'\” Deligne /3 fenjor }’O(Juct oﬁ (oca//y 7%/&@ abt’/mn Caijon‘Es
let ¢ D k twa ahelion cateqories over afill K (esentialy small ) iewr )
Finite

Al categ ories considered in this book will be /oca//j small (Excepf in the section on 2-cateyorieg)
omcl WIQSJC of ﬁhem will be Bsxentia“j Jma}/.

[Dmt) Deligne s tensor ,oroduct CIAT) is an abelian Ik- lnear Caf@j””j
unversal - oy @ Z2xD— ZAD which s w’jhf exact i1 hoth vwithles
(Y= XA
stV k-lrear abelian cateyorjA, and for any rijhf exact in hoth varidbles bifuctor
= 0xD-A, 3 H?H eact functor F:ZBD—A Safrs@/nj Fol =F
(D5 zR D
o7
A~ 2T

nite
Prop 12 ) A De’i\gneg tensor prvc/ucf CRD exists and s ‘M abelidn €atfyory.

5

) DEFINITION 1.8.5. A k-linear q
P : alent to the category A—mod of finite dimensional modules over a finite dimensional

0 C—"WZRW\OCLF D= S—VHDJ{ RS fd G/j&
R‘Modf X S‘I}’IOC]{ = R@S 'MO(/,E = R‘mocff @S*moip/
MmN x N ¥ neh (MNEd M)
REindn). S€mdh)
define  R®S - MB, N
(r®s) - (m@n)=(rm)©(Sn)
y®S ) (@S - (mon) = (FFOSS) (m@h) Jyi -1 )O(55m)
=(r@s) ([F@3) - (men) )
U;z@)g/' (m@n) = m®n
CMON s o RS -mod . /V\@/\/ fd RES {d

R@S‘VMC@L i WC//UJE(Z ”“///lﬁak ubelign Caﬁeyorj_



@ HOMP_MJ[XI,YI) X Hams_mpj()é,yzjﬂHome_mJ (Xl@k)(z, Y,@k yz]
R D R e B

Fog (r8s) ()= Flral © §(5n) = pEim @400 =(r6s) (Fm@ )
HOMp-mmf (X) Yl) @ HUMS‘YHOd (XZYZ) = HWV\ 9 S-MUJ (X@k \(l/ )(z @k Yl)

@ bj THEOREM 1.3.8 (Mitchell; [Fr]). Every abelian category is equivalent, as an
dditive category, to a full subcategory of the category of left modules over an asso-
ciative unital ring A.

V Ik-linear — abelinn Cafeﬂory A ohA el (L)
bj the  univer sal hapof )

Nx N -G Mo R-mod X 5-mod i ) pgs - Mod
nlle Helt = ¢ \L -
| 73 f .
A . 3IF

obviomb X rignt, exact in both variables
UV\ free k-modile. = et ME_ et . _AM enct. )
nexh e show F right, exact.

Sup pose 0~>L,——>[i—3LJ—>o s eact R8s~ Mo
next we S/th/ F(Ll}ﬁ]?{[lj—) F{LIJ/;D



7[//\ rfe

b Thm"ﬂk nj essenha”] smyll ocal/ finite abelian Cate ory L over a field Jk is eluivalent

to Joh@ Categorj C-comad for « unie pmnteJ Coa gebra C

. We can take C(m/g. in Thn 1915, st C= C-comod . D=D-comed  hiite)
then one can define CED=(CODI-comed | next we show that it satisTies the re(ju/m/ condition

COD ocenlcol)== (0d) @ (CyOde /
¢ coplcod) =€lc) &ld)
C-wmod XD-omod — Co)- omdf
/V\ o N e
Cpm/\tec/ Dpﬂmted ﬂ')en CWD })o/fl
(Rqﬁoy({ Pro 111 )
M—=A®C  f:N— NOD
e, =Zzmom, A== 00,

Peoo (m@ﬂ} Zh,®, Om @, P/V\f/\/@aw/mw\/ 00D \PM\?C
HON™Shayocen ot oo AT
Jhor ] o0 NOCLOND D “iad P Mk

oNRca0 v ocon o cop

oy @ 0oy EMORLOM.ON,) =Z M,00,0 M, By @ M. O,
PM@N@I(JC@U ZMs Bllo Oy @1 ) =Z o, @l @ Moy @ o O O,

