变分不等式框架下结构型凸优化的分裂收缩算法

I．凸优化及其在变分不等式框架下的邻近点算法

```
中学的数理基础 必要的社会实践普通的大学数学 一般的优化原理
```


何 炳 生 南京大学数学系

Homepage：maths．nju．edu．cn／～hebma天元数学东北中心 2023年10月17－27日

华罗庚先生普及＂双法＂对我们的启示

－华罗庚先生当年普及的双法一统筹法和优选法。 普及双法以优选法为主。

- 要＂牢记把方法交给群众＂。
- 华罗庚《数学工作者要大力为农业服务》

人民日报1960年10月30日
－这成为从上世纪 60 年代开始的近 20 年间，华罗庚从事数学普及工作的指导思想。

- 王元《华罗庚》
- 随着全民族文化水平的提高，群众有了新的定义．提供工程师们容易掌握的方法，可以作为部分优化学者的工作目标．

能够交给 "群众" 的方法, 应该是普通大学生能够理解, 掌握的方法.

Homepage：maths．nju．edu．cn／～hebma

我会尽量维护自己的主页，不断修正，更新自己学术的体验，

我的报告的 PDF 文件，一般都可以在我的主页上查到．

连续优化中一些代表性数学模型

1．鞍点问题 $\quad \min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}\left\{\Phi(x, y)=\theta_{1}(x)-y^{T} A x-\theta_{2}(y)\right\}$
2．线性约束的凸优化问题 $\quad \min \{\theta(x) \mid A x=b($ or $\geq b), x \in \mathcal{X}\}$
3．结构型凸优化 $\min \left\{\theta_{1}(x)+\theta_{2}(y) \mid A x+B y=b, x \in \mathcal{X}, y \in \mathcal{Y}\right\}$
4．多块可分离凸优化 $\min \left\{\sum_{i=1}^{p} \theta_{i}\left(x_{i}\right) \mid \sum_{i=1}^{p} A_{i} x_{i}=b, x_{i} \in \mathcal{X}_{i}\right\}$
变分不等式 (VI) 是瞎子爬山的数学表达形式邻近点算法（PPA）是步步为营稳扎稳打的求解方法．变分不等式和邻近点算法是分析和设计凸优化方法的两大法宝．

分裂是指迭代中子问题都通过分拆求解．收缩算法有别于可行方向法，又有别于下降算法，它的迭代点离优化问题的拉格朗日函数的鞍点越来越近．

这一讲解释上述问题都可以化为一个单调变分不等式 并介绍什么是邻近点算法

A function $f(x)$ is convex iff

$$
\begin{aligned}
f((1-\theta) x+\theta y) & \leq(1-\theta) f(x)+\theta f(y) \\
\forall \theta & \in[0,1] .
\end{aligned}
$$

Properties of convex function

- $f \in \mathcal{C}^{1} . f$ is convex iff

$$
f(y)-f(x) \geq \nabla f(x)^{T}(y-x)
$$

Thus, we have also

$$
f(x)-f(y) \geq \nabla f(y)^{T}(x-y)
$$

- Adding above two inequalities, we get

Convex function

$$
(y-x)^{T}(\nabla f(y)-\nabla f(x)) \geq 0
$$

- $f \in \mathcal{C}^{1}, \nabla f$ is monotone. $f \in \mathcal{C}^{2}, \nabla^{2} f(x)$ is positive semi-definite.
- Any local minimum of a convex function is a global minimum.

1 Optimization problem and VI

1．1 Differential convex optimization in Form of VI

Let $\Omega \subset \Re^{n}$ ，we consider the convex minimization problem

$$
\begin{equation*}
\min \{f(x) \mid x \in \Omega\} \tag{1.1}
\end{equation*}
$$

What is the first－order optimal condition？

$x^{*} \in \Omega^{*} \quad \Leftrightarrow \quad x^{*} \in \Omega$ and any feasible direction is not a descent one．

Optimal condition in variational inequality form

－$S_{d}\left(x^{*}\right)=\left\{s \in \Re^{n} \mid s^{T} \nabla f\left(x^{*}\right)<0\right\}=$ Set of the descent directions．
－$S_{f}\left(x^{*}\right)=\left\{s \in \Re^{n} \mid s=x-x^{*}, x \in \Omega\right\}=$ Set of feasible directions．

$$
x^{*} \in \Omega^{*} \quad \Leftrightarrow \quad x^{*} \in \Omega \quad \text { and } \quad S_{f}\left(x^{*}\right) \cap S_{d}\left(x^{*}\right)=\emptyset .
$$

瞎子爬山判定山顶的准则是：所有可行方向都不再是上升方向

The optimal condition can be presented in a variational inequality (VI) form:

$$
\begin{equation*}
x^{*} \in \Omega, \quad\left(x-x^{*}\right)^{T} \nabla f\left(x^{*}\right) \geq 0, \quad \forall x \in \Omega \tag{1.2}
\end{equation*}
$$

Substituting $\nabla f(x)$ with an operator F (from \Re^{n} into itself), we get a classical VI.

Fig. 1.1 Differential Convex Optimization and VI
Since $f(x)$ is a convex function, we have
$f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$ and thus $(x-y)^{T}(\nabla f(x)-\nabla f(y)) \geq 0$.
We say the gradient ∇f of the convex function f is a monotone operator.

