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min θ1(x) + θ2(y) + θ3(z)

s.t Ax+By + Cz = b

x ∈ X , y ∈ Y, z ∈ Z

(1.1)
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Background extraction of surveillance video (II)

The original surveillance video has missing information and additive noise

PΩ(D) = PΩ(X + Y )+noise

PΩ — indicating missing data, Z — noise/outliers

Model

min
{
‖X‖∗ + τ‖Y ‖1 + ‖PΩ(Z)‖2F | X + Y − Z = D

}

observed video foreground background
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Image decomposition with degradations The target image for

decomposition contains degradations, e.g., blur, missing pixels, · · ·

f = K(u + divv) + z, K — degradation operator, z — noise/outlier

Model

min
{
‖∇u‖1 + τ‖v‖∞ + ‖z‖22 | K(u + divv) + z = f

}

target image cartoon texture
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2 Mathematical Background

ü�Ä�VgµC©Ø�ª Ú �C: (PPA)�{

Lemma 1 LetX ⊂ <n be a closed convex set, θ(x) and f(x) be convex func-

tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ ∈ arg min{θ(x) + f(x) |x ∈ X} (2.1a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (2.1b)
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2.1 Linearly constrained convex optimization and VI

The Lagrangian function of the problem (1.1) is

L3(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b).

The saddle point (x∗, y∗, z∗, λ∗) ∈ X × Y × Z × <m of L3(x, y, z, λ)
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satisfies

L3
λ∈<m

(
x∗, y∗, z∗, λ

)
≤ L3

(
x∗, y∗, z∗, λ∗

)
≤ L3

x∈X ,y∈Y,z∈Z
(
x, y, z, λ∗

)
.

In other words, for any saddle point (x∗, λ∗), we have
x∗ ∈ argmin{L3(x, y∗, z∗, λ∗)|x ∈ X},
y∗ ∈ argmin{L2(x∗, y, z∗, λ∗)|y ∈ Y},
z∗ ∈ argmin{L2(x∗, y∗, z, λ∗)|y ∈ Z},
λ∗ ∈ argmax{L(x∗, y∗, z∗, λ)|λ ∈ <m}.

According to Lemma 1, the saddle point is a solution of the following VI:
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−ATλ∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ X , θ2(y)− θ2(y∗) + (y − y∗)T (−BTλ∗) ≥ 0, ∀ y ∈ Y,
z∗ ∈ Z, θ3(z)− θ3(z∗) + (z − z∗)T (−CTλ∗) ≥ 0, ∀x ∈ Z,
λ∗ ∈ <m, (λ− λ∗)T (Ax∗ +By∗ + Cz∗ − b) ≥ 0, ∀ λ ∈ <m.
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Its compact form is the following variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.2)

where

w =


x
y

z

λ

 , u =


x

y

z

 , F (w) =


−ATλ
−BTλ
−CTλ

Ax+By + Cz − b

 ,

and

θ(u) = θ1(x) + θ2(y) + θ3(z), Ω = X × Y × Z × <m.

Note that the operator F is monotone, because

(w− w̃)T(F (w)−F (w̃)) ≥ 0, Here (w − w̃)T(F (w)−F (w̃)) = 0. (2.3)
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2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the problem (1.1) is characterized as a mixed monotone

variational inequality:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (2.4)

PPA for monotone mixed VI in H-norm

For given wk, find the proximal point wk+1 in H-norm which satisfies

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T

{F (wk+1) +H(wk+1 − wk)} ≥ 0, ∀ w ∈ Ω,
(2.5)

where H is a symmetric positive definite matrix.

Convergence Property of Proximal Point Algorithm in H-norm

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H . (2.6)
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2.3 Splitting Methods in a Unified Framework

We study the algorithms using the guidance of variational inequality.

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (2.7)

Algorithms in a unified framework

[Prediction Step.] With given vk, find a vector w̃k ∈ Ω such that

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v−ṽk)TQ(vk−ṽk), ∀w ∈ Ω, (2.8a)

where the matrix Q is not necessary symmetric, but QT +Q is positive definite.

[Correction Step.] The new iterate vk+1 by

vk+1 = vk − αM(vk − ṽk). (2.8b)
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Convergence Conditions

For the matrices Q and M , there is a positive definite matrix H such that

HM = Q. (2.9a)

Moreover, the matrix

G = QT +Q− αMTHM (2.9b)

is positive semi-definite.

Convergence using the unified framework

Theorem 1 Let {vk} be the sequence generated by a method for the problem

(3.1) and w̃k is obtained in the k-th iteration. If vk, vk+1 and w̃k satisfy the

conditions in the unified framework, then we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (2.10)
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½n 1�Ì�(Ø

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α‖vk − ṽk‖2G, ∀v∗ ∈ V∗.

´� PPAaq�Â Ø�ª,¤±`ùa�{´ PPA Like�{.

'''uuuÚÚÚ���µµµeeeeee���{{{999ÙÙÙÂÂÂñññ555yyy²²²���±±±ëëë���eee¡¡¡���©©©ÙÙÙµµµ

• B.S. He, and X. M. Yuan, A class of ADMM-based algorithms for three-block

separable convex programming. Comput. Optim. Appl. 70 (2018), 791õ826.

