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The context of this lecture is based on the publication [5, 7, 10]
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We study the solution methods for nonlinear VI. For any β > 0, the variational inequalities

VI(Ω, F ) u∗ ∈ Ω, (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω (0.1)

and

VI(Ω, F ) u∗ ∈ Ω, (u− u∗)TβF (u∗) ≥ 0, ∀u ∈ Ω (0.2)

have the same solution set. For given u, let e(u, β) := u−PΩ[u−βF (u)], ‖e(u, β)‖
is the error function, which measures how much u failed to be a solution point.

Recent years, the projection contraction algorithm for linear variational inequality [3, 4]
has been successfully applied to robot motion planning and real-time control [2, 11]. Some
scholars in Geotechnical Mechanics have solved the problems that worry them for a long
time [12, 13] by the PC Algorithms [6, 7] successfully .

In the last lecture, we have introduced the PC Algorithms for monotone LVI and NVI
whose search directions are based on FI1+FI2 and FI1+FI2+FI3, respectively. Actual-
ly, accompanied each PC Algorithm in the last lecture, there is a twin algorithm, whose
search directions are based on FI1 and FI1+FI3, respectively. It is reasonable, among the
twin algorithms, the method utilizes fewer fundamental inequalities, is more efficient.

It is interesting that the same step length is used when the new iteration points are
updated by the different correction procedures. From the perspective of mathematics
itself, there is such a clever inner connection, which also gives us the enjoyment of the
beauty of mathematics.
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1 Mathematical Backgrounds

Basic property of the projection mapping We need to list a few important

properties of the projection operator. Readers interested in proving these results

can refer to Lecture 2 of this series of lectures.

Lemma 1.1 Let Ω ⊂ <n be a closed convex set, then for any v ∈ <n, we have

(u− PΩ(v))T (PΩ(v)− v) ≥ 0, ∀u ∈ Ω. (1.1)

The equivalent projection equation By using the properties of the projection,

solving the variational inequality (0.1) is equivalent to finding a zero point of

e(u, β) which is defined by

e(u, β) := u− PΩ[u− βF (u)].

The projection contraction algorithm for monotone variational inequality (0.2) is a

prediction-correction method. The prediction is provided by projection and the

contraction is realized by correction. In the k-th iteration of the PC Algorithms, for
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given uk and βk > 0, the predictor ũk is given by

ũk = PΩ[uk − βkF (uk)]. (1.2)

Thus, uk ∈ Ω∗ (or e(u, β) = 0) if and only if uk = ũk.

Set v = uk − βkF (uk) in (1.1), because ũk = PΩ(v), it follows from (1.1) that

ũk ∈ Ω, (u− ũk)T {ũk − [uk − βkF (uk)]} ≥ 0, ∀u ∈ Ω. (1.3)

Consequently, we get

ũk ∈ Ω, (u− ũk)TβkF (uk) ≥ (u− ũk)T (uk − ũk), ∀u ∈ Ω. (1.4)

Three fundamental inequalities Let u∗ be a solution of VI (Ω, F ). Since

ũk ∈ Ω, according to the definition of the variational inequality (0.1), we have

(FI1) (ũk − u∗)TβkF (u∗) ≥ 0. (1.5)

Since u∗ ∈ Ω, setting the any u ∈ Ω in (1.3) by u∗, it follows that

(FI2) (ũk − u∗)T
(
[uk − ũk]− βkF (uk)

)
≥ 0. (1.6)
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The variational inequality considered in this series is monotone, thus

(FI3) (ũk − u∗)T
(
βkF (ũk)− βkF (u∗)

)
≥ 0. (1.7)

We call (1.5), (1.6) and (1.7) three fundamental inequalities. Although these

inequalities are simple, they are very important. The search directions of the PC

Algorithms are derived from these inequalities.

2 A pair of twin PC Algorithms for LVI

When the operator F (u) in (0.1) is affine, F (u) = Mu+ q, such variational

inequality is linear (abbreviated LVI):

u∗ ∈ Ω, (u− u∗)T (Mu∗ + q) ≥ 0, ∀u ∈ Ω.

We say the LVI is monotone if MT +M is positive semidefinite, it is not

necessarily that M is symmetric.
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2.1 The ascent directions provided by the predictor

For linear variational inequality, we use a fixed β > 0.

• The ascent direction provided by FI1 Because F (u) = Mu+ q, the

fundamental inequality (1.5) can be written as

{(uk − u∗)− (uk − ũk)}Tβ{(Muk + q)−M(uk − u∗)} ≥ 0,

Since (uk − u∗)TM(uk − u∗) ≥ 0, it follows from the above inequality

(uk−u∗)Tβ[MT (uk − ũk) + (Muk + q)] ≥ (uk−ũk)Tβ(Muk+q),

(2.1)

If uk ∈ Ω, using F (u) = Mu+ q, from (1.3) we get

(uk − ũk)Tβk(Muk + q) ≥ ‖uk − ũk‖2. (2.2)

Thus, if uk ∈ Ω, βk
(
MT (uk − ũk) + (Muk + q)

)
is a ascent direction of

1
2‖u− u

∗‖2 at uk. (2.1)-(2.2) is true only for uk ∈ Ω.
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• The ascent direction provided by FI1+FI2 Adding (1.5) and (1.6), and

using F (u) = Mu+ q, we get

{(uk − u∗)− (uk − ũk)}T {(uk − ũk)− βM(uk − u∗)} ≥ 0.

Since (uk − u∗)TM(uk − u∗) ≥ 0, it follows from the above inequality

(uk − u∗)T (I + βMT )(uk − ũk) ≥ ‖uk − ũk‖2. (2.3)

Thus, (I + βMT )(uk − ũk) is a ascent direction of the unknown distance

function of 1
2‖u− u

∗‖2 at the point uk. (2.3) is true for any uk ∈ <n.

A pair of the twin directions For F (u) = Mu+ q, (1.4) can be written as

ũk ∈ Ω, (u− ũk)Tβ(Muk + q) ≥ (u− ũk)T (uk − ũk), ∀u ∈ Ω.

