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1 üüü������fff¯̄̄KKK PDHG → Customized PPA

min θ(x)

s.t Ax = b

x ∈ X

min{θ(x) | Ax = b, x ∈ X} (1.1)
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Image deblurring Blurry can be produced by

defocus the camera’s lens, the moving object, turbulence in the air, · · ·
Notations: g — observation, f — ideal image;

U — restriction on pixels, e.g., U = {u | 0 ≤ u ≤ 255}
g = Hf , H — blur matrix .

Model min {‖∇f‖1 | Hf = g, f ∈ U}

original image blurred image restored image
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Image inpainting

Some pixels are missing in image. Partial information of image is available

g = S f , S — mask (missing pixels)

Model
min {‖∇f‖1 | S f = g, f ∈ U}

original image missing pixel image restored image
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Image zooming and super-resolution

Produce a high-resolution (HR) image by its low-resolution (LR) image(s)

g = D f , f — HR image, g — LR image, D — down-sampling

Model min {‖∇f‖1 | Df = g, f ∈ U}

LR image HR image
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Magnetic resonance imaging (MRI)

Reconstruct a medical image by sampling its Fourier coefficients partially

Fg = PFf , P — sampling mask, F — Fourier transform

Model min {‖∇f‖1 | PFf = Fg}

medical image sampling mask reconstruction
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The Lagrange function of (1.1) is

L(x, λ) = θ(x)− λT (Ax− b), (x, λ) ∈ X × <m.

A pair of (x∗, λ∗) is called a saddle point of the Lagrange function, if

Lλ∈<m(x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ∗).
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1.1 Original primal-dual hybrid gradient algorithm

For given (xk, λk), produce a pare of (xk+1, λk+1). First,

xk+1 = Argmin{L(x, λk) + r

2
‖x− xk‖2 |x ∈ X}, (1.2a)

and then we obtain λk+1 via

λk+1 = Argmax{L(xk+1, λ)− s

2
‖λ− λk‖2 |λ ∈ <m}. (1.2b)

However, this method is not necessarily convergent.

1.2 Proximal Point Algorithm-Classical Version

xk+1 = argmin
{
L(x, λk) +

r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (1.3a)

λk+1 = argmax
{
L
(
[2xk+1 − xk], λ

)
− s

2

∥∥λ− λk
∥∥2}

(1.3b)
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By ignoring the constant term in the objective function, getting xk+1 from (1.3a)

is equivalent to obtaining xk+1 from

xk+1 = argmin
{
θ(x) +

r

2

∥∥x−
[
xk +

1

r
ATλk

]∥∥2 ∣∣x ∈ X
}
.

The solution of (1.3b) is given by

λk+1 = λk − 1

s
[A(2xk+1 − xk)− b].

Assumption: min {θ(x) + r
2
‖x− a‖2 |x ∈ X} is simple

Indeed, under the assumption, the sub-problem (1.3a) is simple.

Convergence Condition rs > ‖ATA‖.
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Produce (xk+1, λk+1) by using the dual-primal order:

λk+1 = argmax
{
L
(
xk, λ

)
− s

2

∥∥λ− λk
∥∥2}

(1.4a)

xk+1 = argmin
{
L(x, (2λk+1 − λk)) + r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (1.4b)

1.3 Customized Proximal Point Algorithm-Extended Version

Extended PPA γ = 1.5 ∈ (0, 2).

xk+1 := xk − γ(xk − xk+1),

λk+1 := λk − γ(λk − λk+1).
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1.4 Simplicity recognition

Frame of VI is recognized by some Researcher in Image Science
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Abstract

In this paper we study preconditioning techniques for
the first-order primal-dual algorithm proposed in [5]. In
particular, we propose simple and easy to compute diago-
nal preconditioners for which convergence of the algorithm
is guaranteed without the need to compute any step size
parameters. As a by-product, we show that for a certain
instance of the preconditioning, the proposed algorithm is
equivalent to the old and widely unknown alternating step
method for monotropic programming [7]. We show numer-
ical results on general linear programming problems and
a few standard computer vision problems. In all examples,
the preconditioned algorithm significantly outperforms the
algorithm of [5].

1. Introduction
In [5, 8, 13] first-order primal-dual algorithms are stud-

ied to solve a certain class of convex optimization problems
with known saddle-point structure.