• Û]),·Ú¦f�O��{ 20c,5$ÊÆÆ�622ò11Ï, pp. 1-31,

2018.

PPAa�{ÚÚ�E,­S­�¶":´g��Å,K��Ý�°Ý.
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3 Two special prediction-correction methods

We study the optimization algorithms using the guidance of variational inequality.

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (3.1)

3.1 Algorithms I Q = H , H is positive definite

[Prediction Step.] With given vk, find a vector w̃k ∈ Ω such that

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v−ṽk)TH(vk−ṽk), ∀w ∈ Ω, (3.2a)

where the matrix H is symmetric and positive definite.

[Correction Step.] The new iterate vk+1 by

vk+1 = vk − α(vk − ṽk), α ∈ (0, 2) (3.2b)

H is a symmetric positive definite matrix. ýýýÿÿÿ      éééëëëêêêkkk���¦¦¦
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The sequence {vk} generated by the prediction-correction method (3.2) satisfies

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − α(2− α)‖vk − ṽk‖2H . ∀v∗ ∈ V∗.

The above inequality is the Key for convergence analysis !

þª´� (??)aq�Ø�ª,�{äk PPA LikeÂñ5�.

Set α = 1 in (3.2b), the prediction (3.2a) becomes: wk+1 ∈ Ω such that

θ(u)−θ(uk+1)+(w−wk+1)TF (wk+1) ≥ (v−vk+1)TH(vk−vk+1), ∀w ∈ Ω.

The generated sequence {vk} satisfies

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H . ∀v∗ ∈ V∗.

þª´� (??)aq�Ø�ª,´'uØ%Cþ v� PPA�{.
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3.2 Algorithms II Q is the sum of two matrices

[Prediction Step.] With given vk, find a vector w̃k ∈ Ω such that

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v−ṽk)TQ(vk−ṽk), ∀w ∈ Ω, (3.3a)

where
Q = D +K, (3.3b)

D is a block diagonal positive definite matrix

K is skew-symmetric (�é¡) QT +Q = 2D

[Correction Step.] For the positive matrix D, the new iterate vk+1 is given by

vk+1 = vk − γα∗kM(vk − ṽk), (3.4a)

where M = D−1Q, γ ∈ (0, 2), and the optimal step size is given by

α∗k =
‖vk − ṽk‖2D
‖M(vk − ṽk)‖2D

. (3.4b)
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Since MTDM = MTQ, we have

‖M(vk − ṽk)‖2D =
[
M(vk − ṽk)

]T [
Q(vk − ṽk)

]
and thus

α∗k =
‖vk − ṽk‖2D[

M(vk − ṽk)
]T [

Q(vk − ṽk)
] . Ú�O�éN´¢y

The sequence {vk} generated by the prediction-correction Algorithm II satisfies

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2D − γ(2− γ)α∗k‖vk − ṽk‖2D. ∀v∗ ∈ V∗.

þª´� (??)aq�Ø�ª,ýÿ-���{Ñäk PPA LikeÂñ5�.

¤±,ù��w¥¤`��{,Ñ´�C:a (PPA Like)�{.
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Convergence of the prediction-correction method II

Lemma 2 For given vk, let the predictor w̃k be generated by (3.3a), then we

have

(vk − v∗)TQ(vk − ṽk) ≥ ‖vk − ṽk‖2D, (3.5)

where Q is given in the right hand side of (3.3a) and D is given in (3.3b).

Proof. Set w = w∗ in (3.3a), we get

(ṽk − v∗)TQ(vk − ṽk) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k). (3.6)

Because

(w̃k − w∗)TF (w̃k) = (w̃k − w∗)TF (w∗)

and

θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0,

the right hand side of (3.6) is non-negative. Thus, we have

{(vk − v∗)− (vk − ṽk)}TQ(vk − ṽk) ≥ 0
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and

(vk − v∗)TQ(vk − ṽk) ≥ (vk − ṽk)TQ(vk − ṽk). (3.7)

For the right hand side of the above inequality, by using Q = D +K and the

skew-symmetry of K , we obtain

(vk − ṽk)TQ(vk − ṽk) = (vk − ṽk)T (D +K)(vk − ṽk)

= ‖vk − ṽk‖2D.

The lemma is proved. �

Theorem 2 For given vk, let the predictor w̃k be generated by (3.3a). If the new

iterate vk+1 is given by

vk+1(α) = vk − αM(vk − ṽk), γ ∈ (0, 2), (3.8)

then we have

‖vk+1 − v∗‖2D ≤ ‖vk − v∗‖2D − qII

k (α), ∀v∗ ∈ V∗, (3.9)
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where

qII

k (α) = 2α‖wk − w̃k‖2D − α2‖M(wk − w̃k)‖2D. (3.10)

Proof. First, we define the profit function by

ϑII

k (α) = ‖vk − v∗‖2D − ‖vk+1(α)− v∗‖2D. (3.11)

Thus, it follows from (3.8) that

ϑII

k (α) = ‖vk − v∗‖2D − ‖(vk − v∗)− αM(vk − ṽk)‖2D
= 2α(vk − v∗)TDM(vk − ṽk)− α2‖M(vk − ṽk)‖2D.

