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Convex optimization problems concerned in this note

• min-max problem min
x∈X

max
y∈Y
{Φ(x, y) = θ1(x)− yTAx− θ2(y)}

• Linearly constrained COP min{θ(x)|Ax = b (or ≥ b), x ∈ X}
can be translated to the following min-max problem:

min
x∈X

max
y∈Y
{L(x, y) = θ1(x)− yTAx+ bT y}, Y = <m(or <m+ ).

• Convex Optimization with separable structure (ADMM)

min{θ1(x) + θ2(y)|Ax+By = b, x ∈ X , y ∈ Y}

C©Ø�ª (VI)´\f÷ì�½ìº�êÆL�/ª

�C:�{ (PPA)´ÚÚ�E ­S­��¦)�{
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1 Optimization problem and VI

1.1 Differential convex optimization in Form of VI

Let Ω ⊂ <n, we consider the convex minimization problem

min{f(x) | x ∈ Ω}. (1.1)

What is the first-order optimal condition ?

x∗ ∈ Ω∗ ⇔ x∗ ∈ Ω and any feasible direction is not descent direction.

Optimal condition in variational inequality form

• Sd(x∗) = {s ∈ <n | sT∇f(x∗) < 0} = Set of the descent directions.

• Sf (x∗) = {s ∈ <n | s = x− x∗, x ∈ Ω} = Set of feasible directions.

x∗ ∈ Ω∗ ⇔ x∗ ∈ Ω and Sf (x∗) ∩ Sd(x∗) = ∅.
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The optimal condition can be presented in a variational inequality (VI) form:

x∗ ∈ Ω, (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ Ω. (1.2)
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Fig. 1 Differentiable Convex Optimization and VI

Since f(x) is a convex function, we have

f(y) ≥ f(x)+∇f(x)T (y−x) and thus (x−y)T (∇f(x)−∇f(y)) ≥ 0.

We say the gradient∇f of the convex function f is a monotone operator.
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Let X ⊂ <n be a closed convex set, θ(x) and f(x) be convex functions and

f(x) is differentiable. Then, we have

x∗ ∈ arg min
x∈X

θ(x) ⇔ x∗ ∈ X , θ(x)− θ(x∗) ≥ 0, ∀x ∈ X .

x∗ ∈ arg min
x∈X

f(x) ⇔ x∗ ∈ X , (x− x∗)T∇f(x∗) ≥ 0,∀x ∈ X .

Lemma 1.1 Let X ⊂ <n be a closed convex set, θ(x) and f(x) be convex func-

tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ ∈ arg min
x∈X
{θ(x) + f(x)} (1.3a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (1.3b)
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1.2 The Min-Max Problem

The min-max problem considered in this talk has the following mathematical form

minx∈X maxy∈Y Φ(x, y) := θ1(x)− yTAx− θ2(y), (1.4)

where A ∈ <m×n, θ1(x) : <n → < and θ2(y) : <m → < are convex

functions which are not necessarily differentiable.

Let (x∗, y∗) be the solution of (1.4), then we have

Φy∈Y(x∗, y) ≤ Φ(x∗, y∗) ≤ Φx∈X (x, y∗).

These two inequalities can be written as
{
x∗ ∈ X , Φ(x, y∗)− Φ(x∗, y∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ Y, Φ(x∗, y∗)− Φ(x∗, y) ≥ 0, ∀ y ∈ Y.
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Using the notation of Φ(x, y), the above system can be written as

{
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T ( Ax∗) ≥ 0, ∀ y ∈ Y.

We write it in a compact form of the variational inequality:

VI(Ω, F ) u∗ ∈ Ω, θ(u)−θ(u∗)+(u−u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (1.6a)

where

u =

(
x
y

)
, θ(u) = θ1(x) + θ2(y), F (u) =

(
−AT y
Ax

)
. (1.6b)

and Ω = X × Y . Notice that (u− ũ)T (F (u)− F (ũ)) ≡ 0.

We use the VI form (1.6), whether θ(u) is differentiable or not.
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2 Proximal point algorithms and its Beyond

Lemma 2.1 Let the vectors a, b ∈ <n, H ∈ <n×n be a positive definite matrix.

If bTH(a− b) ≥ 0, then we have

‖b‖2H ≤ ‖a‖2H − ‖a− b‖2H .

The assertion follows from ‖a‖2 = ‖b+ (a− b)‖2 ≥ ‖b‖2 + ‖a− b‖2.

2.1 Proximal point algorithms for convex optimization

Convex Optimization Now, let us consider the simple convex optimization

min{θ(x) + f(x) | x ∈ X}, (2.1)

where θ(x) and f(x) are convex functions but θ(x) is not necessary smooth, X
is a closed convex set.

For solving (2.1), the k-th iteration of the proximal point algorithm (abbreviated to
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PPA) [13, 15] begins with a given xk, offers the new iterate xk+1 via the recursion

xk+1 = Argmin{θ(x) + f(x) +
r

2
‖x− xk‖2 | x ∈ X}. (2.2)

Since xk+1 is the solution of (2.2), it follows from Lemma 1.1 that xk+1 ∈ X ,

θ(x)−θ(xk+1)+(x− xk+1)T {∇f(xk+1) + r(xk+1 − xk)} ≥ 0, ∀x ∈ X .
(2.3)

Setting x = x∗ in the above inequality, it follows that

(xk+1−x∗)T r(xk−xk+1) ≥ θ(xk+1)−θ(x∗)+(xk+1−x∗)T∇f(xk+1).

Since (xk+1 − x∗)T∇f(xk+1) ≥ (xk+1 − x∗)T∇f(x∗) ≥ 0, we have

(xk+1 − x∗)T (xk − xk+1) ≥ 0. (2.4)

Let a = xk − x∗ and b = xk+1 − x∗ and using Lemma 2.1, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2, (2.5)

which is a nice convergence property of the Proximal Point Algorithm.



