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A function f(x) is convex iff

f((1−θ)x+θy) ≤ (1−θ)f(x)+θf(y)

∀θ ∈ [0, 1].

Properties of convex function

• f ∈ C1. f is convex iff

f(y)− f(x) ≥ ∇f(x)T (y − x).

Thus, we have also

f(x)− f(y) ≥ ∇f(y)T (x− y).

• Adding above two inequalities, we get

(y − x)T (∇f(y)−∇f(x)) ≥ 0.

• f ∈ C1,∇f is monotone. f ∈ C2,∇2f(x) is positive semi-definite.

• Any local minimum of a convex function is a global minimum.
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1.1 ���555���ååå���ààà`̀̀zzz¯̄̄KKK

min θ(x)

s.t Ax = b

x ∈ X

(1.1)
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Image deblurring Blurry can be produced by

defocus the camera’s lens, the moving object, turbulence in the air, · · ·
Notations: g — observation, f — ideal image;

U — restriction on pixels, e.g., U = {u | 0 ≤ u ≤ 255}
g = Hf , H — blur matrix .

Model min {‖∇f‖1 | Hf = g, f ∈ U}

original image blurred image restored image
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Image inpainting

Some pixels are missing in image. Partial information of image is available

g = S f , S — mask (missing pixels)

Model
min {‖∇f‖1 | S f = g, f ∈ U}

original image missing pixel image restored image



7

Image zooming and super-resolution

Produce a high-resolution (HR) image by its low-resolution (LR) image(s)

g = D f , f — HR image, g — LR image, D — down-sampling

Model min {‖∇f‖1 | Df = g, f ∈ U}

LR image HR image
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Magnetic resonance imaging (MRI)

Reconstruct a medical image by sampling its Fourier coefficients partially

Fg = PFf , P — sampling mask, F — Fourier transform

Model min {‖∇f‖1 | PFf = Fg}

medical image sampling mask reconstruction
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1.2 üüü������©©©lll888III¼¼¼êêê���ààà`̀̀zzz¯̄̄KKK

min θ1(x) + θ2(y)

s.t Ax+By = b

x ∈ X , y ∈ Y

(1.2)
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Image decomposition

Separate the sketch (cartoon) and oscillating component (texture) of image

f = u + v, u — cartoon part, v — texture part

Model min {‖∇u‖1 + τ‖v‖−1,∞ | u + v = f}

original image cartoon part texture part
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Background extraction of surveillance video (I)

Considering the foreground object detection in complex environments and extract

the background in surveillance video

D = X + Y , D — original video, X — background, Y — foreground

Model min {‖X‖∗ + τ‖Y ‖1 | X + Y = D}

original video foreground background
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Image denoising

Pixels are perturbed by a whole range of external and unwanted disturbances

g = f + noise

Model

min
{
‖∇f‖1 + 1

2‖f − g‖22
}
⇔ min

{
‖y‖1 + 1

2‖f − g‖22 | ∇f − y = 0
}

,

original image noised image restored image



13

1.3 õõõ������©©©lll888III¼¼¼êêê���ààà`̀̀zzz¯̄̄KKK

We take the problem with three separable

objective functions as an example.

min θ1(x) + θ2(y) + θ3(z)

s.t. Ax+By + Cz = b

x ∈ X , y ∈ Y, z ∈ Z

(1.3)
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Background extraction of surveillance video (II)

The original surveillance video has missing information and additive noise

PΩ(D) = PΩ(X + Y )+noise

PΩ — indicating missing data, Z — noise/outliers

Model

min
{
‖X‖∗ + τ‖Y ‖1 + ‖PΩ(Z)‖2F | X + Y − Z = D

}

observed video foreground background
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Image decomposition with degradations The target image for

decomposition contains degradations, e.g., blur, missing pixels, · · ·

f = K(u + divv) + z, K — degradation operator, z — noise/outlier

Model

min
{
‖∇u‖1 + τ‖v‖∞ + ‖z‖22 | K(u + divv) + z = f

}

target image cartoon texture
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2 Optimization problem and VI

2.1 Differential convex optimization in Form of VI

Let Ω ⊂ <n, we consider the convex minimization problem

min{f(x) | x ∈ Ω}. (2.1)

What is the first-order optimal condition ?

x∗ ∈ Ω∗ ⇔ x ∈ Ω and any feasible direction is not descent direction.

Optimal condition in variational inequality form

• Sd(x∗) = {s ∈ <n | sT∇f(x∗) < 0} = Set of the descent directions.

• Sf (x∗) = {s ∈ <n | s = x− x∗, x ∈ Ω} = Set of feasible directions.

x∗ ∈ Ω∗ ⇔ x∗ ∈ Ω and Sf (x∗) ∩ Sd(x∗) = ∅.

\f÷ì�½ìº�OK´:¤k�1��ÑØ2´þ,��
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The optimal condition can be presented in a variational inequality (VI) form:

x∗ ∈ Ω, (x− x∗)TF (x∗) ≥ 0, ∀x ∈ Ω, (2.2)

where F (x) = ∇f(x).'
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Fig. 1.1 Differential Convex Optimization and VI

Since f(x) is a convex function, we have

f(y) ≥ f(x)+∇f(x)T (y−x) and thus (x−y)T (∇f(x)−∇f(y)) ≥ 0.

We say the gradient∇f of the convex function f is a monotone operator.
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Ï�·�I�^���ÆêÆ Ì�´Äu�È©Æ���Ún

min{θ(x)|x ∈ X}, x∗ ∈ X , θ(x)− θ(x∗) ≥ 0, ∀x ∈ X ;

min{f(x)|x ∈ X}, x∗ ∈ X , (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X .

. ±þ´�Ä��à`z�`5^�.Ø�y²·��Ñe¡�Ún:

Lemma 1 LetX ⊂ <n be a closed convex set, θ(x) and f(x) be convex func-

tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ ∈ arg min{θ(x) + f(x) |x ∈ X} (2.3a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (2.3b)
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2.2 Min-Max Problem

The min-max problem has the following mathematical form

minx∈X maxy∈Y Φ(x, y) := θ1(x)− yTAx− θ2(y), (2.4)

where A ∈ <m×n, θ1(x) : <n → <, θ2(y) : <m → < are convex functions.

