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min 6,(x) + 62(y)
st Ax + By =0b (1.1)

recX,yecy




Image decomposition I

Separate the sketch (cartoon) and oscillating component (texture) of image

f =u+ v, u— cartoon part, v — texture part

o | ut+v=r~}

original image cartoon part texture part



Background extraction of surveillance video (I) I

Considering the foreground object detection in complex environments and extract
the background in surveillance video

D=X+Y, D —original video, X — background, Y — foreground

Model | min {||X|. +r|Y[: | X +Y =D}

original video foreground background



Image denoising

Pixels are perturbed by a whole range of external and unwanted disturbances

Model '

min {||V]y + 3[f — g]3} < min {[yli + £ - g3 | VE—y =0},
: w ¥ ' T SR G G

g =1f + noise

original image noised image restored image



2 Mathematical Background

MAEARES: THAFN 1 2FiEs (PPA) &X

Lemma 1 Let X' C R" be a closed convex set, 0(x) and f () be convex func-

tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{f(x) + f(x) |x € X'} is nonempty. Then,
r* € argmin{f(z) + f(x) |z € X} (2.1a)

if and only if

v e X, 0(x) —0(z*) + (x —2*)'Vf(z*) >0, Vx e X. (2.1b)




2.1 Linearly constrained convex optimization and VI

The Lagrangian function of the problem (1.1) is

L*(x,y,\) = 01(x) + 03(y) — M (Ax + By — b).

Saddle point

The saddle point (z*, y*, \*) € X x Y x R™ of L?(x,y, \) satisfies

Lie%m (x*ay*a )\) < L2 <x*7y*7 A*) < Lie)c’,yey (xaya A*)



In other words, for any saddle point (™, y*, A*), we have

(

r* € argmin{L*(z, y*, \*)|z € X},
y* € argmin{L* (2, y, A")|y € Y},
\* € argmax{ L?(z*, y*, \)| A € R™}.

L/

\

According to Lemma 1, the saddle point is a solution of the following variational

inequality:

(e X, 01(zx)—0i(z") + (x—2)T(—ATA*) >0, Vz€AX,

S yreX, Oa(y) —a(y*) + (y—y*) (=BTA) >0, Vred,
| AT e R™, (A=) (Az* + By* —b) >0, VIeR™.

lts compact form is the following variational inequality:
w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, Ywe, (22

where



T — AT\

w=| vy |, u= , F(w) = — BT\ :
A Y Az + By — b
and
O(u) = 01(x) + 02(y), Q=X xYxR™

Note that the operator F' is monotone, because

(w— D) (F(w)—F(®)) >0, Here (w — @) (F(w)—F(w)) = 0. (2.3)

2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the problem (1.1) is characterized as a mixed monotone

variational inequality:

w* € Q, O(u)—0u*) + (w—w)'F(w*) >0, YweN. (24

PPA for monotone mixed VI in H-norm '
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For given w”, find the proximal point w®*1 in H-norm which satisfies

wktt e Q, 0(u) — O(uFt) + (w — whkthHT

(2.5)
{F(wrT) + H(w* ™ —wk)} >0, Vw e Q,

where H is a symmetric positive definite matrix.

¥4 Again, w” is the solution of (2.4) if and only if w* = w1 YK«

Convergence Property of Proximal Point Algorithm in //-norm I

Hwk—l—l

—wlf < ot —wfE — [lwt -0 (2.6)

The sequence {w"} is Fejér monotone in H-norm. In customized PPA, via
choosing a proper positive definite matrix /, the solution of the subproblem (2.5)

has a closed form. An iterative algorithm is called the contraction method, if its

generated sequence {w”} satisfies  ||w* Tt — w*||%, < [[w® — w*||3;.



3 ADMM KEF 0] 97 = HEreR BUA AL 1L o) @

(o] ' min{61(z) + Oa(y) | Az + By =b, € X, y € Y}. (L.1)

31 E¥ Z[-Penalty Function I

P(z.y.B) = 0:(x) + Oa(y) + 22 Az + By —b|

Lagrange BR % I

L(z,y,\) = 01(x) + 02(y) — M (Ax + By — b).

&1~ Lagrange ER 3 I

Lo,y N) = 01(2) + 0a(y) — X7 (Az + By —b) + = || Az + By — b|

11



KIRIORE (1.1) BT R B 57k

Hie EFEHI {5} BT XS

CARRETARE = Argmin{ 61 (z) + 62(y) + %‘“HA:I: + By — b||2‘a: ceX,yeyY}

SKAEE)RE (1.1) BIET Lagrange 7% MEFER N G

0 +6 — (MT(Ax + By — b
(2" ) = Argmin 1(z) +02(y) — (A7) (Ax y — b)
+5|Az + By — b|?

reX
yey

AL = AR — B(AzF T + ByFt — b)), &N E 8 ATLUERE.

Fo)RnEge B —4E, ) Lagrange e F A (ALMYE TS ek #7574 (18]
JRE: AR AEER G RN, (ALM) EIRTE R T X H RS

étlﬁlﬂ’a?c&.-ﬁl SSEFE - fly WA BEEH | RRSTMEF.

