```
1.11 Ueligne's tensor product of locally finite abelian categories
 Let C. D be two locally finite abelian categories over a field 1k. (essentially small) (|k-linear)
                              tinite
All categories considered in this book will be locally small (except in the section on 2-categories)
and most of them will be essentially small.
[Def] Deligne's tensor product Z \boxtimes D is an abelian K-linear category universal: functor \boxtimes : Z \times D \longrightarrow Z \boxtimes D which is right exact in both variables. (X,Y) \longmapsto X \boxtimes Y
s.t.for \forall |k-linear abelian category A, and for any right exact in both variables bifunctor \exists : Z \times D \to A, \exists I right exact functor \overline{F} : Z \boxtimes D \to A satisfying \overline{F} \circ \boxtimes = \overline{F}.
Prop 1.11.2 (i) A Deligne's tensor product CIDD exists and is a locally finite abelian category.
```

 $(|R\otimes|S) \cdot (|m\otimes n|) = m\otimes n$   $: M\otimes_k N$  is a  $R\otimes S - mod$ .  $M\otimes_k N$  f.d.  $R\otimes S$  f.d.  $R\otimes S - mod_f$ : finite |k-l| inear abelian category.

```
Hom<sub>R-mod</sub> (X1, Y1) × Hom<sub>S-mod</sub> (X2, Y2) → Hom<sub>RØS-mod</sub> (X10k X2, Y<sub>1</sub>0k Y2)
                                 Corollary 2.5.1 Let f: M_1 \to M_2 be a right R-module homomorphism,
                         and g:N_1	o N_2 a left R-module homomorphism. Then there is a unique group
                        homomorphism f\otimes g from M_1\otimes_R N_1 to M_2\otimes_R N_2 such that (f\otimes g)(m\otimes n)=
                        f(m) \otimes g(n) for m \in M_1 and n \in N_1.
                 f \otimes g(r \otimes s) \cdot (m \otimes n) = f(r \cdot m) \otimes g(s \cdot n) = rf(m) \otimes sg(n) = (r \otimes s) \cdot (f(m) \otimes g(n))
                                 Hom<sub>R-mod</sub> (X1, Y1) ⊗ Homs-mod (X2, Y2) \( \text{Hom}_{R\omegas-mod} \) (X, \( \omega_k \) \( \text{Y}_1, \quad \text{X}_2 \ \omega_k \) \( \text{Y}_2) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_1, \quad \text{X}_2 \ \omega_k \) \( \text{Y}_2) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_1, \quad \text{X}_2 \ \omega_k \) \( \text{Y}_2) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_1, \quad \text{X}_2 \ \omega_k \) \( \text{Y}_2) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2) \( \text{Hom}_{R\omegas-mod} \) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2) \) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2) \) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2) \) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2, \quad \text{Y}_2) \) \( \text{Hom}_{R\omegas-mod} \) \( \text{Y}_2, \quad \text{Y}_2, \quad \text{Y}_2) \)
                                    Theorem 1.3.8 (Mitchell; [Fr]). Every abelian category is equivalent, as an
                                        additive category, to a full subcategory of the category of left modules over an asso-
                                        ciative unital ring A.
      \forall k-linear abelian category A ob A: k-mod (L) by the universal prop of \emptyset_k

M \times N \xrightarrow{\emptyset_k} M \otimes_k N

R-mod \times S-mod \xrightarrow{\boxtimes}

middle bilinear f

R
 obviously 12 right exact in both variables
next we show Fright exact.
suppose 0 \rightarrow L_1 \rightarrow L_2 \rightarrow L_3 \rightarrow D is exact in ROS-mod next we show \overline{F}(L_1) \rightarrow \overline{F}(L_2) \rightarrow \overline{F}(L_3) \rightarrow D
```

```
pf: (locally finite)
(by Thm 1915) Any essentially small locally finite abelian category Z over a field lk is equivalent
to the category C-comod for a unique pointed coalgebra C.
 we can take coalg. in Thm 1.9.15, s.t. C = C - comod, D = D - comod (finite)
 then one can define C \( D \) = (C \( D \))-comod, next we show that it satisfies the required condition
 ( \otimes ) : \triangle ( \otimes ) = \sum (C_{ij} \otimes d_{ij}) \otimes (C_{ij} \otimes d_{ij})
          \mathcal{E}_{COD}(cod) = \mathcal{E}_{C}(c) \mathcal{E}_{D}(d)
   C-comod × D-comod - COD-comod
      M \times N \longrightarrow M \mathcal{O}_k N
 : C pointed. D pointed, then COD poin
(Rad ford Prop 4.1.7. (c))
 P_1: M \rightarrow M \otimes C P_2: N \rightarrow N \otimes D
   P_1(m) = \sum m_0 \otimes m_1 P_2(n) = \sum n_0 \otimes n_1
                                                      MON-MON OCOD
                                                                                            M MAC
   Prop (mon) = > mo on omon
                                                     PMORN I IdMOT SIdD
                                                                                             ON MOR
   MON MONOCOD
MONOCOD COD HONDIDED HONOCOD
   id MON & DOOD (=M. On OM, ON, ) = Z MO ONO O MII O NII O MIZ ONZ
  PMONOID COD (ZMO ONO OM, ON) = ZMOO ONOO O MOI ONOI OMI ONI
  MON PROS MONOCOD
                                 id \otimes \mathcal{E}_{c \otimes p} ( \geq m_0 \otimes n_0 \otimes m_1 \otimes n_1 ) = \geq m_0 \otimes n_0 \otimes \mathcal{E}_{c} (m_1) \mathcal{E}_{p} (m_2)
           ⊗1 /id 0 ε<sub>coo</sub>
          MON Olk
                                                                         = Emo Ec(mi) & No En (m2)
                                                                         = M \otimes N
  MON is a (O1)-comodule, where COD pointed (MON finite)
   COD-comod locally finite abelian category.
   Next we show Fright exact. i.e. Y 0 -> L_ -> L_ -> L_ -> in cop-comod
```

we show  $\overline{F}(L) \rightarrow \overline{F}(L) \rightarrow \overline{F}(L) \rightarrow 0$ 

```
(ii) It is unique up to a unique equivalence.

of: C \times D \longrightarrow C \boxtimes D

\boxtimes \circ \boxtimes' = \boxtimes \circ D

\boxtimes \circ \boxtimes' = \boxtimes \circ \boxtimes + \bigcup \otimes \boxtimes' \circ \boxtimes = \boxtimes

Z \times D \longrightarrow Z \boxtimes D

Z \times D \longrightarrow Z

Z
```

