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1 Preliminaliers

½½½nnn 1 Let X ⊂ <n be a closed convex set, θ(x) and f(x) be convex func-

tions and f(x) is differentiable. Assume that the solution set of the minimization

problem min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ ∈ arg min{θ(x) + f(x) |x ∈ X} (1.1a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (1.1b)

ÚÚÚnnn 1 Let the vectors a, b ∈ <n, H ∈ <n×n be a positive definite matrix. If

bTH(a− b) ≥ 0, then we have

‖b‖2H ≤ ‖a‖2H − ‖a− b‖2H . (1.2)

The assertion follows from ‖a‖2H = ‖b+ (a− b)‖2H ≥ ‖b‖2H + ‖a− b‖2H .
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‖x‖ = (xTx)
1
2 . H is positive definite, ‖x‖H = (xTHx)

1
2

The optimal condition of the linearly constrained convex optimization

min{θ(x)|Ax = b, x ∈ X}

is characterized as a special mixed monotone variational inequality:

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (1.3)

PPA with Relaxation for VI (1.3) For given vk and H � 0, find wk+1,

wk+1 ∈ Ω, θ(x)− θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω. (1.4)

Relaxation: (v = w or v is a sub-vector of w)

vk+1 := vk − α(vk − vk+1), α ∈ (0, 2). (1.5)
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We consider the min−max problem (e. g. ã�?n¥�ROF Model [3, 16])

minx maxy{Φ(x, y) = θ1(x)− yTAx− θ2(y) |x ∈ X , y ∈ Y}. (2.1)

Let (x∗, y∗) be the solution of (2.1), then we have{
x∗ ∈ X , Φ(x, y∗)− Φ(x∗, y∗) ≥ 0, ∀x ∈ X , (2.2a)

y∗ ∈ Y, Φ(x∗, y∗)− Φ(x∗, y) ≥ 0, ∀ y ∈ Y. (2.2b)

Using the notation of Φ(x, y), it can be written as{
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀x ∈ X ,

y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T ( Ax∗) ≥ 0, ∀ y ∈ Y.

Furthermore, it can be written as a variational inequality in the compact form:

u∗ ∈ Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (2.3)
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where

u =

(
x

y

)
, θ(u) = θ1(x) + θ2(y), F (u) =

(
−AT y
Ax

)
, Ω = X × Y.

Since F (u) =

(
−AT y
Ax

)
=

(
0 −AT

A 0

)(
x

y

)
, we have

(u− v)T (F (u)− F (v)) ≡ 0.

For the convex optimization problem min{θ(x) |Ax = b, x ∈ X},
whose Lagrangian function is L(x, y) = θ(x)−yT(Ax− b), we can rewrite it as

L(x, y) = θ(x)− yTAx− (−bT y),

which defined on X × <m.

Find the saddle point of the Lagrangian function is a special min−max problem

(2.1) whose θ1(x) = θ(x), θ2(y) = −bT y and Y = <m.
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2.1 ¦¦¦)))QQQ:::¯̄̄KKK��� ���©©©-éééóóó···ÜÜÜFFFÝÝÝ{{{PDHG [18]

For given (xk, yk), PDHG [18] produces a pair of (xk+1, yk+1). First,

xk+1 = argmin{Φ(x, yk) +
r

2
‖x− xk‖2 |x ∈ X}, (2.4a)

and then we obtain yk+1 via

yk+1 = argmax{Φ(xk+1, y)− s

2
‖y − yk‖2 | y ∈ Y}. (2.4b)

Ignoring the constant term in the objective function, the subproblems (2.4) are reduced to xk+1 = argmin{θ1(x)− xTAT yk +
r

2
‖x− xk‖2 |x ∈ X}, (2.5a)

yk+1 = argmin{θ2(y) + yTAxk+1 +
s

2
‖y − yk‖2 | y ∈ Y}. (2.5b)

According to Lemma 1, the optimality condition of (2.5a) is xk+1 ∈ X and

θ1(x)−θ1(xk+1)+(x−xk+1)T {−AT yk+r(xk+1−xk)} ≥ 0, ∀x ∈ X . (2.6)

ùpk<¬`,XJ (2.5a)¥�θ1(x)´��¼ê,·�U�� (2.6)íºU�
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When θ1(x) is differentiable, the optimal condition of (2.5a) is: xk+1 ∈ X and

(x− xk+1)T
{
∇θ1(xk+1)−AT yk + r(xk+1 − xk)

}
≥ 0, ∀x ∈ X .

We rewrite the above VI as xk+1 ∈ X and

∇θ1(xk+1)T (x− xk+1)

+ (x− xk+1)T
{
−AT yk + r(xk+1 − xk)

}
≥ 0, ∀x ∈ X (2.7)

Since θ1(x) is convex function, we have

θ1(x)− θ1(xk+1) ≥ ∇θ1(xk+1)T (x− xk+1).

Substituting it in (2.7), we get (2.6). �

Similarly, from (2.5b) we get y ∈ Y and

θ2(y)− θ2(yk+1) + (y−yk+1)T {Axk+1 + s(yk+1−yk)} ≥ 0, ∀ y ∈ Y. (2.8)
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Combining (2.6) and (2.8), we have (xk+1, yk+1) ∈ X × Y ,

θ(u)− θ(uk+1) +

x− xk+1

y − yk+1

T 
−AT yk+1

Axk+1


+

r(xk+1 − xk) +AT (yk+1 − yk)

s(yk+1 − yk)

 ≥ 0, ∀(x, y) ∈ Ω.