12



KARIE)RR (1.1) VRS RIS R B 7 7 — X BEWR/IMETTE(AMA)

METER) o* A
gt =Argmin{ 01 (z) + 5| Az + By* — bH2‘x e X},

Yt =Argmin{02(y) + || Az + By — b|?|y € V1.

KRR (1.1) BUHASHRYIET Lagrange 3
MEER (v*, \*) F A
2t = Argmin{01 () — (A\*)" Az + 8| Az + By" — b||? |z € X},

e — ADMM

y* T = Argmin{02(y) — (\*)" By + £2||Az*"" + By — b|*|y € ¥},
)\k—l—l — )\k . B(A$k+1 i Byk—|—1 . b)

&G, 132 E A 7 (ADMM) iz KT 32 B /ME 5% (AMA)

13
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3.1 WANETIEE R ADMM 735X

Applied ADMM to the structured COP:  (y*, \*) = ("™, \F 1)

First, for given (%, \¥), 2¥*1 is the solution of the following problem

. kNT k
P41 prgmin | 01(0) — OW)T (Ao + By — )

T € X} (3.1a)

Use A\* and the obtained ¥, 4%+ is the solution of the following problem

. 02(y) — (A\F)T (Ax*+L 4 By —b)
k+1 _ Argmin 2 e 3.1b
Y ° —I—%HA:I:’Y‘ﬁLl + By — b||? yey o @10)
AL = \F — B(AR T ByFt ). (3.1¢)

Advantages ' The x and y sub-problems are separately solved one by one.



Ignoring the constant term in the objective function, the sub-problems (3.22a)

and (3.22b) is equivalent to
gt = Argmin{ 01 (z) + 2||(Az + By* —b) — %)\kHQ’x e X} (3.2a)
and

Y = Agmin{0a(y) + 2]|(Ac™ + By — ) — IAFPly e ¥} @2b)

respectively. Note that the equation (3.22c) can be written as

A= A4z + By —b) + 2 (AT =AM} > 0, VA € R (3.20)

Notice that the sub-problems (3.2a) and (3.2b) are the type of
"t = Argmin{ 61 (z) + gHAx —pkHQ}x c X}

and
y* = Argmin{02(y) + £||By — ¢"|1*|y € Y},

respectively.

15



Analysis ' According to Lemma 1, the solution of (3.22a) and (3.22b) satisfies

"t e X, 01(x) — 01 (=) + (x — 2FTHT 3.39)
3a
{-ATN* + BAT (A2t + By* —b)} >0, Ve e X

and

y* ey, O2(y) — (¥ + (y—yHT

(3.3b)
{(-B"X\*+BB"(Az" " +By**" —b)} >0, Vy € ),
respectively. Substituting A\Ftl (see (8.22c)) in (3.3) (eliminating A" in (3.3)), we get

"t e X, 01(x) — 01(2"h) + (z — 2FTHT

(3.4a)
[—ATNHE 4 BATB(y* —y T} >0, Vo € X,

and

Yy ey, 02(y)—02(y" )+ (y—y T {-B" N} >0, Vy € V. 3.4b)

16
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The compact form of (3.4) is u* T = (z"*1 ¢*T1) € X x Y and

T —x — AT )\FH A"B
(kL ko k41
O(u)—0(u""")+ - BTk +0 0 (y" =y ") p =0,

(3.5)
forall (z,y) € X x V.

By adding and subtracting the term BBTB(y"c — yk+1), we rewrite the about variational

inequality in our desirable form

T
_ k1 Ty k+1 T
r—T —A* A A'B
O(u) — O(u*+") + » AN Bl B (VAR iy
y— 1y ~B) B"B
0 0 Rt — ok
+ >0, V(z,y) € X x ).
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Combining the last inequality with (3.2c), we have w*T € O and

T

T — xk—l—l ( _ATAk—I—l AT
O(u)—O(u ")+ [ y—y*t | — BT )\F+1 +8| BT |B(y*—y**)
k+1 k+1 k41
A=A (\Az T 4+ Byt — b 0
0 0 Y. \
+ | BBTB 0 > >0, Yw € Q. (3.6)
1 )\k—l—l . )\k
0 Elm )
For convenience we use the notations
y % %k *k *k % *k *k
v = and V" ={(y,\)|(@",y7,A") € Q" }.
A

Then, we get the following lemma:

Lemma 2 Let the sequence {w" ™1 = ("1 ¢* 1 At} € Q be generated by



(3.22). Then, we have

(0" =) H " = o™ > (0" —w) (gt ), Vet e Q7 37)

where
T
H(BB o0 ) (3.8)
0 31m
and
AT
n(y",y") =8| BT | BG" —y"). (3.9)
0
Proof. Setting w = w™ in (3.6), and using H and n(y”*, y* 1), we get

('Uk+1 o ’U*)TH('Uk L ’Uk+1)
k x ko k
> (W —w) @ty

+0(u" ) — 0(u*) + (W — T F(w* ), Yw* € QF. (3.10)

19



Since I is monotone and w™ is the optimal solution, it follows that
O(u" T —0(u*) + (W —w)TF(w* ) > 0.
Using the above inequality, the assertion (3.7) follows from (3.10) immediately. []

Lemma 3 Let the sequence {w" Tt = (2T, y 1 AN+t € Q) be generated by

(3.22). Then, we have
(W™ —w) (", ") >0, Vu© € Q7 3.11)
where n(y", y*1) is defined in (3.9).