Mo -2 eWecep
% J/"l@fc@{) | @Ecap (ZMo@ o @, 1) = Zmo@)no E M (/nl)
MBN &k =ZMoelm) H 5O(m;
= mon

MOV is a (@) - omodile, where (oL p anfed (M8 Fite )
C@U (MIOJ OLaH ﬂmfe ﬁ(bemn Gaﬁ)yo{/
Net we show F nﬂkﬁ exict - e O—ﬂlﬂllﬁhﬁp N 8D -tmed



we show Fll) = FlL)=F (l)=p

i) 2t is wnique wp 1o a inige cquivalence.
]ch’Dﬂ—a(mD Fow=m O O BF=FRHE0

éliﬂ]/ w@  RCRDTE e @/ K=K

.m ’JL@'D
éf@%;m Fom=R'0 OO
éé/D 2/3?@” ﬂ)ﬂﬁ@bﬂﬂg B} @ O{X) ]E
Be @ = idggy

i) Let C. D) be wa/ﬁ. and let C=C-comaf and D=0-comod . Then TR D=(CON-comnd
pf- by () (i)

liv) The bitnctor T is exact i both variables and satisfies
Home( 3, Y,) ® Hompy (X0, Vo) 2= Homzgp (X B A, Y RL )
H §) — 19y

K— 3\ll Xfﬁg \’L
QXI\l (|

MR xzw% @o



KoC Oty %kxli% al 1of voc 91,00
P f.
IA@LN Xlgix)\(j@wnf@ !JY@F}/@C@OL/@[OIJ

tyoye (fog) (wox) = ideteid( frofy) (foy (%6
JDL@;JHO;J % ) @(L%?d/ f )] (her.)
= $090id ( fuor, (OL)) == 0 05010 ) D4, O,
<10y is (0D~ omef - map

as femodle . foy quue
Hom& /@Holnl) L, z/ —Homzmg (X}WX Y }

W) Ay biloear bifunctor FCXD2A exact ineach variab defires an exct
functor ECmD—A
Pf the same qs hetore
Deligne’s tensor product can also be applied to functors. If F : C — C! and
G : D — D! are right exact functors between locally finite abelian categories then

one defines the functor FXG : CKD — C!XD! using the defining universal property
(see Definition 1.11.1) of C X D. Namely, the bifunctor

FXxG:CxD—CRD:(V,W)— F(V)RGW)

canonically extends to a right exact functor FX G : CXD — C' X D,
X
7D z2mD

— C / -
L e AP =Fag



L12 (Amu ) aly
(Devt) The f/m‘{e ual Atfm = HléA*H(I)zo For some /z/(fq/ of A st cf/'mA/Z“Of
(N, m* w ) couls
Remark 11123 Note that i A does not hae Finite dimensional madu/es(#?)fhen K =0
pf Suppae A%, 0 .3 04FEA" =0 for some il I of finite codmension.

AN AL are Amed o 4Me i Amd AT it dinensindl

but A does not have fiite dinensional moddes  AI=0 A-I
fehs, TW=p f=0 Contradiction.

13 Pointed coaiy, and the covacical Filtration
Let £ he g locaﬂj finite ghelian category.
AV\H obJech Xéé /\05 ] canom‘ca/ filtkatin  0=X, CYy CXC Cx=X
st Xy /X; is the soe (ie. the max/ma/ &em/s/mp/e Subob\/'eft) 07[ X/X,'
(in ofher words, Xin/¥ is the sum of al simpe  subobgets of X/k )
f |
%:Xo /EX()S/Xo) RAV L th Simpl Jubo@'ezﬁ leiwf_ let X//:ZQ/ ’
7 X/x t¥ L A Simple Subobjezf IR Lot R/x, =ZR|

- Every abelian cafejoyj s equivart , as an addtive category . to 2 Full subrm‘fzﬁwj of The category
of left modles over an assouitive wmfa/r/ny A

BVAMBYHTE % MMy, 205 TT  MBYRE Wby 45 S Mivby 38 2 -—na by

- we (anfind Yo, continue

- Xhas Finife /engfh , Ony {iltyation of X can be exdended o Jordan- Pl seriec
X has & cononieal filration.

(Def) The filtmtion of ij Yi is calld the co Fittration or the corudical filtratinn

I s AN to show 5\7 induction That the sock Filtration is 4 Filbation of X of the
smallest pomkle ’eﬂgfh, st othe  successive quotients are sem;'simPIe. The )enjfh of the
socle  filtration of ¥ s caled the Loevvj length of X and denoted Lwll).



