋 → 1 and a coevaluation 𝑐𝑜𝑒𝑣′
𝑋 ∶ 1 → ∗𝑋 ⊗ 𝑋 such that the compositions

𝑋 𝑋 ⊗ (∗𝑋 ⊗ 𝑋) (𝑋 ⊗ ∗𝑋) ⊗ 𝑋 𝑋
𝑖𝑑𝑋⊗𝑐𝑜𝑒𝑣′

𝑋 𝑎−1
𝑋,∗𝑋,𝑋 𝑒𝑣′

𝑋⊗𝑖𝑑𝑋

∗𝑋 (∗𝑋 ⊗ 𝑋) ⊗ ∗𝑋 ∗𝑋 ⊗ (𝑋 ⊗ ∗𝑋) ∗𝑋
𝑐𝑜𝑒𝑣′

𝑋⊗𝑖𝑑∗𝑋 𝑎∗𝑋,𝑋,∗𝑋 𝑖𝑑∗𝑋⊗𝑒𝑣′
𝑋

are the identity morphisms.

Furthermore, an object 𝑋 in 𝒜 is said to be rigid if it has both left and right duals.

𝒜 is said to be rigid if every object of 𝒜 is rigid.

Next, we recall the definitions of a multiring category, a multitensor category and

a multifusion category.

Definition 2.6. Amultiring category𝒜 over 𝑘 is a locally finite 𝑘-linear abelianmonoidal

category with bilinear and biexact tensor product. If in addition End𝒜(1) = 𝑘, we will

call 𝒜 a ring category.

Definition 2.7. Let 𝒜 be a locally finite 𝑘-linear abelian rigid monoidal category. We

will call 𝒜 a multitensor category over 𝑘 if the bifunctor ⊗ ∶ 𝒜 × 𝒜 → 𝒜 is bilinear

on morphisms. If in addition End𝒜(1) = 𝑘, and 𝒜 is indecomposable i.e. 𝒜 is not

equivalent to a direct sum of nonzero multitensor categories, then we will call 𝒜 a

tensor category.
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Chapter 2 Preliminaries

Definition 2.8. A multifusion category is a finite semisimple multitensor category. A

fusion category 𝒜 is a multifusion category with End𝒜(1) ≅ 𝑘. i.e. a finite semisimple

tensor category.

By Proposition 4.2.1 in [10], any multitensor category is a multiring category, and

any tensor category is a ring category. One can easily observe from the definition that

any multifusion category ia s multitensor category, and any fusion category is a tensor

category.

2.3 Serre subcategory

Definition 2.9 (Serre subcategory). Let 𝒜 be an abelian category. A non-empty full

additive subcategory 𝒞 ⊂ 𝒜 is a Serre subcategory provided that 𝒞 is closed under

taking subobjects, quotients and extensions.

To be more precise, the definition is to say that for any exact sequence of 𝒜

0 → 𝑀′ → 𝑀 → 𝑀″ → 0,

𝑀 is an object in 𝒞 if and only if 𝑀′ and 𝑀″ are objects in 𝒞.

Now, we give an equivalent definition for Serre subcategory.

Lemma 2.1. A non-empty full additive subcategory 𝒞 of 𝒜 is a Serre subcategory if

and only if for any 𝑋′ → 𝑋 → 𝑋″ exact in 𝒜 with 𝑋′, 𝑋″ ∈ 𝒞, then also 𝑋 ∈ 𝒞.

Proof. (⟸) If 0 → 𝑋′ → 𝑋 → 𝑋″ → 0 exact in 𝒜, then 𝑋′ → 𝑋 → 𝑋″ exact

means 𝑋′, 𝑋″ ∈ 𝒞 ⟹ 𝑋 ∈ 𝒞; 0 → 𝑋′ → 𝑋 exact means 𝑋 ∈ 𝒞 ⟹ 𝑋′ ∈ 𝒞;

𝑋 → 𝑋″ → 0 exact means 𝑋 ∈ 𝒞 ⟹ 𝑋″ ∈ 𝒞.

(⟹) If

𝑋′ 𝑓 // 𝑋 𝑔 // 𝑋″

is exact in 𝒜, then we have the following short exact sequence.

0 // Im 𝑓 // 𝑋 𝑔 // Im 𝑔 // 0

8



2.3 Serre subcategory

Since Im 𝑓 ≅ 𝑋′/ker 𝑓 is a quotient of 𝑋′ and Im 𝑔 is a subobject of 𝑋″, we have

𝑋′/ker 𝑓, Im 𝑔 ∈ 𝒞. Therefore, 𝑋 ∈ 𝒞.

See Example 4.2.2 in [17] for the following example.

Example 2.1. The full subcategory of torsion abelian groups is a Serre subcategory of

abelian groups category.

Proof. Recall that an abelian group 𝐺 is said to be torsion if every element of 𝐺 has

finite order. Denote the full subcategory of torsion abelian groups byTors. Given exact

sequence in the category of abelian groups

0 → 𝐺′ → 𝐺 → 𝐺″ → 0.

If 𝐺 ∈ Tors, its subgroup 𝐺′ and quotient 𝐺″ are also in Tors. If 𝐺′, 𝐺″ ∈ Tors, for

any element 𝑔 ∈ 𝐺, the image ̄𝑔 has finite order in 𝐺″ that implies ∃ integer 𝑛 such that

𝑛 ̄𝑔 = 0 and then 𝑛𝑔 ∈ 𝐺′ i.e. ∃ integer 𝑚 such that 𝑚𝑛𝑔 = 0. Thus, 𝐺 is torsion.

The next example is a classical result for Noetherian modules as it is closed un-

der taking submodules, quotient modules and extensions. It is also correct for Artin

modules.

Example 2.2. The full subcategory of Noetherian modules is a Serre subcategory of

𝑅-module category.

See Proposition 4.2.3 in [17] for the following example.

Example 2.3. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor between abelian categories. Then

ker 𝐹 is a Serre subcategory of 𝒜.

Proof. Let 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 be an exact sequence. Suppose 𝑀′, 𝑀″ are in

the kernel of 𝐹 , apply 𝐹 to the exact sequence and get

0 → 0 → 𝐹 𝑀 → 0 → 0

9



Chapter 2 Preliminaries

which means 𝑀 is in the kernel of 𝐹 . Conversely, if 𝑀 is in the kernel of 𝐹 , apply 𝐹

to the exact sequence and get

0 → 𝐹 𝑀′ → 0 → 𝐹 𝑀″ → 0

so 𝑀′ and 𝑀″ are in ker 𝐹 .

In particular, let 𝑒 be an idempotent element in an algebra 𝐴, the functor 𝑟𝑒𝑠𝑒 ∶ 𝐴-

mod → 𝐵-mod by 𝑟𝑒𝑠𝑒(−) = (−)𝑒 is an exact functor where 𝐵 = 𝑒𝐴𝑒 ≅ End 𝑒𝐴. The

exactness see I.6.8 [18]. Hence, ker(𝑟𝑒𝑠𝑒) is a Serre subcategory of 𝐴-mod.

Recall also Theorem 4.3.8 in [10] as the following:

Theorem 2.1. 1. In a ring category with left duals, the unit object 1 is simple.

2. In a multiring category with left duals, the unit object 1 is semisimple, and is a

direct sum of pairwise non-isomorphic simple objects 1𝑖.

Note that 1𝑖 is the image of 𝑝𝑖, where {𝑝𝑖}𝑖∈𝐼 is the set of primitive idempotents of

the algebra End(1). And 1 = ⨁
𝑖∈𝐼

1𝑖.

We also write down the definition of two-sided Serre tensor-ideal. In some liter-

ature, for example in [19], ’tensor-ideal’ is written as ’⊗-ideal’, and it means one side

absorption. In some other literature, for example in [20], the name ’tensor-ideal’ is used.

Definition 2.10. Let 𝒜 be an abelian monoidal category. A Serre subcategory 𝒞 of

𝒜 is called a two-sided Serre tensor-ideal of 𝒜 if for any 𝑋 ∈ 𝒜, 𝑌 ∈ 𝒞, we have

𝑋 ⊗ 𝑌 ∈ 𝒞 and 𝑌 ⊗ 𝑋 ∈ 𝒞.

2.4 Directed quasi-ordered set

Definition 2.11. A set is said to be a quasi-ordered set if its order is reflexive and

transitive. A quasi-ordered set 𝐼 is said to be directed if for any pair 𝑖, 𝑗 ∈ 𝐼 , there is

an index 𝑘 with 𝑖 ⩽ 𝑘 and 𝑗 ⩽ 𝑘.

The following lemma is common. One can refer to [16].
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2.5 Multiplicative system

Lemma 2.2. Let {𝐴𝑖, 𝜑𝑖
𝑗} be a direct system of modules over a directed quasi-ordered

set 𝐼 . Suppose lim−−→ 𝐴𝑖 = (∐ 𝐴𝑖)/𝑆, where 𝑆 =< {𝜆𝑗𝜑𝑖
𝑗𝑎𝑖 − 𝜆𝑖𝑎𝑖|𝑎𝑖 ∈ 𝐴𝑖, and 𝑖 ⩽ 𝑗} >

and 𝜆𝑖 ∶ 𝐴𝑖 → ∐ 𝐴𝑖 is the 𝑖th injection, then

1. lim−−→ 𝐴𝑖 = {𝜆𝑖𝑎𝑖 + 𝑆|𝑖 ∈ 𝐼};

2. 𝜆𝑖𝑎𝑖 + 𝑆 = 0 ⟺ 𝜑𝑖
𝑡𝑎𝑖 = 0 for some 𝑡 ⩾ 𝑖.

2.5 Multiplicative system

Definition 2.12 (Multiplicative system). Let 𝒜 be a category. A set of morphisms 𝑆 in

𝒜 is said to be a left multiplicative system if:

1. 𝑆 is closed under composition of morphisms, and all identity morphisms are in

𝑆;

2. Every solid diagram

⋅ 𝑔 //

𝑡

��

⋅

𝑠

���
�
�
�
�
�

⋅ 𝑓 //______ ⋅

with 𝑡 ∈ 𝑆 can be completed to a commutative diagram with 𝑠 ∈ 𝑆;

3. For every pair of morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝑌 and a morphism 𝑡 ∶ ⋅ → 𝑋 in 𝑆 such

that 𝑓 ∘ 𝑡 = 𝑔 ∘ 𝑡, there exists a morphism 𝑠 ∶ 𝑌 → ⋅ in 𝑆 such that 𝑠 ∘ 𝑓 = 𝑠 ∘ 𝑔.

A set of morphisms 𝑆 in 𝒜 is said to be a right multiplicative system if:

1. 𝑆 is closed under composition of morphisms, and all identity morphisms are in

𝑆;

2. Every solid diagram

⋅ 𝑔 //______

𝑡

���
�
�
�
�
� ⋅

𝑠

��⋅ 𝑓 // ⋅

with 𝑠 ∈ 𝑆 can be completed to a commutative diagram with 𝑡 ∈ 𝑆;

11



Chapter 2 Preliminaries

3. For every pair of morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝑌 and a morphism 𝑠 ∶ 𝑌 → ⋅ in 𝑆 such

that 𝑠 ∘ 𝑓 = 𝑠 ∘ 𝑔, there exists a morphism 𝑡 ∶ ⋅ → 𝑋 in 𝑆 such that 𝑓 ∘ 𝑡 = 𝑔 ∘ 𝑡.

If 𝑆 is both a left multiplicative system and a right multiplicative system, it is said to be

a multiplicative system.

In the following, we will use the double arrow 𝑠 ∶ ⋅ ⇒ ⋅ to imply 𝑠 ∈ 𝑆.

Definition 2.13. Let 𝒜 be a category, 𝑆 be a multiplicative system of 𝒜, 𝑋, 𝑌 are

objects in 𝒜. A right fraction (or a right roof) from 𝑋 to 𝑌 is a morphism diagram

𝑋 ⋅ 𝑌 ,𝑠
𝑏

which is denoted by (𝑏, 𝑠). We say two right fractions (𝑎, 𝑟) and (𝑏, 𝑠) are equivalent if

there exists a commutative diagram as following.

⋅
𝑟
{� ~~
~~
~~
~

~~
~~
~~
~

𝑎
��?

??
??

??

𝑋 ⋅

OO

//

��

ks 𝑌

⋅
𝑠

[c@@@@@@@

@@@@@@@ 𝑏

??��������

We will denote the equivalent class of (𝑏, 𝑠) by 𝑏/𝑠.

Definition 2.14. Let 𝒜 be a category, 𝑆 be a multiplicative system of 𝒜, we define the

quotient category 𝑆−1𝒜 by

1. ob(𝑆−1𝒜) = ob(𝒜);

2. Morphisms in 𝑆−1𝒜 are equivalent classes of right fractions.

One can also define the morphisms in 𝑆−1𝒜 to be equivalent classes of left frac-

tions. In this article, we will use the right fractions. Besides, the quotient category

𝑆−1𝒜 is also called as the localization of 𝒜. In the following text, we denote the local-

ization functor by 𝑄 ∶ 𝒜 → 𝑆−1𝒜, which maps 𝑓 to 𝑓/𝑖𝑑.

Recall Proposition 3.6 in [7] Chapter 1.

Lemma 2.3. Let 𝒜 be an abelian category. If 𝑆 is a multiplicative system of 𝒜, then

the category 𝑆−1𝒜 is abelian and the functor 𝑄 ∶ 𝒜 → 𝑆−1𝒜 is exact.

12



Chapter 3 Quotient category of an abelian category

The aim of this chapter is to systematically recall the definition of localization for

an abelian category 𝒜 by a Serre subcategory 𝒞. One can refer to Part 3 in [1].

3.1 Definition of Serre quotient category

Given two objects 𝑀 and 𝑁 in 𝒜, let 𝑀′ and 𝑁′ be subobjects of 𝑀 and 𝑁

respectively. The canonical morphisms

𝑖𝑀′
𝑀 ∶ 𝑀′ → 𝑀 and 𝑝𝑁

𝑁/𝑁′ ∶ 𝑁 → 𝑁/𝑁′

induce a map

Hom𝒜(𝑖𝑀′
𝑀 , 𝑝𝑁

𝑁/𝑁′) ∶ Hom𝒜(𝑀, 𝑁) → Hom𝒜(𝑀′, 𝑁/𝑁′).

To be more specific, for a morphism 𝑢 ∶ 𝑀 → 𝑁 , there is a morphism 𝑢′ ∶ 𝑀′ →

𝑁/𝑁′ that is actually 𝑢′ = 𝑝𝑁
𝑁/𝑁′ ∘ 𝑢 ∘ 𝑖𝑀′

𝑀 .

𝑀′ 𝑖𝑀′
𝑀 //

𝑢′

�� �
�
�
�
�
� 𝑀

𝑢

��
𝑁/𝑁′ 𝑁

𝑝𝑁
𝑁/𝑁′oo

Claim 1. Given an abelian category𝒜with a Serre subcategory 𝒞, consider two objects

𝑀 and 𝑁 in 𝒜, The set {Hom𝒜(𝑀′, 𝑁/𝑁′)|𝑀/𝑀′, 𝑁′ ∈ 𝒞}, in which 𝑀′ and 𝑁′

are subobjects of 𝑀 and 𝑁 respectively, is a direct system.

13



Chapter 3 Quotient category of an abelian category

Proof. First, we define an order on the set {Hom𝒜(𝑀′, 𝑁/𝑁′)|𝑀/𝑀′, 𝑁′ ∈ 𝒞} by

Hom𝒜(𝑀′
1, 𝑁/𝑁′

1) ⪯ Hom𝒜(𝑀′
2, 𝑁/𝑁′

2) if 𝑀′
2 ⊂ 𝑀′

1, 𝑁′
1 ⊂ 𝑁′

2

with 𝑀/𝑀′
1, 𝑁′

1, 𝑀/𝑀′
2, 𝑁′

2 ∈ 𝒞. This definition is reasonable because of the follow-

ing commutative diagram.

𝑀′
2

𝑖
𝑀′

2
𝑀′

1 //

��

𝑀′
1

𝑖
𝑀′

1
𝑀 //

��

𝑀

��
𝑁/𝑁′

2 𝑁/𝑁′
1

𝑝
𝑁/𝑁′

1
𝑁/𝑁′

2oo 𝑁
𝑝𝑁

𝑁/𝑁′
1oo

By observing the commutative diagram, one can readily define a map

𝜙(𝑀′
1 ,𝑁/𝑁′

1 )
(𝑀′

2 ,𝑁/𝑁′
2 ) ∶ Hom𝒜(𝑀′

1, 𝑁/𝑁′
1) → Hom𝒜(𝑀′

2, 𝑁/𝑁′
2)

𝑓 → 𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 ∘ 𝑖𝑀′

𝑀

and obtain following commutative diagram.

Hom𝒜(𝑀′
1, 𝑁/𝑁′

1)
𝜙

(𝑀′
1 ,𝑁/𝑁′

1 )
(𝑀′

3 ,𝑁/𝑁′
3 )

//

𝜙
(𝑀′

1 ,𝑁/𝑁′
1 )

(𝑀′
2 ,𝑁/𝑁′

2 ) %%LL
LLL

LLL
LLL

LLL
LLL

LLL
L

Hom𝒜(𝑀′
3, 𝑁/𝑁′

3)

Hom𝒜(𝑀′
2, 𝑁/𝑁′

2)
𝜙

(𝑀′
2 ,𝑁/𝑁′

2 )
(𝑀′

3 ,𝑁/𝑁′
3 )

99rrrrrrrrrrrrrrrrrrrrr

This means {Hom𝒜(𝑀′, 𝑁/𝑁′)|𝑀/𝑀′, 𝑁′ ∈ 𝒞} is a direct system.

Definition 3.1 (Quotient Category). The category 𝒜/𝒞 is defined as follows:

1. the objects of 𝒜/𝒞 coincide with the objects of 𝒜.

2. the set of morphisms from 𝑀 to 𝑁 is defined by

Hom𝒜/𝒞(𝑀, 𝑁) ∶= lim−−→
𝑀′,𝑁′

Hom𝒜(𝑀′, 𝑁/𝑁′)

14



3.1 Definition of Serre quotient category

in which 𝑀′ and 𝑁′ go through the subobjects of 𝑀 and 𝑁 respectively such

that 𝑀/𝑀′, 𝑁 ∈ 𝒞.