通篇我们需要用到的大学数学 主要是基于微积分学的一个引理

$$
\begin{aligned}
& x^{*} \in \operatorname{argmin}\{\theta(x) \mid x \in \mathcal{X}\} \Leftrightarrow x^{*} \in \mathcal{X}, \quad \theta(x)-\theta\left(x^{*}\right) \geq 0, \quad \forall x \in \mathcal{X} ; \\
& x^{*} \in \operatorname{argmin}\{f(x) \mid x \in \mathcal{X}\} \Leftrightarrow x^{*} \in \mathcal{X}, \quad\left(x-x^{*}\right)^{T} \nabla f\left(x^{*}\right) \geq 0, \quad \forall x \in \mathcal{X} .
\end{aligned}
$$

上面的凸优化最优性条件是最基本的，看起来合在一起就是下面的引理：
定理1 Let $\mathcal{X} \subset \Re^{n}$ be a closed convex set，$\theta(x)$ and $f(x)$ be convex func－ tions and $f(x)$ is differentiable．Assume that the solution set of the minimization problem $\min \{\theta(x)+f(x) \mid x \in \mathcal{X}\}$ is nonempty．Then，

$$
\begin{equation*}
x^{*} \in \arg \min \{\theta(x)+f(x) \mid x \in \mathcal{X}\} \tag{1.3a}
\end{equation*}
$$

if and only if
凸优化最优性条件定理

$$
\begin{equation*}
x^{*} \in \mathcal{X}, \quad \theta(x)-\theta\left(x^{*}\right)+\left(x-x^{*}\right)^{T} \nabla f\left(x^{*}\right) \geq 0, \quad \forall x \in \mathcal{X} . \tag{1.3b}
\end{equation*}
$$

定理把优化问题（1．3a）转换成了变分不等式（1．3b）．下面给出证明．

Proof : First, if (1.3a) is true, then for any $x \in \mathcal{X}$, we have

$$
\begin{equation*}
\frac{\theta\left(x_{\alpha}\right)-\theta\left(x^{*}\right)}{\alpha}+\frac{f\left(x_{\alpha}\right)-f\left(x^{*}\right)}{\alpha} \geq 0 \tag{1.4}
\end{equation*}
$$

where

$$
x_{\alpha}=(1-\alpha) x^{*}+\alpha x, \quad \forall \alpha \in(0,1] .
$$

Because $\theta(\cdot)$ is convex, it follows that

$$
\theta\left(x_{\alpha}\right) \leq(1-\alpha) \theta\left(x^{*}\right)+\alpha \theta(x)
$$

and thus

$$
\theta(x)-\theta\left(x^{*}\right) \geq \frac{\theta\left(x_{\alpha}\right)-\theta\left(x^{*}\right)}{\alpha}, \quad \forall \alpha \in(0,1]
$$

Substituting the last inequality in the left hand side of (1.4), we have

$$
\theta(x)-\theta\left(x^{*}\right)+\frac{f\left(x_{\alpha}\right)-f\left(x^{*}\right)}{\alpha} \geq 0, \quad \forall \alpha \in(0,1]
$$

Using $f\left(x_{\alpha}\right)=f\left(x^{*}+\alpha\left(x-x^{*}\right)\right)$ and letting $\alpha \rightarrow 0_{+}$, from the above inequality we get

$$
\theta(x)-\theta\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{T}\left(x-x^{*}\right) \geq 0, \quad \forall x \in \mathcal{X}
$$

Thus (1.3b) follows from (1.3a). Conversely, since f is convex, it follow that

$$
f\left(x_{\alpha}\right) \leq(1-\alpha) f\left(x^{*}\right)+\alpha f(x)
$$

and it can be rewritten as

$$
f\left(x_{\alpha}\right)-f\left(x^{*}\right) \leq \alpha\left(f(x)-f\left(x^{*}\right)\right)
$$

Thus, we have

$$
f(x)-f\left(x^{*}\right) \geq \frac{f\left(x_{\alpha}\right)-f\left(x^{*}\right)}{\alpha}=\frac{f\left(x^{*}+\alpha\left(x-x^{*}\right)\right)-f\left(x^{*}\right)}{\alpha},
$$

for all $\alpha \in(0,1]$. Letting $\alpha \rightarrow 0_{+}$, we get

$$
f(x)-f\left(x^{*}\right) \geq \nabla f\left(x^{*}\right)^{T}\left(x-x^{*}\right)
$$

Substituting it in the left hand side of (1.3b), we get

$$
x^{*} \in \mathcal{X}, \quad \theta(x)-\theta\left(x^{*}\right)+f(x)-f\left(x^{*}\right) \geq 0, \quad \forall x \in \mathcal{X}
$$

and (1.3a) is true. The proof is complete.

可微约束优化问题的最优性必要条件

设 $f(x), \varphi_{i}(x), i=1, \ldots, m$ ，都是从 $\Re^{n} \rightarrow \Re$ 的连续可微函数，研究问题

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t } & \varphi_{1}(x)=0, \\
& \vdots \\
& \varphi_{m}(x)=0
\end{array}
$$

相应的 Lagrange 函数

$$
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} \varphi_{i}(x) .
$$

最优性必要条件是：

$$
\left\{\begin{array}{c}
\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)-\left(\begin{array}{cccc}
\frac{\partial \varphi_{1}}{\partial x_{1}} & \frac{\partial \varphi_{2}}{\partial x_{1}} & \cdots & \frac{\partial \varphi_{m}}{\partial x_{1}} \\
\frac{\partial \varphi_{1}}{\partial x_{2}} & \frac{\partial \varphi_{2}}{\partial x_{2}} & \cdots & \frac{\partial \varphi_{m}}{\partial x_{2}} \\
\vdots & & & \\
\frac{\partial \varphi_{1}}{\partial x_{n}} & \frac{\partial \varphi_{2}}{\partial x_{n}} & \cdots & \frac{\partial \varphi_{m}}{\partial x_{n}}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{m}
\end{array}\right)=0 \\
\varphi_{i}(x)=0, \quad i=1, \ldots, m
\end{array}\right.
$$

1.2 Linear constrained convex optimization and VI

We consider the linearly constrained convex optimization problem

$$
\begin{equation*}
\min \{\theta(u) \mid \mathcal{A} u=b, u \in \mathcal{U}\} \tag{1.5}
\end{equation*}
$$

The Lagrangian function of the problem (1.5) is

$$
\begin{equation*}
L(u, \lambda)=\theta(u)-\lambda^{T}(\mathcal{A} u-b) \tag{1.6}
\end{equation*}
$$

which is defined on $\mathcal{U} \times \Re^{m}$.

Example 1 of the problem (1.5): Finding the nearest correlation matrix

A positive semi-definite matrix, whose each diagonal element is equal 1 , is called the correlation matrix. For given symmetric $n \times n$ matrix C, the mathematical form of finding the nearest correlation matrix X is

$$
\begin{equation*}
\min \left\{\left.\frac{1}{2}\|X-C\|_{F}^{2} \right\rvert\, \operatorname{diag}(X)=e, X \in S_{+}^{n}\right\} \tag{1.7}
\end{equation*}
$$

where S_{+}^{n} is the positive semi-definite cone and e is a n-vector whose each element is equal 1 . The problem (1.7) is a concrete problem of type (1.5).

