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Convex optimization problems concerned in this note I

e min-max problem  minmax{®(z,y) = 61 (z) — y* Az — 6(y)}
reX yey

e Linearly constrained COP min{f(x)|Az =b(or > b), x € X'}
can be translated to the following min-max problem:

. o I & T _ pm m
;rél;lrynea)gc{lj(x,y)—el(aﬁ) y Az 4+ b yp, Y =R"(or NT).

e Convex Optimization with separable structure (ADMM)
min{f (x) + 62(y)|Az+ By =b, z € X, y € V}

ToAFN (V) ZREFIRLFIE TN B FRIERL N

PERF L (PPA) L2 AE RILIBITRIKER




1 Optimization problem and VI

1.1 Differential convex optimization in Form of VI

Let {2 C R", we consider the convex minimization problem

min{ f(x) | z € Q}. (1.1)

What is the first-order optimal condition ? '

x* e QO < z* € ()and any feasible direction is not descent direction.

Optimal condition in variational inequality form '

o Sy(z*) ={s e R" | sTVf(z*) <0} = Setofthe descent directions.

o S¢(x*)={seN" |s=z—2a*, €} = Setof feasible directions.

e & 2fe) and S(x*)N Sa(z*) = 0.



The optimal condition can be presented in a variational inequality (VI) form:

e Q, (x—2)'Vf(x*)>0, Vre. (1.2)

/ x € ) \
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Fig. 1 Differentiable Convex Optimization and VI

Since f(x) is a convex function, we have

fly) > f(x)+Vf () (y—z) andthus (z—y)' (Vf(x)—Vf(y)) > 0.

We say the gradient V f of the convex function f is a monotone operator.



Let ¥ C R™ be a closed convex set, #(x) and f(x) be convex functions and

f(x) is differentiable. Then, we have

x*EargHgg}H(x) & xreX, O(x)—0(x") >0, Ve e X.

" € argrréi)r(lf(a;) s reX, (r—a)'Vf@@*)>0,Vre X

Lemma 1.1 Let X' C R" be a closed convex set, () and f(x) be convex func-
tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{f(x) + f(x)|x € X'} is nonempty. Then,

" € arg rrélgcl{e(x) + f(x)} (1.3a)

if and only if

t* e X, O0(x) —0(x")+ (z — 2" Vf(x*) >0, Ve e X. (1.3b)




1.2 The Min-Max Problem

The min-max problem considered in this talk has the following mathematical form
mingey maxyecy ®(x,y) :=61(x) — y Az — 0(y), (1.4)

where A € R™*", 01(x) : R™ — Rand O2(y) : R™ — R are convex

functions which are not necessarily differentiable.

Let (z*, y*) be the solution of (1.4), then we have
(I)yEy(x*7 y) § (I)(QZ‘*7 y*) S (I)J?EX(xv y*)
These two inequalities can be written as

zte X, ®(x,y")—d(x*,y") >0, Ve X,
y e, o(x*,y")—d(x",y) >0, Yye).



Using the notation of ®(x, y), the above system can be written as

{:c* eX, 0i1(z)—61(z")+ (z —z*)T(—ATy*) >0, Vze€ X,
y €y, ba(y) —02(y*) + (y—y*)' (Az*) >0, Vye.

We write it in a compact form of the variational inequality:

VI(Q,F) v* €, 0(u)—0(u")+(u—u*) F(u*) >0, Yu € Q, (1.6a)

where

:

I
7\
e 8
N~

>

£

I

X

01(x) +02(y), F(u)= ( —Aly ) (1.6b)
0.

A
and Q = X x . Notice that (u — @)? (F'(u) — F(@))

We use the VI form (1.6), whether 6(u) is differentiable or not.




2 Proximal point algorithms and its Beyond

Lemma 2.1 Let the vectors a,b € R™, H € R™™™ be a positive definite matrix.
if b1’ H(a — b) > 0, then we have

IlI7 < llallz — lla —bll%-

The assertion follows from [|a||* = ||b + (@ — b)[|* > ||b]|* + ||a — b]|?.

2.1 Proximal point algorithms for convex optimization

Convex Optimization ' Now, let us consider the simple convex optimization

min{f(x) + f(x) | x € X'}, (2.1)

where 6(x) and f(x) are convex functions but 6(x) is not necessary smooth, X

IS a closed convex set.

