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Three fundamental inequalities and the projection
and contraction methods for variational inequalities
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The context of this lecture is mainly based on the publicatios [4, 6]
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1 Basic properties of Projection Mapping and
Variational Inequality

Let Ω ⊂ <n be a closed convex set, F be a mapping from <n to itself . We
investigate the solution methods for monotone variational inequality

VI(Ω, F ) u∗ ∈ Ω, (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω. (1.1)

We say the variational inequalit VI(Ω, F ) is monotone, when its operator F is
monotone. In other words, it satisfies

(u− v)T (F (u)− F (v)) ≥ 0, ∀u, v ∈ <n(or Ω).

If F (u) = Mu + q, where M is n by n matrix and q ∈ <n, F is an affine
operator and the problem is a linear variational inequality (abbreviated to LVI). A
LVI is monotone when

uTMu ≥ 0, ∀u ∈ <n.

In the above case, although M is not symmetric, we sayM is positive semidefi-
nite because the symmetric matrix MT +M is positive semidefinite.
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Especially, when M is skew-symmetric, i. e., MT = −M , then uTMu ≡ 0. In

this case, the affine operator F (u) = Mu+ q is monotone.

Let Ω ⊂ <n be a convex closed set and f be a convex function on Ω. Assume

that f is differentiable on a open set that contains Ω. Then f is convex if and

only if
f(y)− f(x) ≥ ∇f(x)T (y − x), ∀x, y ∈ Ω. (1.2)

This assertion can be found in

• R. Fletcher, Practical Methods of Optimization, Second Edition, §9.4. pp.

214–215, John Wiley & Sons, 1987.

Exchange the positions of x and y in (1.2), we get

f(x)− f(y) ≥ ∇f(y)T (x− y), ∀x, y ∈ Ω. (1.3)

Adding (1.2) and (1.3), it follows that

(y − x)T (∇f(y)−∇f(x)) ≥ 0, ∀x, y ∈ Ω. (1.4)

Thus, the gradient operator of the differentiable convex function is monotone.
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1.1 Basic properties of the projection mapping

We use PΩ(·) to denote the projection on Ω in Euclidean-norm, i. e. ,

PΩ(v) = arg min{‖u− v‖ |u ∈ Ω}.

An equivalent expression is PΩ(v) = arg min{ 1
2‖u− v‖

2 |u ∈ Ω}. When

Ω = <n+ (the nonnegative orthant in <n), each element of PΩ(v) is given by

(PΩ(v))j =

{
vj , if vj ≥ 0;

0, otherwise.

When Ω = B(c, r) = {c+ ru | ‖u‖ ≤ 1}, a ball in <n with radius r centered

on c, then

PΩ(v) =

{
r(v−c)
‖v−c‖ + c, if ‖v − c‖ ≥ r;

v, otherwise.

The unit ball in l∞ and l1 norm centered on the origin are denoted by

B∞ = {u ∈ <n| ‖u‖∞ ≤ 1} and B1 = {u ∈ <n| ‖u‖1 ≤ 1},



II - 5

respectively. The projection on B∞ and B1 are depicted in the following figures:
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Fig.1 Projection on B∞ Fig.2 Projection on B1

The following lemma illustrates an important property of the projection mapping.

Lemma 1.1 Let Ω ⊂ <n be a closed convex set and PΩ(·) be the projection on

Ω. It holds that

(v − PΩ(v))T (u− PΩ(v)) ≤ 0, ∀v ∈ <n,∀u ∈ Ω. (1.5)
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Fig.3 Geometric interpretation of the inequality (1.5)

Proof. First, since PΩ(v) = arg min{‖u− v‖ |u ∈ Ω}, we have

‖v − PΩ(v)‖ ≤ ‖v − w‖, ∀w ∈ Ω. (1.6)

Because PΩ(v) ∈ Ω and Ω ⊂ <n is closed and convex, then for any u ∈ Ω and

θ ∈ (0, 1), it holds that

w := θu+ (1− θ)PΩ(v) = PΩ(v) + θ(u− PΩ(v)) ∈ Ω.

For this w, by using (1.6), it follows that

‖v − PΩ(v)‖2 ≤ ‖v − w‖2 = ‖v − PΩ(v)− θ(u− PΩ(v))‖2.
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Expanding the last inequality, for any u ∈ Ω and θ ∈ (0, 1), we have

[v − PΩ(v)]T [u− PΩ(v)] ≤ θ

2
‖u− PΩ(v)‖2.

Let θ → 0+, we get the assertion (1.5). �

In the analysis of the projection and contraction methods, the inequality (1.5) is

most important and useful. We call it as the Tool inequality of the projection

operator. By using (1.5), it is easy to prove the following lemma.

Lemma 1.2 Let Ω ⊂ <n be a closed convex set, we have

‖PΩ(v)− PΩ(u)‖ ≤ ‖v − u‖, ∀u, v ∈ <n. (1.7)

‖PΩ(v)− u‖ ≤ ‖v − u‖, ∀v ∈ <n, u ∈ Ω. (1.8)

‖PΩ(v)− u‖2 ≤ ‖v − u‖2 − ‖v − PΩ(v)‖2, ∀v ∈ <n, u ∈ Ω. (1.9)

We leave the proofs to the reader.
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1.2 The equivalent projection equation of
the variational inequality

Assume that the solution set of (1.1), denoted by Ω∗, is nonempty. The solution

set of monotone variational inequality is convex, its proof can be found in

Theorem 2.3.5 [1]. We use u∗ to denote any fixed point in Ω∗. For any scalar

β > 0, the following statement is true.

u ∈ Ω∗ ⇔ u = PΩ[u− βF (u)].'
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Fig.4 Geometric interpretation of u∗ ∈ Ω∗⇔ u∗ = PΩ[u∗ − βF (u∗)]
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In other words, solving the variational inequality (1.1) is equivalent to finding a

zero point of e(u, β), where

e(u, β) = u− PΩ[u− βF (u)] (1.10)

The proof will be given in Theorem 1.1. Thus, for a given β > 0, ‖e(u, β)‖ can

be viewed as the error which measure how much u fails to be a solution point.