Proof. By using 17(y~, y* 1) (see (3.9)), Az* + By* = band (3.22c), we have

(W —w") n(y*, y* )
= B{(Az"" + By**) — (A2 + By*)} B(y" — ")
= N =XHTBE — ", v € Q" (3.12)

Because (3.4b) is true for the k-th iteration and the previous iteration, we have

O2(y) — O2(¥" ) + (y — " TH{-B" N1 >0, vy e, (3.13)

20



and
02(y) — 02(y") + (y — ") {-B"N\*} >0, Vy e, (3.14)

Setting y = yk in (3.13) and y = ka in (3.14), respectively, and then adding the two

resulting inequalities, we get
A" = XTI B(y* —y* 1) > 0. (3.15)

Substituting (3.15) in (3.12), the assertion (3.11) follows immediately. []

Substituting (3.11) in (3.7), we get
k+1 *\ T k k+1 * *
(" — o) T H@W" — o) >0, Vo eV, (3.16)

Using the above inequality, as in the last lecture, we have the following theorem, which is

the key for the proof of the convergence of ADMM.

Theorem 1 Let the sequence {w" ™ = (21, y*+t1 Nt} € Q) be generated by
(3.22). Then, we have

o = o < o = ot E = o = o, Vet eV e

21



22
How to choose the parameter 3. The efficiency of ADMM is heavily dependent on the
parameter 3 in (3.22). We discuss how to choose a suitable (3 in the practical computation.

Note that if ,BATB(y}Lc — yk"'l) = 0, then it follows from (3.5)

_AT)\k+1
k41

_ > . (3.
O(u)—0(u""")+ - gty | 2 0, V(z,y) € Xx Y. (3.18)
In this case, if additionally Ax*T! 4+ By*T — b =0, then we have

/

IV

0, Vee X
0, Vye)y
0, VAeRr™

(91(.’,17) L 91(56k+1) i (CE . $k+1)T(—AT)\k+1)
§ O2(y) — (4T 4+ (y — " THT (=BT
\ ()\ L )\k+1)T(ACCk+1 _|_ Byk—l—l . b)

IV

1V

and consequently ("1, y* 1 \**1) is a solution of the variational inequality (2.2).

k+1 | k+1 yEk+1
) 7)\ )

In other words, (:1: is not a solution of (2.2) because

Yy
BATB(y" — ") £0  andlor  Az"T 4+ Byt —b £ 0.
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We call

IBATB(y* — y*™)|| and  ||Az*T' + Byt —b|

the primal-residual and the dual-residual, respectively. It seems that we should balance the

primal and the dual residuals dynamically. If
plBAT B(y" —y" )|l < [|Az™ + By™ —b|| witha p>1,

it means that the dual residual is too large and thus we should enlarge the parameter (3 in
the augmented Lagrangian function. Otherwise, we should reduce the parameter 5. A
simple scheme that often works well is (see, e.g., [12]):

( )
B x7, it pl|BATB" —y*tY)| < ||Az*t + Byt — b)|;
Bryr1 =19 Br/7, it |BATBWF — ") > pl|AzFT + ByFtt —b||;
L Bk, otherwise.

where . > 1, 7 > 1 are parameters. Typical choices might be n = 10 and 7 = 2. The
idea behind this penalty parameter update is to try to keep the primal and dual residual
norms within a factor of ;& of one another as they both converge to zero. This self adaptive

adjusting rule has been used by S. Boyd’s group [1] and in their Optimization Solver [8].
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3.2 FAANETFOIER ADMM /5358 () Mgt

1. ADMM in sense of PPA 3z ¥ 3 IhE | N (v5, \F) H%&.

2k = Argmin{Ls(z, y*, \F) |z € X7},

§ ML = NF— B(AxFTL + Byf —b), (3.19a)
Uy = Agmin{La(a™F y, A [y € V3,

(

k1 o ok Aok okt
O A e T T RN
)\k—i—l — )\k . 7()\lc . )\k—l—l).
.\
XEB v c(0,2). MES = 3Rk G190 Himdd (1) BHE

SERYETFERST (3.19a) FERY. X B HERE, XAFEIEREMNIRITSUR E .

e X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point
algorithms revisit on the alternating direction method of
multipliers, Science China Math., 56 (2013), 2179-2186.



2. Symmetric ADMM X FREV3ZE 75 [B15k I

JRIGZE o« My AR LERTFWN. TULEBCRAXIRIRZ B [EE.

Symmetric Alternating Direction Method of Multipliers is described as

(

Rt = Argmin{Ls(z, y*, \¥) |z € X},

Atz — Wk uB(Az 1 + By* — b),
< (3.20)
yF T = Argmin{L(a¥ 1y, AET2) |y € V3,

A+l — \ets IUI/B(A:C]{—Fl 4+ Byk+1 —b).