Adding (u− ũk)TβMT (uk− ũk) to the both sides of the last inequality, we get

ũk ∈ Ω, (u− ũk)Tβ[MT (uk − ũk) + (Muk + q)]

≥ (u− ũk)T (I + βMT )(uk − ũk), ∀u ∈ Ω. (2.4)
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We call (2.4) the two directions

β[MT (uk − ũk) + (Muk + q)] and (I + βMT )(uk − ũk) (2.5)

which lay on the left and right sides of (2.4), respectively, a pair of twin ascent

directions for LVI. They are also the direction in (2.1) and (2.3), which derived

from (FI1) and (FI1+FI2), respectively. For the notation convenience, we denote

g(uk, ũk) = MT (uk − ũk) + (Muk + q). (2.6)

Using this expression, (2.4) can be written as

ũk ∈ Ω, (u− ũk)Tβg(uk, ũk)

≥ (u− ũk)T (I + βMT )(uk − ũk), ∀u ∈ Ω. (2.7)

Notice that for the direction (I + βMT )(uk − ũk), there is a constant K > 0,

such that ‖(I + βMT )(uk − ũk)‖ ≤ K‖uk − ũk‖. However, for the related

direction g(uk, ũk), we do not have the similar statement !



III - 9

2.2 Update the new iterate by the direction due to FI1+FI2

The correction uses the descent direction (the opposite of the ascent direction) of

the distance function to make the new iteration point closer to the solution set.

Based on the direction provided by FI1+FI2, the new iterate is updated by

uk+1
BD

(α) = uk − α(I + βMT )(uk − ũk). (2.8)

The lower index ‘BD’ means ‘Bounded Direction’. For discussion how to

determine the step length α, we denote the output of (2.8) by uk+1
BD

(α). Let us

investigate the α-dependent reduction of the square of the distance

ϑL

k (α) := ‖uk − u∗‖2 − ‖uk+1
BD

(α)− u∗‖2. (2.9)

According to the definition,

ϑL

k (α) = ‖uk − u∗‖2 − ‖uk − u∗ − α(I + βMT )(uk − ũk)‖2

= 2α(uk − u∗)T (I + βMT )(uk − ũk)

−α2‖(I + βMT )(uk − ũk)‖2. (2.10)
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For any given solution point u∗, (2.10) tell us that ϑL

k (α) is a quadratic function of

α. Since u∗ is unknown, We can’t directly find the maximum of ϑL

k (α). With the

help of (2.1), we have the following theorem.

Theorem 2.1 Let uk+1
BD

(α) be updated by (2.8). Then for α > 0, we have

ϑL

k (α) ≥ qL

k (α), (2.11)

where ϑL

k (α) defined by (2.9) and

qL

k (α) = 2α‖uk − ũk‖2 − α2‖(I + βMT )(uk − ũk)‖2. (2.12)

Proof. The assertion derived directly from (2.10) by using (2.1). 2

Theorem 2.1 indicates that qL

k (α) is a lower bound of ϑL

k (α). The quadratic

function qL

k (α) reaches its maximum at

α∗k = argmax{qL

k (α)} =
‖uk − ũk‖2

‖(I + βMT )(uk − ũk)‖2
. (2.13)
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From (2.13), it follows that

α∗k ≥
1

‖I + βMT ‖2
. (2.14)

In the practical computation, we take a relaxed factor γ ∈ [1, 2) and updated the

new iterate by

uk+1
BD

= uk − γα∗k(I + βMT )(uk − ũk), (2.15)

Theorem 2.2 Let uk+1 = uk+1
BD

updated by (2.15) with α∗k given by (2.13), then

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)

‖I + βMT ‖2
‖uk − ũk‖2. (2.16)

Proof. According to (2.9) and (2.11), the uk+1 updated by (2.15) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − qL

k (γα∗k). (2.17)
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According to the definitions of qL

k (α) and α∗k (see (2.12) and (2.13)), we get

qL

k (γα∗k) = γ(2− γ)α∗k‖uk − ũk‖2 ≥
γ(2− γ)

‖I + βMT ‖2
‖uk − ũk‖2.

The last inequality follows from (2.14). The proof is complete. 2

2.3 Update the new iterate by the direction due to FI1

The correction form (2.8) in §2.2 takes (I + βMT )(uk − ũk) as the search

direction. In this subsection, it is replaced by its related direction (see (2.5))

β[MT (uk − ũk) + (Muk + q)].

In §2.1, it is emphasized that (2.1)-(2.2) are true only for uk ∈ Ω. We use

uk+1
BLD

(α) = PΩ

{
uk − αβ[MT (uk − ũk) + (Muk + q)]

}
, (2.18)

to update the new iterate ensured in Ω. We denote the output of (2.18) by

uk+1
BLD

(α). The lower index ‘BLD’ means ‘Boundless Direction’, because
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g(uk, ũk) 6→ 0 as dist(ũk,Ω∗)→ 0. For discussion how to determine the step

length α, Let us investigate the α-dependent reduction of the square of the

distance

ζL

k (α) = ‖uk − u∗‖2 − ‖uk+1
BLD

(α)− u∗‖2, (2.19)

which is a function of α. We can not maximize ζL

k (α) directly because it involves

the unknown vector u∗. The following theorem indicates that for the same α > 0,

ζL

k (α) is ‘better than ϑL

k (α) in (2.11).

Theorem 2.3 Let uk+1
BLD

(α) be updated by (2.18). Then for ζL

k (α) defined in

(2.19) with any α > 0, we have

ζL

k (α) ≥ qL

k (α) + ‖uk+1
BLD

(α)− uk+1
BD

(α)‖2, (2.20)

where qL

k (α), uk+1
BD

(α) and uk+1
BLD

(α) are given by (2.12), (2.8) and (2.18),

respectively.

Proof. By using the notation g(uk, ũk) in (2.6), the update form (2.18) can be

written as uk+1
BLD

(α) = PΩ[u− αβg(uk, ũk)]. Since u∗ ∈ Ω and the
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projection operator is non-expansive, we have

‖uk+1
BLD

(α)− u∗‖2 ≤ ‖uk − αβg(uk, ũk)− u∗‖2.