For solving (2.1), the k-th iteration of the proximal point algorithm (abbreviated to



10

PPA) [13, 15] begins with a given ¥, offers the new iterate "1 via the recursion
r
F T = Argmin{0(x) + f(z) + §HCIZ — "% |z € X}, (2.2)

Since "1 is the solution of (2.2), it follows from Lemma 1.1 that 21 € X,

0(x)—0(x" T+ (z — POV F (5 + (2T —2F)) >0, Vo e X.

2.3
Setting x = x* in the above inequality, it follows that 7
(* 1 — )T (zh — gkt > 1Y _g(z*) + (2P — )TV (k).
Since (z* T — 2*) TV f(2FT1) > (P — )TV f(2*) > 0, we have
(" — )T (2P — 2T > 0. (2.4)
Let @ = zF — 2* and b = z*T1 — 2* and using Lemma 2.1, we obtain
lzF+t — 2|2 < ||l2F — 2*||? — ||a* — 2B Y2, (2.5)

which is a nice convergence property of the Proximal Point Algorithm.



We write the problem (2.1) and its PPA (2.2) in VI form

Instead of the optimization problem form z* € arg min{f(x) + f(x) |z € X'},

we use its equivalent VI statement

e X, 0(z) —0(x*)+ (z —2")'Vf(x*) >0, Ve eX. (26)

For solving the optimization problem (2.1), the k-th iteration of the PPA (see (2.3))
is: 2"t = argmin{f(x) + f(x) + 5|z — 2F||*| = € X'}, we prefer use

its equivalent VI form:

Pl e X, 0(x) — 0(aF ) + (2 — 2FTH) TV f(ah 1)

> (x — P ) Tr(aF — 28 Vo e X,

(2.7)

Using (2.6) and (2.7), we consider the PPA for the variational inequality (5.6)

11



2.2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the min-max problem is characterized as a monotone

variational inequality:

w e Q, Ou) —0u)+ (u—u)'Fu)>0 VYueQ (28

PPA for VI (2.8) in Euclidean-norm For given u* and r > 0, find %!

w1 e Q, O(u) — 0(uFh) + (u — YT F(uktt) 29)
> (u — uFH e (uf — uf L), Vu e Q. |

k+1

U is called the proximal point of the k-th iteration for the problem (2.8).

3 u” is the solution of (2.8) if and only if u® = u*T1 K

Setting u = u™ in (2.9), we obtain

(uk—i—l . u*)TT(uk . uk—|—1) > H(ukH) o Q(U*) + (uk—|—1 . u*)TF(uk+1)

12
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Note that (see the structure of F'(u) in (1.6b))
k T k k T
(" =) P = (M - u) R (u),
and consequently (by using (2.8)) we obtain

(W — ) (W =" > 0 ) — o) + (W — )T F(u) > 0.

Thus, we have
(w1 — )T (W — ) > 0. (2.10)

By setting a = u* —u* and b=u

that b (a — b) > 0. By using Lemma 2.1, we obtain

F+1 _ o*, the inequality (2.10) means

L e e T e (G Vil (2.11)

We get the nice convergence property of Proximal Point Algorithm.

For any positive definite matrix H, ||u|lz = (uT Hu)? is a Norm.




PPA for monotone mixed VI in H-norm '

k41

For given u®, find the proximal point u in H-norm which satisfies

w1l e Q, 0(u) — 0(u ) + (u — P THT F(ukth)

(2.12)
> (u — u*THTH(uF —uFt), Vu e Q,

where H is a symmetric positive definite matrix.

4 Again, u” is the solution of (2.8) if and only if u* = u*t1 K

Convergence Property of Proximal Point Algorithm in A -norm I

Huk+1

—u i < e = ut = et - e (2.13)

Any norms are equivalent! ||lu — u*||g — 0 < |Ju—u*|| — 0.