11

We write the problem (2.1) and its PPA (2.2) in VI form

Instead of the optimization problem form x∗ ∈ arg min{θ(x) + f(x) |x ∈ X},
we use its equivalent VI statement

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (2.6)

For solving the optimization problem (2.1), the k-th iteration of the PPA (see (2.3))

is: xk+1 = arg min{θ(x) + f(x) + r
2‖x − xk‖2 |x ∈ X}, we prefer use

its equivalent VI form:

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)T∇f(xk+1)

≥ (x− xk+1)T r(xk − xk+1), ∀x ∈ X .
(2.7)

Using (2.6) and (2.7), we consider the PPA for the variational inequality (5.6)
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2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the min-max problem is characterized as a monotone

variational inequality:

u∗ ∈ Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω. (2.8)

PPA for VI (2.8) in Euclidean-norm For given uk and r > 0, find uk+1,

uk+1 ∈ Ω, θ(u)− θ(uk+1) + (u− uk+1)TF (uk+1)

≥ (u− uk+1)T r(uk − uk+1), ∀u ∈ Ω.
(2.9)

uk+1 is called the proximal point of the k-th iteration for the problem (2.8).

z uk is the solution of (2.8) if and only if uk = uk+1 z

Setting u = u∗ in (2.9), we obtain

(uk+1−u∗)T r(uk −uk+1) ≥ θ(uk+1)− θ(u∗) + (uk+1−u∗)TF (uk+1)
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Note that (see the structure of F (u) in (1.6b))

(uk+1 − u∗)TF (uk+1) = (uk+1 − u∗)TF (u∗),

and consequently (by using (2.8)) we obtain

(uk+1 − u∗)T r(uk − uk+1) ≥ θ(uk+1)− θ(u∗) + (uk+1 − u∗)TF (u∗) ≥ 0.

Thus, we have

(uk+1 − u∗)T (uk − uk+1) ≥ 0. (2.10)

By setting a = uk − u∗ and b = uk+1 − u∗, the inequality (2.10) means

that bT (a− b) ≥ 0. By using Lemma 2.1, we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − uk+1‖2. (2.11)

We get the nice convergence property of Proximal Point Algorithm.

For any positive definite matrix H , ‖u‖H = (uTHu)
1
2 is a Norm.
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PPA for monotone mixed VI in H-norm

For given uk, find the proximal point uk+1 in H-norm which satisfies

uk+1 ∈ Ω, θ(u)− θ(uk+1) + (u− uk+1)TF (uk+1)

≥ (u− uk+1)TH(uk − uk+1), ∀ u ∈ Ω,
(2.12)

where H is a symmetric positive definite matrix.

z Again, uk is the solution of (2.8) if and only if uk = uk+1 z

Convergence Property of Proximal Point Algorithm in H-norm

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − ‖uk − uk+1‖2H . (2.13)

Any norms are equivalent ! ‖u− u∗‖H → 0 ⇔ ‖u− u∗‖ → 0.
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3 PPA for VI arising from min-max problem

This section presents various applications of the proposed algorithms for the

min-max problem, namely

minx∈X maxy∈Y Φ(x, y) := θ1(x)− yTAx− θ2(y). (3.1)

The equivalent variational inequality of the min−max problem (3.1) is

u∗ ∈,Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (3.2a)

where

u =

[
x

y

]
, θ(u) = θ1(x) + θ2(y), F (u) =

[ −AT y
Ax

]
, (3.2b)

and Ω = X × Y .
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3.1 How to reach an implementable PPA

If we use the PPA form (2.9) to solve (3.2), start from a given uk, the task is to

find a uk+1, such that

uk+1 ∈ Ω, θ(u)− θ(uk+1) + (u− uk+1)T
{
F (uk+1)

+ r(uk+1 − uk)
}
≥ 0, ∀u ∈ Ω.

The concrete form is

(xk+1, yk+1) ∈ X × Y,

θ(x)− θ(xk+1)

θ(y)− θ(yk+1)

+
 x− xk+1

y − yk+1

T
−AT yk+1

Axk+1


+

 r(xk+1 − xk)

r(yk+1 − yk)

 ≥ 0, ∀(x, y) ∈ X × Y. (3.3)
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According to Lemma 1.1, the equivalent optimization problems of the VI (3.3) is





xk+1 = arg min
x∈X
{θ1(x)− xTAT yk+1 +

r

2
‖x− xk‖2}, (3.4a)

yk+1 = arg min
y∈Y
{θ2(y) + yTAxk+1 +

r

2
‖y − yk‖2}. (3.4b)

The problems (3.4a) and (3.4b) are coupled. Unfortunately, there are no

appropriate methods for solving the problems (3.4a) and (3.4b) together.

Replaced yk+1 in (3.4a) with yk, the optimization problems (3.4) are reduced to





xk+1 = arg min
x∈X
{θ1(x)− xTAT yk +

r

2
‖x− xk‖2}, (3.5a)

yk+1 = arg min
y∈Y
{θ2(y) + yTAxk+1 +

r

2
‖y − yk‖2}. (3.5b)
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The problems (3.5) can be solved one by one, its equivalent VI form is

(xk+1, yk+1) ∈ X × Y,

θ(x)− θ(xk+1)

θ(y)− θ(yk+1)

+
 x− xk+1

y − yk+1

T
−AT yk
Axk+1


+

 r(xk+1 − xk) 0

0 r(yk+1 − yk)

 ≥ 0, ∀(x, y) ∈ X × Y.