Theorem 1.1 For given β > 0, u∗ is a solution point od VI(Ω, F ) if and only if

e(u∗, β) = 0.

Proof. “⇒ ” Let u∗ be a solution point of VI(Ω, F ), we show e(u∗, β) = 0. Since
u∗ ∈ Ω. By using the tool inequality (1.5), we get(

v − PΩ(v)
)T (

u∗ − PΩ(v)
)
≤ 0, ∀v ∈ <n.

Setting v = u∗ − βF (u∗) in the above inequality and using the notation of e(u, β), it

follows from the last inequality that (e(u∗, β)− βF (u∗))T e(u∗, β) ≤ 0, and thus

‖e(u∗, β)‖2 ≤ βe(u∗, β)TF (u∗). (1.11)

On the other hand, because PΩ[u∗ − βF (u∗)] ∈ Ω and u∗ is a solution of the VI, it
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follows from (1.1) that

{PΩ[u∗ − βF (u∗)]− u∗}TF (u∗) ≥ 0,

and thus
e(u∗, β)TF (u∗) ≤ 0. (1.12)

From (1.11) and (1.12), we get e(u∗, β) = 0.

“⇐ ”. If e(u∗, β) = 0, we show u∗ ∈ Ω∗. Taking v = u∗ − βF (u∗) in (1.5) and
using the notation e(u∗, β), we have

{e(u∗, β)− βF (u∗)}T {u− PΩ[u∗ − βF (u∗)]} ≤ 0, ∀u ∈ Ω. (1.13)

Since e(u∗, β) = 0, u∗ = PΩ(·) ∈ Ω and PΩ[u∗ − βF (u∗)] = u∗. Substituting
them in (1.13), we get

u∗ ∈ Ω, (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω,

Thus u∗ is a solution of VI(Ω, F ). The proof is complete. �

The following theorem tells us, for any fixed u, ‖e(u, β)‖ is a non-decreasing

function of β, and {‖e(u, β)‖/β} is a non-increasing function of β. Our proof is

taken from [14], where the tool inequality (1.5) plays a key role.
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Theorem 1.2 For any given u ∈ <n and β̃ ≥ β > 0, we have

‖e(u, β̃)‖ ≥ ‖e(u, β)‖ (1.14)

and
‖e(u, β̃)‖

β̃
≤ ‖e(u, β)‖

β
. (1.15)

Proof. Let t = ‖e(x, β̃)‖/‖e(x, β)‖, the assertions of this theorem is equivalent to

1 ≤ t ≤ β̃/β.

In other words, t is the solution of the quadratic inequality

(t− 1)(t− β̃/β) ≤ 0. (1.16)

First, since PΩ(w) ∈ Ω, according to the tool inequality (1.5), we have

(v − PΩ(v))T (PΩ(v)− PΩ(w)) ≥ 0, ∀ v ∈ <n. (1.17)

Setting v := u− βF (u) and w := PΩ[u− β̃F (u)] in (1.17), using the definition of
e(u, β), it follows that (v − PΩ(v)) = e(u, β)− βF (u) and

PΩ(v)− PΩ(w) = PΩ[u− βF (u)]− PΩ[u− β̃F (u)] = e(u, β̃)− e(u, β).
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Substituting it in (1.17), we get

{e(u, β)− βF (u)}T {e(u, β̃)− e(u, β)} ≥ 0. (1.18)

Change the position of β and β̃ in (1.18), it follows that

{e(u, β̃)− β̃F (u)}T {e(u, β)− e(u, β̃)} ≥ 0. (1.19)

Multiplying (1.18) and (1.19) by β̃ and β, respectively, and then adding them up, we have

{β̃e(u, β)− βe(u, β̃)}T {e(u, β̃)− e(u, β)} ≥ 0,

and thus

β‖e(x, β̃)‖2 − (β + β̃)e(x, β)T e(x, β̃) + β̃‖e(x, β)‖2 ≤ 0. (1.20)

Using Cauchy-Schwarz inequality to (1.20),

β‖e(x, β̃)‖2 − (β + β̃)‖e(x, β)‖ · ‖e(x, β̃)‖+ β̃‖e(x, β)‖2 ≤ 0. (1.21)

Dividing (1.21) by β‖e(x, β)‖2, and using t = ‖e(x, β̃)‖/‖e(x, β)‖,

t2 −
(

1 +
β̃

β

)
t+

β̃

β
≤ 0.

Thus, the inequality (1.16) is true, and the proof of this theorem is complete. �
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Although Theorem 1.1 indicates that, for any β > 0, u is a solution of (1.1) if and

only if e(u, β) = 0. Theorem 1.2 tell us, if we use ‖e(u, β)‖ as the error

measure, the constant parameter β > 0 should not be too large or too small.

Generally, it should be considered in combination with the physical significance of

the considered problem.

2 Three fundamental inequalities and
Projection and Contraction Methods

Three fundamental inequalities Let u∗ be any given solution of the monotone

variational inequality (1.1). Because ũ = PΩ[u− βF (u)] ∈ Ω, according to

the definition of VI, we have

(FI1) (ũ− u∗)TβF (u∗) ≥ 0.

