Very Simple Yet Powerful

2019 年 8 月, S. Becker 在 arXiv 上贴了一篇他于 2011 年 写成的文章, 见 arXiv: 1908.036.33v1 [math.OC] 9 Aug 2019. Becker 在这篇文章正文的第一句话就是 "Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization methods".

[HY12] 是这篇注记的参考文献 [10]. 应一些读者要求写下 的这篇注记, 阐述了 [HY12] 的主要思想, 应用及新的进展.

Bingsheng HE

Department of Mathematics, SUSTech, and Department of Mathematics, Nanjing University

Homepage: maths.nju.edu.cn/~hebma

 Optimization problem and VI 	3
 PPA for monotone variational inequality and its beyond 	9
 PPA for VI arising from min-max problem 	15
 Extended PPA for VI arising from min-max problem 	30
 Linearly constrained Optimization in the form of VI 	36
 Design the extended PPA for VI arising linearly constrained 	
separable convex optimization	45

Convex optimization problems concerned in this note

- min-max problem $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \{ \Phi(x, y) = \theta_1(x) y^T A x \theta_2(y) \}$
- Linearly constrained COP $\min\{\theta(x)|Ax = b \text{ (or } \geq b), x \in \mathcal{X}\}$ can be translated to the following min-max problem:

 $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \{ L(x, y) = \theta_1(x) - y^T A x + b^T y \}, \quad \mathcal{Y} = \Re^m (\text{or } \Re^m_+).$

• Convex Optimization with separable structure (ADMM) $\min\{\theta_1(x) + \theta_2(y) | Ax + By = b, x \in \mathcal{X}, y \in \mathcal{Y}\}$

变分不等式 (VI) 是瞎子爬山判定山顶的数学表达形式 邻近点算法 (PPA) 是步步为营 稳扎稳打的求解方法

1 Optimization problem and VI

1.1 Differential convex optimization in Form of VI

Let $\Omega \subset \Re^n$, we consider the convex minimization problem

$$\min\{f(x) \mid x \in \Omega\}.$$
(1.1)

What is the first-order optimal condition ?

 $x^* \in \Omega^* \quad \Leftrightarrow \quad x^* \in \Omega \text{ and any feasible direction is not descent direction.}$

Optimal condition in variational inequality form

• $S_d(x^*) = \{s \in \Re^n \mid s^T \nabla f(x^*) < 0\} =$ Set of the descent directions.

•
$$S_f(x^*) = \{s \in \Re^n \mid s = x - x^*, x \in \Omega\}$$
 = Set of feasible directions.

$$x^* \in \Omega^* \quad \Leftrightarrow \quad x^* \in \Omega \quad \text{and} \quad S_f(x^*) \cap S_d(x^*) = \emptyset.$$

The optimal condition can be presented in a variational inequality (VI) form:

$$x^* \in \Omega, \quad (x - x^*)^T \nabla f(x^*) \ge 0, \quad \forall x \in \Omega.$$
 (1.2)

Fig. 1 Differentiable Convex Optimization and VI

Since f(x) is a convex function, we have

 $f(y) \geq f(x) + \nabla f(x)^T(y-x) \quad \text{and thus} \quad (x-y)^T(\nabla f(x) - \nabla f(y)) \geq 0.$

We say the gradient ∇f of the convex function f is a monotone operator.

Let $\mathcal{X} \subset \Re^n$ be a closed convex set, $\theta(x)$ and f(x) be convex functions and f(x) is differentiable. Then, we have

 $x^* \in \arg\min_{x \in \mathcal{X}} \theta(x) \quad \Leftrightarrow \quad x^* \in \mathcal{X}, \ \ \theta(x) - \theta(x^*) \ge 0, \ \ \forall x \in \mathcal{X}.$

 $x^* \in \arg\min_{x \in \mathcal{X}} f(x) \quad \Leftrightarrow \quad x^* \in \mathcal{X}, (x - x^*)^T \nabla f(x^*) \ge 0, \forall x \in \mathcal{X}.$

Lemma 1.1 Let $\mathcal{X} \subset \Re^n$ be a closed convex set, $\theta(x)$ and f(x) be convex functions and f(x) is differentiable. Assume that the solution set of the minimization problem $\min\{\theta(x) + f(x) \mid x \in \mathcal{X}\}$ is nonempty. Then,

$$x^* \in \arg\min_{x \in \mathcal{X}} \{\theta(x) + f(x)\}$$
(1.3a)

if and only if

$$x^* \in \mathcal{X}, \ \ \theta(x) - \theta(x^*) + (x - x^*)^T \nabla f(x^*) \ge 0, \ \ \forall x \in \mathcal{X}.$$
 (1.3b)

1.2 The Min-Max Problem

The min-max problem considered in this talk has the following mathematical form

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y) := \theta_1(x) - y^T A x - \theta_2(y), \qquad (1.4)$$

where $A \in \Re^{m \times n}$, $\theta_1(x) : \Re^n \to \Re$ and $\theta_2(y) : \Re^m \to \Re$ are convex functions which are not necessarily differentiable.

Let (x^*, y^*) be the solution of (1.4), then we have

$$\Phi_{y\in\mathcal{Y}}(x^*,y) \le \Phi(x^*,y^*) \le \Phi_{x\in\mathcal{X}}(x,y^*).$$

These two inequalities can be written as

$$\begin{cases} x^* \in \mathcal{X}, \quad \Phi(x, y^*) - \Phi(x^*, y^*) \ge 0, \quad \forall x \in \mathcal{X}, \\ y^* \in \mathcal{Y}, \quad \Phi(x^*, y^*) - \Phi(x^*, y) \ge 0, \quad \forall y \in \mathcal{Y}. \end{cases}$$

Using the notation of $\Phi(x,y),$ the above system can be written as

$$\begin{cases} x^* \in \mathcal{X}, \quad \theta_1(x) - \theta_1(x^*) + (x - x^*)^T (-A^T y^*) \ge 0, \quad \forall x \in \mathcal{X}, \\ y^* \in \mathcal{Y}, \quad \theta_2(y) - \theta_2(y^*) + (y - y^*)^T (Ax^*) \ge 0, \quad \forall y \in \mathcal{Y}. \end{cases}$$

We write it in a compact form of the variational inequality:

$$\mathsf{VI}(\Omega, F) \quad u^* \in \Omega, \ \theta(u) - \theta(u^*) + (u - u^*)^T F(u^*) \ge 0, \ \forall \, u \in \Omega, \ \text{(1.6a)}$$

where

$$u = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \theta(u) = \theta_1(x) + \theta_2(y), \quad F(u) = \begin{pmatrix} -A^T y \\ Ax \end{pmatrix}.$$
(1.6b)

and
$$\Omega = \mathcal{X} \times \mathcal{Y}$$
. Notice that $(u - \tilde{u})^T (F(u) - F(\tilde{u})) \equiv 0$.