(iii) Let C. D be coalg. and let C = C - comod and D = D - comod. Then  $C \boxtimes D = (C \boxtimes D) - comod$  pf: by (i) (ii)

(iv) The bifunctor  $\square$  is exact in both variables and satisfies  $Hom_{\mathbb{Z}}(X_1, Y_1) \otimes Hom_{\mathbb{Z}}(X_2, Y_2) \cong Hom_{\mathbb{Z} \otimes \mathbb{D}}(X_1 \boxtimes X_2, Y_1 \boxtimes Y_2)$ (f, 9)  $\longrightarrow$   $f \otimes g$   $X_1 \stackrel{+}{\longrightarrow} Y_1$   $X_2 \stackrel{G}{\longrightarrow} Y_2$   $X_1 \otimes C \stackrel{+}{\longrightarrow} Y_1 \otimes C$   $X_2 \otimes D \stackrel{g}{\longrightarrow} Y_2 \otimes D$ 

=  $f \otimes g \otimes id (P_{X_1} \otimes \chi_2(X_1 \otimes \chi_2)) = \sum f(\chi_{10}) \otimes g(\chi_{20}) \otimes \chi_{11} \otimes \chi_{21}$ 

fog is COD-comal-map

as 1k-module. fog unique

Homa (K, Y,) & Homa (K, Y2) = Homa (X, 12 X2, Y, 12 Y2)

(v) Any bilinear bifunctor  $F:Z\times D\to A$  exact in each variable defines an exact functor  $F:Z\boxtimes D\to A$ .

pf: the same as before.

Deligne's tensor product can also be applied to functors. If  $F: \mathcal{C} \to \mathcal{C}^{\ell}$  and  $G: \mathcal{D} \to \mathcal{D}^{\ell}$  are right exact functors between locally finite abelian categories then one defines the functor  $F \boxtimes G: \mathcal{C} \boxtimes \mathcal{D} \to \mathcal{C}^{\ell} \boxtimes \mathcal{D}^{\ell}$  using the defining universal property (see Definition 1.11.1) of  $\mathcal{C} \boxtimes \mathcal{D}$ . Namely, the bifunctor

$$F \times G : \mathcal{C} \times \mathcal{D} \to \mathcal{C}^{l} \boxtimes \mathcal{D}^{l} : (V, W) \mapsto F(V) \boxtimes G(W)$$

canonically extends to a right exact functor  $F \boxtimes G : \mathcal{C} \boxtimes \mathcal{D} \to \mathcal{C}^{\wr} \boxtimes \mathcal{D}^{\wr}$ .

$$Z \times D \longrightarrow Z \boxtimes D$$

$$F \times G \downarrow / \exists I F \times G = F \boxtimes G$$

$$Z \setminus D \setminus Z = F \boxtimes G$$

|.|2 (A, m, u) alg. (Def) The finite dual  $A^*$ fin =  $\{f \in A^* | f(\bar{I}) = 0 \text{ for some ideal of } A \text{ s.t. } \dim N/\bar{I} < \infty \}$ . ( $A^*$ fin,  $m^*$ ,  $u^*$ ) Coalg. Remark |.|2.3 Note that if A does not have finite dimensional modules, then  $A^*$ fin = 0. pf: Suppose  $A^*$ fin  $\pm 0$ ,  $\exists 0 \pm f \in A^*$ .  $f(\bar{I}) = D$  for some ideal  $\bar{I}$  of finite codimension.  $A^*A$ .  $A^*\bar{I}$  are  $A^*$ mod  $A^*A^*\bar{I}$  is  $A^*$ mod  $A^*\bar{I}$  finite dimensional but A does not have finite dimensional modules.  $A^*\bar{I} = D$   $A = \bar{I}$  $f \in A^*$ fin f(A) = D f = O. Contradiction.

1.13 Pointed coalg. and the coradical filtration

Let 6 be a locally finite abelian category.

Any object  $X \in \mathbb{C}$  has a canonical filtration  $O=X_O \subset X_1 \subset X_2 \subset \cdots \subset X_n=X$  s.t.  $X_{i+1}/X_i$  is the socle (i.e. the maximal semisimple subobject) of  $X/X_i$  (in other words,  $X_{i+1}/X_i$  is the sum of all simple subobjects of  $X/X_i$ ).

pf:

O=Xo ,在X(X/Xo)中村出版的 simple subobject {Ring Let X1= ZR; 在 X/X,中村出版的 simple subobject {Ring Let X1= ZRing Let R'/X1 = ZR

Every abelian category is equivalent, as an additive category, to a full subcategory of the category of left modules over an associative unital ring A.

设N为Mbo→模, T: M→M/N, RY在TI, M的它含N的+模与M/N的+模是——对应的

: we can find X2, continue

X has finite length, any filtration of X can be extended to Jordan-Hölder series

: X has a canonical filtration.

(Def) The filtration of X by Xi is called the socle filtration or the coradical filtration.