Let (x∗, y∗) be the solution of (2.4), then we have
{
x∗ ∈ X , Φ(x, y∗)− Φ(x∗, y∗) ≥ 0, ∀x ∈ X , (2.5a)

y∗ ∈ Y, Φ(x∗, y∗)− Φ(x∗, y) ≥ 0, ∀ y ∈ Y. (2.5b)

Using the notation of Φ(x, y), it can be written as
{
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T ( Ax∗) ≥ 0, ∀ y ∈ Y.

It can be written as a variational inequality: u ∈ Ω,

θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (2.6)
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where

u =

(
x
y

)
, θ(u) = θ1(x) + θ2(y), F (u) =

(
−AT y
Ax

)

and Ω = X × Y .

If θ1(x) and θ2(y) are differentiable, by setting ∇θ1(x) = f(x), ∇θ2(y) = g(y),

the solution of (2.4) should satisfy{
x∗ ∈ X , (x− x∗)T (f(x∗)−AT y∗) ≥ 0, ∀x ∈ X ,

y∗ ∈ Y, (y − y∗)T (g(y∗) +Ax∗) ≥ 0, ∀ y ∈ Y.

The compact form of the above variational inequality can be written as

u∗ ∈ Ω, (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω

where

F (u) =

(
f(x)−ATy
g(y) +Ax

)
=

(
f(x)
g(y)

)
+

(
0 −AT
A 0

)(
x
y

)
.



21

2.3 Linearly constrained Optimization in form of VI

We consider the linearly constrained convex optimization problem

min{θ(u) | Au = b, u ∈ U}. (2.7)

The Lagrange function of (2.7) is

L(u, λ) = θ(u)− λT (Au− b), (u, λ) ∈ U × <m. (2.8)
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A pair of (u∗, λ∗) is called a saddle point if

Lλ∈<m(u∗, λ) ≤ L(u∗, λ∗) ≤ Lu∈U (u, λ∗).

The above inequalities can be written as
{
u∗ ∈ U , L(u, λ∗)− L(u∗, λ∗) ≥ 0, ∀u ∈ U , (2.9a)

λ∗ ∈ Λ, L(u∗, λ∗)− L(u∗, λ) ≥ 0, ∀ λ ∈ Λ. (2.9b)

According to the definition of L(u, λ) (see(2.8)),

L(u, λ∗)− L(u∗, λ∗)

= [θ(u)− (λ∗)T (Au− b)]− [θ(u∗)− (λ∗)T (Au∗ − b)]
= θ(u)− θ(u∗) + (u− u∗)T (−ATλ∗)

it follows from (2.9a) that

u∗ ∈ U , θ(u)− θ(u∗) + (u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U . (2.10)
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Similarly, for (2.9b), since

L(u∗, λ∗)− L(u∗, λ)

= [θ(u∗)− (λ∗)T (Au∗ − b)]− [θ(u∗)− (λ)T (Au∗ − b)]
= (λ− λ∗)T (Au∗ − b),

we have

λ∗ ∈ <m, (λ− λ∗)T (Au∗ − b) ≥ 0, ∀ λ ∈ <m. (2.11)

Notice that the above expression is equivalent to

Au∗ = b.

Writing (2.10) and (2.11) together, we get the following variational inequality:

{
u∗ ∈ U , θ(u)− θ(u∗) + (u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U ,
λ∗ ∈ <m, (λ− λ∗)T (Au∗ − b) ≥ 0, ∀ λ ∈ <m.
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Using a more compact form, the saddle-point can be characterized as the solution

of the following VI:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (2.12)

where

w =

(
u

λ

)
, F (w) =

( −ATλ
Au− b

)
and Ω = U × <m. (2.13)

Because F is a affine operator and

F (w) =

(
0 −AT
A 0

)(
u

λ

)
−
(

0

b

)
.

The matrix is skew-symmetric, we have

(w − w̃)T (F (w)− F (w̃)) ≡ 0.
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Convex optimization problem with two separable functions

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}. (2.14)

This is a special problem of (2.7) with

u =


 x

y


 , U = X × Y, A = (A,B).

The Lagrangian function of the problem (2.14) is

L2(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b).

The same analysis tells us that the saddle point is a solution of the following VI:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (2.15)
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where

u =


 x

y


 , θ(u) = θ1(x) + θ2(y), (2.16a)

w =




x
y

λ


 , F (w) =




−ATλ
−BTλ

Ax+By − b


 , (2.16b)

and

Ω = X × Y × <m. (2.16c)

The affine operator F (w) has the form

F (w) =




0 0 −AT

0 0 −BT

A B 0







x

y

λ


−




0

0

b


 .

Again, we have

(w − w̃)T (F (w)− F (w̃)) ≡ 0.
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Convex optimization problem with three separable functions

min{θ1(x) + θ2(y) + θ3(z) |Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z},

which is a special problem of (2.7). The Lagrangian function is

L3(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b).
The same analysis tells us that the saddle point is a solution of the following VI:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω.

where

w =




x
y

z

λ


 , u =




x

y

z


 , F (w) =




−ATλ
−BTλ
−CTλ

Ax+By + Cz − b



,

θ(u) = θ1(x) + θ2(y) + θ3(z), Ω = X × Y × Z × <m.
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3 Proximal point algorithms and its Beyond

Lemma 2 Let the vectors a, b ∈ <n, H ∈ <n×n be a positive definite matrix.

If bTH(a− b) ≥ 0, then we have

‖b‖2H ≤ ‖a‖2H − ‖a− b‖2H . (3.1)

The assertion follows from ‖a‖2 = ‖b+ (a− b)‖2 ≥ ‖b‖2 + ‖a− b‖2.

3.1 Proximal point algorithms for convex optimization
Convex Optimization Now, let us consider the simple convex optimization

min{θ(x) + f(x) | x ∈ X}, (3.2)

where θ(x) and f(x) are convex but θ(x) is not necessary smooth, X is a

closed convex set.