Figuring out the composition in 𝒜/𝒞 is of great significance. Let ̄𝑓 be an element

of Hom𝒜/𝒞(𝑀, 𝑁), and let ̄𝑔 be an element of Hom𝒜/𝒞(𝑁, 𝑃 ). Denote

Hom𝒜/𝒞(𝑀, 𝑁) = lim−−→
𝑀′,𝑁′

Hom𝒜(𝑀′, 𝑁/𝑁′) = (⨁Hom𝒜(𝑀′, 𝑁/𝑁′))/𝐼1;

Hom𝒜/𝒞(𝑁, 𝑃 ) = lim−−→
𝑁″,𝑃 ′

Hom𝒜(𝑁″, 𝑃 /𝑃 ′) = (⨁Hom𝒜(𝑁″, 𝑃 /𝑃 ′))/𝐼2;

Here, 𝐼1 is the subgroup of ⨁Hom𝒜(𝑀′, 𝑁/𝑁′) generated by

𝜆(𝑀′
𝑗 ,𝑁/𝑁′

𝑗 )𝜙
(𝑀′

𝑖 ,𝑁/𝑁′
𝑖 )

(𝑀′
𝑗 ,𝑁/𝑁′

𝑗 )(𝑓𝑖) − 𝜆(𝑀′
𝑖 ,𝑁/𝑁′

𝑖 )(𝑓𝑖) for all 𝑓𝑖 ∈ Hom𝒜(𝑀′
𝑖 , 𝑁/𝑁′

𝑖 ),

whereHom𝒜(𝑀′
𝑖 , 𝑁/𝑁′

𝑖 ) ⪯ Hom𝒜(𝑀′
𝑗 , 𝑁/𝑁′

𝑗 ), and 𝜆(𝑀′
𝑖 ,𝑁/𝑁′

𝑖 ) ∶ Hom𝒜(𝑀′
𝑖 , 𝑁/𝑁′

𝑖 ) →

⨁Hom𝒜(𝑀′, 𝑁/𝑁′) is the embedding. 𝐼2 is the subgroup of ⨁Hom𝒜(𝑁″, 𝑃 /𝑃 ′))

satisfying a similar condition of 𝐼1. Note that the indexed set is directed, thus Lemma

2.2 is valid here, and we obtain a morphism 𝑓 ∶ 𝑀′ → 𝑁/𝑁′ such that ̄𝑓 = 𝑓 + 𝐼1

and a morphism 𝑔 ∶ 𝑁″ → 𝑃 /𝑃 ′ such that ̄𝑔 = 𝑔 + 𝐼2 with 𝑀/𝑀′, 𝑁′, 𝑁/𝑁″, 𝑃 ′ are

objects of 𝒞.

Recall that the sum of a family of subobjects (𝑋𝑖)𝑖∈𝐼 of an object 𝑋 is defined to

be

∑
𝑖∈𝐼

𝑋𝑖 = Im(⨁
𝑖∈𝐼

𝑋𝑖 → 𝑋),

and the intersection of a family of subobjects (𝑋𝑖)𝑖∈𝐼 of an object 𝑋 is defined to be

⋂
𝑖∈𝐼

𝑋𝑖 = ker(𝑋 → ∏
𝑖∈𝐼

𝑋/𝑋𝑖).

Note that (𝑁″ + 𝑁′)/𝑁′ is the kernel of projection 𝜋 ∶ 𝑁/𝑁′ → 𝑁/(𝑁″ + 𝑁′).

Let𝑀″ = ker(𝜋∘𝑓). By the universal property, one can get 𝑓 ′ ∶ 𝑀″ → (𝑁″+𝑁′)/𝑁′

and following commutative diagram.

15



Chapter 3 Quotient category of an abelian category

𝑀″
� _

��𝑓 ′

��~
~
~
~
~
~
~
~
~
~

𝑀′

𝑓
��

(𝑁″ + 𝑁′)/𝑁′ � � // 𝑁/𝑁′ 𝜋 // 𝑁/(𝑁″ + 𝑁′)

In some papers, such as Gabriel’s thesis [1], 𝑀″ is written as 𝑓 −1((𝑁″ + 𝑁′)/𝑁′).

Since

𝑀′/𝑀″ = 𝑀′/ker(𝜋 ∘ 𝑓) ≅ Im(𝜋 ∘ 𝑓) ⊂ 𝑁/(𝑁″ + 𝑁′)

and note that

𝑁/(𝑁″ + 𝑁′) ≅ 𝑁/𝑁″

(𝑁″ + 𝑁′)/𝑁″ ∈ 𝒞,

we have 𝑀′/𝑀″ ∈ 𝒞. Also note that 𝑀/𝑀′ ∈ 𝒞, the property of closing under taking

extension tells that 𝑀/𝑀″ ∈ 𝒞 because of the following short exact sequence.

0 → 𝑀′/𝑀″ → 𝑀/𝑀″ → 𝑀/𝑀′ → 0

On the other hand, by the universal property of cokernel, we can obtain amorphism

𝑔′ ∶ 𝑁″/(𝑁″ ∩ 𝑁′) → coker(𝑔 ∘ 𝑖) such that the following diagram commute

𝑁″ ∩ 𝑁′ 𝑖 // 𝑁″ //

𝑔
��

𝑁″/(𝑁″ ∩ 𝑁′)

𝑔′

}}z
z
z
z
z
z
z
z
z
z

𝑃 /𝑃 ′

𝜋′
��

coker(𝑔 ∘ 𝑖)

where 𝜋′ ∶ 𝑃 /𝑃 ′ → 𝑃 /𝑃 ″ is the projection. In fact, coker(𝑔 ∘ 𝑖) is a quotient object of

𝑃 /𝑃 ′, and 𝑃 /𝑃 ′ is a quotient object of 𝑃 . Hence, coker(𝑔 ∘ 𝑖) is a quotient object of 𝑃 .

We can write that coker(𝑔 ∘ 𝑖) ≅ 𝑃 /𝑃 ″ where 𝑃 ″ = ker(𝑃 → 𝑃 /𝑃 ′ → coker(𝑔 ∘ 𝑖)).

Note that 𝑔(𝑁″ ∩ 𝑁′) is an object of 𝒞 since 𝒞 is closed under taking subobject and

quotient. Because

𝑃 ″/𝑃 ′ = ker(𝜋′) = 𝑔(𝑁″ ∩ 𝑁′) ∈ 𝒞
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3.1 Definition of Serre quotient category

and 𝑃 ′ ∈ 𝒞, the exact sequence

0 → 𝑃 ′ → 𝑃 ″ → 𝑃 ″/𝑃 ′ → 0

means that 𝑃 ″ ∈ 𝒞. In Gabriel’s thesis [1], 𝑃 ″ is written as 𝑃 ′ + 𝑔(𝑁″ ∩ 𝑁′).

Therefore, we get a composition

𝑔′ ∘ 𝑣 ∘ 𝑓 ′ ∶ 𝑀″ → (𝑁″ + 𝑁′)/𝑁′ ≅ 𝑁″/(𝑁″ ∩ 𝑁′) → 𝑃 /𝑃 ″,

where 𝑣 ∶ (𝑁″ + 𝑁′)/𝑁′ ≅ 𝑁″/(𝑁″ ∩ 𝑁′) is the canonical isomorphism, with

𝑀/𝑀″, 𝑃 ″ ∈ 𝒞. We want to define ̄𝑔 ∘ ̄𝑓 to be the image of 𝑔′ ∘𝑣∘𝑓 ′ in Hom𝒜/𝒞(𝑀, 𝑃 ).

It remains to check that the composition does not rely on the choice of 𝑓 and 𝑔. One

can refer to section 3.2 in [21] for another proof.

Proposition 3.1. Let ̄𝑓 be an element of Hom𝒜/𝒞(𝑀, 𝑁), and let ̄𝑔 be an element of

Hom𝒜/𝒞(𝑁, 𝑃 ). The composition of ̄𝑓 and ̄𝑔 defined in the above manner does not rely

on the choice of 𝑓 and 𝑔.

Proof. Denote

Hom𝒜/𝒞(𝑀, 𝑃 ) = lim−−→
𝑀″,𝑃 ′

Hom𝒜(𝑀″, 𝑃 /𝑃 ′) = (⨁Hom𝒜(𝑀″, 𝑃 /𝑃 ′))/𝐼.

First of all, we prove that the composition of a morphism with a zero morphism is still

a zero morphism. Assume ̄𝑓 is the zero morphism. By Lemma 2.2, there is (𝑀′
1, 𝑁′

1)

such that 𝜙(𝑀′,𝑁/𝑁′)
(𝑀′

1 ,𝑁/𝑁′
1 )(𝑓 ) = 0. This means the following commutative diagram.

𝑀′
1

𝑖
𝑀′

1
𝑀′ //

0

��

𝑀′

𝑓

��
𝑁/𝑁′

1 𝑁/𝑁′
𝑝𝑁/𝑁′

𝑁/𝑁′
1

oo
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One can also find the following commutative diagram, the back square commutes be-

cause it is the restriction of the front square.

𝑀″
1
� � //

J j

xxppp
ppp

ppp
ppp

pp

0

��

𝑀″
J j

xxppp
ppp

ppp
ppp

pp

𝑓 ′

��

𝑀′
1

𝑖
𝑀′

1
𝑀′ //

0

��

𝑀′

𝑓

��

(𝑁″ + 𝑁′
1)/𝑁′

1J j

xxppp
ppp

ppp
pp

(𝑁″ + 𝑁′)/𝑁′
𝑝

oo
J j

xxppp
ppp

ppp
ppp

𝑁/𝑁′
1 𝑁/𝑁′

𝑝𝑁/𝑁′
𝑁/𝑁′

1

oo

Thus, we have the following commutative diagram.

𝑀″ 𝑓 ′
// (𝑁″ + 𝑁′)/𝑁′ ∼ //

��

𝑁″/(𝑁″ ∩ 𝑁′) 𝑔′
//

��

𝑃 /𝑃 ″

��
𝑀″

1
0 //

?�

OO

(𝑁″ + 𝑁′
1)/𝑁′ ∼ // 𝑁″/(𝑁″ ∩ 𝑁′

1)
𝑔′

1 // 𝑃 /𝑃 ″
1

This means 𝑔′ ∘ 𝑓 ′ + 𝐼 = 𝑔′
1 ∘ 0 + 𝐼 = 𝐼 i.e. ̄𝑔 ∘ ̄𝑓 = 0.

On the other hand, suppose ̄𝑔 = 0, then 𝑔 ∶ 𝑁″ → 𝑃 /𝑃 ′ ∈ 𝐼2. By Lemma 2.2,

there is (𝑁″
1 , 𝑃 ′

1 ) such that 𝜙(𝑁″,𝑃 /𝑃 ′)
(𝑁″

1 ,𝑃 /𝑃 ′
1 )(𝑔) = 0 i.e. the following diagram commutes.

𝑁″
1

0

��

� �
𝑖
𝑁″

1
𝑁″ // 𝑁″

𝑔

��
𝑃 /𝑃 ′

1 𝑃 /𝑃 ′
𝑝𝑃 /𝑃 ′

𝑃 /𝑃 ′
1

oo

By the construction of composition, we have the following commutative diagram. The

18



3.1 Definition of Serre quotient category

back square commutes because it is the projection of the front square.

𝑁″
1 /(𝑁″

1 ∩ 𝑁′) � � //

0

��

𝑁″/(𝑁″ ∩ 𝑁′)

𝑔′

��

𝑁″
1

0

��

� �
𝑖
𝑁″

1
𝑁″ //

88pppppppppppp
𝑁″

88ppppppppppppp

𝑔

��

𝑃 /𝑃 ″
1 𝑃 /𝑃 ″𝑝oo

𝑃 /𝑃 ′
1

𝜋′
88ppppppppppp

𝑃 /𝑃 ′
𝑝𝑃 /𝑃 ′

𝑃 /𝑃 ′
1

oo

𝜋′
88ppppppppppppp

Consequently, we can induce a commutative diagram from the back square as following.

𝑀″ 𝑓 ′
// (𝑁″ + 𝑁′)/𝑁′ ∼ // 𝑁″/(𝑁″ ∩ 𝑁′) 𝑔′

// 𝑃 /𝑃 ″

𝑝
��

𝑀″
1

𝑓 ′
1 //

?�

OO

(𝑁″
1 + 𝑁′)/𝑁′ ∼ //

?�

OO

𝑁″
1 /(𝑁″

1 ∩ 𝑁′)
?�

OO

0 // 𝑃 /𝑃 ″
1

This implies 𝑔′ ∘ 𝑓 ′ + 𝐼 = 0 ∘ 𝑓 ′
1 + 𝐼 = 𝐼 i.e. ̄𝑔 ∘ ̄𝑓 = 0.

Now, we consider the composition of morphisms in general. Suppose ̄𝑓1 = ̄𝑓2 and

̄𝑔1 = ̄𝑔2. We want to show

̄𝑔1 ∘ ̄𝑓1 = ̄𝑔2 ∘ ̄𝑓2.

Since ̄𝑓1 − ̄𝑓2 = ̄𝑔2 − ̄𝑔1 = 0, it is clear that

̄𝑔1 ∘ ( ̄𝑓1 − ̄𝑓2) = 0 = ( ̄𝑔2 − ̄𝑔1) ∘ ̄𝑓2.

Consequently,

̄𝑔1 ∘ ̄𝑓1 − ̄𝑔1 ∘ ̄𝑓2 = ̄𝑔2 ∘ ̄𝑓2 − ̄𝑔1 ∘ ̄𝑓2.

Thus,

̄𝑔1 ∘ ̄𝑓1 = ̄𝑔2 ∘ ̄𝑓2.
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3.2 Serre quotient category is an abelian category

Proposition 3.2. Given an abelian category 𝒜 with a Serre subcategory 𝒞, the quotient

category 𝒜/𝒞 is an additive category.

Proof. 1. The Hom-sets have structure of abelian group, because the direct limit of

abelian groups is also an abelian group.

2. The distributive law is also correct, because Proposition 3.1 has proven the com-

position does not rely on the choice.

3. Because 𝒜 has all the finite coproducts, so does 𝒜/𝒞.

The quotient functor (or say the canonical functor) 𝑇 from 𝒜 to 𝒜/𝒞 is defined to

be

𝑇 𝑀 = 𝑀 for any object 𝑀 ∈ 𝒜

and for any morphism 𝑓 ∈ Hom𝒜(𝑀, 𝑁)

𝑇 ∶ Hom𝒜(𝑀, 𝑁) → Hom𝒜/𝒞(𝑀, 𝑁)

𝑓 → 𝑓 + 𝐼

Here, 𝐼 is the subgroup of ⨁Hom𝒜(𝑀′, 𝑁/𝑁′) generated by

𝜆(𝑀′
𝑗 ,𝑁/𝑁′

𝑗 )𝜙
(𝑀′

𝑖 ,𝑁/𝑁′
𝑖 )

(𝑀′
𝑗 ,𝑁/𝑁′

𝑗 )(𝑓𝑖) − 𝜆(𝑀′
𝑖 ,𝑁/𝑁′

𝑖 )(𝑓𝑖) for all 𝑓𝑖 ∈ Hom𝒜(𝑀′
𝑖 , 𝑁/𝑁′

𝑖 ),

whereHom𝒜(𝑀′
𝑖 , 𝑁/𝑁′

𝑖 ) ⪯ Hom𝒜(𝑀′
𝑗 , 𝑁/𝑁′

𝑗 ), and 𝜆(𝑀′
𝑖 ,𝑁/𝑁′

𝑖 ) ∶ Hom𝒜(𝑀′
𝑖 , 𝑁/𝑁′

𝑖 ) →

⨁Hom𝒜(𝑀′, 𝑁/𝑁′) is the embedding. Note that 𝑓 + 𝐼 is indeed in Hom𝒜/𝒞(𝑀, 𝑁),

because one can choose 𝑀′ = 𝑀 and 𝑁′ = 0, hence 𝑀/𝑀′ = 𝑁′ = 0 ∈ 𝒞 and the

following diagram commutes

𝑀′ = 𝑀 𝑁 = 𝑁/0 = 𝑁/𝑁′

𝑀 𝑁.

𝑓

𝑖𝑀𝑀

𝑓

𝑝𝑁
𝑁
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3.2 Serre quotient category is an abelian category

This implies that the quotient functor is well-defined.

In fact, the quotient functor 𝑇 is an additive functor. One can refer to [1] Lemma

1 in Part 3. Additionally, Lemma 2.2 means that every morphism ̄𝑓 can be written as

𝑇 𝑓 for some 𝑓 in the direct system.

Next, we use the approach of [1] to show that 𝒜/𝒞 is an abelian category. Firstly,

we introduce a Lemma which is Lemma 2 in [1].

Lemma 3.1. Let 𝑢 ∶ 𝑀 → 𝑁 be a morphism of 𝒜, then

1. 𝑇 𝑢 is zero ⟺ Im 𝑢 ∈ 𝒞;

2. 𝑇 𝑢 is a monomorphism ⟺ ker 𝑢 ∈ 𝒞;

3. 𝑇 𝑢 is an epimorphism ⟺ coker 𝑢 ∈ 𝒞;

Proof. 1. (⟸) Suppose Im 𝑢 ∈ 𝒞, then we have 𝑢′ ∶ 𝑀 → 𝑁/Im(𝑢) that is located in

the direct system satisfying the following commutative diagram.

𝑀

𝑢′

��

𝑀

𝑢

��
𝑁/Im(𝑢) 𝑁oo

Thus, 𝑢′ = 0, which means 𝑇 𝑢 = 𝑇 𝑢′ = 0.

(⟹) 𝑇 𝑢 = 0 means the following commutative diagram.

𝑀′ 𝑖𝑀′
𝑀 //

0

��

𝑀

𝑢

��
𝑁/𝑁′ 𝑁

𝑝𝑁
𝑁/𝑁′

oo

That is 0 = Im(0) = Im(𝑝𝑁
𝑁/𝑁′ ∘𝑢∘𝑖𝑀′

𝑀 ) = (𝑢(𝑀′)+𝑁′)/𝑁′. This implies 𝑢(𝑀′) ⊂ 𝑁′

and then 𝑢(𝑀′) ∈ 𝒞. Note that

𝑢(𝑀′) = Im(𝑢 ∘ 𝑖𝑀′
𝑀 ) ≅ 𝑀′/ker(𝑢 ∘ 𝑖𝑀′

𝑀 ) = 𝑀′/(ker 𝑢 ∩ 𝑀′) ≅ (ker 𝑢 + 𝑀′)/ker 𝑢,
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Chapter 3 Quotient category of an abelian category

Therefore, we get a short exact sequence

0 → 𝑢(𝑀′) → Im 𝑢 → 𝑀/(ker 𝑢 + 𝑀′) → 0.

Note that 𝑀/(ker 𝑢 + 𝑀′) is in 𝒞 because it is a quotient of 𝑀/𝑀′. Since 𝒞 is closed

under taking extensions, Im 𝑢 is in 𝒞.

2.(⟹) Denote the embedding by 𝑖 ∶ ker 𝑢 → 𝑀 . It is clear 𝑢∘𝑖 = 0, which means

𝑇 𝑢∘𝑇 𝑖 = 0. With the knowing that 𝑇 𝑢 is a monomorphism, the equation implies 𝑇 𝑖 = 0.

By 1., we have ker 𝑢 = Im 𝑖 ∈ 𝒞.

(⟸) Given a morphism 0 ≠ ̄𝑓 ∶ 𝑃 → 𝑀 in 𝒜/𝒞, we want to show 𝑇 𝑢 ∘ ̄𝑓 ≠ 0.

