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1 Introduction

Some linearly constrained convex optimization problems

1. Linearly constrained convex optimization min{θ(x)|Ax = b, x ∈ X}

2. Convex optimization problem with separable objective function

min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y}

3. Convex optimization problem with 3 separable objective functions

min{θ1(x)+θ2(y)+θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}

There are some crucial parametersµµµ
• Crucial parameter in the so called linearized ALM for the first problem,

• Crucial parameter in the so called linearized ADMM for the second problem,

• Crucial proximal parameter in the Proximal Parallel ADMM-like Method for
the convex optimization problem with 3 separable objective functions.
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2 Linearized Augmented Lagrangian Method

Consider the following convex optimization problem:

min{θ(x) | Ax = b, x ∈ X}. (2.1)

The augmented Lagrangian function of the problem (2.1) is

Lβ(x, λ) = θ(x)− λT (Ax− b) + β
2 ‖Ax− b‖

2.

Starting with a given λk, the k-th iteration of the Augmented Lagrangian Method

[11, 12] produces the new iterate wk+1 = (xk+1, λk+1) via

(ALM)

{
xk+1 = argmin

{
Lβ(x, λk)

∣∣ x ∈ X}, (2.2a)

λk+1 = λk − γβ(Axk+1 − b), γ ∈ (0, 2) (2.2b)

In the classical ALM, the optimization subproblem (2.2a) is

min{θ(x) + β
2 ‖Ax− (b+ 1

βλ
k)‖2|x ∈ X}.

Sometimes, because of the structure of the matrix A, we should simplify the



4

subproblem (2.2a). Notice that

• Ignore the constant term in the objective function of Lβ(x, λk), we have

argmin
{
Lβ(x, λk)

∣∣ x ∈ X}
= argmin

{
θ(x)− (λk)T (Ax− b) + β

2
‖Ax− b‖2

∣∣ x ∈ X}
= argmin

{
θ(x)− (λk)T (Ax− b) +

β
2
‖(Axk − b) +A(x− xk)‖2

∣∣∣∣ x ∈ X}

= argmin

{
θ(x)− xTAT [λk − β(Axk − b)]

+β
2
‖A(x− xk)‖2

∣∣∣∣ x ∈ X}. (2.3)

• In the so called Linearized ALM [14], the term β
2 ‖A(x− x

k)‖2 is

replaced with r
2‖x− x

k‖2. In this way, the x-subproblem becomes

xk+1 = argmin
{
θ(x)−xTAT [λk−β(Axk−b)]+ r

2
‖x− xk‖2

∣∣x ∈ X}. (2.4)

In fact, the linearized ALM simplifies the quadratic term β
2 ‖A(x− x

k)‖2.
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In comparison with (2.3), the simplified x-subproblem (2.4) is equivalent to

xk+1 = argmin
{
Lβ(x, λk) + 1

2‖x− x
k‖2DA

| x ∈ X}, (2.5)

where
DA = rI − βATA. (2.6)

In order to ensure the convergence, it was required that r > β‖ATA‖.

Thus, the mathematical form of the Linearized ALM can be written as{
xk+1 = argmin

{
Lβ(x, λk) + 1

2‖x− x
k‖2DA

∣∣ x ∈ X}, (2.7a)

λk+1 = λk − γβ(Axk+1 − b), γ ∈ (0, 2). (2.7b)

where DA is defined by (2.6).

Large parameter r in (2.6) will lead a slow convergence !

Recent Advance. Bingsheng He, Feng Ma, Xiaoming Yuan:
Optimal proximal augmented Lagrangian method and its application to full Jaco-
bian splitting for multi-block separable convex minimization problems, IMA Jour-
nal of Numerical Analysis. 39(2019).
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Our new result in the above paper:

For the matrix DA in (2.7a) with the form (2.6)

• if r > 2+γ
4 β‖ATA‖ is taken in the method (2.7), it is still convergent;

• if r < 2+γ
4 β‖ATA‖ is taken in the method (2.7), there is divergent example.

Especially, when γ = 1,{
xk+1 = argmin

{
Lβ(x, λk) + 1

2‖x− x
k‖2DA

∣∣ x ∈ X}, (2.8a)

λk+1 = λk − β(Axk+1 − b). (2.8b)

According to our new result: For the matrix DA in in (2.7a) with the form (2.6),

• if r > 3
4β‖A

TA‖ is taken in the method (2.8), it is still convergent;

• if r < 3
4β‖A

TA‖ is taken in the method (2.8), there is divergent example.

r = 0.75 is the threshold factor in the matrix DA for linearized ALM (2.8) !
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3 Linearized ADMM

Consider the convex optimization problem with separable objective function:

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}. (3.1)

The augmented Lagrangian function of the problem (3.1) is

L2
β(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b) + β

2 ‖Ax+By − b‖2.