Then we }\ave o Tillation Uf fhe Cafcawy 7 bj LoeWy Jon th of ob}'ad;x G ST C ) where
Ci denotes the full Subwtejorj of objecﬁ of C o)’z Loewj Je@thSH

Clearks the Loewy leneth of an Subguoﬁ’ent of an obiect X does not  exceed the Loewy fength
J [} 149 Y i Ry
of X, So the categeries i are Cclosed under faking sublustient

(7 BEWhIRFEN MU E (M) /i) wh 7o+ Ky )

(Def) The Filtration of the cafeyory C bj Ciis clld the sode Tibvation or
the comd/wl filtration of (.

I+ C is endowed with an eact Taithful fnctor T-C—Vec then we om  defie ﬁ)@con@. (= Coend (F)
and its Subwa)g, Ci= Coend (Fiz; ) , and we have GCGy amd (= Uil
(alfernative , we ¢ say that Gi s spanned b\‘l matric elements of C- comodules FIX, YE(i

Let C be a k-linear abelian category, and F' : C — Vec an exact, faithful functor.
In this case one can define the space Coend(F') as follows: 5If M is a right C- dule with coaction 7 : M — M ® C' then a matrix element of M is

a right C-comodule with
(1 9) C d(F) (EB F(X)* . F(X))/E an element (f ® 1,7(m)) € C, where f € M*, m € M.
. oen = (Bxec

where E is spanned by elements of the form y, @ F(f)z — F(f)*y. @ z, x € F(X),
y« € F(Y)*, f € Hom(X,Y); in other words,

Coend(F") = lim End(F(X))".

G)I. Co |k linar abelim cat
- C odditive, +.Co additie
hext we show Zo has femnel,
O ss odC abelan ct. - VXeZo V=X 7 we dow | $s
° ng,@ X/%'E Jordan - Holder 5]???@ B3 G
f e v = (=0 2 ssiht  rvochelehc cho ol o)
2Kba5 %A |
fekp 2t , s2m Vb hohds b i yiafio, al fihoz
WQ§ [ Fidp=F iy -ip) = §
BRI h—=z ot 3 -f
£, = JPe i I\? -3t )
Co)t@ (YI(’) Y,@Yl/i- \/)@YL/Y) \{z: CULG}/ (Y;Lé Y}@YI)
L ¢ C{b@/m/\ cat. 0chocl , Yo ss Xl/)(o 5 V\/CX/‘
“Co abelian cat. T pw//baz’( oﬁ—aXo‘—ﬁ)g\—ﬁWXoﬂo
i /> Coﬁer{Y—JX(/Xo)
e e e I N




W |'(\AMLJEI'0/) Ci dwmn (4t ‘
© Ci% (oend (Flz; ) = @ F (X)%@HX)/ f: L;Men‘ei-wmﬂ (‘the cat. of £.4 okt comalds over i
@ Fo*oFk C@H FW@ Ty
Ei=En N Fiy* OFX) )
@FX)*@F(X//EM (9, Fig*@Flv) — = 9 Fory t E'ﬁ/ffr — @ f(X) @FW/DH
(i = Cil
C=UCi
@ Ci is sponned Qy natrix ekments of (- comod (F0) e (i
FeFi)*, RuellX) | Xeli
< [foid, eliw ) 7 = (=2 (Fw*@id)  (r (F1)

Thus we hae defned an ncreasina Tiltration lw subwa/g, of any 00a’3. C . Ths filtratin
s called the coradical Tiltration , ond the term o is called the coradial of C



The * lineay a‘lg, " detne of the coradical filtmtion s as Folbw. One says that g coa/y is
Simyle if it does not  have nontrivial Subcoalg.,i,e, it it s fiaite dimensional, ond s dual s
0 ump/ Li-e. matrix) alg

= fny smple subanly. of C is finte dmengional & (1d, then ol sdbgue

Vel is o Subwa lff el s a two-sided idal of CF XO% O Clued X=X, K=0)
Az FL %r%%%&t A=Mn(b) 24 DRFLAR ¥ 154t %4
Then Co is the sum of ol Simple subcoaly lp of C. The coa/g (i o nﬂk ove then definel
mducjvll/elj to be the Spaces 07t those X6C for which  oaWeGOC +(O(,

let (o be the coradical of C and set Cu=Ca /G Jor 020 ((a=A" (=N GIAG. )
(00020, 0L, O No=ler (MEm)a) =o' (06, 9C )
Then f[njn‘fg is G #i/ﬂafim of € covadical  Filbration of ()

Let Cy be the coradical of C and set C,, = C,,_1ACy for n > 1. We will
show that C(()Do) =C.