We use the VI form (1.6), whether $\theta(u)$ is differentiable or not.

2 Proximal point algorithms and its Beyond

Lemma 2.1 Let the vectors $a, b \in \Re^n$, $H \in \Re^{n \times n}$ be a positive definite matrix. If $b^T H(a - b) \ge 0$, then we have

$$||b||_{H}^{2} \leq ||a||_{H}^{2} - ||a - b||_{H}^{2}.$$

The assertion follows from $||a||^2 = ||b + (a - b)||^2 \ge ||b||^2 + ||a - b||^2$.

2.1 Proximal point algorithms for convex optimization

Convex Optimization

Now, let us consider the *simple* convex optimization

$$\min\{\theta(x) + f(x) \mid x \in \mathcal{X}\},\tag{2.1}$$

where $\theta(x)$ and f(x) are convex functions but $\theta(x)$ is not necessary smooth, \mathcal{X} is a closed convex set.

For solving (2.1), the k-th iteration of the proximal point algorithm (abbreviated to

PPA) [13, 15] begins with a given x^k , offers the new iterate x^{k+1} via the recursion

$$x^{k+1} = \operatorname{Argmin}\{\theta(x) + f(x) + \frac{r}{2} \|x - x^k\|^2 \mid x \in \mathcal{X}\}.$$
 (2.2)

Since x^{k+1} is the solution of (2.2), it follows from Lemma 1.1 that $x^{k+1} \in \mathcal{X}$, $\theta(x) - \theta(x^{k+1}) + (x - x^{k+1})^T \{ \nabla f(x^{k+1}) + r(x^{k+1} - x^k) \} \ge 0, \forall x \in \mathcal{X}.$ (2.3)

Setting $x = x^*$ in the above inequality, it follows that $(x^{k+1} - x^*)^T r(x^k - x^{k+1}) \ge \theta(x^{k+1}) - \theta(x^*) + (x^{k+1} - x^*)^T \nabla f(x^{k+1}).$ Since $(x^{k+1} - x^*)^T \nabla f(x^{k+1}) \ge (x^{k+1} - x^*)^T \nabla f(x^*) \ge 0$, we have $(x^{k+1} - x^*)^T (x^k - x^{k+1}) \ge 0.$ (2.4)

Let $a = x^k - x^*$ and $b = x^{k+1} - x^*$ and using Lemma 2.1, we obtain

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \|x^k - x^{k+1}\|^2,$$
(2.5)

which is a nice convergence property of the Proximal Point Algorithm.

We write the problem (2.1) and its PPA (2.2) in VI form

Instead of the optimization problem form $x^* \in \arg \min\{\theta(x) + f(x) \mid x \in \mathcal{X}\}$, we use its equivalent VI statement

$$x^* \in \mathcal{X}, \ \ \theta(x) - \theta(x^*) + (x - x^*)^T \nabla f(x^*) \ge 0, \ \ \forall x \in \mathcal{X}.$$
 (2.6)

For solving the optimization problem (2.1), the k-th iteration of the PPA (see (2.3)) is: $x^{k+1} = \arg \min\{\theta(x) + f(x) + \frac{r}{2} ||x - x^k||^2 | x \in \mathcal{X}\}$, we prefer use its equivalent VI form:

$$x^{k+1} \in \mathcal{X}, \quad \theta(x) - \theta(x^{k+1}) + (x - x^{k+1})^T \nabla f(x^{k+1}) \\ \ge (x - x^{k+1})^T r(x^k - x^{k+1}), \quad \forall x \in \mathcal{X}.$$
(2.7)

Using (2.6) and (2.7), we consider the PPA for the variational inequality (5.6)

2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the min-max problem is characterized as a monotone variational inequality:

$$u^* \in \Omega, \quad \theta(u) - \theta(u^*) + (u - u^*)^T F(u^*) \ge 0, \quad \forall u \in \Omega.$$
(2.8)
PPA for VI (2.8) in Euclidean-norm
For given u^k and $r > 0$, find u^{k+1} ,

$$u^{k+1} \in \Omega, \quad \theta(u) - \theta(u^{k+1}) + (u - u^{k+1})^T F(u^{k+1}) \\ \ge (u - u^{k+1})^T r(u^k - u^{k+1}), \quad \forall u \in \Omega.$$
(2.9)

 u^{k+1} is called the proximal point of the k-th iteration for the problem (2.8).

• u^k is the solution of (2.8) if and only if $u^k = u^{k+1}$ • Setting $u = u^*$ in (2.9), we obtain

$$(u^{k+1} - u^*)^T r(u^k - u^{k+1}) \ge \theta(u^{k+1}) - \theta(u^*) + (u^{k+1} - u^*)^T F(u^{k+1})$$

Note that (see the structure of F(u) in (1.6b))

$$(u^{k+1} - u^*)^T F(u^{k+1}) = (u^{k+1} - u^*)^T F(u^*),$$

and consequently (by using (2.8)) we obtain

$$(u^{k+1} - u^*)^T r(u^k - u^{k+1}) \ge \theta(u^{k+1}) - \theta(u^*) + (u^{k+1} - u^*)^T F(u^*) \ge 0.$$

Thus, we have

$$(u^{k+1} - u^*)^T (u^k - u^{k+1}) \ge 0.$$
 (2.10)

By setting $a = u^k - u^*$ and $b = u^{k+1} - u^*$, the inequality (2.10) means that $b^T(a - b) \ge 0$. By using Lemma 2.1, we obtain

$$\|u^{k+1} - u^*\|^2 \le \|u^k - u^*\|^2 - \|u^k - u^{k+1}\|^2.$$
 (2.11)

We get the nice convergence property of Proximal Point Algorithm.

For any positive definite matrix H, $||u||_H = (u^T H u)^{\frac{1}{2}}$ is a Norm.

PPA for monotone mixed VI in H-norm

For given u^k , find the proximal point u^{k+1} in H-norm which satisfies

$$u^{k+1} \in \Omega, \quad \theta(u) - \theta(u^{k+1}) + (u - u^{k+1})^T F(u^{k+1}) \\ \ge (u - u^{k+1})^T H(u^k - u^{k+1}), \ \forall \ u \in \Omega,$$
(2.12)

where H is a symmetric positive definite matrix.