Notice that F (uk+1) =

[ −AT yk+1

Axk+1

]
, we rewrite the above VI in the form

(xk+1, yk+1) ∈ X × Y,

θ(x)− θ(xk+1)

θ(y)− θ(yk+1)

+
 x− xk+1

y − yk+1

T
−AT yk+1

Axk+1


+

 r(xk+1 − xk) +AT (yk+1 − yk)

0 r(yk+1 − yk)

 ≥ 0, ∀(x, y) ∈ X×Y. (3.6)
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The compact form of (3.6) is

uk+1 ∈ Ω, θ(u)− θ(uk+1) + (u− uk+1)T
{
F (uk+1)

+ Q(uk+1 − uk)
}
≥ 0, ∀u ∈ Ω. (3.7)

where

Q =

[
rIn AT

0 rIm

]
is not symmetric.

If we change the block upper-triangular matrix

Q =

[
rIn AT

0 rIm

]
to a symmetric matrix H =

[
rIn AT

A sIm

]
,

the variational inequality (3.7) becomes

uk+1 ∈ Ω, θ(u)− θ(uk+1) + (u− uk+1)T
{
F (uk+1)

+ H(uk+1 − uk)
}
≥ 0, ∀u ∈ Ω. (3.8)
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Notice that the concrete form of (3.8) is

(xk+1, yk+1) ∈ X × Y,

θ(x)− θ(xk+1)

θ(y)− θ(yk+1)

+
 x− xk+1

y − yk+1

T
−AT yk+1

Axk+1


+

 r(xk+1 − xk) +AT (yk+1 − yk)

A(xk+1 − xk) + s(yk+1 − yk)

 ≥ 0, ∀(x, y) ∈ X×Y. (3.9)

According to Lemma 1.1, the variational inequality (3.9) is implemented by





xk+1 = arg min
x∈X
{θ1(x)− xTAT yk +

r

2
‖x− xk‖2}, (3.10a)

yk+1 = arg min
y∈Y
{θ2(y) + yTA(2xk+1 − xk) +

s

2
‖y − yk‖2}. (3.10b)
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Ignoring the constant term in the objective function,

For given (xk, yk), we get xk+1 via solving

xk+1 = arg min
x∈X
{θ1(x) +

r

2
‖x− [xk +

1

r
AT yk]‖2}.

With the getting xk+1, we obtain yk+1 by solving the following problem:

yk+1 = arg min
y∈Y

{
θ2(y) +

s

2

∥∥y − [yk − 1

s
A(2xk+1 − xk)]

∥∥2}.

Using the notation of Φ(x, y), the iterative scheme (3.10) can be written as





xk+1 = arg min
x∈X

{
Φ(x, yk) +

r

2

∥∥x− xk
∥∥2}, (3.11a)

yk+1 = arg max
y∈Y

{
Φ
(
[2xk+1 − xk], y

)
− s

2

∥∥y − yk
∥∥2}. (3.11b)
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Assumption:

1. The sub-problems

min
x∈X
{θ1(x) +

r

2
‖x− p‖2} and min

y∈Y
{θ2(y) +

s

2
‖y − q‖2}

have closed solution. Thus, solving the sub-problems in (3.11) is simple.

2. The matrix H =

[
rIn AT

A sIm

]
is positive definite.

rs > ‖ATA‖ ⇐⇒ H =

[
rIn AT

A sIm

]
is positive definite.

Theorem 3.1 The method (3.10) is a PPA for VI (3.2). The generated sequence

{uk = (xk, yk)} satisfies

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − ‖uk − uk+1‖2H , ∀u∗ ∈ Ω∗.
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3.2 Chambolle-Pock method

The Chambolle-Pock algorithm [3] is a well known approach for solving the

min-max problems arising from imaging processing. Following is their iterative

scheme:

For given (xk, yk), produce a pair of (xk+1, yk+1). First,

xk+1 = arg min
x∈X
{Φ(x, yk) +

r

2
‖x− xk‖2}. (3.12a)

Then, set

x̄k = xk+1 + τ(xk+1 − xk), τ ∈ [0, 1] (3.12b)

Finally, obtain yk+1 via

yk+1 = Argmax{Φ(x̄k, y)− s

2
‖y − yk‖2 | y ∈ Y}, (3.12c)

Using Lemma 1.1, we interpreted the output of the Chambolle-Pock algorithm as

the solution of the solution of the following variational inequality:
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(xk+1, yk+1) ∈ X × Y,

θ(x)− θ(xk+1)

θ(y)− θ(yk+1)

+
 x− xk+1

y − yk+1

T
−AT yk+1

Axk+1


+

 r(xk+1 − xk) +AT (yk+1 − yk)

τA(xk+1 − xk) + r(yk+1 − yk)

 ≥ 0, ∀(x, y) ∈ X×Y. (3.13)

The compact form of (3.13) is

θ(u)−θ(uk+1)+(u−uk+1)T {F (uk+1)+Q(uk+1−uk)} ≥ 0, ∀u ∈ Ω,

where

Q =

[
rIn AT

τA sIm

]
is not symmetric unless τ = 1.

Set τ = 1 and let rs > ‖ATA‖, (3.13) is the PPA form (2.12). Our re-normed

PPA interpretation greatly simplifies the convergence analysis.

The method (3.12) is first proposed by Chambolle and Pock [3] and is called C-P

method. Thanks to the authors for mentioning our proof in a footnote of this paper.
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3.3 Simplicity recognition

VI-PPA Form is recognized by Researchers in Image Science

In the first paper about C-P method

• A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex prob-
lem with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.

the authors mentioned our proof (interpretation) in the footnote of page 121.

• T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011.
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Abstract

In this paper we study preconditioning techniques for
the first-order primal-dual algorithm proposed in [5]. In
particular, we propose simple and easy to compute diago-
nal preconditioners for which convergence of the algorithm
is guaranteed without the need to compute any step size
parameters. As a by-product, we show that for a certain
instance of the preconditioning, the proposed algorithm is
equivalent to the old and widely unknown alternating step
method for monotropic programming [7]. We show numer-
ical results on general linear programming problems and
a few standard computer vision problems. In all examples,
the preconditioned algorithm significantly outperforms the
algorithm of [5].