The compact form is uk+1 ∈ Ω,

uk+1 ∈ Ω, θ(u)− θ(uk+1) + (u− uk+1)TF (uk+1)

≥ (u− uk+1)TQ(uk − uk+1), ∀u ∈ Ω. (2.9)

where

Q =

(
rIn AT

0 sIm

)
is not symmetric.

It does not be the PPA form (1.4), and we can not expect its convergence.
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The following example of linear programming indicates

the original PDHG (2.4) is not necessary convergent.

Consider a pair of the primal-dual linear programmingµ

(Primal)

min cTx

s. t. Ax = b

x ≥ 0.

(Dual)
max bT y

s. t. AT y ≤ c.

We take the following example

(P)

min x1 + 2x2

s. t. x1 + x2 = 1

x1, x2 ≥ 0.

(D)

max y

s. t.

[
1

1

]
y ≤

[
1

2

]

where A = [1, 1], b = 1, c =

[
1

2

]
and the vector x =

[
x1

x2

]
.
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Note that its Lagrange function is

L(x, y) = cTx− yT (Ax− b) (2.10)

which defined on <2
+ ×<. x∗ =

[
1
0

]
and y∗ = 1. is the unique saddle point of the

Lagrange function.

For solving the min-max problem (2.10), by using (2.4), the iterative formula is

xk+1 = arg min{cTx− xTAT yk + r
2
‖x− xk‖2|x ≥ 0}

= arg min{ r
2
‖x−[xk+ 1

r
(ATyk−c)]‖2|x ≥ 0}

= P<n
+

[xk+ 1
r
(ATyk−c)]

= max{[xk+ 1
r
(ATyk−c)], 0},

yk+1 = yk − 1
s
(Axk+1 − b).

We use (x01, x
0
2; y0) = (0, 0; 0) as the start point. For this example, the method is not

convergent.
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Fig. 2.1 The sequence generated by

PDHG Method with r = s = 1

u0 = (0, 0; 0)

u1 = (0, 0; 1)

u2 = (0, 0; 2)

u3 = (1, 0; 2)

u4 = (2, 0; 1)

u5 = (2, 0; 0)

u6 = (1, 0; 0)

u7 = (0, 0; 1)

uk+6 = uk
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é r = s = 1, 2, 5, 10, PDHG�{ÑØÂñ
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2.2 Customized Proximal Point Algorithm-Classical Version

If we change the non-symmetric matrix Q to a symmetric matrix H such that

Q =

(
rIn AT

0 sIm

)
⇒ H =

(
rIn AT

A sIm

)
,

then the variational inequality (2.9) will become the following desirable form:

θ(u)−θ(uk+1)+(u−uk+1)T {F (uk+1)+H(uk+1 − uk)} ≥ 0, ∀u ∈ Ω.

For this purpose, we need only to change (2.8) in PDHG, namely,

θ2(y)− θ2(yk+1) + (y − yk+1)T {Axk+1 + s(yk+1 − yk)} ≥ 0, ∀ y ∈ Y.

to

θ2(y)− θ2(yk+1) + (y − yk+1)T {Axk+1+A(xk+1 − xk)

+ s(yk+1 − yk)} ≥ 0, ∀ y ∈ Y.

θ2(y)− θ2(yk+1) + (y− yk+1)T {A[2xk+1 − xk] + s(yk+1− yk)} ≥ 0. (2.11)
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Thus, for given (xk, yk), producing a proximal point (xk+1, yk+1) via (2.4a)

and (2.11) can be summarized as:

xk+1 = argmin
{

Φ(x, yk) +
r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (2.12a)

yk+1 = argmax
{

Φ
(
[2xk+1 − xk], y

)
− s

2

∥∥y − yk
∥∥2} (2.12b)

By ignoring the constant term in the objective function, getting xk+1 from (2.12a)

is equivalent to obtaining xk+1 from

xk+1 = argmin
{
θ1(x) +

r

2

∥∥x−
[
xk +

1

r
AT yk

]∥∥2 ∣∣x ∈ X
}
.

The solution of (2.12b) is given by

yk+1 = argmin
{
θ2(y) +

s

2

∥∥y −
[
yk +

1

s
A(2xk+1 − xk)

]∥∥2 ∣∣ y ∈ Y
}
.

According to the assumption, there is no difficulty to solve (2.12a)-(2.12b).
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In the case that rs > ‖ATA‖, the matrix

H =


 rIn AT

A sIm


 is positive definite.

