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1 Introduction

Some linearly constrained convex optimization problems '

1. Linearly constrained convex optimization min{f(z)|Ax =0, z € X'}

2. Convex optimization problem with separable objective function

min{f(x) + 02(y)|[ Az + By =b, x € X,y € V}

3. Convex optimization problem with 3 separable objective functions

min{6f;(x)+02(y)+60s(2)|Az+By+Cz =b,x e X,y € Y,z € Z}

There are some crucial parameters:
e Crucial parameter in the so called linearized ALM for the first problem,

e Crucial parameter in the so called linearized ADMM for the second problem,

e Crucial proximal parameter in the Proximal Parallel ADMM-like Method for
the convex optimization problem with 3 separable objective functions.




2 Linearized Augmented Lagrangian Method

Consider the following convex optimization problem:
min{f(x) | Axr =b, x € X}. (2.1)
The augmented Lagrangian function of the problem (2.1) is
Ls(x,\) = 0(z) — AT (Az — b) + 5| Az — b||>.

Starting with a given M\* ., the k-th iteration of the Augmented Lagrangian Method
[11, 12] produces the new iterate w**! = (z#T1, A\ +1) via

T = arg min{ﬁg(a:, AF) ‘ x € X}, (2.2a)
AL = Ak v B(AxPTE —b), v €(0,2) (2.2b)

In the classical ALM, the optimization subproblem (2.2a) is

(ALM) {

min{6(z) + 5[|Az — (b+ $A")|x € X}

Sometimes, because of the structure of the matrix A, we should simplify the



subproblem (2.2a). Notice that
e Ignore the constant term in the objective function of £ (x, A\¥), we have
arg min{ Ls(z, ) |z e X}

= argmin{f(z) — (N (Az —b) + 8| Az — bHQ} e X}

xEX}

0(x) — xT AT\ — B(Az" —b)]
+5 Az — )|

ar min{ O(z) — (Ak)T(ACU —b) +
B11(Az* — b) 4+ A(x — z"))|?

= arg min{ T € X}. (2.3)

e In the so called Linearized ALM [14], the term gHA(ZC —xk)||%is

replaced with ||z — 2*||2. In this way, the z-subproblem becomes

"t = arg min{@(w)—xTAT[)\k—ﬁ(Axk—b)]—l—g||a: — $k||2|£13 € X}. (24

In fact, the linearized ALM simplifies the quadratic term gHA(ZE —a®)2.



In comparison with (2.3), the simplified x-subproblem (2.4) is equivalent to

2" = argmin{Ls(x, \*) + Lz — 2|3, | ® € X}, (2.5)

where
Da =rI — BAT A. (2.6)

In order to ensure the convergence, it was required that r > B||AT A]|.
Thus, the mathematical form of the Linearized ALM can be written as
" = argmin{Ls(z, \*) + L]z — 2”3, |z e X}, (2.7a)
{ ML= \F (AT —b), ~€(0,2). (2.7b)
where D, is defined by (2.6).

Large parameter 7 in (2.6) will lead a slow convergence !

Recent Advance. Bingsheng He, Feng Ma, Xiaoming Yuan:

Optimal proximal augmented Lagrangian method and its application to full Jaco-
bian splitting for multi-block separable convex minimization problems, IMA Jour-
nal of Numerical Analysis. 39(2019).




Our new result in the above paper:

For the matrix D4 in (2.7a) with the form (2.6)
o ifr > ZTLTVﬁHATAH is taken in the method (2.7), it is still convergent;

o if r < 237 3||AT A|| is taken in the method (2.7), there is divergent example.

Especially, when v = 1,

pFl = arg ming Lg(z, MY+ e —2F)% |zex : (2.8a)
B 2 DA
AL = \F — g(AZR T — ). (2.8b)

According to our new result: For the matrix D4 in in (2.7a) with the form (2.6),

o ifr > %ﬁHATAH is taken in the method (2.8), it is still convergent;

o ifr < %5||ATA|| is taken in the method (2.8), there is divergent example.

r = 0.75 is the threshold factor in the matrix ), for linearized ALM (2.8) !



3 Linearized ADMM

Consider the convex optimization problem with separable objective function:
min{f;(x) +02(y) | Ar+ By =0, v € X,y € V}. (3.1)

The augmented Lagrangian function of the problem (3.1) is

L5(z,y,\) = 01(x) + O2(y) — N (Az + By — b) + gHAx + By — b||*.