1. Introduction
In [5, 8, 13] first-order primal-dual algorithms are stud-

ied to solve a certain class of convex optimization problems
with known saddle-point structure.

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) , (1)

where X and Y are finite-dimensional vector spaces
equipped with standard inner products 〈·, ·〉. K : X → Y
is a linear operator and G : X → R ∪ {∞} and F ∗ : Y →
R ∪ {∞} are convex functions with known structure.

The iterates of the algorithm studied in [5] to solve (1)
are very simple:
{
xk+1 =(I + τ∂G)−1(xk − τKT yk)

yk+1 =(I + σ∂F ∗)−1(yk + σK(xk+1 + θ(xk+1 − xk)))

(2)
They basically consist of alternating a gradient ascend in
the dual variable and a gradient descend in the primal

∗The first author acknowledges support from the Austrian Science Fund
(FWF) under the grant P22492-N23.

Figure 1. On problems with irregular structure, the proposed pre-
conditioned algorithm (P-PD) converges significantly faster than
the algorithm of [5] (PD).

variable. Additionally, the algorithm performs an over-
relaxation step in the primal variable. A fundamental as-
sumption of the algorithm is that the functions F ∗ and G
are of simple structure, meaning that the so-called proxim-
ity or resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1

have closed-form solutions or can be efficiently computed
with a high precision. Their exact definitions will be given
in Section 1.1. The parameters τ, σ > 0 are the primal and
dual step sizes and θ ∈ [0, 1] controls the amount of over-
relaxation in x. It is shown in [5] that the algorithm con-
verges as long as θ = 1 and the primal and dual step sizes
τ and σ are chosen such that τσL2 < 1, where L = ‖K‖
is the operator norm of K. It is further shown that a suit-
ably defined partial primal-dual gap of the average of the
sequence ((x0, y0), ..., (xk, yk)) vanishes with rate O(1/k)
for the complete class of problems covered by (1). For
problems with more regularity, the authors propose acceler-
ation schemes based on non-empirical choices on τ , σ and
θ. In particular they show that they can achieveO(1/k2) for
problems where G of F ∗ is uniformly convex and O(ωk),
ω < 1 for problems where both G and F ∗ are uniformly
convex. See [5] for more details.

A common feature of all numerical examples in [5] is
that the involved linear operators K have a simple struc-
ture which makes it very easy to estimate L. We observed
that for problems where the operator K has a more compli-

1
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cated structure, L cannot be estimated easily or it might be
very large such that the convergence of the algorithm sig-
nificantly slows down. As we will see, linear operators with
irregular structure frequently arise in many different vision
problems.

In this work, we study preconditioning techniques for
the primal-dual algorithm (2). This allows us to overcome
the aforementioned shortcomings. The proposed precondi-
tioned algorithm has several advantages. Firstly, it avoids
the estimation of the operator norm of K, secondly, it sig-
nificantly accelerates the convergence on problems with ir-
regular K and thirdly, it leaves the computational complex-
ity of the iterations basically unchanged. Figure 1 shows
convergence plots on two LP problems with such an irreg-
ular structure. The proposed algorithm can better adapt to
the problem structure, leading to faster convergence.

The rest of the paper is as follows. In Section 1.1 we fix
some preliminary definitions which will be used through-
out the paper. In Section 2 we present the preconditioned
primal-dual algorithm and give conditions under which con-
vergence of the algorithm is guaranteed. We propose a fam-
ily of simple and easy to compute diagonal preconditioners,
which turn out to be very efficient on many problems. In
Section 2.3 we establish connections to the old and widely
unknown alternating step method for monotropic program-
ming [7]. In Section 3 we detail experimental results of the
proposed algorithm. In the last Section we draw some con-
clusions and show directions for future work.

1.1. Preliminaries

We consider finite-dimensional vector spaces X and Y ,
where n = dimX and m = dimY with inner products

〈
x1, x2

〉
X

=
〈
T−1x1, x2

〉
, x1, x2 ∈ X ,

〈
y1, y2

〉
Y

=
〈
Σ−1y1, y2

〉
, y1, y2 ∈ Y ,

where T and Σ are a symmetric, positive definite precondi-
tioning matrices. We further define the norms in the usual
way as

‖x‖X = 〈x, x〉
1
2

X , ‖y‖Y = 〈y, y〉
1
2

Y .

We will make frequent use of the so-called resolvent or
proximity operator of a function G(x). Given a point
x̂ ∈ X , it is defined as the solution of the auxiliary min-
imization problem

x∗ = arg min
x
G(x) +

1

2
‖x− x̂‖2X

The unique minimizer to the above problem is characterized
by the optimality condition

∂G(x) + T−1(x− x̂) 3 0 ,

whose optimal solution x∗ can be written in operator form
as

x∗ = (I + T∂G)−1(x̂) . (3)

2. Preconditioned primal-dual algorithm
In this work, we propose the following preconditioned

first-order primal-dual algorithm: Choose symmetric and
positive definite matrices T,Σ, θ ∈ [0, 1], (x0, y0) ∈
X × Y . Then for k ≥ 0, update (xk, yk) as follows:
{
xk+1 =(I + T∂G)−1(xk − TKT yk)

yk+1 =(I + Σ∂F ∗)−1(yk + ΣK(xk+1+θ(xk+1−xk)))

(4)
Comparing the iterates (4) of the proposed algorithm to (2),
one can see that the global steps τ and σ have been re-
placed by the preconditioning matrices T and Σ. It is known
that (2) converges as long as θ = 1 and τσ‖K‖2 < 1.
Hence, a natural question is now to establish conditions on
T and Σ and θ which ensure convergence of the proposed
preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F ∗ it follows that for any (x, y) ∈ X ×
Y the iterates xk+1 and yk+1 satisfy
〈(

x− xk+1

y − yk+1

)
,F

(
xk+1

yk+1

)
+M

(
xk+1 − xk
yk+1 − yk

)〉
≥ 0 ,

(5)
where

F

(
xk+1

yk+1

)
=

(
∂G(xk+1) +KT yk+1

∂F ∗(yk+1)−Kxk+1

)
,

and

M =

[
T−1 −KT

−θK Σ−1

]
. (6)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].
In the next Section we will establish conditions on θ, T and
Σ which ensure convergence of the algorithm.