Setting v = u− βF (u) in (1.5), since ũ = PΩ[u− βF (u)] = PΩ[v] and

u∗ ∈ Ω, according to the tool inequality (1.5), we have
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(FI2) (ũ− u∗)T
(
[u− βF (u)]− ũ

)
≥ 0.

The variational inequalities considered in this Lecture Series is monotone,

according to the monotonicity of the operator F , we have

(FI3) (ũ− u∗)T (βF (ũ)− βF (u∗)) ≥ 0.

The search directions of some projection contraction algorithms are derived from

these basic (but fundamental) inequalities.

The basic framework of the projection and contraction methods

Projection and Contraction Methods is a kind of contraction algorithms based on

projection. For given β > 0 and he current point uk, we get a predictor ũk by

making the projection ũk = PΩ[uk − βF (uk)]. According to Theorem 1.1,

uk is a solution of (1.1) if and only if uk = ũk.

Error measure function A nonnegative function ϕ(uk, ũk) is called the error
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measure function of VI(Ω, F ) (1.1), if there is a δ > 0, such that

ϕ(uk, ũk) ≥ δ‖uk − ũk‖2 and ϕ(uk, ũk) = 0 ⇔ uk = ũk. (2.1a)

Profitable direction A vector d(uk, ũk)
(
‖d(uk, ũk)‖ = O‖uk − ũk‖

)
is

called a profitable direction associated with ϕ(uk, ũk), if

(uk − u∗)T d(uk, ũk) ≥ ϕ(uk, ũk), ∀u∗ ∈ Ω∗. (2.1b)

• Although u∗ is unknown, for any fixed u∗, (uk − u∗) is the gradient of the
distance function 1

2‖u − u
∗‖2 at uk. Thus, we call ϕ(u, ũ) and d(u, ũ)

“the error measure function” and “the profitable direction”, respectively.

• The basic idea of the projection and contraction algorithm is to construct
a direction d(uk, ũk), such that (2.1b) is satisfied for any u∗ ∈ Ω∗. The
definitions (2.1) indicate that −d(uk, ũk) is a descent direction of the dis-
tance function 1

2‖u− u
∗‖2 at the current point uk.

• In the contraction methods, it is required that the sequence {‖uk−u∗‖2}
is strictly monotone decreasing, where {uk} is the sequence generated by
the algorithm and u∗ is any fixed solution point.
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Using the conditions (2.1a) and (2.1b), we give the following general algorithm.

The general algorithm When the condition (2.1b) is satisfied, let

uk+1(α) = uk − αd(uk, ũk) (2.2)

be the step-size α dependent new iterate. Now, we consider how to maximize the

“profit” of the square of the distance, namely

ϑk(α) = ‖uk − u∗‖2 − ‖uk+1(α)− u∗‖2. (2.3)

Notice that

ϑk(α) = ‖uk − u∗‖2 − ‖uk − u∗ − αd(uk, ũk)‖2

= 2α(uk − u∗)T d(uk, ũk)− α2‖d(uk, ũk)‖2.

For any given u∗, the last equation indicates that ϑk(α) is a quadratic function of

α. Because u∗ is unknown, we can not directly maximize ϑk(α). However, using

(2.1b), we have

ϑk(α) ≥ 2αϕ(uk, ũk)− α2‖d(uk, ũk)‖2. (2.4)
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We define the right hand side of the last inequality as qk(α), so, we get

qk(α) = 2αϕk(uk, ũk)− α2‖d(uk, ũk)‖2, (2.5)

which is a lower bound function of ϑk(α). The quadratic function qk(α) reaches

its maximum at α∗k,

α∗k =
ϕ(uk, ũk)

‖d(uk, ũk)‖2
. (2.6)

If we take

uk+1 = uk − α∗kd(uk, ũk), (2.7)

it follows from (2.5) and (2.6) that

qk(α∗k) = α∗kϕ(uk, ũk).

The new iterate generates by (2.7) is not necessarily in Ω, however, it satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − α∗kϕ(uk, ũk).

The original intention of the contraction algorithms is to maximize the quadratic



II - 18

function ϑk(α) (see (2.3)) in each iteration, because it contains the unknown u∗,

we have to maximize its lower bound function qk(α).

O α* γα*

q(α)

ϑ(α)

α

Fig.5 Interpretation of γ ∈ [1, 2)

Thus, in the practical computation, we take a relaxed factor γ ∈ [1, 2), and set

uk+1 = uk − γα∗kd(uk, ũk). (2.8)
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The reason for taking γ ∈ [1, 2) in the step size is depicted in Fig. 5.

From (2.5) and (2.6), we get

qk(γα∗k) = 2γα∗kϕ(uk, ũk)− γ2(α∗k)2‖d(uk, ũk)‖2

= γ(2− γ)α∗kϕ(uk, ũk).

Thus, the new iterate uk+1 updated by (2.8) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)α∗kϕ(uk, ũk). (2.9)

By using (2.6) and (2.8), we have

α∗kϕ(uk, ũk) = ‖α∗kd(uk, ũk)‖2 =
1

γ2
‖uk − uk+1‖2.

Substituting it in (2.9), we get the following inequalityµ

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 2− γ
γ
‖uk − uk+1‖2.
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Primary algorithm Replacing ϕ(uk, ũk) ≥ δ‖uk − ũk‖2 (see (2.1a)) by

ϕ(uk, ũk) ≥ 1

2

(
‖d(uk, ũk)‖2 + τ‖uk − ũk‖2

)
, (τ > 0). (2.10)

When the conditions (2.1b) and (2.10) are satisfied, we use the simple form

uk+1 = uk − d(uk, ũk), (2.11)

to generate the new iterate. Since it uses the unit step size, we call (2.11) as

Primary Algorithm. By a manipulation, we get

‖uk+1 − u∗‖2 = ‖(uk − u∗)− d(uk, ũk)‖2

= ‖uk − u∗‖2 − 2(uk − u∗)T d(uk, ũk) + ‖d(uk, ũk)‖2

(use (2.1b)) ≤ ‖uk − u∗‖2 − (2ϕ(uk, ũk)− ‖d(uk, ũk)‖2).