It is easy to show by induction that the socle filtration is a filtration of X of the smallest possible length. s.t. the successive quotients are semisimple. The length of the socle filtration of X is called the Loewy length of X, and denoted Lw(X).

| Then we have a filtration of the category C by Loewy length of objects: Co C1, c, where Ci denotes the full subcategory of objects of C of Loewy length ≤i+1.                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clearly, the Loewy length of any subquotient of an object X does not exceed the Loewy length<br>of X, So the categories C; are clased under taking subquotient.<br>对于自含N的子模H. M/H = (M/N)/(H/N) X+H → π(X)+ H/N )                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Def) The filtration of the category C by Ci is called the socle filtration or the coradical filtration of C.                                                                                                                                                                                                                                                                                                                                  |
| If C is endowed with an exact faithful functor $F: C \rightarrow Vec$ then we can define the coalg. $C=Coend(I)$ and its subcoalg. $C: Coend(F C)$ , and we have $C: C: C$                                                                                                                                                                                                                                    |
| (alternative, we can say that Ci is spanned by matrix elements of C-comodules $F(x)$ , $X \in Ci$ .                                                                                                                                                                                                                                                                                                                                            |
| Let $\mathcal C$ be a k-linear abelian category, and $F:\mathcal C\to Vec$ an exact, faithful functor. In this case one can define the space $Coend(F)$ as follows: $(1.9) \qquad Coend(F) := (\oplus_{X \in \mathcal C} F(X)^* \otimes F(X))/E$ where $E$ is spanned by elements of the form $y_* \otimes F(f)x - F(f)^* y_* \otimes x,  x \in F(X),$ $y_* \in F(Y)^*,  f \in Hom(X,Y);$ in other words, $Coend(F) = \varinjlim End(F(X))^*.$ |
| $DI$ , $Z_{o}$ : $ k$ -linear abelian cat.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conditive, ¿Co additive                                                                                                                                                                                                                                                                                                                                                                                                                        |
| next we show Zo has kernel.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| : To s.s. and Z abelian cat. i. VXEZo, Y—X in Z. We show Y s.s.                                                                                                                                                                                                                                                                                                                                                                                |
| · X s.s. ( X 是它 Jordan-Hölder 万y中单窗因子 立和.                                                                                                                                                                                                                                                                                                                                                                                                      |
| f: E ノ => X=の1i 是X的 S.S 分解、 RY O C I C II D IZ C ··· C I D ··· O M C ··· CX                                                                                                                                                                                                                                                                                                                                                                    |
| 是X的含成列                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Y_1 \oplus Y_2/Y_1 \cong Y_2$ , 这是因为 $Y_1 \hookrightarrow Y_1 \oplus Y_2 \rightleftharpoons Y_2$ $Y_1 \oplus Y_2/Y_1 \cong Y_2$ , 这是因为 $Y_1 \hookrightarrow Y_2 \Rightarrow Y_2$ $Y_1 \oplus Y_2/Y_1 \cong Y_2$ , 这是因为 $Y_1 \hookrightarrow Y_1 \oplus Y_2 \Rightarrow Y_2$ $Y_1 \oplus Y_2 = f(id_1 \oplus Y_2 - id_1 P_1) = f$                                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                          |
| $f_{i2} = g_{i2} = g \qquad \Rightarrow \exists f_{i2}$                                                                                                                                                                                                                                                                                                                                                                                        |
| Coker (1, -> 1, 0/2)= 1, 0/2/y, \(\lambda_2 = Coker (\lambda_1 -> \lambda_1 \Omega \rangle_2)                                                                                                                                                                                                                                                                                                                                                  |
| To chalian cat OCXCX. Yours XI/V SS Y VCXI                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\sim$ Zo abelian cat. + pullback $\sim \times_0 \hookrightarrow \times_1 \longrightarrow \times_1/\times_0 \longrightarrow 0$                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                       |

```
Induction, C_i abelian cat.

(2) C_i \triangleq Coend(F|Z_i) = \bigoplus_{x \in C_i} F(x) * @F(x) /_{E_i}, F: C_i \xrightarrow{equivalence} C_i - comod (the cat. of f.d. right comodules over C_i)

(3) C_i = C_i = C_i + C_i = C_i + C_i = C_i =
```

Thus we have defined an increasing filtration by subcoalg. of any coalg. C. This filtration is called the coradical of C

The linear alg. define of the coradical filtration is as follow. One says that a coalg. is simple if it does not have nontrivial subcoalg., i.e. if it is finite dimensional, and its dual is a simple (i.e. matrix) alg.  $\Rightarrow$  Any simple subcoalg of C is finite dimensional.  $\leftarrow$  C f.d., then all subspace VSC is a subcoalg. iff  $V^{\perp} \subseteq C^{*}$  is a two-sided ideal of  $C^{*}$ .  $X ext{ of } C^{*}$  closed  $X^{\perp \perp} = X$ ,  $X = (X^{\perp})^{\perp}$ A是F上有限维单代数← A=Mn(D),其中, D是F上有限维可除代数 Then Co is the sum of all simple subcoalg of C. The coalg. Cnt1 for n>t are then defined inductively to be the spaces of those XEC for which D(X) EGOC + COCO. Let Co be the coradical of C and set  $C_{n+1}=C_n \wedge C_0$  for  $n \ge 0$ .  $(C_n=\Lambda^{n+1}C_0=(\Lambda^n C_0)\wedge C_0$ .)  $C \xrightarrow{\Delta} COC \xrightarrow{\pi_1O\pi_2} C/C_n \otimes C/C_o \qquad C_n \land C_0 = \ker((\pi_1 \otimes \pi_2) \Delta) = \Delta^+(COC_0 + C_n \otimes C)$ then  $\{C_n\}_{n=0}^{\infty}$  is a filtration of C. (coradical filtration of C) Let  $C_0$  be the coradical of C and set  $C_n = C_{n-1} \wedge C_0$  for  $n \geq 1$ . We will show that  $C_0^{(\infty)} = C$ . Suppose that D is a finite-dimensional subcoalgebra of C. Since all subspaces of  $D^*$  are closed,  $C^{\perp}$  is the intersection of the maximal ideals of  $C^*$  by part (d) of Proposition 2.3.7. Thus  $D_0^{\perp} = \operatorname{Rad}(D^*)$ . Since D is finitedimensional, Rad $(D^*)$  is nilpotent. Therefore  $D_n = ((\text{Rad}(D^*))^{n+1})^{\perp} =$  $(0)^{\perp} = D$  for some  $n \geq 0$ . Since C is the sum of its finite-dimensional subcoalgebras  $C_0^{(\infty)} = C$ . By part (a) of Proposition 4.1.4: Exercise 1.13.3 (i) Suppose that C is a finite dimensional coalg. and I is the Jacobson radical of C\*. Show that  $C_n^{\perp} = I^{n+1}$ , and generalize this statement to the infinite dimensional case. This justifies the term "coradical filtration". pf: (1) If C is finite-dimensional. Co is the sum of the simple subcoally of C, then the Jacobson radical of an algebra A,  $Rad(c^*) = Co^{\perp}$ ,  $A = Co^{\perp}$ .  $A = Co^{\perp}$ .  $A = Co^{\perp}$  in  $A = Co^{$  $(\Xi Da)^2 = Q Da^2 + C f.d.$ , the subspace of C\* is closed, M is maximal ideal of C\*.  $M = (M^{\perp})^2$ Do Do is all the maximal ideal of  $C^*$  Rad  $(C^*) = C_0^2$ 