Again, u^k is the solution of (2.8) if and only if $u^k = u^{k+1}$

Convergence Property of Proximal Point Algorithm in H-norm

$$\|u^{k+1} - u^*\|_H^2 \le \|u^k - u^*\|_H^2 - \|u^k - u^{k+1}\|_H^2.$$
(2.13)

Any norms are equivalent ! $||u - u^*||_H \to 0 \iff ||u - u^*|| \to 0.$

3 PPA for VI arising from min-max problem

This section presents various applications of the proposed algorithms for the min-max problem, namely

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y) := \theta_1(x) - y^T A x - \theta_2(y).$$
(3.1)

The equivalent variational inequality of the min – max problem (3.1) is $u^* \in \Omega, \quad \theta(u) - \theta(u^*) + (u - u^*)^T F(u^*) \ge 0, \quad \forall u \in \Omega, \quad (3.2a)$ where $u = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \theta(u) = \theta_1(x) + \theta_2(y), \quad F(u) = \begin{bmatrix} -A^T y \\ Ax \end{bmatrix}, \quad (3.2b)$ and $\Omega = \mathcal{X} \times \mathcal{Y}.$

3.1 How to reach an implementable PPA

If we use the PPA form (2.9) to solve (3.2), start from a given u^k , the task is to find a u^{k+1} , such that

$$u^{k+1} \in \Omega, \quad \theta(u) - \theta(u^{k+1}) + (u - u^{k+1})^T \{F(u^{k+1}) + r(u^{k+1} - u^k)\} \ge 0, \quad \forall u \in \Omega.$$

The concrete form is

$$(x^{k+1}, y^{k+1}) \in \mathcal{X} \times \mathcal{Y}, \quad \begin{bmatrix} \theta(x) - \theta(x^{k+1}) \\ \theta(y) - \theta(y^{k+1}) \end{bmatrix} + \begin{bmatrix} x - x^{k+1} \\ y - y^{k+1} \end{bmatrix}^T \left\{ \begin{bmatrix} -A^T y^{k+1} \\ A x^{k+1} \end{bmatrix} + \begin{bmatrix} r(x^{k+1} - x^k) \\ r(y^{k+1} - y^k) \end{bmatrix} \right\} \ge 0, \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}. \quad (3.3)$$

According to Lemma 1.1, the equivalent optimization problems of the VI (3.3) is

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} \{\theta_1(x) - x^T A^T y^{k+1} + \frac{r}{2} \|x - x^k\|^2\},$$
 (3.4a)

$$y^{k+1} = \arg\min_{y \in \mathcal{Y}} \{\theta_2(y) + y^T A x^{k+1} + \frac{r}{2} \|y - y^k\|^2 \}.$$
 (3.4b)

The problems (3.4a) and (3.4b) are coupled. Unfortunately, there are no appropriate methods for solving the problems (3.4a) and (3.4b) together.

Replaced y^{k+1} in (3.4a) with y^k , the optimization problems (3.4) are reduced to

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} \{\theta_1(x) - x^T A^T y^k + \frac{r}{2} \|x - x^k\|^2\},$$
 (3.5a)

$$y^{k+1} = \arg\min_{y \in \mathcal{Y}} \{\theta_2(y) + y^T A x^{k+1} + \frac{r}{2} \|y - y^k\|^2 \}.$$
 (3.5b)

The problems (3.5) can be solved one by one, its equivalent VI form is

$$\begin{aligned} (x^{k+1}, y^{k+1}) &\in \mathcal{X} \times \mathcal{Y}, \quad \begin{bmatrix} \theta(x) - \theta(x^{k+1}) \\ \theta(y) - \theta(y^{k+1}) \end{bmatrix} + \begin{bmatrix} x - x^{k+1} \\ y - y^{k+1} \end{bmatrix}^T \left\{ \begin{bmatrix} -A^T y^k \\ A x^{k+1} \end{bmatrix} \right. \\ \left. + \begin{bmatrix} r(x^{k+1} - x^k) & 0 \\ 0 & r(y^{k+1} - y^k) \end{bmatrix} \right\} \ge 0, \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}. \end{aligned}$$

Notice that
$$F(u^{k+1}) = \begin{bmatrix} -A^T y^{k+1} \\ A x^{k+1} \end{bmatrix}$$
, we rewrite the above VI in the form

$$(x^{k+1}, y^{k+1}) \in \mathcal{X} \times \mathcal{Y}, \quad \begin{bmatrix} \theta(x) - \theta(x^{k+1}) \\ \theta(y) - \theta(y^{k+1}) \end{bmatrix} + \begin{bmatrix} x - x^{k+1} \\ y - y^{k+1} \end{bmatrix}^T \left\{ \begin{bmatrix} -A^T y^{k+1} \\ Ax^{k+1} \end{bmatrix} + \begin{bmatrix} r(x^{k+1} - x^k) + A^T (y^{k+1} - y^k) \\ 0 & r(y^{k+1} - y^k) \end{bmatrix} \right\} \ge 0, \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}. \quad (3.6)$$

The compact form of (3.6) is

$$\begin{split} u^{k+1} &\in \Omega, \quad \theta(u) - \theta(u^{k+1}) + (u - u^{k+1})^T \left\{ F(u^{k+1}) + Q(u^{k+1} - u^k) \right\} \ge 0, \quad \forall u \in \Omega. \ \text{(3.7)} \end{split}$$

where

$$Q = \left[\begin{array}{cc} rI_n & A^T \\ 0 & rI_m \end{array} \right] \quad \text{is not symmetric.}$$

If we change the block upper-triangular matrix

$$Q = \begin{bmatrix} rI_n & A^T \\ 0 & rI_m \end{bmatrix} \quad \text{ to a symmetric matrix } \quad H = \begin{bmatrix} rI_n & A^T \\ A & sI_m \end{bmatrix},$$

the variational inequality (3.7) becomes

$$\begin{aligned} u^{k+1} &\in \Omega, \quad \theta(u) - \theta(u^{k+1}) + (u - u^{k+1})^T \left\{ F(u^{k+1}) \\ &+ H(u^{k+1} - u^k) \right\} \ge 0, \quad \forall u \in \Omega. \ \text{(3.8)} \end{aligned}$$

Notice that the concrete form of (3.8) is

$$(x^{k+1}, y^{k+1}) \in \mathcal{X} \times \mathcal{Y}, \quad \begin{bmatrix} \theta(x) - \theta(x^{k+1}) \\ \theta(y) - \theta(y^{k+1}) \end{bmatrix} + \begin{bmatrix} x - x^{k+1} \\ y - y^{k+1} \end{bmatrix}^T \left\{ \begin{bmatrix} -A^T y^{k+1} \\ Ax^{k+1} \end{bmatrix} + \begin{bmatrix} r(x^{k+1} - x^k) + A^T (y^{k+1} - y^k) \\ A(x^{k+1} - x^k) + s(y^{k+1} - y^k) \end{bmatrix} \right\} \ge 0, \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}.$$
(3.9)