Since (2.10) is satisfied, the new iterate uk+1 satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − τ‖uk − ũk‖2. (2.12)

The inequalities (2.9) and (2.12) tell us that the sequence {uk} is bounded, they
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are key inequalities for the convergence. By using (2.1a) and Theorem 1.1, it is

easy to prove the following theorem.

Theorem 2.1 Assume that Ω∗, the solution set of the problem VI(Ω, F ), is

nonempty, then the sequence generated by the projection and contraction

methods converges to some u∗ ∈ Ω∗.

It should be noticed that usually we advocate to use the general algorithm to
determine the new iterate by calculating the step size. Although the primary
algorithm does not need to calculate the step size, according to our experience,
the general algorithm converges faster than the primal one.

• The projection and contraction methods can also be regarded as a
prediction-correction methods.

• The vector ũk, which is obtained by the projection, can be viewed as a pre-
dictor. It provides us the error measure function and a profitable direction.

• The updating procedure, (2.8) or (2.11), which offered uk+1, can be viewed
as the correction pcocess.

• Whether the projection and contraction method or prediction-correction
method, their first letter is P and C, so it is called PC Methods for short.
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The differentiable convex optimization problem min {f(x) | x ∈ Ω} is equiva-

lent to the variational inequality

x ∈ Ω, (x′ − x)T∇f(x) ≥ 0, ∀x′ ∈ Ω. (2.13)

If∇f(x) is differentiable, its Hessian matrix,∇2f(x) is symmetric. Especially,

when f(x) is a quadratic convex function, its Hessian matrix, is symmetric and

positive semidefinite.

When we consider the general nonlinear monotone variational inequality

VI(Ω, F ), it is only required that

(u− v)T (F (u)− F (v)) ≥ 0.

The Jacobian of F ,∇F (u), if it exist, it is not necessarily to be symmetric.

In linear variational inequality, the mapping F (u) = Mu+ q is affine. A linear

variational inequality means thatM +MT is positive semidefinite, butM is not

necessarily symmetric.

Differentiable convex optimization problem is a kind of variational inequality (2.13)

with special properties. We will give some better contraction algorithms for such

convex optimization problems in Lecture 10.
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3 PC Methods for LVI based on FI1+ FI2

In the linear variational inequality VI(Ω, F ), F (u) = Mu+ q is an affine

operator. Notice that ũ = PΩ[u− βF (u)]. Adding FI1 and FI2, (ũ− u∗)TβF (u∗) ≥ 0. (FI1)

(ũ− u∗)T
(
[u− βF (u)]− ũ

)
≥ 0. (FI2)

and using F (u) = Mu+ q, we get

{(u−u∗)−(u− ũ)}T {(u− ũ)−βM(u−u∗)} ≥ 0, ∀u ∈ <n, u∗ ∈ Ω∗.

Consequently, it follows that

(u− u∗)T (I + βMT )(u− ũ) ≥ ‖u− ũ‖2 + β(u− u∗)TM(u− u∗).
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Since (u− u∗)TM(u− u∗) = 1
2 (u− u∗)T (MT +M)(u− u∗) ≥ 0, we

have

(u− u∗)T (I + βMT )(u− ũ) ≥ ‖u− ũ‖2, ∀u ∈ <n, u∗ ∈ Ω∗. (3.1)

Let

ϕ(u, ũ) = ‖u− ũ‖2 (3.2)

and

d(u, ũ) = (I + βMT )(u− ũ). (3.3)

The ϕ(u, ũ) defined by (3.2) with the d(u, ũ) defined by (3.3), satisfy the

conditions (2.1a) and (2.1b). Especially, in (2.1a), the positive parameter δ = 1.

If we use the general algorithm, the step size α∗k is determined (2.6) and the new

iterate is given by (2.8). In details, for given uk and β > 0, let

ũk = PΩ[uk − β(Muk + q)]



II - 25

to produce a predictor. The new iterate is given by

uk+1 = uk − γα∗k(I + βMT )(uk − ũk)

where

α∗k =
‖uk − ũk‖2

‖(I + βMT )(uk − ũk)‖2
.

The generated sequence {uk} satisfies the following contractive property

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)α∗k‖uk − ũk‖2.

In such method, usually the parameter β is sensitive for the convergence. Thus,

we suggest to adjust the parameter βk dynamically (in every 5-10 iterations),

such that

βk‖MT (uk − ũk)‖ = O(‖uk − ũk‖).

♣ If the parameter β is selected to satisfy

‖(I + βMT )(uk − ũk)‖2 ≤ (2− τ)‖uk − ũk‖2, τ ∈ (0, 1), (3.4)
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the ϕ(u, ũ) defined by (3.2) with the d(u, ũ) defined by (3.3) satisfy

2ϕ(u, ũ) ≥ ‖d(u, ũ)‖2 + τ‖u− ũ‖2.

This inequality tells us that the condition (2.10) is satisfied, and thus we can use

the primary algorithm (2.11) (with step size 1) to update the new iterate.

According to (2.12), the generated sequence {uk} by the primary algorithm

satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − τ‖uk − ũk‖2.