14
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3 PPA for VI arising from min-max problem

This section presents various applications of the proposed algorithms for the

min-max problem, namely

mingc y max,cy ®(z,y) := 0;1(z) — y' Az — 02(y). (3.1)

The equivalent variational inequality of the min — max problem (3.1) is

uw* €,Q, Ou)—0u*)+ (u—u)'Fu*) >0, Yue, (3.2a)

where
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3.1 How to reach an implementable PPA

If we use the PPA form (2.9) to solve (3.2), start from a given u¥ | the task is to

+1

find a u* , such that

W e Q) O(u) — 0(u ) + (u — uPTHT P (W
+ (Wt —u®)} >0, VueQ

The concrete form is

T

(9 _9 k+1 k1 —AT k+1

DL T U (AU B R o
0(y) —0(y" ") Ax

r(aFtt — 2F)
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According to Lemma 1.1, the equivalent optimization problems of the VI (3.3) is

r

[ 2F = arg mi)rg{@l(zz;) — T AT YR 4 §||51; — z"||?}, (3.4a)
TE
\
. r
|y = argmin{fa(y) +y" A 4 Sy - ot P (3.4b)

The problems (3.4a) and (3.4b) are coupled. Unfortunately, there are no

appropriate methods for solving the problems (3.4a) and (3.4b) together.

Replaced yk“ in (3.4a) with yk, the optimization problems (3.4) are reduced to

(2P = arg mig{@l(x) —alATyF 4 ng — 2?3, (3.5a)
TE

. T
yi T = arg min{fz(y) + y! Azt Slly = y"[1}. (3.5b)

\
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The problems (3.5) can be solved one by one, its equivalent VI form is

0(x) — 0(z"1)
0(y) —O(y" ")

($k+1,yk+1) c X X y’

_ATyk—H
Notice that F'(uft1) = [ Ak ] we rewrite the above VI in the form
x
B T
($k+1 k’—|—1) c X % y (I) T 9<$k+1) 4 L — xk—'_l _ATyk+1
(y) = 0" )| | y—y* Azt
3
k41 Lk T, k+tl .k
r(z —a®) + A (y )
+ b1k » >0, V(z,y) € X*x). (3.6)
0 ry )




The compact form of (3.6) is

LeqQ, 0(u) —0(u™) + (u —uH7T {F(ukH)
)

+ QT —uF)} >0, Vue Q. (37)
where
rl, AT
Q= IS not symmetric.
0 ril,
If we change the block upper-triangular matrix
’I“In AT TIn AT
Q = to a symmetric matrix H = :
0 ril, A sl,,

the variational inequality (3.7) becomes

Le, O(u) — 0T + (uw— M THT{F (WM
+ H(uMt — uk)} >0, Yue€.(3.8)

19



Notice that the concrete form of (3.8) is

0(x) — 0(z"")

(ka:—i_l,yk_'_l) c X x y’
0(y) —O(y" ")

-LU o $k+1 T _ATyk:—l—l
_I_
y — yk—|—1 A$k+1

\

7a(xk—i—l . xk) i AT(yk—H . yk)
A(.CIJIH_l o Zbk) i S(yk—I—l . yk)

> >0, V(z,y) € XXY. (3.9)

According to Lemma 1.1, the variational inequality (3.9) is implemented by

[ 2F = arg mi)rcl{ﬁl(x) — T ATyF + ng — z"||?}, (3.10a)
re

. S
|yt =arg min{6z(y) + yt A2 — 2y + Slly = y*||}. (3.10b)

20
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Ilgnoring the constant term in the objective function,

k41

For given (¥, /%), we get 2% 1! via solving

1
k+1 _ Ny Tk = AT E1112Y
T —arggggg{ 1(:U)+2H33 [ T oAy J=}

With the getting z*+1 we obtain y* 11 by solving the following problem:
Y

Thane— argmm{eg %Hy — [yk — 1A gt — H }

yey S

Using the notation of ®(x, ), the iterative scheme (3.10) can be written as

([ k+1

T :arg;nigfl{cb(x,yk)—kng—ka}, (3.11a)

k+1 o S, Sy — Rl
\ Y —argrgleaﬁc{@( x ],y) 2Hy Y H } (3.11b)




Assumption: '

1. The sub-problems

: T2 - 2y — gll?
gél;r(l{el(aj)—l_ZHx p|*} and g%lgrjl{@z(y)+2||y qll”}

have closed solution. Thus, solving the sub-problems in (3.11) is simple.

T
2. The matrix H = [TI” A ] is positive definite.
A s,
T
rs > |[ATA|| — H = [rI'”' }; ] is positive definite.
Sim

Theorem 3.1 The method (3.10) is a PPA for VI (3.2). The generated sequence
{uf = (2F,9y*)} satisfies

|ut =t |E < e -t = et = T, Vet e Q.