½½½nnn 2 The sequence {uk = (xk, yk)} generated by the customized PPA

(2.12) satisfies

‖uk+1 − u∗‖2H ≤ ‖uk − u∗‖2H − ‖uk − uk+1‖2H . (2.13)

For the minimization problem min{θ(x) |Ax = b, x ∈ X},
the iterative scheme is

xk+1 = argmin
{
θ(x) +

r

2

∥∥x−
[
xk +

1

r
AT yk

]∥∥2 ∣∣x ∈ X
}
. (2.14a)

yk+1 = yk − 1

s

[
A(2xk+1 − xk)− b

]
. (2.14b)
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For solving the min-max problem (2.10), by using (2.12), the iterative formula is

{
xk+1 = max{[xk + 1

r (AT yk − c)], 0},
yk+1 = yk − 1

s [A(2xk+1 − xk)− b].

t
(1,0;1) u∗6

6@
@
@
@
@@R

t

r

r

u0 (0,0;0)

u1

u2

u3

Fig. 2.2 The sequence generated by
C-PPA Method with r = s = 1

u0 = (0, 0; 0)

u1 = (0, 0; 1)

u2 = (0, 0; 2)

u3 = (1, 0; 1)

u3 = u∗.
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é r = s = 1, 2, 5, 10, C-PPA�{ÑÂñ.ëê��,Âñ�ú
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Besides (2.12), (xk+1, yk+1) can be produced by using the dual-primal order:

yk+1 = argmax
{

Φ
(
xk, y

)
− s

2

∥∥y − yk
∥∥2} (2.15a)

xk+1 = argmin
{

Φ(x, (2yk+1 − yk)) +
r

2

∥∥x− xk
∥∥2 ∣∣x ∈ X

}
. (2.15b)

By using the notation of u, F (u) and Ω in (2.3), we get uk+1 ∈ Ω and

θ(u)−θ(uk+1)+(u−uk+1)T {F (uk+1)+H(uk+1−uk)} ≥ 0, ∀u ∈ Ω,

where

H =

(
rIn −AT

−A sIm

)
.

Note that in the primal-dual order,

H =

(
rIn AT

A sIm

)
.

In the both cases, rs > ‖ATA‖, the matrix H is positive definite.
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Remark We use CP-PPA to solve linearly constrained convex optimization.

If the equality constraints Ax = b is changed to Ax ≥ b, namely,

min{θ(x) | Ax = b, x ∈ X} ⇒ min{θ(x) | Ax ≥ b, x ∈ X}.

In this case, the Lagrange multiplier y should be nonnegative. Ω = X × <m+ .

We need only to make a slight change in the algorithms.

In the primal-dual order (2.12b), it needs to change the update dual update form

yk+1 = yk− 1
s

(
A(2xk+1− xk)− b

)
⇒ yk+1 =

[
yk− 1

s

(
A(2xk+1− xk)− b

)]
+

In the dual-primal order (2.15a), it needs to change the update dual update form

yk+1 = yk− 1
s

(
Axk − b

)
⇒ yk+1 =

[
yk− 1

s

(
Axk − b

)]
+
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2.3 Simplicity recognition

Frame of VI is recognized by some Researcher in Image Science

Diagonal preconditioning for first order primal-dual algorithms
in convex optimization∗

Thomas Pock
Institute for Computer Graphics and Vision

Graz University of Technology
pock@icg.tugraz.at

Antonin Chambolle
CMAP & CNRS

École Polytechnique
antonin.chambolle@cmap.polytechnique.fr

Abstract

In this paper we study preconditioning techniques for
the first-order primal-dual algorithm proposed in [5]. In
particular, we propose simple and easy to compute diago-
nal preconditioners for which convergence of the algorithm
is guaranteed without the need to compute any step size
parameters. As a by-product, we show that for a certain
instance of the preconditioning, the proposed algorithm is
equivalent to the old and widely unknown alternating step
method for monotropic programming [7]. We show numer-
ical results on general linear programming problems and
a few standard computer vision problems. In all examples,
the preconditioned algorithm significantly outperforms the
algorithm of [5].

1. Introduction
In [5, 8, 13] first-order primal-dual algorithms are stud-

ied to solve a certain class of convex optimization problems
with known saddle-point structure.

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) , (1)

where X and Y are finite-dimensional vector spaces
equipped with standard inner products 〈·, ·〉. K : X → Y
is a linear operator and G : X → R ∪ {∞} and F ∗ : Y →
R ∪ {∞} are convex functions with known structure.

The iterates of the algorithm studied in [5] to solve (1)
are very simple:
{
xk+1 =(I + τ∂G)−1(xk − τKT yk)

yk+1 =(I + σ∂F ∗)−1(yk + σK(xk+1 + θ(xk+1 − xk)))

(2)
They basically consist of alternating a gradient ascend in
the dual variable and a gradient descend in the primal

∗The first author acknowledges support from the Austrian Science Fund
(FWF) under the grant P22492-N23.

Figure 1. On problems with irregular structure, the proposed pre-
conditioned algorithm (P-PD) converges significantly faster than
the algorithm of [5] (PD).

variable. Additionally, the algorithm performs an over-
relaxation step in the primal variable. A fundamental as-
sumption of the algorithm is that the functions F ∗ and G
are of simple structure, meaning that the so-called proxim-
ity or resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1

have closed-form solutions or can be efficiently computed
with a high precision. Their exact definitions will be given
in Section 1.1. The parameters τ, σ > 0 are the primal and
dual step sizes and θ ∈ [0, 1] controls the amount of over-
relaxation in x. It is shown in [5] that the algorithm con-
verges as long as θ = 1 and the primal and dual step sizes
τ and σ are chosen such that τσL2 < 1, where L = ‖K‖
is the operator norm of K. It is further shown that a suit-
ably defined partial primal-dual gap of the average of the
sequence ((x0, y0), ..., (xk, yk)) vanishes with rate O(1/k)
for the complete class of problems covered by (1). For
problems with more regularity, the authors propose acceler-
ation schemes based on non-empirical choices on τ , σ and
θ. In particular they show that they can achieveO(1/k2) for
problems where G of F ∗ is uniformly convex and O(ωk),
ω < 1 for problems where both G and F ∗ are uniformly
convex. See [5] for more details.