Example 2 of the problem (1.5): The matrix completion problem

Let M be a given $m \times n$ matrix, Π is the elements indices set of M,

$$
\Pi \subset\{(i j) \mid i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}\} .
$$

The mathematical form of the matrix completion problem is relaxed to

$$
\begin{equation*}
\min \left\{\|X\|_{*} \mid X_{i j}=M_{i j},(i j) \in \Pi\right\} \tag{1.8}
\end{equation*}
$$

where $\|\cdot\|_{*}$ is the nuclear norm-the sum of the singular values of a given matrix. The problem (1.8) is a convex optimization of form (1.5). The matrix A in (1.5) for the linear constraints

$$
X_{i j}=M_{i j},(i j) \in \Pi,
$$

is a projection matrix, and thus $\left\|A^{T} A\right\|=1$.
M is low Rank, only some elements of M are known.

A pair of $\left(u^{*}, \lambda^{*}\right) \in \mathcal{U} \times \Re^{m}$ is called a saddle point of the Lagrange function (1.6), if

$$
L_{\lambda \in \Re^{m}}\left(u^{*}, \lambda\right) \leq L\left(u^{*}, \lambda^{*}\right) \leq L_{u \in \mathcal{U}}\left(u, \lambda^{*}\right)
$$

The above inequalities can be written as

$$
\left\{\begin{array}{l}
u^{*} \in \mathcal{U}, \quad L\left(u, \lambda^{*}\right)-L\left(u^{*}, \lambda^{*}\right) \geq 0, \quad \forall u \in \mathcal{U} \tag{1.9a}\\
\lambda^{*} \in \Re^{m}, L\left(u^{*}, \lambda^{*}\right)-L\left(u^{*}, \lambda\right) \geq 0, \quad \forall \lambda \in \Re^{m}
\end{array}\right.
$$

According to the definition of $L(u, \lambda)$ (see(1.6)),

$$
\begin{aligned}
& L\left(u, \lambda^{*}\right)-L\left(u^{*}, \lambda^{*}\right) \\
& \quad=\left[\theta(u)-\left(\lambda^{*}\right)^{T}(\mathcal{A} u-b)\right]-\left[\theta\left(u^{*}\right)-\left(\lambda^{*}\right)^{T}\left(\mathcal{A} u^{*}-b\right)\right] \\
& \quad=\theta(u)-\theta\left(u^{*}\right)+\left(u-u^{*}\right)^{T}\left(-\mathcal{A}^{T} \lambda^{*}\right)
\end{aligned}
$$

it follows from (1.9a) that

$$
\begin{equation*}
u^{*} \in \mathcal{U}, \quad \theta(u)-\theta\left(u^{*}\right)+\left(u-u^{*}\right)^{T}\left(-\mathcal{A}^{T} \lambda^{*}\right) \geq 0, \quad \forall u \in \mathcal{U} \tag{1.10}
\end{equation*}
$$

Similarly, for (1.9b), since

$$
\begin{aligned}
& L\left(u^{*}, \lambda^{*}\right)-L\left(u^{*}, \lambda\right) \\
& \quad=\left[\theta\left(u^{*}\right)-\left(\lambda^{*}\right)^{T}\left(\mathcal{A} u^{*}-b\right)\right]-\left[\theta\left(u^{*}\right)-(\lambda)^{T}\left(\mathcal{A} u^{*}-b\right)\right] \\
& \quad=\left(\lambda-\lambda^{*}\right)^{T}\left(\mathcal{A} u^{*}-b\right),
\end{aligned}
$$

thus we have

$$
\begin{equation*}
\lambda^{*} \in \Re^{m}, \quad\left(\lambda-\lambda^{*}\right)^{T}\left(\mathcal{A} u^{*}-b\right) \geq 0, \quad \forall \lambda \in \Re^{m} \tag{1.11}
\end{equation*}
$$

Notice that the expression (1.11) (the inner product of the vector $\left(\mathcal{A} u^{*}-b\right)$ with any vector is nonnegative) is equivalent to

$$
\mathcal{A} u^{*}=b .
$$

Writing (1.10) and (1.11) together, we get the following variational inequality:

$$
\left\{\begin{array}{lrl}
u^{*} \in \mathcal{U}, & \theta(u)-\theta\left(u^{*}\right)+\left(u-u^{*}\right)^{T}\left(-\mathcal{A}^{T} \lambda^{*}\right) \geq 0, & \forall u \in \mathcal{U} \\
\lambda^{*} \in \Re^{m}, & \left(\lambda-\lambda^{*}\right)^{T}\left(\mathcal{A} u^{*}-b\right) \geq 0, & \forall \lambda \in \Re^{m}
\end{array}\right.
$$

Using a more compact form，the saddle－point can be characterized as the solution of the following VI ：

$$
\begin{equation*}
w^{*} \in \Omega, \quad \theta(u)-\theta\left(u^{*}\right)+\left(w-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0, \quad \forall w \in \Omega \tag{1.12a}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\binom{u}{\lambda}, \quad F(w)=\binom{-\mathcal{A}^{T} \lambda}{\mathcal{A} u-b} \quad \text { and } \quad \Omega=\mathcal{U} \times \Re^{m} \tag{1.12b}
\end{equation*}
$$

Setting $w=\left(u, \lambda^{*}\right)$ and $w=\left(u^{*}, \lambda\right)$ in（1．12），respectively，we get（1．10）and （1．11）．Because F is a affine operator and

$$
F(w)=\left(\begin{array}{cc}
0 & -\mathcal{A}^{T} \\
\mathcal{A} & 0
\end{array}\right)\binom{u}{\lambda}-\binom{0}{b} .
$$

The matrix is skew－symmetric，we have

$$
(w-\tilde{w})^{T}(F(w)-F(\tilde{w})) \equiv 0
$$

Two block separable convex optimization

We consider the following structured separable convex optimization

$$
\begin{equation*}
\min \left\{\theta_{1}(x)+\theta_{2}(y) \mid A x+B y=b, x \in \mathcal{X}, y \in \mathcal{Y}\right\} \tag{1.13}
\end{equation*}
$$