Suppose that D is a finite-dimensional subcoalgebra of C. Since all
subspaces of D* are closed, C* is the intersection of the maximal ideals of
C* by part (d) of Proposition 2.3.7. Thus Dy = Rad(D*). Since D is finite-
dimensional, Rad(D*) is nilpotent. Therefore D,, = ((Rad(D*))"*1)+
(0)* = D for some n > 0. Since C is the sum of its finite-dimensional
subcoalgebras Céoo) = C. By part (a) of Proposition 4.1.4:

Exergie | 3.3 (i) SMPPOAe that C s avpmfe dinensiona Goa/g ond I is the Jaohson radal
of C* Show thet Co- =1 . ond ge/)cm ize this statement o the infinite dimensional case.
This justifies the term * coradical 75: [ration "
)Df W If C is fide-di mensiona]. (o is the sum of the SlmP)e swbwa/j of [ then the Jacobson midi)
of an a/jebm AoRde)=0t, o T=C0 (QW=(=W) 0y, = E0"a U, b <0 helrd
‘%Dd -ADQ{ CWE[ H\e Su& (e 07EC IS wsec/ /V\ is maximg| id dea| of C* /VU
D4 s all the mavimal ided] of c Rad (€
N0 Co=1"  oagume [ny=(1")" Cn=(G,ACo)=(ancal)L (1)t

Cn—li ::(én"}ll Cn_l_ _ (Im;/u: Znﬂ
(C'{J SuLsFﬂ(t’ 177[[* 4/950;/}



(Prap) let 1= (o i C* . then
Wy I="Rad(C*)
() (n= (lnﬂ) :

Y Q1'=(0
p]t-‘ (=2 Ds  Du Simp)c Subcmlg. o C | /l/loFD(xi is maxima/ iceal 07[ (” 01[ f.d Cﬂ(l/m

Then I=(Z0a ) - Ny Dat=NaMla I2Rdd(C7)
For the offier Containnent , we First show (2 by induction on .
Now (o= (M=1" n=0 /

Assume_frue_for n1_ ceC
LI, =00 11" ¢7=0 <I91". oc)=0
& s e(19r)

&S o( e QI +1ec
& o e(/@(:n—l +OC
& ce &-f/lca :Cn

( XAl=4"(cav+xoc) )

(2)/

retun to ) Asume T€I by () (= (") <M, (h7 =0 Vnap
9:,,% F' s defned on all of C, where =€ But §=(e-f) in O that s
e-f is nertible for all T€] T4 follws that I € Rad ((})

) 1) C=Uno

Gi) Show that the coproduct mpe(f/s the  coradicdl Fibration .6 Zﬁ(Cn)C% Ciln-i

of: (o= G AL, (Y NZ=1AUN7) )

CeWGIAN™G)
S kisn obre CON™ L HGOC

= C@Cn—,‘ + Ci-l@c (%/
i=0,n4, ¥ B\q 8n < Ch@(, (/\3(:{” /\/sz /\AX:(/‘MX )/\X
bj lemma, itV is avector Space with SubSPaces 0=l CUchC  then

AV hi +U8V) =2 U Je Vi=Cis
Liii) Show Bat G s the dieck  sum of S/Mp/e SML)wa/ﬁ, 07[ C. Iy /Darmuéy, 3”“/)//’)@

e}ements mﬁ (lhj wafg, 0 Qre //near/y Mz/ép@nc/e/\f
of o



Def 184 A coa{q. 0 is said 1o ke cosemisimle it C is o diect sum of Sim;)/e

subtoaly (= Condlc))

C/early 0 coa/y 0 s cvsemisz'/n/)/e ntf 0- CO/noJ s Q S@/nw'ﬂyb Caﬁz&pyy.

Definition 3.4.9. Let C' be a coalgebra over the field k. A completely
reducible C-comodule is a C-comodule M which is the sum of its simple
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subcomodules.