More projection and contraction methods for LVI based on FI1+ FI2 can be found

in [4] and [5]. Besides the contraction methods in Euclidean-norm, we can also

build the contraction methods in G-norm, where G is a symmetric positive

definite matrix. Especially, if we take G = (I + βMT )(I + βM) and consider

to reduce ‖u− u∗‖2G, the update form is

uk+1 = uk − γ(I + βM)−1(uk − ũk), γ ∈ (0, 2). (3.5)
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According to this formula, we have

‖uk+1 − u∗‖2G = ‖(uk − u∗)− γ(I + βM)−1(uk − ũk)‖2G
= ‖uk − u∗‖2G − 2γ(uk − u∗)T (I + βMT )(uk − ũk)

+ γ2‖(I + βM)−1(uk − ũk)‖2G.

Using (3.1) andG = (I +βMT )(I +βM), from the last inequality follows that

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − 2γ‖uk − ũk‖2 + γ2‖uk − ũk‖2

= ‖uk − u∗‖2G − γ(2− γ)‖uk − ũk‖2.

By using this contraction method, the update form (3.5) is equivalent to solving

the following system of equations:

(I + βM)(uk+1 − uk) = γ(ũk − uk).

Since the matrix in each iteration is in variant, we just need to do one LU

decomposition for the matrix (I + βM) in the whole iteration process.
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M is a symmetric positive definite matrix

When M is symmetric positive definite, we replacing M by H , (3.1) becomes

(u− u∗)T (I + βH)(u− ũ) ≥ ‖u− ũ‖2, ∀u ∈ <n. (3.6)

In this case, G = I + βH is symmetric and positive definite. We consider the

contraction method in G-norm. In this case, we use

uk+1 = uk − γα∗k(uk − ũk), α∗k =
‖uk − ũk‖2

‖uk − ũk‖2G
, γ ∈ (0, 2) (3.7)

to produce the new iterate. By using (3.6) and (3.7), we get

‖uk+1 − u∗‖2G = ‖(uk − u∗)− γα∗k(uk − ũk)‖2G
= ‖uk − u∗‖2G − 2γα∗k(uk − u∗)TG(uk − ũk) + γ2(α∗k)2‖uk − ũk‖2G
≤ ‖uk − u∗‖2G − 2γα∗k‖uk − ũk‖2 + γ2(α∗k)2‖uk − ũk‖2G.

Since α∗k‖uk − ũk‖2G
(3.7)
= ‖uk − ũk‖2, it follows from the above inequality

‖uk+1 − u∗‖2G ≤ ‖uk − u∗‖2G − γ(2− γ)α∗k‖uk − ũk‖2, ∀u∗ ∈ Ω∗

which is the key inequality for the proof of the convergence.
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4 PC Methods for NVI based on FI1+FI2+FI3

We consider the contraction method for the general nonlinear variational

inequality (1.1). Again, for given u, ũ = PΩ[u− βF (u)] is obtained by the

projection and it is a predictor. Adding FI1, FI2 and FI3,
(ũ− u∗)TβF (u∗) ≥ 0 (FI1)

(ũ− u∗)T
(
[u− βF (u)]− ũ

)
≥ 0 (FI2)

(ũ− u∗)T
(
βF (ũ)− βF (u∗)

)
≥ 0 (FI3)

we get

{(uk − u∗)− (uk − ũ)}T {(u− ũ)− β[F (u)− F (ũ)]} ≥ 0. (4.1)

By defining

d(u, ũ) = (u− ũ)− β
(
F (u)− F (ũ)

)
, (4.2)

and

ϕ(u, ũ) = (u− ũ)T d(u, ũ), (4.3)
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it follows from (4.1) that

(u− u∗)T d(u, ũ) ≥ ϕ(u, ũ), ∀u ∈ <n.

The condition (2.1b) is satisfied. Whether ϕ(u, ũ) is an error measure function ?

Under the assumption that F is Lipschitz continuous, for a given ν ∈ (0, 1), we

can use Armijo line-search strategy to get a β such that

(u− ũ)T
(
βF (u)− βF (ũ)

)
≤ ν‖u− ũ‖2, ν ∈ (0, 1). (4.4)

Usually, such β also fits the request β‖F (u)− F (ũ)‖ = O(‖u− ũ‖).

According to (4.2) and (4.4), we have

ϕ(u, ũ) = (u− ũ)T d(u, ũ)

= ‖u− ũ‖2 − (u− ũ)Tβ
(
F (u)− F (ũ)

)
≥ (1− ν)‖u− ũ‖2.

Indeed, ϕ(u, ũ) is an error measure function, when (4.4) is satisfied.
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The ϕ(u, ũ) defined by (4.3) with the d(u, ũ) defined by (4.2), satisfy the

conditions (2.1a) and (2.1b). In (2.1a), the positive parameter δ = 1− ν.

By using the update form (2.8) with α∗k given by (2.6), the generated sequence

{uk} satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)α∗k(1− ν)‖uk − ũk‖2. (4.5)

♣ Especially, when

β‖F (u)− F (ũ)‖ ≤ ν‖u− ũ‖, (4.6)

the direction d(u, ũ) defined by (4.2) and the ϕ(u, ũ) defined by (4.3) satisfy

2ϕ(u, ũ)− ‖d(u, ũ)‖2

= 2(u− ũ)T d(u, ũ)− ‖d(u, ũ)‖2

= d(u, ũ)T
{

2(u− ũ)− d(u, ũ)
}

=
{

(u− ũ)− β
(
F (u)− F (ũ)

)}T{
(u− ũ) + β

(
F (u)− F (ũ)

)}
= ‖u− ũ‖2 − β2‖F (u)− F (ũ)‖2 ≥ (1− ν2)‖u− ũ‖2. (4.7)
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This tell us that the condition (2.10) is satisfied with τ = 1− ν2.

Thus, under the condition (4.6), we can use the primary algorithm to update the

new iterate, namely,

uk+1 = uk − d(uk, ũk).