This is a special problem of (1.5) with

$$
u=\binom{x}{y}, \quad \mathcal{U}=\mathcal{X} \times \mathcal{Y}, \quad \mathcal{A}=(A, B)
$$

The Lagrangian function of the problem (1.13) is

$$
L^{(2)}(x, y, \lambda)=\theta_{1}(x)+\theta_{2}(y)-\lambda^{T}(A x+B y-b)
$$

The same analysis tells us that the saddle point is a solution of the following VI:

$$
\begin{equation*}
w^{*} \in \Omega, \quad \theta(u)-\theta\left(u^{*}\right)+\left(w-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0, \quad \forall w \in \Omega \tag{1.14}
\end{equation*}
$$

where

$$
\begin{gather*}
u=\binom{x}{y}, \quad \theta(u)=\theta_{1}(x)+\theta_{2}(y), \quad w=\left(\begin{array}{l}
x \\
y \\
\lambda
\end{array}\right) \tag{1.15a}\\
F(w)=\left(\begin{array}{c}
-A^{T} \lambda \\
-B^{T} \lambda \\
A x+B y-b
\end{array}\right), \quad \text { and } \quad \Omega=\mathcal{X} \times \mathcal{Y} \times \Re^{m} . \tag{1.15b}
\end{gather*}
$$

The affine operator $F(w)$ has the form

$$
F(w)=\left(\begin{array}{ccc}
0 & 0 & -A^{T} \\
0 & 0 & -B^{T} \\
A & B & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
\lambda
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
b
\end{array}\right)
$$

Again，due to the skew－symmetry，we have $(w-\tilde{w})^{T}(F(w)-F(\tilde{w})) \equiv 0$ ．

可分离线性约束凸优化问题（1．13），转换成了变分不等式（1．14）－（1．15）．

Convex optimization problem with three separable functions

$$
\min \left\{\theta_{1}(x)+\theta_{2}(y)+\theta_{3}(z) \mid A x+B y+C z=b, x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}\right\}
$$

is a special problem of（1．5）with three blocks．The Lagrangian function is

$$
L^{(3)}(x, y, z, \lambda)=\theta_{1}(x)+\theta_{2}(y)+\theta_{3}(z)-\lambda^{T}(A x+B y+C z-b)
$$

The same analysis tells us that the saddle point is a solution of the following VI：

$$
w^{*} \in \Omega, \quad \theta(u)-\theta\left(u^{*}\right)+\left(w-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0, \quad \forall w \in \Omega
$$

where $\quad \theta(u)=\theta_{1}(x)+\theta_{2}(y)+\theta_{3}(z)$ ，

$$
w=\left(\begin{array}{l}
x \\
y \\
z \\
\lambda
\end{array}\right), \quad u=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad F(w)=\left(\begin{array}{c}
-A^{T} \lambda \\
-B^{T} \lambda \\
-C^{T} \lambda \\
A x+B y+C z-b
\end{array}\right)
$$

and

$$
\Omega=\mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \times \Re^{m}
$$

线性约束的凸优化问题，都转换成了变分不等式．问题归结为求一个鞍点．

2 Proximal point algorithms and its Beyond

引理1 Let the vectors $a, b \in \Re^{n}, H \in \Re^{n \times n}$ be a positive definite matrix．If
$b^{T} H(a-b) \geq 0$ ，then we have

$$
\|x\|^{2}=x^{T} x, \quad\|x\|_{H}^{2}=x^{T} H x .
$$

$$
\begin{equation*}
\|b\|_{H}^{2} \leq\|a\|_{H}^{2}-\|a-b\|_{H}^{2} . \tag{2.1}
\end{equation*}
$$

The assertion follows from $\|a\|_{H}^{2}=\|b+(a-b)\|_{H}^{2} \geq\|b\|_{H}^{2}+\|a-b\|_{H}^{2}$ ．

2．1 Proximal point algorithms for convex optimization

Convex Optimization Now，let us consider the simple convex optimization

$$
\begin{equation*}
\min \{\theta(x)+f(x) \mid x \in \mathcal{X}\} \tag{2.2}
\end{equation*}
$$

where $\theta(x)$ and $f(x)$ are convex but $\theta(x)$ is not necessary smooth， \mathcal{X} is a closed convex set．For solving（2．2），the k－th iteration of the proximal point algorithm（abbreviated to PPA）［8，10］begins with a given x^{k} ，offers the new iterate x^{k+1} via the recursion

$$
\begin{equation*}
\text { 邻近点算法 } x^{k+1}=\operatorname{argmin}\left\{\left.\theta(x)+f(x)+\frac{r}{2}\left\|x-x^{k}\right\|^{2} \right\rvert\, x \in \mathcal{X}\right\} \text {. } \tag{2.3}
\end{equation*}
$$

Since x^{k+1} is the optimal solution of（2．3），it follows from Lemma 1 that

$$
\begin{align*}
\theta(x)-\theta\left(x^{k+1}\right)+ & \left(x-x^{k+1}\right)^{T} \\
& \left\{\nabla f\left(x^{k+1}\right)+r\left(x^{k+1}-x^{k}\right)\right\} \geq 0, \forall x \in \mathcal{X} \tag{2.4}
\end{align*}
$$

Setting $x=x^{*}$ in the above inequality，it follows that

$$
\left(x^{k+1}-x^{*}\right)^{T} r\left(x^{k}-x^{k+1}\right) \geq \theta\left(x^{k+1}\right)-\theta\left(x^{*}\right)+\left(x^{k+1}-x^{*}\right)^{T} \nabla f\left(x^{k+1}\right)
$$

Because f isconvex，$\left(x^{k+1}-x^{*}\right)^{T} \nabla f\left(x^{k+1}\right) \geq\left(x^{k+1}-x^{*}\right)^{T} \nabla f\left(x^{*}\right)$ ，it follows that

$$
\begin{aligned}
& \theta\left(x^{k+1}\right)-\theta\left(x^{*}\right)+\left(x^{k+1}-x^{*}\right)^{T} \nabla f\left(x^{k+1}\right) \\
& \quad \geq \theta\left(x^{k+1}\right)-\theta\left(x^{*}\right)+\left(x^{k+1}-x^{*}\right)^{T} \nabla f\left(x^{*}\right) \geq 0
\end{aligned}
$$

and consequently，

$$
\begin{equation*}
\left(x^{k+1}-x^{*}\right)^{T}\left(x^{k}-x^{k+1}\right) \geq 0 \tag{2.5}
\end{equation*}
$$

Let $a=x^{k}-x^{*}$ and $b=x^{k+1}-x^{*}$ and using Lemma 1 ，we obtain

$$
\begin{equation*}
\text { PPA 算法的收缩性质 }\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\left\|x^{k}-x^{k+1}\right\|^{2}, \tag{2.6}
\end{equation*}
$$

which is the nice convergence property of Proximal Point Algorithm．

The residue sequence $\left\{\left\|x^{k}-x^{k+1}\right\|\right\}$ is also monotonically no-increasing.