\

wehre 1 € (0, 1) (usually x = 0.9).

e B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive
Peaceman- Rachford splitting method for convex programming,
SIAM Journal on Optimization 24(2014), 1011-1040.

25



3.3 Linearized ADMM

The augmented Lagrangian Function of the problem (1.1) is
La(w,y,\) = 01(x) +02(y) — X' (Az + By —b) + §||A:U + By —b||*. (3.21)

Solving the problem (1.1) by using ADMM, the k-th iteration begins with given (y*, \*), it

offers the new iterate ("™, A**1) via
(2" = arg min{[,/j(x,yk, A®) ‘ z e X}, (3.22a)
(ADMM) ¢ "™ = arg min{ﬁg(:ﬁkﬂ,y, )\k) ’ Y € y}, (3.22Db)
L N =0 — (AT + By — ). (3.22c)

In optimization problem, the solution is invariant by changing the constant term in the

objective function. Thus, by using the augmented Lagrangian function,
k+1 : k+1 k
y' = argmin{Ls(z"",y,\") |y € V}

= argmin{fa(y) —y' B"\" + gHAa:kH +By—b||* |y eV}

26



Thus, by denoting qk =b— Az + %)\k, the solution of (3.22b) is given by

min{0>(y) + 2 | By — oI |y € ¥} 8.23)

In some practical applications, because of the structure of the matrix B, the subproblem
(3.23) are not so easy to be solved. In this case, it is necessary to use the linearized
version of the ADMM.

Notice that the Taylor expansion of the quadratic term of (3.22b), namely,
5 k41 2
= Z)(Aat 4 By —b)+ Bly— )
= Bly—y") B (Az"" + By" —b) + gIIB(y — 4|
+2]1 42" 4 Byt b

= By BT (A" + By" —b) + gHB(y — y™)||? + constant.

27
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Changing the constant term in the objective function of (3.22b) accordingly, we have
Y"1 = arg min{/jg(xkﬂ,y, AF) ‘ ye YV}
= argmin{fa(y) —y’ B'\" + §||Aa:k+1 + By —b|* |y e Y}

02(y) —y' BT [N* — B(Az"*" + By* —b)]
+5 1By —y")I?

= arg min yecy

So-called linearized version of ADMM, we remove the unfavorable term gHB(y —y)|I?

in the objective function, and add the term £ ||y — y*||*.

Strictly speaking, it should be a "linearization” plus "regularization” method. It can also be

interpreted as:
é k2 : S k2
The term 2HB(y y")||* is approximated by 2||y Y ||=.

In other words, it is equivalent to adding the term

1
Sly—y" B (wih D =sl,, ~ BB B) 3.24
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to the objective function of (3.22b), we get
1
: k k k
y* T = argmin{Ls(z" 4, ) + Sy —"lIp [y € V)

02(y) —y' B [\ — B(Az"* + By* —b)]

= arg min S yely
-
:aJrgmin{Gg(y)—|—gHy—alkH2 ‘ ye Y}, (3.25)
where ]
dF = oF + gBT [\ — B(Az" + By® —b)].

By using such strategy, the sub-problems of ADMM is simplified. The linearized version of
ADMM are applied successfully in scientific computing. The following analysis is based on
the fact that the sub-problem

. S k
min{0>(y) + 5 lly — d"||* |y € V}
are easy to be solved.

Linearized ADMM. For solving the problem (1.1), the k-th iteration of the linearized
ADMM begins with given w”* = (2", 4", A\¥), produces the
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whtt = (2T yF T N1 via the following procedure:
(P = arg min{ﬁﬁ(:c,yk, )\k) ! x € X}, (3.26a)
oy = argmin{ o™ty ) + Sy — ot B [y € V) @2e
LN =0 — B(A2* T + ByFT —b). (3.26¢)

where D is defined by (3.24).

First, using the optimality of the sub-problems of (3.26), we prove the following lemma as
the base of convergence.

Lemma 4 Let {w"} be the sequence generated by Linearized ADMM (3.26) for the
problem (1.1). Then, we have

w* e Q, 0(u)—0wW ) + (w — w"THT F(w)
+ Bz — 2" AT (By" — By*)
> (y—y")' D" — ")

— %(A —AHTOF = XY v e Q. (3.27)
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Proof. For the x-subproblem in (3.26a), by using Lemma 1, we have
" e x, 01(z) —0,(2"h
+ (z — ") {—A" N + AT (A" 4+ By —b)}
>0, Vo € X.