2.1. Convergence of the algorithm

We can make direct use of the convergence analysis de-
veloped in [10, 14, 16]. In fact, convergence of (5) can be
guaranteed as long as the matrix M is symmetric and pos-
itive definite. In the following Lemma we establish condi-
tions on θ, T and Σ which indeed ensure these properties of
M .

Lemma 1. Let θ = 1, T and Σ symmetric positive definite
maps satisfying

‖Σ 1
2KT

1
2 ‖2 < 1 , (7)
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dual variables into a vector y and all linear operators into a
global linear operator K. Then, applying the precondition-
ing techniques proposed in this paper leads to an algorithm
that is guaranteed to converge to the optimal solution with-
out the need to solve any inner optimization problems.

Figure 3 shows some results of standard minimal parti-
tioning and segmentation problems. We compared the orig-
inal approach solving inner optimization problems and us-
ing PD to P-PD applied to (27). We first precomputed the
optimal solution using a large number of iterations and then
recorded the time until the error is below a threshold of tol.
The timings are presented in Table 4. In all cases, the pro-
posed algorithm clearly outperforms the original approach
of [5].

PD P-PD Speedup
Synthetic (3 phases) 221.71s 75.65s 2.9
Synthetic (4 phases) 1392.02s 538.83s 2.6

Natural (8 phases) 592.85s 113.76s 5.2
Table 4. Comparison of the proposed algorithm on partitioning
problems.

4. Conclusion

In this paper we have proposed a simple precondition-
ing technique to improve the performance of the first-order
primal-dual algorithm proposed in [13, 5]. The proposed
diagonal preconditioners can be computed efficiently and
guarantee the convergence of the algorithm without the
need to estimate any step size parameters. In several nu-
merical experiments, we have shown that the proposed al-
gorithm significantly outperforms the algorithm in [5]. Fur-
thermore, on large scale linear programming problems, an
unoptimized implementation of the proposed algorithm eas-
ily outperforms a highly optimized interior point solver and
a GPU implementation of the proposed algorithm can eas-
ily compete with specialized combinatorial algorithms for
computing minimum cuts.

We believe that the proposed algorithm can become a
standard algorithm in computer vision since it can be ap-
plied to a large class of convex optimization problems aris-
ing in computer vision and has the potential for parallel
computing. Future work will mainly concentrate on the
development of more sophisticated preconditioners that are
different from diagonal matrices.
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Moreover, from the convexity of f and (4) it follows

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 ≥ f (x̂) + 〈∇ f (x̄), x − x̂
〉 − L f

2
‖x̂ − x̄‖2.

Combining this with the previous inequality, we arrive at

f (x) + g(x) + 1
τ

Dx (x, x̄) + L f

2
‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈
K (x̂ − x), ỹ

〉 + 1
τ

Dx (x̂, x̄) + 1
τ

Dx (x, x̂). (9)

In the same way:

h∗(y) + 1
σ

Dy(y, ȳ) ≥ h∗(ŷ) − 〈
K x̃, ŷ − y

〉 + 1
σ

Dy(ŷ, ȳ) + 1
σ

Dy(y, ŷ). (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8) �	.

3 Non-linear primal–dual algorithm

In this section we address the convergence rate of the non-linear primal–dual algorithm
shown in Algorithm 1:

Algorithm 1: O(1/N ) Non-linear primal–dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant L f of ∇ f , and Bregman
distance functions Dx and Dy .

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, 2xn+1 − xn, yn) (11)

The elegant interpretation in [16] shows that by writing the algorithm in this form
(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x =
‖·‖y = ‖·‖2, and Dx (x, x ′) = 1

2‖x − x ′‖2
2, Dy(y, y′) = 1

2‖y − y′‖2
2, then it is an

instance of the proximal point algorithm [27], up to the explicit term ∇ f (xn), since

(
K ∗ + ∂g

−K + ∂h∗
)

(zn+1) + Mτ,σ (zn+1 − zn) �
(−∇ f (xn)

0

)
,

where the variable z ∈ X ×Y represents the pair (x, y), and the matrix Mτ,σ is given
by

Mτ,σ =
( 1

τ
I −K ∗

−K 1
σ

I

)
, (12)

which is positive-definite as soon as τσ L2 < 1. A proof of convergence is easily
deduced. Moreover, since in our particular setting we never really use the machinery
of monotone operators, and rely only on the fact that we are studying a specific
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4 Extended PPA for the Variational Inequality
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Abstract

We revisit the Chen-Teboulle algorithm using recent insights and show that this allows a better bound
on the step-size parameter.

1 Background

Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization
methods. The idea consists simply of working with a different norm in the product Hilbert space. We fix an
inner product 〈x, y〉 on H×H∗. Instead of defining the norm to be the induced norm, we define the primal
norm as follows (and this induces the dual norm)

‖x‖V =
√
〈V x, x〉 =

√
〈x, x〉V , ‖y‖∗V = ‖y‖V −1 =

√
〈y, V −1y〉 =

√
〈y, y〉V −1

for any Hermitian positive definite V ∈ B(H,H); we write this condition as V � 0. For finite dimensional
spaces H, this means that V is a positive definite matrix.