Proof. Replacing $k+1$ in (2.4) with k, we get

$$
\theta(x)-\theta\left(x^{k}\right)+\left(x-x^{k}\right)^{T}\left\{\nabla f\left(x^{k}\right)+r\left(x^{k}-x^{k-1}\right)\right\} \geq 0, \quad \forall x \in \mathcal{X}
$$

Let $x=x^{k+1}$ in the above inequality, it follows that

$$
\begin{equation*}
\theta\left(x^{k+1}\right)-\theta\left(x^{k}\right)+\left(x^{k+1}-x^{k}\right)^{T}\left\{\nabla f\left(x^{k}\right)+r\left(x^{k}-x^{k-1}\right)\right\} \geq 0 \tag{2.7}
\end{equation*}
$$

Setting $x=x^{k}$ in (2.4), we become

$$
\begin{equation*}
\theta\left(x^{k}\right)-\theta\left(x^{k+1}\right)+\left(x^{k}-x^{k+1}\right)^{T}\left\{\nabla f\left(x^{k+1}\right)+r\left(x^{k+1}-x^{k}\right)\right\} \geq 0 \tag{2.8}
\end{equation*}
$$

Adding (2.7) and (2.8) and using $\left(x^{k}-x^{k+1}\right)^{T}\left[\nabla f\left(x^{k}\right)-\nabla f\left(x^{k+1}\right)\right] \geq 0$, we get

$$
\begin{equation*}
\left(x^{k}-x^{k+1}\right)^{T}\left\{\left(x^{k-1}-x^{k}\right)-\left(x^{k}-x^{k+1}\right)\right\} \geq 0 \tag{2.9}
\end{equation*}
$$

Setting $a=x^{k-1}-x^{k}$ and $b=x^{k}-x^{k+1}$ in (2.9) and using (2.1), we obtain

$$
\begin{equation*}
\left\|x^{k}-x^{k+1}\right\|^{2} \leq\left\|x^{k-1}-x^{k}\right\|^{2}-\left\|\left(x^{k-1}-x^{k}\right)-\left(x^{k}-x^{k+1}\right)\right\|^{2} \tag{2.10}
\end{equation*}
$$

We write the problem（2．2）and its PPA（2．3）in VI form

For the optimization problem（2．2），namely， $\min \{\theta(x)+f(x) \mid x \in \mathcal{X}\}$ ， the equivalent variational inequality form is

$$
\begin{equation*}
x^{*} \in \mathcal{X}, \quad \theta(x)-\theta\left(x^{*}\right)+\left(x-x^{*}\right)^{T} \nabla f\left(x^{*}\right) \geq 0, \quad \forall x \in \mathcal{X} . \tag{2.11}
\end{equation*}
$$

For solving the problem（2．2），the PPA is

$$
x^{k+1}=\operatorname{Argmin}\left\{\left.\theta(x)+f(x)+\frac{r}{2}\left\|x-x^{k}\right\|^{2} \right\rvert\, x \in \mathcal{X}\right\} .
$$

variational inequality form of the k－th iteration of the PPA（see（2．4））is：

$$
\begin{align*}
x^{k+1} \in \mathcal{X}, \quad \theta(x) & -\theta\left(x^{k+1}\right)+\left(x-x^{k+1}\right)^{T} \nabla f\left(x^{k+1}\right) \\
\geq & \left(x-x^{k+1}\right)^{T} r\left(x^{k}-x^{k+1}\right), \quad \forall x \in \mathcal{X} \tag{2.12}
\end{align*}
$$

PPA 通过求解一系列的（2．3），求得（2．2）的解，采用的是步步为营的策略．
The solution of（2．12）is Proximal Point，it has the contraction property（2．6）．

2．2 Preliminaries of PPA for Variational Inequalities

The optimal condition of the linearly constrained convex optimization is characterized as a mixed monotone variational inequality：

$$
\begin{equation*}
w^{*} \in \Omega, \quad \theta(u)-\theta\left(u^{*}\right)+\left(w-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0, \quad \forall w \in \Omega \tag{2.13}
\end{equation*}
$$

PPA for VI（2．13）in H－norm（定义）For given w^{k} and $H \succ 0$ ，find w^{k+1} ，

$$
\begin{align*}
w^{k+1} \in \Omega, \quad \theta(u) & -\theta\left(u^{k+1}\right)+\left(w-w^{k+1}\right)^{T} F\left(w^{k+1}\right) \\
\geq\left(w-w^{k+1}\right)^{T} H\left(w^{k}-w^{k+1}\right), \quad \forall w & \in \Omega \tag{2.14}
\end{align*}
$$

邻近点算法
w^{k+1} is called the proximal point of the k－th iteration for the problem（2．13）．
（2．14）是求解 VI （2．13）的PPA算法的定义．第二讲就会用例子说明这是容易做到的．

$$
\text { W } w^{k+1} \text { is the solution of }(2.13) \text { if and only if } w^{k}=w^{k+1}
$$

Setting $w=w^{*}$ in（2．14），we obtain
$\left(w^{k+1}-w^{*}\right)^{T} H\left(w^{k}-w^{k+1}\right) \geq \theta\left(u^{k+1}\right)-\theta\left(u^{*}\right)+\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{k+1}\right)$.

