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1. {ü�å¯K min{f(x) | x ∈ X} Ù¥ X ´��à8.

2. min-max¯K minx∈X maxy∈Y{Φ(x, y) = θ1(x)− yTAx− θ2(y)}

3. �5�å�à`z¯K min{θ(x)|Ax = b (or ≥ b), x ∈ X}

4. (�.à`z min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y}

5. õ¬�©là`z min{∑p
i=1 θi(xi)|

∑p
i=1Aixi = b, xi ∈ Xi}

C©Ø�ª(VI)´\f÷ì�êÆL�/ª

�C:�{(PPA)´ÚÚ�ES��¦)�{.
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A function f(x) is convex iff

f((1−θ)x+θy) ≤ (1−θ)f(x)+θf(y)

∀θ ∈ [0, 1].

Properties of convex function

• f ∈ C1. f is convex iff

f(y)− f(x) ≥ ∇f(x)T (y − x).

Thus, we have also

f(x)− f(y) ≥ ∇f(y)T (x− y).

• Adding above two inequalities, we get

(y − x)T (∇f(y)−∇f(x)) ≥ 0.

ààà¼¼¼êêê���½½½ÂÂÂÚÚÚÄÄÄ���555���

• f ∈ C1,∇f is monotone. f ∈ C2,∇2f(x) is positive semi-definite.

• Any local minimum of a convex function is a global minimum.
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¤J, JÑ��X�ALM, PPA, ADMMa©�Â �{.
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1. ý��£.�`5^�,C©Ø�ª (VI)Ú�C:�{ (PPA).

2. ¦)Q:¯K,l�©-éó·ÜFÝ{ (PDHG)� PPA�{.

3. lO2.�KF¦f{ (ALM)��O��{ (ADMM).

4. ADMMÚ�5zADMM.
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14. ÝKFÝeü{.
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F"\�� Becker3 arXiv: 1908.03633¥�aÉ: Very Simple yet Powerful

University of Colorado Boulder Technical Report, Department of Applied Mathematics

The Chen-Teboulle algorithm is the proximal point algorithm

Stephen Becker ∗

November 22, 2011; posted August 13, 2019

Abstract

We revisit the Chen-Teboulle algorithm using recent insights and show that this allows a better bound
on the step-size parameter.

1 Background

Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization
methods. The idea consists simply of working with a different norm in the product Hilbert space. We fix an
inner product 〈x, y〉 on H×H∗. Instead of defining the norm to be the induced norm, we define the primal
norm as follows (and this induces the dual norm)

‖x‖V =
√
〈V x, x〉 =

√
〈x, x〉V , ‖y‖∗V = ‖y‖V −1 =

√
〈y, V −1y〉 =

√
〈y, y〉V −1

for any Hermitian positive definite V ∈ B(H,H); we write this condition as V � 0. For finite dimensional
spaces H, this means that V is a positive definite matrix.

We discuss the canonical proximal point method in a general norm; this generality has been known for a
long time, and the novelty will be our specific choice of norm. This allows us to re-derive the Chen-Teboulle
algorithm [CT94], which, even though it is not widely used, appears to be the first algorithm in a series
of algorithms [ZC08, EZC10, CP10, HY12, Con13, Vũ13]. Among other features, a benefit of these new
algorithms is that they can exploit the situation when a function f can be written as f(x) = h(Ax) for a
linear operator A. In particular, this is useful when the proximity operator [Mor62] of h is easy to compute
but the proximity operator of h ◦ A is not easy (the prox of h ◦ A follows from that of h only in special
conditions on A; see [CP07]).

The benefit of this analysis is that it gives intuition, allows one to construct novel methods, simplifies
convergence analysis, gives sharp bounds on step-sizes, and extends to product-space formulations easily.

1.1 Proximal Point algorithm

All terminology is standard, and we refer to the textbook [BC11] for standard definitions. Let A be a
maximal monotone operator, such as a subdifferential of a proper lower semi-continuous convex function,

and assume zero(A)
def
= {~x : 0 ∈ A~x} is non-empty. The proximal point algorithm is a method for finding

some ~x ∈ zero(A). It makes use of the fundamental fact:

0 ∈ A~x ⇐⇒ τ~x ∈ τ~x+A~x

for any τ > 0. This is equivalent to

~x ∈ (I + τ−1A)−1~x
def
= Jτ−1A(~x)

∗University of Colorado Boulder, USA. Work was also performed 2011–2014 while author was at IBM Research, Yorktown
Heights, NY, USA and at Laboratoire Jacques-Louis Lions, University Paris-6, under a fellowship from the Fondation Sciences
Mathmatiques de Paris (FSMP) and by a public grant overseen by the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” program (reference: ANR-10-LABX-0098)
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