For solving (3.2), the k-th iteration of the proximal point algorithm (abbreviated to
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PPA) [15, 18] begins with a given xk, offers the new iterate xk+1 via the recursion

xk+1 = Argmin{θ(x) + f(x) +
r

2
‖x− xk‖2 | x ∈ X}. (3.3)

Since xk+1 is the optimal solution of (3.3), it follows from Lemma 1 that

θ(x)−θ(xk+1)+(x− xk+1)T {∇f(xk+1) + r(xk+1 − xk)} ≥ 0, ∀x ∈ X .
(3.4)

Setting x = x∗ in the above inequality, it follows that

(xk+1−x∗)T (xk−xk+1) ≥ θ(xk+1)−θ(x∗)+(xk+1−x∗)T∇f(xk+1).

Since (xk+1 − x∗)T∇f(xk+1) ≥ (xk+1 − x∗)T∇f(x∗) ≥ 0, it follows that

(xk+1 − x∗)T (xk − xk+1) ≥ 0. (3.5)

Let a = xk − x∗ and b = xk+1 − x∗ and using Lemma 2, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2, (3.6)

which is the nice convergence property of Proximal Point Algorithm.
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The residue sequence {‖xk − xk+1‖} is also monotonically no-increasing.

Proof. Replacing k + 1 in (3.4) with k, we get

θ(x)− θ(xk) + (x− xk)T {∇f(xk) + r(xk − xk−1)} ≥ 0, ∀x ∈ X .

Let x = xk+1 in the above inequality, it follows that

θ(xk+1)− θ(xk) + (xk+1 − xk)T {∇f(xk) + r(xk − xk−1)} ≥ 0. (3.7)

Setting x = xk in (3.4), we become

θ(xk)− θ(xk+1) + (xk − xk+1)T {∇f(xk+1) + r(xk+1 − xk)} ≥ 0. (3.8)

Adding (3.7) and (3.8) and using (xk − xk+1)T [∇f(xk)−∇f(xk+1)] ≥ 0,

(xk − xk+1)T {(xk−1 − xk)− (xk − xk+1)} ≥ 0. (3.9)

Setting a = xk−1 − xk and b = xk − xk+1 in (3.9) and using (3.1), we obtain

‖xk−xk+1‖2 ≤ ‖xk−1−xk‖2−‖(xk−1−xk)−(xk−xk+1)‖2. (3.10)
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We write the problem (3.2) and its PPA (3.3) in VI form

The equivalent variational inequality form of the optimization problem (3.2) is

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (3.11a)

For solving the problem (3.2), the variational inequality form of the k-th iteration of

the PPA (see (3.4)) is:

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)T∇f(xk+1)

≥ (x− xk+1)T r(xk − xk+1), ∀x ∈ X .
(3.11b)

PPAÏL¦)�X�� (3.3),¦� (3.2)�),æ^�´ÚÚ�E�üÑ.

Using (3.11), we consider the PPA for the variational inequality (2.12)
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3.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the linearly constrained convex optimization is

characterized as a mixed monotone variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (3.12)

PPA for VI (3.12) in Euclidean-norm For given wk and r > 0, find wk+1,

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)TF (wk+1)

≥ (w − wk+1)T r(wk − wk+1), ∀w ∈ Ω.
(3.13)

wk+1 is called the proximal point of the k-th iteration for the problem (3.12).

z wk is the solution of (3.12) if and only if wk = wk+1 z

Setting w = w∗ in (3.13), we obtain

(wk+1−w∗)T r(wk−wk+1) ≥ θ(uk+1)−θ(u∗)+(wk+1−w∗)TF (wk+1)
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Note that (see the structure of F (w) in (2.13))

(wk+1 − w∗)TF (wk+1) = (wk+1 − w∗)TF (w∗),

and consequently (by using (3.12)) we obtain

(wk+1−w∗)T r(wk −wk+1) ≥ θ(uk+1)− θ(u∗) + (wk+1−w∗)TF (w∗) ≥ 0.

Thus, we have

(wk+1 − w∗)T (wk − wk+1) ≥ 0. (3.14)

By setting a = wk − w∗ and b = wk+1 − w∗, the inequality (3.14)

means that bT (a− b) ≥ 0. By using Lemma 2, we obtain

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − ‖wk − wk+1‖2. (3.15)

We get the nice convergence property of Proximal Point Algorithm.

The sequence {wk} generated by PPA is Fejér monotone. As in (3.10),
the residue sequence {‖wk −wk+1‖} is also monotonically no-increasing.

‖wk − wk+1‖2 ≤ ‖wk−1− wk‖2−‖(wk−1− wk)−(wk − wk+1)‖2.
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PPA for monotone mixed VI in H-norm

For given wk, find the proximal point wk+1 in H-norm which satisfies

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)TF (wk+1)

≥ (w − wk+1)TH(wk − wk+1), ∀ w ∈ Ω,
(3.16)

where H is a symmetric positive definite matrix.

z Again, wk is the solution of (3.12) if and only if wk = wk+1 z

Convergence Property of Proximal Point Algorithm in H-norm

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H . (3.17)

The sequence {wk} is Fejér monotone in H-norm. In primal-dual algorithm [?],

via choosing a proper positive definite matrix H , the solution of the subproblem

(3.16) has a closed form. In addition, for the residue sequence, we have

‖wk −wk+1‖2H ≤ ‖wk−1 −wk‖2H − ‖(wk−1 −wk)− (wk −wk+1)‖2H .
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4 From augmented Lagrangian method to C-PPA

We consider the convex optimization (1.1), namely

min{θ(x) |Ax = b, x ∈ X}.

4.1 Augmented Lagrangian Method

The augmented Lagrangian function of (1.1) is

Lβ(x, λ) = θ(x)− λT (Ax− b) +
β

2
‖Ax− b‖2, (4.1)

where the quadratic term is the penalty for the linear constraints Ax = b.

The k-th iteration of the Augmented Lagrangian Method [14, 17] begins with a
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given λk, obtain wk+1 = (xk+1, λk+1) via

(ALM)

{
xk+1 = arg min

{
Lβ(x, λk)

∣∣ x ∈ X
}
, (4.2a)

λk+1 = λk − β(Axk+1 − b). (4.2b)

In (4.2), xk+1 is only a computational result of (4.2a) from given λk, it is called

the intermediate variable. In order to start the k-th iteration of ALM, we need only

to have λk and thus we call it as the essential variable. According to Lemma 1,

the optimal condition can be written as wk+1 ∈ Ω andθ(x)− θ(xk+1) + (x− xk+1)T {−ATλk + βAT (Axk+1 − b)} ≥ 0, ∀x ∈ X ,

(λ− λk+1)T{(Axk+1 − b) + 1
β

(λk+1 − λk)} ≥ 0, ∀λ ∈ <m.