Choose an image 𝑓 ∶ 𝑃 ′ → 𝑀/𝑀′ in direct system with 𝑃 /𝑃 ′, 𝑀′ ∈ 𝒞. We can

assume 𝑀′ contains ker 𝑢 since it is lawful to replace 𝑀′ by 𝑀′ + ker 𝑢. Therefore,

𝑢 induces a monomorphism 𝑢′ ∶ 𝑀/𝑀′ → 𝑁/𝑢(𝑀′) such that the following diagram

commute.

𝑀′ // 𝑀 //

𝑢
��

𝑀/𝑀′

𝑢′

���
�
�
�
�
�
�
�
�

𝑁

��
𝑁/𝑢(𝑀′)

Note that ̄𝑓 ≠ 0, which implies Im 𝑓 ∉ 𝒞 by 1.. This means Im(𝑢′ ∘ 𝑓 ) ∉ 𝒞 since Im 𝑓

is a subobject of Im(𝑢′ ∘ 𝑓 ). Thus, 𝑇 𝑢 ∘ ̄𝑓 ≠ 0.

3.Similar to the proof of 2.

The following Lemma is Lemma 3 in [1].

Lemma 3.2. Let 𝑓 ∶ 𝑀 → 𝑁 be a morphism in 𝒜, then

ker(𝑇 𝑓) = 𝑇 (ker 𝑓) and coker(𝑇 𝑓) = 𝑇 (coker 𝑓).

Proof. Denote ker 𝑓 by (𝐾, 𝑘), we have

(𝑇 𝑓)(𝑇 𝑘) = 𝑇 (𝑓𝑘) = 𝑇 (0) = 0.
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3.2 Serre quotient category is an abelian category

We now prove the universal property of kernel for (𝑇 𝐾, 𝑇 𝑘). If ̄𝑝 ∶ 𝑇 𝑃 → 𝑇 𝑀

satisfies 𝑇 𝑓 ∘ ̄𝑝 = 0, we want to find a ̄𝑞 realizing the following commutative diagram.

𝑇 𝑃

̄𝑝

��

̄𝑞

}}z
z
z
z
z
z
z
z
z

𝑇 𝐾 𝑇 𝑘 // 𝑇 𝑀 𝑇 𝑓 // 𝑇 𝑁

Note that ̄𝑝 = 𝑇 𝑝 is the image of a morphism 𝑝 ∶ 𝑃 ′ → 𝑀/𝑀′ where 𝑃 /𝑃 ′, 𝑀′ ∈ 𝒞,

and 𝑓 induces 𝑓 ′ ∶ 𝑀/𝑀′ → 𝑁/𝑓(𝑀′). Because of the following commutative

diagram

0 𝑀′ 𝑀 𝑀/𝑀′ 0

0 𝑓(𝑀′) 𝑁 𝑁/𝑓(𝑀′) 0,

𝑓 𝑓 𝑓 ′

the snake lemma indicates the following exact sequence

0 𝐾 ∩ 𝑀′ 𝐾 ker(𝑓 ′) 0.

This means that ker(𝑓 ′) = 𝐾/(𝐾 ∩ 𝑀′). Also note that 𝑘 induces 𝑘′ ∶ 𝐾/(𝐾 ∩ 𝑀′) →

𝑀/𝑀′, then (𝐾/(𝐾 ∩ 𝑀′), 𝑘′) is the kernel of 𝑓 ′.

Let 𝑃 ″ = ker(𝑓 ′ ∘ 𝑝) and 𝑝′ ∶ 𝑃 ″ → 𝑀/𝑀′ that is induced by 𝑝. Note that

𝑇 (𝑓 ′ ∘ 𝑝) = (𝑇 𝑓) ̄𝑝 = 0, which means Im(𝑓 ′ ∘ 𝑝) ∈ 𝒞 by Lemma 3.1. Consequently,

𝑃 ′/𝑃 ″ = 𝑃 ′/ker(𝑓 ′ ∘ 𝑝) ≅ Im(𝑓 ′ ∘ 𝑝) ∈ 𝒞 and 𝑃 /𝑃 ′ ∈ 𝒞. The short exact sequence

0 → 𝑃 ′/𝑃 ″ → 𝑃 /𝑃 ″ → 𝑃 /𝑃 ′ → 0

implies 𝑃 /𝑃 ″ ∈ 𝒞.

Denote by 𝑖 ∶ 𝑃 ″ → 𝑃 ′ the injection. It is clear that 𝑓 ′𝑝′ = (𝑓 ′𝑝)𝑖 = 0 and there
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Chapter 3 Quotient category of an abelian category

is a morphism 𝑞 ∶ 𝑃 ″ → 𝐾/(𝐾 ∩ 𝑀′) making the following diagram commute

𝑃 ″

𝑞

yyt t
t
t
t
t
t
t
t
t
t

𝑝′

��
𝐾/(𝐾 ∩ 𝑀′) 𝑘′

// 𝑀/𝑀′ 𝑓 ′
// 𝑁/𝑓(𝑀′).

Thus, 𝑇 𝑞 is a morphism such that

̄𝑝 = 𝑇 (𝑝′) = 𝑇 (𝑘′𝑞) = 𝑇 (𝑘′)𝑇 (𝑞) = 𝑇 (𝑘)𝑇 (𝑞).

This means we have proven the universal property, and then ker(𝑇 𝑓) = 𝑇 (ker 𝑓).

One can prove coker(𝑇 𝑓) = 𝑇 (coker 𝑓) by a similar procedure.

We give an equivalent description for isomorphisms in 𝒜/𝒞, which is Lemma 4 in

[1].

Proposition 3.3. Let 𝑢 ∶ 𝑀 → 𝑁 be a morphism in 𝒜, then

𝑇 𝑢 is an isomorphism ⟺ ker 𝑢 and cokernel 𝑢 belong to 𝒞.

Proof. (⟹) By Lemma 3.1, it is obvious.

(⟸) Consider the canonical factorization of 𝑢.

𝐾 // 𝑀 𝑢 //

𝑞

��

𝑁 // 𝐶

Coim 𝑢 𝑣 // Im 𝑢

𝑗

OO

Note that Coim 𝑢 = 𝑀/ker 𝑞 = 𝑀/𝐾 . We know that 𝑖𝑑Coim 𝑢 ∈ Hom𝒜(Coim 𝑢, 𝑀/𝐾).

Since 𝐾 ∈ 𝒞, the image 𝑇 𝑖𝑑Coim 𝑢 is in Hom𝒜/𝒞(Coim 𝑢, 𝑀). The following composi-
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3.2 Serre quotient category is an abelian category

tion means that 𝑇 𝑖𝑑Coim 𝑢 is actually an inverse of 𝑇 𝑞 in Hom𝒜/𝒞(Coim 𝑢, 𝑀).

𝑀 𝑞 //

��

Coim u

𝑀/𝐾 𝑖𝑑Coim 𝑢 // 𝑀/𝐾 𝑖𝑑 // 𝑀/𝐾

This shows that 𝑇 𝑞 is an isomorphism. Similarly, one can show that 𝑇 𝑗 is an isomor-

phism. Thus

𝑇 𝑢 = 𝑇 𝑗 ∘ 𝑇 𝑣 ∘ 𝑇 𝑞

is an isomorphism.

Theorem 3.1. Given an abelian category 𝒜 with a Serre subcategory 𝒞, the quotient

category 𝒜/𝒞 is an abelian category.

Proof. By Proposition 3.2, 𝒜/𝒞 is an additive category. Given a morphism ̄𝑓 ∶ 𝑀 →

𝑁 in 𝒜/𝒞. We know that ̄𝑓 is the image of 𝑓 ∶ 𝑀′ → 𝑁/𝑁′ where 𝑀/𝑀′, 𝑁′ ∈

𝒞. By Lemma 3.2, ker( ̄𝑓 ) = ker(𝑇 𝑓) = 𝑇 (ker 𝑓) and coker( ̄𝑓 ) = coker(𝑇 𝑓) =

𝑇 (coker 𝑓) which exist since 𝒜 is an abelian category. Also note that

coker ker ̄𝑓 = 𝑇 (coker ker 𝑓) ≅ 𝑇 (ker coker 𝑓) = ker coker ̄𝑓 .

Consequently, 𝒜/𝒞 is an abelian category.

In fact, we apply 𝑇 on the canonical factorization of 𝑓 , and then we can obtain the

canonical factorization of ̄𝑓 as shown in the right side of the following diagram

𝑀′ 𝑁/𝑁′ 𝑀 𝑁

Coim 𝑓 Im 𝑓, 𝑇 (Coim 𝑓) 𝑇 (Im 𝑓).

𝑓

𝑞

̄𝑓

𝑇 𝑞

𝑣

𝑗

𝑇 𝑣

𝑇 𝑗

By Lemma 3.1, 𝑇 𝑣 is an isomorphism, 𝑇 𝑞 is an epimorphism, and 𝑇 𝑗 is a monomor-
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phism. In addition,

Coim( ̄𝑓 ) = Coim(𝑇 𝑓) = coker(ker(𝑇 𝑓))

= 𝑇 (coker(ker 𝑓)) = 𝑇 (Coim(𝑓 )),

and
Im( ̄𝑓 ) = Im(𝑇 𝑓) = ker(coker(𝑇 𝑓))

= 𝑇 (ker(coker 𝑓)) = 𝑇 (Im(𝑓 )).

Now, we have already known that the quotient category of an abelian category by

a Serre subcategory is also an abelian category. It follows that the canonical functor is

an exact functor.

Proposition 3.4. Let 𝒜 be an abelian category, 𝒞 be a Serre subcategory, then the

canonical functor 𝑇 ∶ 𝒜 → 𝒜/𝒞 is an exact functor.

Proof. Recall that 𝑇 is left exact if and only if 𝑇 preserves kernels and 𝑇 is right exact

if and only if 𝑇 preserves cokernels. By Lemma 3.2, we obtain that 𝑇 is an exact

functor.

In some viewpoints, the purpose of localization is to make some objects become

isomorphic. Now, we say that the zero objects in 𝒜/𝒞 are actually those objects in 𝒞.

This proposition is a direct corollary of Lemma 3.1.

Proposition 3.5. Let 𝒜 be an abelian category, 𝒞 be a Serre subcategory of 𝒜. For

any 𝑀 in 𝒜, 𝑀 ≅ 0 in 𝒜/𝒞 if and only if 𝑀 ∈ 𝒞.

Proof. 𝑀 ≅ 0 in 𝒜/𝒞 if and only if 𝑇 (𝑖𝑑𝑀 ) = 0 in 𝒜/𝒞. By Lemma 3.1, 𝑇 (𝑖𝑑𝑀 ) = 0

in 𝒜/𝒞 if and only if 𝑀 = Im(𝑖𝑑𝑀 ) ∈ 𝒞.

For two abelian categories 𝒜 and ℬ, let 𝐹 ∶ 𝒜 → ℬ be an exact functor. By

Example 2.3, we know that ker 𝐹 is a Serre subcategory of 𝒜. As a result, we can

obtain a quotient category 𝒜/ker 𝐹 with a canonical functor 𝑇 ∶ 𝒜 → 𝒜/ker 𝐹 . By

proposition 3.5, ker 𝑇 = ker 𝐹 . A natural question is under what conditions ℬ is

equivalent to 𝒜/ker 𝐹 . In order to study their relation, Gabriel proved the universal
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property for quotient category of an abelian category, refer to Corollary 2 and Corollary

3 in [1].

Proposition 3.6. Let 𝒜 be an abelian category, 𝒞 be a Serre subcategory of 𝒜. Let 𝐹

be an exact functor from 𝒜 to an abelian category ℬ. If 𝐹 (𝑀) = 0 for any object 𝑀

in 𝒞, then there is a unique exact functor 𝐻 ∶ 𝒜/𝒞 → ℬ such that 𝐹 = 𝐻 ∘ 𝑇 where 𝑇

is the canonical functor.
𝒜 𝒜/𝒞

ℬ

𝑇

𝐹
𝐻

However, the universal property does not answer the question directly. The fol-

lowing proposition is a rewrite of Proposition 5 in [1], which provides a condition to

make ℬ ≅ 𝒜/ker 𝐹 .

Proposition 3.7. Let 𝒜 and ℬ be abelian categories, and 𝐹 ∶ 𝒜 → ℬ be an exact

functor. Denote the canonical functor by 𝑇 ∶ 𝒜 → 𝒜/ker 𝐹 . If there is a functor 𝑆

right adjoint to 𝐹 such that 𝐹 ∘ 𝑆 ≅ 𝑖𝑑ℬ is a natural isomorphism, then 𝐹 induces an

equivalence between 𝒜/ker 𝐹 and ℬ.

In fact, for abelian categories 𝒜 and ℬ, a functor 𝑆 ∶ ℬ → 𝒜 is said to be a section

functor of an exact functor 𝐹 ∶ 𝒜 → ℬ if 𝑆 is a right adjoint to 𝐹 such that 𝐹 ∘𝑆 ≅ 𝑖𝑑ℬ

is a natural isomorphism. We note that Proposition 3.3 in [2] is a more recent result, as

shown below.

Proposition 3.8. Let 𝐹 ∶ 𝒜 → ℬ be an exact and essentially surjective functor of

abelian categories which admits a section functor up to extension. Then 𝐹 induces an

equivalence between 𝒜/ker 𝐹 ≅ ℬ where ker 𝐹 is a thick torsion subcategory of 𝒜.
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4.1 Multiplicative system from a Serre subcategory

Recall that proposition 3.3 said 𝑇 𝑢 is an isomorphism if and only if ker 𝑢, coker 𝑢 ∈

𝒞. In calculus of fractions, we choose a set of morphisms to construct a multiplicative

system in order to make them into isomorphisms. One can refer the following proposi-

tion to Lemma 2.2.4 in [8].

Proposition 4.1. Let 𝒜 be an abelian category and 𝒞 be a Serre subcategory. Denote

by 𝑆 = {𝑓 ∈ Mor𝒜|ker 𝑓, coker 𝑓 ∈ 𝒞}. Then 𝑆 is a multiplicative system.

Proof. 1).

1. ∀𝑋 ∈ 𝒜, ker 𝑖𝑑𝑋 = coker 𝑖𝑑𝑋 = 0, thus 𝑖𝑑𝑋 ∈ 𝑆.

2. Given

𝐴 𝑓 // 𝐵 𝑔 // 𝐶

with 𝑓, 𝑔 ∈ 𝑆. Note that there is a commutative diagram

𝐴 𝑓 //

𝑔𝑓
��

𝐵 //

𝑔
��

coker 𝑓 //

��

0

0 // 𝐶 𝑖𝑑 // 𝐶 // 0

By snake lemma, this implies an exact sequence

0 // ker 𝑓 // ker(𝑔𝑓) // ker 𝑔 // coker 𝑓 // coker(𝑔𝑓) // coker 𝑔 // 0

which means
⎧⎪
⎨
⎪⎩

ker 𝑓 → ker 𝑔𝑓 → ker 𝑔

coker 𝑓 → coker 𝑔𝑓 → coker 𝑔
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exact. Note that ker 𝑓, ker 𝑔, coker 𝑓, coker 𝑔 ∈ 𝒞 as 𝑓, 𝑔 ∈ 𝑆. By the above

lemma, ker 𝑔𝑓 and coker 𝑔𝑓 i.e. 𝑔𝑓 ∈ 𝑆.

2).Given

𝐵
𝑠
��

𝐶 𝑓 // 𝐴

with 𝑠 ∈ 𝑆. Consider its pullback

𝑋 𝑔 //

𝑡
��

𝐵
𝑠
��

𝐶 𝑓 // 𝐴

which means an isomorphism ker 𝑡 ≅ ker 𝑠 ∈ 𝒞, and a monomorphism coker 𝑡 →

coker 𝑠 ∈ 𝒞. This implies coker 𝑡 ∈ 𝒞 and then 𝑡 ∈ 𝑆.

On the other hand, given

𝐴 𝑔 //

𝑡
��

𝐵

𝐶

with 𝑡 ∈ 𝑆. Consider its pushout

𝐴 𝑔 //

𝑡
��

𝐵
𝑠
��

𝐶 𝑓 // 𝑋

whichmeans an isomorphism coker 𝑠 ≅ coker 𝑡 ∈ 𝒞, and an epimorphism ker 𝑡 → ker 𝑠.

This implies ker 𝑠 ∈ 𝒞, and then 𝑠 ∈ 𝑆.

3).On one hand, suppose

𝑋 𝑓 // 𝑌 𝑠 +3 𝑍

with 𝑠𝑓 = 0 and 𝑠 ∈ 𝑆. By universal property, there is a 𝑔 satisfying following com-
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4.1 Multiplicative system from a Serre subcategory

mutative diagram.

𝑋

𝑓

��

𝑔

}}{
{
{
{
{
{
{
{
{

ker 𝑠 𝑖 // 𝑌 𝑠 // 𝑍

Denote the inclusion by 𝑡 ∶ ker 𝑔 ↪ 𝑋, we have 𝑓𝑡 = 𝑖𝑔𝑡 = 0. Note that coker 𝑡 =

𝑋/ker 𝑔 ↪ ker 𝑠. This means 𝑡 ∈ 𝑆.

On the other hand, suppose

𝑍 𝑡 +3 𝑋 𝑓 // 𝑌

with 𝑓𝑡 = 0 with 𝑠 ∈ 𝑆. By universal property, there is a 𝑔 satisfying following

commutative diagram.

𝑍 𝑡 // 𝑋 𝑝 //

𝑓

��

coker 𝑡

𝑔

||z
z
z
z
z
z
z
z
z

𝑌

Denote the projection by 𝑠 ∶ 𝑌 → coker 𝑔, we have 𝑠𝑓 = 𝑠𝑔𝑝 = 0. Note that ker 𝑠 =

Im 𝑔 = 𝑔(coker 𝑡), thus 𝑠 ∈ 𝑆.

Remark that if 𝑀/𝑀′, 𝑁′ ∈ 𝒞 then 𝑖𝑀′
𝑀 , 𝑝𝑁

𝑁/𝑁′ ∈ 𝑆. We now prove that 𝒜/𝒞 is

isomorphic to𝑆−1𝒜 by giving functors between them. In fact, this result is well-known.

It was mentioned in [7] Chapter 1 2.5 d).

Theorem 4.1. Let 𝒜 be an abelian category, 𝒞 be a Serre subcategory of 𝒜. Let 𝑆 =

{𝑓 ∈ Mor𝒜|ker 𝑓, coker 𝑓 ∈ 𝒞} be the multiplicative system induced by 𝒞, then 𝒜/𝒞

is isomorphic to 𝑆−1𝒜.

Proof. Given a morphism ̄𝑓 ∶ 𝑀 → 𝑁 in 𝒜/𝒞, there is an 𝑓 ∶ 𝑀′ → 𝑁/𝑁′ with

𝑀/𝑀′, 𝑁′ ∈ 𝒞. Define 𝐹 ∶ 𝒜/𝒞 → 𝑆−1𝒜 preserving objects and mapping ̄𝑓 to
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𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 /𝑖𝑀′

𝑀 as following.