We discuss the canonical proximal point method in a general norm; this generality has been known for a
long time, and the novelty will be our specific choice of norm. This allows us to re-derive the Chen-Teboulle
algorithm [CT94], which, even though it is not widely used, appears to be the first algorithm in a series
of algorithms [ZC08, EZC10, CP10, HY12, Con13, Vũ13]. Among other features, a benefit of these new
algorithms is that they can exploit the situation when a function f can be written as f(x) = h(Ax) for a
linear operator A. In particular, this is useful when the proximity operator [Mor62] of h is easy to compute
but the proximity operator of h ◦ A is not easy (the prox of h ◦ A follows from that of h only in special
conditions on A; see [CP07]).

The benefit of this analysis is that it gives intuition, allows one to construct novel methods, simplifies
convergence analysis, gives sharp bounds on step-sizes, and extends to product-space formulations easily.

1.1 Proximal Point algorithm

All terminology is standard, and we refer to the textbook [BC11] for standard definitions. Let A be a
maximal monotone operator, such as a subdifferential of a proper lower semi-continuous convex function,

and assume zero(A)
def
= {~x : 0 ∈ A~x} is non-empty. The proximal point algorithm is a method for finding

some ~x ∈ zero(A). It makes use of the fundamental fact:

0 ∈ A~x ⇐⇒ τ~x ∈ τ~x+A~x

for any τ > 0. This is equivalent to

~x ∈ (I + τ−1A)−1~x
def
= Jτ−1A(~x)

∗University of Colorado Boulder, USA. Work was also performed 2011–2014 while author was at IBM Research, Yorktown
Heights, NY, USA and at Laboratoire Jacques-Louis Lions, University Paris-6, under a fellowship from the Fondation Sciences
Mathmatiques de Paris (FSMP) and by a public grant overseen by the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” program (reference: ANR-10-LABX-0098)
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of algorithms [ZC08, EZC10, CP10, HY12, Con13, Vũ13]. Among other features, a benefit of these new
algorithms is that they can exploit the situation when a function f can be written as f(x) = h(Ax) for a
linear operator A. In particular, this is useful when the proximity operator [Mor62] of h is easy to compute
but the proximity operator of h ◦ A is not easy (the prox of h ◦ A follows from that of h only in special
conditions on A; see [CP07]).

The benefit of this analysis is that it gives intuition, allows one to construct novel methods, simplifies
convergence analysis, gives sharp bounds on step-sizes, and extends to product-space formulations easily.

1.1 Proximal Point algorithm

All terminology is standard, and we refer to the textbook [BC11] for standard definitions. Let A be a
maximal monotone operator, such as a subdifferential of a proper lower semi-continuous convex function,

and assume zero(A)
def
= {~x : 0 ∈ A~x} is non-empty. The proximal point algorithm is a method for finding

some ~x ∈ zero(A). It makes use of the fundamental fact:

0 ∈ A~x ⇐⇒ τ~x ∈ τ~x+A~x

for any τ > 0. This is equivalent to

~x ∈ (I + τ−1A)−1~x
def
= Jτ−1A(~x)

∗University of Colorado Boulder, USA. Work was also performed 2011–2014 while author was at IBM Research, Yorktown
Heights, NY, USA and at Laboratoire Jacques-Louis Lions, University Paris-6, under a fellowship from the Fondation Sciences
Mathmatiques de Paris (FSMP) and by a public grant overseen by the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” program (reference: ANR-10-LABX-0098)

1

ar
X

iv
:1

90
8.

03
63

3v
1 

 [
m

at
h.

O
C

] 
 9

 A
ug

 2
01

9

Recent insights allows a better bound on the step-size parameter.
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S. Becker: Recent works such as [HY12] have proposed a very

simple yet powerful technique for analysing optimization methods.

For given uk = (xk, yk), set the solution of (3.10) as a predictor. Namely,

(CPPA)





x̃k = arg min
x∈X

{
Φ(x, yk) +

r

2
‖x− xk‖2

}
, (4.1a)

ỹk = arg max
y∈Y

{
Φ
(
[2x̃k − xk], λ

)
− s

2
‖y − yk‖2

}
(4.1b)

where Φ(x, y) = θ1(x)− yTAx− θ2(y).

For given uk = (xk, yk), set the solution of (3.10) as a predictor. Namely,




x̃k = arg min{θ1(x)− xTAT yk +
r

2
‖x− xk‖2 |x ∈ X}, (4.2a)

ỹk = arg min
{
θ2(y) + yTA[2x̃k − xk] +

s

2

∥∥y − yk
∥∥2 ∣∣ y ∈ Y

}
.(4.2b)
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The output ũk ∈ Ω of the iteration (4.1) is a predictor which satisfies

θ(u)−θ(ũk)+(u−ũk)TF (ũk) ≥ (u−ũk)TH(uk−ũk), ∀u ∈ Ω. (4.3a)

where

H =

[
rI AT

A sI

]
is positive definite. (4.3b)

Correction-Extension The new iterate is given by

uk+1 = uk − α(uk − ũk), α
say
= 1.5 ∈ [1, 2). (4.4)

� B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle
-point problem: From contraction perspective, SIAM J. Imag. Sci., 5, 119-149, 2012.

� B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex
minimization with linear constraints, Comput. Optim. Appl., 56: 559-572, 2013.

� G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly
constrained convex minimization and saddle-point problems: a unified approach,
Comput. Optim. Appl., 59(2014), 135-161.
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Setting u = u∗ in (4.3a), and using (ũk − u∗)F (ũk) = (ũk − u∗)F (u∗), we

get

(ũk − u∗)TH(uk − ũk) ≥ 0.

Lemma 4.1 For given uk, let the predictor ũk be generated by (4.3a), then we

have

(uk − u∗)TH(uk − ũk) ≥ ‖uk − ũk‖2H , (4.5)

where H is a positive definite matrix given by (4.3b).