The above relations can be written as

θ(x)−θ(xk+1)+

x− xk+1

λ− λk+1

T−ATλk+1

Axk+1 − b

 ≥ (λ−λk+1)T
1

β
(λk−λk+1), ∀w ∈ Ω.

(4.3)
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Setting w = w∗ in (4.3) and using the notations in (2.13), we get

(λk+1−λ∗)T (λk−λk+1) ≥ β{θ(xk+1)−θ(x∗)+(wk+1−w∗)TF (wk+1)}.

By using the monotonicity of F and the optimality of w∗, it follows that

θ(xk+1)− θ(x∗) + (wk+1 − w∗)TF (wk+1)

≥ θ(xk+1)− θ(x∗) + (wk+1 − w∗)TF (w∗) ≥ 0.

Thus, we have

(λk+1 − λ∗)T (λk − λk+1) ≥ 0. (4.4)

By using the above inequality, we obtain

‖λk − λ∗‖2 = ‖(λk+1 − λ∗) + (λk − λk+1)‖2

≥ ‖λk+1 − λ∗‖2 + ‖λk − λk+1‖2.

It means that

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − ‖λk − λk+1‖2. (4.5)
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The above inequality is the key for the convergence proof of the Augmented

Lagrangian Method.

For solving (1.1), in each iteration of ALM we have to solve the subproblem (4.2a).

Notice that

arg min
{
Lβ(x, λk)

∣∣ x ∈ X
}

= arg min
{
θ(x)− (λk)T (Ax− b) +

β

2
‖Ax− b‖2

∣∣ x ∈ X
}

= arg min
{
θ(x) +

β

2
‖Ax− b− 1

β
λk‖2

∣∣ x ∈ X
}
.

Thus, the mathematical form of the sub-problems of ALM is

min{θ(x) +
β

2
‖Ax− p‖2 |x ∈ X}, (4.6)

where β > 0, and p is a given vector. The subproblem (4.6) is a little bit difficult.

We use ALM only when the solution of (4.6) has a closed-form representation or it

can be efficiently solved up to a high precision.
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4.2 From C-P method to Customized PPA

For the primal-dual methods and customized PPA in the last section, we assume

that the subproblem min{θ(x) + r
2‖x− a‖2 |x ∈ X} is simple.

The Lagrange function is

L(x, λ) = θ(x)− λT (Ax− b), (x, λ) ∈ X × <m.

For the primal-dual methods and customized PPA in this subsection, we assume

that the subproblem

min{θ(x) +
r

2
‖x− a‖2 |x ∈ X}

4.2.1 Original primal-dual hybrid gradient algorithm [19]

For given (xk, λk), produce a pair of (xk+1, λk+1). First,

xk+1 = Argmin{L(x, λk) +
r

2
‖x− xk‖2 |x ∈ X}, (4.7a)
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and then we obtain λk+1 via

λk+1 = Argmax{L(xk+1, λ)− s

2
‖λ− λk‖2 |λ ∈ <m}. (4.7b)

Note that the optimality condition of (4.7a) is

θ(x)− θ(xk+1) + (x−xk+1)T {−ATλk + r(xk+1−xk)} ≥ 0, ∀x ∈ X . (4.8)

The problem (4.7b) is an unconstrained optimization, thus we have

(Axk+1 − b) + s(λk+1 − λk) = 0, (4.9)

and it can be written as

λk+1 ∈ <m, (λ− λk+1)T {(Axk+1 − b) + s(λk+1 − λk)} ≥ 0, ∀λ ∈ <m.
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Combining (4.8) and (4.9), we get

θ(x)− θ(xk+1) +

x− xk+1

λ− λk+1

T 
−ATλk+1

Axk+1 − b


+

r(xk+1 − xk)+AT (λk+1 − λk)

s(λk+1 − λk)

 ≥ 0, ∀(x, λ) ∈ Ω,

where

Ω = X × <m.

The compact form is

θ(x)− θ(xk+1) + (w − wk+1)T {F (wk+1) +Q(wk+1 − wk)} ≥ 0, ∀w ∈ Ω,

(4.10)

where

Q =

 rIn AT

0 sIm

 is not symmetric.

It does not result in the PPA form (3.16), and we can not expect its convergence.
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The following example of linear programming indicates

the original PDHG (4.7) is not necessary convergent.

Consider the following pair of primal-dual linear programmingµ

(Primal)

min x

s. t. x = 1

x ≥ 0.

(Dual)
max y

s. t. y ≤ 1

The optimal solutions of this pair of linear programming are x∗ = 1 and y∗ = 1. Note

that its Lagrange function is

L(x, y) = x− y(x− 1) (4.11)

which defined on R+ ×R. (x∗, y∗) = (1, 1) is the unique saddle point of the Lagrange

function.
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Fig. 3.1 The sequence generated by PDHG Method

4.2.2 Customized Proximal Point Algorithm-Classical Version

If we change the non-symmetric matrix Q to a symmetric matrix H such that

Q =

 rIn AT

0 sIm

 ⇒ H =

 rIn AT

A sIm

 ,
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then the variational inequality (4.10) will become the following desirable form:

θ(x)− θ(xk+1) + (w − wk+1)T {F (wk+1) +H(wk+1 − wk)} ≥ 0, ∀w ∈ Ω.

(4.12)

For this purpose, we need only to change (4.9), namely,

(Axk+1 − b) + s(λk+1 − λk) = 0,

to

(Axk+1 − b) +A(xk+1 − xk) + s(λk+1 − λk) = 0. (4.13)

Because xk+1 is known, with the given xk and λk , λk+1 in (4.13) is given by

λk+1 = λk − 1

s
[A(2xk+1 − xk)− b].