However, according to the properties of projection and cosine theorem, we use

more precise relations

‖uk+1
BLD

(α)− u∗‖2 ≤ ‖uk − αβg(uk, ũk)− u∗‖2

−‖uk+1
BLD

(α)− (uk − αβg(uk, ũk))‖2.(2.21)'

&

$

%

quk

HHH
HHHquk − αβg(uk, ũk)uk+1

BLD
(α) q

qu∗
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Ω

Fig.1 Geometric interpretation of the inequality (2.21)
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Hence, by using ζL

k (α) (see (2.19)) and (2.21), we have

ζL

k (α) ≥ ‖uk − u∗‖2 − ‖(uk − u∗)− αβg(uk, ũk)‖2

+‖(uk+1
BLD

(α)− uk) + αβg(uk, ũk)‖2

= 2αβ(uk − u∗)T g(uk, ũk) + 2αβ(uk+1
BLD

(α)− uk)T g(uk, ũk)

+‖uk+1
BLD

(α)− uk‖2

= ‖uk+1
BLD

(α)− uk‖2 + 2α(uk+1
BLD

(α)− u∗)Tβg(uk, ũk). (2.22)

Decomposing the cross term of the right hand side of (2.22) in form

(uk+1
BLD

(α)− u∗)Tβg(uk, ũk)

= (uk+1
BLD

(α)− ũk)Tβg(uk, ũk) + (ũk − u∗)Tβg(uk, ũk). (2.23)

To the first term of the right hand side of (2.23), since uk+1
BLD

(α) ∈ Ω, by using

(2.7), we have

(uk+1
BLD

(α)− ũk)Tβg(uk, ũk) ≥ (uk+1
BLD

(α)− ũk)T (I + βMT )(uk − ũk).
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In other words,

(uk+1
BLD

(α)− ũk)Tβg(uk, ũk) ≥ (uk+1
BLD

(α)− uk)T (I + βMT )(uk − ũk)

+(uk − ũk)T (I + βMT )(uk − ũk).(2.24)

To the second term of the right hand side of (2.23), (ũk − u∗)Tβg(uk, ũk), we

split it in form

(ũk−u∗)Tβg(uk, ũk) = (ũk−uk)Tβg(uk, ũk) + (uk−u∗)Tβg(uk, ũk)

By using (2.1), namely,

(uk − u∗)Tβg(uk, ũk) ≥ (uk − ũk)Tβ(Muk + q),

we get

(ũk − u∗)Tβg(uk, ũk)

= (ũk − uk)Tβg(uk, ũk) + (uk − u∗)Tβg(uk, ũk)

≥ (ũk − uk)Tβg(uk, ũk) + (uk − ũk)Tβ(Muk + q).
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Consequently, by using the notation of g(uk, ũk), we get

(ũk − u∗)Tβg(uk, ũk) ≥ (ũk − uk)T {βg(uk, ũk)− β(Muk + q)}

= −β(uk − ũk)TMT (uk − ũk). (2.25)

Adding (2.24) and (2.25), it follows that

(uk+1
BLD

(α)−u∗)Tβg(uk, ũk) ≥ (uk+1
BLD

(α)−ũk)T (I+βMT )(uk−ũk)+‖uk−ũk‖2.

Substituting the above inequality in (2.22) and using the notation of qL

k (α), we get

ζL

k (α) ≥ ‖uk+1
BLD

(α)− uk‖2 + 2α(uk+1
BLD

(α)− uk)T (I + βMT )(uk − ũk)

+2α‖uk − ũk‖2

= ‖(uk+1
BLD

(α)− uk) + α(I + βMT )(uk − ũk)‖2

−α2‖(I + βMT )(uk − ũk)‖2 + 2α‖uk − ũk‖2

= ‖uk+1
BLD

(α)− [uk − α(I + βMT )(uk − ũk)]‖2 + qL

k (α).
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Because [uk − α(I + βMT )(uk − ũk)] = uk+1
BD

(α) (see (2.8)), the last

inequality is the same as (2.20). The proof is complete. 2

Theorem 2.3 tells us that qL

k (α) is also a lower bound of ζL

k (α). In the practical

computation, whether the correction formula

(PC-I) uk+1
BD

= uk − γα∗k(I + βMT )(uk − ũk) (2.26)

or

(PC-II) uk+1
BLD

= PΩ

[
uk − γα∗kβ[MT (uk − ũk) + (Muk + q)]

]
(2.27)

is used to update the new iterate uk+1, both the step length α∗k is given by

(2.13), which is lower bounded from 0.

An effective iterative algorithm, the step size must be lower bounded from 0.

Using the formula (2.26) to update uk+1, the advantage is that the correction

does not need to do an extra projection. However, in many practical problems, the

cost of the projection on Ω (e. g., Ω = <n
+ or a ‘box’) is not expensive. Thus, the

correction formula (2.27) is often used. The reasons are explained in paper [10].
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Based on the pair of twin directions offered by (2.4), the different algorithms (2.26)

and (2.27), we get the following key inequalities for the contraction:

ϑL

k (α) = ‖uk − u∗‖2 − ‖uk+1
BD

(α)− u∗‖2 ≥ qL

k (α),

ζL

k (α) = ‖uk − u∗‖2 − ‖uk+1
BLD

(α)− u∗‖2

≥ qL

k (α) + ‖uk+1
BLD

(α)− uk+1
BD

(α)‖2,

where qL

k (α) is defined by (2.12) and reaches its maximum at α∗k (see (2.13)).

The PC Algorithms for solving LVI, PC-I (2.26) and PC-II (2.27), are published

in [3] and [4], respectively. Both the algorithms are successfully applied to robot

motion planning and real-time control by Zhang and his students [2, 11].

In [2, 11], PC-I (2.26) is called 94LVI because the method was published in

1994 and the title of the article is ‘A new method for a class of Linear Variational

Inequalities”; PC-II (2.27) is named as E47 since it is described by Equations

(4) to (7) in the original article [4]. The numerical experiments in [2, 11] verified

that PC-II (2.27) is more efficient than PC-I (2.26).
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3 A pair of twin PC Algorithms for NVI
For nonlinear variational inequalities (abbreviated NVI), we assume its operator F

is Lipschitz continuous. In the projection for getting the predictor ũk (1.2), the

parameter βk is chosen such that

βk‖F (uk)− F (ũk)‖ ≤ ν‖uk − ũk‖, ν ∈ (0, 1). (3.1)

In the following, for analysis convenience, we omit the index k in βk and assume

that this β satisfies the condition (3.1).