Note that（see the structure of $F(w)$ in（1．12b））

$$
\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{k+1}\right)=\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{*}\right)
$$

and consequently（by using（2．13））we obtain

$$
\left(w^{k+1}-w^{*}\right)^{T} H\left(w^{k}-w^{k+1}\right) \geq \theta\left(u^{k+1}\right)-\theta\left(u^{*}\right)+\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0 .
$$

Thus，we have

$$
\begin{equation*}
\left(w^{k+1}-w^{*}\right)^{T} H\left(w^{k}-w^{k+1}\right) \geq 0 \tag{2.15}
\end{equation*}
$$

By setting $a=w^{k}-w^{*}$ and $b=w^{k+1}-w^{*}$ ，
the inequality（2．15）means that $b^{T} \boldsymbol{H}(\boldsymbol{a}-\boldsymbol{b}) \geq \mathbf{0}$ ．

By using Lemma 1，we obtain

$$
\begin{equation*}
\left\|w^{k+1}-w^{*}\right\|_{H}^{2} \leq\left\|w^{k}-w^{*}\right\|_{H}^{2}-\left\|w^{k}-w^{k+1}\right\|_{H}^{2} \tag{2.16}
\end{equation*}
$$

We get the nice convergence property of Proximal Point Algorithm．
请证明：$\left\|w^{k}-w^{k+1}\right\|^{2} \leq\left\|w^{k-1}-w^{k}\right\|^{2}$ ，即序列 $\left\{\left\|w^{k}-w^{k+1}\right\|_{H}\right\}$ 是单调不增的．

2．3 Variants of PPA for Variational Inequalities

Let v be a sub－vector of w ．The k－th iteration begins with given $v^{k} . v$ 核心变量 PPA for VI（2．13）in H－norm For given v^{k} and $H \succ 0$ ，find w^{k+1} ，

$$
\begin{align*}
w^{k+1} \in \Omega, \quad \theta(u) & -\theta\left(u^{k+1}\right)+\left(w-w^{k+1}\right)^{T} F\left(w^{k+1}\right) \\
& \geq\left(v-v^{k+1}\right)^{T} H\left(v^{k}-v^{k+1}\right), \quad \forall w \in \Omega \tag{2.17}
\end{align*}
$$

w^{k+1} is called the proximal point of the k－th iteration for the problem（2．13）．

$$
w^{k+1} \text { is the solution of }(2.13) \text { if and only if } v^{k}=v^{k+1}
$$

In this case，v is called the essential variables of w ．In addition，we define

$$
\mathcal{V}^{*}=\left\{v^{*} \text { is a subvector of } w^{*} \mid w^{*} \in \Omega^{*}\right\} .
$$

Setting $w=w^{*}$ in（2．17），we obtain

$$
\left(v^{k+1}-v^{*}\right)^{T} H\left(v^{k}-v^{k+1}\right) \geq \theta\left(u^{k+1}\right)-\theta\left(u^{*}\right)+\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{k+1}\right)
$$

Note that（see the structure of $F(w)$ in（1．12b））

$$
\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{k+1}\right)=\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{*}\right)
$$

and consequently（by using（2．13））we obtain

$$
\left(v^{k+1}-v^{*}\right)^{T} H\left(v^{k}-v^{k+1}\right) \geq \theta\left(u^{k+1}\right)-\theta\left(u^{*}\right)+\left(w^{k+1}-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0 .
$$

Thus，we have

$$
\begin{equation*}
\left(v^{k+1}-v^{*}\right)^{T} H\left(v^{k}-v^{k+1}\right) \geq 0 \tag{2.18}
\end{equation*}
$$

By using Lemma 1，we obtain

$$
\begin{equation*}
\left\|v^{k+1}-v^{*}\right\|_{H}^{2} \leq\left\|v^{k}-v^{*}\right\|_{H}^{2}-\left\|v^{k}-v^{k+1}\right\|_{H}^{2} . \tag{2.19}
\end{equation*}
$$

We get the nice convergence property of Proximal Point Algorithm．

The residue sequence $\left\{\left\|v^{k}-v^{k+1}\right\|_{H}\right\}$ is also monotonically no－increasing．序列 $\left\{\left\|v^{k}-v^{k+1}\right\|_{H}\right\}$ 是单调不增的．$\left\|v^{k}-v^{k+1}\right\|_{H}^{2} \leq\left\|v^{k-1}-v^{k}\right\|_{H}^{2}$ ．

3 Augmented Lagrangian Method (ALM)

We consider the convex optimization, namely

$$
\begin{equation*}
\min \{\theta(u) \mid \mathcal{A} u=b, u \in \mathcal{U}\} \tag{3.1}
\end{equation*}
$$

The related variational inequality of the saddle point of the Lagrangian function is

$$
\begin{equation*}
w^{*} \in \Omega, \quad \theta(u)-\theta\left(u^{*}\right)+\left(w-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0, \quad \forall w \in \Omega \tag{3.2a}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\binom{u}{\lambda}, \quad F(w)=\binom{-\mathcal{A}^{T} \lambda}{\mathcal{A} u-b} \quad \text { and } \quad \Omega=\mathcal{U} \times \Re^{m} \tag{3.2b}
\end{equation*}
$$

Augmented Lagrangian Method

The augmented Lagrangian function of the problem (3.1) is

$$
\mathcal{L}_{\beta}(u, \lambda)=\theta(u)-\lambda^{T}(\mathcal{A} u-b)+\frac{\beta}{2}\|\mathcal{A} u-b\|^{2}
$$

The k-th iteration of the Augmented Lagrangian Method [7, 9] begins with a given λ^{k}, obtain $w^{k+1}=\left(u^{k+1}, \lambda^{k+1}\right)$ via

$$
(\mathrm{ALM}) \quad\left\{\begin{array}{l}
u^{k+1}=\arg \min \left\{\mathcal{L}_{\beta}\left(u, \lambda^{k}\right) \mid u \in \mathcal{U}\right\} \tag{3.3a}\\
\lambda^{k+1}=\lambda^{k}-\beta\left(\mathcal{A} u^{k+1}-b\right)
\end{array}\right.
$$

In (3.3), u^{k+1} is only a computational result of (3.3a) from given λ^{k}, it is called the intermediate variable. In order to start the k-th iteration of ALM, we need only to have λ^{k} and thus we call it as the essential variable.