A common feature of all numerical examples in [5] is
that the involved linear operators K have a simple struc-
ture which makes it very easy to estimate L. We observed
that for problems where the operator K has a more compli-

1

• T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

• A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem

with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.
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dual variables into a vector y and all linear operators into a
global linear operator K. Then, applying the precondition-
ing techniques proposed in this paper leads to an algorithm
that is guaranteed to converge to the optimal solution with-
out the need to solve any inner optimization problems.

Figure 3 shows some results of standard minimal parti-
tioning and segmentation problems. We compared the orig-
inal approach solving inner optimization problems and us-
ing PD to P-PD applied to (27). We first precomputed the
optimal solution using a large number of iterations and then
recorded the time until the error is below a threshold of tol.
The timings are presented in Table 4. In all cases, the pro-
posed algorithm clearly outperforms the original approach
of [5].

PD P-PD Speedup
Synthetic (3 phases) 221.71s 75.65s 2.9
Synthetic (4 phases) 1392.02s 538.83s 2.6

Natural (8 phases) 592.85s 113.76s 5.2
Table 4. Comparison of the proposed algorithm on partitioning
problems.

4. Conclusion

In this paper we have proposed a simple precondition-
ing technique to improve the performance of the first-order
primal-dual algorithm proposed in [13, 5]. The proposed
diagonal preconditioners can be computed efficiently and
guarantee the convergence of the algorithm without the
need to estimate any step size parameters. In several nu-
merical experiments, we have shown that the proposed al-
gorithm significantly outperforms the algorithm in [5]. Fur-
thermore, on large scale linear programming problems, an
unoptimized implementation of the proposed algorithm eas-
ily outperforms a highly optimized interior point solver and
a GPU implementation of the proposed algorithm can eas-
ily compete with specialized combinatorial algorithms for
computing minimum cuts.

We believe that the proposed algorithm can become a
standard algorithm in computer vision since it can be ap-
plied to a large class of convex optimization problems aris-
ing in computer vision and has the potential for parallel
computing. Future work will mainly concentrate on the
development of more sophisticated preconditioners that are
different from diagonal matrices.
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In thisworkwe revisit a first-order primal–dual algorithmwhichwas introduced in [15,
26] and its accelerated variants which were studied in [5]. We derive new estimates
for the rate of convergence. In particular, exploiting a proximal-point interpretation
due to [16], we are able to give a very elementary proof of an ergodic O(1/N ) rate
of convergence (where N is the number of iterations), which also generalizes to non-
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Moreover, from the convexity of f and (4) it follows

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 ≥ f (x̂) + 〈∇ f (x̄), x − x̂
〉 − L f

2
‖x̂ − x̄‖2.

Combining this with the previous inequality, we arrive at

f (x) + g(x) + 1
τ

Dx (x, x̄) + L f

2
‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈
K (x̂ − x), ỹ

〉 + 1
τ

Dx (x̂, x̄) + 1
τ

Dx (x, x̂). (9)

In the same way:

h∗(y) + 1
σ

Dy(y, ȳ) ≥ h∗(ŷ) − 〈
K x̃, ŷ − y

〉 + 1
σ

Dy(ŷ, ȳ) + 1
σ

Dy(y, ŷ). (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8) �	.

3 Non-linear primal–dual algorithm

In this section we address the convergence rate of the non-linear primal–dual algorithm
shown in Algorithm 1:

Algorithm 1: O(1/N ) Non-linear primal–dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant L f of ∇ f , and Bregman
distance functions Dx and Dy .

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, 2xn+1 − xn, yn) (11)

The elegant interpretation in [16] shows that by writing the algorithm in this form
(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x =
‖·‖y = ‖·‖2, and Dx (x, x ′) = 1

2‖x − x ′‖2
2, Dy(y, y′) = 1

2‖y − y′‖2
2, then it is an

instance of the proximal point algorithm [27], up to the explicit term ∇ f (xn), since

(
K ∗ + ∂g

−K + ∂h∗
)

(zn+1) + Mτ,σ (zn+1 − zn) �
(−∇ f (xn)

0

)
,

where the variable z ∈ X ×Y represents the pair (x, y), and the matrix Mτ,σ is given
by

Mτ,σ =
( 1

τ
I −K ∗

−K 1
σ

I

)
, (12)

which is positive-definite as soon as τσ L2 < 1. A proof of convergence is easily
deduced. Moreover, since in our particular setting we never really use the machinery
of monotone operators, and rely only on the fact that we are studying a specific

123
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The Chen-Teboulle algorithm is the proximal point algorithm
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Abstract

We revisit the Chen-Teboulle algorithm using recent insights and show that this allows a better bound
on the step-size parameter.