Cosemisimple coalgebras over k are characterized much in the same way
as are semisimple artinean algebras over k.

Theorem 3.4.10. Suppose that C is a coalgebra over the field k. Then the
following are equivalent:

(a) All right C-comodules are completely reducible.
(b) C = Co.
(c) All left C-comodules are completely reducible.

Proof. We need only show the equivalence of parts (a) and (b). For th

CCOP.

Suppose that all right C-comodules are completely reducib
itself is the sum of simple right coideals of C. There
(a) of Theorem 3.4.2.

On the other hand, suppose that C' = Cy and let {D;};c; be the set
of simple subcoalgebras of C. Then any right C-comodule (M, p) can be
written M = @,c; M;, where p(M;) C M;®D; for all i € I, by Exercise
3.2.11. To complete the proof we may assume that C is simple. In this case
C* is a finite-dimensional simple algebra over k£ by Corollary 2.3.8 and thus
all C*-modules are completely reducible. Therefore all right C-comodules
are completely reducible and the theorem is proved. O

odule for a_se

~| corresponde

irreducible module and tne np OMPoneney «

R = R, @: @R, where the R, are the p

left_ideal in R, then a

Slasses of irreducible R-modules.

Suppose that (M, p) is a simple right C-comodule. Then p(M) C M®D for
some simple subcoalgebra D of C' by part (d) of Theorem 3.2.11. Thus the
simple C-comodules can be understood in terms of the sum of the simple
subcoalgebras of C.

Theorem 3.4.2. Let C be a coalgebra over the field k. Then Cy is

(a) the sum of the simple right coideals of C and is also
(b) the sum of the simple left coideals of C.

Proof. Since the coradicals of C' and C°°P are the same, we need only
establish part (a). Let N be a simple right coideal of C. As noted
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above A(N) C N®D, where D is a simple subcoalgebra of C. Since
Ic = (e®Ic)oA it follows that N C ¢(N)D C Cq.

Let D be a simple subcoalgebra of C. To complete the proof of the
theorem we need only show that D is the sum of simple right coideals of
C. Since D is a non-zero ﬁlﬁw_@s\ml right coideal of C, it follows
that D contains a mininial right coideal N of C. Let ¢* € C*. By (2.19)
the linear endomorphism R(c*) of C' defined by R(c*)(¢) = c+c* for all
¢ € Cis amap of right C-comodules. Thus N+c* is a homomorphic image
of N. Consequently N~—c* = (0) or N~—c* ~ N since N is simple. Let
E = N~C*. Then E C D and is the sum of simple right coideals of C.
Since

O B0 =C"=NeC" = NeC" =B =) [ g GA‘_ Sub'bi o]

if follows by part (b) of Proposition 2.3.5 that E is a subcoalgebra of C.
Since D is a simple subcoalgebra of C' we conclude D = E and thus is the
sum of simple right coideals of C.

V i V«JH Coilea oF C iff \/ I$ a{]fﬁﬂf
VIS 0 sul)w«’d. o4C it vai?A eH amf right

Exercise 3.2.11. Let (M,p) be a right C-comodule. Suppose that C' = chJea/
@,c; Di is the direct sum of subcoalgebras. Show that:

a) M =@,.; Mi, where p(M;) C Mi®D;.

(b) For such a decomposition of M necessarily M; = p~ (M&D;).

[Hint: Since Y., M®D; is direct and p is one-one, 3, ; M; is direct, where
Mi = p~'(M®D;). To show that 3.,., M; = M we may assume that I is finite
oot ks

and without loss of generality let I = {1,...,7}. For each i € I define ¢; € C*
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by ¢;|D; = 6; j¢|D;. For m € M show that m = e=m =e;—=m+ -+ e,—m €
M4+ M,



Let C be a coalgebra and M € MC. We recall that the socle of M,
denoted by s(M), is the sum of all simple subcomodules of M. Then
s(M) is a semisimple subcomodule of M. Since any non-zero comodule
contains a simple subcomodule, we see that s(M) is essential in M. We
can define recurrently an ascending chain My C M; C ... C M, C ... of

subcomodules of M as follows. Let My = s(M), and for any n > 0 we
define M, 41 such that s(M/M,) = Mp,41/M,. This ascending chain of
subcomodules is called the Loewy series of M. Since M is the union of all
subcomodules of finite dimension, we have that M = Up>oM,.