 $C_{n}^{\perp} = (I^{n+1})^{\perp \perp} = I^{n+1}$ 

n=0  $C_0=I^{\perp}$  assume  $C_{n-1}=(I^n)^{\perp}$ ,  $C_n=(C_{n-1}\wedge C_0)=(C_{n-1}^{\perp}C_0^{\perp})^{\perp}=(I^n\cdot I)^{\perp}$ 

= In (Cfd subspace of C\* closed)

```
(Prop) Let I= Co in C*, then
    I = Rad(C^*)
    (2) C_n = (I^{nt})^{\perp}
    (3) \bigcap_{n \ge 0} \underline{I}^n = (0)
  pf: C_0 = \sum Da. Du simple subcoals of C, Ma = Da^{\perp} is maximal ideal of C* of f.d. codim
         Then I = (ZDa)^{\perp} = \Lambda_d Da^{\perp} = \Lambda_d Ma I = Rad(C^*)
        For the other containment, we first show (2), by induction on n.
          Now Co = Co = I = n = 0 /
          Assume true for n-1, CEC.
           \langle I^{nH}, c7=0 \Leftrightarrow \langle I \cdot I^{n}, c7=0 \Leftrightarrow \langle I \partial I^{n}, oc7=0 \rangle

⇒ SCE(IDI")

                                                                                  \Leftrightarrow c \in C_{n+1} \land C_o = C_n \quad (X \land Y = S^{-1}(C \otimes Y + X \otimes C))
          [2] V
          return to (1) Assume fe I, by (21 Cn=(Int)) <fn+1, Cn> =0 Vn >0
           g = \frac{2}{5} f'' is defined on all of C, where f'' = \varepsilon. But g = (\varepsilon - f)^{-1} in C^*; that is
        \varepsilon-f is invertible for all f \in J. It follows that I \subseteq Rad(C^*)
          (3) In ⊆ (In) 1 C= Un≥o Cn
     (ii) Show that the coproduct respects the coradical filtration, i.e. U(n) < = CiOCn-i
     pf: Cn = Cn+ \(\Co\) ((\(X\)\)\\Z = \(X\)(\(Y\)Z))
           C_{n} = (\Lambda^{i}C_{o}) \Lambda (\Lambda^{n+1-i}C_{o})
A \bowtie A \subseteq C \otimes \Lambda^{n+1-i}C_{o} + \Lambda^{i}C_{o} \otimes C
                                                                = C @ Cn-i + Ci-10C (*)
    i=0, n+1, \times J by SG_1 \subseteq C_1 \otimes G_2 (\Lambda^0 X = \{0\}, \Lambda^1 X = X, \Lambda^n X = (\Lambda^{n+1} X) \Lambda X.
            by lemma, if V is a vector space with subspaces 201 = Vo C V. C V. C ·· then
          1 (V& Vn-i + ViOV) = \( \frac{1}{2} \) \( \varphi \) \( \v
   (iii) Show that Co is the direct sum of simple subcoalg. of C. In particular, grouplike
elements of any coalg. C are linearly independent.
     pf: 18%.
```

## Def 1.B.4 A coalg. C is said to be cosemisimple if C is a direct sum of simple subcoalg. (C = Corad(C)) Clearly, a coalg. C is cosemisimple iff C-comod is a semisimple category.

**Definition 3.4.9.** Let C be a coalgebra over the field k. A completely reducible C-comodule is a C-comodule M which is the sum of its simple

102

 $Hopf\ Algebras$ 

subcomodules.

Cosemisimple coalgebras over k are characterized much in the same way as are semisimple artinean algebras over k.

**Theorem 3.4.10.** Suppose that C is a coalgebra over the field k. Then the following are equivalent:

- (a) All right C-comodules are completely reducible.
- (b)  $C = C_0$ .
- (c) All left C-comodules are completely reducible.

**Proof.** We need only show the equivalence of parts (a) and (b). For the equivalence of parts (c) and (b) is the equivalence of parts (a) and (b) for  $C^{cop}$ .

Suppose that all right C-comodules are completely reducible. Then C itself is the sum of simple right coideals of C. Therefore  $C = C_0$  by part (a) of Theorem 3.4.2.

On the other hand, suppose that  $C=C_0$  and let  $\{D_i\}_{i\in I}$  be the set of simple subcoalgebras of C. Then any right C-comodule  $(M,\rho)$  can be written  $M=\bigoplus_{i\in I}M_i$ , where  $\rho(M_i)\subseteq M_i\otimes D_i$  for all  $i\in I$ , by Exercise 3.2.11. To complete the proof we may assume that C is simple. In this case  $C^*$  is a finite-dimensional simple algebra over k by Corollary 2.3.8 and thus all  $C^*$ -modules are completely reducible. Therefore all right C-comodules are completely reducible and the theorem is proved.

THEOREM 4.4. Any module for a semi-simple artinian ring R is completely reducible and there is a 1-1 correspondence between the isomorphism classes of irreducible modules for R and the simple components of the ring. More precisely, if  $R = R_1 \oplus \cdots \oplus R_r$ , where the  $R_r$  are the simple components and  $I_r$  is a minimal left ideal in  $R_r$ , then  $\{I_1, \ldots, I_s\}$  is a set of representatives of the isomorphism classes of irreducible R-modules.

Suppose that  $(M, \rho)$  is a simple right C-comodule. Then  $\rho(M) \subseteq M \otimes D$  for some simple subcoalgebra D of C by part (d) of Theorem 3.2.11. Thus the simple C-comodules can be understood in terms of the sum of the simple subcoalgebras of C.