By using the multipliers update form in (3.26), A¥T1 = \F — B(Aka + ByFtl — b),

the above inequality can be written as
e x, 01(z) —01(«")
+(z — xk+1)T{_AT)\k+1 4 BATB(yk B yk—|—1)}

>0, Ve e X. (3.28)

For the y-subproblem in (3.26b), by using Lemma 1, we have

v ey, Oa(y) — 02(y")

+(y— g T{=BTN 4 BT (A + By b))
+(y—y") DT —y") >0, Vye .
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Again, by using the update form A" ™1 = A" — g(Az* ! 4+ By**tt — 1), the above

inequality can be written as

YTt ey, Oa(y) — 02 (") + (y — yFTHT{=BT AP

> (y— "™ D" — "), Vye . (3.29)

Notice that the update form for the multipliers, \*t1 = \¥ — g(Ax" 1 4 Byt —p),

can be written as \* 7! € R™ and
(A—A”“)rﬂAm“4+Jﬁﬁ+l—b}+%(ﬁ*1—A@ﬂ;zO,VAGSVW (3.30)

Adding (3.28), (3.29) and (3.30), and using the notation in (2.2), we get
w* e Q, 0(u) — W ) + (w— Ww"THT F(w*
+ Bz — 2" AT (By" — By*)
> (y—y ™)' D" —y")
1

T3

A= XTHTOF = A h)) vw e Q. (3.31)
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For the term (w — w® )T F(w® 1) in the left side of (3.31), by using (2.3), we have
(w—w" ™) FW ) = (w—w* T F(w).

The assertion (3.27) is proved. []

This lemma is the base for the convergence analysis of the linearized ADMM.

The contractive property of the sequence {wk } by Linearized ADMM (3.26)

In the following we will prove, for any w™ € €2*, the sequence
{[0"" = o™ e + " = "D}

is monotonically decreasing. For this purpose, we prove some lemmas.

Lemma 5 Let {w"} be the sequence generated by Linearized ADMM (3.26) for the



problem (1.1). Then, we have

w*tt e Q, 0(u) — (W) + (w — w"THT F(w)

T
k+1 T
rT—T A
1 | BOt -t
y—y B
> (v =" GO — "), Yw e Q, (3.32)
where (5 is given by
D+pBB'B 0
G = B . (3.33)
0 %I

Proof. Adding (y — y" 1) BBT B(y" — ") to the both sides of (3.27) in Lemmas4,
and using the notation of the matrix (G, we obtain (3.32) immediately and the lemma is

proved. []

Lemma 6 Let {wk} be the sequence generated by Linearized ADMM (3.26) for the

34



problem (1.1). Then, we have

(W =0T G = v > A = XNFTHT B — "), vw* € Q. (3.34)

Proof. Setting the w € 2 in (3.32) by any w™ € 2™, we obtain

(Uk+1 o ’U*)TG('Uk o Uk+1)

+8 ) .| BGWT =yt (3.35)
y -y B

According to the optimality, a part of the terms in the right hand side of the above inequality,
O(u ) —0(u*) + (W —w) T F(w*) > 0.

Using Az* + By* = band \¥ — \F11 = B(Agz:kle + ByFTt!l — b) (see (3.26¢)) to

35
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deal the last term in the right hand side of (3.35) , it follows that

T

6 Cl?k+1 . .CE* AT B( . - k+1>
k+1 % BT Yy Yy
Yy Y
_ B[(A.’Ek—'_l o ACU*) 4+ (Byk—l—l o By*)]TB(yk o yk+1)

VN

)\k: o )\k+1)TB(yk . yk—l—l).

The lemma is proved. []

Lemma 7 Let {wk} be the sequence generated by Linearized ADMM (3.26) for the
problem (1.1). Then, we have

1 1.
O 2 [ T B A -y A A A

Proof. First, (3.29) represents

Yyt e Y, 02(y) — (") + (y—y"THT

{-B"N + D@ -y} >0, Vyey. (3837
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Setting k in (3.37) by £k — 1, we have
y" €Y, O2(y) = 02(y") + (y — y")"
{-B"X\*+ D" —y* N} >0, Vye. (3.38)
Setting the v in (3.37) and (3.38) by yl‘c and ka, respectively, and adding them, we get
(y" =" )BT = AT DI =) - (" "]} >0
From the above inequality we get
(° — )T BT OF =AM > (yF — gDy — ) — (P — o)),

Using the Cauchy-Schwarz inequality for the right hand side term of the above inequality,

we get (3.36) and the lemma is proved. ]

By using Lemma 6 and Lemma 7, we can prove the following convergence theorem.
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Theorem 2 Let {w"} be the sequence generated by Linearized ADMM (3.26) for the
problem (1.1). Then, we have

k41 2 B gkt
(0" =v"lle + lly" = y* " lID)

<(l[o* = v lle+ly"" = y" D) — " =" &, vwTeQ, (3.39)
where (5 is given by (3.33).
Proof. From Lemma 6 and Lemma 7, it follows that
R B[ [ (A AR o

Using the above inequality, for any w™ € ™, we get

[0 —v™||& = [[(" = v") + (0" = "I
Z ’Uk+1 . 'U*||2G 4+ ||Uk k—l—lHG + 2( k+1 o 'U*)TG<’Uk . vk—l—l)
> " —0"|IE 4+ v* - k+1||G
+ Y =y D — 1" = yE 1D

The assertion of the Theorem 2 is proved. [
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4 Splitting Methods in a Unified Framework

We study the algorithms using the guidance of variational inequality. The optimal condition

of the linearly constrained convex optimization is resulted in a variational inequality:

w* e, 0u) —0u")+ (w—w)" Fw*)>0, YVweQ.  @1)

4.1 Algorithms in a unified framework

A Prototype Algorithm for (4.1)
[Prediction Step.] With given vk, find a vector " € £ which satisfying

0(u) — 0(7") + (w — ") F(@") > (v — )" QMW" — %), Yw € Q, (4.2a)

where the matrix @ has the property: Q* + Q is positive definite.