1 Background

Recent works such as [HY12] have proposed a very simple yet powerful technique for analyzing optimization
methods. The idea consists simply of working with a different norm in the product Hilbert space. We fix an
inner product 〈x, y〉 on H×H∗. Instead of defining the norm to be the induced norm, we define the primal
norm as follows (and this induces the dual norm)

‖x‖V =
√
〈V x, x〉 =

√
〈x, x〉V , ‖y‖∗V = ‖y‖V −1 =

√
〈y, V −1y〉 =

√
〈y, y〉V −1

for any Hermitian positive definite V ∈ B(H,H); we write this condition as V � 0. For finite dimensional
spaces H, this means that V is a positive definite matrix.

We discuss the canonical proximal point method in a general norm; this generality has been known for a
long time, and the novelty will be our specific choice of norm. This allows us to re-derive the Chen-Teboulle
algorithm [CT94], which, even though it is not widely used, appears to be the first algorithm in a series
of algorithms [ZC08, EZC10, CP10, HY12, Con13, Vũ13]. Among other features, a benefit of these new
algorithms is that they can exploit the situation when a function f can be written as f(x) = h(Ax) for a
linear operator A. In particular, this is useful when the proximity operator [Mor62] of h is easy to compute
but the proximity operator of h ◦ A is not easy (the prox of h ◦ A follows from that of h only in special
conditions on A; see [CP07]).

The benefit of this analysis is that it gives intuition, allows one to construct novel methods, simplifies
convergence analysis, gives sharp bounds on step-sizes, and extends to product-space formulations easily.

1.1 Proximal Point algorithm

All terminology is standard, and we refer to the textbook [BC11] for standard definitions. Let A be a
maximal monotone operator, such as a subdifferential of a proper lower semi-continuous convex function,

and assume zero(A)
def
= {~x : 0 ∈ A~x} is non-empty. The proximal point algorithm is a method for finding

some ~x ∈ zero(A). It makes use of the fundamental fact:

0 ∈ A~x ⇐⇒ τ~x ∈ τ~x+A~x

for any τ > 0. This is equivalent to

~x ∈ (I + τ−1A)−1~x
def
= Jτ−1A(~x)

∗University of Colorado Boulder, USA. Work was also performed 2011–2014 while author was at IBM Research, Yorktown
Heights, NY, USA and at Laboratoire Jacques-Louis Lions, University Paris-6, under a fellowship from the Fondation Sciences
Mathmatiques de Paris (FSMP) and by a public grant overseen by the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” program (reference: ANR-10-LABX-0098)
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2.4 Relationship to Chambolle-Pock Method

Chambolle and Pock [3] have proposed a method for solving the convex-concave

min−max problem, in short, C-P method. Applied C-P method to the problem

(2.1), it is also required rs > ‖ATA‖.
CP method. For given (xk, yk), C-P method obtains xk+1 via

xk+1 = arg min{Φ(x, yk) +
r

2
‖x− xk‖2 |x ∈ X}. (2.16a)

Then, yk+1 is given by

yk+1 = arg max{Φ([xk+1 + τ(xk+1 − xk)], y)− s

2
‖y − yk‖2 | y ∈ Y}

(2.16b)

where τ ∈ [0, 1].

� τ = 1¿�rs > ‖ATA‖, PPA�{Âñ.� τ = 0,�{ØU�yÂñ.

é τ ∈ (0, 1),Âñ5vky²,�8�´�� Open Problem.
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• �©-éó·ÜFÝ{(PDHG) (2.4)ÚUI½���C:�{(C-PPA)

(2.12)Ñ´ Chambolle-Pock�{ [3]©O� τ = 0Ú τ = 1�A~.

• é τ = 0� PDHG�{ (2.4), §2.1¥®²`²ØU�yÂñ.é τ = 1�

CPPA�{ (2.12),ÙÂñ53 §2.2¥k
(Ø.

• �â·���£,éu τ ∈ (0, 1)� CP�{ (2.16),Âñ5�vk½Ø.

CP�{�cP 2020c9�

• ChambolleÚ Pock3 2010cJÑ�¦)min−max¯K��©-éó�

{,3ã�?n+�kX2��A^Úé��K�,�¡�CP�{"

• ChambolleÚ Pock�{�1����úÙu2010c6�.¦���{¥

k� [0, 1]�m�ëê,�3©Ù¥,�éëê�1��{�
y².Ö


¦��ù�©Ù±�,·�éùa�{�Âñ5?1
ïÄ.

• du·�õcïÄüNC©Ø�ª�¦)�{,é¯uy,ëê� 1�

CP �{,�±)º�C©Ø�ªH-�(H�é¡�½Ý
)��C:�

{ (PPA),ÏdÂñ5y²AO{ü.Ê��Ø�� 2010c 11� 4F,·
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�r�'y²�1�v, OO-2790,úÙ3 Optimization Onlineþ.Ó�,é

ëê� 0� CP�{,·�é�
ØÂñ�~f.

• ëê3 (0, 1)m� CP�{,UØU�yÂñ,ù�¯K�8vk)û.