3.1 The ascent directions provided by the predictor

• The ascent direction provided by FI1+FI3 Adding (1.5) and (1.7), it

follows that

(ũk − u∗)TβF (ũk) ≥ 0.

From the last inequality, we get

(uk − u∗)TβF (ũk) ≥ (uk − ũk)TβF (ũk). (3.2)
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When uk ∈ Ω, according to (1.4), we have

(uk − ũk)TβF (uk) ≥ ‖uk − ũk‖2.

According to the last inequality and the assumption (3.1), it follows from the

Cauchy-Schwarz inequality that

(uk − ũk)TβF (ũk)

= (uk − ũk)TβF (uk)− (uk − ũk)Tβ(F (uk)− F (ũk))

≥ (1− ν)‖uk − ũk‖2. (3.3)

The inequalities (3.2) and (3.3) tell us, for uk ∈ Ω, under the assumption

(3.1), βF (ũk) is an ascent direction of the unknown distance function
1
2‖u− u

∗‖2 at the point uk. (3.2)-(3.3) is true only for uk ∈ Ω.

• The ascent direction provided by FI1+FI2+ FI3 . Adding the fundamental

inequalities (1.5), (1.6) and (1.7), we get

{(uk − u∗)− (uk − ũk)}T d(uk, ũk) ≥ 0,
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where

d(uk, ũk) = (uk − ũk)− β[F (uk)− F (ũk)]. (3.4)

Consequently, we have

(uk − u∗)T d(uk, ũk) ≥ (uk − ũk)T d(uk, ũk). (3.5)

According to the notation d(uk, ũk) (3.4) and the assumption (3.1), it follows

from the Cauchy-Schwarz inequality that

(uk − ũk)T d(uk, ũk) ≥ (1− ν)‖uk − ũk‖2. (3.6)

The inequalities (3.5) and (3.6) tell us, under the assumption (3.1), d(uk, ũk)

is an ascent direction of the unknown distance function 1
2‖u− u

∗‖2 at the

point uk. (3.5)-(3.6) is true for any uk ∈ <n.

A pair of the twin directions Notice that the inequality (1.4) is derived from the

basic property of the projection. Adding the term

(u− ũk)T {−β[F (uk)− F (ũk)]},
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to the both sides of (1.4), we get

ũk ∈ Ω, (u− ũk)TβF (ũk) ≥ (u− ũk)T d(uk, ũk), ∀u ∈ Ω, (3.7)

where d(uk, ũk) is given by (3.4). We call the directions

βF (ũk) and d(uk, ũk) = (uk − ũk)− β[F (uk)− F (ũk)]

which lay on the left and right sides of (3.7), respectively, a pair of twin ascent

directions for NVI. They are derived from FI1+FI3 and FI1+FI2+FI3, respectively.

3.2 Update the new iterate by the direction due to FI1+FI2+FI3

The correction uses the descent direction (the opposite of the ascent direction) of

the distance function to make the new iteration point closer to the solution set.

Based on the direction provided by FI1+FI2+FI3, the new iterate is updated by

uk+1
BD

(α) = uk − αd(uk, ũk). (3.8)

where d(uk, ũk) is given by (3.4). The lower index ‘BD’ means ‘Bounded
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Direction’ because ‖d(uk, ũk)‖ < 2‖uk − ũk‖. For discussion how to

determine the step length α, we denote the output of (2.8) by uk+1
BD

(α). Let us

investigate the α-dependent reduction of the square of the distance

ϑN

k (α) := ‖uk − u∗‖2 − ‖uk+1
BD

(α)− u∗‖2. (3.9)

According to the definition,

ϑN

k (α) = ‖uk − u∗‖2 − ‖uk − u∗ − αd(uk, ũk)‖2

= 2α(uk − u∗)T d(uk, ũk)− α2‖d(uk, ũk)‖2. (3.10)

For any given solution point u∗, (3.10) tell us that ϑN

k (α) is a quadratic function

of α. Since u∗ is unknown, we can’t directly find the maximum of ϑN

k (α). With

the help of (3.5), we have

Theorem 3.1 Let uk+1
BD

(α) be updated by (3.8) with d(uk, ũk) given by (3.4).

Then for α > 0, we have

ϑN

k (α) ≥ qN

k (α), (3.11)
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where

qN

k (α) = 2α(uk − ũk)T d(uk, ũk)− α2‖d(uk, ũk)‖2. (3.12)

Proof. The assertion derived directly from (3.10) by using (3.5). 2

Theorem 3.1 indicates that qN

k (α) is a lower bound of ϑN

k (α). The quadratic

function qN

k (α) reaches its maximum at

α∗k = argmax{qN

k (α)} =
(uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
. (3.13)

In the practical computation, similarly as in §2, we take a relaxed factor

γ ∈ [1, 2) and updated the new iterate by

uk+1
BD

= uk − γα∗kd(uk, ũk), (3.14)

where d(uk, ũk) is given by (3.5) and is α∗k given by (3.13).

Theorem 3.2 Let uk+1 = uk+1
BD

be updated by (3.14). Then for any γ ∈ (0, 2),
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we have

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 1

2
γ(2− γ)(1− ν)‖uk − ũk‖2. (3.15)

Proof. According to (3.9) and (3.11), the uk+1 updated by (3.14) satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − qN

k (γα∗k). (3.16)

According to the definitions qN

k (α) and α∗k (see (3.12) and (3.13)), we get

qN

k (γα∗k) = 2γα∗k(uk − ũk)T d(uk, ũk)− γ2(α∗k)2‖d(uk, ũk)‖2

= γ(2− γ)α∗k(uk − ũk)T d(uk, ũk).