𝑀′
𝑖𝑀′
𝑀

y� {{
{{
{{
{{

{{
{{
{{
{{ 𝑓

##H
HH

HH
HH

HH
𝑁

𝑝𝑁
𝑁/𝑁′

w� xx
xx
xx
xx

xx
xx
xx
xx 𝑖𝑑𝑁

  A
AA

AA
AA

A

𝑀 𝑁/𝑁′ 𝑁

Define 𝐺 ∶ 𝑆−1𝒜 → 𝒜/𝒞 preserving objects and mapping 𝑓/𝑠 to (𝑇 𝑓) ∘ (𝑇 𝑠)−1.

Firstly, let us check that the definitions of 𝐹 and 𝐺 does not rely on the choice of

representative elements.

Suppose 𝑓 , 𝑓 ′ are in the direct system such that ̄𝑓 = 𝑇 𝑓 = 𝑇 𝑓 ′. Without loss of

generality, we may always assume the following diagram is commutative.

𝑀″ 𝑖𝑀″
𝑀′ //

𝑓 ′

��

𝑀′

𝑓

��
𝑁/𝑁″ 𝑁/𝑁′𝑝𝑁/𝑁′

𝑁/𝑁″oo

Note that

𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁″ ∘ 𝑓 ′/𝑖𝑀″

𝑀

=𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁″ ∘ (𝑝𝑁/𝑁′

𝑁/𝑁″ ∘ 𝑓 ∘ 𝑖𝑀″
𝑀′ )/𝑖𝑀″

𝑀

=𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁″ ∘ 𝑝𝑁/𝑁′

𝑁/𝑁″/𝑖𝑑𝑁/𝑁′ ∘ 𝑓 /𝑖𝑑𝑀′ ∘ 𝑖𝑀″
𝑀′ /𝑖𝑀″

𝑀

=𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑖𝑑𝑁/𝑁′/𝑝𝑁/𝑁′

𝑁/𝑁″ ∘ 𝑝𝑁/𝑁′
𝑁/𝑁″/𝑖𝑑𝑁/𝑁′ ∘ 𝑓 /𝑖𝑑𝑀′ ∘ 𝑖𝑀″

𝑀′ /𝑖𝑀″
𝑀′ ∘ 𝑖𝑑𝑀′/𝑖𝑀′

𝑀

=𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 /𝑖𝑑𝑀′ ∘ 𝑖𝑑𝑀′/𝑖𝑀′

𝑀

=𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 /𝑖𝑀′

𝑀

This means the definition of 𝐹 does not rely on the choice of representative elements.
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4.1 Multiplicative system from a Serre subcategory

Suppose 𝑓/𝑠 = 𝑓1/𝑠1, we have the following commutative diagram

⋅
𝑓

��?
??

??
??

?
𝑠

{� ��
��
��
�

��
��
��
�

⋅ ⋅
𝑖
OO

//

𝑗
��

ks ⋅

⋅
𝑠1

[c???????

??????? 𝑓1

??�������� .

In fact, this means that there exists 𝑖 and 𝑗 such that 𝑓 ∘ 𝑖 = 𝑓1 ∘ 𝑗, and 𝑠 ∘ 𝑖 = 𝑠1 ∘ 𝑗 ∈ 𝑆.

Therefore,
(𝑇 𝑓) ∘ (𝑇 𝑠)−1 = 𝑇 𝑓 ∘ 𝑇 𝑖 ∘ (𝑇 𝑖)−1 ∘ (𝑇 𝑠)−1

=𝑇 (𝑓 ∘ 𝑖) ∘ (𝑇 (𝑠 ∘ 𝑖))−1 = 𝑇 (𝑓1 ∘ 𝑗) ∘ (𝑇 (𝑠1 ∘ 𝑗))−1

=𝑇 𝑓1 ∘ 𝑇 𝑗 ∘ (𝑇 𝑗)−1 ∘ (𝑇 𝑠1)−1 = (𝑇 𝑓1) ∘ (𝑇 𝑠1)−1.

This means the definition of 𝐺 does not rely on the choice of representative elements.

Secondly, we want to show that 𝐹 and 𝐺 are functors. Because

𝐹 ( ̄𝑓 ) = 𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 /𝑖𝑀′

𝑀 = 𝑄(𝑝𝑁
𝑁/𝑁′)−1 ∘ 𝑄(𝑓) ∘ 𝑄(𝑖𝑀′

𝑀 )−1,

𝐹 is actually the functor induced by the universal property in Proposition 3.6 satisfying

the following commutative diagram.

𝒜 𝒜/𝒞

𝑆−1𝒜

𝑇

𝑄 𝐹

It remains to check 𝐺 is a functor. For 𝑔/𝑡 ∶ 𝐿 → 𝑀 , 𝑓/𝑠 ∶ 𝑀 → 𝑁 in 𝑆−1𝒜,

consider their composition, there are two morphisms 𝑔′ and 𝑠′ ∈ 𝑆 such that the fol-
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lowing diagram commute.

⋅
𝑔′

!!C
CC

CC
CC

C
𝑠′

y� {{
{{
{{
{{

{{
{{
{{
{{

⋅
𝑡
{� ��
��
��
�

��
��
��
� 𝑔

  A
AA

AA
AA ⋅

𝑠
z� }}
}}
}}
}

}}
}}
}}
} 𝑓

  @
@@

@@
@@

𝐿 𝑀 𝑁

In fact, this implies 𝑠 ∘ 𝑔′ = 𝑔 ∘ 𝑠′. Hence, 𝑇 𝑠 ∘ 𝑇 𝑔′ = 𝑇 𝑔 ∘ 𝑇 𝑠′. Consequently,

𝑇 𝑔′ ∘ (𝑇 𝑠′)−1 = (𝑇 𝑠)−1 ∘ 𝑇 𝑔.

Because

𝐺(𝑓/𝑠 ∘ 𝑔/𝑡) = 𝐺(𝑓𝑔′/𝑡𝑠′) = 𝑇 (𝑓𝑔′) ∘ 𝑇 (𝑡𝑠′)−1

= 𝑇 𝑓 ∘ 𝑇 𝑔′ ∘ 𝑇 (𝑠′)−1 ∘ (𝑇 𝑡)−1

= 𝑇 𝑓 ∘ (𝑇 𝑠)−1 ∘ 𝑇 𝑔 ∘ (𝑇 𝑡)−1 = 𝐺(𝑓/𝑠) ∘ 𝐺(𝑔/𝑡),

we obtain that 𝐺 is a well-defined functor.

Thirdly, we show the compositions of 𝐹 and 𝐺 are identities. On one hand,

𝐺𝐹 ( ̄𝑓 ) = 𝐺(𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 /𝑖𝑀′

𝑀 )

= (𝑇 𝑝𝑁
𝑁/𝑁′)−1 ∘ 𝑇 𝑓 ∘ (𝑇 𝑖𝑀′

𝑀 )−1 = ̄𝑓 .

On the other hand, given

𝑀 𝑋𝑠ks 𝑓 // 𝑁

we have
𝐹 𝐺(𝑓/𝑠) = 𝐹 ((𝑇 𝑓)(𝑇 𝑠)−1) = 𝐹 (𝑇 𝑓) ∘ 𝐹 ((𝑇 𝑠)−1)

= 𝐹 (𝑇 𝑓) ∘ (𝐹 𝑇 (𝑠))−1 = 𝑓/𝑖𝑑𝑋 ∘ 𝑖𝑑𝑋 /𝑠 = 𝑓/𝑠.

This means 𝐹 and 𝐺 are isomorphism, and then 𝒜/𝒞 is isomorphic to 𝑆−1𝒜.

By example 2.3, ker 𝑄 is a Serre subcategory since 𝑄 is an exact functor. We claim

that ker 𝑄 is equal to 𝒞.

Proposition 4.2. Let 𝒜 be an abelian category, 𝒞 be a Serre subcategory of 𝒜. Let

𝑆 = {𝑓 ∈ Mor𝒜|ker 𝑓, coker 𝑓 ∈ 𝒞} be the multiplicative system induced by 𝒞, then
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4.2 Serre subcategory from Multiplicative system

ker 𝑄 = 𝒞.

Proof. On one hand, for any 𝑋 ∈ 𝒞, consider the zero morphism 0𝑋,0 ∶ 𝑋 → 0.

Because ker 0𝑋,0 = 𝑋 ∈ 𝒞 and coker 0𝑋,0 = 0 ∈ 𝒞, we know that 0𝑋,0 ∈ 𝑆 and

𝑄(0𝑋,0) = 0𝑋,0/𝑖𝑑𝑋 is an isomorphism in𝑆−1𝒜. Thus, 𝑋 ≅ 0 in𝑆−1𝒜 i.e. 𝑋 ∈ ker𝑄.

This means 𝒞 ⊂ ker 𝑄.

On the other hand, if 𝑋 ∈ ker 𝑄 i.e. 𝑄(𝑋) ≅ 0. It is clear that

Hom𝑆−1𝒜(𝑋, 𝑋) = 0,

in particular, 𝑖𝑑𝑋 /𝑖𝑑𝑋 = 0. It follows that 𝐺(𝑖𝑑𝑋 /𝑖𝑑𝑋) = 0 i.e. 𝑇 (𝑖𝑑𝑋) ∘ 𝑇 (𝑖𝑑𝑋)−1 = 0,

and then 𝑇 (𝑖𝑑𝑋) = 0. By Lemma 3.1, this means 𝑋 = Im 𝑖𝑑𝑋 ∈ 𝒞. Thus, ker 𝑄 ⊂

𝒞.

We end this section by giving a negligible proposition. This proposition rejects the

assumption that a multiplicative system induced by a Serre subcategory contains only

finitely many non-identity elements.

Proposition 4.3. Let 𝑆 be a multiplicative system induced by a Serre subcategory 𝒞. If

𝑆 contains a non-identity element, then 𝑆 contains infinite non-identity elements.

Proof. Suppose 𝑠 ∶ 𝑋 → 𝑌 is a non-identity element in 𝑆. Note that ker(𝑠 ⊕ 𝑠) ≅

ker 𝑠 ⊕ ker 𝑠, and coker(𝑠 ⊕ 𝑠) ≅ coker 𝑠 ⊕ coker 𝑠. It follows that 𝑠 ⊕ 𝑠 ∈ 𝑆.

Similarly, one can show that all finite direct sum of 𝑠 are in 𝑆 that implies 𝑆 contains

at least infinite non-identity elements.

4.2 Serre subcategory from Multiplicative system

Let 𝒜 be an abelian category, 𝑆 be a multiplicative system of 𝒜. Recall Lemma

2.3 that the localization functor 𝑄 ∶ 𝒜 → 𝑆−1𝒜 is an exact functor. Example 2.3 tells

us that ker 𝑄 is a Serre subcategory of 𝒜. The following proposition describes ker 𝑄

accurately.
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Proposition 4.4. Let 𝑆 be a multiplicative system of an abelian category 𝒜, denote the

localization functor of 𝒜 to 𝑆−1𝒜 by 𝑄. We have

ker 𝑄 = {𝑋 ≅ coker 𝑠 for some 𝑠 ∈ 𝑆} = {𝑋|𝑋 ≅ ker 𝑡 for some 𝑡 ∈ 𝑆}.

Proof. For 𝑋 ≅ coker 𝑠, consider

𝐴 𝐵 coker 𝑠,𝑠 𝜋

there exists a morphism 𝑡 ∈ 𝑆 such that 𝑡𝜋 = 0 which can be seen in the following

diagram.

𝐴 𝐵 coker 𝑠 ⋅𝑠 𝜋 𝑡

Since 𝜋 is an epimorphism, we have 𝑡 = 0 ∈ 𝑆. Consequently, coker 𝑠 ≅ 0 in 𝑆−1𝒜

i.e. 𝑋 ≅ coker 𝑠 ∈ ker 𝑄. In addition, coker 𝑠 = ker 𝑡 for 𝑡 = 0 ∈ 𝑆 i.e. 𝑋 ≅ ker 𝑡.

Conversely, suppose 𝑋 ∈ ker 𝑄. It means 𝑖𝑑𝑋 /𝑖𝑑𝑋 is zero in 𝑆−1𝒜. There is a

commutative diagram

𝑋
𝑖𝑑𝑋

  A
AA

AA
AA

A
𝑖𝑑𝑋

z� }}
}}
}}
}

}}
}}
}}
}

𝑋 ⋅
𝑠
OO

//𝑠ks

��

𝑋

⋅
0

==||||||||

]eCCCCCCCC

CCCCCCCC

which implies 𝑠 ∶ ⋅ → 𝑋 is zero. Since coker 𝑠 = 𝑋/Im 𝑠 ≅ 𝑋, we conclude that

𝑋 ≅ coker 𝑠 for some 𝑠 ∈ 𝑆.

Besides, suppose 𝑋 ≅ ker 𝑡, consider

ker 𝑡 𝑖 // 𝐴 𝑡 +3 𝐵.

Since 𝑡𝑖 = 0 there is a morphism 𝑠 ∈ 𝑆 such that 𝑖𝑠 = 0.

⋅ 𝑠 +3 ker 𝑡 𝑖 // 𝐴 𝑡 +3 𝐵

Because 𝑖 is a monomorphism, this means 𝑠 = 0 ∈ 𝑆. Thus, ker 𝑡 ≅ coker 𝑠.
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Let 𝑆 be a multiplicative system of an abelian category 𝒜, denote the localization

functor of 𝒜 to 𝑆−1𝒜 by 𝑄. Since ker 𝑄 is a Serre subcategory, and we know that we

can get a new multiplicative system from the Serre subcategory ker 𝑄, which is

𝑆′ = {𝑓 ∈ Mor𝒜|ker 𝑓, coker 𝑓 ∈ ker 𝑄}.

It is routine to show 𝑆 ⊂ 𝑆′. However, it is unexpected that this inclusion could be

proper because it is not necessary for 𝑆 to contain all isomorphisms.

However, a saturated multiplicative system contains all isomorphisms. It may be

beneficial to mention that 3.6 in [7] chapter 1, there is a one-to-one correspondence

between the set of thick subcategories of𝒜 and the set of saturated subsets ofmorphisms

in 𝒜 which admit a calculus of left and right fractions, if 𝒜 is an abelian category.
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The purpose of this chapter is to provide a basis for studying the quotient category

of a multiring category (resp. multitensor category, resp. multifusion category). We

know that multiring category, multitensor category and multifusion category are locally

finite 𝑘-linear abelian categories. Besides, a multifusion category is finite semisim-

ple. Therefore, it is inevitable to study the quotient category of a locally finite 𝑘-linear

abelian category and the quotient category of a finite semisimple abelian category.

5.1 Localization preserves locally finiteness

Given an abelian category 𝒜 with a Serre subcategory 𝒞. Theorem 3.1 says that

𝒜/𝒞 is an abelian category. This allows us to discuss the length of an object in 𝒜/𝒞.

We have the following lemma about simple objects in 𝒜/𝒞.

Lemma 5.1. Every simple object in 𝒜 has length 1 or 0 in 𝒜/𝒞.

Proof. Suppose 𝑋 is a simple object in 𝒜, consider its subobject 𝑌 in 𝒜/𝒞, and denote

the corresponding monomorphism by ̄𝑓 ∶ 𝑌 → 𝑋.

We also view 𝑌 as an object in 𝒜. Because

Hom𝒜/𝒞(𝑌 , 𝑋) = lim−−→
𝑌 ′,𝑋′

Hom𝒜(𝑌 ′, 𝑋/𝑋′),

where 𝑌 /𝑌 ′, 𝑋′ ∈ 𝒞, there exists a subobject 𝑌1 of 𝑌 such that 𝑌 /𝑌1 ∈ 𝒞 such that the

following diagram commute

𝑇 𝑌1
𝑇 𝑖 //

𝑇 𝑓
��

𝑇 𝑌
̄𝑓

��
𝑇 𝑋 𝑇 𝑋

39



Chapter 5 Localization and finiteness

where 𝑇 is the canonical functor, 𝑖 is the injection, and 𝑓 ∶ 𝑌1 → 𝑋 is an epimorphism

since 𝑋 is simple in 𝒜. Thus, we have the following exact sequence

0 // Ker 𝑓 // 𝑌1
𝑓 // 𝑋 // 0.

Because the canonical functor 𝑇 is exact, we have the following exact sequence

0 // 𝑇Ker 𝑓 // 𝑇 𝑌1
𝑇 𝑓 // 𝑇 𝑋 // 0.

This means 𝑇 𝑓 is an epimorphism in 𝒜/𝒞. Note that 𝑇 𝑖 is an isomorphism in 𝒜/𝒞 and

̄𝑓 is a monomorphism, we know 𝑇 𝑓 = ̄𝑓 ∘ 𝑇 𝑖 is a monomorphism. Therefore, 𝑇 𝑓 is

an isomorphism. Consequently, ̄𝑓 is an isomorphism. Thus, every monomorphism in

𝒜/𝒞 to 𝑋 is an isomorphism in 𝒜/𝒞. It shows that 𝑋 has length 1 or 0 in 𝒜/𝒞. Note

that the case of length 0 means 𝑋 is in 𝒞, and it is zero in 𝒜/𝒞.

Next, we prove that the localization preserves finite length.

Proposition 5.1. Suppose every object in 𝒜 has finite length, then every object in 𝒜/𝒞

has finite length.

Proof. For an arbitrary object 𝑋 in 𝒜, it has finite length in 𝒜 and one can assume its

Jordan-Hölder series as following without loss of generality.

0 = 𝑋0 ⊂ 𝑋1 ⊂ ⋯ ⊂ 𝑋𝑛−1 ⊂ 𝑋𝑛 = 𝑋

Since 𝑋𝑖+1/𝑋𝑖 is a simple object in 𝒜, it has length 1 or 0 in 𝒜/𝒞 by the above lemma.

Because

𝑙(𝑋𝑖+1) = 𝑙(𝑋𝑖) + 𝑙(𝑋𝑖+1/𝑋𝑖), for all 0 ⩽ 𝑖 ⩽ 𝑛 − 1,
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we know that
𝑙(𝑋) = 𝑙(𝑋𝑛) = 𝑙(𝑋𝑛−1) + 𝑙(𝑋𝑛/𝑋𝑛−1)

= 𝑙(𝑋𝑛−2) + 𝑙(𝑋𝑛−1/𝑇𝑛−2) + 𝑙(𝑋𝑛−1/𝑇𝑛)

= ⋯

=
𝑛−1

∑
𝑖=0

𝑙(𝑋𝑖+1/𝑋𝑖)

⩽ 𝑛.

This means 𝑋 has finite length in 𝒜/𝒞, which is actually smaller than its length in

𝒜.

In order to show that the quotient category of a locally finite abelian category is

locally finite, we are required to prove that the Hom-spaces of the quotient category are

finite dimensional.

Lemma 5.2. Let 𝒜 be a locally finite 𝑘-linear abelian category, then Hom𝒜/𝒞(𝑀, 𝑁)

is a finite dimensional vector space, where 𝑀, 𝑁 are objects in 𝒜.