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) , (1)

where X and Y are finite-dimensional vector spaces
equipped with standard inner products 〈·, ·〉. K : X → Y
is a linear operator and G : X → R ∪ {∞} and F ∗ : Y →
R ∪ {∞} are convex functions with known structure.

The iterates of the algorithm studied in [5] to solve (1)
are very simple:
{
xk+1 =(I + τ∂G)−1(xk − τKT yk)

yk+1 =(I + σ∂F ∗)−1(yk + σK(xk+1 + θ(xk+1 − xk)))

(2)
They basically consist of alternating a gradient ascend in
the dual variable and a gradient descend in the primal

∗The first author acknowledges support from the Austrian Science Fund
(FWF) under the grant P22492-N23.

Figure 1. On problems with irregular structure, the proposed pre-
conditioned algorithm (P-PD) converges significantly faster than
the algorithm of [5] (PD).

variable. Additionally, the algorithm performs an over-
relaxation step in the primal variable. A fundamental as-
sumption of the algorithm is that the functions F ∗ and G
are of simple structure, meaning that the so-called proxim-
ity or resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1

have closed-form solutions or can be efficiently computed
with a high precision. Their exact definitions will be given
in Section 1.1. The parameters τ, σ > 0 are the primal and
dual step sizes and θ ∈ [0, 1] controls the amount of over-
relaxation in x. It is shown in [5] that the algorithm con-
verges as long as θ = 1 and the primal and dual step sizes
τ and σ are chosen such that τσL2 < 1, where L = ‖K‖
is the operator norm of K. It is further shown that a suit-
ably defined partial primal-dual gap of the average of the
sequence ((x0, y0), ..., (xk, yk)) vanishes with rate O(1/k)
for the complete class of problems covered by (1). For
problems with more regularity, the authors propose acceler-
ation schemes based on non-empirical choices on τ , σ and
θ. In particular they show that they can achieveO(1/k2) for
problems where G of F ∗ is uniformly convex and O(ωk),
ω < 1 for problems where both G and F ∗ are uniformly
convex. See [5] for more details.

A common feature of all numerical examples in [5] is
that the involved linear operators K have a simple struc-
ture which makes it very easy to estimate L. We observed
that for problems where the operator K has a more compli-

1

• T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

• A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem

with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
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cated structure, L cannot be estimated easily or it might be
very large such that the convergence of the algorithm sig-
nificantly slows down. As we will see, linear operators with
irregular structure frequently arise in many different vision
problems.

In this work, we study preconditioning techniques for
the primal-dual algorithm (2). This allows us to overcome
the aforementioned shortcomings. The proposed precondi-
tioned algorithm has several advantages. Firstly, it avoids
the estimation of the operator norm of K, secondly, it sig-
nificantly accelerates the convergence on problems with ir-
regular K and thirdly, it leaves the computational complex-
ity of the iterations basically unchanged. Figure 1 shows
convergence plots on two LP problems with such an irreg-
ular structure. The proposed algorithm can better adapt to
the problem structure, leading to faster convergence.

The rest of the paper is as follows. In Section 1.1 we fix
some preliminary definitions which will be used through-
out the paper. In Section 2 we present the preconditioned
primal-dual algorithm and give conditions under which con-
vergence of the algorithm is guaranteed. We propose a fam-
ily of simple and easy to compute diagonal preconditioners,
which turn out to be very efficient on many problems. In
Section 2.3 we establish connections to the old and widely
unknown alternating step method for monotropic program-
ming [7]. In Section 3 we detail experimental results of the
proposed algorithm. In the last Section we draw some con-
clusions and show directions for future work.

1.1. Preliminaries

We consider finite-dimensional vector spaces X and Y ,
where n = dimX and m = dimY with inner products

〈
x1, x2

〉
X

=
〈
T−1x1, x2

〉
, x1, x2 ∈ X ,

〈
y1, y2

〉
Y

=
〈
Σ−1y1, y2

〉
, y1, y2 ∈ Y ,

where T and Σ are a symmetric, positive definite precondi-
tioning matrices. We further define the norms in the usual
way as

‖x‖X = 〈x, x〉
1
2

X , ‖y‖Y = 〈y, y〉
1
2

Y .