In fact, by using (3.4) and (3.1), we have

2(uk − ũk)T d(uk, ũk)− ‖d(uk, ũk)‖2

= d(uk, ũk)T {2(uk − ũk)− d(uk, ũk)}

= ‖uk − ũk‖2 − β2
k‖[F (uk)− F (ũk)]‖2 > 0. (3.17)
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Thus, α∗k >
1
2 , and consequently, it follows that

qN

k (γα∗k) >
1

2
γ(2− γ)(uk − ũk)T d(uk, ũk).

Substituting it in (3.16), we get

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 1

2
γ(2− γ)(uk − ũk)T d(uk, ũk).

Using (3.6) to the term (uk − ũk)T d(uk, ũk) in the right hand side of the last

inequality, we get the assertion (3.15) and the theorem is proved. 2

3.3 Update the new iterate by the direction due to FI1+FI3

The correction step (3.8) in §3.3 takes d(uk, ũk) as the search direction. In this

section, it is replaced by βF (ũk) and finished the correction with an additional

projection. Namely, we let

uk+1
BLD

(α) = PΩ[uk − αβF (ũk)], (3.18)
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to update the α-dependent new iterate ensured in Ω. We denote the output of

(3.18) by uk+1
BLD

(α). The lower index ‘BLD’ means ‘Boundless Direction’, because

F (ũk) 6→ 0 as dist(ũk,Ω∗)→ 0. For discussion how to determine the step

length α, Let us investigate the α-dependent reduction of the square of the

distance

ζN

k (α) = ‖uk − u∗‖2 − ‖uk+1
BLD

(α)− u∗‖2 (3.19)

which is a function of α. We can not maximize ζN

k (α) directly because it involves

the unknown vector u∗. The following theorem indicates that for the same α > 0,

ζN

k (α) is ‘better than ϑN

k (α) in (3.11)

Theorem 3.3 Let uk+1
BLD

(α) be updated by (3.18). Then for ζN

k (α) defined in

(3.19) with any α > 0, we have

ζN

k (α) ≥ qN

k (α) + ‖uk+1
BLD

(α)− uk+1
BD

(α)‖2, (3.20)

where qN

k (α), uk+1
BD

(α) and uk+1
BLD

(α) are given by (3.12), (3.8) and (3.18),

respectively.
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Proof. First, similarly as (2.21), because uk+1(α) = PΩ[u− αβF (ũk)] and

u∗ ∈ Ω, we have (see Fig. 1)

‖uk+1
BLD

(α)−u∗‖2 ≤ ‖uk−αβF (ũk)−u∗‖2−‖uk−αβF (ũk)−uk+1
BLD

(α)‖2.
(3.21)

Hence, by using ζN

k (α) (see (3.19)) and (3.21), we have

ζN

k (α) ≥ ‖uk − u∗‖2 − ‖(uk − u∗)− αβF (ũk)‖2

+‖(uk − uk+1
BLD

(α))− αβF (ũk)‖2

= 2α(uk − u∗)TβF (ũk) + 2α(uk+1
BLD

(α)− uk)TβF (ũk)

+‖uk − uk+1
BLD(α)‖2

= ‖uk − uk+1
BLD

(α)‖2 + 2α(uk+1
BLD

(α)− u∗)TβF (ũk). (3.22)

Decomposing the cross term of the right hand side of (3.22) in form

(uk+1
BLD

(α)−u∗)TβF (ũk) = (uk+1
BLD

(α)−ũk)TβF (ũk)+(ũk−u∗)TβF (ũk).
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Since F is monotone and u∗ is a solution of VI(Ω, F ), we have

(ũk − u∗)TβF (ũk) ≥ (ũk − u∗)TβF (u∗) ≥ 0.

Substituting it in the right hand side of (3.22), it follows that

ζN

k (α) ≥ ‖uk+1
BLD

(α)− uk‖2 + 2α(uk+1
BLD

(α)− ũk)TβF (ũk). (3.23)

Since uk+1
BLD

(α) ∈ Ω, replacing the any u ∈ Ω in (3.7) by uk+1
BLD

(α), we get

(uk+1
BLD

(α)− ũk)TβF (ũk) ≥ (uk+1
BLD

(α)− ũk)T d(uk, ũk).

Substituting it in the right hand side of (3.23),

ζN

k (α) ≥ ‖uk+1
BLD

(α)− uk‖2 + 2α(uk+1
BLD

(α)− ũk)T d(uk, ũk)

= ‖uk+1
BLD

(α)− uk‖2 + 2α(uk+1
BLD

(α)− uk)T d(uk, ũk)

+2α(uk − ũk)T d(uk, ũk). (3.24)
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By using the notations qN

k (α) (see (3.12)) and uk+1
BD

(α) (3.8), we get

ζN

k (α) ≥ ‖(uk+1
BLD

(α)− uk) + αd(uk, ũk)‖2 − α2‖d(uk, ũk)‖2

+2α(uk − ũk)T d(uk, ũk)

= ‖uk+1
BLD

(α)− (uk − αd(uk, ũk))‖2 + qN

k (α)

= ‖uk+1
BLD

(α)− uk+1
BD

(α)‖2 + qN

k (α).

This is just the assertion (3.20) and the theorem is proved. 2

Theorem 3.3 tells us that qN

k (α) is also the lower bound of ζN

k (α). In practical

computation, with the same predictor ũk given by (1.2) which satisfied (3.1), the

corrector uk+1 is updated by

(PC Method-I) uk+1
I = uk+1

BD
(α) = uk − γα∗kd(uk, ũk) (3.25)

or

(PC Method-II) uk+1
II = uk+1

BLD
(α) = PΩ[uk − γα∗kβkF (ũk)], (3.26)

where α∗k is given by (3.13), which is lower bounded from 1/2.
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Based on the same predictor, if we use the formula (3.25) to update uk+1, the

advantage is that the correction does not need to do an extra projection. However,

in many practical problems, the cost of the projection on Ω (for example,

Ω = <n
+ or a ‘box’) is not expensive. Thus, the correction formula (3.26) is often

used.

By using theorem 3.2, no matter which of the twin methods is applied, the

generated sequence {uk} satisfies

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 1

2
γ(2− γ)(1− ν)‖uk − ũk‖2.