**Theorem 3.4.2.** Let C be a coalgebra over the field k. Then  $C_0$  is

- (a) the sum of the simple right coideals of C and is also
- (b) the sum of the simple left coideals of C.

**Proof.** Since the coradicals of C and  $C^{cop}$  are the same, we need only establish part (a). Let N be a simple right coideal of C. As noted

Representations of coalgebras

99

above  $\Delta(N) \subseteq N \otimes D$ , where D is a simple subcoalgebra of C. Since  $I_C = (\epsilon \otimes I_C) \circ \Delta$  it follows that  $N \subset \epsilon(N) D \subset C_0$ .

 $\mathbf{I}_C = (\epsilon \otimes \mathbf{I}_C) \circ \Delta$  it follows that  $N \subseteq \epsilon(N)D \subseteq C_0$ . Let D be a simple subcoalgebra of C. To complete the proof of the theorem we need only show that D is the sum of simple right coideals of C. Since D is a non-zero finite-dimensional right coideal of C, it follows that D contains a minimal right coideal N of C. Let  $c^* \in C^*$ . By (2.19) the linear endomorphism  $\mathbf{R}(c^*)$  of C defined by  $\mathbf{R}(c^*)(c) = c - c^*$  for all  $c \in C$  is a map of right C-comodules. Thus  $N - c^*$  is a homomorphic image of N. Consequently  $N - c^* = (0)$  or  $N - c^* \simeq N$  since N is simple. Let  $E = N - C^*$ . Then  $E \subseteq D$  and is the sum of simple right coideals of C. Since

 $C^* \rightarrow E \leftarrow C^* = C^* \rightarrow N \leftarrow C^* = N \leftarrow C^* = E \implies$ 

if follows by part (b) of Proposition 2.3.5 that E is a subcoalgebra of C. Since D is a simple subcoalgebra of C we conclude D=E and thus is the sum of simple right coideals of C.

V is right coicleal of C iff V is a left  $C^*$ -submodule V is a subcoalg. of C iff V both left and right

Exercise 3.2.11. Let (M, p) be a right C-comodule. Suppose that  $C = \bigoplus_{i \in I} D_i$  is the direct sum of subcoalgebras. Show that:

(a)  $M = \bigoplus_{i \in I} M_i$ , where  $\rho(M_i) \subseteq M_i \otimes D_i$ .

(b) For such a decomposition of M necessarily  $M_i = \rho^{-1}(M \otimes D_i)$ .

[Hint: Since  $\sum_{i\in I} M\otimes D_i$  is direct and  $\rho$  is one-one,  $\sum_{i\in I} M_i$  is direct, where  $M_i=\rho^{-1}(M\otimes D_i)$ . To show that  $\sum_{i\in I} M_i=M$  we may assume that I is finite and without loss of generality let  $I=\{1,\ldots,r\}$ . For each  $i\in I$  define  $e_i\in C^*$ 

 $Representations\ of\ coalgebras$ 

95

by  $e_i|D_j=\delta_{i,j}\epsilon|D_i$ . For  $m\in M$  show that  $m=\epsilon \rightharpoonup m=e_1 \rightharpoonup m+\cdots+e_r \rightharpoonup m\in M_1+\cdots+M_r.]$ 

Let C be a coalgebra and  $M \in \mathcal{M}^C$ . We recall that the socle of M, denoted by s(M), is the sum of all simple subcomodules of M. Then s(M) is a semisimple subcomodule of M. Since any non-zero comodule contains a simple subcomodule, we see that s(M) is essential in M. We can define recurrently an ascending chain  $M_0 \subseteq M_1 \subseteq \ldots \subseteq M_n \subseteq \ldots$  of subcomodules of M as follows. Let  $M_0 = s(M)$ , and for any  $n \geq 0$  we define  $M_{n+1}$  such that  $s(M/M_n) = M_{n+1}/M_n$ . This ascending chain of subcomodules is called the Loewy series of M. Since M is the union of all subcomodules of finite dimension, we have that  $M = \bigcup_{n \geq 0} M_n$ .

If I is a two-sided ideal of  $C^*$ , we denote by  $ann_M(I) = \{x \in M | Ix = 0\}$ , which is clearly a left  $C^*$ -submodule of M.

**Corollary 3.1.10** Let C be a coalgebra and  $C_0, C_1, \ldots$  the Loewy series of the right (or left) C-comodule C. Then  $C_0$  is the coradical of C,  $C_n =$  $\wedge^{n+1}C_0$  and  $C_n$  is a subcoalgebra of C for any  $n \geq 0$ .

**Proof:** We have seen in Proposition 3.1.4 that the coradical of C is just the socle of the right C-comodule C. Lemma 3.1.9 shows that  $C_n = ann_C(J(C^*)^{n+1})^{\perp}$ . By Proposition 2.5.3(i) we have  $C_n = (J(C^*)^{n+1})^{\perp}$ , and by Lemma 2.5.7 we see that  $C_n = \wedge^{n+1}C_0$ . By Lemma 1.5.23  $C_n$  is a subcoalgebra.

Proposition 2.5.3 Let C be a coalgebra. Then the following assertions

hold. (i) If I is a left ideal of  $C^*$ , then  $I^{\perp} = ann_C(I) = \{c \in C | I \rightarrow c = 0\}$ . (ii) If X is a left coideal of C, then  $X^{\perp} = ann_{C^*}(X)$ , where

$$ann_{C^{\bullet}}(X)=\{f\in C^{*}|f\rightharpoonup x=0\text{ for any }x\in X\}.$$

(iii) If  $\rho: M \to M \otimes C$  is the comodule structure map of the right Ccomodule M, and J is a two-sided ideal of  $C^*$  such that JM = 0, then  $\rho(M) \subseteq M \otimes J^{\perp}$ , i.e. M is a right comodule over the subcoalgebra  $J^{\perp}$  of

(iv) If M is a right C-comodule and  $A = (ann_{C^*}(M))^{\perp}$ , then A is the smallest subcoalgebra of C such that  $\rho(M)\subseteq M\otimes A$ . The subcoalgebra A is called the coalgebra associated to the comodule M.