We will make frequent use of the so-called resolvent or
proximity operator of a function G(x). Given a point
x̂ ∈ X , it is defined as the solution of the auxiliary min-
imization problem

x∗ = argmin
x

G(x) +
1

2
‖x− x̂‖2X

The unique minimizer to the above problem is characterized
by the optimality condition

∂G(x) + T−1(x− x̂) � 0 ,

whose optimal solution x∗ can be written in operator form
as

x∗ = (I +T∂G)−1(x̂) . (3)

2. Preconditioned primal-dual algorithm
In this work, we propose the following preconditioned

first-order primal-dual algorithm: Choose symmetric and
positive definite matrices T,Σ, θ ∈ [0, 1], (x0, y0) ∈
X × Y . Then for k ≥ 0, update (xk, yk) as follows:
{
xk+1=(I +T∂G)−1(xk − TKT yk)

yk+1=(I +Σ∂F ∗)−1(yk +ΣK(xk+1+θ(xk+1−xk)))

(4)
Comparing the iterates (4) of the proposed algorithm to (2),
one can see that the global steps τ and σ have been re-
placed by the preconditioning matrices T and Σ. It is known
that (2) converges as long as θ = 1 and τσ‖K‖2 < 1.
Hence, a natural question is now to establish conditions on
T and Σ and θ which ensure convergence of the proposed
preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F ∗ it follows that for any (x, y) ∈ X ×
Y the iterates xk+1 and yk+1 satisfy
〈(

x− xk+1

y − yk+1

)
,F

(
xk+1

yk+1

)
+M

(
xk+1 − xk

yk+1 − yk

)〉
≥ 0 ,

(5)
where

F

(
xk+1

yk+1

)
=

(
∂G(xk+1) +KT yk+1

∂F ∗(yk+1)−Kxk+1

)
,

and

M =

[
T−1 −KT

−θK Σ−1

]
. (6)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].
In the next Section we will establish conditions on θ, T and
Σ which ensure convergence of the algorithm.

2.1. Convergence of the algorithm

We can make direct use of the convergence analysis de-
veloped in [10, 14, 16]. In fact, convergence of (5) can be
guaranteed as long as the matrix M is symmetric and pos-
itive definite. In the following Lemma we establish condi-
tions on θ, T and Σ which indeed ensure these properties of
M .

Lemma 1. Let θ = 1, T and Σ symmetric positive definite
maps satisfying

‖Σ 1
2KT

1
2 ‖2 < 1 , (7)

1763

In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].
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dual variables into a vector y and all linear operators into a
global linear operator K. Then, applying the precondition-
ing techniques proposed in this paper leads to an algorithm
that is guaranteed to converge to the optimal solution with-
out the need to solve any inner optimization problems.

Figure 3 shows some results of standard minimal parti-
tioning and segmentation problems. We compared the orig-
inal approach solving inner optimization problems and us-
ing PD to P-PD applied to (27). We first precomputed the
optimal solution using a large number of iterations and then
recorded the time until the error is below a threshold of tol.
The timings are presented in Table 4. In all cases, the pro-
posed algorithm clearly outperforms the original approach
of [5].

PD P-PD Speedup
Synthetic (3 phases) 221.71s 75.65s 2.9
Synthetic (4 phases) 1392.02s 538.83s 2.6

Natural (8 phases) 592.85s 113.76s 5.2
Table 4. Comparison of the proposed algorithm on partitioning
problems.

4. Conclusion

In this paper we have proposed a simple precondition-
ing technique to improve the performance of the first-order
primal-dual algorithm proposed in [13, 5]. The proposed
diagonal preconditioners can be computed efficiently and
guarantee the convergence of the algorithm without the
need to estimate any step size parameters. In several nu-
merical experiments, we have shown that the proposed al-
gorithm significantly outperforms the algorithm in [5]. Fur-
thermore, on large scale linear programming problems, an
unoptimized implementation of the proposed algorithm eas-
ily outperforms a highly optimized interior point solver and
a GPU implementation of the proposed algorithm can eas-
ily compete with specialized combinatorial algorithms for
computing minimum cuts.