Starting with a given (yk, λk), the k-th iteration of the classical ADMM [4, 5]

generates the new iterate wk+1 = (xk+1, yk+1, λk+1) via

(ADMM)


xk+1 = argmin

{
Lβ(x, yk, λk)

∣∣ x ∈ X}, (3.2a)

yk+1 = argmin
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y}, (3.2b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (3.2c)

In (3.2a) and (3.2a), the optimization subproblems are

min{θ1(x)+ β
2
‖Ax−pk‖2|x ∈ X} and min{θ2(y)+ β

2
‖By−qk‖2|y ∈ Y},
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respectively. We assume that one of the minimization subproblems (without loss

of the generality, say, (3.2b)) should be simplified. Notice that

• Using the notation Lβ(xk+1, y, λk) and ignoring the constant term in the
objective function, we have

argmin
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y}
= argmin

{
θ2(y)− (λk)T (Axk+1 +By − b)

+β
2
‖Axk+1 +By − b‖2

∣∣∣∣ y ∈ Y}

= argmin

{
θ2(y)− (λk)TBy +

β
2
‖(Axk+1 +Byk − b) +B(y − yk)‖2

∣∣∣∣ y ∈ Y}

= argmin

{
θ2(y)−yTBT [λk−β(Axk+1+Byk−b)]

+β
2
‖B(y − yk)‖2

∣∣∣∣y ∈ Y}. (3.3)

• In the so called Linearized ADMM [13, 14, 15], the term β
2 ‖B(y − yk)‖2

is replaced with s
2‖y − y

k‖2. Thus, the y-subproblem becomes
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yk+1 = argmin

{
θ2(y)− yTBT [λk − β(Axk+1 +Byk − b)]

+
s

2
‖y − yk‖2

∣∣∣∣ y ∈ Y}.
(3.4)

In fact, the linearized ADMM simplifies the quadratic term β
2 ‖B(y − yk)‖2.

In comparison with (3.3), the simplified y-subproblem (3.4) is equivalent to

yk+1 = argmin
{
Lβ(xk+1, y, λk) + 1

2‖y − y
k‖2DB

| y ∈ Y}, (3.5)

where

DB = sI − βBTB. (3.6)

In order to ensure the convergence, it was required that s > β‖BTB‖.

Thus, the mathematical form of the Linearized ADMM can be written as
xk+1 = argmin

{
Lβ(x, yk, λk)

∣∣ x ∈ X}, (3.7a)

yk+1 = argmin
{
Lβ(xk+1, y, λk) + 1

2‖y − y
k‖2DB

∣∣ y ∈ Y}, (3.7b)

λk+1 = λk − β(Axk+1 +Byk+1 − b), (3.7c)
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where DB is defined by (3.6).

A large parameter s will lead a slow convergence of the linearized ADMM.

���###???ÐÐÐ: ���`̀̀���555zzzÏÏÏfff���ÀÀÀJJJ– OO6228���(((ØØØ

Recent Advance. Bingsheng He, Feng Ma, Xiaoming Yuan:
Optimal Linearized Alternating Direction Method of Multipliers for Convex Pro-
gramming. http://www.optimization-online.org/DB HTML/2017/09/6228.html

Our new result in the above paper: For the matrix DB in (3.7b) with the form (3.6)

• if s > 3
4β‖B

TB‖ is taken in the method (3.7), it is still convergent;

• if s < 3
4β‖B

TB‖ is taken in the method (3.7), there is divergent example.

s = 0.75 is the threshold factor in the matrix DB for linearized ADMM (3.7) !

Notice that the matrix DB defined in (3.6) is indefinite for s ∈ (0.75, 1) !
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4 Parameters improvements in the method for
problem with 3 separable objective functions

For the problem with three separable objective functions

min{θ1(x)+ θ2(y)+ θ3(z)|Ax+By+Cz = b, x ∈ X , y ∈ Y, z ∈ Z}, (4.1)

the augmented Lagrangian function is

L3
β(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT(Ax+By + Cz − b)

+β
2
‖Ax+By + Cz − b‖2.