**Proof:** (i) Let  $c \in ann_C(I)$ . Then f - c = 0 for any  $f \in I$ . Then

$$f(c) = f(\sum \varepsilon(c_1)c_2)$$

$$= \sum \varepsilon(f(c_2)c_1)$$

$$= \varepsilon(f \to c)$$

so  $c\in I^\perp$ . Conversely, if  $c\in I^\perp$ , then f(c)=0 for any  $f\in I$ . Let  $\Delta(c)=\sum_{1\leq i\leq n}x_i\otimes y_i$  with  $(x_i)_{1\leq i\leq n}$  linearly independent. If  $1\leq t\leq n$ , there exists  $g\in C^*$  such that  $g(x_t)=1$  and  $g(x_t)=0$  for any  $i\neq t$ . Then  $gf\in I$  and

$$0 = (gf)(c)$$

$$= \sum_{1 \le i \le n} g(x_i)f(y_i)$$

$$= f(y_t)$$

so  $f(y_t) = 0$ . Then  $f - c = \sum_{1 \le i \le n} f(y_i) x_i = 0$ , which shows that  $c\in ann_C(I). \text{ Thus } I^\perp\subseteq ann_C(I).$  (ii) If  $f\in X^\perp$  then f(X)=0. Let  $x\in X$ . Then  $f\to x=\sum f(x_2)x_1=0$ , thus  $x \in ann_{C^*}(X)$ .

Conversely, assume that  $f \in ann_{C^*}(X)$ . Then for any  $x \in X$  we have that

$$f(x) = f(\sum \varepsilon(x_1)x_2)$$

$$= \varepsilon(\sum f(x_2)x_1)$$

$$= \varepsilon(f \to x)$$

so  $f \in X^{\perp}$ . (iii) For  $m \in M$  let  $\rho(m) = \sum m_0 \otimes m_1$ , and assume that the  $m_0$ 's are linearly independent. If  $f \in J$  we have that  $0 = fm = \sum f(m_1)m_0$ , so  $f(m_1) = 0$  for any  $m_1$ , thus  $m_1 \in J^{\perp}$ . We obtain that  $\rho(M) \subseteq M \otimes J^{\perp}$ . (iv) Denote  $J = ann_{C^{\star}}(M)$ . Then J is a two-sided ideal of  $C^{\star}$  and by (iii) we have  $\rho(M) \subseteq M \otimes A$ , and  $A = J^{\perp}$  is a subcoalgebra of C. Assume that B is a subcoalgebra of C such that  $\rho(M) \subseteq M \otimes B$ . If  $f \in B^{\perp}$  and  $m \in M$ , then fm = 0, so  $B^{\perp} \subseteq ann_{C^{\star}}(M) = J$ . Thus  $J^{\perp} \subseteq (B^{\perp})^{\perp} = B$ , and we find that  $A \subseteq B$ .

**Proposition 3.1.4** Let C be a coalgebra. Then  $C_0 = s(C) = s(C)$ , where  $s(C_C)$  is the socle of C as an object of  $\mathcal{M}^C$ , and  $s({}_{C}C)$  is the socle of C as an object of  ${}^{C}\mathcal{M}$ .

**Proof:** We will show that  $C_0 = s(C_C)$ . The proof of the fact that  $C_0 = s(C)$  is similar (or can bee seen directly by looking at the coopposite coalgebra and applying the result about the right socle). A simple subcoalgebra A of C is a right C-subcomodule of C. Since A is a finite direct sum of simple right coideals of A, we see that A is semisimple of finite length when regarded as a right C-comodule. Thus  $A\subseteq s(C_C)$ , and then  $C_0\subseteq s(C_C)$ .  $S\longrightarrow S\otimes C(S)$  Conversely, let  $S\subseteq s(C_C)$  be a simple right C-comodule, and let A be the

coalgebra associated to S. By Exercise 3.1.2 A is a simple coalgebra, so  $A \subseteq C_0$ . But  $S \subseteq A$ , since for  $c \in S$  we have  $c = \sum \varepsilon(c_1)c_2 \in A$ . Thus  $A \subseteq C_0$ . But  $S \subseteq A$ , once  $S \subseteq A \subseteq C_0$ , so  $s(C_C) \subseteq C_0$ .

**Lemma 2.5.7** For any subspaces X and Y of the coalgebra C we have that  $X \wedge Y = (X^{\perp}Y^{\perp})^{\perp}$ .

In particular, if A is a subcoalgebra of C, then for any positive integer n we have that  $\wedge^n A = (J^n)^\perp$ , where  $J = A^\perp$ .

**Lemma 3.1.9** Let  $I = J(C^*) = C_0^{\perp}$  and  $M \in \mathcal{M}^C$ . Then for any  $n \geq 0$ 

we have  $M_n = ann_M(I^{n+1})$ .  $IM_0 = M_0$ ,  $M_0 = 0$ .

Proof: We use induction on n. For n = 0, we have  $ann_M(I) = M_0 = s(M)$ . Indeed,  $IM_0=J(C^*)M_0=0$ , since the Jacobson radical of  $C^*$  annihilates all simple left  $C^*$ -modules. Thus  $M_0\subseteq ann_M(I)$  On the other hand  $\overline{C}_0^+ann_M(I)=Iann_M(I)=0$ , so by Proposition 2.5.3,  $ann_M(I)$  is a right

 $C_0^-$  ann\_M(I) = I ann\_M(I) = 0, so by Proposition 2.3.3,  $ann_M(I)$  is a right  $C_0$ -comodule. Since  $C_0$  is a cosemisimple coalgebra  $ann_M(I)$  is a semisimple object of the category  $\mathcal{M}^C$ , and then also of the category  $\mathcal{M}^C$ . We obtain that  $ann_M(I) \subseteq s(M) = M_0$ .