Thus, for given (xk, λk), produce a proximal point (xk+1, λk+1) via (4.7a) and (4.13)

can be summarized as:

xk+1 = argmin
{
L(x, λk) +

r

2

∥∥x− xk∥∥2 ∣∣x ∈ X}. (4.14a)

λk+1 = argmax
{
L
(
[2xk+1 − xk], λ

)
− s

2

∥∥λ− λk∥∥2} (4.14b)
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By ignoring the constant term in the objective function, getting xk+1 from (4.14a) is

equivalent to obtaining xk+1 from

xk+1 = argmin
{
θ(x) +

r

2

∥∥x− [xk +
1

r
ATλk

]∥∥2 ∣∣x ∈ X}.
The solution of (4.14b) is given by

λk+1 = λk − 1

s
[A(2xk+1 − xk)− b].

Assumption: min {θ(x) + r
2
‖x− a‖2 |x ∈ X} is simple

Indeed, under the assumption, the sub-problem (4.14a) is simple.

In the case that rs > ‖ATA‖, the matrix

H =

 rIn AT

A sIm

 is positive definite.

Theorem 1 The sequence {wk = (xk, λk)} generated by the customized PPA



46

satisfies

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H . (4.15)

The VI approach greatly simplifies the convergence analysis of the CP (Chambolle-Pock)

method which can be viewed as a classical version of the customized PPA.

� A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem with

applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
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� B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex
minimization with linear constraints, Comput. Optim. Appl., 56: 559-572, 2013.

� G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly
constrained convex minimization and saddle-point problems: a unified approach,
Comput. Optim. Appl., 59(2014), 135-161.

� B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle
-point problem: From contraction perspective, SIAM J. Imag. Sci., 5, 119-149, 2012.
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Produce (xk+1, λk+1) by using the dual-primal order:

λk+1 = argmax
{
L
(
xk, λ

)
− s

2

∥∥λ− λk
∥∥2}

(4.16a)

xk+1 = argmin
{
L(x, (2λk+1 − λk)) +

r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (4.16b)

By using the notation of w, F (w) and Ω in (2.13), we get wk+1 ∈ Ω and

θ(x)−θ(xk+1)+(w−wk+1)T {F (wk+1)+H(wk+1−wk)} ≥ 0, ∀w ∈ Ω,

where

H =


 rIn −AT

−A sIm




is symmetric and in the case rs > ‖ATA‖, the matrix H is positive definite.
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Note that in the primal-dual order,

H =


 rIn AT

A sIm


 .

Remark Let the linear constraints become to a system of inequalities.

min{θ(x) | Ax = b, x ∈ X} ⇒ min{θ(x) | Ax ≥ b, x ∈ X}

In this case, the Lagrange multiplier λ should be nonnegative. Ω = X × <m+ .

We need only to make a slight change in the prediction procedure:

In the primal-dual order:

λk+1 = λk− 1
s

(
A(2xk+1− xk)− b

)
⇒ λk+1 =

[
λk− 1

s

(
A(2xk+1− xk

)
− b]

]
+

In the dual-primal order:

λk+1 = λk − 1
s
(Axk − b) ⇒ λk+1 =

[
λk − 1

s
(Axk − b)

]
+
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4.3 Simplicity recognition

Frame of VI is recognized by some Researcher in Image Science
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Abstract

In this paper we study preconditioning techniques for
the first-order primal-dual algorithm proposed in [5]. In
particular, we propose simple and easy to compute diago-
nal preconditioners for which convergence of the algorithm
is guaranteed without the need to compute any step size
parameters. As a by-product, we show that for a certain
instance of the preconditioning, the proposed algorithm is
equivalent to the old and widely unknown alternating step
method for monotropic programming [7]. We show numer-
ical results on general linear programming problems and
a few standard computer vision problems. In all examples,
the preconditioned algorithm significantly outperforms the
algorithm of [5].

1. Introduction
In [5, 8, 13] first-order primal-dual algorithms are stud-

ied to solve a certain class of convex optimization problems
with known saddle-point structure.

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) , (1)

where X and Y are finite-dimensional vector spaces
equipped with standard inner products 〈·, ·〉. K : X → Y
is a linear operator and G : X → R ∪ {∞} and F ∗ : Y →
R ∪ {∞} are convex functions with known structure.

The iterates of the algorithm studied in [5] to solve (1)
are very simple:
{
xk+1 =(I + τ∂G)−1(xk − τKT yk)

yk+1 =(I + σ∂F ∗)−1(yk + σK(xk+1 + θ(xk+1 − xk)))

(2)
They basically consist of alternating a gradient ascend in
the dual variable and a gradient descend in the primal

∗The first author acknowledges support from the Austrian Science Fund
(FWF) under the grant P22492-N23.

Figure 1. On problems with irregular structure, the proposed pre-
conditioned algorithm (P-PD) converges significantly faster than
the algorithm of [5] (PD).

variable. Additionally, the algorithm performs an over-
relaxation step in the primal variable. A fundamental as-
sumption of the algorithm is that the functions F ∗ and G
are of simple structure, meaning that the so-called proxim-
ity or resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1

have closed-form solutions or can be efficiently computed
with a high precision. Their exact definitions will be given
in Section 1.1. The parameters τ, σ > 0 are the primal and
dual step sizes and θ ∈ [0, 1] controls the amount of over-
relaxation in x. It is shown in [5] that the algorithm con-
verges as long as θ = 1 and the primal and dual step sizes
τ and σ are chosen such that τσL2 < 1, where L = ‖K‖
is the operator norm of K. It is further shown that a suit-
ably defined partial primal-dual gap of the average of the
sequence ((x0, y0), ..., (xk, yk)) vanishes with rate O(1/k)
for the complete class of problems covered by (1). For
problems with more regularity, the authors propose acceler-
ation schemes based on non-empirical choices on τ , σ and
θ. In particular they show that they can achieveO(1/k2) for
problems where G of F ∗ is uniformly convex and O(ωk),
ω < 1 for problems where both G and F ∗ are uniformly
convex. See [5] for more details.