According to (2.12), we have

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− ν2)‖uk − ũk‖2.

The earliest PC Algorithms for LVI appears in [4, 5] which is based on adding FI1

and FI2. The late PC Methods for nonlinear variational inequality [6, 8, 12] are

based on FI1+FI2+FI3 .

For nonlinear variational inequality, even though the ‘strict’ condition (4.6) is

satisfied, we still advocate using the computational step size for determining the

next iteration point

uk+1 = uk − γα∗kd(uk, ũk),
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where

α∗k =
(uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
.

Since the (4.6) is satisfied, the left hand side of (4.7) is strictly greater than 0.

Thus, for any k > 0, we have α∗k > 1/2, and

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)(1− ν)

2
‖uk − ũk‖2. (4.8)

The formulation of three fundamental inequalities and related methods can be

seen in [6] (the first version is the preprint 94-11, Institute of mathematics, Nanjing

University) and [15]. After graduating from Nanjing University, Defeng Sun also

independently found the direction (4.2) and constructed the projection contraction

algorithm [12]. Thank him for citing [6] in the footnote and the references of his

paper [12].

The greatest truths are the simplest ! The construction of projection

contraction algorithms is based on three fundamental inequalities. Its principle is

simple and unified, it gives us beautiful enjoyment !
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5 The extra-gradient method

The extra-gradient method [9] (abbreviated to EG method) can be applied to solve the
nonlinear monotone variational inequality. Some young scholars in the universities north
America use the EG method to solve the problems arising from the area of information
science, such as speech recognition, optical fiber network, machine learning and other-
s. In their doctoral dissertation, they have mentioned the relationship between the EG
method and PC Algorithms. For preparing to compare their numerical efficiency in the
next section, here, we will introduce the extra-gradient method. In fact, the extra gradient
algorithm is a prediction-correction form of the proximal point algorithm.

The proximal point algorithm Let us first briefly review the Proximal Point Algorithm

(abbreviated to PPA) VI(Ω, F ) (see (1.1)). PPA is an iterative method. For given uk and

r > 0, the new iterate uk+1 is the solution of the following variational inequality:

uk+1 ∈ Ω, (u− uk+1)T {F (uk+1) + r(uk+1 − uk)} ≥ 0, ∀ u ∈ Ω. (5.1)

It is clear that uk+1 is a solution of (1.1) if and only if uk+1 = uk . In the case of

uk+1 6= uk , by setting u = u∗ in (5.1), we obtain

(uk+1 − u∗)T r(uk − uk+1) ≥ (uk+1 − u∗)TF (uk+1). (5.2)
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Because F is monotone, we have

(uk+1 − u∗)TF (uk+1) = (uk+1 − u∗)TF (u∗) ≥ 0

and consequently from (5.4), we obtain

(uk+1 − u∗)T (uk − uk+1) ≥ 0,

and thus

(uk − u∗)T (uk − uk+1) ≥ ‖uk − uk+1‖2.

By using the last inequality, we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − uk+1‖2. (5.3)

The sequence {uk} generated by PPA has the nice convergence property, however, the

subproblem (5.1) is almost difficult as the original problem (1.1). Thus, the classical PPA is

not widely used in the practical application.

By using β = 1/r in (5.1), uk+1 can be viewed as

uk+1 ∈ Ω, (u− uk+1)T {(uk+1 − uk) + βF (uk+1)} ≥ 0, ∀ u ∈ Ω. (5.4)
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By using the equivalent representation of VI (see Theorem 1.1), it can be written as

uk+1 = PΩ

[
uk+1 − {(uk+1 − uk) + βF (uk+1)}

]
.

In other words,

uk+1 = PΩ[uk − βF (uk+1)]. (5.5)

The extra-gradient method It is difficult to directly get the solution of (5.5), because

the both sides of this equation include the unknown uk+1. Replacing uk+1 in the right

hand side of (5.5) by uk , we denote the output by ũk which is produced by the projection

ũk = PΩ[uk − βF (uk)], (5.6a)

We call ũk the predictor. Then, replacing uk+1 in the right hand side of (5.5) by the

predictor ũk , we obtain the (corrector) new iterate

uk+1 = PΩ[uk − βF (ũk)] (5.6b)

The method (5.6) is called the extra-gradient method (EG-method). Each iteration of the

EG method includes two projections on Ω. In the prediction step, the parameter β should
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be chosen to satisfy the following condition:

β‖F (uk)− F (ũk)‖ ≤ ν‖uk − ũk‖, ν ∈ (0, 1), (5.7)

which is same as in (4.6).

Convergence analysis of the extra-gradient algorithm The analysis is based on the

basic property of the projection (1.5) and its consequent inequality (1.9).

♣ First, since uk+1 is the projection of [uk − βF (ũk)] on Ω, according to (1.9), we have

‖uk+1 − u∗‖2 ≤ ‖(uk − βF (ũk))− u∗‖2 − ‖(uk − βF (ũk))− uk+1‖2. (5.8)'

&

$
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Fig.6 Geometric interpretation of inequality (5.8)
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By a manipulation, it follows from (5.8) that

‖uk+1− u∗‖2 ≤ ‖uk − u∗‖2−‖uk − uk+1‖2− 2(uk+1− u∗)TβF (ũk). (5.9)

Since (ũk − u∗)TF (ũk) ≥ (ũk − u∗)TF (u∗) ≥ 0, adding the nonnegative term

2(ũk − u∗)TF (ũk) to the right hand side of (5.9), we get

‖uk+1−u∗‖2 ≤ ‖uk−u∗‖2−‖uk−uk+1‖2−2(uk+1− ũk)TβF (ũk). (5.10)

The quadratic term ‖uk − uk+1‖2 in the right hand side of (5.10) can be written in form

‖uk − uk+1‖2 = ‖uk − ũk‖2 + ‖ũk − uk+1‖2 + 2(ũk − uk+1)T (uk − ũk).