22



3.2 Chambolle-Pock method

The Chambolle-Pock algorithm [3] is a well known approach for solving the
min-max problems arising from imaging processing. Following is their iterative
scheme:

For given (z*, 1/*), produce a pair of ("1, y**1). First,

e = argmin{®(x, y*) + ZHCU — z"|*}. (3.12a)
reX 2
Then, set
Th = oF T (Pt — 2R, e 0,1] (3.12D)

Finally, obtain y**! via

_ S
y" T = Argmax{®(z",y) — Slly = v |I* |y € V1, (3.12¢)

Using Lemma 1.1, we interpreted the output of the Chambolle-Pock algorithm as
the solution of the solution of the following variational inequality:

23
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T
9(%) . 9($k+1) T — szlc—i—l _ATyk—i—l

0(y) — O(y" ) y —y" AzFt!

The compact form of (3.13) is
O(u) — 0(u" ) + (u— " THT{F (W™ + Q(u* T —u)} > 0, Vu € Q,
where

rl, AT

o |
TA sl,,

] is not symmetric unless 7 = 1.

SetT = landletrs > ||AT A||, (3.13) is the PPA form (2.12). Our re-normed
PPA interpretation greatly simplifies the convergence analysis.

The method (3.12) is first proposed by Chambolle and Pock [3] and is called C-P
method. Thanks to the authors for mentioning our proof in a footnote of this paper.



3.3 Simplicity recognition

VI-PPA Form is recognized by Researchers in Image Science I

In the first paper about C-P method

e A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex prob-
lem with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.

the authors mentioned our proof (interpretation) in the footnote of page 121.

e T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011.

Diagonal preconditioning for first order primal-dual algorithms
in convex optimization®

Thomas Pock Antonin Chambolle
Institute for Computer Graphics and Vision CMAP & CNRS
Graz University of Technology Ecole Polytechnique

pock@icg.tugraz.at antonin.chambolle@cmap.polytechnique. fr
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preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F'™* it follows that for any (z,y) € X X

Y the iterates 2" 1 and y**! satisfy
$_$k+1) (xk+1> (xk+1_xk>>
F M >0,
< ( Y — g+ k1 ghFL gk
&)
where
xk'H (9G((Ek+1) _|_KTyk:+1
F yk—|—1 — aF*(yk—l—l) _ Kkt 3
and ) .
T —K
M= [ W ] (©)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].

26



[9] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, New Jersey, 1962.
[10] B. He and X. Yuan. Convergence analysis of primal-dual
algorithms for total variation image restoration. Technical
report, Nanjing University, China, 2010.

Math. Program., Ser. A
DOI 10.1007/s10107-015-0957-3
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In this work we revisit a first-order primal—dual algorithm which was introduced in [ 15,
26] and its accelerated variants which were studied in [5]. We derive new estimates
for the rate of convergence. In particular, exploiting a proximal-point interpretation
due to [16], we are able to give a very elementary proof of an ergodic O(1/N) rate
of convergence (where N is the number of iterations), which also generalizes to non-

Algorithm 1: O(1/N) Non-linear primal—dual algorithm

e Input: Operator norm L := || K|, Lipschitz constant L ¢ of V f, and Bregman
distance functions Dy and D).

e Initialization: Choose (xo, yo) eXx)V, 1,0>0

e lterations: For each n > 0 let

" Y Y = PDL (7, ¥, 26— Xy (11)

The elegant interpretation in [ 16] shows that by writing the algorithm in this form

& The cited paper [16] published in SIAM J. Imaging Science, 2012
B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a

saddle -point problem: From contraction perspective, SIAM J. Imag. Science
5(2012), 119-149.
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4 Extended PPA for the Variational Inequality

University of Colorado Boulder Technical Report, Department of Applied Mathematics

The Chen-Teboulle algorithm is the proximal point algorithm

Stephen Becker *
November 22, 2011; posted August 13, 2019

Abstract

We revisit the Chen-Teboulle algorithm using recent insights and show that this allows a better bound
on the step-size parameter.

1 Background

Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization
methods. The idea consists simply of working with a different norm in the product Hilbert space. We fix an
inner product (x,y) on H x H*. Instead of defining the norm to be the induced norm, we define the primal
norm as follows (and this induces the dual norm)

lzllv = V(Va,z) = V{z,2)v, lylly = lylv-r = V{5 V1y) = Vg y)v—

for any Hermitian positive definite V' € B(H,H); we write this condition as V' > 0. For finite dimensional
spaces H, this means that V is a positive definite matrix.