Based on this inequality, we can prove the following convergence theorem.

Theorem 3.4 Assume that the operator F in VI(Ω, F ) is Lipschitz continuous

and its solution set Ω∗ is nonempty. Then the sequence {uk} generated by

(3.25) or (3.26) converges to some solution point of VI(Ω, F ).

The projection contraction algorithms introduced in this section have successfully

applied to solve many geotechnical engineering problems [12, 13].
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4 Applications and numerical experiments
We use examples of linear and nonlinear variational inequalities to illustrate the

efficiency of the twin algorithms — PC Method-I and PC Method-II.

4.1 Applied the different PC Methods for LVI

For LVI, we use the ”sum of the shortest distance” mentioned in Lecture 1 as an

example. This problem is equivalent to a min-max problem whose correspond-

ing LVI with a skew symmetric matrix. For a detailed description of this kind of

problem, see §5 of Lecture 1.

The test examples taking from SIAM J. on Optimization.

• G. L. XUE AND Y. Y. YE, An efficient algorithm for minimizing a sum of

Euclidean norms with applications, SIAM Optim. 7 (1997), 1017-1039.

Fig.1 depicters the structure of the network, where b[i], i = 1, . . . , 10 are

regular points whose coordinates are given. The connection between x[j], j =

1, . . . , 8 and b[i] are also given. Fig. 2 gives the positions of x[j], j =

1, . . . , 8 when the sum of the shortest distance is reached.
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Fig. 2. Optimal solution in Euclidean-norm

The coordinates of the 10 regular points

x-coordinate y-coordinate x-coordinate y-coordinate

b[1] 7.436490 7.683284 b[6] 1.685912 1.231672
b[2] 3.926097 7.008798 b[7] 4.110855 0.821114
b[3] 2.309469 9.208211 b[8] 4.757506 3.753666
b[4] 0.577367 6.480938 b[9] 7.598152 0.615836
b[5] 0.808314 3.519062 b[10] 8.568129 3.079179
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The update forms of using the contraction method I (3.25) and II (3.26) are

(PC Method-I) uk+1 = uk − γα∗k(I +MT )(uk − ũk),

and

(PC Method-II) uk+1 = PΩ{uk − γα∗k[MT (uk − ũk) + (Muk + q)]},

respectively. The numerical results are listed in the following table.

Table 1. Shortest network under l2 norm.

PC Method-I PC Method-II

Iteration ‖e(u)‖∞ Total Distance Iteration ‖e(u)‖∞ Total Distance

40 7.1e-002 25.3776304969 40 5.0e-004 25.3563526162

80 1.8e-004 25.3561050662 80 4.0e-008 25.3560677986

120 6.4e-007 25.3560678958 106 9.2e-011 25.3560677793

160 2.4e-009 25.3560677797

183 9.5e-011 25.3560677793

CPU-time 0.234 Sec. CPU-time 0.125 Sec.

Here we take γ = 1.8. If γ = 1, 80% more iterations are needed for both methods.
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PC Method-II for the problem in the Euclidean-norm

clear; % Steiner Minimum Tree * Read the coordinate of the regular points%(1)

P1=[7.436490, 3.926097, 2.309469, 0.577367, 0.808314; %(2)

7.683284, 7.008798, 9.208211, 6.480938, 3.519062]; %(3)

P2=[1.685912, 4.110855, 4.757506, 7.598152, 8.568129; %(4)

1.231672, 0.821114, 3.753666, 0.615836, 3.079179]; %(5)

b=[P1,P2,zeros(2,7)]; x=zeros(2,8); z=zeros(2,17); eps=1; k=0; tic; %(6)

while (eps > 10ˆ(-10) & k<= 200) k=k+1; %% Beginning of an iteration %(7)

Ax=[x(:,1), x, x(:,8), x(:,1:7)-x(:,2:8)]; Axb=Ax-b; %% Compute Ax-b %(8)

ATz=z(:,2:9) + [z(:,1), -z(:,11:17)] + [z(:,11:17), z(:,10)]; % AˆTz %(9)

L2=0; for j=1:17 L2=L2 + norm(Axb(:,j),2); end; % Length-2 %(10)

if mod(k,20)==0 fprintf(’k=%3d stopc=%9.1e L2=%13.10f\n’,k,eps,L2);end;%(11)

Pz=z+Axb; Dp=diag(1./max(1,sqrt(diag(Pz’*Pz)))); Pz=Pz*Dp; %P(z+(Ax-b))%(12)

Ex = ATz; Ez = z-Pz; t=trace(Ex’*Ex)+ trace(Ez’*Ez); eps=sqrt(t); %(13)

AEx= [Ex(:,1), Ex, Ex(:,8), Ex(:,1:7)-Ex(:,2:8)]; % Compute AEx %(14)

ATEz=Ez(:,2:9) + [Ez(:,1),-Ez(:,11:17)] + [Ez(:,11:17),Ez(:,10)]; %ATEz%(15)

ta = trace(AEx’*AEx)+trace(ATEz’*ATEz); alpha=t*1.8/(t+ta); %% Step L%(16)

x =x-(ATz - ATEz)*alpha; %% New x and z %%(17)

z =z-(AEx - Axb)*alpha; Dz=diag(1./max(1,sqrt(diag(z’*z)))); z=z*Dz; %%(18)

end; %% End of an iteration %%(19)

toc; fprintf(’ k=%3d eps=%9.1e Length-2=%13.10f \n’, k,eps,L2); %%(20)

rþ¡1(18)1U¤ z =z-(AEx + Ez)*alpha;Ò´?nÓ�¯K�(CM-D1)§S.
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Fig. 3 and 4 depict the convergence tendencies of Contraction Method–2 for the

minimum sum of the distance in the Euclidean-norm with different starting points.
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é l1-�Ú l∞-�,·��^ü«ØÓ�{�
O�'�,O�(JXeµ

Table 2. Shortest network under l1 norm.