[Correction Step.] Determine a nonsingular matrix M and a scalar o > 0, let

Pt = 0F —aM (" — ). (4.2b)




Convergence Conditions

For the matrices () and M, there is a positive definite matrix H such that
HM = Q. (4.3a)

For the given H, M and () satisfied the condition (4.3a), and the step size o determined in
(4.2), the matrix

G=Q"+Q—-—aM"HM. (4.3b)

is positive definite (at least G > 0).

Given a positive definite matrix () in (4.2a) (QT + @ > 0), for satisfying the convergence
conditions (4.3), how to choose the matrix M and @ > 0 in the correction step (4.2b) ?

There are many possibilities, the principle is simplicity and efficiency. See an example:

e The simplestcaseis H = [ and M = Q).

e In order to ensure the symmetry and positivity of H = QM ~*, we take

H=QD 'Q",
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where D is a symmetric investable block diagonal matrix. Because
—1 T —1
H=QD @ and H=QM -,

we only need to set
Mol = D—lQT
Thus M = Q™ D satisfies the condition (4.3a).
e After choosing the matrix M, let

omax = argmax{a | Q" +Q —aM " HM > 0},

the condition (4.3b) is satisfied for any & € (0, Atmax )-
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4.2 Methods for Linearly Constrained Problems

We consider the convex optimization, namely

min{f(u) | Au = b, u € U}. (4.1)

Augmented Lagrangian Method
lts augmented Lagrangian function is
£5(u.3) = 0(u) ~ X7 (Au— b) + 2 || Au — b]]>

The k-th iteration of the Augmented Lagrangian Method [15, 19] begins with a
given \¥, obtain w1 = (zk+1 \FF1) vig

>

a* = argmin{ Lg(u, \*) |u e U}, (4.2a)
(ALM) " y { ~i( ) ‘ }
= A" — B(Au" —b). (4.2b)
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In (4.2), ok is only a computational result of (4.2a) from given M\ it is called the
intermediate variable. In order to start the k-th iteration of ALM, we need only to
have \* and thus we call it as the essential variable.

The subproblem (4.2a) is a problem of mathematical form
. Bia k2
min{f(u) + 5 |Au — p® ||~ |u € U} (4.3)

where B > O is a given scalar and p~* = b+ %)\k.
Assumption:

The solution of problem (4.3) has closed-form solution or can be efficiently com-
puted with a high precision.

The optimal condition can be written as w* € ) and

O(u) — 0(a") + (u— ") {—AT\* + BAT (AT® —b)} >0, Vu € U,
(A= XOT{(AT* —b) + (AF = A} >0, VA eR™
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The above relations can be written as

T
_ ~k _ATS\IC _ ~
o) — o(aky+ [ “ " > (A= 3 TLOR 3R, v e Q. (4a)
Ak — b B

Setting v = A in (4.4), it can be written as (4.2a),

O(u) — 0(a") + (w — )T F (") > (v — )T Q* — o%), Yw € Q,

with |
Q=-1.
5
Correction ' AL = A —a(XF = AF), a € (0,2).
Indeed,

M=I, H=QM'=Q>0,
2 —«

G=Q"+Q—aM"HM = 7

I>0.
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Customized PPA '

Recall the convex optimization problem (4.1), namely,
min{f(u) | Au=">b, u e U}.
The related variational inequality of the saddle point of the Lagrangian function is
w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, Ywe .
where

U — AT\
w = , F(w) = and QQ=U xR,
A Au—10

For given v* = w” = (u”, \¥), the predictor is given by
[ 4F = arg min{ L(u, \*) + gHu — uF? luelU}, (45a)
(CPPA) <

~

A = arg max{L([2a" — u"],\) — gH)\ —\*[?} (4.5b)

\
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The output W* € ) of the iteration (4.5) satisfies
O(u) — 0(a") + (w — ") T F (@) > (w — )T Q(w* — ), Yw € Q.

It is a form of (4.2a) where

Q = I A is symmetric
A sl Y

The subproblem (4.5a) is a problem of mathematical form
min{6(u) + gHu —a®|]? |u e U} (4.6)

1
where r > Qis a given scalar and a® = ¥ + —AT)\F
7/)

Assumption:

e The solution of problem (4.6) has has closed-form solution.

e To ensure the positiveness of the matrix (O, we have to set rs > || A1 A]|.
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We take M = I in the correction (4.2b) and the new iterate is updated by
w' T = w” — a(w” —a"), a€(0,2).
Then, we have and
H=QM '=Q>0 and G=Q" +Q—aM"HM = (2—a)H > 0.

The convergence conditions (4.3) are satisfied. More about customized PPA,

please see

& G.Y. Gu, B.S. He and X.M. Yuan, Customized Proximal point algorithms for
linearly constrained convex minimization and saddle-point problem: a unified
Approach, Comput. Optim. Appl., 59(2014), 135-161.