Proof. By definition, Hom𝒜/𝒞(𝑀, 𝑁) is obviously a vector space. We now prove

Hom𝒜/𝒞(𝑀, 𝑁) is finite dimensional by induction on the lengths of𝑀, 𝑁 in𝒜. Firstly,

suppose 𝑙(𝑀) = 𝑙(𝑁) = 1. If 𝑀 ∈ 𝒞 or 𝑁 ∈ 𝒞, then Hom𝒜/𝒞(𝑀, 𝑁) = 0. If

𝑀, 𝑁 ∉ 𝒞, it is clear that Hom𝒜/𝒞(𝑀, 𝑁) = Hom𝒜(𝑀, 𝑁), which is finite dimen-

sional.

Secondly, we want to show Hom𝒜/𝒞(𝑀, 𝑁) is a finite dimensional vector space

for 𝑙(𝑁) = 1. We prove it by induction on the length of 𝑀 , suppose Hom𝒜/𝒞(𝑀, 𝑁)

is finite dimensional for all 𝑀, 𝑁 such that 𝑙(𝑀) ⩽ 𝑚 and 𝑙(𝑁) = 1. Now we

consider the case of 𝑙(𝑀) = 𝑚 + 1 and 𝑙(𝑁) = 1. On one hand, if there is a sub-

object 𝑋 of 𝑀 such that 0 ⩽ 𝑙(𝑋) ⩽ 𝑚 and 𝑀/𝑋 ∈ 𝒞, we know that 𝑇 𝑖𝑋
𝑀 is an

isomorphism in 𝒜/𝒞, where 𝑖𝑋
𝑀 ∶ 𝑋 → 𝑀 is the monomorphism. This means that

Hom𝒜/𝒞(𝑀, 𝑁) ≅ Hom𝒜/𝒞(𝑋, 𝑁), which is finite dimensional by the induction as-

sumption. On the other hand, if for any subobject 𝑋 of 𝑀 satisfying 0 ⩽ 𝑙(𝑋) ⩽ 𝑚,

𝑀/𝑋 ∉ 𝒞. It follows that Hom𝒜/𝒞(𝑀, 𝑁) = Hom𝒜(𝑀, 𝑁), which is finite dimen-

sional. Therefore, Hom𝒜/𝒞(𝑀, 𝑁) is a finite dimensional vector space for 𝑙(𝑁) = 1.
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Similarly, Hom𝒜/𝒞(𝑀, 𝑁) is a finite dimensional vector space for 𝑙(𝑀) = 1.

Thirdly, given two positive integers 𝑚, 𝑛 ⩾ 1, suppose Hom𝒜/𝒞(𝑀, 𝑁) is a finite

dimensional vector space for 𝑙(𝑀) ⩽ 𝑚 and 𝑙(𝑁) ⩽ 𝑛 + 1 and for 𝑙(𝑀) ⩽ 𝑚 + 1 and

𝑙(𝑁) ⩽ 𝑛. We consider the case of 𝑙(𝑀) = 𝑚 + 1 and 𝑙(𝑁) = 𝑛 + 1.

If there is a subobject 𝑋 of 𝑀 such that 0 ⩽ 𝑙(𝑋) ⩽ 𝑚 and 𝑀/𝑋 ∈ 𝒞, then

Hom𝒜/𝒞(𝑀, 𝑁) ≅ Hom𝒜/𝒞(𝑋, 𝑁) since 𝑇 𝑖𝑋
𝑀 is an isomorphism in 𝒜/𝒞, where 𝑖𝑋

𝑀 ∶

𝑋 → 𝑀 is the monomorphism. By the induction assumption, Hom𝒜/𝒞(𝑀, 𝑁) ≅

Hom𝒜/𝒞(𝑋, 𝑁) is finite dimensional.

If there is a subobject 𝑌 of 𝑁 such that 1 ⩽ 𝑙(𝑌 ) ⩽ 𝑛 + 1 and 𝑌 ∈ 𝒞, then

Hom𝒜/𝒞(𝑀, 𝑁) ≅ Hom𝒜/𝒞(𝑀, 𝑁/𝑌 ) since 𝑇 𝑝𝑁
𝑁/𝑌 is an isomorphism in 𝒜/𝒞, where

𝑝𝑁
𝑁/𝑌 ∶ 𝑁 → 𝑁/𝑌 is the epimorphism. By the induction assumption, Hom𝒜/𝒞(𝑀, 𝑁) ≅

Hom𝒜/𝒞(𝑀, 𝑁/𝑌 ) is finite dimensional.

If for any subobject 𝑋 of 𝑀 and any subobject 𝑌 of 𝑁 satisfying 0 ⩽ 𝑙(𝑋) ⩽ 𝑚

and 1 ⩽ 𝑙(𝑌 ) ⩽ 𝑛 + 1, 𝑀/𝑋, 𝑌 ∉ 𝒞. It follows that Hom𝒜/𝒞(𝑀, 𝑁) = Hom𝒜(𝑀, 𝑁),

which is finite dimensional.

In summary, Hom𝒜/𝒞(𝑀, 𝑁) is a finite dimensional vector space for 𝑙(𝑀) = 𝑚+1

and 𝑙(𝑁) = 𝑛 + 1. Consequently, we obtain that Hom𝒜/𝒞(𝑀, 𝑁) is a finite dimensional

vector space for any objects 𝑀, 𝑁 in 𝒜.

It follows directly from Proposition 5.1 and Lemma 5.2 that 𝒜/𝒞 is locally finite.

Proposition 5.2. The quotient category𝒜/𝒞 of a locally finite 𝑘-linear abelian category

𝒜 is a locally finite 𝑘-linear abelian category.

5.2 Localization of a finite semisimple abelian category

In this section, we show that the quotient category of a finite semisimple abelian

category is still finite semisimple. Firstly, we give a description for the structure of a

Serre subcategory of a finite semisimple abelian category.

Lemma 5.3. Let 𝒜 be a finite semisimple abelian category. Any Serre subcategory 𝒞

of 𝒜 consists of all finite direct sums of some simple objects in 𝒜.
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Proof. We denote the isomorphism classes of simple objects in 𝒜 by {𝑀1, ⋯ , 𝑀𝑛}.

Because 𝒜 is finite, there is no infinite direct sums in 𝒜. Let

𝐼 = {𝑖|𝑀𝑖 ∈ 𝒞}.

For any 𝑋 ∈ 𝒞, since 𝒜 is semisimple, 𝑋 can be written as

𝑋 = ⨁
𝑖∈𝐽

𝑀𝑛𝑖
𝑖 ,where 𝐽 is a subset of {1, ⋯ , 𝑛}.

Here, 𝑀𝑛𝑖
𝑖 is the direct sum of 𝑛𝑖 copies of 𝑀𝑖. For any 𝑗 ∈ 𝐽 , 𝑀𝑗 is a subobject of 𝑋,

whence 𝑀𝑗 ∈ 𝒞. This means 𝑗 ∈ 𝐼 . Thus, 𝐽 ⊂ 𝐼 . Consequently, we may always write

𝑋 = ⨁
𝑖∈𝐼

𝑀𝑛𝑖
𝑖

where some 𝑛′
𝑖 𝑠 can be 0. Thus,

𝒞 ⊂ all finite direct sums of {𝑀𝑖}𝑖∈𝐼 .

On the other hand, it is clear that

all finite direct sums of {𝑀𝑖}𝑖∈𝐼 ⊂ 𝒞.

Therefore,

𝒞 = all finite direct sums of {𝑀𝑖}𝑖∈𝐼 .

Proposition 5.3. Let 𝒜 be a finite semisimple abelian category. For any Serre subcat-

egory 𝒞 of 𝒜, 𝒜/𝒞 is a finite semisimple abelian category.

Proof. Consider an arbitrary object 𝑌 in 𝒜,

𝑌 = (⨁
𝑖∈𝐼

𝑀𝑛𝑖
𝑖 ) ⨁(⨁

𝑗∉𝐼
𝑀𝑛𝑗

𝑗 ).
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Let

𝑌 ′ = ⨁
𝑗∉𝐼

𝑀𝑛𝑗
𝑗 ,

it follows that

𝑌 /𝑌 ′ = ⨁
𝑖∈𝐼

𝑀𝑛𝑖
𝑖 ∈ 𝒞.

This means

𝑇 𝑖𝑌 ′
𝑌 ∶ 𝑌 ′ → 𝑌 is an isomorphism in 𝒜/𝒞.

Consequently, every object in 𝒜/𝒞 can be written as a finite direct sum of elements in

{𝑀𝑗|𝑗 ∉ 𝐼}. This implies 𝒜/𝒞 is also a semisimple abelian category.

In fact, 𝒜/𝒞 is finite. Because 𝒜 is a finite semisimple abelian category, it is the

category of finite dimensional modules over a finite dimensional semisimple 𝑘-algebra

𝐴. Hence, by the Wedderburn-Artin theorem,

𝐴 ≅ Mat𝑛1𝑘 × ⋯ × Mat𝑛𝑡𝑘

Because a left module of Mat𝑛1𝑘 × ⋯ × Mat𝑛𝑡𝑘 is actually a direct sum of 𝑁1, ⋯ , 𝑁𝑡,

where 𝑁𝑖 is a left module of Mat𝑛𝑖𝑘, we know that a simple left module of Mat𝑛1𝑘×⋯×

Mat𝑛𝑡𝑘 is a simple left module 𝑆𝑛𝑖 of Mat𝑛𝑖𝑘 for some 𝑖. Let 𝐷 be the set of all mutually

non-isomorphic simple modules of Mat𝑛1𝑘 × ⋯ ×Mat𝑛𝑡𝑘. As mentioned above, a Serre

subcategory 𝒞 of 𝒜 consists of all finite direct sums of elements in a subset 𝐸 of 𝐷.

Then 𝒜/𝒞 consists of all finite direct sum of simple modules in the complement of 𝐸

in 𝐷.

Write the complement of 𝐸 in 𝐷 as {𝑆𝑟1 , ⋯ , 𝑆𝑟𝑙}, then 𝒜/𝒞 is the representation

category of Mat𝑛𝑟1
𝑘 × ⋯ ×Mat𝑛𝑟𝑙

𝑘, which is finite dimensional. Hence, 𝒜/𝒞 is a finite

abelian category.

Example 5.1. Let 𝑆3 be the symmetric group on 3 letters, 𝑘 be an algebraically closed

field satisfying char 𝑘 ∤ |𝑆3|, we know 𝑘𝑆3 is semisimple by Maschke’s Theorem. It is

clear that the category of finite dimensional modules of 𝑘𝑆3, which we denote by 𝒜, is

a finite semisimple abelian category. As a special case of the above example, we know
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that 𝒜/𝒞 is also a finite semisimple abelian category for any Serre subcategory 𝒞. We

now discuss more details in this case.

It is well-known that there are three irreducible representations in the category of

finite dimensional representations of 𝑘𝑆3. They are trivial representation 𝑉1, alternat-

ing representation 𝑉2, and standard representation 𝑉3. Using the approach mentioned

in [22] gives that

𝑘𝑆3 = 𝑉1 ⨁ 𝑉2 ⨁ 𝑉 2
3 .

Similar to the steps in the proof of Wedderburn-Artin theorem,

𝑘𝑆3 ≅ End(𝑉1) × End(𝑉2) × End(𝑉 2
3 )

≅ Mat1(𝑘) × Mat1(𝑘) × Mat2(𝑘).

Let 𝒞 be the Serre subcategory of 𝒜 consists of finite direct sums of 𝑉3. Then 𝒜/𝒞

consists of all finite direct sums of 𝑉1 and 𝑉2. Therefore, 𝒜/𝒞 is the category of finite

dimensional representations of 𝑀1(𝑘) × 𝑀1(𝑘) = 𝑘 × 𝑘. Note that 𝑘 × 𝑘 is isomorphic

to 𝑘ℤ2, because we can construct an isomorphism as following:

𝜑 ∶ 𝑘 × 𝑘 → 𝑘ℤ2

(𝑎, 𝑏) → 𝑎 + 𝑏
2 + 𝑎 − 𝑏

2 𝑔.

Also recall that ℤ2 ≅ 𝑆3/𝐴3. Thus, in this case, 𝒜/𝒞 is actually the category of finite

dimensional representations of 𝑘ℤ2.

Note that, in the above example, we did not take the tensor structure into consid-

eration.
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6.1 Tensor product in quotient category

In order to give a definition for tensor product in the quotient category of an abelian

monoidal category, we first introduce a lemma.

Lemma 6.1. Let 𝒜 be an abelian monoidal category, 𝒞 be a two-sided Serre tensor-

ideal of 𝒜. Suppose 𝑓, 𝑔 are morphisms in 𝒜 such that ker 𝑓 , ker 𝑔 belong to 𝒞, then

ker(𝑓 ⊗ 𝑔) belongs to 𝒞. Similarly, if coker 𝑓 , coker 𝑔 belong to 𝒞, then coker(𝑓 ⊗ 𝑔)

belongs to 𝒞.

Proof. Consider

𝑓 ∶ 𝑀 → 𝑁 and 𝑔 ∶ 𝑋 → 𝑌 .

Note that there is a composition

𝑓 ⊗ 𝑔 ∶ 𝑀 ⊗ 𝑋 𝑁 ⊗ 𝑋 𝑁 ⊗ 𝑌 ,𝑓⊗𝑖𝑑𝑋 𝑖𝑑𝑁 ⊗𝑔

and there is a commutative diagram

𝑀 ⊗ 𝑋 𝑁 ⊗ 𝑋 coker(𝑓 ⊗ 𝑖𝑑) 0

0 𝑁 ⊗ 𝑌 𝑁 ⊗ 𝑌 0

𝑓⊗𝑖𝑑

𝑓⊗𝑔 𝑖𝑑⊗𝑔
𝑖𝑑

By snake lemma, this implies an exact sequence

0 // ker(𝑓 ⊗ 𝑖𝑑) // ker(𝑓 ⊗ 𝑔) // ker(𝑖𝑑 ⊗ 𝑔)

q qdddddddd
dddddddd

dddddddd
dddddddd

dddddddd
dddd

coker(𝑓 ⊗ 𝑖𝑑) // coker(𝑓 ⊗ 𝑔) // coker(𝑖𝑑 ⊗ 𝑔) // 0
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which means

⎧⎪
⎨
⎪⎩

ker(𝑓 ⊗ 𝑖𝑑) → ker(𝑓 ⊗ 𝑔) → ker(𝑖𝑑 ⊗ 𝑔)

coker(𝑓 ⊗ 𝑖𝑑) → coker(𝑓 ⊗ 𝑔) → coker(𝑖𝑑 ⊗ 𝑔)

exact. Note that ker(𝑓 ⊗ 𝑖𝑑) = ker 𝑓 ⊗ 𝑋 ∈ 𝒞, and ker(𝑖𝑑 ⊗ 𝑔) = 𝑁 ⊗ ker 𝑔 ∈ 𝒞

provided ker 𝑓 , ker 𝑔 belong to 𝒞. By Lemma 2.1, we know ker(𝑓 ⊗ 𝑔) ∈ 𝒞. Similarly,

coker(𝑓 ⊗ 𝑔) ∈ 𝒞 provided coker 𝑓 , coker 𝑔 belong to 𝒞.

In the following, we study the tensor product of two subobjects (resp. quotient

objects).

Lemma 6.2. Let 𝒜 be an abelian monoidal category with biexact tensor product. Let

𝑀 , 𝑋 be two objects in 𝒜, 𝑀′ be a subobject of 𝑀 , 𝑋′ be a subobject of 𝑋, then

𝑀′ ⊗ 𝑋′ is a subobject of 𝑀 ⊗ 𝑋.

Proof. Consider monomorphisms 𝑖1 ∶ 𝑀′ → 𝑀 and 𝑖2 ∶ 𝑋′ → 𝑋, and exact se-

quences

0 // 𝑀′ 𝑖1 // 𝑀 // coker 𝑖1 // 0;

0 // 𝑋′ 𝑖2 // 𝑋 // coker 𝑖2 // 0.

Because the tensor product is biexact, we have two following exact sequences

0 // 𝑀′ ⊗ 𝑋′ 𝑖1⊗𝑖𝑑 // 𝑀 ⊗ 𝑋′ // coker 𝑖1 ⊗ 𝑋′ // 0;

0 // 𝑀 ⊗ 𝑋′ 𝑖𝑑⊗𝑖2 // 𝑀 ⊗ 𝑋 // 𝑀 ⊗ coker 𝑖2 // 0.

This means

𝑖1 ⊗ 𝑖2 ∶ 𝑀′ ⊗ 𝑋′ 𝑀 ⊗ 𝑋′ 𝑀 ⊗ 𝑋𝑖1⊗𝑖𝑑 𝑖𝑑⊗𝑖2

is a monomorphism. Hence, 𝑀′ ⊗ 𝑋′ is a subobject of 𝑀 ⊗ 𝑋.

Lemma 6.3. Let 𝒜 be an abelian monoidal category with biexact tensor product. Let

𝑁 , 𝑌 be two objects in 𝒜, 𝑁/𝑁′ be a quotient object of 𝑁 , 𝑌 /𝑌 ′ be a quotient object
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of 𝑌 , then 𝑁/𝑁′ ⊗ 𝑌 /𝑌 ′ is a quotient object of 𝑁 ⊗ 𝑌 .

Proof. Consider epimorphisms 𝑝1 ∶ 𝑁 → 𝑁/𝑁′ and 𝑝2 ∶ 𝑌 → 𝑌 /𝑌 ′, and exact

sequences

0 // 𝑁′ // 𝑁 𝑝1 // 𝑁/𝑁′ // 0;

0 // 𝑌 ′ // 𝑌 𝑝2 // 𝑌 /𝑌 ′ // 0;

Because the tensor product is biexact, we have two following exact sequences

0 // 𝑁′ ⊗ 𝑌 /𝑌 ′ // 𝑁 ⊗ 𝑌 /𝑌 ′ 𝑝1⊗𝑖𝑑// 𝑁/𝑁′ ⊗ 𝑌 /𝑌 ′ // 0;

0 // 𝑁 ⊗ 𝑌 ′ // 𝑁 ⊗ 𝑌 𝑖𝑑⊗𝑝2 // 𝑁 ⊗ 𝑌 /𝑌 ′ // 0.

This means

𝑝1 ⊗ 𝑝2 ∶ 𝑁 ⊗ 𝑌 𝑁 ⊗ 𝑌 /𝑌 ′ 𝑁/𝑁′ ⊗ 𝑌 /𝑌 ′𝑖𝑑⊗𝑝2 𝑝1⊗𝑖𝑑

is an epimorphism. Hence, 𝑁/𝑁′ ⊗ 𝑌 /𝑌 ′ is a quotient object of 𝑁 ⊗ 𝑌 .

In fact, we have an isomorphism

𝑁/𝑁′ ⊗ 𝑌 /𝑌 ′ ≅ 𝑁 ⊗ 𝑌 /ker(𝑝1 ⊗ 𝑝2).

Now, we can prove that 𝑇 (𝑓 ⊗ 𝑔) ∈ Hom𝒜/𝒞(𝑀 ⊗ 𝑋, 𝑁 ⊗ 𝑌 ) for any ̄𝑓 = 𝑇 𝑓 ∶

𝑀 → 𝑁 , ̄𝑔 = 𝑇 𝑔 ∶ 𝑋 → 𝑌 in 𝒜/𝒞.