We believe that the proposed algorithm can become a
standard algorithm in computer vision since it can be ap-
plied to a large class of convex optimization problems aris-
ing in computer vision and has the potential for parallel
computing. Future work will mainly concentrate on the
development of more sophisticated preconditioners that are
different from diagonal matrices.
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Moreover, from the convexity of f and (4) it follows

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 ≥ f (x̂) + 〈∇ f (x̄), x − x̂
〉 − L f

2
‖x̂ − x̄‖2.

Combining this with the previous inequality, we arrive at

f (x) + g(x) + 1
τ

Dx (x, x̄) + L f

2
‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈
K (x̂ − x), ỹ

〉 + 1
τ

Dx (x̂, x̄) + 1
τ

Dx (x, x̂). (9)

In the same way:

h∗(y) + 1
σ

Dy(y, ȳ) ≥ h∗(ŷ) − 〈
K x̃, ŷ − y

〉 + 1
σ

Dy(ŷ, ȳ) + 1
σ

Dy(y, ŷ). (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8) �	.

3 Non-linear primal–dual algorithm

In this section we address the convergence rate of the non-linear primal–dual algorithm
shown in Algorithm 1:

Algorithm 1: O(1/N ) Non-linear primal–dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant L f of ∇ f , and Bregman
distance functions Dx and Dy .

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, 2xn+1 − xn, yn) (11)

The elegant interpretation in [16] shows that by writing the algorithm in this form
(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x =
‖·‖y = ‖·‖2, and Dx (x, x ′) = 1

2‖x − x ′‖2
2, Dy(y, y′) = 1

2‖y − y′‖2
2, then it is an

instance of the proximal point algorithm [27], up to the explicit term ∇ f (xn), since

(
K ∗ + ∂g

−K + ∂h∗
)

(zn+1) + Mτ,σ (zn+1 − zn) �
(−∇ f (xn)

0

)
,

where the variable z ∈ X ×Y represents the pair (x, y), and the matrix Mτ,σ is given
by

Mτ,σ =
( 1

τ
I −K ∗

−K 1
σ

I

)
, (12)

which is positive-definite as soon as τσ L2 < 1. A proof of convergence is easily
deduced. Moreover, since in our particular setting we never really use the machinery
of monotone operators, and rely only on the fact that we are studying a specific

123
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2 üüü������fff¯̄̄KKK������OOO������{{{

min θ1(x) + θ2(y)

s.t Ax+By = b

x ∈ X , y ∈ Y

min {θ1(x) + θ2(y) |Ax+By = b, x ∈ X , y ∈ Y} (2.1)
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Image decomposition

Separate the sketch (cartoon) and oscillating component (texture) of image

f = u+ v, u — cartoon part, v — texture part

Model min {‖∇u‖1 + τ‖v‖−1,∞ | u+ v = f}

original image cartoon part texture part
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Background extraction of surveillance video (I)

Considering the foreground object detection in complex environments and extract

the background in surveillance video

D = X + Y , D — original video, X — background, Y — foreground

Model min {‖X‖∗ + τ‖Y ‖1 | X + Y = D}

original video foreground background
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Image denoising

Pixels are perturbed by a whole range of external and unwanted disturbances

g = f + noise

Model

min
{
‖∇f‖1 + 1

2‖f − g‖22
}
⇔ min

{
‖y‖1 + 1

2‖f − g‖22 | ∇f − y = 0
}

,

original image noised image restored image
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• 2009cS,·�Æ¬)d¹l RiceéÜ��£I,0�
^�

O4�z�{ (AMA)¦)ã�?n¯K"

• ü��©l�f¯Kv¼ê�{tµ�Ò´�O4�z�{"

• O2 Lagrange¦f{`uv¼ê�{(Nocedal & Wright [18]).