The subproblem (3.3a) is a problem of mathematical form

$$
\begin{equation*}
\min \left\{\left.\theta(u)+\frac{\beta}{2}\left\|\mathcal{A} u-p^{k}\right\|^{2} \right\rvert\, u \in \mathcal{U}\right\} \tag{3.4}
\end{equation*}
$$

where $\beta>0$ is a given scalar and $p^{k}=b+\frac{1}{\beta} \lambda^{k}$.
Assumption: The solution of problem (3.4) has closed-form solution or can be efficiently computed with a high precision.

Changing the constant term in the objective function does not affect the solution of the optimization problem. Thus,

$$
\begin{aligned}
u^{k+1} & \in \operatorname{argmin}\left\{\mathcal{L}_{\beta}\left(u, \lambda^{k}\right) \mid u \in \mathcal{U}\right\} \\
& =\operatorname{argmin}\left\{\left.\theta(u)-\left(\lambda^{k}\right)^{T} \mathcal{A} u+\frac{\beta}{2}\|\mathcal{A} u-b\|^{2} \right\rvert\, u \in \mathcal{U}\right\} \\
& =\operatorname{argmin}\left\{\left.\theta(u)+\frac{\beta}{2}\left\|(\mathcal{A} u-b)-\frac{1}{\beta} \lambda^{k}\right\|^{2} \right\rvert\, u \in \mathcal{U}\right\}
\end{aligned}
$$

According to Lemma 1 , the optimal condition of (3.3a) is $u^{k+1} \in \mathcal{U}$ and

$$
\theta(u)-\theta\left(u^{k+1}\right)+\left(u-u^{k+1}\right)^{T}\left\{-\mathcal{A}^{T} \lambda^{k}+\beta \mathcal{A}^{T}\left(\mathcal{A} u^{k+1}-b\right)\right\} \geq 0, \forall u \in \mathcal{U}
$$

Because $\lambda^{k}-\beta\left(\mathcal{A} u^{k+1}-b\right)=\lambda^{k+1}$, the above VI can be written as

$$
\begin{equation*}
u^{k+1} \in \mathcal{U}, \quad \theta(u)-\theta\left(u^{k+1}\right)+\left(u-u^{k+1}\right)^{T}\left\{-\mathcal{A}^{T} \lambda^{k+1}\right\} \geq 0, \forall u \in \mathcal{U} \tag{3.5}
\end{equation*}
$$

The update form (3.3b) is

$$
\left(\mathcal{A} u^{k+1}-b\right)+\frac{1}{\beta}\left(\lambda^{k+1}-\lambda^{k}\right)=0
$$

and it is equivalent to

$$
\begin{equation*}
\left(\lambda-\lambda^{k+1}\right)^{T}\left(\mathcal{A} u^{k+1}-b\right) \geq\left(\lambda-\lambda^{k+1}\right)^{T} \frac{1}{\beta}\left(\lambda^{k}-\lambda^{k+1}\right), \quad \forall \lambda \in \Re^{m} \tag{3.6}
\end{equation*}
$$

Combining Vl's (3.5) and (3.6), we get

$$
\theta(u)-\theta\left(u^{k+1}\right)+\binom{u-u^{k+1}}{\lambda-\lambda^{k+1}}^{T}\binom{-\mathcal{A}^{T} \lambda^{k+1}}{\mathcal{A} u^{k+1}-b} \geq\left(\lambda-\lambda^{k+1}\right)^{T} \frac{1}{\beta}\left(\lambda^{k}-\lambda^{k+1}\right),
$$

for all $w=(u, \lambda) \in \Omega$. Using the notations in (3.2), we get the compact form

$$
\begin{align*}
& \theta(u)-\theta\left(u^{k+1}\right)+\left(w-w^{k+1}\right)^{T} F\left(w^{k+1}\right) \\
& \quad \geq\left(\lambda-\lambda^{k+1}\right)^{T} \frac{1}{\beta}\left(\lambda^{k}-\lambda^{k+1}\right), \forall w \in \Omega \tag{3.7}
\end{align*}
$$

This is the PPA form (2.17) in which

$$
v=\lambda \quad \text { and } \quad H=\frac{1}{\beta} I_{m}
$$

The related contraction inequality (2.19) becomes

$$
\left\|\lambda^{k+1}-\lambda^{*}\right\|_{\frac{1}{\beta} I_{m}}^{2} \leq\left\|\lambda^{k}-\lambda^{*}\right\|_{\frac{1}{\beta} I_{m}}^{2}-\left\|\lambda^{k}-\lambda^{k+1}\right\|_{\frac{1}{\beta} I_{m}}^{2}
$$

or

$$
\begin{equation*}
\left\|\lambda^{k+1}-\lambda^{*}\right\|^{2} \leq\left\|\lambda^{k}-\lambda^{*}\right\|^{2}-\left\|\lambda^{k}-\lambda^{k+1}\right\|^{2} \tag{3.8}
\end{equation*}
$$

The above inequality is the key for the convergence proof of the ALM.

4 The relaxed PPA（延伸的邻近点算法）

We shall maintain our focus on the monotone variational inequality（2．13），namely，

$$
w^{*} \in \Omega, \quad \theta(u)-\theta\left(u^{*}\right)+\left(w-w^{*}\right)^{T} F\left(w^{*}\right) \geq 0, \quad \forall w \in \Omega
$$

The PPA form（2．17）reads as

$$
\begin{aligned}
& w^{k+1} \in \Omega, \quad \theta(u)-\theta\left(u^{k+1}\right)+\left(w-w^{k+1}\right)^{T} F\left(w^{k+1}\right) \\
& \geq\left(v-v^{k+1}\right)^{T} H\left(v^{k}-v^{k+1}\right), \quad \forall w \in \Omega
\end{aligned}
$$

Set the output of the above VI as \tilde{w}^{k} ，we have

$$
\begin{align*}
\tilde{w}^{k} \in \Omega, \quad \theta(u) & -\theta\left(\tilde{u}^{k}\right)+\left(w-\tilde{w}^{k}\right)^{T} F\left(\tilde{w}^{k}\right) \\
& \geq\left(v-\tilde{v}^{k}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right), \quad \forall w \in \Omega \tag{4.1}
\end{align*}
$$