Proposition 6.1. Let 𝒜 be an abelian monoidal category with biexact tensor product,

𝒞 be a two-sided Serre tensor-ideal of 𝒜. Let ̄𝑓 ∶ 𝑀 → 𝑁 , ̄𝑔 ∶ 𝑋 → 𝑌 be two

morphisms in 𝒜/𝒞. Then 𝑇 (𝑓 ⊗ 𝑔) is a morphism in Hom𝒜/𝒞(𝑀 ⊗ 𝑋, 𝑁 ⊗ 𝑌 ) where

𝑓, 𝑔 are in direct systems, and 𝑇 is the canonical functor.

Proof. Suppose 𝑓 ∶ 𝑀′ → 𝑁/𝑁′, 𝑔 ∶ 𝑋′ → 𝑌 /𝑌 ′ with 𝑀/𝑀′, 𝑁′, 𝑋/𝑋′, 𝑌 ′ are in

𝒞. It follows that

𝑓 ⊗ 𝑔 ∶ 𝑀′ ⊗ 𝑋′ → 𝑁/𝑁′ ⊗ 𝑌 /𝑌 ′.
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Denote 𝑖1 ∶ 𝑀′ → 𝑀 , 𝑖2 ∶ 𝑋′ → 𝑋 to be inclusions. Since 𝑇 𝑖1, 𝑇 𝑖2 are isomorphisms

in 𝒜/𝒞, we know that coker 𝑖1, coker 𝑖2 belong to 𝒞. By Lemma 6.1, coker(𝑖1 ⊗𝑖2) ∈ 𝒞.

This means (𝑀 ⊗ 𝑋)/(𝑀′ ⊗ 𝑋′) ∈ 𝒞.

Denote 𝑝1 ∶ 𝑁 → 𝑁/𝑁′, 𝑝2 ∶ 𝑌 → 𝑌 /𝑌 ′. We have already known that 𝑁/𝑁′ ⊗

𝑌 /𝑌 ′ ≅ 𝑁 ⊗ 𝑌 /ker(𝑝1 ⊗ 𝑝2). Since 𝑇 𝑝1, 𝑇 𝑝2 are isomorphisms in 𝒜/𝒞, we know that

ker 𝑝1, ker 𝑝2 are in 𝒞. By Lemma 6.1, it follows that ker(𝑝1 ⊗ 𝑝2) ∈ 𝒞.

In summary, 𝑓 ⊗ 𝑔 is in the direct system. Therefore, 𝑇 (𝑓 ⊗ 𝑔) ∈ Hom𝒜/𝒞(𝑀 ⊗

𝑋, 𝑁 ⊗ 𝑌 ).

Next, we show that 𝑇 (𝑓 ⊗𝑔) does not rely on the choice of representative elements.

Proposition 6.2. Let 𝒜 be an abelian monoidal category with biexact tensor product, 𝒞

be a two-sided Serre tensor-ideal of𝒜. Let ̄𝑓 ∶ 𝑀 → 𝑁 , ̄𝑔 ∶ 𝑋 → 𝑌 be twomorphisms

in 𝒜/𝒞. Suppose ̄𝑓 = 𝑇 𝑓 = 𝑇 𝑓1 and ̄𝑔 = 𝑇 𝑔 = 𝑇 𝑔1, then 𝑇 (𝑓 ⊗ 𝑔) = 𝑇 (𝑓1 ⊗ 𝑔1).

Proof. First of all, we claim that

𝑇 (𝑖𝑑 ⊗ 𝑔) = 𝑇 (𝑖𝑑 ⊗ 𝑔1).

Suppose 𝑔 ∶ 𝑋′ → 𝑌 /𝑌 ′, 𝑔1 ∶ 𝑋′
1 → 𝑌 /𝑌 ′

1 . Since the direct system in the definition

of quotient categroty is directed, we can obtain a morphism 𝑔2 ∶ 𝑋′
2 → 𝑌 /𝑌 ′

2 such that

the following diagrams commute:

𝑋′
2 𝑋′

𝑌 /𝑌 ′
2 𝑌 /𝑌 ′

𝑖
𝑋′

2
𝑋′

𝑔2 𝑔

𝑝𝑌 /𝑌 ′
𝑌 /𝑌 ′

2

and

𝑋′
2 𝑋′

1

𝑌 /𝑌 ′
2 𝑌 /𝑌 ′

1 .

𝑖
𝑋′

2
𝑋′

1

𝑔2 𝑔1

𝑝
𝑌 /𝑌 ′

1
𝑌 /𝑌 ′

2
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Thus, we obtain two commutative diagrams:

𝑀 ⊗ 𝑋′
2 𝑀 ⊗ 𝑋′

𝑀 ⊗ 𝑌 /𝑌 ′
2 𝑀 ⊗ 𝑌 /𝑌 ′

𝑖𝑑⊗𝑖
𝑋′

2
𝑋′

𝑖𝑑⊗𝑔2 𝑖𝑑⊗𝑔

𝑖𝑑⊗𝑝𝑌 /𝑌 ′
𝑌 /𝑌 ′

2

and

𝑀 ⊗ 𝑋′
2 𝑀 ⊗ 𝑋′

1

𝑀 ⊗ 𝑌 /𝑌 ′
2 𝑀 ⊗ 𝑌 /𝑌 ′

1 .

𝑖𝑑⊗𝑖
𝑋′

2
𝑋′

1

𝑖𝑑⊗𝑔2 𝑖𝑑⊗𝑔1

𝑖𝑑⊗𝑝
𝑌 /𝑌 ′

1
𝑌 /𝑌 ′

2

Because 𝑖𝑑⊗𝑖𝑋′
2

𝑋′ = 𝑖𝑀⊗𝑋′
2

𝑀⊗𝑋′ , 𝑖𝑑⊗𝑖𝑋′
2

𝑋′
1

= 𝑖𝑀⊗𝑋′
2

𝑀⊗𝑋′
1
, 𝑖𝑑⊗𝑝𝑌 /𝑌 ′

𝑌 /𝑌 ′
2

= 𝑝𝑀⊗𝑌 /𝑌 ′

𝑀⊗𝑌 /𝑌 ′
2
and 𝑖𝑑⊗𝑝𝑌 /𝑌 ′

1
𝑌 /𝑌 ′

2
=

𝑝𝑀⊗𝑌 /𝑌 ′
1

𝑀⊗𝑌 /𝑌 ′
2
, we obtain two commutative diagrams:

𝑀 ⊗ 𝑋′
2 𝑀 ⊗ 𝑋′

𝑀 ⊗ 𝑌 /𝑌 ′
2 𝑀 ⊗ 𝑌 /𝑌 ′

𝑖
𝑀⊗𝑋′

2
𝑀⊗𝑋′

𝑖𝑑⊗𝑔2 𝑖𝑑⊗𝑔

𝑝𝑀⊗𝑌 /𝑌 ′
𝑀⊗𝑌 /𝑌 ′

2

and

𝑀 ⊗ 𝑋′
2 𝑀 ⊗ 𝑋′

1

𝑀 ⊗ 𝑌 /𝑌 ′
2 𝑀 ⊗ 𝑌 /𝑌 ′

1 .

𝑖
𝑀⊗𝑋′

2
𝑀⊗𝑋′

1

𝑖𝑑⊗𝑔2 𝑖𝑑⊗𝑔1

𝑝
𝑀⊗𝑌 /𝑌 ′

1
𝑀⊗𝑌 /𝑌 ′

2

This means

𝑇 (𝑖𝑑 ⊗ 𝑔) = 𝑇 (𝑖𝑑 ⊗ 𝑔2) = 𝑇 (𝑖𝑑 ⊗ 𝑔1).
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Chapter 6 Tensor product in quotient category

The claim has been proven, and similarly one can obtain that

𝑇 (𝑓 ⊗ 𝑖𝑑) = 𝑇 (𝑓1 ⊗ 𝑖𝑑).

Therefore,
𝑇 (𝑓 ⊗ 𝑔) = 𝑇 ((𝑓 ⊗ 𝑖𝑑) ∘ (𝑖𝑑 ⊗ 𝑔))

= 𝑇 (𝑓 ⊗ 𝑖𝑑) ∘ 𝑇 (𝑖𝑑 ⊗ 𝑔)

= 𝑇 (𝑓1 ⊗ 𝑖𝑑) ∘ 𝑇 (𝑖𝑑 ⊗ 𝑔1)

= 𝑇 ((𝑓1 ⊗ 𝑖𝑑) ∘ (𝑖𝑑 ⊗ 𝑔1))

= 𝑇 (𝑓1 ⊗ 𝑔1).

Hence, we can define the tensor product of twomorphisms in the quotient category.

The propositions above guarantee that the following definition is well-defined.

Definition 6.1. Let 𝒜 be an abelian monoidal category with biexact tensor product, 𝒞

be a two-sided Serre tensor-ideal of 𝒜. Define the tensor product of objects in 𝒜/𝒞 by

the same tensor product in 𝒜, and define the tensor product of morphisms in 𝒜/𝒞 by

̄𝑓 ⊗ ̄𝑔 ∶= 𝑇 (𝑓 ⊗ 𝑔)

where 𝑓, 𝑔 are in direct systems, and 𝑇 is the canonical functor. It is clear from the

definition that

𝑇 𝑓 ⊗ 𝑇 𝑔 = 𝑇 (𝑓 ⊗ 𝑔).

Additionally, we define the associativity constraint in 𝒜/𝒞 by

̄𝑎𝑋,𝑌 ,𝑍 = 𝑇 𝑎𝑋,𝑌 ,𝑍 .

It is also clear that the left and right unit isomorphisms in 𝒜/𝒞 are 𝑇 𝑙𝑋 and 𝑇 𝑟𝑋 where

𝑙𝑋 and 𝑟𝑋 are the left and right unit isomorphisms in 𝒜.

We finish this section by considering an example of two-sided Serre tensor-ideal.
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Example 6.1. Let 𝐼 be a finite indexed set, 𝒜 = ⨁
𝑖∈𝐼

Mat𝑛𝑖(Vec), whereMat𝑛𝑖(Vec) is the

category whose objects are 𝑛𝑖-by-𝑛𝑖 matrices of finite dimensional vector spaces. The

tensor product of two objects from distinct direct summands is defined to be zero. One

can observe that 𝒜 is a multitensor category, and eachMat𝑛𝑖(Vec) is a two-sided Serre

tensor-ideal of 𝒜. In fact, let 𝒞 = Mat𝑛𝑖(Vec) to be such a two-sided Serre tensor-ideal,

then 𝒜/𝒞 = ⨁
𝑗∈𝐼\{𝑖}

Mat𝑛𝑖(Vec)

6.2 Localization of multiring categories

In this section, we will discuss the quotient categories of a multiring category, a

multitensor category, and a multifusion category, respectively.

Proposition 6.3. Let 𝒜 be an abelian monoidal category with biexact tensor product,

𝒞 be a two-sided Serre tensor-ideal of 𝒜, then 𝒜/𝒞 is a monoidal category.

Proof. Consider the following pentagon axiom diagram of 𝒜:

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍
𝑎𝑊 ,𝑋,𝑌 ⊗𝑖𝑑𝑍

ttiiii
iiii

iiii
iiii

i 𝑎𝑊 ⊗𝑋,𝑌 ,𝑍

**VVV
VVVV

VVVV
VVVV

VV

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍
𝑎𝑊 ,𝑋⊗𝑌 ,𝑍
��

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍)
𝑎𝑊 ,𝑋,𝑌 ⊗𝑍

��
𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

𝑖𝑑𝑊 ⊗𝑎𝑋,𝑌 ,𝑍 // 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

Applying the canonical functor 𝑇 gives that

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍
̄𝑎𝑊 ,𝑋,𝑌 ⊗𝑖𝑑𝑍

ttiiii
iiii

iiii
iiii

i ̄𝑎𝑊 ⊗𝑋,𝑌 ,𝑍

**VVV
VVVV

VVVV
VVVV

VV

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍
̄𝑎𝑊 ,𝑋⊗𝑌 ,𝑍

��

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍)
̄𝑎𝑊 ,𝑋,𝑌 ⊗𝑍

��
𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

𝑖𝑑𝑊 ⊗ ̄𝑎𝑋,𝑌 ,𝑍 // 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍)).

This is actually the pentagon axiom of 𝒜/𝒞.
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Consider the following triangle axiom diagram of 𝒜:

(𝑋 ⊗ 1) ⊗ 𝑌
𝑎𝑋,1,𝑌 //

𝑟𝑋⊗𝑖𝑑𝑌 ''OO
OOO

OOO
OOO

𝑋 ⊗ (1 ⊗ 𝑌 )

𝑖𝑑𝑋⊗𝑙𝑌wwooo
ooo

ooo
oo

𝑋 ⊗ 𝑌

Applying the canonical functor 𝑇 gives that

(𝑋 ⊗ 1) ⊗ 𝑌
̄𝑎𝑋,1,𝑌 //

𝑇 𝑟𝑋⊗𝑖𝑑𝑌 ''OO
OOO

OOO
OOO

𝑋 ⊗ (1 ⊗ 𝑌 )

𝑖𝑑𝑋⊗𝑇 𝑙𝑌wwooo
ooo

ooo
oo

𝑋 ⊗ 𝑌 .

Thus, 𝒜/𝒞 is a monoidal category.

Recall that 𝑇 𝑓 ⊗ 𝑇 𝑔 = 𝑇 (𝑓 ⊗ 𝑔), this implies that 𝑇 is a monoidal functor. Next,

we study the quotient category of a multiring category (resp. a multitensor category,

resp. a multifusion category) by a two-sided Serre tensor-ideal.

Proposition 6.4. Let 𝒜 be a multiring category, 𝒞 be a two-sided Serre tensor-ideal of

𝒜. Then 𝒜/𝒞 is a multiring category.

Proof. By Proposition 5.2 and Proposition 6.3, the quotient category of a locally finite

𝑘-linear abelianmonoidal category is a locally finite 𝑘-linear abelianmonoidal category.

Therefore, it suffices to show that the tensor product ⊗ ∶ 𝒜/𝒞 ×𝒜/𝒞 → 𝒜/𝒞 is bilinear

and biexact.

Firstly, we show that the tensor product is bilinear. Note that the canonical functor

𝑇 is linear, thus

( ̄𝑓1 + ̄𝑓2) ⊗ ̄𝑔 = (𝑇 𝑓1 + 𝑇 𝑓2) ⊗ 𝑇 𝑔 = 𝑇 (𝑓1 + 𝑓2) ⊗ 𝑇 𝑔

=𝑇 ((𝑓1 + 𝑓2) ⊗ 𝑔) = 𝑇 (𝑓1 ⊗ 𝑔 + 𝑓2 ⊗ 𝑔) = 𝑇 (𝑓1 ⊗ 𝑔) + 𝑇 (𝑓2 ⊗ 𝑔)

=𝑇 (𝑓1) ⊗ 𝑇 𝑔 + 𝑇 (𝑓2) ⊗ 𝑇 𝑔 = ̄𝑓1 ⊗ ̄𝑔 + ̄𝑓2 ⊗ ̄𝑔
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and similarly

̄𝑓 ⊗ ( ̄𝑔1 + ̄𝑔2) = 𝑇 𝑓 ⊗ (𝑇 𝑔1 + 𝑇 𝑔2) = 𝑇 𝑓 ⊗ 𝑇 (𝑔1 + 𝑔2)

=𝑇 (𝑓 ⊗ (𝑔1 + 𝑔2)) = 𝑇 (𝑓 ⊗ 𝑔1 + 𝑓 ⊗ 𝑔2) = 𝑇 (𝑓 ⊗ 𝑔1) + 𝑇 (𝑓 ⊗ 𝑔2)

=𝑇 𝑓 ⊗ 𝑇 𝑔1 + 𝑇 𝑓 ⊗ 𝑇 𝑔2 = ̄𝑓 ⊗ ̄𝑔1 + ̄𝑓 ⊗ ̄𝑔2.

Furthermore, for any 𝑎 ∈ 𝑘, we have

𝑎 ̄𝑓 ⊗ ̄𝑔 = 𝑎𝑇 𝑓 ⊗ 𝑇 𝑔 = 𝑇 (𝑎𝑓) ⊗ 𝑇 𝑔 = 𝑇 (𝑎𝑓 ⊗ 𝑔)

=𝑇 (𝑓 ⊗ 𝑎𝑔) = 𝑇 𝑓 ⊗ 𝑇 (𝑎𝑔) = 𝑇 𝑓 ⊗ 𝑎𝑇 𝑔 = ̄𝑓 ⊗ 𝑎 ̄𝑔.

This implies ⊗ ∶ 𝒜/𝒞 × 𝒜/𝒞 → 𝒜/𝒞 is bilinear on morphisms.

Secondly, we show that the tensor product is biexact. Consider the following exact

sequence

𝐿
̄𝑓 // 𝑀 ̄𝑔 // 𝑁.

Because we can write ̄𝑔 = 𝑇 𝑔, ̄𝑓 = 𝑇 𝑓 , the exact sequence means that

ker(𝑇 𝑔) = Im(𝑇 𝑓).

By Lemma 3.2, it follows that

𝑇 (ker 𝑔) = 𝑇 (Im 𝑓).

Because 𝑇 is an exact functor, the short exact sequence

0 Im𝑓 ker 𝑔 ker 𝑔/Im 𝑓 0𝑖 𝜋

implies that

0 𝑇 Im𝑓 𝑇 ker 𝑔 𝑇 (ker 𝑔/Im 𝑓) 0𝑇 𝑖 𝑇 𝜋

55



Chapter 6 Tensor product in quotient category

is exact. Consequently,

𝑇 (ker(𝑔)/Im(𝑓 )) ≅ 𝑇 (ker 𝑔)/𝑇 (Im 𝑓) = 0 in 𝒜/𝒞,

which means ker(𝑔)/Im(𝑓 ) ∈ 𝒞.

For any object 𝐴 in 𝒜, since 𝐴 ⊗ − is exact in 𝒜, we have the following short

exact sequence

0 𝐴 ⊗ Im𝑓 𝐴 ⊗ ker 𝑔 𝐴 ⊗ (ker 𝑔/Im𝑓) 0.𝑖𝑑𝐴⊗𝑖 𝑖𝑑𝐴⊗𝜋

Note that there is a short exact sequence

0 𝐴 ⊗ Im𝑓 𝐴 ⊗ ker 𝑔 (𝐴 ⊗ ker 𝑔)/(𝐴 ⊗ Im𝑓) 0.𝑖𝑑𝐴⊗𝑖 𝜋′

Therefore,

(𝐴 ⊗ ker 𝑔)/(𝐴 ⊗ Im𝑓) ≅ 𝐴 ⊗ (ker 𝑔/Im𝑓) ∈ 𝒞.

Now, we claim that

𝐴 ⊗ ker 𝑔 = ker(𝑖𝑑𝐴 ⊗ 𝑔).