Recent insights allows a better bound on the step-size parameter.

30



S. Becker: Recent works such as [HY12] have proposed a very

simple yet powerful technique for analysing optimization methods.

For given uk = (xk, yk) set the solution of (3.10) as a predictor. Namely,

[ FF = argrréigg{q)(x,yk) + gHaz — 2"}, (4.1a)
(CPPA) <

~J ~k k S k112
— argmax{ ®([28% — 2*],\) — 2|y — 4.1b
\ 0 arg yea);s)c{ ([ x x”] ) 2Hy Y || } ( )

where ®(z,y) = 01 (z) — y! Az — 05(y).

For given uk = (xk, yk) set the solution of (3.10) as a predictor. Namely,

( 7% = arg min{0; (z) — 2T ATy* 4 ng —2*)2 )z € X, (4.2a)

g = argmin {0(y) +y" AR27" —2*] 4+ Z[ly =" ||* |y € V}.(4:20)

\
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The output a* € Q of the iteration (4.1) is a predictor which satisfies
O(u) —0(a")+ (u—a™)T F(a*) > (u—a™)" H(u" —a%), Yu € Q. (4.3a)
where
H = [ I A ] is positive definite. (4.3b)
A sl
Correction-Extension ' The new iterate is given by
w1 = ok — (W — @), o= 1.5€(1,2). (4.4)

¢ B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle
-point problem: From contraction perspective, SIAM J. Imag. Sci., 5, 119-149, 2012.

¢ B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex
minimization with linear constraints, Comput. Optim. Appl., 56: 559-572, 2013.

¢ G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly
constrained convex minimization and saddle-point problems: a unified approach,
Comput. Optim. Appl., 59(2014), 135-161.
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Setting u = u* in (4.3a), and using (@* — u*)F(@*) = (a* — u*)F(u*), we
get
(@¥ — u)TH(u® —a*) > 0.

Lemma 4.1 For given uk, let the predictor a* be generated by (4.3a), then we
have

(u* —u)" H(u" —a*) > [u* — ¥, (4.5)

where H is a positive definite matrix given by (4.3b).

For the given positive definite matrix H, (4.5) means that
1 * (12
V(5 llu— %)

The above inequality tells us that —(uk — ﬂk) is a decent direction of the

unknown distance function % ||u — u*||%; at the current point .

T
) (b =) > k-t

u=uk

33



k+1

Then, we can define an «- dependent new iterate u,, "~ given by
w1 (o) = uf — a(uf — %), where a € (0,2). (4.6)
and consider to maximize the profit function
Ir(a) = [lu* —u'||F — [u" () — u"[lF. (4.7)

Thus, it follows from (4.6) that
Ie(@) = [lu" —u |5 = [|(u" = u") — a(u” — @)k
= 2a(u” —u)"HW" — ") — || — a"||%.
By using (4.5), we get
Je(e) > 2afu® —a¥|f — o®[u® —a¥|F

= a@2-a)|u" -@"|fF = q(e). O

34
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qx () reaches its maximum at o}, which is given by o, = 1

9 ()

q(c)

—>>
(07

Fig 2. The reason for taking o = ya™, v € [1, 2)

Theorem 4.1 For given u®, let a* and uFt! be generated by (4.3) - (4.4), then

we have

[ —u | < ut =t - a2-a)|ut — At Yut e Q. @48)
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5 Linearly constrained Optimization in form of VI

We consider the linearly constrained convex optimization problem
min{f(u) | Au=b, u € U}. (5.1)
The Lagrange function of (5.1) is

L(u,\) = 0(u) — X' (Au—b),  (u,\) €U x ™. (5.2)

Saddle point

Fig 2. The saddle point of the Lagrangian function



5.1 Saddle point and the equivalent variational inequality

A pair of (u*, \*) is called a saddle point of the Lagrange function (5.2), if
Lyepm (u™, A) < L(u*, \*) < Lyecy(u, A7).
The above inequalities mean that
u €U, L(u,\*)—Lu*,\")>0, Yuel, (5.3a)
{ A e, Lw , \*)—Lu",\) >0, VXeA. (5.3b)
The inequality (5.3a) represents that
w* eU, O(u) —0(u*) + (u—u ) (—ATXN) >0, Yucl. (54
Similarly, for (5.3b), we have
AeR™ (A=) (Au* —b) >0, Y R™. (5.5)
Notice that the above expression is equivalent to