PC Method-I PC Method-II

Iteration ‖e(u)‖∞ Total Distance Iteration ‖e(u)‖∞ Total Distance

40 3.7e-002 28.6777786413 40 1.1e-004 28.6660178525

80 2.5e-005 28.6658649129 81 1.0e-010 28.6658580000

120 1.8e-008 28.6658580046

149 9.4e-011 28.6658580000

CPU-time 0.031 Sec. CPU-time 0.016 Sec.

Table 3. Shortest network under l∞ norm.

PC Method-I PC Method-II

Iteration ‖e(u)‖∞ Total Distance Iteration ‖e(u)‖∞ Total Distance

40 9.0e-002 21.1322990353 40 2.1e-003 21.1145131146

80 4.4e-005 21.1129244226 80 4.1e-010 21.1129135002

120 2.4e-008 21.1129135060 84 7.4e-011 21.1129135000

150 9.2e-011 21.1129135000

CPU-time 0.187 Sec. CPU-time 0.094 Sec.
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Fig. 5 and Fig. 6 depict the optimal solutions of the minimum sum of the distance

in the l1-norm and l∞-norm, respectively.
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Fig. 7 and 8 depict the convergence tendencies of Contraction Method–2 with

random starting points for the minimum sum of the distance in the in the l1-norm

and l∞-norm, respectively.
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4.2 Test examples of the NCP
For comparing the efficiency of PC Method-I and PC Method-II, we test the

nonlinear complementarity problem (a class of VI(Ω, F ) with Ω = <n
+)

u ≥ 0, F (u) ≥ 0, uTF (u) = 0.

In the test examples, we take

F (u) = D(u) +Mu+ q,

The linear part Mu+ q is generated by using Matlab, it produced by
A=(rand(n,n)-0.5)*10; B=(rand(n,n)-0.5)*10; B=B-B’; M=A’*A+B;

q=(rand(n,1)-0.5)*1000; or q=(rand(n,1)-1.0)*500;

In the nonlinear part D(u), each element is given by Dj(u) = dj ∗
arctan(uj), where dj is a random variable between (0, 1).

We use the algorithms (3.25) and (3.26) in §3.3 to solve the test problems.

Notice that PC Method-I is just the PC Algorithm in Lecture 2 for NVI.

Set γα∗k ≡ 1 in PC Method-II, it reduced to the Refined EG.

In all the tests, each element of the initial u0 is a random variable in (0, 10).
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PC Method-II�§S

PC Method-II:
Step 0. Set β0 = 1, ν ∈ (0, 1), u0 ∈ Ω and k = 0.

Step 1. ũk = PΩ[uk − βkF (uk)],

rk := βk‖F (uk)− F (ũk)‖/‖uk − ũk‖,
while rk > ν, βk := 2

3
βk ∗min{1, 1

rk
},

ũk = PΩ[uk − βkF (uk)],

rk := βk‖F (uk)− F (ũk)‖/‖uk − ũk‖,
end(while)

d(uk, ũk) = (uk − ũk)− βk[F (uk)− F (ũk)],

αk =
(uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2 ,

uk+1 = PΩ[uk − γαkβkF (ũk)],

If rk ≤ µ then βk := βk ∗ 1.5, end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.

From PC Method-I to PC Method-II,�´ò

uk+1 = uk − γαkd(uk, ũk) U¤
 uk+1 = PΩ[uk − γαkβkF (ũk)].
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Matlab Code of Contraction Method–D2 for NCP
function PC_G(n,M,q,d,xstart,tol,pfq) %(1)

fprintf(’PC Method use Direction D1 with gamma a* n=%4d \n’,n); %(2)

x=xstart; Fx= d.*atan(x) + M*x + q; stopc=norm(x-max(x-Fx,0),inf); %(3)

beta=1; k=0; l=0; tic; %(4)

while (stopc>tol && k<=2000) %(5)

if mod(k,pfq)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

x0=x; Fx0=Fx; k=k+1; %(7)

x=max(x0-Fx0*beta,0); Fx=d.*atan(x) + M*x + q; l=l+1; %(8)

dx=x0-x; df=(Fx0-Fx)*beta; %(9)

r=norm(df)/norm(dx); %(10)

while r>0.9 beta=0.7*beta*min(1,1/r); l=l+1; %(11)

x=max(x0-Fx0*beta,0); Fx=d.*atan(x) + M*x + q; %(12)

dx=x0-x; df=(Fx0-Fx)*beta; r=norm(df)/norm(dx); %(13)

end; %(14)

dxf=dx-df; r1=dx’*dxf; r2=dxf’*dxf; alpha=r1/r2; %(15)

x=max(x0- Fx*beta*alpha*1.9,0); %(16)

Fx= d.*atan(x) + M*x + q; l=l+1; %(17)

ex=x-max(x-Fx,0); stopc=norm(ex,inf); %(18)

if r <0.4 beta=beta*1.5; end; %(19)

end; toc; fprintf(’ k=%4d epsm=%9.3e l=%4d \n’,k,stopc,l); %%%%
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NCP�O�(J 1 Easy Problems q ∈ (−500, 500)

PC Method-I PC Method-II

n = No. It No. F CPU No. It No. F CPU
500 448 941 0.15 372 792 0.12

1000 475 995 1.37 410 852 1.17
1500 507 1064 3.17 416 887 2.64
2000 515 1080 5.53 418 892 4.55

NCP�O�(J 2 Hard Problems q ∈ (−500, 0)

PC Method-I PC Method-II

n = No. It No. F CPU No. It No. F CPU
500 908 1913 0.30 799 1704 0.27

1000 980 2068 2.87 857 1824 2.53
1500 941 1983 5.88 834 1771 5.25
2000 1112 2352 12.18 986 2105 10.87

PC Method-II converges faster than PC Method-I.

♣§S3N�� Codes-03¥µ$1 demo.mÑ\ nÒ�±,Ù¥��±ÀJØ

Ó¯Ka.. PCd1.mÚ PCd2.m©O´ PC Method-IÚ PC Method-II�f§S.
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5 ������������ÌÌÌ)))���{{{���ÚÚÚ���µµµeee

·�3 [8, 9]¥�Ñ
¦)C©Ø�ª����Ì)Â �{.