Consider the following exact sequence

0 // ker 𝑔 // 𝑀 𝑔 // 𝑁,

applying 𝐴 ⊗ − gives the following exact sequence

0 // 𝐴 ⊗ ker 𝑔 // 𝐴 ⊗ 𝑀 𝑖𝑑𝐴⊗𝑔// 𝐴 ⊗ 𝑁.

This indicates that

𝐴 ⊗ ker 𝑔 = ker(𝑖𝑑𝐴 ⊗ 𝑔).

Besides, note that

𝐴 ⊗ Im𝑓 = Im(𝑖𝑑𝐴 ⊗ 𝑓).
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It follows that

ker(𝑖𝑑𝐴 ⊗ 𝑔)/Im(𝑖𝑑𝐴 ⊗ 𝑓) = (𝐴 ⊗ ker 𝑔)/(𝐴 ⊗ Im𝑓) ∈ 𝒞.

This implies that

𝑇 (ker(𝑖𝑑𝐴 ⊗ 𝑔)/Im(𝑖𝑑𝐴 ⊗ 𝑓)) = 0

i.e.

𝑇 (ker(𝑖𝑑𝐴 ⊗ 𝑔))/𝑇 (Im(𝑖𝑑𝐴 ⊗ 𝑓)) = 0

i.e.

𝑇 (ker(𝑖𝑑𝐴 ⊗ 𝑔)) = 𝑇 (Im(𝑖𝑑𝐴 ⊗ 𝑓))

By Lemma 3.2, this means

ker(𝑇 (𝑖𝑑𝐴 ⊗ 𝑔)) = Im(𝑇 (𝑖𝑑𝐴 ⊗ 𝑓))

i.e.

ker(𝑖𝑑𝐴 ⊗ 𝑇 𝑔) = Im(𝑖𝑑𝐴 ⊗ 𝑇 𝑓)

i.e.

ker(𝑖𝑑𝐴 ⊗ ̄𝑔) = Im(𝑖𝑑𝐴 ⊗ ̄𝑓).

This means 𝐴 ⊗ − is exact in 𝒜/𝒞. Similarly, one can show − ⊗ 𝐴 is exact in 𝒜/𝒞. As

a result, the tensor product is biexact in 𝒜/𝒞. Thus, 𝒜/𝒞 is a multiring category.

Proposition 6.5. Let 𝒜 be a multitensor category, 𝒞 be a two-sided Serre tensor-ideal

of 𝒜, then 𝒜/𝒞 is a multitensor category.

Proof. As proved in the above proposition, we know that 𝒜/𝒞 is a locally finite 𝑘-linear

abelian monoidal category with bilinear tensor product. Therefore, it suffices to show

𝒜/𝒞 is rigid.

For any object 𝑋 in 𝒜/𝒞, it has a left dual 𝑋∗, which means there exist an eval-

uation 𝑒𝑣𝑋 ∶ 𝑋∗ ⊗ 𝑋 → 1 and a coevaluation 𝑐𝑜𝑒𝑣𝑋 ∶ 1 → 𝑋 ⊗ 𝑋∗ such that the
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compositions

𝑋 (𝑋 ⊗ 𝑋∗) ⊗ 𝑋 𝑋 ⊗ (𝑋∗ ⊗ 𝑋) 𝑋,𝑐𝑜𝑒𝑣𝑋⊗𝑖𝑑𝑋 𝑎𝑋,𝑋∗,𝑋 𝑖𝑑𝑋⊗𝑒𝑣𝑋

𝑋∗ 𝑋∗ ⊗ (𝑋 ⊗ 𝑋∗) (𝑋∗ ⊗ 𝑋) ⊗ 𝑋∗ 𝑋∗𝑖𝑑𝑋∗⊗𝑐𝑜𝑒𝑣𝑋 𝑎−1
𝑋∗,𝑋,𝑋∗ 𝑒𝑣𝑋⊗𝑖𝑑𝑋∗

are the identity morphisms. Applying 𝑇 gives that the compositions

𝑋 (𝑋 ⊗ 𝑋∗) ⊗ 𝑋 𝑋 ⊗ (𝑋∗ ⊗ 𝑋) 𝑋,𝑇 𝑐𝑜𝑒𝑣𝑋⊗𝑖𝑑𝑋 ̄𝑎𝑋,𝑋∗,𝑋 𝑖𝑑𝑋⊗𝑇 𝑒𝑣𝑋

𝑋∗ 𝑋∗ ⊗ (𝑋 ⊗ 𝑋∗) (𝑋∗ ⊗ 𝑋) ⊗ 𝑋∗ 𝑋∗𝑖𝑑𝑋∗⊗𝑇 𝑐𝑜𝑒𝑣𝑋 ̄𝑎−1
𝑋∗,𝑋,𝑋∗ 𝑇 𝑒𝑣𝑋⊗𝑖𝑑𝑋∗

are the identity morphisms. As a result, every object in 𝒜/𝒞 has a left dual. Similarly,

one can show every object in 𝒜/𝒞 has a right dual. Thus, 𝒜/𝒞 is rigid. Consequently,

𝒜/𝒞 is a multitensor category.

Proposition 6.6. Let 𝒜 be a multifusion category, 𝒞 be a two-sided Serre tensor-ideal

of 𝒜, then 𝒜/𝒞 is a multifusion category.

Proof. We have already know that 𝒜/𝒞 is a multitensor category. By proposition 5.3,

𝒜/𝒞 is a finite semisimple abelian category. As a result, 𝒜/𝒞 is a multifusion category.

The following proposition shows that a two-sided Serre tensor-ideal of a tensor

category is always trivial.

Proposition 6.7. Let 𝒜 be a tensor category, 𝒞 be a two-sided Serre tensor-ideal of 𝒜,

then 𝒞 is trivial.

Proof. Suppose 𝒞 is not zero, choose a non-zero object𝐵 in 𝒞. Because 𝒞 is a two-sided

Serre tensor-ideal, 𝐵∗ ⊗ 𝐵 ∈ 𝒞. Note that

𝑒𝑣𝐵 ∶ 𝐵∗ ⊗ 𝐵 → 1
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is a non-zero epimorphism in 𝒜, since 1 is simple and the composition (𝑖𝑑𝐵 ⊗ 𝑒𝑣𝐵) ∘

𝑎𝐵,𝐵∗,𝐵 ∘ (𝑐𝑜𝑒𝑣𝐵 ⊗ 𝑖𝑑𝐵) is identity. Therefore, 1 ∈ 𝒞. Consequently, 𝒜 = 𝒞.

This proposition means that 𝒜/𝒞 could only be zero or 𝒜 itself.

However, someone may be interested in other definitions on tensor structures of

𝒜/𝒞 in order to make 𝒜/𝒞 be a monoidal category. Interestingly, we will prove next

that no matter how we define the tensor structure, the canonical functor being monoidal

implies the Serre subcategory is trivial.

Proposition 6.8. Let 𝒜 be a tensor category, 𝒞 be a Serre subcategory of 𝒜. Suppose

the canonical functor 𝑇 is a monoidal functor, then 𝒞 is trivial.

Proof. We prove it by contradiction. Assume 𝒞 is non-trivial. Choose a non-zero object

𝐵 in 𝒞, we know that 𝑇 𝐵 = 0 in 𝒜/𝒞. This means 𝑇 (𝐵∗ ⊗ 𝐵) ≅ 𝑇 𝐵∗ ⊗ 𝑇 𝐵 = 0 in

𝒜/𝒞. However,

𝑒𝑣𝐵 ∶ 𝐵∗ ⊗ 𝐵 → 1

is a non-zero epimorphism in 𝒜 because 1 is a simple object in 𝒜. Therefore,

𝑇 (𝑒𝑣𝐵) ∶ 𝑇 (𝐵∗ ⊗ 𝐵) ≅ 𝑇 𝐵∗ ⊗ 𝑇 𝐵 = 0 → 𝑇 1

is an epimorphism by Lemma 3.1. Since 𝑇 is a monoidal functor, 𝑇 1 ≠ 0 in 𝒜/𝒞.

However, this contradicts 𝑇 (𝑒𝑣𝐵) is an epimorphism in 𝒜/𝒞.

Now, we consider the representation category of 𝑘ℤ2.

Example 6.2. Consider ℤ2 = {1, 𝑔} and a field 𝑘 such that char 𝑘 ∤ 2, and denote

the representation category of 𝑘ℤ2 by 𝒜. As is well known, 𝒜 is semisimple and it has

only two irreducible representations 𝑊1 = 𝑘(1 − 𝑔) and 𝑊2 = 𝑘(1 + 𝑔). Define a

homomorphism by

𝜑 ∶𝑘(1 − 𝑔) ⊗ 𝑘(1 − 𝑔) →𝑘(1 + 𝑔)

𝑎(1 − 𝑔) ⊗ (1 − 𝑔) ↦𝑎(1 + 𝑔)

where 𝑎 ∈ 𝑘.
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Let 𝒞 be a Serre subcategory containing 𝑊1. We now show that if 𝒜/𝒞 is a tensor

category, then 𝒞 = 𝒜. Since 𝑊1 ∈ 𝒞, we know that 𝑇 𝑊1 = 0 in 𝒜/𝒞. It follows that

0 = 𝑇 𝑊1 ⊗ 𝑇 𝑊1 ≅ 𝑇 (𝑊1 ⊗ 𝑊1) in 𝒜/𝒞. This implies 𝑊1 ⊗ 𝑊1 ∈ 𝒞. Consequently,

𝑊2 = 𝑘(1 + 𝑔) ∈ 𝒞 because 𝜑 ∶ 𝑊1 ⊗ 𝑊1 → 𝑊2 is a 𝑘ℤ2-isomorphism. Thus, both

𝑊1 and 𝑊2 are in 𝒞, and 𝒞 = 𝒜.

In order to make 𝒜/𝒞 be a tensor category, it is clear that 𝑊2 = 𝑘(1 + 𝑔) cannot

be in 𝒞, because 𝑊2 = 𝑘(1 + 𝑔) is the unit object in 𝒜.

6.3 Two-sided Serre tensor-ideal of a multiring category

The goal of this section is to show that a two-sided Serre tensor-ideal of a multiring

category is actually a direct sum of some component subcategories. First of all, recall

that amultiring category𝒜 can bewritten as a direct sum of its component subcategories

𝒜 = ⨁
𝑖,𝑗∈𝐼

𝒜𝑖,𝑗 , where 𝒜𝑖,𝑗 = 1𝑖 ⊗ 𝒜 ⊗ 1𝑗 and 𝐼 is an indexed set such that 1 = ⨁
𝑖∈𝐼

1𝑖.

Lemma 6.4. Let 𝒜 be a multiring category with left duals, 𝒞 be a two-sided Serre

tensor-ideal of 𝒜, then 𝒞 ∩ 𝒜𝑖,𝑗 is either 𝒜𝑖,𝑗 or 0, where 𝒜𝑖,𝑗 is a component subcate-

gory of 𝒜.

Proof. Suppose 𝒞 ∩𝒜𝑖,𝑗 ≠ 0. Choose𝑋 ≠ 0 in 𝒞 ∩𝒜𝑖,𝑗 , we know that𝑋 = 1𝑖⊗𝑋⊗1𝑗 .

Because 𝑋∗ = (1𝑖 ⊗ 𝑋 ⊗ 1𝑗)∗ = 1∗
𝑗 ⊗ 𝑋∗ ⊗ 1∗

𝑖 = 1𝑗 ⊗ 𝑋∗ ⊗ 1𝑖, one can observe that

(1𝑖 ⊗ 𝑋 ⊗ 1𝑗)∗ ⊗ 1𝑖 ⊗ 𝑋 ⊗ 1𝑗 ∈ 𝒞 ∩ 𝒜𝑗,𝑗 .

We claim that Im(𝑒𝑣𝑋) = 1𝑗 . Assume 1𝑘 is a direct summand of Im(𝑒𝑣𝑋), where

𝑘 ≠ 𝑗. Consider the exact sequence

𝑋∗ ⊗ 𝑋 Im(𝑒𝑣𝑋) 0.𝑒𝑣𝑋

Tensoring this sequence with 1𝑘 on the left, we obtain an exact sequence

1𝑘 ⊗ 𝑋∗ ⊗ 𝑋 1𝑘 0.
𝑖𝑑1𝑘⊗𝑒𝑣𝑋
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Since

1𝑘 ⊗ 𝑋∗ ⊗ 𝑋 = 1𝑘 ⊗ 1𝑗 ⊗ 𝑋∗ ⊗ 1𝑖 ⊗ 1𝑖 ⊗ 𝑋 ⊗ 1𝑗 = 0,

the above exact sequence means 1𝑘 = 0, which is absurd. Therefore, 1𝑘 is not a direct

summand of Im(𝑒𝑣𝑋). Because 𝑒𝑣𝑋 ∶ 𝑋∗ ⊗𝑋 → 1 is non-zero, we get that Im(𝑒𝑣𝑋) =

1𝑗 . Consequently, 1𝑗 ∈ 𝒞. This implies 𝒜𝑖,𝑗 ⊂ 𝒞, and thus 𝒞 ∩ 𝒜𝑖,𝑗 = 𝒜𝑖,𝑗 .

In fact, if 𝒜𝑖,𝑗 ⊂ 𝒞, one can know 1𝑗 ∈ 𝒞 from the above proof. As a result,

𝒜𝑙,𝑗 ⊂ 𝒞 and 𝒜𝑗,𝑙 ⊂ 𝒞 for all 𝑙 ∈ 𝐼 . Similar to the process of the above proof, if we

consider

𝑐𝑜𝑒𝑣𝑋 ∶ 1 → 𝑋 ⊗ 𝑋∗ = 1𝑖 ⊗ 𝑋 ⊗ 1𝑗 ⊗ 1𝑗 ⊗ 𝑋∗ ⊗ 1𝑖,

then we can obtain 1𝑖 ∈ 𝒞. Consequently, 𝒜𝑙,𝑖 ⊂ 𝒞 and 𝒜𝑖,𝑙 ⊂ 𝒞 for all 𝑙 ∈ 𝐼 .

In particular, if 0 ≠ 𝒜𝑖,𝑗 ⊂ 𝒞, then 0 ≠ 𝒜𝑖,𝑖 ⊂ 𝒞, 0 ≠ 𝒜𝑗,𝑗 ⊂ 𝒞, and 0 ≠ 𝒜𝑗,𝑖 ⊂ 𝒞.

Besides,
𝒞 = 𝒞 ∩ 𝒜

= 𝒞 ∩ ⨁
𝑖,𝑗∈𝐼

𝒜𝑖,𝑗

= ⨁
𝑖,𝑗∈𝐼

(𝒞 ∩ 𝒜𝑖,𝑗).

It follows from the above lemma that 𝒞 is a direct sum of 𝒜𝑖,𝑗’s.

The following proposition provides a deeper understanding for two-sided Serre

tensor-ideal.

Proposition 6.9. Let 𝒜 be a multiring category with left duals, 𝒞 be a two-sided Serre

tensor-ideal of 𝒜. Let 𝐽 = {𝑖 ∈ 𝐼|1𝑖 ∈ 𝒞}, then 𝒜𝑖,𝑘 = 0, 𝒜𝑘,𝑖 = 0 for all 𝑘 ∉ 𝐽 ,

𝑖 ∈ 𝐽 .

Proof. Assume 𝒜𝑖,𝑘 ≠ 0 for a given 𝑖 ∈ 𝐽 and 𝑘 ∉ 𝐽 . Since 1𝑖 ∈ 𝒞, we know that

𝒜𝑖,𝑘 ⊂ 𝒞. For any 0 ≠ 𝑋 ∈ 𝒜𝑖,𝑘, we can obtain Im(𝑒𝑣𝑋) = 1𝑘 ∈ 𝒞 from a process

similar to the proof of Lemma 6.4. This contradicts 𝑘 ∉ 𝐽 . Thus, 𝒜𝑖,𝑘 = 0. Similarly,

𝒜𝑘,𝑖 = 0.

Let 𝒜 be a multiring category with left duals, the above proposition implies that a
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two-sided Serre tensor-ideal 𝒞 of 𝒜 can be written as 𝒞 = ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 , where 𝐽 = {𝑖 ∈

𝐼|1𝑖 ∈ 𝒞}. Furthermore, for any 0 ≠ 𝑋 ∈ 𝒜, the above proposition indicates that

𝑋 = ⨁
𝑖,𝑗∈𝐼

(1𝑖 ⊗ 𝑋 ⊗ 1𝑗)

= ⨁
𝑖,𝑗∉𝐽

(1𝑖 ⊗ 𝑋 ⊗ 1𝑗) ⨁ ⨁
𝑖,𝑗∈𝐽

(1𝑖 ⊗ 𝑋 ⊗ 1𝑗).

Let

𝑋′ = ⨁
𝑖,𝑗∉𝐽

(1𝑖 ⊗ 𝑋 ⊗ 1𝑗) and 𝑋″ = ⨁
𝑖,𝑗∈𝐽

(1𝑖 ⊗ 𝑋 ⊗ 1𝑗),

it is clear that 𝑋″ ∈ 𝒞 and 𝑋′ ≅ 𝑋 in 𝒜/𝒞. Therefore, 𝒜/𝒞 ≅ ⨁
𝑖,𝑗∉𝐽

𝒜𝑖,𝑗 .

Conversely, given a suitable subset 𝐽 of 𝐼 , is ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 a two-sided Serre tensor-

ideal? We show next that the answer is yes.

Proposition 6.10. Let 𝒜 be a multiring category with left duals, 𝐽 ⊂ 𝐼 satisfying that

𝒜𝑖,𝑘 = 0, 𝒜𝑘,𝑖 = 0 for all 𝑘 ∉ 𝐽 , 𝑖 ∈ 𝐽 . Then 𝒞 = ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 is a two-sided Serre

tensor-ideal of 𝒜.

Proof. It suffices to show 𝒞 is a Serre subcategory. For any 𝑋 ∈ 𝒞, let 𝑌 be a subobject

of 𝑋. We know that

0 𝑌 𝑋

is exact. For 𝑝 ∉ 𝐽 or 𝑞 ∉ 𝐽 , tensoring 1𝑝 and 1𝑞 on the left and right respectively gives

that

0 1𝑝 ⊗ 𝑌 ⊗ 1𝑞 1𝑝 ⊗ 𝑋 ⊗ 1𝑞

is exact. Because 1𝑝 ⊗ 𝑋 ⊗ 1𝑞 is 0, we obtain 1𝑝 ⊗ 𝑌 ⊗ 1𝑞 = 0. This means 𝑌 ∈ 𝒞.

Hence, 𝒞 is closed under taking subobjects. Similarly, 𝒞 is closed under taking quotient

objects. Now, suppose there is an exact sequence

0 𝑋 𝑌 𝑍 0

where 𝑋, 𝑍 ∈ 𝒞. For 𝑝 ∉ 𝐽 or 𝑞 ∉ 𝐽 , tensoring 1𝑝 and 1𝑞 on the left and right
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respectively gives that

0 1𝑝 ⊗ 𝑋 ⊗ 1𝑞 1𝑝 ⊗ 𝑌 ⊗ 1𝑞 1𝑝 ⊗ 𝑍 ⊗ 1𝑞 0

is exact. Because 1𝑝 ⊗ 𝑋 ⊗ 1𝑞 = 0 = 1𝑝 ⊗ 𝑍 ⊗ 1𝑞, we obtain that 1𝑝 ⊗ 𝑌 ⊗ 1𝑞 = 0.