If I is a two-sided ideal of C*, we denote by anny(I) = {z € M|Iz = 0},
which is clearly a left C*-submodule of M.

Corollary 3.1.10 Let C be a coalgebra and Co,C1,. .. the Loewy series of
the right (or left) C-comodule C. Then Cy is the coradical of C, Cp =
A Cy and C, is a subcoalgebra of C' for any n > 0.

Proof: We have seen in Proposition 3.1.4 that the coradical of C is just
the socle of the right C-comodule C. Lemma 3.1.9 shows that C, =
anng(J(C*)**+1)+. By Proposition 2.5.3(1) we have C,, = (J(C*)**+!)+
and by Lemmma 2.5.7 we see that C,, = A"*'Cy. By Lemma 1.5.23 C,, is
a subcoalgebra. |

Proposition 2.5.3 Let C be a coalgebra. Then the following assertions
hold.

(i) If I is a left ideal of C*, then I+ = annc(I) = {c € C|I — ¢ = 0}.

(ii) If X is a left coideal of C, then X* = annc-(X), where

annc+(X)={f € C*|f ~z=0forany r € X}.
(iti) If p : M — M ® C is the comodule structure map of the right C-

comodule M, and J is a two-sided ideal of C* such that JM = 0, then
p(M) C M®J*, i.e. M is a right comodule over the subcoalgebra J* of
C

(iv) If M is a right C-comodule and A = (annc-(M))*, then A is the
smallest subcoalgebra of C such that p(M) C M ® A. The subcoalgebra A
is called the lgebra iated to the dule M.

Proof: (i) Let ¢ € annc(I). Then f — ¢ =0 for any f € I. Then

f(e) JQ - ela)er)
> elf(e)er)

e(f—o
=0

I

It

soce I+

Conversely, if c € I, then f(c) =0 forany f € I. Let A(c) = Picicn Ti®
Y with (Zi)1<i<n lmearly independent. If 1 < ¢ < n, there exists g € C*
such that g(z;) = 1 and g(z;) = 0 for any i # t. Then gf € I and

0 = (9l
= > gl@)f(w)

1<i<n

= flw)

so f(y:) = 0. Then f — ¢ = 3, ;c, f(y:)z: = 0, which shows that
c € annc(I). Thus It C annc(1).

(ii) If f € X! then f(X)=0. Let z € X. Then f =z =3 f(z3)z; =0,
thus z € annc-(X).

Conversely, assume that f € annc-(X). Then for any z € X we have that

f@) = £ e(@)z)

= &) flw)z)
e(f — =)
0

so fe Xt

(iii) For m € M let p(m) = Y, mo ® my, and assume that the mq’s are
linearly independent. If f € J we have that 0 = fm = Y f(m1)mo, so
f(mi) = 0 for any my, thus m, € J*. We obtain that p(M) C M ® J*.
(iv) Denote J = annc-(M). Then J is a two-sided ideal of C* and by (iii)
we have p(M) C M ® A, and A = J* is a subcoalgebra of C.

Assume that B is a subcoalgebra of C' such that p(M) C M ® B. If
f € B* and m € M, then fm = 0, so B+ C annc-(M) = J. Thus
J+ € (BY)* = B, and we find that A C B. 1

Proposition 3.1.4 Let C be a coalgebra. Then Co = s(cC) = s(Cc),
where s(Cc) is the socle of C as an object of M, and s(¢cC) is the socle
of C as an object of M.

Proof: We will show that Cy = s(Cc). The proof of the fact that
Co = s(cC) is similar (or can bee seen directly by looking at the co-
opposite coalgebra and applying the result about the right socle). A simple
subcoalgebra A of C is a right C-subcomodule of C. Since A is a finite
direct sum of simple right coideals of A, we see that A is semisimple of
finite length when regarded as a right C-comodule. Thus A C 5(C¢), and
then Co C s(Cc). S @l

Conversely, let S C s(C¢) be a simple right C-comodule, and let A be the
coalgebra associated to S. By Exercise 3.1.2 A is a simple coalgebra, so
A C Co. But S C A, since for c € S we have ¢ = Y e(c;)co € A. Thus
SQAQCQ,SOS(CC)QCO. SCC

Lemma 2.5.7 For any subspaces X andY of the coalgebra C we have that
XAY = (X1ty+4)*L.

In particular, if A is a subcoalgebra of C, then for any positive integer n
we have that A®A = (J")L, where J = A*.