• ü��©l�f¯K�O2 Lagrange¦f{tµÒ´ ADMM"

Lagrange¼¼¼êêê

L(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b)

OOO222 Lagrange¼¼¼êêê

Lβ(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b) + β

2
‖Ax+By − b‖2.
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¦¦¦)))¯̄̄KKK (2.1)���vvv¼¼¼êêê���{{{

(xk+1, yk+1)=Argmin
{
θ1(x) + θ2(y) +

β
2
‖Ax+By − b‖2

∣∣x ∈ X , y ∈ Y}

¦¦¦)))¯̄̄KKK (2.1)���OOO222 Lagrange¦¦¦fff{{{ l�½� λkm©

(xk+1, yk+1)=Argmin

θ1(x) + θ2(y)− (λk)T (Ax+By − b)

+β
2
‖Ax+By − b‖2

∣∣∣∣∣x ∈ Xy ∈ Y


λk+1 = λk − β(Axk+1 +Byk+1 − b).

f¯KJUÝ��,O2 Lagrange¦f{(ALM)`uv¼ê�{"

�ÏµS�gXÆ�V�?d�d, (ALM)Ó��Ä
é��aÉ"

���ÓÓÓ���"""::: vk|^ xÚ y��©l(��¦)¬ÃlXÃ"
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¦¦¦)))¯̄̄KKK (2.1)���tttµµµ���vvv¼¼¼êêê���{{{— ���OOO444���zzz���{{{(AMA)

l�½� ykm©

xk+1=Argmin
{
θ1(x) +

β
2
‖Ax+Byk − b‖2

∣∣x ∈ X},
yk+1=Argmin

{
θ2(y) +

β
2
‖Axk+1 +By − b‖2

∣∣y ∈ Y}.
¦¦¦)))¯̄̄KKK (2.1)���tttµµµ���OOO222 Lagrange¦¦¦fff{{{ — ADMM

l�½� (yk, λk)m©

xk+1 = Argmin
{
θ1(x)− (λk)TAx+ β

2
‖Ax+Byk − b‖2

∣∣x ∈ X},
yk+1 = Argmin

{
θ2(y)− (λk)TBy + β

2
‖Axk+1 +By − b‖2

∣∣y ∈ Y},
λk+1 = λk − β(Axk+1 +Byk+1 − b).

ÑÑÑtttµµµ,¦¦¦fff���OOO������{{{ (ADMM)AAATTT`̀̀uuu���OOO444���zzz���{{{ (AMA)



23

·�#��Óó�´l 2009cm©�

2009c 10�uÀ/«$ÊÆ���ØÆ¬Ø�



24

�±��Ç�åA�3Æ¬Ø���¬�w



25

K8: &EEâ¥�à`z¯KÚ�O��{¦)

2009c,·��¬�wJ��cÆö5¿�O��{



26

2.1 üüü������fff¯̄̄KKK��� ADMM���{{{��� (ÌÌÌ���)UUU???

1. ADMM in sense of PPA������^̂̂SSS¿¿¿			òòò l (yk, λk)Ñu.









xk+1 = Argmin{Lβ(x, yk, λk) |x ∈ X},
λk+1 = λk − β(Axk+1 +Byk − b),
yk+1 = Argmin{Lβ(xk+1, y, λk+1) | y ∈ Y},

(2.2a)





yk+1 := yk − γ(yk − yk+1),

λk+1 := λk − γ(λk − λk+1).
£tµòÿ¤ (2.2b)

ùp γ ∈ (0, 2).D�Ò := L« (2.2b)mà� (yk+1, λk+1)´d�

{�c�Ü© (2.2a)�)�.éõê¯K,ù�  U\¯Âñ�Ý.

• X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point

algorithms revisit on the alternating direction method of

multipliers, Science China Math., 56 (2013), 2179-2186.
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2. Symmetric ADMM ééé¡¡¡������OOO������{{{

�©Cþ xÚ y��þ´²��.¤±ïÆæ^é¡��O��{.

Symmetric Alternating Direction Method of Multipliers is described as




xk+1 = Argmin{Lβ(x, yk, λk) |x ∈ X},

λk+ 1
2 = λk − µβ(Axk+1 +Byk − b),

yk+1 = Argmin{Lβ(xk+1, y, λk+ 1
2 ) | y ∈ Y},

λk+1 = λk+ 1
2 − µβ(Axk+1 +Byk+1 − b).

(2.3)

wehre µ ∈ (0, 1) (usually µ = 0.9).