Substituting it in (5.10), we get

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − ũk‖2 − ‖ũk − uk+1‖2

+2(uk+1 − ũk)T [uk − βF (ũk)− ũk]. (5.11)

♣ Now, we use the tool inequality (1.5). Setting v = uk − βF (uk), then ũk = PΩ(v),

because uk+1 ∈ Ω, according to (1.5), we have

2(ũk − uk+1)T {[uk − βF (uk)]− ũk} ≥ 0.
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Adding the left term to the right hand side of (5.11), we get

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − ũk‖2 − ‖ũk − uk+1‖2

+2(uk+1 − ũk)Tβ[F (uk)− F (ũk)]. (5.12)

♣ Applying the Cauchy–Schwarz inequality to the cross term of the RHS of (5.12),

2(uk+1 − ũk)Tβ[F (uk)− F (ũk)] ≤ ‖uk+1 − ũk‖2 + β2‖F (uk)− βF (ũk)‖2.

Substituting it in (5.12), it follows that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − ũk‖2 + β2‖F (uk)− F (ũk)‖2. (5.13)

The contractive property of the extra-gradient method According (5.13), when the

condition (5.7) is satisfied, the sequence generated by the extra-gradient method (5.6) has

the following contractive property:

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− ν2)‖uk − ũk‖2. (5.14)

The inequality (5.14) is the key for the proof of the convergence of the extra-gradient

method. This short proof is based on the strategy in [8]. For the convergence proof of the

extra-gradient algorithm, readers can also refer to [1] (Vol. II pp. 1115-1118).



II - 40

6 Numerical experiments
For comparing the efficiency of the PC Algorithms and the EG Method, we test the

nonlinear complementarity problem (a class of VI(Ω, F ) with Ω = <n
+)

u ≥ 0, F (u) ≥ 0, uTF (u) = 0.

In the test examples, we take

F (u) = D(u) +Mu+ q,

where Mu+ q and D(u) are the linear part and nonlinear part of F (u), respectively.

The linear part Mu+ q is generated as in [2]a, using Matlab, it produced by

A=(rand(n,n)-0.5)*10; B=(rand(n,n)-0.5)*10; B=B-B’; M=A’*A+B;

q=(rand(n,1)-0.5)*1000; or q=(rand(n,1)-1.0)*500;

In the nonlinear part D(u), each element is given by Dj(u) = dj ∗ arctan(uj), where

dj is a random variable between (0, 1), similarly as in [13]b.

aIn the paper by Harker and Pang [2], the matrix M = ATA + B + D, where A and B are
the same matrices as here, and D is a diagonal matrix with uniformly distributed random variable
djj ∈ (0.0, 0.3). In our test examples djj ≡ 0.

bIn [13], the components of nonlinear mappingD(u) areDj(u) = constat∗arctan(uj). Thus,
Dj(u) in our test example is more general.
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As in [8], we have refined the EG method, and thus use the following procedure.

Refined extra-gradient method:

Step 0. Set β0 = 1, ν ∈ (0, 1), u0 ∈ Ω and k = 0.

Step 1. ũk = PΩ[uk − βkF (uk)],

rk :=
βk‖F (uk)− F (ũk)‖

‖uk − ũk‖ ,

while rk > ν, βk := 2
3
βk ∗min{1, 1

rk
},

ũk = PΩ[uk − βkF (uk)],

rk :=
βk‖F (uk)− F (ũk)‖

‖uk − ũk‖ ,

end(while)

uk+1 = PΩ[uk − βkF (ũk)],

If rk ≤ µ then βk := βk ∗ 1.5, end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.

When the EG method applied to solve NCP, the other people use the above program

but omit the sentence If rk ≤ µ then βk := βk ∗ 1.5 end(if) . Our calculation

experiments shows that if this sentence is omitted, the number of iteration steps will be
greatly increased, sometimes even leading to calculation failure.
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The PC Algorithm (the extra computation than EG Method is indicated in a small box)µ

Projection and Contraction Method:

Step 0. Set β0 = 1, ν ∈ (0, 1), u0 ∈ Ω and k = 0.

Step 1. ũk = PΩ[uk − βkF (uk)],

rk :=
βk‖F (uk)− F (ũk)‖

‖uk − ũk‖ ,

while rk > ν, βk := 2
3
βk ∗min{1, 1

rk
},

ũk = PΩ[uk − βkF (uk)]

rk :=
βk‖F (uk)− F (ũk)‖

‖uk − ũk‖ ,

end(while)

d(uk, ũk) = (uk− ũk)−βk[F (uk)−F (ũk)],

αk =
(uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2 ,

uk+1 = uk − γαkd(uk, ũk),

If rk ≤ µ then βk := βk ∗ 1.5, end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.
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Both the EG Method and the PC Algorithm compared here can be regarded as prediction

correction methods. They use the same formula

ũk = PΩ[uk − βF (uk)]

to produce the predictor ũk . In order to compare the efficiency, we all require that the

predictor points meet (see (5.7))

β‖F (uk)− F (ũk)‖ ≤ ν‖uk − ũk‖, ν ∈ (0, 1).