A common feature of all numerical examples in [5] is
that the involved linear operators K have a simple struc-
ture which makes it very easy to estimate L. We observed
that for problems where the operator K has a more compli-

1

• T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

• A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem

with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
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cated structure, L cannot be estimated easily or it might be
very large such that the convergence of the algorithm sig-
nificantly slows down. As we will see, linear operators with
irregular structure frequently arise in many different vision
problems.

In this work, we study preconditioning techniques for
the primal-dual algorithm (2). This allows us to overcome
the aforementioned shortcomings. The proposed precondi-
tioned algorithm has several advantages. Firstly, it avoids
the estimation of the operator norm of K, secondly, it sig-
nificantly accelerates the convergence on problems with ir-
regular K and thirdly, it leaves the computational complex-
ity of the iterations basically unchanged. Figure 1 shows
convergence plots on two LP problems with such an irreg-
ular structure. The proposed algorithm can better adapt to
the problem structure, leading to faster convergence.

The rest of the paper is as follows. In Section 1.1 we fix
some preliminary definitions which will be used through-
out the paper. In Section 2 we present the preconditioned
primal-dual algorithm and give conditions under which con-
vergence of the algorithm is guaranteed. We propose a fam-
ily of simple and easy to compute diagonal preconditioners,
which turn out to be very efficient on many problems. In
Section 2.3 we establish connections to the old and widely
unknown alternating step method for monotropic program-
ming [7]. In Section 3 we detail experimental results of the
proposed algorithm. In the last Section we draw some con-
clusions and show directions for future work.

1.1. Preliminaries

We consider finite-dimensional vector spaces X and Y ,
where n = dimX and m = dimY with inner products

〈
x1, x2

〉
X

=
〈
T−1x1, x2

〉
, x1, x2 ∈ X ,

〈
y1, y2

〉
Y

=
〈
Σ−1y1, y2

〉
, y1, y2 ∈ Y ,

where T and Σ are a symmetric, positive definite precondi-
tioning matrices. We further define the norms in the usual
way as

‖x‖X = 〈x, x〉
1
2

X , ‖y‖Y = 〈y, y〉
1
2

Y .

We will make frequent use of the so-called resolvent or
proximity operator of a function G(x). Given a point
x̂ ∈ X , it is defined as the solution of the auxiliary min-
imization problem

x∗ = arg min
x
G(x) +

1

2
‖x− x̂‖2X

The unique minimizer to the above problem is characterized
by the optimality condition

∂G(x) + T−1(x− x̂) 3 0 ,

whose optimal solution x∗ can be written in operator form
as

x∗ = (I + T∂G)−1(x̂) . (3)

2. Preconditioned primal-dual algorithm
In this work, we propose the following preconditioned

first-order primal-dual algorithm: Choose symmetric and
positive definite matrices T,Σ, θ ∈ [0, 1], (x0, y0) ∈
X × Y . Then for k ≥ 0, update (xk, yk) as follows:
{
xk+1 =(I + T∂G)−1(xk − TKT yk)

yk+1 =(I + Σ∂F ∗)−1(yk + ΣK(xk+1+θ(xk+1−xk)))

(4)
Comparing the iterates (4) of the proposed algorithm to (2),
one can see that the global steps τ and σ have been re-
placed by the preconditioning matrices T and Σ. It is known
that (2) converges as long as θ = 1 and τσ‖K‖2 < 1.
Hence, a natural question is now to establish conditions on
T and Σ and θ which ensure convergence of the proposed
preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F ∗ it follows that for any (x, y) ∈ X ×
Y the iterates xk+1 and yk+1 satisfy
〈(

x− xk+1

y − yk+1

)
,F

(
xk+1

yk+1

)
+M

(
xk+1 − xk
yk+1 − yk

)〉
≥ 0 ,

(5)
where

F

(
xk+1

yk+1

)
=

(
∂G(xk+1) +KT yk+1

∂F ∗(yk+1)−Kxk+1

)
,

and

M =

[
T−1 −KT

−θK Σ−1

]
. (6)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].
In the next Section we will establish conditions on θ, T and
Σ which ensure convergence of the algorithm.

2.1. Convergence of the algorithm

We can make direct use of the convergence analysis de-
veloped in [10, 14, 16]. In fact, convergence of (5) can be
guaranteed as long as the matrix M is symmetric and pos-
itive definite. In the following Lemma we establish condi-
tions on θ, T and Σ which indeed ensure these properties of
M .

Lemma 1. Let θ = 1, T and Σ symmetric positive definite
maps satisfying

‖Σ 1
2KT

1
2 ‖2 < 1 , (7)
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dual variables into a vector y and all linear operators into a
global linear operator K. Then, applying the precondition-
ing techniques proposed in this paper leads to an algorithm
that is guaranteed to converge to the optimal solution with-
out the need to solve any inner optimization problems.

Figure 3 shows some results of standard minimal parti-
tioning and segmentation problems. We compared the orig-
inal approach solving inner optimization problems and us-
ing PD to P-PD applied to (27). We first precomputed the
optimal solution using a large number of iterations and then
recorded the time until the error is below a threshold of tol.
The timings are presented in Table 4. In all cases, the pro-
posed algorithm clearly outperforms the original approach
of [5].

PD P-PD Speedup
Synthetic (3 phases) 221.71s 75.65s 2.9
Synthetic (4 phases) 1392.02s 538.83s 2.6

Natural (8 phases) 592.85s 113.76s 5.2
Table 4. Comparison of the proposed algorithm on partitioning
problems.

4. Conclusion

In this paper we have proposed a simple precondition-
ing technique to improve the performance of the first-order
primal-dual algorithm proposed in [13, 5]. The proposed
diagonal preconditioners can be computed efficiently and
guarantee the convergence of the algorithm without the
need to estimate any step size parameters. In several nu-
merical experiments, we have shown that the proposed al-
gorithm significantly outperforms the algorithm in [5]. Fur-
thermore, on large scale linear programming problems, an
unoptimized implementation of the proposed algorithm eas-
ily outperforms a highly optimized interior point solver and
a GPU implementation of the proposed algorithm can eas-
ily compete with specialized combinatorial algorithms for
computing minimum cuts.