By using DM = Q and (3.5), we get

ϑII

k (α) ≥ 2α‖vk − ṽk‖2D − α2‖M(vk − ṽk)‖2D = qII

k (α). �

qII
k (α) reaches its maximum atα∗

k which is given by (3.4b).
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O α* γα*

q(α)

ϑ(α)

α

� γ ∈ [1, 2)�«¿ã
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Since we take α = γα∗k, it follows from (3.10) that

qII

k (α) = 2γα∗k‖vk − ṽk‖2D − γ2(α∗k)2‖M(vk − ṽk)‖2D. (3.12)

By using (3.4b), we get

(α∗k)2‖M(vk − ṽk)‖2D

= α∗k
‖vk − ṽk‖2D
‖M(vk − ṽk)‖2D

‖M(vk − ṽk)‖2D

= α∗k‖vk − ṽk‖2D.

Substituting it in (3.12) we get qII

k (α) ≥ γ(2− γ)α∗k‖vk − ṽk‖2D .

‖vk+1 − v∗‖2D ≤ ‖vk − v∗‖2D − γ(2− γ)α∗k‖vk − ṽk‖2D. ∀v∗ ∈ V∗.
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4 Applications for separable problems

This section presents various applications of the proposed algorithms for the

separable convex optimization problem

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}. (4.1)

Its VI-form is

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (4.2)

where

w =

 x
y

λ

 , u =

 x

y

 , F (w) =

 −ATλ
−BTλ

Ax+By − b

 , (4.3a)

and

θ(u) = θ1(x) + θ2(y), Ω = X × Y × <m. (4.3b)
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The augmented Lagrangian Function of the problem (4.1) is

Lβ(x, y, λ) = θ1(x)+θ2(y)−λT (Ax+By−b)+β

2
‖Ax+By−b‖2. (4.4)

Solving the problem (4.1) by using ADMM, the k-th iteration begins with given

(yk, λk), it offers the new iterate (yk+1, λk+1) via

(ADMM)


xk+1 = arg min

{
Lβ(x, yk, λk)

∣∣ x ∈ X}, (4.5a)

yk+1 = arg min
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y}, (4.5b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (4.5c)

w =


x

y

λ

 , v =

 y

λ

 and V∗ = {(y∗, λ∗) | (x∗, y∗, λ∗) ∈ Ω∗}.

‖vk+1−v∗‖2H ≤ ‖vk−v∗‖2H−‖vk−vk+1‖2H , H =

βBTB 0

0 1
β Im


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�â�{ I��¦ �Oýÿúª.

4.1 ADMM in PPA-sense

In order to solve the separable convex optimization problem (4.1), we construct a

method whose prediction-step is

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TH(vk − ṽk), ∀w ∈ Ω,

(4.6a)

where

H =

 (1 + δ)βBTB −BT

−B 1
β Im

 , (a small δ > 0, say δ = 0.05).

(4.6b)

Since H is positive definite, we can use the update form of Algorithm I to produce

the new iterate vk+1 = (yk+1, λk+1). (In the algorithm [2], we took δ = 0).
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The concrete form of (4.6) is

θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λ̃k} ≥ 0,

θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT λ̃k + (1 + δ)βBTB(ỹk − yk)−BT (λ̃k − λk)} ≥ 0,

(Ax̃k +Bỹk − b) −B(ỹk − yk) + (1/β) (λ̃k − λk) = 0.

In fact, the prediction can be arranged by

x̃k = Argmin{Lβ(x, yk, λk) |x ∈ X}, (4.7a)

λ̃k = λk − β(Ax̃k +Byk − b), (4.7b)

ỹk = Argmin

{
θ2(y)− yTBT [2λ̃k − λk]

+ 1+δ
2 β‖B(y − yk)‖2

∣∣∣∣ y ∈ Y}. (4.7c)

ù�ýÿ�²;��O��{ (6.10)��,æ^(3.2b)��,¬\¯�Ý.

The underline part is F (w̃k):

F (w) =

 −ATλ

−BTλ

Ax+By − b





264.2 Linearized ADMM-Like Method

�f¯K (4.7c)¦)k(J�,^ s
2‖y − y

k‖2�O 1+δ
2 β‖B(y − yk)‖2.

By using the linearized version of (4.7), the prediction step becomes

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v−ṽk)TH(vk−ṽk), ∀w ∈ Ω, (4.8)

where

H =

[
sI −BT

−B 1
β Im

]
, �O (4.6)¥�

[
(1 + δ)βBTB −BT

−B 1
β
Im

]
. (4.9)

The concrete formula of (4.8) is

θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λ̃k} ≥ 0,

θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT λ̃k + s(ỹk − yk)−BT (λ̃k − λk)} ≥ 0,

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0.

(4.10)

The underline part is F (w̃k):

F (w) =

 −ATλ

−BTλ

Ax+By − b


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Then, we use the form

vk+1 = vk − α(vk − ṽk), α ∈ (0, 2)

to update the new iterate vk+1.

How to implement the prediction? To get w̃k which satisfies (4.10),

we need only use the following procedure:
x̃k = Argmin{Lβ(x, yk, λk) |x ∈ X},

λ̃k = λk − β(Ax̃k +Byk − b),

ỹk = Argmin{θ2(y)− yTBT [2λ̃k − λk] +
s

2
‖y − yk‖2 | y ∈ Y}.