The only difference is that EG Method uses (see (5.6b))

uk+1 = PΩ[uk − βF (ũk)]

to update the new iterate uk+1. while the PC Algorithm gives the next iterate uk+1 by

uk+1 = uk − γα∗
kd(uk, ũk), γ ∈ [1, 2)

where (see (4.2))

d(uk, ũk) = (uk − ũk)− β
(
F (uk)− F (ũk)

)
,

and α∗
k = (uk − ũk)T d(uk, ũk)/‖d(uk, ũk)‖2. The extra work for calculating α∗

k in

P-C Algorithm is small, and the correction does not need to doing projection.
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In the following, we give Matlab codes for the two different algorithms

The Matlab Code of the Refined Extra-Gradient Method
function REG(n,M,q,d,xstart,tol,pfq) %(1)

fprintf(’Extragragient Method by Korpelevich n=%4d \n’,n); %(2)

x=xstart; Fx= d.*atan(x) + M*x + q; stopc=norm(x-max(x-Fx,0),inf); %(3)

beta=1; k=0; l=0; tic; %(4)

while (stopc>tol && k<=2000) %(5)

if mod(k,pfq)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

x0=x; Fx0=Fx; k=k+1; %(7)

x=max(x0-Fx0*beta,0); Fx=d.*atan(x) + M*x + q; l=l+1; %(8)

dx=x0-x; df=(Fx0-Fx)*beta; %(9)

r=norm(df)/norm(dx); %(10)

while r>0.9 beta=0.7*beta*min(1,1/r); l=l+1; %(11)

x=max(x0-Fx0*beta,0); Fx=d.*atan(x) + M*x + q; %(12)

dx=x0-x; df=(Fx0-Fx)*beta; r=norm(df)/norm(dx); %(13)

end; %(14)

x=max(x0-Fx*beta,0); %(15)

Fx= d.*atan(x) + M*x + q; l=l+1; %(16)

ex=x-max(x-Fx,0); stopc=norm(ex,inf); %(17)

if r <0.4 beta=beta*1.5; end; %(18)

end; toc; fprintf(’ k=%4d epsm=%9.3e l=%4d \n’,k,stopc,l); %%%%

Replacing (15) in the EG code by (15a)-(15b) in the next code, we get the code for PC Algorithm.
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The Matlab Code of The Projection and Contraction Method

function PC_G(n,M,q,d,xstart,tol,pfq) %(1)

fprintf(’PC Method use Direction D1 with gamma a* n=%4d \n’,n); %(2)

x=xstart; Fx= d.*atan(x) + M*x + q; stopc=norm(x-max(x-Fx,0),inf); %(3)

beta=1; k=0; l=0; tic; %(4)

while (stopc>tol && k<=2000) %(5)

if mod(k,pfq)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

x0=x; Fx0=Fx; k=k+1; %(7)

x=max(x0-Fx0*beta,0); Fx=d.*atan(x) + M*x + q; l=l+1; %(8)

dx=x0-x; df=(Fx0-Fx)*beta; %(9)

r=norm(df)/norm(dx); %(10)

while r>0.9 beta=0.7*beta*min(1,1/r); l=l+1; %(11)

x=max(x0-Fx0*beta,0); Fx=d.*atan(x) + M*x + q; %(12)

dx=x0-x; df=(Fx0-Fx)*beta; r=norm(df)/norm(dx); %(13)

end; %(14)

dxf=dx-df; r1=dx’*dxf; r2=dxf’*dxf; alpha=r1/r2; %(15a)

x=x0- dxf*alpha*1.9; %(15b)

Fx= d.*atan(x) + M*x + q; l=l+1; %(16)

ex=x-max(x-Fx,0); stopc=norm(ex,inf); %(17)

if r <0.4 beta=beta*1.5; end; %(18)

end; toc; fprintf(’ k=%4d epsm=%9.3e l=%4d \n’,k,stopc,l); %%%%

Instead of (15) in the EG method code, the Matlab code of PC Algorithm is (15a) and (15b).
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Table 1. Numerical results for Easy Problems q ∈ (−500, 500)

Extra-gradient Method General PC-Method

n = No. It No. F CPU No. It No. F CPU
500 724 1485 0.26 468 977 0.17

1000 804 1650 2.85 514 1079 1.86

2000 776 1593 10.33 407 864 5.63

Table 2. Numerical results for Hard Problems q ∈ (−500, 0)

Extra-gradient Method General PC-Method

n = No. It No. F CPU No. It No. F CPU
500 1453 2983 0.53 865 1824 0.33

1000 2026 4159 7.12 1199 2553 4.38

2000 1702 3494 22.45 1025 2177 14.00

The PC method converges faster than the refined extra-gradient method.

It. No. of Projection and Contraction Method

It. No. of The refined extra-gradient Method
≈ 60%.

Usually, for the same problems, the PC Algorithms can save about 40% CPU

time than the EG Method.
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In both of the PC Algorithm and the EG Method, the computational load of each
iteration is O(n2). In each iteration of PC Algorithm, the computational cost for
determining the step length is O(n), which is a small proportion in the whole
calculations.

Some Ph.D Dissertations which use the EG Method to solve their problems

• Fei Sha, Large Margin Training of Acoustic Models for Speech Recognition, PhD
Thesis, Computer and Information Science, University of Pennsylvania, 2007. �Ñ£O

• Yan Pan, A game theoretical approach to constrained OSNR optimization problems in
optical network, PhD Thesis, Electrical & Computer Engineering. University of Toronto,
2009. 1n�ä

• Simon Lacoste-Julien, Discriminative Machine Learning with Structure, PhD Thesis,
Computer Science. University of California, Berkeley, 2009. ÅìÆS

• A. G. Howard, Large Margin, Transformation Learning, PhD Thesis, Graduate School
of Arts and Science. Columbia University, 2009. ÅìÆS

All these theses have mentioned the PC Algorithm[6]. If PC Algorithm is used

instead of EG Method, the convergence speed will be greatly improved.
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