For the given positive definite matrix H , (4.5) means that

(
∇
(1

2
‖u− u∗‖2H

)∣∣∣
u=uk

)T (
uk − ũk

)
≥ ‖uk − ũk‖2H .

The above inequality tells us that −(uk − ũk) is a decent direction of the

unknown distance function 1
2‖u− u∗‖2H at the current point uk.
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Then, we can define an α- dependent new iterate uk+1
α given by

uk+1(α) = uk − α(uk − ũk), where α ∈ (0, 2). (4.6)

and consider to maximize the profit function

ϑk(α) = ‖uk − u∗‖2H − ‖uk+1(α)− u∗‖2H . (4.7)

Thus, it follows from (4.6) that

ϑk(α) = ‖uk − u∗‖2H − ‖(uk − u∗)− α(uk − ũk)‖2H
= 2α(uk − u∗)TH(uk − ũk)− α2‖uk − ũk‖2H .

By using (4.5), we get

ϑk(α) ≥ 2α‖uk − ũk‖2H − α2‖uk − ũk‖2H
= α(2− α)‖uk − ũk‖2H = qk(α). 2
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qk(α) reaches its maximum at α∗k which is given by α∗k = 1

*=1 *

q( )

( )

0

Fig 2. The reason for taking α = γα∗, γ ∈ [1, 2)

Theorem 4.1 For given uk, let ũk and uk+1 be generated by (4.3) - (4.4), then

we have

‖uk+1−u∗‖2H ≤ ‖uk−u∗‖2H −α(2−α)‖uk− ũk‖2H , ∀u∗ ∈ Ω∗. (4.8)
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5 Linearly constrained Optimization in form of VI
We consider the linearly constrained convex optimization problem

min{θ(u) | Au = b, u ∈ U}. (5.1)

The Lagrange function of (5.1) is

L(u, λ) = θ(u)− λT (Au− b), (u, λ) ∈ U × <m. (5.2)

Fig 2. The saddle point of the Lagrangian function
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5.1 Saddle point and the equivalent variational inequality

A pair of (u∗, λ∗) is called a saddle point of the Lagrange function (5.2), if

Lλ∈<m(u∗, λ) ≤ L(u∗, λ∗) ≤ Lu∈U (u, λ∗).

The above inequalities mean that
{
u∗ ∈ U , L(u, λ∗)− L(u∗, λ∗) ≥ 0, ∀u ∈ U , (5.3a)

λ∗ ∈ Λ, L(u∗, λ∗)− L(u∗, λ) ≥ 0, ∀ λ ∈ Λ. (5.3b)

The inequality (5.3a) represents that

u∗ ∈ U , θ(u)− θ(u∗) + (u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U . (5.4)

Similarly, for (5.3b), we have

λ∗ ∈ <m, (λ− λ∗)T (Au∗ − b) ≥ 0, ∀ λ ∈ <m. (5.5)

Notice that the above expression is equivalent to

Au∗ = b.
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Writing (5.4) and (5.5) together, we get the following variational inequality:
{
u∗ ∈ U , θ(u)− θ(u∗) + (u− u∗)T (−ATλ∗) ≥ 0, ∀u ∈ U ,
λ∗ ∈ <m, (λ− λ∗)T (Au∗ − b) ≥ 0, ∀ λ ∈ <m.

The saddle-point can be characterized as the solution of the following VI:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (5.6)

where

w =

(
u

λ

)
, F (w) =

( −ATλ
Au− b

)
and Ω = U × <m. (5.7)

Notice that F is a affine operator with a skew-symmetric matrix, namely,

F (w) =

(
0 −AT
A 0

)(
u

λ

)
−
(

0

b

)
,

we have (w − w̃)T (F (w)− F (w̃)) ≡ 0.
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Convex optimization problem with two separable functions

We consider the convex optimization problem which has the following form:

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}. (5.8)

This is a special problem of (5.1) with

u =


 x

y


 , U = X × Y, A = (A,B).

The Lagrangian function of the problem (5.8) is

L2(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b).

The same analysis tells us that the saddle point of the Lagrange function

L2(x, y, λ) is a solution of the following variational inequality:
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w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (5.9a)

where

u =

[
x

y

]
, θ(u) = θ1(x) + θ2(y), (5.9b)

w =

[ x

y

λ

]
, F (w) =

[ −ATλ
−BTλ

Ax+By − b

]
. (5.9c)

and Ω = X × Y × <m.

The affine operator F (w) has the form

F (w) =




0 0 −AT

0 0 −BT

A B 0







x

y

λ


−




0

0

b


 .
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Again, we have

(w − w̃)T (F (w)− F (w̃)) ≡ 0.

The augmented Lagrangian Function of the problem (5.8) is

Lβ(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b)

+
β

2
‖Ax+By − b‖2. (5.10)

Alternating direction method of multipliers (ADMM)

Solving the problem (5.8) by using ADMM [4, 5], the k-th iteration begins with a

given vk = (yk, λk), it offers the new iterate vk+1 = (yk+1, λk+1) via

(ADMM)





xk+1 = arg min
{
Lβ(x, yk, λk)

∣∣ x ∈ X
}
, (5.11a)

yk+1 = arg min
{
Lβ(xk+1, y, λk)

∣∣ y ∈ Y
}
, (5.11b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (5.11c)

Since xk+1 is a computational result dependent on the given vk = (yk, λk), we
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call it the intermediate variable. The variables v = (y, λ) are called essential

variables in ADMM.