We believe that the proposed algorithm can become a
standard algorithm in computer vision since it can be ap-
plied to a large class of convex optimization problems aris-
ing in computer vision and has the potential for parallel
computing. Future work will mainly concentrate on the
development of more sophisticated preconditioners that are
different from diagonal matrices.
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Moreover, from the convexity of f and (4) it follows

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 ≥ f (x̂) + 〈∇ f (x̄), x − x̂
〉 − L f

2
‖x̂ − x̄‖2.

Combining this with the previous inequality, we arrive at

f (x) + g(x) + 1
τ

Dx (x, x̄) + L f

2
‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈
K (x̂ − x), ỹ

〉 + 1
τ

Dx (x̂, x̄) + 1
τ

Dx (x, x̂). (9)

In the same way:

h∗(y) + 1
σ

Dy(y, ȳ) ≥ h∗(ŷ) − 〈
K x̃, ŷ − y

〉 + 1
σ

Dy(ŷ, ȳ) + 1
σ

Dy(y, ŷ). (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8) �	.

3 Non-linear primal–dual algorithm

In this section we address the convergence rate of the non-linear primal–dual algorithm
shown in Algorithm 1:

Algorithm 1: O(1/N ) Non-linear primal–dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant L f of ∇ f , and Bregman
distance functions Dx and Dy .

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, 2xn+1 − xn, yn) (11)

The elegant interpretation in [16] shows that by writing the algorithm in this form
(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x =
‖·‖y = ‖·‖2, and Dx (x, x ′) = 1

2‖x − x ′‖2
2, Dy(y, y′) = 1

2‖y − y′‖2
2, then it is an

instance of the proximal point algorithm [27], up to the explicit term ∇ f (xn), since

(
K ∗ + ∂g

−K + ∂h∗
)

(zn+1) + Mτ,σ (zn+1 − zn) �
(−∇ f (xn)

0

)
,

where the variable z ∈ X ×Y represents the pair (x, y), and the matrix Mτ,σ is given
by

Mτ,σ =
( 1

τ
I −K ∗

−K 1
σ

I

)
, (12)

which is positive-definite as soon as τσ L2 < 1. A proof of convergence is easily
deduced. Moreover, since in our particular setting we never really use the machinery
of monotone operators, and rely only on the fact that we are studying a specific
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A proof of convergence is easily
deduced.

The elegant interpretation in
in
y writing the algorithm in this form

♣ T©�©z [16]´·�uL3 SIAM J. Imaging Scienceþ�©Ù.

B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a

saddle -point problem: From contraction perspective, SIAM J. Imag. Science

5(2012), 119-149.
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5 Applications in scientific computation

5.1 Finding the nearest correlation matrix

min{1

2
‖X − C‖2F | diag(X) = e, X ∈ Sn+}, (5.1)

where e is a n-vector whose each element is equal 1.

The problem has the mathematical form (1.1) with ‖ATA‖ = 1.

We use z ∈ <n as the Lagrange multiplier for the linear equality constraint.

Applied Customized PPA to the problem (5.1)

For given (Xk, zk), produce the predictor (Xk+1, zk+1) by using (4.16):

1. Producing zk+1 by

zk+1 = zk − 1

s
(diag(Xk)− e).
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2. Finding Xk+1 which is the solution of the following minimization problem

min{1

2
‖X −C‖2F +

r

2
‖X − [Xk +

1

r
diag(2zk+1− zk)]‖2F |X ∈ Sn+}.

(5.2)

How to solve the subproblem (5.2) The problem (5.2) is equivalent to

min{1

2
‖X − 1

1 + r
[rXk + diag(2zk+1 − zk) + C]‖2F |X ∈ Sn+}.

The main computational load of each iteration is a SVD decomposition.

Numerical Tests To construct the test examples, we give the matrix C via:

C=rand(n,n); C=(C’+C)-ones(n,n) + eye(n)

In this way, C is symmetric, Cjj ∈ (0, 2), and Cij ∈ (−1, 1), for i 6= j.

Matlab code for Creating the test examples

clear; close all; n = 1000; tol=1e-5; r=2.0; s=1.01/r;

gamma=1.5; rand(’state’,0); C=rand(n,n); C=(C’+C)-ones(n,n) +

eye(n);
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Matlab code of the classical Customized PPA
%%% Classical PPA for calibrating correlation matrix %(1)

function PPAC(n,C,r,s,tol) %(2)

X=eye(n); y=zeros(n,1); tic; %% The initial iterate %(3)

stopc=1; k=0; %(4)

while (stopc>tol && k<=100) %% Beginning of an Iteration %(5)

if mod(k,20)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

X0=X; y0=y; k=k+1; %(7)

yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-yt; %(8)

A=(X0*r + C + diag(yt*2-y0))/(1+r); %(9)

[V,D]=eig(A); D=max(0,D); XT=(V*D)*V’; EX=X0-XT; %(10)

ex=max(max(abs(EX))); ey=max(abs(EY)); stopc=max(ex,ey); %(11)

X=XT; y=yt; %(12)

end; % End of an Iteration %(13)

toc; TB = max(abs(diag(X-eye(n)))); %(14)

fprintf(’ k=%4d epsm=%9.3e max|X_jj - 1|=%8.5f \n’,k,stopc,TB); %%

The SVD decomposition is performed by [V,D]=eig(A) in the line (10) of the above code.

The computational load of each decomposition [V,D]=eig(A) is about 9n3 flops.

Modifying the Classical PPA to Extended PPA, it needs only change the line (12)
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Matlab Code of the Extended Customized PPA
%%% Extended PPA for calibrating correlation matrix %(1)

function PPAE(n,C,r,s,tol,gamma) %(2)

X=eye(n); y=zeros(n,1); tic; %% The initial iterate %(3)

stopc=1; k=0; %(4)

while (stopc>tol && k<=100) %% Beginning of an Iteration %(5)

if mod(k,20)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)

X0=X; y0=y; k=k+1; %(7)

yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-yt; %(8)

A=(X0*r + C + diag(yt*2-y0))/(1+r); %(9)

[V,D]=eig(A); D=max(0,D); XT=(V*D)*V’; EX=X0-XT; %(10)

ex=max(max(abs(EX))); ey=max(abs(EY)); stopc=max(ex,ey); %(11)

X=X0-EX*gamma; y=y0-EY*gamma; %(12)

end; % End of an Iteration %(13)

toc; TB = max(abs(diag(X-eye(n)))); %(14)

fprintf(’ k=%4d epsm=%9.3e max|X_jj - 1|=%8.5f \n’,k,stopc,TB); %%
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The difference of the above mentioned codes only in the line 12, the method is much

efficient by taking the relaxed factor γ = 1.5.