According to Lemma 1.1, the variational inequality (3.9) is implemented by

$$\begin{cases} x^{k+1} = \arg\min_{x \in \mathcal{X}} \{\theta_1(x) - x^T A^T y^k + \frac{r}{2} \|x - x^k\|^2\}, \quad (3.10a) \\ y^{k+1} = \arg\min_{y \in \mathcal{Y}} \{\theta_2(y) + y^T A(2x^{k+1} - x^k) + \frac{s}{2} \|y - y^k\|^2\}. \quad (3.10b) \end{cases}$$

Ignoring the constant term in the objective function,

For given
$$(x^k, y^k)$$
, we get x^{k+1} via solving

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} \{\theta_1(x) + \frac{r}{2} ||x - [x^k + \frac{1}{r}A^T y^k]||^2\}.$$
With the getting x^{k+1} , we obtain y^{k+1} by solving the following problem:

$$y^{k+1} = \arg\min_{y \in \mathcal{Y}} \{\theta_2(y) + \frac{s}{2} ||y - [y^k - \frac{1}{s}A(2x^{k+1} - x^k)]||^2\}.$$

Using the notation of $\Phi(x,y)$, the iterative scheme (3.10) can be written as

$$\begin{cases} x^{k+1} = \arg\min_{x \in \mathcal{X}} \left\{ \Phi(x, y^k) + \frac{r}{2} \| x - x^k \|^2 \right\}, & (3.11a) \\ y^{k+1} = \arg\max_{y \in \mathcal{Y}} \left\{ \Phi\left([2x^{k+1} - x^k], y\right) - \frac{s}{2} \| y - y^k \|^2 \right\}. & (3.11b) \end{cases}$$

Assumption:

1. The sub-problems

$$\min_{x \in \mathcal{X}} \{\theta_1(x) + \frac{r}{2} \|x - p\|^2\} \text{ and } \min_{y \in \mathcal{Y}} \{\theta_2(y) + \frac{s}{2} \|y - q\|^2\}$$

have closed solution. Thus, solving the sub-problems in (3.11) is simple.

2. The matrix
$$H = \begin{bmatrix} rI_n & A^T \\ A & sI_m \end{bmatrix}$$
 is positive definite.

$$rs > \|A^TA\| \iff H = egin{bmatrix} rI_n & A^T \ A & sI_m \end{bmatrix}$$
 is positive definite.

Theorem 3.1 The method (3.10) is a PPA for VI (3.2). The generated sequence $\{u^k = (x^k, y^k)\}$ satisfies

$$\|u^{k+1} - u^*\|_H^2 \le \|u^k - u^*\|_H^2 - \|u^k - u^{k+1}\|_H^2, \ \forall u^* \in \Omega^*.$$

3.2 Chambolle-Pock method

The Chambolle-Pock algorithm [3] is a well known approach for solving the min-max problems arising from imaging processing. Following is their iterative scheme:

$$\begin{aligned} \text{For given } (x^k, y^k), \text{ produce a pair of } (x^{k+1}, y^{k+1}). \text{ First,} \\ x^{k+1} &= \arg\min_{x\in\mathcal{X}} \{\Phi(x, y^k) + \frac{r}{2} \|x - x^k\|^2 \}. \end{aligned} \tag{3.12a} \\ \text{Then, set} \\ \bar{x}^k &= x^{k+1} + \tau(x^{k+1} - x^k), \ \tau \in [0, 1] \\ \text{Finally, obtain } y^{k+1} \text{ via} \\ y^{k+1} &= \operatorname{Argmax} \{\Phi(\bar{x}^k, y) - \frac{s}{2} \|y - y^k\|^2 \,|\, y \in \mathcal{Y} \}, \end{aligned} \tag{3.12c} \end{aligned}$$

Using Lemma 1.1, we interpreted the output of the Chambolle-Pock algorithm as the solution of the solution of the following variational inequality:

$$(x^{k+1}, y^{k+1}) \in \mathcal{X} \times \mathcal{Y}, \quad \begin{bmatrix} \theta(x) - \theta(x^{k+1}) \\ \theta(y) - \theta(y^{k+1}) \end{bmatrix} + \begin{bmatrix} x - x^{k+1} \\ y - y^{k+1} \end{bmatrix}^T \left\{ \begin{bmatrix} -A^T y^{k+1} \\ Ax^{k+1} \end{bmatrix} + \begin{bmatrix} r(x^{k+1} - x^k) + A^T (y^{k+1} - y^k) \\ \tau A(x^{k+1} - x^k) + r(y^{k+1} - y^k) \end{bmatrix} \right\} \ge 0, \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}.$$
(3.13)

The compact form of (3.13) is

$$\theta(u) - \theta(u^{k+1}) + (u - u^{k+1})^T \{ F(u^{k+1}) + Q(u^{k+1} - u^k) \} \ge 0, \ \forall u \in \Omega,$$

where

$$Q = \left[\begin{array}{cc} r I_n & A^T \\ \tau A & s I_m \end{array} \right] \qquad \text{is not symmetric unless } \tau = 1.$$

Set $\tau = 1$ and let $rs > ||A^T A||$, (3.13) is the PPA form (2.12). Our re-normed PPA interpretation greatly simplifies the convergence analysis.

The method (3.12) is first proposed by Chambolle and Pock [3] and is called C-P method. Thanks to the authors for mentioning our proof in a footnote of this paper.

3.3 Simplicity recognition

VI-PPA Form is recognized by Researchers in Image Science

In the first paper about C-P method

• A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.

the authors mentioned our proof (interpretation) in the footnote of page 121.

• T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011.

Diagonal preconditioning for first order primal-dual algorithms in convex optimization*

Thomas Pock Institute for Computer Graphics and Vision Graz University of Technology pock@icg.tugraz.at Antonin Chambolle CMAP & CNRS École Polytechnique antonin.chambolle@cmap.polytechnique.fr preconditioned algorithm. In very recent work [10], it has been shown that the iterates (2) can be written in form of a proximal point algorithm [14], which greatly simplifies the convergence analysis.

From the optimality conditions of the iterates (4) and the convexity of G and F^* it follows that for any $(x, y) \in X \times Y$ the iterates x^{k+1} and y^{k+1} satisfy

$$\left\langle \left(\begin{array}{c} x - x^{k+1} \\ y - y^{k+1} \end{array} \right), F\left(\begin{array}{c} x^{k+1} \\ y^{k+1} \end{array} \right) + M\left(\begin{array}{c} x^{k+1} - x^k \\ y^{k+1} - y^k \end{array} \right) \right\rangle \ge 0 ,$$
(5)

where

$$F\left(\begin{array}{c}x^{k+1}\\y^{k+1}\end{array}\right) = \left(\begin{array}{c}\partial G(x^{k+1}) + K^T y^{k+1}\\\partial F^*(y^{k+1}) - K x^{k+1}\end{array}\right) ,$$

and

$$M = \begin{bmatrix} T^{-1} & -K^T \\ -\theta K & \Sigma^{-1} \end{bmatrix} .$$
 (6)

It is easy to check, that the variational inequality (5) now takes the form of a proximal point algorithm [10, 14, 16].