We denote the solution set of (5.9) by Ω∗. The sequence {vk} generated by

ADMM(5.11) satisfies

‖vk+1 − v∗‖2G ≤ ‖vk − v∗‖2G − ‖vk − vk+1‖2G, ∀ v ∈ V∗, (5.12)

where

v =


 y

λ


 , H =


βBTB 0

0 1
β Im




and

V∗ = {(y∗, λ∗) | (x∗, y∗, λ∗) ∈ Ω∗}.
For a short proof, the reader may refer to our paper [11]. Besides the contractive

property (5.12), it was proved that the residue sequence {‖vk − vk+1‖2G}
generated by ADMM(5.11) is monotonically no-increasing, namely,

‖vk − vk+1‖2G ≤ ‖vk−1 − vk‖2G.
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5.2 Extended PPA for Variational Inequalities (5.9)

The optimal condition of the problem (5.8) is characterized as the variational

inequality (5.9), namely

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω.

Guided by (4.3) - (4.4), we consider the following extended PPA for the above VI.

Let H be a proper positive definite matrix.

[Prediction]. Start with a given vk, find a predictor w̃k which satisfies

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥ (v − ṽk)TH(vk − ṽk), ∀w ∈ Ω.
(5.13)

[Correction]. Update the new iterate vk+1 by

vk+1 = vk − α(vk − ṽk), α
say
= 1.5 ∈ [1, 2). (5.14)

z w̃k is the solution of (5.9) if and only if vk = ṽk z
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Similarly as in Section 4, setting w = w∗ in (5.13), we obtain

(ṽk − v∗)TH(vk − ṽk) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k).

By using (w̃k −w∗)TF (w̃k) = (w̃k −w∗)TF (w∗) (see F (w) in (5.9c)) and

the optimality, we obtain

(ṽk − v∗)TH(vk − ṽk) ≥ 0,

and consequently,

(vk − v∗)TH(vk − ṽk) ≥ ‖vk − ṽk‖2H . (5.15)

Finally, we have the following results which is key-inequality of convergence for

the prediction- correction method (5.13) - (5.14).

Theorem 5.1 For given vk, let w̃k and vk+1 be generated by the prediction-

correction method (5.13) - (5.14). Then we have

‖vk+1−v∗‖2H ≤ ‖vk−v∗‖2H −α(2−α)‖vk− ṽk‖2H , ∀v∗ ∈ V∗. (5.16)
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6 Design the extended PPA for solving VI (5.9)

Design the extended PPA for VI (5.9) guided by (5.13) - (5.14).

6.1 ADMM in PPA-sense
In order to solve the separable convex optimization problem (5.8), we construct a

method whose prediction-step is

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TH(vk − ṽk), ∀w ∈ Ω,

(6.1a)

where

H =


 (1 + δ)βBTB −BT

−B 1
β Im


 , (a small δ > 0, say δ = 0.05).

(6.1b)

Since H is positive definite, we can use the update form of Algorithm I to produce

the new iterate vk+1 = (yk+1, λk+1). (In the algorithm [2], we took δ = 0).
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The concrete form of (6.1) is

θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λ̃k} ≥ 0,

θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT λ̃k + (1 + δ)βBTB(ỹk − yk)−BT (λ̃k − λk)} ≥ 0,

(Ax̃k +Bỹk − b) −B(ỹk − yk) + (1/β) (λ̃k − λk) = 0.

In fact, the prediction can be arranged by




x̃k = Argmin{Lβ(x, yk, λk) |x ∈ X}, (6.2a)

λ̃k = λk − β(Ax̃k +Byk − b), (6.2b)

ỹk = Argmin

{
θ2(y)− yTBT [2λ̃k − λk]

+ 1+δ
2 β‖B(y − yk)‖2

∣∣∣∣ y ∈ Y
}
. (6.2c)

The computational load of the prediction (6.2) equals the one of the ADMM (5.11).

The correction vk+1 = vk − α(vk − ṽk) will accelerate the convergence.

The underline part is F (w̃k):

F (w) =

 −ATλ

−BTλ

Ax+By − b


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6.2 Linearized ADMM-Like Method

Simplify the subproblem (6.2c). Replace 1+δ
2 β‖B(y − yk)‖2 with s

2‖y − yk‖2.

By using the linearized version of (6.2), the prediction step becomes

θ(u)−θ(ũk)+(w−w̃k)TF (w̃k) ≥ (v−ṽk)TH(vk−ṽk), ∀w ∈ Ω, (6.3)

where

H =

[
sI −BT

−B 1
β Im

]
, �O (6.1)¥�

[
(1 + δ)βBTB −BT

−B 1
β
Im

]
. (6.4)

The concrete formula of (6.3) is

θ1(x)− θ1(x̃k) + (x− x̃k)T

{−AT λ̃k} ≥ 0,

θ2(y)− θ2(ỹk) + (y − ỹk)T

{−BT λ̃k + s(ỹk − yk) −BT (λ̃k − λk)} ≥ 0,

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0.

(6.5)

The underline part is F (w̃k):

F (w) =

 −ATλ

−BTλ

Ax+By − b


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Then, we use the form

vk+1 = vk − α(vk − ṽk), α ∈ (0, 2)

to update the new iterate vk+1.

How to implement the prediction? To get w̃k which satisfies (6.5),

we need only use the following procedure:




x̃k = Argmin{Lβ(x, yk, λk) |x ∈ X}, (6.6a)

λ̃k = λk − β(Ax̃k +Byk − b), (6.6b)

ỹk = Argmin{θ2(y)− yTBT [2λ̃k − λk] +
s

2
‖y − yk‖2 | y ∈ Y}.(6.6c)

The term 1+δ
2 β‖B(y − yk)‖2 in (6.2c) is replaced by s

2‖y − yk‖2. In order to

ensure the positivity of the matrix H in (6.4), s > β‖BTB‖ is necessary.

Solving the problem (6.6c) is somewhat easy than solving the problem (6.2c),

however, sometimes the large scalar s will lead a slow convergence.
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Thank you very much for your attention !