Numerical results of (5.1)–SVD by using Mexeig

n× n Matrix Classical PPA Extended PPA

n = No. It CPU Sec. No. It CPU Sec.

100 30 0.12 23 0.10
200 33 0.54 25 0.40
500 38 7.99 26 6.25
800 38 37.44 28 27.04
1000 45 94.32 30 55.32
2000 62 723.40 38 482.18

The extended PPA converges faster than the classical PPA.

It. No. of Extended PPA

It. No. of Classical PPA
≈ 65%.
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5.1.1 Application in matrix completion problem

(Problem) min{‖X‖∗ | XΩ = MΩ}. (5.3)

We let Z ∈ <n×n as the Lagrangian multiplier to the constraints XΩ = MΩ.

For given (Xk, Zk), applying (4.14) to produce (Xk+1, Zk+1):

1. Producing Zk+1 by

zk+1
Ω = ZkΩ −

1

s
(Xk

Ω −MΩ). (5.4)

2. Finding Xk+1 by

Xk+1 = arg min
{
‖X‖∗+

r

2

∥∥X−
[
Xk+

1

r
(2Z̃kΩ−ZkΩ)

]∥∥2

F

}
. (5.5)

Then, the new iterate is given by

Xk+1 := Xk − γ(Xk −Xk+1), Zk+1 := Zk − γ(Zk − zk+1).
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Test examples The test examples is taken from

� J. F. Cai, E. J. Candès and Z. W. Shen, A singular value thresholding algorithm

for matrix completion, SIAM J. Optim. 20, 1956-1982, 2010.

Code for Creating the test examples of Matrix Completion

%% Creating the test examples of the matrix Completion problem %(1)

clear all; clc %(2)

maxIt=100; tol = 1e-4; %(3)

r=0.005; s=1.01/r; gamma=1.5; %(4)

n=200; ra = 10; oversampling = 5; %(5)

% n=1000; ra=100; oversampling = 3; %% Iteration No. 31 %(6)

% n=1000; ra=50; oversampling = 4; %% Iteration No. 36 %(7)

% n=1000; ra=10; oversampling = 6; %% Iteration No. 78 %(8)

%% Generating the test problem %(9)

rs = randseed; randn(’state’,rs); %(10)

M=randn(n,ra)*randn(ra,n); %% The matrix will be completed %(11)

df =ra*(n*2-ra); %% The freedom of the matrix %(12)

mo=oversampling; %(13)

m =min(mo*df,round(.99*n*n)); %% No. of the known elements %(14)

Omega= randsample(nˆ2,m); %% Define the subset Omega %(15)

fprintf(’Matrix: n=%4d Rank(M)=%3d Oversampling=%2d \n’,n,ra,mo);%(16)



62

Code: Extended Customized PPA for Matrix Completion Problem

function PPAE(n,r,s,M,Omega,maxIt,tol,gamma) % Ititial Process %%(1)

X=zeros(n); Y=zeros(n); YT=zeros(n); %(2)

nM0=norm(M(Omega),’fro’); eps=1; VioKKT=1; k=0; tic; %(3)

%% Minimum nuclear norm solution by PPA method %(4)

while (eps > tol && k<= maxIt) %(5)

if mod(k,5)==0 %(6)

fprintf(’It=%3d |X-M|/|M|=%9.2e VioKKT=%9.2e\n’,k,eps,VioKKT); end;%(7)

k=k+1; X0=X; Y0=Y; %(8)

YT(Omega)=Y0(Omega)-(X0(Omega)-M(Omega))/s; EY=Y-YT; %(9)

A = X0 + (YT*2-Y0)/r; [U,D,V]=svd(A,0); %(10)

D=D-eye(n)/r; D=max(D,0); XT=(U*D)*V’; EX=X-XT; %(11)

DXM=XT(Omega)-M(Omega); eps = norm(DXM,’fro’)/nM0; %(12)

VioKKT = max( max(max(abs(EX)))*r, max(max(abs(EY))) ); %(13)

if (eps <= tol) gamma=1; end; %(14)

X = X0 - EX*gamma; %(15)

Y(Omega) = Y0(Omega) - EY(Omega)*gamma; %(16)

end; %(17)

fprintf(’It=%3d |X-M|/|M|=%9.2e Vi0KKT=%9.2e \n’,k,eps,VioKKT); %(18)

RelEr=norm((X-M),’fro’)/norm(M,’fro’); toc; %(19)

fprintf(’ Relative error = %9.2e Rank(X)=%3d \n’,RelEr,rank(X)); %(20)

fprintf(’ Violation of KKT Condition = %9.2e \n’,VioKKT); %(21)
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Unknown n× n matrix M Computational Results

n rank(ra) m/dra m/n2 #iters times(Sec.) relative error

1000 10 6 0.12 76 841.59 9.38E-5
1000 50 4 0.39 37 406.24 1.21E-4
1000 100 3 0.58 31 362.58 1.50E-4

Numerical Results: Using SVD in PROPACK

Unknown n× n matrix M Computational Results

n rank(ra) m/dra m/n2 #iters times(Sec.) relative error

1000 10 6 0.12 76 30.99 9.30E-5
1000 50 4 0.39 36 40.25 1.29E-4
1000 100 3 0.58 30 42.45 1.50E-4

♣ The paper by Cai et. al is the first publication in SIAM J. Opti. for matrix completion

problem. For the same accuracy, the iteration numbers are listed in the last column of the

above table (See the first 3 examples in Table 5.1 of [2], Page. 1974).

♣ The reader may find, for the two examples in in §2.4, the constrained matrix A is a

projection matrix and thus ‖ATA‖ = 1, thus we take rs = 1.01. However, we take

r = 2 an r = 1/200 in §2.4.1 and §2.4.2, respectively. r is problems-dependent.
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Thank you very much for your attention !
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Thank you very much for reading !