Assume now that  $M_{n-1} = ann_M(I^n)$  for some  $n \ge 1$ . Since  $M_n/M_{n-1} = s(M/M_{n-1})$  is semisimple, we have that  $I(M_n/M_{n-1}) = 0$ , therefore  $IM_n \subseteq M_{n-1}$ . Then  $I^{n+1}M_n = I^n(IM_n) \subseteq I^nM_{n-1} = 0$ , so  $M_n \subseteq ann_M(I^{n+1})$ . If we denote  $X = ann_M(I^{n+1})$ , we have  $I^{n+1}X = 0$ , so  $IX \subseteq ann_M(I^n) = 0$ . If we denote  $X = ann_M(I^{n+1})$ , we have  $I^{n+1}X = 0$ , so  $IX \subseteq ann_M(I) = M_{n-1}$ . Then  $I(X/M_{n-1}) = 0$  and by the same argument as above  $X/M_{n-1}$  is a right  $C_0$ -comodule, so  $X/M_{n-1}$  is a semisimple comodule. We have that  $s(M/M_{n-1}) = M_n/M_{n-1}$ , so we obtain that  $X \subseteq M_n$ . Thus  $M_n = ann_M(I^{n+1})$ , which ends the proof.

```
(iv) We have defined Ci in three ways: as Coend (F|Z_i), as the span of matrix elements of F(X), X \in Z_i; and by the "linear alg" definition above. Show that these three definitions agree.
O·Co cosemisimple
 Co cosemisimple ← Co-comad s.s.
  Co-compd = Co Cosemisimple, Co-compd cosemisimple
 : Co cosemisimple
Co-comod --> C-comod all simple C-comodule Mi, Co = &Mi
C_{0} = S(C^{c})
1 Zi C Zi+1
 Ci-comod- >> Ci+1-comod
   D=XOC CXi CXi+1=X
   0=F(Xo) C -- CF(Xi) CF(XiH) = F(X) in C-comod
   F(X_{i+1}/X_{i}) \cong F(X_{i+1})/F(X_{i}) in C-comod
(0 \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+1}/X_i \rightarrow 0)
  0 \to F(X_i) \to F(X_{i+1}) \to F(X_{i+1}/X_i) \to 0
                       Coker (F(X_i) \rightarrow F(X_{i+1})) = \frac{F(X_{i+1})}{F(X_{i})}
```

## Let $gr(C) := \bigoplus_{n=0}^{\infty} Gr/C_i$ be the associated graded coalg. of a coalg. C with respect to the coradical filtration. Then gr(C) is a $\mathbb{Z}_+$ -graded coalg.

Let  $\Gamma$  be a set. Comodules over  $\mathbb{k}\Gamma$  are given by  $\Gamma$ -graded vector spaces. A  $\Gamma$ -grading of a vector space V is a family  $\mathcal{V}=(V(g))_{g\in\Gamma}$  of subspaces of V such that

$$V = \bigoplus_{g \in \Gamma} V(g).$$

A  $\Gamma$ -graded vector space is a pair  $(V, \mathcal{V})$ , where V is a vector space with a grading (or a **gradation**)  $\mathcal{V}$ . For a graded vector space  $V=(V, \mathcal{V})$  we denote by  $\pi_y^V: V \to V(g), \ g \in \Gamma$ , the canonical projection. An element  $v \in V$  is called **homogeneous of degree**  $g \in \Gamma$  if  $v \in V(g)$ . We write  $\deg(v) = g$ , if  $v \in V(g)$ .

We also use the notation  $V_g = V(g)$ , in particular, when G is a monoid or a group.

Let  $\Gamma$ -Gr  $\mathcal{M}_k$  be the category of  $\Gamma$ -graded vector spaces, where a morphism  $f:(V,V)\to (W,W)$  is a **graded map** or a **homogeneous map** (of degree 0), that is a k-linear map with  $f(V(g))\subseteq W(g)$  for all  $g\in\Gamma$ .

$$V_{i} = C_{i}/C_{i-1} \quad i \ge 1$$
Let  $V_{n} = C_{n} + C_{n+1} \in V_{n}$ 

$$\Delta(C_{n} + C_{n+1}) = \sum (C_{n}C_{n} + C_{n+1}) \otimes (C_{n}C_{n}) + C_{n+1}/C_{n+1}$$

$$\Delta(C_{n}) \subset \sum_{i=0}^{n} C_{i} \otimes C_{n-i} \quad \ge C_{n}C_{n} + C_{n}C_{n} \in \sum_{i=0}^{n} C_{i} \otimes C_{n-i}$$

$$\Delta(V_{n}) \subseteq \bigoplus_{r+s=n} V(r) \otimes V(s)$$

EXERCISE. Show that if C is a coalgebra where  $C = \bigoplus_{i=0}^{\infty} C(i) \text{ and } \Delta(C(n)) \subset \sum_{i=0}^{\infty} C(i) \otimes C(n-i) \text{ then } i=0$   $\in |C(n)| = 0 \text{ for } n \geq 1.$ 

Definition 1.2.26. (1) An  $\mathbb{N}_0$ -graded coalgebra is a pair  $(C, \mathcal{C})$ , where C is a coalgebra,  $(C, \mathcal{C})$  is an  $\mathbb{N}_0$ -graded vector space, and

(1.2.3) 
$$\Delta(C(n)) \subseteq \bigoplus C(r) \otimes C(s) \text{ for all } n \ge 0,$$

(1.2.4) 
$$\varepsilon(C(n)) = 0 \text{ for all } n > 0.$$

We write

 $\Delta_{m,n}: C(m+n) \subseteq C \xrightarrow{\Delta} C \otimes C \xrightarrow{\pi_m^C \otimes \pi_n^C} C(m) \otimes C(n), \ m,n \in \mathbb{N}_0,$  for the components of the comultiplication  $\Delta$ .