5 Convergence proof in the unified framework

In this section, assuming the conditions (4.3) in the unified framework are satisfied, we

prove some convergence properties.

Theorem 1 Let {vk} be the sequence generated by a method for the problem (4.1) and

k41

W" is obtained in the k-th iteration. If v" , U and W satisfy the conditions in the

unified framework, then we have

a(f(u) — 0(@*) + (w — @*)" F(a"))

1
—(Hv — v

k+12
> . ||

84 -
7= ||lv— ’UkH%[) + §Hvk — ka||?;, Yw € Q. (5.1)

Proof. Using () = H M (see (4.3a)) and the relation (4.2b), the right hand side of (4.3a)

— v*"1) and hence

can be written as (v — 9*)" L H (v"
o{0(vw)—0(i")+(w—a") " F(@")} > (v—0")" H@w"—o* ), vw € Q. (5.2
Applying the identity

1 1
(a—b)" H(c—d) = —{lla—dllz — lla —cllzr} + 5 {lle = bllz — lld — bllz},
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to the right hand side of (5.2) with

~k k k41
a=v, b=09", ¢=0", and d=0""",

we thus obtain

(’U . ?7k)TH(Uk . vk—i—l)

1 1

k412 k2 ko ~kp2 k+1  ~Kk2
= S (v =v" a—llo = o™ ) + 5 (" = 8" [a—llv™™ = 57[|7).(6.3)
For the last term of (5.3), we have
[ = "7 — [[o" " — "%

ko ~kp2 k ~k k k+1\)2
= " =" = (0" =3") = (0" =" )|
(4.3a) ~ ~ ~
=" 0" =" E — |(0" = 3") — aM (" —3")|[E

= 220" —")"THM®OW" — ") — (0" = ") MTHM(v* — o)
= a0 —="TQT +Q — aMTHM)W" — ")
= allo” — 572, (5.4)

Substituting (5.3), (5.4) in (5.2), the assertion of this theorem is proved. L]



5.1 Convergence in a strictly contraction sense

Theorem 2 Let {v*} be the sequence generated by a method for the problem (4.1) and

~k k+1

W" is obtained in the k-th iteration. If v" , U and " satisfy the conditions in the

unified framework (G > 0), then we have

0" =0T < " = 0" - et =G, Wt eVt (55)

Proof. Setting w = w™ in (5.1), we get
k+1 * 12
v |

> af|v” — || 4+ 22{0(a") — 0(u*) + (@" — w*) F(@")}. (5.6)

k * 12
[v" = o™ |7 — v

By using the optimality of w™ and the monotonicity of F'(w), we have

0(a") —0(u*) + (" —w*)" F(@") > 0(a") —0(u*) + (" —w*) F(w*) >0
and thus

k+1

e [ e [ =2 (5.7)

The assertion (5.5) follows directly. []
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5.2 Convergence rate in an ergodic sense

Equivalent Characterization of the Solution Set of VI '

For the convergence rate analysis, we need another characterization of the solution set of

VI (4.1). It can be described the following theorem.

Theorem 3 The solution set of VI(S), F', ) is convex and it can be characterized as

O = {0 € Q|0u) — (@) + (w—0)TFw) >0, Ywe Q) (58

Proof. According to the definition of the solution of VI, for any w € 2™, we have
weQ, Ou)—0(a)+ (w—w) F(w) >0, Ywe Q.
Since (w — W) F(@) = (w — w)' F(w),
weQ, Ou)—0(w)+ (w—uw)" Flw) >0, Ywe Q.

The theorem is proved. []
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We use (5.8) to define the approximate solution of VI (4.1). Namely, for given € > 0,

W € (2 is called an e-approximate solution of VI(£2, F', 0), if it satisfies

W€ Q, Ou)—0(@)+ (w—w) F(w) > —e, Ywe Dy,

where
Diay = {w € Q||jw — b < 1}.

We need to show that for given € > 0, after t iterations, it can offer a w € VV, such that

weW and sup {60(a)—0(u)+ (w— w)TF(w)} <. (5.9)

wEP ()

Theorem 1 is also the base for the convergence rate proof. Substituting

- 1 1
0(u)—0(a")+(w — &")" F(w) + oy Ch v*|H > 50 1V~ " T, Yw € Q.
(5.10)
Note that the above assertion is hold for G > 0.
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Theorem 4 Let {fuk} be the sequence generated by a method for the problem (4.1) and

~k k+

w" is obtained in the k-th iteration. Assume thatfuk, P and oF satisfy the conditions

in the unified framework and let W be defined by

t

1 K
w .

t+1k:0

Wt (5.11)

Then, for any integer numbert > 0, w: € ) and

N . T 1 02
0(t) — 0(u) + (0 —w)” F(w) < 2a(t+1)||v—v 17, Yw € Q. (5.12)

Proof. First, it holds that " € Q for all k > 0. Together with the convexity of X’ and ),
(5.11) implies that w; € ). Summing the inequality (5.10) over k = 0,1, ...,t, we
obtain

t

(t—l—l)@(u)—z 9(&k)+((t—|—1)w—z wk)TF(w)—I—%HU—UOH%{ >0, Yw e Q.

