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be an irreducible GCA module with bright weight n cPp
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e provided that the cartoon matria A is symmetrizable
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Thus the region of absolute convergence of the series on

question contains yo Emel is clearly contere and W invariant
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Denote by Oc the fun subcategory the category 0 of
GCA modules V enrich that Chu converges absolutely on

Mn for some N1 70
Aliso denote by Erc the subalgebra of the series from
which converge absolutely on Ym for some M

every highest weight module ties onOc
we have a homomorphism 4 of E into the algebra
of functions which are holomorphic on 4N for some N

defined by 4 CCA 1 3 et

Applying 40 To both sides of formulas 40 4.5 and 10.4.41
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wig complete reducibility theorem

Theorem lo Yet A be a symmetrizable generalized Cartan
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a Suppose that a gCA module V satisfies the following
two conditions
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is isomorphic to a direct burn of moeholes Lun wept

proof Thanks to prop9.10 b CPitt and Remark 36 435 oh

tohe statement a crisp prop9g b Pig in case of b
it suffices To cheek that if x and u are primitive weights
and qzeQt 1807 is such that a m f3 then

ZLX tf V4tf3 Fcf31f printer whaghest weight

some the module U is moegrable we have my c32 4Pz

x o crew n For every primate weight A
T 13.2.41 city Ld j 11741 where Vg D film eh 3 20

a of a is a weight af am rhotognal gear moehle V



and at Li is not a weight then CX af 30

pnop3by b nine tf both A and a 1 Li are weights then

byCVM 0 U 4 V hitch EV

j o then eco o q j

Prut then we can write

2 Lat p U Cfs Cfs 13 cat Ld fo 1213 U 1Cfp

Layout up v Icp so

Consider Vermere module dual

mcmfm.cn KlayByakuyabumf
as a gas module v

z

Mich I U i Von
ni Nikko 31 3813 742

Vinh Epitope T
ups