Lemma 3.1.9 Let I = J(C*) = Ci- and M € MC. Then for anyn >0
we have M,, = annp(I"*1).

LMQ M Mp =D
Proof: We use induction on 7. For n = 0, we have ann(I) = Mo = s(M).
Indeed, IMy = J(C*)My = 0, since the Jacobson radical of C* annihilates
all simple left C*-modules. Thus My C anna(f)

Cy-comodule. Since Cy is a cosemisimple coalgebr:
ple object of the category M®, and then also
obtain that annp (1) € s(M) =

Assume now that M,,_1 = annp(I™) for some
s(M/Mp_,) is semisimple, we have that I(My/Myn_,) = 0, therefor¢ IM, &
M,,—1. Then I'""'M, = I"(IM,) C I"M,_, =0, so M, C ann

M,—1. Then I(X/M,_1) = 0 and by the same argument as above
is a right Ch-comodule, so X/M,_; is a semisimple comodule.

We have that s(M/Mp_1) = My /M,_;, so we obtain that X C M,. Thus
M, = annp (I™1), which ends the proof |

¥/Mns < Mha /M



liv) We hae defred Oi in three Wty s Cend (Flz;) 05 e Soun o mairi
eements of FX/, XeZ . and bj the * lnear alg " definjtion above . Show That
ese e defuitins  qyee
O+ (o cosemisimlu)c
(o co&emis/m)u}e@"“) Co*(;omac/ 5.8

Cu* Cvmwf = Zo Zo - Cosemi /mp}e ) Co'a?mm/ Cosemix/mp/e

- Lo Cosemis/m }@

©<=c corad (0)=0 I
F‘Zy \[ \I/ or IEC, Sine wideal
Co'CnmoJ”“> C-comod a// 5/m})/€ C‘(OMOCJM/E M/ / CD:@/MI/
(o= s(C)
O zi < ity
K f
Li-omd~>(11-(ondl

0=k ~ cXi chin=X
0=F(Xo) &~ CFIK] SF(Xin) =FX) in C- omod
F{X;f//xi)_ﬂ, /:(X;H)/]:(X,,/ in C-omd
( 0— X — Xin = /j; =0
0= Flt)— Fllin) = Fllin/x =7
™~ ok (FlG)=Fliy) )= P/ Fixy



. Ci/c/.’
let  9r(0)=0 Gufg, be the asocirted Graged coalg. of o oy 0 with respect to e
coradical filkation Then gr(C/) fs a Z--graded Coulg

Let T be a set. Comodules over kI" are given by I'-graded vector spaces. A
I-grading of a vector space V is a family V = (V(g))ger of subspaces of V' such

that DEFINITION 1.2.26. (1) An Ny-graded coalgebra is a pair (C,C), where
V= @ V(g) C is a coalgebra, (C,C) is an Ny-graded vector space, and
ger (1.2.3) A(C(n)) C @ C(r)® C(s) for all n >0,
A T-graded vector space is a pair (V,)V), where V is a vector space with a rts=n
grading (or a gradation) V. For a graded vector space V = (V,V) we denote by (1.2.4) e(C(n)) =0 for all n > 0.
7r; : V. = V(g), g € T, the canonical projection. An element v € V is called We write
homogeneous of degree g € I' if v € V(g). We write deg(v) = g, if v € V(g). P #C @
We also use the notation V; = V(g), in particular, when G is a monoid or a Appn:Clm+n) CC = C®C—"—5C(m)®C(n), mn €Ny,
e for the components of the comultiplication A.

up.
Let I'-Gr Mg be the category of I'-graded vector spaces, where a morphism
f:(V,V) —» (W,V) is a graded map or a homogeneous map (of degree 0),

that is a k-linear map with f(V(g)) C W(g) for all g € T Now suppose we start with a filtered coal-

ZDV C/é , gebra C =UC . We will define the associated

- l . P -

! Il //l graded coalgebra, denoted gr C, as follows:
L@f Vn=Cn+Cn1€Vn gr ¢(n) = C_/C forn) 1

n’ “n-1

oltnt G )=Z (O t g )0 (Gt () gr c(0) = ¢,
n _ n
2lG)CZ C0Ch; Zbu o €508
Va)
allc® VinOVls) (=8¢ s(6) < CLOOLLY
o AN FOL) Bl
EXERCOIOSE. Show that if C 1Sna coalgebra where c@”(
c= e c(1) and a(c(n)) € T C(1) ® C(n-1) then Vel o(CFZ Cu @Cy,
eIC(erO= 0 for n > 1. =0 => c°oC +=c*0¢
c® e d), ey
C=Z Cell)+ Zctelc?)
cel;, cel (o
B A