Starting with a given (y*, A\¥), the k-th iteration of the classical ADMM [4, 5]
generates the new iterate w**! = (zF+1 ¢k +1 A\FF1) vig

(Rt = arg min{[,ﬁ(a;,yk, )\k) ‘ x € X}, (3.2a)
(ADMM) ¢ ¢t = arg min{ﬁg(xk“,y,)\k) ‘ Yy € y}, (3.2b)
LA = NP B(AxPT - ByF T — b)), (3.2¢)

In (3.2a) and (3.2a), the optimization subproblems are

min{61 () + §||Az —p"|*|z € X} and min{02(y) + 5[ By —q"[I’ly € V},



respectively. We assume that one of the minimization subproblems (without loss
of the generality, say, (3.2b)) should be simplified. Notice that

e Using the notation L5 (z* %1, 3y, A*) and ignoring the constant term in the
objective function, we have

arg min{LB(azkH,y,)\k) ‘ y € y}

| { 02(y) — (\")" (A" + By — b) ‘ }
= argmin yey
+5lAz"*t + By — b|?

_ - 02(y) — (\*)' By + Y
— argmin 5 b1 - INT (TS
5 (A" + By® —b) + B(y — y")||
02(y)—y* BTN —B(Az" T+ By* —b
= argmin{ 2(y) Y 5[ Al :zzk ;L v'-b) ‘yéy}.(B.S)
+5 1By —y)ll

e Inthe so called Linearized ADMM [13, 14, 15], the term gHB(y —y®)?
is replaced with £ ||y — y*||%. Thus, the y-subproblem becomes



k41

02(y) — y" BY[A* — B(Az*"! + By* —b)]
Y :argmin{ 'yéy}.

s k|2
+olly =7l
(3.4)
In fact, the linearized ADMM simplifies the quadratic term gHB(y —y®)|I?.

In comparison with (3.3), the simplified y-subproblem (3.4) is equivalent to
k+1 - k+1 k k|2
Y i :argmln{ﬁﬁ(x i 7y7>\ )—I_%Hy_y HDB ’yey}7 (3-5)
where
D = sI — BB B. (3.6)
In order to ensure the convergence, it was required that s > (3|| BT B]|.
Thus, the mathematical form of the Linearized ADMM can be written as
[ 2F = arg min{[,g(:v,yk, )\k) ‘ T € X}, (3.7a)
k - k+1 k k|12
Sy =argmin{La(2", Y, M) + 3 lly —y7D, |y €Y B

L AT = NP — B(AxP T 4+ Byt —p), (3.7¢)



where Dpg is defined by (3.6).

A large parameter s will lead a slow convergence of the linearized ADMM. '

BRHTHRE: RIU&MLETFRERE- 006228 U412

Recent Advance. Bingsheng He, Feng Ma, Xiaoming Yuan:
Optimal Linearized Alternating Direction Method of Multipliers for Convex Pro-
gramming. http://www.optimization-online.org/DB_HTML/2017/09/6228.html|

Our new result in the above paper: For the matrix Dpg in (3.7b) with the form (3.6)
o if s > %5||BTB|| is taken in the method (3.7), it is still convergent;

o ifs < %BHBTBH is taken in the method (3.7), there is divergent example.

s = (.75 is the threshold factor in the matrix Dz for linearized ADMM (3.7) !

Notice that the matrix Dp defined in (3.6) is indefinite for s € (0.75,1) !
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4 Parameters improvements in the method for
problem with 3 separable objective functions

For the problem with three separable objective functions
min{6i(z) +02(y) +03(2)|Ac+ By+Cz=b, € X,y € Y,z € Z}, (4.1)
the augmented Lagrangian function is

Lo(z,y,2,7) = 61(x) +02(y) +05(2) — \'(Az + By + Cz — b)
+8||Ax + By + Cz — b||°.

Using the direct extension of ADMM to solve the problem (4.1), the formula is

(gt = Argmin{ﬁ%(az,yk, 2PN |x e X,

Yyt = Argmin{ L3 (z" 1y, 27, A7) |y € V),
Rt = Argmin{[%(a:kﬂ, Yyt 2 \F) |z € 21,
\ AFL = NP B(AxF+L 4 Byktl 4 C2FE ).