- [9] L. Ford and D. Fulkerson. *Flows in Networks*. Princeton University Press, Princeton, New Jersey, 1962.
- [10] B. He and X. Yuan. Convergence analysis of primal-dual algorithms for total variation image restoration. Technical report, Nanjing University, China, 2010.

In this work we revisit a first-order primal-dual algorithm which was introduced in [15, 26] and its accelerated variants which were studied in [5]. We derive new estimates for the rate of convergence. In particular, exploiting a proximal-point interpretation due to [16], we are able to give a very elementary proof of an ergodic O(1/N) rate of convergence (where *N* is the number of iterations), which also generalizes to non-

Algorithm 1: O(1/N) Non-linear primal-dual algorithm

- Input: Operator norm L := ||K||, Lipschitz constant L_f of ∇f , and Bregman distance functions D_x and D_y .
- Initialization: Choose $(x^0, y^0) \in \mathcal{X} \times \mathcal{Y}, \tau, \sigma > 0$
- Iterations: For each $n \ge 0$ let

$$(x^{n+1}, y^{n+1}) = \mathcal{PD}_{\tau,\sigma}(x^n, y^n, 2x^{n+1} - x^n, y^n)$$
(11)

The elegant interpretation in [16] shows that by writing the algorithm in this form

The cited paper [16] published in SIAM J. Imaging Science, 2012
B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle -point problem: From contraction perspective, *SIAM J. Imag. Science* 5(2012), 119-149.

Proximal point form

$$\begin{aligned}
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\
& (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u^{l}), \\ & (d \in H(u^{l+1}) + M_{\text{basic}, l+1}(u^{l+1} - u$$

2017年7月,南方 科技大学数学系的 一位副主任去英国 访问.在他参加的一 个学术会议上,首位 报告人讲到,用 He and Yuan 提出的邻 近点形式 (PPF),处 理图像问题。

见到一幅幻灯片 介绍我们的工作,我 的同事抢拍了一张 照片发给我。

这也说明,只有简 单的思想才容易得 到传播,被人接受。

4 Extended PPA for the Variational Inequality

University of Colorado Boulder

Technical Report, Department of Applied Mathematics

The Chen-Teboulle algorithm is the proximal point algorithm

Stephen Becker *

November 22, 2011; posted August 13, 2019

Abstract

We revisit the Chen-Teboulle algorithm using recent insights and show that this allows a better bound on the step-size parameter.

1 Background

Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization methods. The idea consists simply of working with a different norm in the *product* Hilbert space. We fix an inner product $\langle x, y \rangle$ on $\mathcal{H} \times \mathcal{H}^*$. Instead of defining the norm to be the induced norm, we define the primal norm as follows (and this induces the dual norm)

$$\|x\|_V = \sqrt{\langle Vx, x \rangle} = \sqrt{\langle x, x \rangle_V}, \quad \|y\|_V^* = \|y\|_{V^{-1}} = \sqrt{\langle y, V^{-1}y \rangle} = \sqrt{\langle y, y \rangle_{V^{-1}}}$$

for any Hermitian positive definite $V \in \mathcal{B}(\mathcal{H}, \mathcal{H})$; we write this condition as $V \succ 0$. For finite dimensional spaces \mathcal{H} , this means that V is a positive definite matrix.

Recent insights allows a better bound on the step-size parameter.

S. Becker: Recent works such as [HY12] have proposed a very simple yet powerful technique for analysing optimization methods.

For given $u^k = (x^k, y^k)$, set the solution of (3.10) as a predictor. Namely,

$$\int \tilde{x}^{k} = \arg\min_{x \in \mathcal{X}} \{\Phi(x, y^{k}) + \frac{r}{2} \|x - x^{k}\|^{2} \},$$
(4.1a)

(CPPA)
$$\begin{cases} \tilde{y}^k = \arg \max_{y \in \mathcal{Y}} \left\{ \Phi\left([\mathbf{2}\tilde{x}^k - x^k], \lambda \right) - \frac{s}{2} \|y - y^k\|^2 \right\} \\ (4.1b) \end{cases}$$

where $\Phi(x,y) = \theta_1(x) - y^T A x - \theta_2(y).$

For given $u^k = (x^k, y^k)$, set the solution of (3.10) as a predictor. Namely,

$$\tilde{x}^{k} = \arg\min\{\theta_{1}(x) - x^{T}A^{T}y^{k} + \frac{r}{2}\|x - x^{k}\|^{2} | x \in \mathcal{X}\},$$
(4.2a)

$$\tilde{y}^{k} = \arg\min\left\{\theta_{2}(y) + y^{T}A[2\tilde{x}^{k} - x^{k}] + \frac{s}{2} \left\|y - y^{k}\right\|^{2} \left\|y \in \mathcal{Y}\right\}.$$
(4.2b)

The output
$$\tilde{u}^k \in \Omega$$
 of the iteration (4.1) is a predictor which satisfies
 $\theta(u) - \theta(\tilde{u}^k) + (u - \tilde{u}^k)^T F(\tilde{u}^k) \ge (u - \tilde{u}^k)^T H(u^k - \tilde{u}^k), \ \forall u \in \Omega.$ (4.3a)
where
 $H = \begin{bmatrix} rI & A^T \\ A & sI \end{bmatrix}$ is positive definite. (4.3b)
Correction-Extension
The new iterate is given by
 $u^{k+1} = u^k - \alpha(u^k - \tilde{u}^k), \ \alpha \stackrel{\text{say}}{=} 1.5 \in [1, 2).$ (4.4)

- ◇ B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle -point problem: From contraction perspective, SIAM J. Imag. Sci., 5, 119-149, 2012.
- ♦ B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56: 559-572, 2013.
- G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach, Comput. Optim. Appl., 59(2014), 135-161.

Setting $u = u^*$ in (4.3a), and using $(\tilde{u}^k - u^*)F(\tilde{u}^k) = (\tilde{u}^k - u^*)F(u^*)$, we get

$$(\tilde{u}^k - u^*)^T H(u^k - \tilde{u}^k) \ge 0.$$

Lemma 4.1 For given u^k , let the predictor \tilde{u}^k be generated by (4.3a), then we have

$$(u^{k} - u^{*})^{T} H(u^{k} - \tilde{u}^{k}) \ge \|u^{k} - \tilde{u}^{k}\|_{H}^{2},$$
(4.5)

where H is a positive definite matrix given by (4.3b).