C=Z("l) &lc)=2&lcysw)
=0

It s sy o sop from Bercie | 336)that the comdical filtration of 9H0) s
nduced 5\7 12 jmc{/’nj.\_(COCC;/[ﬁ O C /

DEFINITION 5.3.11. An Ng-graded coalgebra C' = €, -, C(n) is called corad-
ically graded if the coradical filtration (Cy,),>0 of C is given by

C, = GLL%C(Z')

for all n > 0.

A gnded codg. C with this pgery Lie. .ane iomophic to §rC) for sme
codlg. C ) is said to_ ke Goradiéa/{y Grced, and ooa(g_ [ st gll)=C is
caled a/h[t/'nf of



Fm,)su ) (Hedenborger ) Let C b
coradically gmded

PROPOSITION 5.3.13. Let C = @, C(n) be an No-graded coalgebra. Assume
that C(0) is cosemisimple. Then the following are equivalent.

(1) C is coradically graded.
(2) Foralln>2, Ay,_1:C(n)— C(1) ® C(n — 1) is injective.
PROOF. We denote the coradical filtration of C' by (Cn)n20~

(I)= (2): Let 0#2 € C(n),n>2. Thenz & Cp,_q = @::01 C (i), since C' is
coradically graded. Hence Ay ,_1(z) # 0 by (5.3.1), since

) e@PCH@C(n—i) SCrRC+C1)@C(n—1)+C®Cps.
1=0

(2) = (1): The natural filtration
co)ccec(ccooacil)ec(2)c
is a coalgebra filtration. Hence Cy C C(0) by Proposition 5.2.4. Since C(0) is
cosemisimple, it follows that Co = C(0).
Let n > 1. The inclusion C(n) C C,, follows easily by induction, since
n n—1
Acm) @i ecm-iccoec+cs(Pw).
i=0 i=0
Hence @?:0 C(i) € C,. We prove equality by induction on n > 0. Suppose
there are integers n > 1, m > n and elements z; € C(i), 0 < ¢ < m, with

A coalg. then 9HC)

DEFINITION 1.2.26. (1) An Nyp-graded coalgebra is a pair (C, (), where
C'is a coalgebra, (C C) is an Ny-graded vector space, and

(1.2.3) A(C(n) S @D C(r)®C(s) for all n >0,

r4s=n
(1.2.4) e(C(n)) =0 for all n > 0.
‘We write
A o @rd
Appn:Clm+n) CC = C®C """ C(m)®C(n), mn € Ny,

for the components of the comultiplication A.

z = Z;”Oi, 16 Ch. Then A(z) € Co ® C + C® Cp_q by (5.3.1). By induction, GA:A—/ (CO@C.{L C@C’\”’/

Cro1 =@, C(i). Hence Ay ;5,1 (z) = 0. ’Ph&n_Am——]-@,,J_ﬂ,_aWO'by
(2). Mizn , X=0 2 Xn=D (@)

PROPOSITION 5.3.15. Let C be a coalgebra. Then gr C is coradically graded.

PROOF. By definition, Cy is cosemisimple. By Proposition 5.3.13 it is enough
to prove that A;,_; for grC is injective for all n > 2. We choose subspaces
X,CC,n>1, with C, =C,,_1 ® X,, for all n > 1. Then

CL®Cry = Co®Cry + X1 ® X1 + X1 ® Cr_sy (=6 0%

msn

for all n > 2. Hence, by (1.3.3), On-/ :cfl‘l. @Xﬂ’{
A(Ch) €Y Ci®Cui CCO®Cn+C1®Cn1 +C®Cus
i=0
CCrRC+X1®X,_1+C®C,_s.
234 5. GRADINGS AND FILTRATIONS

Since A~ (Co ® C + C ® Cp_2) = Cr_1, the map 7]- @7{/‘

A CL/Crt (X1 @ Xn1 +CoRC+C®Cpr2)/(Co®C+CQCy_2)

induced by A is injective. Thus Ay ,_1 is injective.

bion [X)=0  X=0

6/&7 W Cn /&u