This means 𝑌 ∈ 𝒞. Hence, 𝒞 is closed under taking extensions. It follows that 𝒞 is a

Serre subcategory.

In summary, on one hand for 𝐽 ⊂ 𝐼 satisfying that 𝒜𝑖,𝑘 = 0, 𝒜𝑘,𝑖 = 0 for all

𝑘 ∉ 𝐽 , 𝑖 ∈ 𝐽 , 𝒞 = ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 is a two-sided Serre tensor-ideal of 𝒜. On the other hand,

every two-sided Serre tensor-ideal of𝒜 can be written as 𝒞 = ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 for some 𝐽 ⊂ 𝐼 .

Consider the two-sided Serre tensor-ideal 𝒞 = ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 . One can observe that

the restriction of the canonical functor 𝑇 on ⨁
𝑖,𝑗∉𝐽

𝒜𝑖,𝑗 is both an isomorphism and a

monoidal functor. This implies the corresponding quotient category 𝒜/𝒞 is actually

isomorphic to ⨁
𝑖,𝑗∉𝐽

𝒜𝑖,𝑗 which is a subcategory of 𝒜. Furthermore, it is easy to see that

𝑇 (1𝒜) = 𝑇 (⨁𝑖 1𝑖) = ⨁
𝑖∉𝐽

1𝑖. Since 𝑇 is a monoidal functor, 1𝒜/𝒞 = 𝑇 (1𝒜) = ⨁
𝑖∉𝐽

1𝑖. In

fact, for 𝑖, 𝑗 ∉ 𝐽 , 𝒜𝑖,𝑗 is a component subcategory of 𝒜/𝒞.

Now, we claim that the image of another two-sided Serre tensor-ideal 𝒞′ is a two-

sided Serre tensor-ideal of the quotient category. Let 𝒞 = ⨁
𝑖,𝑗∈𝐽

𝒜𝑖,𝑗 , 𝒞′ = ⨁
𝑖,𝑗∈𝐽 ′

𝒜𝑖,𝑗 be

two two-sided Serre tensor-ideals of𝒜. Because𝒜/𝒞 = ⨁
𝑖,𝑗∉𝐽

𝒜𝑖,𝑗 , 𝑇 (𝒞′) ≅ ⨁
𝑖,𝑗∈𝐽 ′\𝐽

𝒜𝑖,𝑗

in 𝒜/𝒞. We know that 𝒜𝑖,𝑘 = 0, 𝒜𝑘,𝑖 = 0 for all 𝑘 ∉ 𝐽 ′, 𝑖 ∈ 𝐽 ′. Hence 𝒜𝑖,𝑘 = 0,

𝒜𝑘,𝑖 = 0 for all 𝑘 ∉ 𝐽 ′\𝐽 , 𝑖 ∈ 𝐽 ′\𝐽 . This means the image of 𝒞′ is a two-sided Serre

tensor-ideal of 𝒜/𝒞.

We end this chapter by discussing two-sided Serre tensor-ideals from a groupoid,

one can refer the following example to section 4.13 in [10].

Example 6.3. Let 𝒢 = (𝑋, 𝐺, 𝜇, 𝑠, 𝑡, 𝑢, 𝑖) be a groupoid whose set of objects 𝑋 is finite

and let 𝒞(𝒢) be the category of finite dimensional vector spaces graded by the set 𝐺 of

morphisms of 𝒢 i.e. vector spaces of the form 𝑉 = ⨁
𝑔∈𝐺

𝑉𝑔. Introduce a tensor product
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on 𝒞(𝒢) by the formula

(𝑉 ⊗ 𝑊 )𝑔 = ⨁
(𝑔1,𝑔2)∶𝑔1𝑔2=𝑔

𝑉𝑔1 ⊗ 𝑊𝑔2 ,

where 𝑉 , 𝑊 are objects in 𝒞(𝒢).

We know that 𝒞(𝒢) is a multitensor category. Suppose 𝐴 ∈ 𝑋 is an object in 𝒢

such that Hom𝒢(𝐴, 𝐵) is empty for all 𝐵 ≠ 𝐴. For convenience, we denote 𝐺(𝐴) =

Hom𝒢(𝐴, 𝐴). Now, we show that {𝑉 = ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔} is a two-sided Serre tensor-ideal of

𝒞(𝒢). For any object 𝑊 in 𝒞(𝒢),

(( ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔) ⊗ 𝑊 )𝑘 = ⨁
(𝑔1,𝑔2)∶𝑔1𝑔2=𝑘

( ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔)𝑔1 ⊗ 𝑊𝑔2 .

Note that ( ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔)𝑔1 ⊗ 𝑊𝑔2 is not zero only if 𝑔1 ∈ 𝐺(𝐴). Consequently, it is not zero

only if 𝑘 ∈ 𝐺(𝐴). This means that ( ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔) ⊗ 𝑊 ∈ {𝑉 = ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔}. Similarly,

𝑊 ⊗ ( ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔) ∈ {𝑉 = ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔}. Thus, {𝑉 = ⨁
𝑔∈𝐺(𝐴)

𝑉𝑔} is a two-sided Serre

tensor-ideal of 𝒞(𝒢).

In fact, {𝑉 = ⨁
𝑔∈𝐺′

𝑉𝑔} is also a two-sided Serre tensor-ideal of 𝒞(𝒢) if 𝐺′ is the

morphism set of a connected component of 𝒢. The above example is the case of a

connected component consisting of one object.

6.4 Another view of tensor product in quotient category

Now, we turn our attention to the localization of a monoidal category by a multi-

plicative system, and we would like to define the tensor product on the quotient cate-

gory. In this section, we still consider the right fraction.

Definition 6.2. Let 𝒜 be a monoidal category, and 𝑆 be a multiplicative system of 𝒜,

and 𝑆 is closed under tensor product. Define the tensor product of objects in 𝑆−1𝒜 by

the same tensor product in 𝒜, and define the tensor product of two morphisms 𝑎/𝑠 and

𝑏/𝑡 in 𝑆−1𝒜 by (𝑎 ⊗ 𝑏)/(𝑠 ⊗ 𝑡).
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Next, we show that the tensor product for 𝑆−1𝒜 is well-defined. If 𝑎1/𝑠1 = 𝑎2/𝑠2,

which means that there is a commutative diagram

⋅
𝑠1

{� ��
��
��
�

��
��
��
� 𝑎1

��?
??

??
??

?

⋅ ⋅ks

𝑖
OO

𝑗
��

// ⋅

⋅
𝑠2

[c???????

??????? 𝑎2

??��������

i.e. there exist two morphisms 𝑖, 𝑗 such that

⎧⎪
⎨
⎪⎩

𝑎1𝑖 = 𝑎2𝑗

𝑠1𝑖 = 𝑠2𝑗 ∈ 𝑆

then the following diagram is commutative

⋅

𝑠1⊗𝑡

{� ��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

𝑎1⊗𝑏

��?
??

??
??

??
??

??
??

?

⋅ ⋅ks

𝑖⊗𝑖𝑑

OO

𝑗⊗𝑖𝑑

��

// ⋅

⋅

𝑠2⊗𝑡

[c????????????????

????????????????

𝑎2⊗𝑏

??����������������

where 𝑏/𝑡 is another morphism in𝑆−1𝒜. As a result, (𝑎1 ⊗𝑏)/(𝑠1 ⊗𝑡) = (𝑎2 ⊗𝑏)/(𝑠2 ⊗𝑡).

This indicates that 𝑎1/𝑠1 ⊗ 𝑏/𝑡 = 𝑎2/𝑠2 ⊗ 𝑏/𝑡. Similarly, one can show 𝑏/𝑡 ⊗ 𝑎1/𝑠1 =

𝑏/𝑡 ⊗ 𝑎2/𝑠2. Consequently, the tensor product is well-defined.

In addition, we define the associativity constraint in 𝑆−1𝒜 by

𝑎𝑊 ,𝑋,𝑌 /𝑖𝑑(𝑊 ⊗𝑋)⊗𝑌 ∶ (𝑊 ⊗ 𝑋) ⊗ 𝑌 → 𝑊 ⊗ (𝑋 ⊗ 𝑌 ),

where 𝑊 , 𝑋, 𝑌 are objects in 𝒜 and 𝑎𝑊 ,𝑋,𝑌 is the associativity constraint in 𝒜. It is

also clear that the left and right unit isomorphisms in 𝑆−1𝒜 are 𝑙𝑋 /𝑖𝑑1⊗𝑋 and 𝑟𝑋 /𝑖𝑑𝑋⊗1

where 𝑙𝑋 and 𝑟𝑋 are the left and right unit isomorphisms in 𝒜.
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Proposition 6.11. Let 𝒜 be a monoidal category, and 𝑆 be a multiplicative system of

𝒜, and 𝑆 is closed under tensor product. Then 𝑆−1𝒜 is a monoidal category.

Proof. Recall the pentagon axiom for 𝒜

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍
𝑎𝑊 ,𝑋,𝑌 ⊗𝑖𝑑𝑍

ttiiii
iiii

iiii
iiii

i 𝑎(𝑊 ⊗𝑋),𝑌 ,𝑍

**VVV
VVVV

VVVV
VVVV

VV

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍
𝑎𝑊 ,𝑋⊗𝑌 ,𝑍

��

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍)
𝑎𝑊 ,𝑋,𝑌 ⊗𝑍
��

𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)
𝑖𝑑𝑊 ⊗𝑎𝑋,𝑌 ,𝑍 // 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍)),

we want to show that the pentagon axiom for 𝑆−1𝒜 is also held, i.e.

𝑖𝑑𝑊 ⊗ 𝑎𝑋,𝑌 ,𝑍
𝑖𝑑𝑊 ⊗((𝑋⊗𝑌 )⊗𝑍)

∘
𝑎𝑊 ,𝑋⊗𝑌 ,𝑍

𝑖𝑑(𝑊 ⊗(𝑋⊗𝑌 ))⊗𝑍
∘

𝑎𝑊 ,𝑋,𝑌 ⊗ 𝑖𝑑𝑍
𝑖𝑑((𝑊 ⊗𝑋)⊗𝑌 )⊗𝑍

=
𝑎𝑊 ,𝑋,𝑌 ⊗𝑍

𝑖𝑑(𝑊 ⊗𝑋)⊗(𝑌 ⊗𝑍)
∘

𝑎𝑊 ⊗𝑋,𝑌 ,𝑍
𝑖𝑑((𝑊 ⊗𝑋)⊗𝑌 )⊗𝑍

Because of the composition rule, the above equation is

(𝑖𝑑𝑊 ⊗ 𝑎𝑋,𝑌 ,𝑍) ∘ 𝑎𝑊 ,𝑋⊗𝑌 ,𝑍 ∘ (𝑎𝑊 ,𝑋,𝑌 ⊗ 𝑖𝑑𝑍)
𝑖𝑑((𝑊 ⊗𝑋)⊗𝑌 )⊗𝑍

=
𝑎𝑊 ,𝑋,𝑌 ⊗𝑍 ∘ 𝑎𝑊 ⊗𝑋,𝑌 ,𝑍

𝑖𝑑((𝑊 ⊗𝑋)⊗𝑌 )⊗𝑍
.

The pentagon axiom for 𝒜 states that

(𝑖𝑑𝑊 ⊗ 𝑎𝑋,𝑌 ,𝑍) ∘ 𝑎𝑊 ,𝑋⊗𝑌 ,𝑍 ∘ (𝑎𝑊 ,𝑋,𝑌 ⊗ 𝑖𝑑𝑍) = 𝑎𝑊 ,𝑋,𝑌 ⊗𝑍 ∘ 𝑎𝑊 ⊗𝑋,𝑌 ,𝑍 ,

thus the pentagon axiom for 𝑆−1𝒜 is proved. As to the triangle axiom for 𝑆−1𝒜, we

need to show that

(𝑖𝑑𝑋 /𝑖𝑑𝑋 ⊗ 𝑙𝑌 /𝑖𝑑1⊗𝑌 ) ∘ 𝑎𝑋,1,𝑌 /𝑖𝑑(𝑋⊗1)⊗𝑌 = 𝑟𝑋 /𝑖𝑑(𝑋⊗1) ⊗ 𝑖𝑑𝑌 /𝑖𝑑𝑌 ,

which is

(𝑖𝑑𝑋 ⊗ 𝑙𝑌 ) ∘ 𝑎𝑋,1,𝑌 /𝑖𝑑(𝑋⊗1)⊗𝑌 = 𝑟𝑋 ⊗ 𝑖𝑑𝑌 /𝑖𝑑(𝑋⊗1)⊗𝑌 .

This follows from the triangle axiom for 𝒜.
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Let 𝒜 be an abelian monoidal category with biexact tensor product, 𝒞 be a two-

sided Serre tensor-ideal of 𝒜. We can obtain a multiplicative system 𝑆 = {𝑓 ∈

Mor𝒜|ker 𝑓, coker 𝑓 ∈ 𝒞} from 𝒞 by Proposition 4.1. Recall Theorem 4.1 that 𝑆−1𝒜

is isomorphic to 𝒜/𝒞 via

𝐹 ∶ 𝒜/𝒞 → 𝑆−1𝒜

̄𝑓 → 𝑖𝑑𝑁 /𝑝𝑁
𝑁/𝑁′ ∘ 𝑓 /𝑖𝑀′

𝑀

and
𝐺 ∶ 𝑆−1𝒜 → 𝒜/𝒞

𝑓/𝑠 → 𝑇 (𝑓) ∘ 𝑇 (𝑠)−1

where 𝑇 is the canonical functor.

Next, we show that the tensor product for 𝑆−1𝒜 coincide with the tensor product

for 𝒜/𝒞 that we gave in Definition 6.1.

Proposition 6.12. Let 𝒜 be an abelian monoidal category with biexact tensor product,

𝒞 be a two-sided Serre tensor-ideal of 𝒜, and 𝑆 be the multiplicative system induced

by 𝒞. Then 𝐹 and 𝐺 are monoidal functors.

Proof. It suffices to show that 𝐹 ( ̄𝑓 ⊗ ̄𝑔) = 𝐹 ( ̄𝑓 ) ⊗ 𝐹 ( ̄𝑔) and 𝐺(𝑎/𝑠 ⊗ 𝑏/𝑡) = 𝐺(𝑎/𝑠) ⊗

𝐺(𝑏/𝑡),where ̄𝑓 ∶ 𝐴1 → 𝐴2, ̄𝑔 ∶ 𝐵1 → 𝐵2 aremorphisms in𝒜/𝒞, 𝑎/𝑠, 𝑏/𝑡 aremorphisms

in 𝑆−1𝒜.

Firstly, ̄𝑓 is the image of 𝑓 ∶ 𝐴′
1 → 𝐴2/𝐴′

2 and ̄𝑔 is the image of 𝑔 ∶ 𝐵′
1 → 𝐵2/𝐵′

2

i.e. ̄𝑓 = 𝑇 𝑓 , ̄𝑔 = 𝑇 𝑔 where 𝑇 is the canonical functor. For convenience, we denote

𝑖𝐴′
1

𝐴1
∶ 𝐴′

1 → 𝐴1 by 𝑖1, 𝑖𝐵′
1

𝐵1
∶ 𝐵′

1 → 𝐵1 by 𝑖2, 𝑝𝐴2
𝐴2/𝐴′

2
∶ 𝐴2 → 𝐴2/𝐴′

2 by 𝑝1, and

𝑝𝐵2
𝐵2/𝐵′

2
∶ 𝐵2 → 𝐵2/𝐵′

2 by 𝑝2. We know that

𝐹 (𝑇 (𝑓 ⊗ 𝑔)) = 𝑖𝑑/(𝑝1 ⊗ 𝑝2) ∘ (𝑓 ⊗ 𝑔)/(𝑖1 ⊗ 𝑖2)

and

𝐹 (𝑇 𝑓) ⊗ 𝐹 (𝑇 𝑔) = (𝑖𝑑/𝑝1 ∘ 𝑓 /𝑖1) ⊗ (𝑖𝑑/𝑝2 ∘ 𝑔/𝑖2).
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Because

(𝑝1 ⊗ 𝑝2) ∘ ((𝑖𝑑/𝑝1 ∘ 𝑓 /𝑖1) ⊗ (𝑖𝑑/𝑝2 ∘ 𝑔/𝑖2)) = 𝑓/𝑖1 ⊗ 𝑔/𝑖2 = (𝑓 ⊗ 𝑔)/(𝑖1 ⊗ 𝑖2),

it follows that

((𝑖𝑑/𝑝1 ∘ 𝑓 /𝑖1) ⊗ (𝑖𝑑/𝑝2 ∘ 𝑔/𝑖2)) = 𝑖𝑑/(𝑝1 ⊗ 𝑝2) ∘ (𝑓 ⊗ 𝑔)/(𝑖1 ⊗ 𝑖2)

i.e.

𝐹 (𝑇 𝑓) ⊗ 𝐹 (𝑇 𝑔) = 𝐹 (𝑇 (𝑓 ⊗ 𝑔)).

Secondly, we know that

𝐺(𝑎/𝑠 ⊗ 𝑏/𝑡) = 𝐺((𝑎 ⊗ 𝑏)/(𝑠 ⊗ 𝑡)) = 𝑇 (𝑎 ⊗ 𝑏) ∘ 𝑇 (𝑠 ⊗ 𝑡)−1

and

𝐺(𝑎/𝑠) ⊗ 𝐺(𝑏/𝑡) = (𝑇 𝑎 ∘ (𝑇 𝑠)−1) ⊗ (𝑇 𝑏 ∘ (𝑇 𝑡)−1).

Because
((𝑇 𝑎 ∘ (𝑇 𝑠)−1) ⊗ (𝑇 𝑏 ∘ (𝑇 𝑡)−1)) ∘ 𝑇 (𝑠 ⊗ 𝑡)

=((𝑇 𝑎 ∘ (𝑇 𝑠)−1) ⊗ (𝑇 𝑏 ∘ (𝑇 𝑡)−1)) ∘ (𝑇 𝑠 ⊗ 𝑇 𝑡)

=𝑇 𝑎 ⊗ 𝑇 𝑏 = 𝑇 (𝑎 ⊗ 𝑏),

this means

(𝑇 𝑎 ∘ (𝑇 𝑠)−1) ⊗ (𝑇 𝑏 ∘ (𝑇 𝑡)−1) = 𝑇 (𝑎 ⊗ 𝑏) ∘ 𝑇 (𝑠 ⊗ 𝑡)−1

i.e.

𝐺(𝑎/𝑠) ⊗ 𝐺(𝑏/𝑡) = 𝐺(𝑎/𝑠 ⊗ 𝑏/𝑡).

Therefore, 𝑆−1𝒜 and 𝒜/𝒞 are isomorphic as monoidal categories when the mul-

tiplicative system 𝑆 is induced by the Serre subcategory 𝒞.
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