For the given positive definite matrix H, (4.5) means that

$$\left(\nabla\left(\frac{1}{2}\|u-u^*\|_H^2\right)\Big|_{u=u^k}\right)^T \left(u^k - \tilde{u}^k\right) \ge \|u^k - \tilde{u}^k\|_H^2.$$

The above inequality tells us that $-(u^k - \tilde{u}^k)$ is a decent direction of the unknown distance function $\frac{1}{2} ||u - u^*||_H^2$ at the current point u^k .

$$u^{k+1}(\alpha) = u^k - \alpha(u^k - \tilde{u}^k), \quad \text{where} \quad \alpha \in (0, 2). \tag{4.6}$$

and consider to maximize the profit function

$$\vartheta_k(\alpha) = \|u^k - u^*\|_H^2 - \|u^{k+1}(\alpha) - u^*\|_H^2.$$
(4.7)

Thus, it follows from (4.6) that

$$\vartheta_k(\alpha) = \|u^k - u^*\|_H^2 - \|(u^k - u^*) - \alpha(u^k - \tilde{u}^k)\|_H^2$$

= $2\alpha(u^k - u^*)^T H(u^k - \tilde{u}^k) - \alpha^2 \|u^k - \tilde{u}^k\|_H^2.$

By using (4.5), we get

$$\vartheta_k(\alpha) \geq 2\alpha \|u^k - \tilde{u}^k\|_H^2 - \alpha^2 \|u^k - \tilde{u}^k\|_H^2$$
$$= \alpha(2-\alpha) \|u^k - \tilde{u}^k\|_H^2 = q_k(\alpha). \quad \Box$$

Fig 2. The reason for taking $\alpha=\gamma\alpha^*,\gamma\in[1,2)$

Theorem 4.1 For given u^k , let \tilde{u}^k and u^{k+1} be generated by (4.3) - (4.4), then we have

$$\|u^{k+1} - u^*\|_H^2 \le \|u^k - u^*\|_H^2 - \alpha(2 - \alpha)\|u^k - \tilde{u}^k\|_H^2, \ \forall u^* \in \Omega^*.$$
 (4.8)

Linearly constrained Optimization in form of VI 5

We consider the linearly constrained convex optimization problem

$$\min\{\theta(u) \mid \mathcal{A}u = b, \ u \in \mathcal{U}\}.$$
(5.1)

The Lagrange function of (5.1) is

$$L(u,\lambda) = \theta(u) - \lambda^T (\mathcal{A}u - b), \qquad (u,\lambda) \in \mathcal{U} \times \Re^m.$$
 (5.2)

Fig 2. The saddle point of the Lagrangian function

5.1 Saddle point and the equivalent variational inequality

A pair of (u^*,λ^*) is called a saddle point of the Lagrange function (5.2), if

$$L_{\lambda \in \Re^m}(u^*,\lambda) \le L(u^*,\lambda^*) \le L_{u \in \mathcal{U}}(u,\lambda^*).$$

The above inequalities mean that

$$\int u^* \in \mathcal{U}, \quad L(u,\lambda^*) - L(u^*,\lambda^*) \ge 0, \quad \forall \, u \in \mathcal{U},$$
(5.3a)

$$\left\{ \lambda^* \in \Lambda, \ L(u^*, \lambda^*) - L(u^*, \lambda) \ge 0, \ \forall \ \lambda \in \Lambda. \right.$$
(5.3b)

The inequality (5.3a) represents that

$$u^* \in \mathcal{U}, \ \ \theta(u) - \theta(u^*) + (u - u^*)^T (-\mathcal{A}^T \lambda^*) \ge 0, \ \ \forall \ u \in \mathcal{U}.$$
 (5.4)

Similarly, for (5.3b), we have

$$\lambda^* \in \Re^m, \ (\lambda - \lambda^*)^T (\mathcal{A}u^* - b) \ge 0, \ \forall \ \lambda \in \Re^m.$$
 (5.5)

Notice that the above expression is equivalent to

$$\mathcal{A}u^* = b.$$

Writing (5.4) and (5.5) together, we get the following variational inequality:

$$\begin{cases} u^* \in \mathcal{U}, & \theta(u) - \theta(u^*) + (u - u^*)^T (-\mathcal{A}^T \lambda^*) \ge 0, \quad \forall \, u \in \mathcal{U}, \\ \lambda^* \in \Re^m, & (\lambda - \lambda^*)^T (\mathcal{A}u^* - b) \ge 0, \quad \forall \, \lambda \in \Re^m. \end{cases}$$

The saddle-point can be characterized as the solution of the following VI:

$$w^* \in \Omega, \quad \theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \ge 0, \quad \forall w \in \Omega,$$
 (5.6)

where

$$w = \begin{pmatrix} u \\ \lambda \end{pmatrix}, \quad F(w) = \begin{pmatrix} -\mathcal{A}^T \lambda \\ \mathcal{A}u - b \end{pmatrix} \text{ and } \Omega = \mathcal{U} \times \Re^m.$$
 (5.7)

Notice that F is a affine operator with a skew-symmetric matrix, namely,

$$F(w) = \begin{pmatrix} 0 & -\mathcal{A}^T \\ \mathcal{A} & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix} - \begin{pmatrix} 0 \\ b \end{pmatrix},$$

we have $(w - \tilde{w})^T (F(w) - F(\tilde{w})) \equiv 0.$

Convex optimization problem with two separable functions

We consider the convex optimization problem which has the following form:

$$\min\{\theta_1(x) + \theta_2(y) \mid Ax + By = b, x \in \mathcal{X}, y \in \mathcal{Y}\}.$$
 (5.8)

This is a special problem of (5.1) with

$$u = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathcal{U} = \mathcal{X} \times \mathcal{Y}, \quad \mathcal{A} = (A, B).$$

The Lagrangian function of the problem (5.8) is

$$L^{2}(x, y, \lambda) = \theta_{1}(x) + \theta_{2}(y) - \lambda^{T}(Ax + By - b).$$

The same analysis tells us that the saddle point of the Lagrange function $L^2(x, y, \lambda)$ is a solution of the following variational inequality:

$$w^*\in\Omega,\ \theta(u)-\theta(u^*)+(w-w^*)^TF(w^*)\geq 0,\ \forall\,w\in\Omega, \tag{5.9a}$$
 where

$$u = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \theta(u) = \theta_1(x) + \theta_2(y),$$
 (5.9b)

$$w = \begin{bmatrix} x \\ y \\ \lambda \end{bmatrix}, \quad F(w) = \begin{bmatrix} -A^T \lambda \\ -B^T \lambda \\ Ax + By - b \end{bmatrix}.$$
 (5.9c)

and
$$\Omega = \mathcal{X} imes \mathcal{Y} imes \Re^m$$

The affine operator ${\cal F}(w)$ has the form

$$F(w) = \begin{pmatrix} 0 & 0 & -A^T \\ 0 & 0 & -B^T \\ A & B & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ \lambda \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}.$$