Using the direct extension of ADMM to solve the problem (4.1), the formula is
xk+1 = Argmin{L3

β(x, y
k, zk, λk) |x ∈ X},

yk+1 = Argmin{L3
β(x

k+1, y, zk, λk) | y ∈ Y},
zk+1 = Argmin{L3

β(x
k+1, yk+1, z, λk) | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(4.2)

Unfortunately, the direct extension (4.2) is not necessarily convergent [2] !
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ADMM + Parallel Splitting ALM
r
�
y, z

²
�




xk+1 = argmin
{
L3
β(x, y

k, zk, λk)
∣∣ x ∈ X},

yk+1 = argmin
{
L3
β(x

k+1, y, zk, λk)
∣∣ y ∈ Y},

zk+1 = argmin
{
L3
β(x

k+1, yk, z, λk)
∣∣ z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

²1?n y, zf¯K,�g��,ØU�y�{Âñ�

ADMM + Parallel-Prox Splitting ALM

�g��,L©gd.�§�\�·���K�(τ > 1),�{ÒU�yÂñ.

xk+1 = argmin
{
L(x, yk, zk, λk)

∣∣ x ∈ X}, (4.3a) yk+1 = argmin
{
L(xk+1, y, zk, λk) + τ

2
‖B(y − yk)‖2

∣∣ y ∈ Y},
zk+1 = argmin

{
L(xk+1, yk, z, λk) + τ

2
‖C(z − zk)‖2

∣∣ z ∈ Z}, (4.3b)

λk+1 = λk − (Axk+1 +Byk+1 + Czk+1 − b). (4.3c)
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Notice that (4.3b) can be written as(
yk+1

zk+1

)
= argmin

{
L(xk+1, y, z, λk) +

1

2

∥∥∥∥ y − yk
z − zk

∥∥∥∥2
D
BC

∣∣∣∣ y ∈ Yz ∈ Z

}
,

where

D
BC

=

(
τBTB −BTC

−CTB τCTC

)
. (4.4)

D
BC

is positive semidefinite when τ ≥ 1.

However, the matrix D
BC

is indefinite for τ ∈ (0, 1).

In other words, the scheme (4.3) can be rewritten as

xk+1 = argmin
{
L(x, yk, zk, λk)

∣∣ x ∈ X},(
yk+1

zk+1

)
= argmin

{
L(xk+1, y, z, λk) + 1

2

∥∥∥∥ y − yk

z − zk

∥∥∥∥2
D
BC

∣∣∣∣ y ∈ Yz ∈ Z

}
,

λk+1 = λk − (Axk+1 +Byk+1 + Czk+1 − b),
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The algorithm (4.3) can be rewritten in an equivalent form: (µ = τ + 1 > 2).

xk+1 = argmin{θ1(x) + β
2
‖Ax+Byk + Czk − b− 1

β
λk‖2 |x ∈ X},

λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =argmin{θ2(y)−(λk+
1
2 )TBy + µβ

2
‖B(y − yk)‖2 | y ∈ Y},

zk+1 =argmin{θ3(z)−(λk+
1
2 )TCz + µβ

2
‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),
(4.5)

The related publicationµ

• B. He, M. Tao and X. Yuan, A splitting method for separable convex program-

ming. IMA J. Numerical Analysis, 31(2015), 394-426.

In the above paper, in order to ensure the convergence, it was required

τ > 1 (in (4.3)) which is equivalent to µ > 2 (in (4.5)).
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This method is accepted by Osher’s research group

• E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for

non-negative matrix factorization and dimensionality reduction on physical

space, IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.

3248 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY 2012

Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to theThus, Osher’s research group utilize the iterative formula (4.5), according to our

previous paper, they set

µ = 2.01, it is only a pity larger than 2.

Large parameter µ (or τ ) will lead a slow convergence.
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���###???ÐÐÐ: ���`̀̀���KKKzzzÏÏÏfff���ÀÀÀJJJ– OO6235���(((ØØØ

Recent Advance in : Bingsheng He, Xiaoming Yuan: On the Optimal Proximal

Parameter of an ADMM-like Splitting Method for Separable Convex Programming

http://www.optimization-online.org/DB HTML/2017/ 10/6235.html

Our new assertion: In (4.3)

• if τ > 0.5, the method is still convergent;

• if τ < 0.5, there is divergent example.

Equivalently in (4.5) :

• if µ > 1.5, the method is still convergent;

• if µ < 1.5, there is divergent example.

For convex optimization prob-
lem (4.1) with three separable
objective functions, the param-
eters in the equivalent methods
(4.3) and (4.5) :

• 0.5 is the threshold factor of
the parameter τ in (4.3) !

• 1.5 is the threshold factor of
the parameter µ in (4.5) !
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