^ s
2‖y − y

k‖2�O 1+δ
2 β‖B(y − yk)‖2,��yÂñ,I� s > β‖BTB‖.

é�½� β > 0, �¦ s > β‖BTB‖, ��� s¬K�Âñ�Ý
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4.3 Method without s > β‖BTB‖

�Ý
 BTB�^�ØÐ,q7L�5z,Òæ�±e��{

For solving the same problem, we give the following prediction:

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω,

(4.11a)

where

Q =

 sI BT

−B 1
β Im

 = D +K. (4.11b)

Because

D =

 sI 0

0 1
β Im

 and K =

 0 BT

−B 0

 ,

�âù��ýÿ,�±^�{ II���úª (3.4)�)#�S�:.
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How to implement the prediction? The concrete formula of (4.11) is



θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λ̃k} ≥ 0,

θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT λ̃k + s(ỹk − yk) +BT (λ̃k − λk)} ≥ 0,

(Ax̃k +Bỹk − b)−B(ỹk − yk)+(1/β)(λ̃k − λk) = 0.

This can be implemented by
x̃k = Argmin{Lβ(x, yk, λk) |x ∈ X},

λ̃k = λk − β(Ax̃k +Byk − b),

ỹk = Argmin{θ2(y)− yTBTλk +
s

2
‖y − yk‖2 | y ∈ Y}.

The y-subproblem is easy.é�½� β > 0,�±�?¿� s > 0.

The underline part is F (w̃k):

F (w) =

 −ATλ

−BTλ

Ax+By − b


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é�©l8I¼ê�`z¯K,·�3 §4¥JÑn«ýÿ-���{

• XJf¯K¥¦)L§¥,�g�Ø�5?Û(J��ÿ,ïÆæ^

§4.1¥��{.

• XJf¯K¥¦)¥,7Lé��f¯K¥��g��5z,¿�Ý


^�Ð��ÿ,ïÆæ^ §4.2¥��{.

• XJ7L�5z,Ý
^�qØÐ��ÿ,ïÆ©Oæ^ §??.3Ú §4.3

¥��{.

F"ù
µeU��é¢S¯K�O�{Jø�Ï.
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5 ¦¦¦)))nnn������©©©lll888III¼¼¼êêê���ààà`̀̀zzz¯̄̄KKK

ù�¯K� Lagrange¼ê´

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b).

O2 Lagrange¼ê´

L3
β(x, y, z, λ) = L(x, y, z, λ) +

β

2
‖Ax+By + Cz − b‖2.

��í2��O��{
xk+1 = arg min

{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X},
yk+1 = arg min

{
L3
β(xk+1, y, zk, λk)

∣∣ y ∈ Y},
zk+1 = arg min

{
L3
β(xk+1, yk+1, z, λk)

∣∣ z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(5.12)

ém ≥ 3,��/ª�¯K��í2��O��{ØU�yÂñ [4].
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������ííí222 ADMMµµµ·�uL3 2016 Math.Progr.�n��f¯K

min{θ1(x) + θ2(y) + θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}

�1��~f¥, θ1(x) = θ2(y) = θ3(z) = 0, X = Y = Z = <,

A = [A,B,C] ∈ <3×3 ´��ÛÉÝ
, b = 0 ∈ <3.

�k�
âdò��~f,y²
��í2� ADMM¿ØÂñ.

ù
~f�õ�´3nØ�¡�¿Â.

������UUUYYYïïïÄÄÄ���¯̄̄KKKµn��f�¢S¯K¥,�5�åÝ


A = [A,B,C]   ��k��´ü Ý
,=, A = [A,B, I].

��í2� ADMM?nù«�bC¢S�n��f�¯K,

QQQvvvkkkyyy²²²ÂÂÂñññ§§§���vvvkkkÞÞÞÑÑÑ���~~~§§§���888···���uuu%%%ØØØ[[[������
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ÞÞÞ���{{{üüü���~~~fff555`̀̀ :

• ¦f�O��{ (ADMM)?n¯K

min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y} ´Âñ�.

• ò�ª�å�¤Ø�ª�å,¯KÒC¤

min{θ1(x) + θ2(y)|Ax+By ≤ b, x ∈ X , y ∈ Y}.

• 2z¤n��f��ª�å¯K

min{θ1(x) + θ2(y) + 0 |Ax+By + z = b, x ∈ X , y ∈ Y, z ≥ 0}

• ��í2� ADMM?nþ¡ù«¯K,Ø�<�L}Á,�´�

8Qvky²Âñ5,�vkÞÑ�~�

Äuþã@�,·�én��f�¯KJÑ
�
?��{.5¿µ

·���{é¯KØ\?Û^��é βØ\��,�é�{ÄÃâ�
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5.1 ���pppddd£££������ ADMM���{{{

± (5.12)Jø� (yk+1, zk+1)�ýÿ,� α ∈ (0, 1),��úª�(
yk+1

zk+1

)
:=

(
yk

zk

)
−α

(
I −(BTB)−1BTC

0 I

)(
yk − yk+1

zk − zk+1

)
. (5.13)

du�e�ÚS���O� (Byk+1, Czk+1, λk+1),·����(
Byk+1

Czk+1

)
:=

(
Byk

Czk

)
− α

(
I −I
0 I

)(
B(yk − yk+1)

C(zk − zk+1)

)
.