k=0
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Use the notation of w;, it can be written as

t

1

t+1k::0

0" — 0(u) + (W — )T F(w) < ——— [lo— o°||%,

Since 0(u) is convex and

i
(@)

we have that

¢
_ 1 K
< — .
O(u) < r— kE_OH(u )

Substituting it in (5.13), the assertion of this theorem follows directly. [

Recall (5.9). The conclusion (5.12) thus indicates obviously that the method is able to

generate an approximate solution (i.e., W) with the accuracy O(l/t) after ¢ iterations.
That is, in the case G > 0, the convergence rate O(1/t) of the method is established.

e B.S. He and X. M. Yuan, On the O(1/n) convergence rate of the alternating

direction method, SIAM J. Numerical Analysis 50(2012), 700-709.
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5.3 Convergence rate in a pointwise iteration-complexity

In this subsection, we show that if the matrix G defined in (4.3b) is positive definite, a
worst-case O(1/t) convergence rate in a pointwise iteration-complexity can also be
established for the prototype algorithm (4.2). Note in general a pointwise convergence rate
is stronger than the ergodic convergence rate.

We have proved
[ =0 [E < 0" =0 |[E —alt =G, Vot e VT

In fact, ||v® — 9" || can be used to measure how much w" fails to be a solution point.

In the following, we will prove that

||Uk—|—1 o ,ﬁk—l—l

ko ~k
||MTHM < ||U — v ||MTHM

We first need to prove the following lemma.

Lemma 8 For the sequence generated by the prototype algorithm (4.2) where the
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Convergence Condition is satisfied, we have

(’Uk o @vk)TMTHM{(/Uk . 17k) . (’Uk+1 . ?»}k—l—l)}

1 ko ~k k+1  ~k+1y2
%H(U —v)— (v — D )\](QT+Q). (5.14)

Proof. First, set w = w*T ! in (4.2a), we have

0(w"th) —0(a") + (@ — T F@®) > (" = ")T Q" — %), (5.15)
Note that (4.2a) is also true for £ := k + 1 and thus we have
0(uw)—0(@" T Hw—"THTF (@™ ) > (v—""HTQ ™ =), vw € Q.
Set w = " in the above inequality, we obtain

e(ﬂk) . 9(?1k+1) + (’ij . wk—l—l)TF(wk:—Fl) Z (,ﬁkz . ?7k+1)TQ(Uk+1 . @«k—|—1).
(5.16)
Combining (5.15) and (5.16) and using the monotonicity of F', we get

(0" — " THTQ{(v" — ") — " = F*THr > 0. (5.17)
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Adding the term

(0 = %) — ) TQUF — o) — (T ot
to the both sides of (5.17), and using v Qv = %’UT(QT + Q)v, we obtain

1
k_k k ~k k_ ~k k41 ~k+1y(2
(* =" Q{0 =)~ (" =5} = (0" ") - (" =" {gr )

Substituting (v — v*T1) = aM (v* — T%) in the left-hand side of the last inequality
and using () = H M, we obtain (5.14) and the lemma is proved. []

Now, we are ready to prove (5.18), the key inequality in this section.

Theorem 5 For the sequence generated by the prototype algorithm (4.2) where the

Convergence Condition is satisfied, we have
IM (0" =" Y |g < IM©° =) |a, VE>O0. (5.18)
Proof. Setting a = M (v — ©%) and b = M (v**1 — 5T1) in the identity

lallz — llbllzr = 20" H(a —b) — |la — bz,



we obtain
1M (0" = 8°) |7 — M (0" =" )|
= 20" =3 MTHMF - ) - (F = )]
—[|M[(0" =3%) = (" ="
Inserting (5.14) into the first term of the right-hand side of the last equality, we obtain
1M " = ") = MM ="
> él\(v’“ ") = (0" = 3" [[fgr i) — IM[(0" = 3%) — ("

1
e A Bt | )

where the last inequality is because of the positive definiteness of the matrix
(Q1 + Q) — aMT HM > 0. The assertion (5.18) follows immediately.

Note that it follows from G > 0 and Theorem 2 there is a constant cg > 0 such that

0" =0 |[F < 0" =05 — ol [ M (" =) |[F, Yo e VT

~]€—|—1)

(5.19)

Now, with (5.19) and (5.18), we can establish the worst-case O(l/t) convergence rate in
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a nonergodic sense for the prototype algorithm (4.2).

Theorem 6 Let {v*} and {10"} be the sequences generated by the prototype algorithm

(4.2) under the Convergence Condition. For any integert > 0, we have

1
M((vt — )% < 00— |5,
M =) < Gl = v
Proof. First, it follows from (5.19) that
oo
> colM@* = )5 < o —o" |, Vot eV
k=0

According to Theorem 5, the sequence {||M (v* — ©%)||%} is monotonically

non-increasing. Therefore, we have

(t+ DM (0" — )| <ZIIM -

The assertion (5.20) follows from (5.21) and (5.22) immediately.

(5.20)

(5.21)

(5.22)
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