Äk,½Â
ýÿ:(½¡u�:) .é�½� uk ,�â�½{K)¤� ũk ∈ Ω

`¤´��ýÿ:,XJ uk = ũk ⇔ uk ∈ Ω∗.

~X,é�½� ukÚ β > 0,dÝK ũk = PΩ[uk − βF (uk)] �Ñ� ũk

´U(½�{K�Ñ�,§´��ýÿ:,�ùØ´�Ñýÿ:����{.

ÚÚÚ���µµµeee.é�½� uk ,� ũk ∈ Ω´ uk���ýÿ:.�kÄu (uk, ũk)�

�éÌ)��� d1(uk, ũk), d2(uk, ũk)ÚØ�Ýþ¼ê ϕ(uk, ũk) ≥ 0,§�

÷v±e^�:

1. §�÷v'Xª

ũk ∈ Ω, (u− ũk)T d2(uk, ũk) ≥ (u− ũk)T d1(uk, ũk), ∀u ∈ Ω. (5.1a)

2. �3~êK > 0,¦�

‖d1(uk, ũk)‖ ≤ K‖uk − ũk‖. (5.1b)
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3. é?¿� u∗ ∈ Ω∗,k

(ũk − u∗)T d2(uk, ũk) ≥ ϕ(uk, ũk)− (uk − ũk)T d1(uk, ũk), (5.1c)

4. ϕ(uk, ũk)´ VI(Ω, F )�Ø�Ýþ¼ê,=�3~ê δ > 0,¦�

ϕ(uk, ũk) ≥ δ‖uk − ũk‖2 & ϕ(uk, ũk) = 0 ⇔ uk = ũk. (5.1d)

éØ�Ýþ¼ê ϕ(uk, ũk)
ó, d1(uk, ũk), d2(uk, ũk)Ñ´k|��.

Lemma 5.1 XJÚ�µe¥�^� (5.1a)Ú (5.1c)÷v,Kk

(uk − u∗)T d1(uk, ũk) ≥ ϕ(uk, ũk), ∀uk ∈ <n, u∗ ∈ Ω∗. (5.2)

yyy²²².Ï� u∗ ∈ Ω,± u∗� (5.1a)¥� u,Òk

(ũk − u∗)T d1(uk, ũk) ≥ (ũk − u∗)T d2(uk, ũk).

2�â^� (5.1c),��

(ũk − u∗)T d1(uk, ũk) ≥ ϕ(uk, ũk)− (uk − ũk)T d1(uk, ũk)

lþª���� (5.2),Ún�y. �
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Lemma 5.2 XJÚ�µe¥�^� (5.1a)Ú (5.1c)÷v,Kk

(uk − u∗)T d2(uk, ũk) ≥ ϕ(u, ũ), ∀uk ∈ Ω, u∗ ∈ Ω∗. (5.3)

yyy²²².Ï� uk ∈ Ω,± uk� (5.1a)¥� u,·�k

(uk − ũk)T d2(uk, ũk) ≥ (uk − ũk)T d1(uk, ũk). (5.4)

ò (5.4)Ú (5.1c)�\,��

(uk − u∗)T d2(uk, ũk) ≥ ϕ(uk, ũk).

Ún�y. �

�âJø� d1(uk, ũk)Ú d2(uk, ũk)�éÌ)��,·��±�E�é�{

(Contraction Method-I) uk+1 = uk − γα∗kd1(uk, ũk),

(Contraction Method-II) uk+1 = PΩ{uk − γα∗kd2(uk, ũk)},

Ù¥ α∗k =ϕ(uk, ũk)/‖d1(uk, ũk)‖2, γ ∈ (0, 2),d(5.1b)Ú(5.1d),Ú�´k.�.

Ì)��,�ÓÚ�,´ PC�{¥�`{��Ù. y²IE|,¦^é�B�
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Unternehmensforschung. Berlin-Heidelberg-New York: Springer-Verlag, 1975.
[2] D. S. Guo and Y.N. Zhang, Simulation and experimental verification of weighted velocity and acceleration

minimization for robotic redundancy resolution, IEEE Transactions on Automation Science and Engineering,
2014, 11: 1203–1217.

[3] B.S. He, A new method for a class of linear variational inequalities, Math. Progr., 66, 137–144, 1994.
[4] B.S. He, Solving a class of linear projection equations, Numerische Mathematik, 68, 71–80, 1994.
[5] B.S. He, A globally linearly convergent projection and contraction method for a class of linear complementarity

problems. Schwerpunktprogramm der DFG Anwendungsbezogene Optimierung und Steuerung, No. 352, 1992
[6] B.S. He, A class of projection and contraction methods for monotone variational inequalities, Applied

Mathematics and optimization, 35, 69–76, 1997.
[7] B.S He and L.-Z Liao, Improvements of some projection methods for monotone nonlinear variational

inequalities, JOTA, 112, 111-128, 2002
[8] B.S. He, L.Z. Liao, and X. Wang, Proximal-like contraction methods for monotone variational inequalitiesin a

unified framework I: Effective quadruplet and primary methods, Comput. Optim. Appl., 51, 649-679, 2012.
[9] B.S. He, L.Z. Liao, and X. Wang, Proximal-like contraction methods for monotone variational inequalities in a

unified framework II: General methods and numerical experiments, Comput. Optim. Appl. 51, 681-708, 2012
[10] B.S. He, X.M. Yuan and J.J.Z. Zhang, Comparison of two kinds of prediction-correction methods for monotone

variational inequalities, Computational Optimization and Applications, 27, 247-267, 2004.
[11] L. Xiao and Y. N. Zhang, Acceleration-level repetitive motion planning and its experimental verification on

six-link planar robot manipulator, IEEE Transactions on Control System Technology, 2013, 21: 906–914.
[12] H. Zheng, F. Liu and X.L. Du, Complementarity problem arising from static growth of multiple cracks and

MLS-based numerical manifold method, Computer Methods in Applied Mechanics and Engineering, 295 (2015)
150-171.

[13] H. Zheng, P. Zhang and X.L. Du, Dual form of discontinuous deformation analysis, Computer Methods in
Applied Mechanics and Engineering, 305 (2016) 196-216.