• B. S. He, M. Tao and X.M. Yuan, Alternating direction method

with Gaussian back substitution for separable convex

programming, SIAM Journal on Optimization 22(2012), 313-340.
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5.2 ADMM + Prox-Parallel Splitting ALM


{ü/
r� yÚ
z²�
ØU�y
�{Âñ




xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X},
yk+1 = arg min

{
L3
β(xk+1, y, zk, λk)

∣∣ y ∈ Y},
zk+1 = arg min

{
L3
β(xk+1, yk, z, λk)

∣∣ z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

y, zf¯K²1,XJØ���?n,Ò�§�èýkÑ\��K�
xk+1 = arg min

{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X}, (τ > 1)

yk+1 = arg min
{
L3
β(xk+1, y, zk, λk) + τ

2β‖B(y − yk)‖2
∣∣y ∈ Y},

zk+1 = arg min
{
L3
β(xk+1, yk, z, λk) + τ

2β‖C(z − zk)‖2
∣∣z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).
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xk+1 = Argmin{θ1(x) + β
2
‖Ax+Byk + Czk − b− 1

β
λk‖2 |x ∈ X},

λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =Argmin{θ2(y)−(λk+
1
2 )TBy + µβ

2
‖B(y − yk)‖2 | y ∈ Y},

zk+1 =Argmin{θ3(z)−(λk+
1
2 )TCz + µβ

2
‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(5.14)

Ù¥ µ > 2.~X,�±� µ = 2.01.

• B. He, M. Tao and X. Yuan, A splitting method for separable

convex programming. IMA J. Numerical Analysis, 31(2015),

394-426.
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A Convex Model for Nonnegative Matrix
Factorization and Dimensionality
Reduction on Physical Space

Ernie Esser, Michael Möller, Stanley Osher, Guillermo Sapiro, Senior Member, IEEE, and Jack Xin

Abstract—A collaborative convex framework for factoring a
data matrix into a nonnegative product , with a sparse
coefficient matrix , is proposed. We restrict the columns of the
dictionary matrix to coincide with certain columns of the data
matrix , thereby guaranteeing a physically meaningful dictio-
nary and dimensionality reduction. We use regularization
to select the dictionary from the data and show that this leads to
an exact convex relaxation of in the case of distinct noise-free
data. We also show how to relax the restriction-to- constraint
by initializing an alternating minimization approach with the
solution of the convex model, obtaining a dictionary close to but
not necessarily in . We focus on applications of the proposed
framework to hyperspectral endmember and abundance identifi-
cation and also show an application to blind source separation of
nuclear magnetic resonance data.

Index Terms—Blind source separation (BSS), dictionary
learning, dimensionality reduction, hyperspectral endmember de-
tection, nonnegative matrix factorization (NMF), subset selection.

I. INTRODUCTION

D IMENSIONALITY reduction has been widely studied in
the signal processing and computational learning com-

munities. One of the major drawbacks of virtually all popular
approaches for dimensionality reduction is the lack of phys-
ical meaning in the reduced dimension space. This significantly
reduces the applicability of such methods. In this paper, we
present a framework for dimensionality reduction, based on ma-
trix factorization and sparsity theory, that uses the data itself
(or small variations from it) for the low-dimensional representa-
tion, thereby guaranteeing physical fidelity. We propose a new
convex method to factor a nonnegative data matrix into a
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product , for which is nonnegative and sparse and the
columns of coincide with columns from the data matrix .
The organization of this paper is as follows. In the remainder

of the introduction, we further explain the problem, summarize
our approach, and discuss applications and related work. In
Section II, we present our proposed convex model for end-
member (dictionary) computation that uses regularization
to select as endmembers a sparse subset of columns of , such
that sparse nonnegative linear combinations of them are capable
of representing all other columns. Section III shows that, in the
case of distinct noise-free data, regularization is an exact
relaxation of the ideal row-0 norm (number of nonzero rows) and
furthermore proves the stability of our method in the noisy case.
Section IV presents numerical results for both synthetic and real
hyperspectral data. In Section V, we present an extension of our
convex endmember detection model that is better able to handle
outliers in the data. We discuss its numerical optimization, com-
pare its performance to the basic model, and also demonstrate
its application to a blind source separation (BSS) problem based
on nuclear magnetic resonance (NMR) spectroscopy data.