Au* = b.
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Writing (5.4) and (5.5) together, we get the following variational inequality:
w* e, Ou)—0u*)+ (u—u)(=ATX\*) >0, Yuel,
{)\* c R™, A=) (Au* —b) >0, Ve R™
The saddle-point can be characterized as the solution of the following VI:
w* € Q, Ou) —0u*) + (w—w)'Fw*) >0, YweN, (56

where

u — AT\
w:( ), F(w):< ) and Q=UXxR". (5.7
A Au —b

Notice that F' is a affine operator with a skew-symmetric matrix, namely,

re=(3 ) G) - ()

we have (w — 0)? (F(w) — F(w)) = 0.
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Convex optimization problem with two separable functions I

We consider the convex optimization problem which has the following form:
min{6;(x) + 02(y) | Ax+ By =b, x € X,y € V}. (5.8)
This is a special problem of (5.1) with

X
u = L U=XxY, A= (A, DB).
Y

The Lagrangian function of the problem (5.8) is

The same analysis tells us that the saddle point of the Lagrange function

L?(x,y, \) is a solution of the following variational inequality:
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w* € Q, O(u) — O(u*) + (w —w*) ' F(w*) >0, Vw e,  (59a)

where
U = [ ;j ], O(u) = 01(x) + 02(y), (5.9b)
x — AT\
w = [ Y ], F(w) = — BT\ ] (5.9¢)
A

The affine operator F'(w) has the form
0 0 —A" x 0
Flw)=10 0 —-BT y | —10
A B 0 A b
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Again, we have

The augmented Lagrangian Function of the problem (5.8) is
Lo(z,y,A) = 6i(z)+62(y) — ' (Az + By — b)

+§HA5E+By—bH2. (5.10)

Alternating direction method of multipliers (ADMM)

Solving the problem (5.8) by using ADMM [4, 5], the k-th iteration begins with a
given v* = (y*, \¥), it offers the new iterate v* 1 = (y*+1 \FF1) via

(2F = arg min{ﬁg(x,yk,)\k) ’ T € X}, (5.11a)
(ADMM) ¢ ¢**' = argmin{Ls(z""",y,X*) |y € Y},  (5.11b)
(AP = \F — g(AZP T 4 Byt — ). (5.11¢)

k+1

Since x is a computational result dependent on the given vk = (yk, )\k), we
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call it the intermediate variable. The variables v = (y, A) are called essential
variables in ADMM.

We denote the solution set of (5.9) by {2*. The sequence {’Uk} generated by
ADMM(5.11) satisfies

[0 =0T [E < ot =0Tl = (ot = oMHE, Yee VT, (542)

where
BTB 0

y " s

A 0 51m
and

V5= {(y*, ") | (", 9", \*) € Q*}.

For a short proof, the reader may refer to our paper [11]. Besides the contractive
property (5.12), it was proved that the residue sequence {||v* — v*T1||%}
generated by ADMM(5.11) is monotonically no-increasing, namely,

v — "G < o =0t



5.2 Extended PPA for Variational Inequalities (5.9)

The optimal condition of the problem (5.8) is characterized as the variational
inequality (5.9), namely

w* € Q, Ou) —0(u*) + (w—w)'Fw*) >0, Ywe .

Guided by (4.3) - (4.4), we consider the following extended PPA for the above VI.

Let H be a proper positive definite matrix.

[Prediction]. Start with a given V¥, find a predictor w" which satisfies

Wk e, 0(u) — 0(aF) + (w — oF)TF (@)

(5.13)
> (v — ) TH (W — %), Yw e Q.
[Correction]. Update the new iterate v* ! by
Pt = oF —a(? — %), aZ 1.5€][1,2). (5.14)

L wF is the solution of (5.9) if and only if v* = oF K
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Similarly as in Section 4, setting w = w™ in (5.13), we obtain
(é}k — fu*)TH(vk — z’?k) > 9(1’2’“) —0(u”™) + (f([}k — w*)TF(zbk)

By using (w* — w*)T F(0%) = (@F — w*)T F(w*) (see F'(w) in (5.9¢)) and
the optimality, we obtain

(% — T H(@F — %) >0,
and consequently,
v — vt —0") 2 ||[v7 — : (5.15)
k NI (0F — 55) > [loF — 5F %{

Finally, we have the following results which is key-inequality of convergence for
the prediction- correction method (5.13) - (5.14).