• ChambolleÚ Pocké¯uy
·��ó�,��õ��� 2010c 12�

21F,¦��©Ù3 J. MIV online�ªuL.·�p,/w�, Chambolle

Ú Pock®²Ú^
·��©Ù,�J�
·��y².·��©Ù�ª

uL±�, CP�5ÒØ2Jëê3 [0, 1)m��{
.

• AOa�CP�{��Mö@�·��Ñ�{üy².¦�32011c

�IEEE ICCV¬ÆØ©¥,¡7·��ó�4�/{z
Âñ5©Û

(which greatly simplifies the convergence analysis).

• �5CP�{��öqkõ��'�©ÙuL(�¡�©Ù¦�Ñ�?Ø

ëê� 1��{).¦�u2016c3Math. Progr.uL�©Ù¥,UY|^

·�� PPA)º,©Ù�Úó¥ÒmªÙú (In particular, exploiting a

proximal-point interpretation due to [16], we are able to give a very

elementary proof).ùp�[16]´·� 2010c�ý<� OO-2790, 2012c

SuL3 SIAM Imaging Science.
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3 From ALM to Balanced ALM

We consider the generic convex minimization model with linear constraints

min{θ(x) | Ax = b, x ∈ X}, (3.1)

where θ : <n → < is a closed proper convex but not necessarily smooth function;

X ⊆ <n is a closed convex set; A ∈ <m×n and b ∈ <m.

The Lagrangian function of (3.1) is

L(x, λ) = θ(x)− λT (Ax− b), (3.2)

which is defined on Ω = X × <m. A pair of (x∗, λ∗) defined on X × Λ is called a

saddle point of the Lagrangian function (3.2) if it satisfies the inequalities

Lλ∈<m(x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ∗).

Alternatively, we can rewrite these inequalities as the variational inequalities:

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (3.3a)
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where

w =

 x

λ

 , F (w) =

 −ATλ

Ax− b

 and Ω = X × <m. (3.3b)

Note that for the operator F defined in (3.3b) is affine with a skew-symmetric matrix. Thus

we have

(w − w̃)T (F (w)− F (w̃)) ≡ 0. (3.4)

We denote by Ω∗ the solution set of the variational inequality (3.3).

½½½nnn 3 [PPA for VI (3.3)] The sequence

wk+1 ∈ Ω, θ(x)−θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω. (3.5)

Then we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H , ∀w∗ ∈ Ω∗. (3.6)

‖vk − vk+1‖2H ≤ ‖vk − v∗‖2H − ‖vk+1 − v∗‖2H .
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3.1 Augmented Lagrangian Method

The augmented Lagrangian method originally proposed in [12, 13, 14] for (3.1) reads as

(ALM)


xk+1 ∈ arg min

{
L(x, λk) +

r

2
‖Ax− b‖2

∣∣ x ∈ X} (3.7a)

λk+1 = arg max
{
L(xk+1, λ)− 1

2r
‖λ− λk‖2}. (3.7b)

The method is implemented by xk+1 ∈ arg min
{
θ(x)− xTATλk +

r

2
‖Ax− b‖2

∣∣ x ∈ X}, (3.8a)

λk+1 = λk − r
(
Axk+1 − b

)
. (3.8b)

(xk+1, λk+1) ∈ X × <m,
θ(x)− θ(xk+1) + (x− xk+1)T {−AT[λk − r(Axk+1 − b)]} ≥ 0, ∀x ∈ X

(λ− λk+1)T {(Axk+1 − b) +
1

r
(λk+1 − λk)} ≥ 0, ∀λ ∈ <m
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ÚÚÚnnn 2 For given λk , let wk+1 be generated by (3.7), then we have

wk+1 ∈ Ω, θ(x)− θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (λ− λk+1)T
1

r
(λk − λk+1), ∀w ∈ Ω. (3.9)

It is a form of (3.3) with v = λ, H =
1

r
Im.

According to Theorem 3, the sequence {λk} generated by ALM (3.7) satisfied

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖2 − ‖λk − λk+1‖2, ∀λ∗ ∈ Λ∗. (3.10)

Disadvantages: The x-subproblem of of the k-th iteration of ALM has the mathematical

form

min
{
θ(x) +

r

2
‖Ax− pk‖2

∣∣ x ∈ X}. (3.11)

Because of the quadratic term
r

2
‖Ax− pk‖2, sometimes it is difficult to get a solution of

(3.8a).
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3.2 CP-PPA method [9]

The scheme of CP-PPA method [3, 4, 9] is appropriate for (3.1). It reads as

(CP-PPA)


xk+1 = arg min

{
L(x, λk) +

r

2
‖x− xk‖2

∣∣ x ∈ X}, (3.12a)

λk+1 = arg max
{
L([2xk+1 − xk], λ)− s

2
‖λ− λk‖2

}
. (3.12b)

The method is implemented by
xk+1 = arg min

{
θ(x) +

r

2
‖x− (xk + 1

r
ATλk)‖2

∣∣ x ∈ X},(3.13a)

λk+1 = λk − 1
s

(
A[2xk+1 − xk]− b

)
. (3.13b)

ÚÚÚnnn 3 For given wk , let wk+1 be generated by (3.12), then we have

wk+1 ∈ Ω, θ(x)− θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (w − wk+1)TH(wk − wk+1), ∀w ∈ Ω, (3.14a)
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where

H =

 rIn AT

A sIm

 . (3.14b)

According to Theorem 3, the sequence {wk} generated by CP-PPA (3.12) satisfied (3.6)

where H is defined in (3.14b).