A. Summary of the Problem and Geometric Interpretation

The underlying general problem of representing
with 0 is known as nonnegative matrix factorization
(NMF). Variational models for solving NMF problems are typi-
cally nonconvex and are solved by estimating and alternat-
ingly. Although variants of alternating minimization methods
for NMF often produce good results in practice, they are not
guaranteed to converge to a global minimum.
The problem can be greatly simplified by assuming a partial

orthogonality condition on matrix as is done in [1] and [2].
More precisely, the assumption is that, for each row of , there
exists some column such that 0 and for .
Under this assumption, NMF has a simple geometric interpreta-
tion. Not only should the columns of appear in the data up
to scaling but the remaining data should be expressible as non-
negative linear combinations of these columns. Therefore, the
problem of finding is to find columns in , preferably as few
as possible, that span a cone containing the rest of the data .
Fig. 1 illustrates the geometry in three dimensions.
The problem we actually want to solve is more difficult than

NMF in a couple respects. One reason is the need to deal with
noisy data. While NMF by itself is a difficult problem already,
the identification of the vectors becomes even more difficult if
the data contain noise and we need to find a low-dimensional
cone that contains most of the data (see the lower right image in
Fig. 1). Notice that in the noisy case, finding vectors such that all
data are contained in the cone they span would lead to a drastic

1057-7149/$31.00 © 2012 IEEE
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Fig. 4. Spectral signatures of endmembers extracted by different methods. (Top row) Results of our method and the alternating minimization approach. (Bottom
row) Endmembers found by N-findr, QR, and VCA.

Fig. 5. Region of possible values for .

restrict each column to lie in a hockey-puck-shaped disk .
Decompose , where is the orthogonal pro-
jection of onto the line spanned by and is the radial

component of perpendicular to . Then, given ,

we restrict and . The or-
thogonal projection onto this set is straightforward to compute
since it is a box constraint in cylindrical coordinates. This con-
straint set for is shown in Fig. 5 in the case when .
We also allow for a few columns of the data to be outliers.

These are columns of that we do not expect to be well repre-
sented as a small error plus a sparse nonnegative linear com-
bination of other data but that we also do not want to con-
sider as endmembers. Given some , this sparse error
is modeled as with restricted to the convex set

and . Since is the non-
negative region of a weighted ball, the orthogonal projection
onto can be computed with complexity. Here,
since the weights sum to one by definition, can be roughly
interpreted as the fraction of data we expect to be outliers. For
nonoutlier data , we want , and for outlier data, we
want . In the latter outlier case, regularization on matrix

should encourage the corresponding column to be close to
zero; hence, is encouraged to be small rather than close
to one.
Keeping the regularization, the nonnegativity constraint,

and theweighted penalty from (6), the overall extendedmodel
is given by

such that (15)

The structure of this model is similar to the robust principal
component analysis model proposed in [33] although it has a
different noise model and uses regularization instead of the
nuclear norm.

B. Numerical Optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable
and constraint . In addition, let and be Lagrange
multipliers for constraints and

, respectively. Then, the augmented Lagrangian
is given by
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Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to the
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Some linearly constrained convex optimization problems

1. Linearly constrained convex optimization min{θ(x)|Ax = b, x ∈ X}

2. Convex optimization problem with separable objective function

min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y}

3. Convex optimization problem with 3 separable objective functions

min{θ1(x)+θ2(y)+θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}

There are some crucial parametersµµµ
• Crucial parameter in the so called linearized ALM for the first problem,

• Crucial parameter in the so called linearized ADMM for the second problem,

• Crucial proximal parameter in the Proximal Parallel ADMM-like Method for
the convex optimization problem with 3 separable objective functions.
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6.1 Linearized Augmented Lagrangian Method

Consider the following convex optimization problem:

min{θ(x) | Ax = b, x ∈ X}. (6.1)

The augmented Lagrangian function of the problem (6.1) is

Lβ(x, λ) = θ(x)− λT (Ax− b) + β
2 ‖Ax− b‖

2.

Starting with a given λk, the k-th iteration of the Augmented Lagrangian Method

[15, 19] produces the new iterate wk+1 = (xk+1, λk+1) via

(ALM)

{
xk+1 = arg min

{
Lβ(x, λk)

∣∣ x ∈ X}, (6.2a)

λk+1 = λk − γβ(Axk+1 − b), γ ∈ (0, 2) (6.2b)

In the classical ALM, the optimization subproblem (6.2a) is

min{θ(x) + β
2 ‖Ax− (b+ 1

βλ
k)‖2|x ∈ X}.

Sometimes, because of the structure of the matrix A, we should simplify the

subproblem (6.2a). Notice that
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• Ignore the constant term in the objective function of Lβ(x, λk), we have

argmin
{
Lβ(x, λk)

∣∣ x ∈ X}
= argmin

{
θ(x)− (λk)T (Ax− b) + β

2
‖Ax− b‖2

∣∣ x ∈ X}
= argmin

{
θ(x)− (λk)T (Ax− b) +

β
2
‖(Axk − b) +A(x− xk)‖2

∣∣∣∣ x ∈ X}

= argmin

{
θ(x)− xTAT [λk − β(Axk − b)]

+β
2
‖A(x− xk)‖2

∣∣∣∣ x ∈ X}. (6.3)

• In the so called Linearized ALM, the term β
2 ‖A(x− xk)‖2 is replaced

with r
2‖x− x

k‖2. In this way, the x-subproblem becomes

xk+1 = argmin
{
θ(x)−xTAT [λk−β(Axk−b)]+ r

2
‖x− xk‖2

∣∣x ∈ X}. (6.4)

In fact, the linearized ALM simplifies the quadratic term β
2 ‖A(x− xk)‖2.
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In comparison with (6.3), the simplified x-subproblem (6.4) is equivalent to

xk+1 = arg min
{
Lβ(x, λk) + 1

2‖x− x
k‖2DA

| x ∈ X}, (6.5)

where

DA = rI − βATA. (6.6)

In order to ensure the convergence, it was required that r > β‖ATA‖.