• B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive

Peaceman- Rachford splitting method for convex programming,

SIAM Journal on Optimization 24(2014), 1011-1040.
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3 õõõ������©©©lll���fff���ààà`̀̀zzz¯̄̄KKK

min θ1(x) + θ2(y) + θ3(z)

s.t. Ax+By + Cz = b

x ∈ X , y ∈ Y, z ∈ Z

min{θ1(x) + θ2(y) + θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}.
(3.1)
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Background extraction of surveillance video (II)

The original surveillance video has missing information and additive noise

PΩ(D) = PΩ(X + Y )+noise

PΩ — indicating missing data, Z — noise/outliers

Model

min
{
‖X‖∗ + τ‖Y ‖1 + ‖PΩ(Z)‖2F | X + Y − Z = D

}

observed video foreground background
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Image decomposition with degradations The target image for

decomposition contains degradations, e.g., blur, missing pixels, · · ·

f = K(u+ divv) + z, K — degradation operator, z — noise/outlier

Model

min
{
‖∇u‖1 + τ‖v‖∞ + ‖z‖22 | K(u+ divv) + z = f

}

target image cartoon texture
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Face recognition Remove shadows and specularities from face images

caused by varying illuminations.

observation ideal shadow
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ù�¯K� Lagrange¼ê´

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b).

O2 Lagrange¼ê´

L3
β(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b)

+
β

2
‖Ax+By + Cz − b‖2.

��í2��O��{




xk+1 = argmin
{
L3
β(x, y

k, zk, λk)
∣∣ x ∈ X

}
,

yk+1 = argmin
{
L3
β(x

k+1, y, zk, λk)
∣∣ y ∈ Y

}
,

zk+1 = argmin
{
L3
β(x

k+1, yk+1, z, λk)
∣∣ z ∈ Z

}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(3.2)

ém ≥ 3,��í2��O��{ØU�yÂñ.



33

3.1 ���pppddd£££������ ADMM���{{{

± (3.2)Jø� (yk+1, zk+1)�ýÿ,� α ∈ (0, 1),��úª�
(
yk+1

zk+1

)
:=

(
yk

zk

)
− α

(
I −(BTB)−1BTC

0 I

)(
yk − yk+1

zk − zk+1

)
. (3.3)

du�e�ÚS���O� (Byk+1, Czk+1, λk+1),·����
(
Byk+1

Czk+1

)
:=

(
Byk

Czk

)
− α

(
I −I
0 I

)(
B(yk − yk+1)

C(zk − zk+1)

)
.

• B. S. He, M. Tao and X.M. Yuan, Alternating direction method

with Gaussian back substitution for separable convex

programming, SIAM Journal on Optimization 22(2012), 313-340.

é yÚ z,kk�,Øú²,@Ò��éÖ,N�
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3.2 ADMM + Prox-Parallel Splitting ALM




{ü/
r� y
z²�
ØU�y
�{Âñ








xk+1 = argmin
{
L3
β(x, y

k, zk, λk)
∣∣ x ∈ X

}
,

yk+1 = argmin
{
L3
β(x

k+1, y, zk, λk)
∣∣ y ∈ Y

}
,

zk+1 = argmin
{
L3
β(x

k+1, yk, z, λk)
∣∣ z ∈ Z

}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

y, zf¯K²1,XJØ���?n,Ò�§�èýkÑ\��K�




xk+1 = argmin
{
L3
β(x, y

k, zk, λk)
∣∣ x ∈ X

}
, (τ > 1)

yk+1 = argmin
{
L3
β(x

k+1, y, zk, λk) + τ
2β‖B(y − yk)‖2

∣∣y ∈ Y
}
,

zk+1 = argmin
{
L3
β(x

k+1, yk, z, λk) + τ
2β‖C(z − zk)‖2

∣∣z ∈ Z
}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).
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þã�{��uµ

xk+1 = Argmin{θ1(x) + β
2
‖Ax+Byk + Czk − b− 1

β
λk‖2 |x ∈ X},

λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =Argmin{θ2(y)−(λk+
1
2 )TBy + µβ

2
‖B(y − yk)‖2 | y ∈ Y},

zk+1 =Argmin{θ3(z)−(λk+
1
2 )TCz + µβ

2
‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(3.4)

Ù¥ µ > 2.~X,�±� µ = 2.01.

• B. He, M. Tao and X. Yuan, A splitting method for separable

convex programming. IMA J. Numerical Analysis, 31(2015),

394-426.