Setting $w=w^{*}$ in（4．1），we obtain

$$
\begin{equation*}
\left(\tilde{v}^{k}-v^{*}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right) \geq \theta\left(\tilde{u}^{k}\right)-\theta\left(u^{*}\right)+\left(\tilde{w}^{k}-w^{*}\right)^{T} F\left(\tilde{w}^{k}\right) \tag{4.2}
\end{equation*}
$$

Applying (see (1.12b)) the identity

$$
\left(\tilde{w}^{k}-w^{*}\right)^{T} F\left(\tilde{w}^{k}\right) \equiv\left(\tilde{w}^{k}-w^{*}\right)^{T} F\left(w^{*}\right)
$$

to (4.2), we obtain

$$
\left(\tilde{v}^{k}-v^{*}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right) \geq \theta\left(\tilde{u}^{k}\right)-\theta\left(u^{*}\right)+\left(\tilde{w}^{k}-w^{*}\right)^{T} F\left(w^{*}\right) .
$$

Because RHS of the above inequality is, we have

$$
\left(\tilde{v}^{k}-v^{*}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right) \geq 0
$$

We write it as

$$
\left\{\left(v^{k}-v^{*}\right)-\left(v^{k}-\tilde{v}^{k}\right)\right\}^{T} H\left(v^{k}-\tilde{v}^{k}\right) \geq 0
$$

and thus

$$
\begin{equation*}
\left(v^{k}-v^{*}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right) \geq\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2}, \quad \forall v^{*} \in \mathcal{V}^{*} \tag{4.3}
\end{equation*}
$$

The inequality (4.3) means that $\left(v^{k}-\tilde{v}^{k}\right)$ is the ascent direction of the unknown distance function $\frac{1}{2}\left\|v-v^{*}\right\|_{H}^{2}$ at the point v^{k}.

$$
\left\langle\left.\nabla\left(\frac{1}{2}\left\|v-v^{*}\right\|_{H}^{2}\right)\right|_{v=v^{k}},\left(v^{k}-\tilde{v}^{k}\right)\right\rangle \geq\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2}, \quad \forall v^{*} \in \mathcal{V}^{*}
$$

The task of the algorithm is to produce a decreasing sequence $\left\{\left\|v^{k}-v^{*}\right\|_{H}^{2}\right\}$. Set

$$
\begin{equation*}
v^{k+1}(\alpha)=v^{k}-\alpha\left(v^{k}-\tilde{v}^{k}\right) \tag{4.4}
\end{equation*}
$$

which is an α dependent new iterate. It is clear we want to maximize

$$
\begin{equation*}
\vartheta(\alpha)=\left\|v^{k}-v^{*}\right\|_{H}^{2}-\left\|v^{k+1}(\alpha)-v^{*}\right\|_{H}^{2} . \tag{4.5}
\end{equation*}
$$

Note that

$$
\begin{align*}
\vartheta(\alpha) & =\left\|v^{k}-v^{*}\right\|_{H}^{2}-\left\|\left(v^{k}-v^{*}\right)-\alpha\left(v^{k}-\tilde{v}^{k}\right)\right\|_{H}^{2} \\
& =2 \alpha\left(v^{k}-v^{*}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right)-\alpha^{2}\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2} \tag{4.6}
\end{align*}
$$

is a quadratic function of α.

We can not directly maximize $\vartheta(\alpha)$ in (4.6) because the coefficient of the linear term $2\left(v^{k}-v^{*}\right)^{T} H\left(v^{k}-\tilde{v}^{k}\right)$ contains the unknown solution v^{*}.

Using (4.3), from (4.6) we get

$$
\begin{equation*}
\vartheta(\alpha) \geq 2 \alpha\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2}-\alpha^{2}\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2} \tag{4.7}
\end{equation*}
$$

Set

$$
\begin{equation*}
q(\alpha)=\left(2 \alpha-\alpha^{2}\right)\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2} \tag{4.8}
\end{equation*}
$$

which is a quadratic lower-bound function of $\vartheta(\alpha)$. The quadratic function $q(\alpha)$ reaches its maximum at $\alpha^{*} \equiv 1$.

$$
\begin{equation*}
v^{k+1}=v^{k}-\gamma\left(v^{k}-\tilde{v}^{k}\right), \quad \gamma \in(0,2) \tag{4.9}
\end{equation*}
$$

The generated sequence $\left\{v^{k}\right\}$ satisfies

$$
\begin{equation*}
\left\|v^{k+1}-v^{*}\right\|_{H}^{2} \leq\left\|v^{k}-v^{*}\right\|_{H}^{2}-\gamma(2-\gamma)\left\|v^{k}-\tilde{v}^{k}\right\|_{H}^{2} \tag{4.10}
\end{equation*}
$$

取 $\gamma \in[1,2)$ 的示意图
这一讲是预备知识．要求读者理解（或者是先承认）优化问题拉格朗日函数的鞍点和变分不等式 (VI) 解点的等价的关系，以及 PPA算法的定义及收缩性质．

References

[1] S. Becker, The Chen-Teboulle algorithm is the proximal point algorithm, manuscript, 2011, arXiv: 1908.03633[math.OC].
[2] X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point algorithms revisit on the alternating direction method of multipliers, Science China Mathematics, 56 (2013), 2179-2186.
[3] R. Fletcher, Practical mathods of Optimization, Second Edition, JOHN WILEY \& SONS, 1987.
[4] G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach, Comput. Optim. Appl., 59(2014), 135-161.
[5] B.S. He and Y. Shen, On the convergence rate of customized proximal point algorithm for convex optimization and saddle-point problem (in Chinese). Sci Sin Math, 2012, 42(5): 515-525, doi: 10.1360/012011-1049
[6] B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56(2013), 559-572.
[7] M. R. Hestenes, Multiplier and gradient methods, JOTA 4, 303-320, 1969.
[8] B. Martinet, Regularisation, d'inéquations variationelles par approximations succesives, Rev. Francaise d'Inform. Recherche Oper., 4, 154-159, 1970.
[9] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, NY, pp. 283-298, 1969.
[10] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Cont. Optim., 14, 877-898, 1976.