Thus, the mathematical form of the Linearized ALM can be written as{
xk+1 = arg min

{
Lβ(x, λk) + 1

2‖x− x
k‖2DA

∣∣ x ∈ X}, (6.7a)

λk+1 = λk − γβ(Axk+1 − b), γ ∈ (0, 2). (6.7b)

where DA is defined by (6.6).

Large parameter r in (6.6) will lead a slow convergence !
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Recent Advance. Bingsheng He, Feng Ma, Xiaoming Yuan:

Optimal proximal augmented Lagrangian method and its application to full Jaco-

bian splitting for multi-block separable convex minimization problems, IMA Jour-

nal of Numerical Analysis. 39(2019).

Our new result in the above paper:

For the matrix DA in (6.7a) with the form (6.6)

• if r > 2+γ
4 β‖ATA‖ is used in the method (6.7), it is still convergent;

• if r < 2+γ
4 β‖ATA‖ is used in the method (6.7), there is divergent example.
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Especially, when γ = 1,{
xk+1 = arg min

{
Lβ(x, λk) + 1

2‖x− x
k‖2DA

∣∣ x ∈ X}, (6.8a)

λk+1 = λk − β(Axk+1 − b). (6.8b)

According to our new result: For the matrix DA in in (6.7a) with the form (6.6),

• if r > 3
4β‖A

TA‖ is taken in the method (6.8), it is still convergent;

• if r < 3
4β‖A

TA‖ is taken in the method (6.8), there is divergent example.

r = 0.75 is the threshold factor in the matrix DA for linearized ALM (6.8) !
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6.2 Linearized ADMM

Consider the convex optimization problem with separable objective function:

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}. (6.9)

The augmented Lagrangian function of the problem (6.9) is

L2
β(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b) + β

2 ‖Ax+By − b‖2.

Starting with a given (yk, λk), the k-th iteration of the classical ADMM [?, 7]

generates the new iterate wk+1 = (xk+1, yk+1, λk+1) via

(ADMM)


xk+1 = arg min

{
Lβ(x, yk, λk)

∣∣ x ∈ X}, (6.10a)

yk+1 = arg min
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y}, (6.10b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (6.10c)

In (6.10a) and (6.10a), the optimization subproblems are

min{θ1(x)+ β
2
‖Ax−pk‖2|x ∈ X} and min{θ2(y)+ β

2
‖By−qk‖2|y ∈ Y},
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respectively. We assume that one of the minimization subproblems (without loss

of the generality, say, (6.10b)) should be simplified. Notice that

• Using the notation Lβ(xk+1, y, λk) and ignoring the constant term in the
objective function, we have

argmin
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y}
= argmin

{
θ2(y)− (λk)T (Axk+1 +By − b)

+β
2
‖Axk+1 +By − b‖2

∣∣∣∣ y ∈ Y}

= argmin

{
θ2(y)− (λk)TBy +

β
2
‖(Axk+1 +Byk − b) +B(y − yk)‖2

∣∣∣∣ y ∈ Y}

= argmin

{
θ2(y)−yTBT [λk−β(Axk+1+Byk−b)]

+β
2
‖B(y − yk)‖2

∣∣∣∣y ∈ Y}.(6.11)

• In the so called Linearized ADMM, the term β
2 ‖B(y − yk)‖2 is replaced

with s
2‖y − y

k‖2. Thus, the y-subproblem becomes
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yk+1 = argmin

{
θ2(y)− yTBT [λk − β(Axk+1 +Byk − b)]

+
s

2
‖y − yk‖2

∣∣∣∣ y ∈ Y}.
(6.12)

In fact, the linearized ADMM simplifies the quadratic term β
2 ‖B(y − yk)‖2.

In comparison with (6.11), the simplified y-subproblem (6.12) is equivalent to

yk+1 = arg min
{
Lβ(xk+1, y, λk) + 1

2‖y − y
k‖2DB

| y ∈ Y}, (6.13)

where

DB = sI − βBTB. (6.14)

In order to ensure the convergence, it was required that s > β‖BTB‖.

Thus, the mathematical form of the Linearized ADMM can be written as
xk+1 = arg min

{
Lβ(x, yk, λk)

∣∣ x ∈ X}, (6.15a)

yk+1 = arg min
{
Lβ(xk+1, y, λk) + 1

2‖y − y
k‖2DB

∣∣ y ∈ Y}, (6.15b)

λk+1 = λk − β(Axk+1 +Byk+1 − b), (6.15c)
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where DB is defined by (6.14).

A large parameter s will lead a slow convergence of the linearized ADMM.

���###???ÐÐÐ: ���`̀̀���555zzzÏÏÏfff���ÀÀÀJJJ– OO6228���(((ØØØ

Recent Advance. Bingsheng He, Feng Ma, Xiaoming Yuan:

Optimal Linearized Alternating Direction Method of Multipliers for Convex Pro-

gramming. http://www.optimization-online.org/DB HTML/2017/09/6228.html

Our new result in the above paper: For the matrix DB in (6.15b) with the form

(6.14)

• if s > 3
4β‖B

TB‖ is taken in the method (6.15), it is still convergent;

• if s < 3
4β‖B

TB‖ is taken in the method (6.15), there is divergent example.

s = 0.75 is the threshold factor in the matrix DB for linearized ADMM (6.15) !