Now suppose we start with a filtered coalgebra  $C = \mathbf{U}C_n$ . We will define the <u>associated</u> graded <u>coalgebra</u>, denoted gr C, as follows:

$$\operatorname{gr} C(n) = C_n/C_{n-1}$$
 for  $n \ge 1$   
 $\operatorname{gr} C(0) = C_0$ 

$$C \xrightarrow{\triangle} C \otimes C \qquad \Delta(C_1) \subseteq C(0) \otimes C(1)$$

$$+ C(1) \otimes C(0)$$

$$+ C(1) \otimes C(0)$$

$$+ C(1) \otimes C(0)$$

$$+ C(1) \otimes C(0)$$

$$= \sum c^{\circ} \otimes C' + \sum C^{2} \otimes C'$$

$$+ \sum c^{\circ} \otimes C' + \sum C^{2} \otimes C'$$

$$C = \sum C^{\circ} \otimes (C') + \sum C^{2} \otimes (C^{2})$$

$$CEC_1$$
,  $C \notin C_0$   $\mathcal{E}(C^3)=0$   
 $\mathcal{D}_{\mathcal{F}}$   $\mathcal{E}(C^9)=0$ 

$$C = \sum C^{\circ} \mathcal{E}(C') \qquad \mathcal{E}(C) = \sum \mathcal{E}(C^{\circ}) \mathcal{E}(C')$$

It is easy to see from Exercise 1.13.3(i) that the coradical filtration of gr(C) is induced by its grading. ( $C_0 \subset C_1/C_0 + C_0 \subset \cdots$ )

DEFINITION 5.3.11. An  $\mathbb{N}_0$ -graded coalgebra  $C = \bigoplus_{n \geq 0} C(n)$  is called **coradically graded** if the coradical filtration  $(C_n)_{n \geq 0}$  of C is given by

$$C_n = \bigoplus_{i=0}^n C(i)$$

for all  $n \geq 0$ .

A graded coalg.  $\overline{C}$  with this property (i.e., one isomorphic to gr(C) for some coalg. C ) is said to be coradically graded, and a coalg. C s.t.  $gr(C) = \overline{C}$  is called a lifting of  $\overline{C}$ 

## Prop. 5.3, 15 (Heckenberger) Let C be a coalg. then 9x(C) coradically graded.

Proposition 5.3.13. Let  $C = \bigoplus_{n \geq 0} C(n)$  be an  $\mathbb{N}_0$ -graded coalgebra. Assume that C(0) is cosemisimple. Then the following are equivalent.

- (1) C is coradically graded.
- (2) For all  $n \geq 2$ ,  $\Delta_{1,n-1} : C(n) \to C(1) \otimes C(n-1)$  is injective.

PROOF. We denote the coradical filtration of C by  $(C_n)_{n>0}$ .

(1)  $\Rightarrow$  (2): Let  $0 \neq x \in C(n)$ ,  $n \geq 2$ . Then  $x \notin C_{n-1} = \bigoplus_{i=0}^{n-1} C(i)$ , since C is coradically graded. Hence  $\Delta_{1,n-1}(x) \neq 0$  by (5.3.1), since

$$\Delta(x) \in \bigoplus_{i=0}^{n} C(i) \otimes C(n-i) \subseteq C_0 \otimes C + C(1) \otimes C(n-1) + C \otimes C_{n-2}.$$

$$C(0) \subseteq C(0) \oplus C(1) \subseteq C(0) \oplus C(1) \oplus C(2) \subseteq \cdots$$

is a coalgebra filtration. Hence  $C_0 \subseteq C(0)$  by Proposition 5.2.4. Since C(0) is cosemisimple, it follows that  $C_0 = C(0)$ .

Let  $n \geq 1$ . The inclusion  $C(n) \subseteq C_n$  follows easily by induction, since

$$\Delta(C(n)) \subseteq \bigoplus_{i=0}^{n} C(i) \otimes C(n-i) \subseteq C(0) \otimes C + C \otimes \Big(\bigoplus_{i=0}^{n-1} C(i)\Big).$$

Hence  $\bigoplus_{i=0}^n C(i) \subseteq C_n$ . We prove equality by induction on  $n \geq 0$ . Suppose there are integers  $n \geq 1$ , m > n and elements  $x_i \in C(i)$ ,  $0 \leq i \leq m$ , with 

 An N<sub>0</sub>-graded coalgebra is a pair (C, C), where C is a coalgebra,  $(C, \mathcal{C})$  is an  $\mathbb{N}_0$ -graded vector space, and

(1.2.3) 
$$\Delta(C(n)) \subseteq \bigoplus_{r+s=n} C(r) \otimes C(s) \text{ for all } n \ge 0,$$

(1.2.4) 
$$\varepsilon(C(n)) = 0 \text{ for all } n > 0.$$

We write

 $\Delta_{m,n}: C(m+n) \subseteq C \xrightarrow{\Delta} C \otimes C \xrightarrow{\pi_m^C \otimes \pi_n^C} C(m) \otimes C(n), \ m,n \in \mathbb{N}_0,$ for the components of the comultiplication  $\Delta$ .

Cn=D1 (CoBC+ COCn-1)

⊼ m≤n

Proposition 5.3.15. Let C be a coalgebra. Then  $\operatorname{gr} C$  is coradically graded.

PROOF. By definition,  $C_0$  is cosemisimple. By Proposition 5.3.13 it is enough to prove that  $\Delta_{1,n-1}$  for gr C is injective for all  $n \geq 2$ . We choose subspaces  $X_n \subseteq C, \ n \ge 1$ , with  $C_n = C_{n-1} \oplus X_n$  for all  $n \ge 1$ . Then

$$C_1 \otimes C_{n-1} = C_0 \otimes C_{n-1} + X_1 \otimes X_{n-1} + X_1 \otimes C_{n-2}$$

for all  $n \geq 2$ . Hence, by (1.3.3),

$$\Delta(C_n) \subseteq \sum_{i=0}^n C_i \otimes C_{n-i} \subseteq C_0 \otimes C_n + C_1 \otimes C_{n-1} + C \otimes C_{n-2}$$
$$\subseteq C_0 \otimes C + X_1 \otimes X_{n-1} + C \otimes C_{n-2}.$$

234

5. GRADINGS AND FILTRATIONS

Since 
$$\Delta^{-1}(C_0 \otimes C + C \otimes C_{n-2}) = C_{n-1}$$
, the map

Since 
$$\Delta^{-1}(C_0 \otimes C + C \otimes C_{n-2}) = C_{n-1}$$
, the map 
$$\Delta' : C_n/C_{n-1} \to (X_1 \otimes X_{n-1} + C_0 \otimes C + C \otimes C_{n-2})/(C_0 \otimes C + C \otimes C_{n-2})$$
 induced by  $\Delta$  is injective. Thus  $\Delta_{1,n-1}$  is injective.

induced by  $\Delta$  is injective. Thus  $\Delta_{1,n-1}$  is injective.

$$\Delta_{1,n-1}(x)=0$$
  $X=0$