Again, we have

$$(w - \tilde{w})^T (F(w) - F(\tilde{w})) \equiv 0.$$

The augmented Lagrangian Function of the problem (5.8) is

$$\mathcal{L}_{\beta}(x,y,\lambda) = \theta_1(x) + \theta_2(y) - \lambda^T (Ax + By - b) + \frac{\beta}{2} \|Ax + By - b\|^2.$$
(5.10)

Alternating direction method of multipliers (ADMM)

Solving the problem (5.8) by using ADMM [4, 5], the k-th iteration begins with a given $v^k = (y^k, \lambda^k)$, it offers the new iterate $v^{k+1} = (y^{k+1}, \lambda^{k+1})$ via

$$x^{k+1} = \arg\min\left\{\mathcal{L}_{\beta}(x, y^k, \lambda^k) \mid x \in \mathcal{X}\right\},$$
(5.11a)

(ADMM)
$$\begin{cases} y^{k+1} = \arg\min\{\mathcal{L}_{\beta}(x^{k+1}, y, \lambda^k) \mid y \in \mathcal{Y}\}, \end{cases}$$
 (5.11b)

$$\lambda^{k+1} = \lambda^k - \beta (Ax^{k+1} + By^{k+1} - b).$$
 (5.11c)

Since x^{k+1} is a computational result dependent on the given $v^k = (y^k, \lambda^k),$ we

call it the intermediate variable. The variables $v = (y, \lambda)$ are called essential variables in ADMM.

We denote the solution set of (5.9) by Ω^* . The sequence $\{v^k\}$ generated by ADMM(5.11) satisfies

$$\|v^{k+1} - v^*\|_G^2 \le \|v^k - v^*\|_G^2 - \|v^k - v^{k+1}\|_G^2, \quad \forall v \in \mathcal{V}^*,$$
 (5.12)

where

$$v = \begin{pmatrix} y \\ \lambda \end{pmatrix}, \quad H = \begin{pmatrix} \beta B^T B & 0 \\ 0 & \frac{1}{\beta} I_m \end{pmatrix}$$

and

$$\mathcal{V}^* = \{ (y^*, \lambda^*) \, | \, (x^*, y^*, \lambda^*) \in \Omega^* \}.$$

For a short proof, the reader may refer to our paper [11]. Besides the contractive property (5.12), it was proved that the residue sequence $\{\|v^k - v^{k+1}\|_G^2\}$ generated by ADMM(5.11) is monotonically no-increasing, namely,

$$\|v^{k} - v^{k+1}\|_{G}^{2} \le \|v^{k-1} - v^{k}\|_{G}^{2}.$$

5.2 Extended PPA for Variational Inequalities (5.9)

The optimal condition of the problem (5.8) is characterized as the variational inequality (5.9), namely

$$w^* \in \Omega, \quad \theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \ge 0, \quad \forall w \in \Omega.$$

Guided by (4.3) - (4.4), we consider the following extended PPA for the above VI.

Let H be a proper positive definite matrix. [Prediction]. Start with a given v^k , find a predictor \tilde{w}^k which satisfies $\tilde{w}^k \in \Omega, \quad \theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k)$ $\geq (v - \tilde{v}^k)^T H(v^k - \tilde{v}^k), \quad \forall w \in \Omega.$ [Correction]. Update the new iterate v^{k+1} by $v^{k+1} = v^k - \alpha(v^k - \tilde{v}^k), \quad \alpha \stackrel{\text{say}}{=} 1.5 \in [1, 2).$ (5.14)

 $ar{\mathbf{w}}$ \tilde{w}^k is the solution of (5.9) if and only if $v^k = \tilde{v}^k$ $ar{\mathbf{w}}$

Similarly as in Section 4, setting $w = w^*$ in (5.13), we obtain

$$(\tilde{v}^k - v^*)^T H(v^k - \tilde{v}^k) \ge \theta(\tilde{u}^k) - \theta(u^*) + (\tilde{w}^k - w^*)^T F(\tilde{w}^k).$$

By using $(\tilde{w}^k - w^*)^T F(\tilde{w}^k) = (\tilde{w}^k - w^*)^T F(w^*)$ (see F(w) in (5.9c)) and the optimality, we obtain

$$(\tilde{v}^k - v^*)^T H(v^k - \tilde{v}^k) \ge 0,$$

and consequently,

$$(v^k - v^*)^T H(v^k - \tilde{v}^k) \ge \|v^k - \tilde{v}^k\|_H^2.$$
 (5.15)

Finally, we have the following results which is key-inequality of convergence for the prediction- correction method (5.13) - (5.14).

Theorem 5.1 For given v^k , let \tilde{w}^k and v^{k+1} be generated by the predictioncorrection method (5.13) - (5.14). Then we have

$$\|v^{k+1} - v^*\|_H^2 \le \|v^k - v^*\|_H^2 - \alpha(2 - \alpha)\|v^k - \tilde{v}^k\|_H^2, \quad \forall v^* \in \mathcal{V}^*.$$
(5.16)

6 Design the extended PPA for solving VI (5.9)

Design the extended PPA for VI (5.9) guided by (5.13) - (5.14).

6.1 ADMM in PPA-sense

In order to solve the separable convex optimization problem (5.8), we construct a method whose prediction-step is

$$\theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k) \ge (v - \tilde{v}^k)^T H(v^k - \tilde{v}^k), \ \forall w \in \Omega,$$
(6.1a)

where

$$H = \begin{pmatrix} (1+\delta)\beta B^T B & -B^T \\ -B & \frac{1}{\beta}I_m \end{pmatrix}, \quad \text{(a small } \delta > 0\text{, say } \delta = 0.05\text{)}.$$
(6.1b)

Since H is positive definite, we can use the update form of Algorithm I to produce the new iterate $v^{k+1} = (y^{k+1}, \lambda^{k+1})$. (In the algorithm [2], we took $\delta = 0$).