Notice that the matrix DB defined in (6.14) is indefinite for s ∈ (0.75, 1) !
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6.3 Parameters improvements in the method for
problem with 3 separable objective functions

For the problem with three separable objective functions

min{θ1(x)+θ2(y)+θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}, (6.16)

the augmented Lagrangian function is

L3
β(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT(Ax+By + Cz − b)

+β
2
‖Ax+By + Cz − b‖2.

Using the direct extension of ADMM to solve the problem (6.16), the formula is
xk+1 = Argmin{L3

β(x, yk, zk, λk) |x ∈ X},
yk+1 = Argmin{L3

β(xk+1, y, zk, λk) | y ∈ Y},
zk+1 = Argmin{L3

β(xk+1, yk+1, z, λk) | z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(6.17)

Unfortunately, the direct extension (6.17) is not necessarily convergent [4] !
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ADMM + Parallel Splitting ALM
r
�
y, z

²
�




xk+1 = arg min
{
L3
β(x, yk, zk, λk)

∣∣ x ∈ X},
yk+1 = arg min

{
L3
β(xk+1, y, zk, λk)

∣∣ y ∈ Y},
zk+1 = arg min

{
L3
β(xk+1, yk, z, λk)

∣∣ z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

²1?n y, zf¯K,�g��,ØU�y�{Âñ�

ADMM + Parallel-Prox Splitting ALM

�g��,L©gd.�§�\�·���K�(τ > 1),�{ÒU�yÂñ.

xk+1 = argmin
{
L(x, yk, zk, λk)

∣∣ x ∈ X}, (6.18a) yk+1 = argmin
{
L(xk+1, y, zk, λk) + τ

2
‖B(y − yk)‖2

∣∣ y ∈ Y},
zk+1 = argmin

{
L(xk+1, yk, z, λk) + τ

2
‖C(z − zk)‖2

∣∣ z ∈ Z},(6.18b)

λk+1 = λk − (Axk+1 +Byk+1 + Czk+1 − b). (6.18c)
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Notice that (6.18b) can be written as(
yk+1

zk+1

)
= arg min

{
L(xk+1, y, z, λk) +

1

2

∥∥∥∥ y − yk
z − zk

∥∥∥∥2

D
BC

∣∣∣∣ y ∈ Yz ∈ Z

}
,

where

D
BC

=

(
τBTB −BTC

−CTB τCTC

)
. (6.19)

D
BC

is positive semidefinite when τ ≥ 1.

However, the matrix D
BC

is indefinite for τ ∈ (0, 1).

In other words, the scheme (6.18) can be rewritten as

xk+1 = argmin
{
L(x, yk, zk, λk)

∣∣ x ∈ X},(
yk+1

zk+1

)
= argmin

{
L(xk+1, y, z, λk) + 1

2

∥∥∥∥ y − yk

z − zk

∥∥∥∥2
D
BC

∣∣∣∣ y ∈ Yz ∈ Z

}
,

λk+1 = λk − (Axk+1 +Byk+1 + Czk+1 − b),
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The algorithm (6.18) can be rewritten in an equivalent form: (µ = τ + 1 > 2).

xk+1 = argmin{θ1(x) + β
2
‖Ax+Byk + Czk − b− 1

β
λk‖2 |x ∈ X},

λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =argmin{θ2(y)−(λk+
1
2 )TBy + µβ

2
‖B(y − yk)‖2 | y ∈ Y},

zk+1 =argmin{θ3(z)−(λk+
1
2 )TCz + µβ

2
‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(6.20)

The related publicationµ

• B. He, M. Tao and X. Yuan, A splitting method for separable convex program-

ming. IMA J. Numerical Analysis, 31(2015), 394-426.

In the above paper, in order to ensure the convergence, it was required

τ > 1 (in (6.18)) which is equivalent to µ > 2 (in (6.20)).
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This method is accepted by Osher’s research group

• E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for

non-negative matrix factorization and dimensionality reduction on physical

space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.

3248 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY 2012

Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to theThus, Osher’s research group utilize the iterative formula (6.20), according to our

previous paper, they set

µ = 2.01, it is only a pity larger than 2.

Large parameter µ (or τ ) will lead a slow convergence.
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Recent Advance in : Bingsheng He, Xiaoming Yuan: On the Optimal Proximal

Parameter of an ADMM-like Splitting Method for Separable Convex Programming

http://www.optimization-online.org/DB HTML/2017/ 10/6235.html

Our new assertion: In (6.18)

• if τ > 0.5, the method is still convergent;

• if τ < 0.5, there is divergent example.

Equivalently in (6.20) :

• if µ > 1.5, the method is still convergent;

• if µ < 1.5, there is divergent example.

For convex optimization prob-
lem (6.16) with three separable
objective functions, the param-
eters in the equivalent methods
(6.18) and (6.20) :

• 0.5 is the threshold factor of
the parameter τ in (6.18) !

• 1.5 is the threshold factor of
the parameter µ in (6.20) !
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Thank you very much for your attention !
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Thank you very much for reading !