�gd,qØ��,Ò\�K�,Ø#gC�U�«ì.
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This method is accepted by Osher’s research group

• E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for

non-negative matrix factorization and dimensionality reduction on physical

space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.
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A Convex Model for Nonnegative Matrix
Factorization and Dimensionality
Reduction on Physical Space

Ernie Esser, Michael Möller, Stanley Osher, Guillermo Sapiro, Senior Member, IEEE, and Jack Xin

Abstract—A collaborative convex framework for factoring a
data matrix into a nonnegative product , with a sparse
coefficient matrix , is proposed. We restrict the columns of the
dictionary matrix to coincide with certain columns of the data
matrix , thereby guaranteeing a physically meaningful dictio-
nary and dimensionality reduction. We use regularization
to select the dictionary from the data and show that this leads to
an exact convex relaxation of in the case of distinct noise-free
data. We also show how to relax the restriction-to- constraint
by initializing an alternating minimization approach with the
solution of the convex model, obtaining a dictionary close to but
not necessarily in . We focus on applications of the proposed
framework to hyperspectral endmember and abundance identifi-
cation and also show an application to blind source separation of
nuclear magnetic resonance data.

Index Terms—Blind source separation (BSS), dictionary
learning, dimensionality reduction, hyperspectral endmember de-
tection, nonnegative matrix factorization (NMF), subset selection.

I. INTRODUCTION

D IMENSIONALITY reduction has been widely studied in
the signal processing and computational learning com-

munities. One of the major drawbacks of virtually all popular
approaches for dimensionality reduction is the lack of phys-
ical meaning in the reduced dimension space. This significantly
reduces the applicability of such methods. In this paper, we
present a framework for dimensionality reduction, based on ma-
trix factorization and sparsity theory, that uses the data itself
(or small variations from it) for the low-dimensional representa-
tion, thereby guaranteeing physical fidelity. We propose a new
convex method to factor a nonnegative data matrix into a

Manuscript received February 04, 2011; revised October 21, 2011; accepted
February 19, 2012. Date of publication March 06, 2012; date of current ver-
sion June 13, 2012. The work of E. Esser and J. Xin was supported in part by
the NSF under Grant DMS-0911277 and Grant DMS-0928427. The work of
M. Möller and S. Osher was supported in part by the NSF under Grant DMS-
0835863, Grant DMS-0914561, and Grant DMS-0914856, and in part by the
ONR under Grant N00014-08-1119. The work of M. Möller was also supported
by the German Academic Exchange Service (DAAD). The work of G. Sapiro
was supported by the NSF, NGA, ONR, ARO, DARPA, and NSSEFF. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Birsen Yazici.
E. Esser and J. Xin are with the Department of Mathematics, University of

California at Irvine, Irvine, CA 92697-3875 USA (e-mail: eesser@math.uci.
edu).
M. Möller was with the Department of Mathematics, University of California

at Los Angeles, Los Angeles, CA 90095-1555 USA. He is now with the West-
fälische Wilhelms University of Münster, 48149 Münster, Germany.
S. Osher is with the Department of Mathematics, University of California at

Los Angeles, Los Angeles, CA 90095-1555 USA.
G. Sapiro is with the Department of Electrical and Computer Engineering,

University of Minnesota, Minneapolis, MN 55455-0170 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIP.2012.2190081

product , for which is nonnegative and sparse and the
columns of coincide with columns from the data matrix .
The organization of this paper is as follows. In the remainder

of the introduction, we further explain the problem, summarize
our approach, and discuss applications and related work. In
Section II, we present our proposed convex model for end-
member (dictionary) computation that uses regularization
to select as endmembers a sparse subset of columns of , such
that sparse nonnegative linear combinations of them are capable
of representing all other columns. Section III shows that, in the
case of distinct noise-free data, regularization is an exact
relaxation of the ideal row-0 norm (number of nonzero rows) and
furthermore proves the stability of our method in the noisy case.
Section IV presents numerical results for both synthetic and real
hyperspectral data. In Section V, we present an extension of our
convex endmember detection model that is better able to handle
outliers in the data. We discuss its numerical optimization, com-
pare its performance to the basic model, and also demonstrate
its application to a blind source separation (BSS) problem based
on nuclear magnetic resonance (NMR) spectroscopy data.