Disadvantages. In order to guarantee the convergence, the parameters r and s should

satisfy

rs > ‖ATA‖. (3.15)

Unless the matrix ATA is well-conditioned, the condition (3.15) will lead slow

convergence.

• CP-PPA�{� x-f¯K (3.12a)¥,^ 1
2
r‖x − xk‖2 �O�ALM�{ x-f¯

K(3.7a)¥� 1
2
r‖Ax− b‖2. �{´{ü
,��
¦Ý
H �½,·�7L�

rs > ‖ATA‖. rs��uATA�Ì�».

• lS�úª (3.12)�±wÑ, r Ú s �, ¬½¦#�S�: wk+1 =

(xk+1, λk+1) �C�5�:wk = (xk, λk) �C. 3éõ�ÿ, ù¬K�Â

ñ�Ý.
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3.3 Balanced ALM [10]

Our balanced ALM [10, 17] is to share the difficulty equally in the primal-dual steps.
xk+1 = arg min

{
L(x, λk) +

r

2
‖x− xk‖2

∣∣ x ∈ X}, (3.16a)

λk+1 = arg max
{
L([2xk+1 − xk], λ)− 1

2

∥∥λ− λk∥∥2
( 1
r
AAT+δIm)

}
. (3.16b)

Replaced

λk+1 = arg max
{
L([2xk+1 − xk], λ)− s

2
‖λ− λk‖2

}
,

in (3.12b) by

λk+1 = arg max
{
L([2xk+1 − xk], λ)− 1

2

∥∥λ− λk∥∥2
( 1
r
AAT+δIm)

}
.

The balanced ALM (3.16) is implemented by
xk+1=arg min

{
θ(x)− xTATλk +

r

2
‖x− xk‖2

∣∣ x ∈ X}, (3.17a)

λk+1=arg min
{
λT
(
A[2xk+1 − xk]− b

)
+

1

2

∥∥λ− λk∥∥2
( 1
r
AAT+δIm)

}
. (3.17b)
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Remark. λk+1 in (3.17b) is the solution of the following system of linear equations:

H0(λ− λk) +
(
A[2xk+1 − xk]− b

)
= 0, (3.18)

where

H0 =
1

r
AAT + δIm. (3.19)

Because the matrix H0 is positive definite, there are efficient algorithms in literature for

solving such a systems of linear equations.

ÚÚÚnnn 4 For given wk, let wk+1 be generated by (3.16), then we have

wk+1 ∈ Ω, θ(x)− θ(xk+1) + (w − wk+1)TF (wk+1)

≥ (w − wk+1)TH(wk − wk+1), ∀w ∈ Ω, (3.20a)

where

H =


 rIn AT

A 1
rAA

T + δIm


 is positive definite. (3.20b)
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Proof. According to Lemma 1, xk+1 offered by (3.17a) is characterized as xk+1 ∈ X
and

θ(x)− θ(xk+1) + (x− xk+1)T
{
−ATλk + r(xk+1 − xk)

}
≥ 0, ∀x ∈ X .

Then, for any unknown λk+1, we have

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)T (−ATλk+1)

≥ (x− xk+1)T
{
r(xk − xk+1)+AT(λk−λk+1)

}
, ∀x ∈ X . (3.21)

Similarly, according to Lemma 1, λk+1 offered by (3.17b) is characterized by the

variational inequality λk+1 ∈ <m,

(λ−λk+1)T
{(
A[2xk+1−xk]−b

)
+
(1

r
AAT+δIm

)
(λk+1−λk)

}
≥ 0, ∀λ ∈ <m.

It can be rewritten as λk+1 ∈ Λ as

(λ− λk+1)T (Axk+1 − b)

≥ (λ− λk+1)T
{

(A(xk − xk+1) +
(1

r
AAT + δIm

)
(λk − λk+1)

}
,

∀λ ∈ Λ. (3.22)
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Combining (3.21) and (3.22), and using the notation in (3.3), we get the assertion of this

lemma. �

Notice that the matrix H in

H =



√
rIn√
1
rA



(√

rIn,
√

1
rA

T
)

+


 0 0

0 δIm


 ,

for any w = (x, λ) 6= 0. Thus, we have

wTHw =
∥∥√rx+

√
1
rA

Tλ
∥∥2 + δ‖λ‖2 > 0,

and therefore the matrix H is positive definite. �

þ(�O2.�KF¦f{, x-f¯K (3.16a)Ú CP-PPA¥�x-f¯

K (3.12a)����. λ-f¯K (3.17b)�¦)��XêÝ
�½��5�§

|.·�^ù�O�
îK�Âñ�Ý� rs > ‖ATA‖ (see (3.15)).5¿

�,3��S�L§¥,·���éÝ
H0 (see (3.19))��gCholesky©).
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4 ALM in PPA-sense

The methods introduced in this section are recently published in [19].

�âý��½Ý
 �EPPA�{. �{�±3 [19]¥��.