Theorem 5.1 For given V¥, let w* and v* ! be generated by the prediction-
correction method (5.13) - (5.14). Then we have

||’UkjL1 —U*H%{ < Hvk—v*H%{—a@—Q)Hvk—17’“”%[, Vot € V*. (5.16)
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6 Design the extended PPA for solving VI (5.9)

Design the extended PPA for VI (5.9) guided by (5.13) - (5.14).

6.1 ADMM in PPA-sense

In order to solve the separable convex optimization problem (5.8), we construct a
method whose prediction-step is

O(u) — 0(i%) + (w — *)TF(@F) > (v — )T HW" — %), Yw € Q,

(6.1a)
where
1+90)8B'B —BT
H = (1+29)5 , (asmalld > 0, say 0 = 0.05).
-B 51m
(6.1b)

Since H is positive definite, we can use the update form of Algorithm | to produce
the new iterate v 1 = (y*T1, A¥+1) (In the algorithm [2], we took § = 0).
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The concrete form of (6.1) is N
(6-1)1 The underline part is F(0"):

f

91(58) —Hl(fk)—l—(a?—fﬁk)T _ AT\
{—AT) Y >0, F(w) = —BT X
Ax + By — b

\\

O2(y) — 02(5") + (y — g°)"
{=BTXN* + (1 + 6)BB" B(§" — y*)—BT (\* — \F)} > 0,
| (42" +Bj*F —b) —B@E" - + (1/8) A=A =o0.

In fact, the prediction can be arranged by

(&% = Argmin{Ls(z,y", \*) |z € X}, (6.2a)

A =\ — B(AZF + ByF — 1), (6.2b)
\

_ 05(y) — y! BT 22k — \F

N Gl I R
\ +5°B81By — y")|

The computational load of the prediction (6.2) equals the one of the ADMM (5.11).

k4L — gk (o

The correction v — 17’“) will accelerate the convergence.




6.2 Linearized ADMM-Like Method

Simplify the subproblem (6.2c). Replace 12 8|| B(y — y*)||? with £[jy — y*||°.

By using the linearized version of (6.2), the prediction step becomes

0(u)—0(a")+(w—a")T F(wk) > (v—0MT H (W —5%), Yw € Q, (6.3)

where
sI —Bt 1+6)8BTB —BT
— [ 1 ] , X% 6.1) PAY ( )P ) . (6.4)
_ B 3[’” —B 3Im
The concrete formula of (6.3) is The underline part is F(fu?’“):
( 01 () — 01(2") + (z — z%)7 _ AT
{=AT)"} >0, F(w) = —BTA
A By — b
3 Oa(y) — 025") + (v — 7) il ©5)

{=BTN + s(@* —y*) —BT (W -A")} >0,
(Az" + Bg* — b)—B(7" — ") + (1/B8)(\F — \*) = 0.

\



Then, we use the form

P = oF —a(v® =), a €(0,2)

to update the new iterate v* 11,

How to implement the prediction? ' To get " which satisfies (6.9),

we need only use the following procedure:

(& = Argmin{Ls(z,y", \¥) |z € X}, (6.6a)

! A= )\F — B(AZ* + By* —b), (6.6b)

~ . ~ S
| 9" = Agmin{0a(y) — y" BT [2A" — A*] + Sy — y¥||? |y € V}(6.60)

The term 222 3|| B(y — y*)||? in (6.2¢) is replaced by £y — y*||. In order to
ensure the positivity of the matrix H in (6.4), s > || B B|| is necessary.

Solving the problem (6.6c) is somewhat easy than solving the problem (6.2c),

however, sometimes the large scalar s will lead a slow convergence.
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BEE XPKRCLALE)
min{6h (z) + 02(y) | Az + By = b, z € X,y € V},

A §6 i AIFUN-1RIE 7 A

o MR F o] psk L FE A, ZIRINA 5 SR 0] [ Mk RO B %, 3K A
6.1 AV E.

o MR FOJEFKFEIIZAR, F— N FiRjR PRI X IZ& ML R A EEER
BEKEE BZIER §6.2 FRIGE.
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