A. Summary of the Problem and Geometric Interpretation

The underlying general problem of representing
with 0 is known as nonnegative matrix factorization
(NMF). Variational models for solving NMF problems are typi-
cally nonconvex and are solved by estimating and alternat-
ingly. Although variants of alternating minimization methods
for NMF often produce good results in practice, they are not
guaranteed to converge to a global minimum.
The problem can be greatly simplified by assuming a partial

orthogonality condition on matrix as is done in [1] and [2].
More precisely, the assumption is that, for each row of , there
exists some column such that 0 and for .
Under this assumption, NMF has a simple geometric interpreta-
tion. Not only should the columns of appear in the data up
to scaling but the remaining data should be expressible as non-
negative linear combinations of these columns. Therefore, the
problem of finding is to find columns in , preferably as few
as possible, that span a cone containing the rest of the data .
Fig. 1 illustrates the geometry in three dimensions.
The problem we actually want to solve is more difficult than

NMF in a couple respects. One reason is the need to deal with
noisy data. While NMF by itself is a difficult problem already,
the identification of the vectors becomes even more difficult if
the data contain noise and we need to find a low-dimensional
cone that contains most of the data (see the lower right image in
Fig. 1). Notice that in the noisy case, finding vectors such that all
data are contained in the cone they span would lead to a drastic

1057-7149/$31.00 © 2012 IEEE
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Fig. 4. Spectral signatures of endmembers extracted by different methods. (Top row) Results of our method and the alternating minimization approach. (Bottom
row) Endmembers found by N-findr, QR, and VCA.

Fig. 5. Region of possible values for .

restrict each column to lie in a hockey-puck-shaped disk .
Decompose , where is the orthogonal pro-
jection of onto the line spanned by and is the radial

component of perpendicular to . Then, given ,

we restrict and . The or-
thogonal projection onto this set is straightforward to compute
since it is a box constraint in cylindrical coordinates. This con-
straint set for is shown in Fig. 5 in the case when .
We also allow for a few columns of the data to be outliers.

These are columns of that we do not expect to be well repre-
sented as a small error plus a sparse nonnegative linear com-
bination of other data but that we also do not want to con-
sider as endmembers. Given some , this sparse error
is modeled as with restricted to the convex set

and . Since is the non-
negative region of a weighted ball, the orthogonal projection
onto can be computed with complexity. Here,
since the weights sum to one by definition, can be roughly
interpreted as the fraction of data we expect to be outliers. For
nonoutlier data , we want , and for outlier data, we
want . In the latter outlier case, regularization on matrix

should encourage the corresponding column to be close to
zero; hence, is encouraged to be small rather than close
to one.
Keeping the regularization, the nonnegativity constraint,

and theweighted penalty from (6), the overall extendedmodel
is given by

such that (15)

The structure of this model is similar to the robust principal
component analysis model proposed in [33] although it has a
different noise model and uses regularization instead of the
nuclear norm.

B. Numerical Optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable
and constraint . In addition, let and be Lagrange
multipliers for constraints and

, respectively. Then, the augmented Lagrangian
is given by
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thogonal projection onto this set is straightforward to compute
since it is a box constraint in cylindrical coordinates. This con-
straint set for is shown in Fig. 5 in the case when .
We also allow for a few columns of the data to be outliers.

These are columns of that we do not expect to be well repre-
sented as a small error plus a sparse nonnegative linear com-
bination of other data but that we also do not want to con-
sider as endmembers. Given some , this sparse error
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and . Since is the non-
negative region of a weighted ball, the orthogonal projection
onto can be computed with complexity. Here,
since the weights sum to one by definition, can be roughly
interpreted as the fraction of data we expect to be outliers. For
nonoutlier data , we want , and for outlier data, we
want . In the latter outlier case, regularization on matrix

should encourage the corresponding column to be close to
zero; hence, is encouraged to be small rather than close
to one.
Keeping the regularization, the nonnegativity constraint,

and theweighted penalty from (6), the overall extendedmodel
is given by

such that (15)

The structure of this model is similar to the robust principal
component analysis model proposed in [33] although it has a
different noise model and uses regularization instead of the
nuclear norm.

B. Numerical Optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable
and constraint . In addition, let and be Lagrange
multipliers for constraints and

, respectively. Then, the augmented Lagrangian
is given by
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Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to the
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Thank you very much for your attention !
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Thank you very much for reading !