The convex optimization problem,

min{θ(x) | Ax = b, x ∈ X}

is translated to the equivalent variational inequality :

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀u ∈ Ω, (4.1a)

where

w =


 x

λ


 , F (w) =


 −ATλ

Ax− b


 and Ω = X × <m. (4.1b)
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4.1 Relaxed PPA in Primal-Dual Order

Relaxed PPA for the variational inequality (4.1) :

θ(x)− θ(x̃k) + (w− w̃k)TF (w̃k) ≥ (w− w̃k)TH(wk− w̃k), ∀w ∈ Ω, (4.2a)

where

H =

 βATA+ δIn AT

A
1

β
Im

 (4.2b)

The concrete formula of (4.2) is


θ(x)− θ(x̃k) + (x− x̃k)T

{−AT λ̃k + (βATA+ δIn)(x̃
k − xk) +AT (λ̃k − λk)} ≥ 0,

(Ax̃k − b) +A(x̃k − xk) + (1/β)(λ̃k − λk) = 0.

(4.3)

The underline part is F (w̃k):

F (w) =

(
−ATλ

Ax− b

)
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θ(x)− θ(x̃k) + (x− x̃k)T {−ATλk + (βATA+ δIn)(x̃k − xk)} ≥ 0,(

A[2x̃k − xk]− b
)

+ (1/β)(λ̃k − λk) = 0.

How to implement the prediction? To get w̃k which satisfies (4.3),

we need only use the following procedure: (Primal-Dual)




x̃k = Argmin

{
θ(x)− xTATλk

+ 1
2 (x− xk)T (βATA+ δIn)(x− xk)

∣∣∣∣x ∈ X
}
,

λ̃k = λk − β
(
A[2x̃k − xk]− b

)
.

Then, we use the form

wk+1 = wk − α(wk − w̃k), α ∈ (0, 2)

to update the new iterate wk+1.
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4.2 Relaxed PPA in Dual-Primal Order

Relaxed PPA for the variational inequality (4.1) :

θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TH(wk − w̃k), ∀w ∈ Ω,

(4.4a)

where

H =




βATA+ δIn −AT

−A 1

β
Im


 , (a small δ > 0, say δ = 0.05). (4.4b)

Then, we use the form

wk+1 = wk − α(wk − w̃k), α ∈ (0, 2)

to update the new iterate wk+1.
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The concrete form of (4.4) is
θ(x)− θ(x̃k) + (x− x̃k)T

{−AT λ̃k + (βATA+ δIn2)(x̃
k − xk)−AT (λ̃k − λk)} ≥ 0,

(Ax̃k − b) −A(x̃k − xk) + (1/β) (λ̃k − λk) = 0.


θ(x)− θ(x̃k) + (x− x̃k)T

{−AT (2λ̃k − λk) + (βATA+ δIn2)(x̃k − xk)} ≥ 0,

(Axk − b) + (1/β)(λ̃k − λk) = 0.

Implementation of (4.4) is (Dual-Primal)




λ̃k = λk − β(Axk − b), (4.5a)

x̃k = Argmin

{
θ(x)− xTAT [2λ̃k − λk] +

1
2 (x− xk)T (βATA+ δIn)(x− xk)

∣∣∣∣x ∈ X
}
. (4.5b)

The underline part is F (w̃k):

F (w) =

(
−ATλ

Ax− b

)



II - 44

4.3 PPA in Primal-Dual Order

Relaxed PPA for the variational inequality (4.1) :

θ(x)− θ(x̃k) + (w − w̃k)TF (w̃k) ≥ (w − w̃k)TH(wk − w̃k), ∀w ∈ Ω,

(4.6a)

where

H =




δIn 0

0
1

β
Im


 . (4.6b)

Then, we use the form

wk+1 = wk − α(wk − w̃k), α ∈ (0, 2)

to update the new iterate wk+1.
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The concrete form of (4.6) is θ(x)− θ(x̃k) + (x− x̃k)T {−AT λ̃k + δIn(x̃k − xk)} ≥ 0,

(Ax̃k − b) + (1/β) (λ̃k − λk) = 0.

Using λ̃k = λk − β(Ax̃k − b) = [λk − β(Axk − b)]− βA(x̃k − xk)


θ(x)− θ(x̃k) + (x− x̃k)T

{
−AT [λk − β(Axk − b)]

+(δIn +ATA)(x̃k − xk)

}
≥ 0,

λ̃k = λk − β(Ax̃k − b).

Implementation
x̃k = Argmin

{
θ(x)− xTAT [λk − β(Axk − b)] +

1
2
(x− xk)T (βATA+ δIn)(x− xk)

∣∣∣∣x ∈ X
}
,

λ̃k = λk − β(Ax̃k − b).

The underline part is F (w̃k):

F (w) =

(
−ATλ

Ax− b

)
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5 Different positive definite matrices H in PPA

H =

(
rIn AT

A sIm

)
, H =

(
rIn −AT

−A sIm

)
, rs > ‖ATA‖.

H =

(
rIn AT

A 1
rAA

T + δIm

)
, H =

(
rIn −AT

−A 1
rAA

T + δIm

)

H =

(
βATA+ δIn AT

A 1
β Im

)
, H =

(
βATA+ δIn −AT

−A 1
β Im

)

H =




δIn 0

0
1

β
Im


 , H =


 In 0

0 Im
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