Unfortunately, the direct extension (4.2) is not necessarily convergent [2] !




ADMM + Parallel Splitting ALM

’

o zFtl = argmin {E%(m,yk,zk,)\k) ‘ x e X},
y*”z ; yFtt = argmin {£3 (2 y, 28 A |y € VY,
S,Iz = argmin {£3 (2", YR, 2, AF) | 2 € 21,

L& ]| AT = A= B(AgMT 4 ByFt 4 C2R T — ).

FATRIR y, = FIVE, 45 B B, T EEARIE A SRS !

ADMM + Parallel-Prox Splitting ALM

ZBEAY, 7 B8A. LENmD, I l___—LIE,J.I—.E}nIJIJ\(T > 1), F AR BEARIEYES.
(A = argmm{[, z,y", 2 ,)\ |:c c X}, (4.3a)

{ y* 1 = argmin{ (=" y, 28 N + By —yM)IIP [y € y},(4 3b)

T = argmin{ Lz, ", 2, \*) + Z||C(z — 2M)|° | z € Z},

LT = N (AT By 02T — ). (4.3¢)
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Notice that (4.3b) can be written as

k+1 1 —yF
: k41 k S
(gk_i_l):argmln{ﬁ(iﬂ—l_ 7%27)‘ )+§‘ g_gk D gEZ }’
BC
where
rBTB —BTC
DBC — T T . (4.4)
-C*"B tC*C

D, . is positive semidefinite when 7 > 1.
However, the matrix ., is indefinite for 7 € (0, 1).

In other words, the scheme (4.3) can be rewritten as

(Rt = argmin{[ﬁ(:v,yk,zk,)\k) ‘ x € X},
k+1 k 2
Y _ : k+1 k 1| Y—UY yey }
< — argmin< L(x" "y, 2, \¥) + = :
(Zk:+1> g { ( Y )+ 3 o, Sk b, ez
\ )\k—l—l — Ak . (Aa:k+1 i Byk—l—l i Czk—i—l . b),




The algorithm (4.3) can be rewritten in an equivalent form:  (u =741 > 2).

’

"t = argmin{0: (z) + 2||Ax + By" + CzF — b — %)\RHQ |z € X},
AR = £k B(Az"tt 4 By* 4+ C2" —b)

M =argmin{fa(y)— (\T2) By + 2| B(y — y*)I1? |y € VY,

2 —argmin{f3(z) — (A*T2)7Cz + 22||C(z — 2M)|? | 2 € 2},

ML = \F — B(Az" Tt + Byt O — ),

\

The related publication:
e B. He, M. Tao and X. Yuan, A splitting method for separable convex program-
ming. IMA J. Numerical Analysis, 31(2015), 394-426.

In the above paper, in order to ensure the convergence, it was required

7 >1 (in(4.3)) which is equivalent to w > 2 (in(4.5)).
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This method is accepted by Osher’s research group I

e E. Esser, M. Mdller, S. Osher, G. Sapiro and J. Xin, A convex model for
non-negative matrix factorization and dimensionality reduction on physical
space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.

tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
1+, which for this application must be greater than two according
to [34]. We set i1 equal to 2.01. There are also model parame-

Thus, Osher’s research group utilize the iterative formula (4.5), according to our

previous paper, they set

u = 2.01, it is only a pity larger than 2.

Large parameter . (or 7) will lead a slow convergence. I

15



mETER: sOUIEMNLEFRYIEE- 006235 41

Recent Advance in: Bingsheng He, Xiaoming Yuan: On the Optimal Proximal

Parameter of an ADMM-like Splitting Method for Separable Convex Programming
http://www.optimization-online.org/DB_HTML/2017/ 10/6235.htm|

Our new assertion: In (4.3)

e if 7 > (.5, the method is still convergent;

e if 7 < 0.5, there is divergent example.
Equivalently in (4.5) :

e if u > 1.5, the method is still convergent;

e if 1 < 1.9, there is divergent example.

For convex optimization prob-
lem (4.1) with three separable
objective functions, the param-
eters in the equivalent methods
(4.3) and (4.5) :

e 0.5 is the threshold factor of
the parameter 7 in (4.3) !

e 1.5isthe threshold factor of
the parameter (1 in (4.5) !

16
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