The concrete form of (6.1) is

$$\begin{cases}
\theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T \\
\{-A^T \tilde{\lambda}^k\} \ge 0, \\
\theta_2(y) - \theta_2(\tilde{y}^k) + (y - \tilde{y}^k)^T \\
\{-B^T \tilde{\lambda}^k + (1 + \delta)\beta B^T B(\tilde{y}^k - y^k) - B^T(\tilde{\lambda}^k - \lambda^k)\} \ge 0, \\
(\underline{A\tilde{x}^k + B\tilde{y}^k - b}) - B(\tilde{y}^k - y^k) + (1/\beta)(\tilde{\lambda}^k - \lambda^k) = 0.
\end{cases}$$
The underline part is $F(\tilde{w}^k)$:

$$F(w) = \begin{pmatrix} -A^T \lambda \\ -B^T \lambda \\ Ax + By - b \end{pmatrix}$$

In fact, the prediction can be arranged by

$$\widetilde{x}^{k} = \operatorname{Argmin}\{\mathcal{L}_{\beta}(x, y^{k}, \lambda^{k}) \,|\, x \in \mathcal{X}\},\tag{6.2a}$$

$$\tilde{\lambda}^k = \lambda^k - \beta (A\tilde{x}^k + By^k - b), \tag{6.2b}$$

$$\tilde{y}^{k} = \operatorname{Argmin} \left\{ \begin{array}{c} \theta_{2}(y) - y^{T} B^{T} [\mathbf{2} \tilde{\boldsymbol{\lambda}}^{k} - \boldsymbol{\lambda}^{k}] \\ + \frac{1+\delta}{2} \beta \|B(y - y^{k})\|^{2} \end{array} \middle| y \in \mathcal{Y} \right\}.$$
(6.2c)

The computational load of the prediction (6.2) equals the one of the ADMM (5.11). The correction $v^{k+1} = v^k - \alpha(v^k - \tilde{v}^k)$ will accelerate the convergence.

6.2 Linearized ADMM-Like Method

Simplify the subproblem (6.2c). Replace
$$\frac{1+\delta}{2}\beta \|B(y-y^k)\|^2$$
 with $\frac{s}{2}\|y-y^k\|^2$.

By using the linearized version of (6.2), the prediction step becomes

$$\theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k) \ge (v - \tilde{v}^k)^T H(v^k - \tilde{v}^k), \ \forall w \in \Omega, \ \text{(6.3)}$$

where

$$H = \begin{bmatrix} sI & -B^T \\ -B & \frac{1}{\beta}I_m \end{bmatrix}, \text{ (def (6.1) prime} \begin{bmatrix} (1+\delta)\beta B^T B & -B^T \\ -B & \frac{1}{\beta}I_m \end{bmatrix}.$$
 (6.4)

The concrete formula of (6.3) is

$$\begin{cases}
\theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T \\
\{ \underline{-A^T \tilde{\lambda}^k} \} \ge 0, \\
\theta_2(y) - \theta_2(\tilde{y}^k) + (y - \tilde{y}^k)^T \\
\{ \underline{-B^T \tilde{\lambda}^k} + \mathbf{s}(\tilde{y}^k - y^k) - \mathbf{B^T} (\tilde{\lambda}^k - \lambda^k) \} \ge 0, \\
(\underline{A\tilde{x}^k} + B\tilde{y}^k - b) - \mathbf{B}(\tilde{y}^k - y^k) + (\mathbf{1}/\beta)(\tilde{\lambda}^k - \lambda^k) = 0.
\end{cases}$$
The underline part is $F(\tilde{w}^k)$:

$$F(w) = \begin{pmatrix} -A^T \lambda \\ -B^T \lambda \\ Ax + By - b \end{pmatrix}$$
(6.5)

Then, we use the form

$$v^{k+1} = v^k - \alpha(v^k - \tilde{v}^k), \quad \alpha \in (0, 2)$$

to update the new iterate v^{k+1} .

How to implement the prediction? To get \tilde{w}^k which satisfies (6.5),

we need only use the following procedure:

$$\tilde{x}^{k} = \operatorname{Argmin}\{\mathcal{L}_{\beta}(x, y^{k}, \lambda^{k}) \,|\, x \in \mathcal{X}\},\tag{6.6a}$$

$$\tilde{\lambda}^k = \lambda^k - \beta (A\tilde{x}^k + By^k - b), \tag{6.6b}$$

$$\tilde{y}^{k} = \operatorname{Argmin}\left\{\theta_{2}(y) - y^{T}B^{T}\left[2\tilde{\lambda}^{k} - \lambda^{k}\right] + \frac{s}{2}\|y - y^{k}\|^{2} | y \in \mathcal{Y}\right\}$$
(6.6c)

The term $\frac{1+\delta}{2}\beta \|B(y-y^k)\|^2$ in (6.2c) is replaced by $\frac{s}{2}\|y-y^k\|^2$. In order to ensure the positivity of the matrix H in (6.4), $s > \beta \|B^T B\|$ is necessary. Solving the problem (6.6c) is somewhat easy than solving the problem (6.2c), however, sometimes the large scalar s will lead a slow convergence. 总结: 对求解凸优化问题

 $\min\{\theta_1(x) + \theta_2(y) \mid Ax + By = b, x \in \mathcal{X}, y \in \mathcal{Y}\},\$

我们在 §6 中提出两种预测-校正方法

- 如果子问题中求解过程中,二次项不带来任何困难的时候,建议采用 §6.1 中的方法.
- 如果子问题中求解过程中,对一个子问题中的二次项线性化后才比较容易求解,建议采用 §6.2 中的方法.

References

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning Vol. 3, No. 1 (2010) 1 – 122.

- [2] X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point algorithms revisit on the alternating direction method of multipliers, Science China Mathematics, 56 (2013), 2179-2186.
- [3] A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
- [4] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comput. Math. Appli., 2 (1976), pp. 17-40.
- [5] R. Glowinski, Numerical methods for Nonlinear Variational Problems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.
- [6] G.Y. Gu, B.S He and X. M. Yuan, Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach, Comput. Optim. Appl., 59, pp. 135-161, 2014.
- [7] B. S. He, PPA-like contraction methods for convex optimization: a framework using variational inequality approach. J. Oper. Res. Soc. China 3 (2015) 391 – 420.
- [8] B.S. He, M. Tao and X.M. Yuan, A splitting method for separable convex programming, *IMA J. Numerical Analysis* **31**(2015), 394-426.
- [9] B. S. He and X. M. Yuan, On the O(1/t) convergence rate of the alternating direction method, *SIAM J. Numerical Analysis* **50**(2012), 700-709.

- [10] B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective, *SIAM J. Imag. Science* 5(2012), 119-149.
- [11] B.S. He and X.M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating directions method of multipliers, Numerische Mathematik, 130 (2015) 567-577.
- [12] M. R. Hestenes, Multiplier and gradient methods, JOTA 4, 303-320, 1969.
- [13] B. Martinet, Regularisation, d'inéquations variationelles par approximations succesives, *Rev. Francaise d'Inform. Recherche Oper.*, **4**, 154-159, 1970.
- [14] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, NY, pp. 283-298, 1969.
- [15] R.T. Rockafellar, Monotone operators and the proximal point algorithm, *SIAM J. Cont. Optim.*, **14**, 877-898, 1976.
- [16] 何炳生, 我和乘子交替方向法 20 年, 《运筹学学报》 22 卷第1期, pp. 1-31, 2018.

VI 如"瞎子爬山"问是否最优,PPA 以"步步为营"向目标逼近.

Thank you very much for your attention !