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1 Preliminaries — Convex Optimization Variational
Inequality and Proximal Point Algorithms

1.1 Differential convex optimization and monotone VI

Let {2 C R", we consider the convex minimization problem

min{ f(z) | x € Q}. (1.1)

What is the first-order optimal condition ? '

x* € Q) & zx* € ()and any feasible direction is not descent direction.

Optimal condition in variational inequality form '

o Sy(z) ={seR" | sI'Vf(x) <0} = Setof the descent directions.

o Si(x) ={seN" | s=12"—=x, &' € Q} = Setof feasible directions.

reN* < xze€Q and Si(z)NSy(x)=0.



The optimal condition can be presented in a variational inequality (VI) form:
e Q, (x—2)'Vf(x*)>0, VreQ. (1.2)
Substituting V f () with an operator F' (from J" into itself), we get a classical VI.
a 2en |\ Thedeheconar
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Fig. 1.1 Differential Convex Optimization and VI

Since f(x) is a convex function, we have

fly) > f(z)+Vf(x)' (y—z) andthus (z—y)" (Vf(x)—Vf(y)) > 0.

We say the gradient Vf of the convex function f is a monotone operator.



A function f(x) is convex iff L1608 B9 E AE AR B I

F(1-0)at0y) < (1-0)f (2)+0f(y) |
Ve € [0, 1].

Properties of convex function

o f c(Cl. fisconvexiff

fy) = f(x) > V() (y — ). |

Thus, we have also |

|
|
I
I
|
I
|
I
I
I
|
I
|
I
|
|

f(@) = fly) > VI (x —y).

Voo,
T .\\"‘\
e Adding above two inequalities, we get )+ V) (p=x)»
(y — )T (Vf(y) = Vf(z)) > 0. Convex function

e feC! Vfismonotone. [ € C? V2f(x)is positive semi-definite.

e Any local minimum of a convex function is a global minimum.



For the analysis in this paper, we need only the basic property which is described

in the following lemma.

Lemma 1.1 Let ¥ C R" be a closed convex set, §(x) and f(x) be convex

functions and f(x) is differentiable. Assume that the solution set of the
minimization problem min{6(z) + f(x) |z € X'} is nonempty. Then,

r* € argmin{f(x) + f(x) |z € X}

if and only if

v e X, O(x)—0(x*)+ (x—2")'Vf(x*) >0, VreX.

Proof : First, if (1.3a) is true, then for any x € X, we have

O(ra) = 0(z")  flwa) = f)

87 84

> 0,

where
To = (1 —a)x™ +ax, Vae (0,1].

(1.3a)

(1.3b)

(1.4)



Because 6(+) is convex, it follows that
O(za) < (1 —a)f(z”) + af(z),

and thus )
0(x) — O(x*) > 2F) =0 011,

Qa
Substituting the last inequality in the left hand side of (1.4), we have

0(x) — 0(x*) + LE) =@ o v e 0.1)

0%

Using f(xzo) = f(x* + a(x — x*)) and letting & — 0.1, from the above

inequality we get
0(x) — 0(x*) + V() (x —2*) >0, Vz € X.
Thus (1.3b) follows from (1.3a). Conversely, since f is convex, it follow that

flea) < (1 —=a)f(z") + af(z)



and it can be rewritten as

f(za) = f(2") < a(f(z) — f(27)).
Thus, we have

Fa)— flany > JE) = f@) _ f@ +al@ =) - f@)

87 87

forall o € (0, 1]. Letting o — 0., we get
f(2) = f(z") = Vf(z")" (z —z").
Substituting it in the left hand side of (1.3b), we get
e X, O(z)—0")+ f(z)— f(z*) >0, VxelX,

and (1.3a) is true. The proof is complete. ]

10
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1.2 Linear constrained convex optimization and VI

We consider the linearly constrained convex

optimization problem
min{f(u) | Au=5b, ueU}. (1.5
The Lagrangian function of the problem (1.5) is

L(u, A) = 60(u) — A" (Au — b),

which is defined on U/ x R™.

A pair of (1™, \™) is called a saddle point of the Lagrange function, if
Lyerm (u™,\) < L(u",\") < Lycu(u, \").
An equivalent expression of the saddle point is the following variational inequality:

ut eU, O(u) — 0(u*) + (u —u)T(=ATX) >0, Yuel,
A e R™, A =X (Au* —b) >0, VXeER™.



Thus, by denoting

u — AT\
w = , F(w) = and Q=U xR, (1.6
A Au—b
the optimal condition can be characterized as a monotone variational inequality:
w* € Q, Ou)—0u*) + (w—w)'Fw*) >0, Ywe. 1.7

Note that the operator F' is monotone, because

(w — @) T(F(w)—F(®)) > 0, Here (w — @) (F(w)—F(@)) = 0. (1.8)

Example 1 of the problem (1.5): Finding the nearest correlation matrix

A positive semi-definite matrix, whose each diagonal element is equal 1, is called
the correlation matrix. For given symmetric n X n matrix C', the mathematical
form of finding the nearest correlation matrix X is

min{1|| X — C||7 |diag(X) =€, X € SV}, (1.9)

12



where Sﬁ is the positive semi-definite cone and e is a n-vector whose each

element is equal 1. The problem (1.9) is a concrete problem of type (1.5).

Let M be a given m X n matrix, 11 is the elements
indices set of M,

I {Gf)ie{1,...,m}, je{l,...,n}}.

The mathematical form of the matrix completion
problem is relaxed to

mind || X[« | Xi; = Mij, (i) € I}, (1.10)

where || - ||« is the nuclear norm-the sum of the sin-
gular values of a given matrix. The problem (1.10) is
a convex optimization of form (1.5). The matrix A in
(1.5) for the linear constraints

X’LJ:M’LJ7( )EH

is a projection matrix, and thus || A” A|| = 1.

Example 2 of the problem (1.5): The matrix completion problem

M is low Rank, only some

elements of M are known.

* * ES
ES ES S
S X * *
B *
* B8 *
* B8 *
ES * S
ES B Xk S
x
* * *
* * ES ES
X X ES
* B * *
ES * *

13
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Convex optimization problem with two separable objective functions '

Some convex optimization problems have the following separable structure:
min{f;(x) +02(y) | Ar+ By =b, x € X,y € V}.

The Lagrangian function of this problem is
L®(z,y, \) = 01(z) + 62(y) — AT (Az + By — b).
The saddle point ((z*, y*), \*) of L®(x, y, \) is a solution of the following VI:

w* € Q, Ou) —0u*) + (w—w)'F(w*) >0, Ywe,

where
T . —AT )
w=| vy |, u= , F(w) = BT\ ,
A Y Az + By — b
and

O(u) = 01(x) + 02(y), Q=X xY xR™.



Convex optimization problem with three separable objective functions '

min{f(x) +602(y) +03(z) | A+ By+Cz=b,x € X,y € Y,z € Z}.

lts Lagrangian function is
LO(x,y,2,\) = 01(x) + 02(y) + 03(2) — X (Ax + By + Cz —b).
The saddle point ((*, y*, 2*), \*) of L®(x, y, z, \) is a solution of the VI:

w* € Q, Ou) —0(u*) + (w—w)'F(w*) >0, YweQ,

where
/ L \ T ( — AT\ \
_ Yy _ o o —BT)\
w = - y U= Y ; (w) = _ 0T, ;
\)‘) & \A:IH—By—FC’z—b)
and

O(u) = 01(x) + 02(y) + 03(2), ND=XxYxZxR™



1.3 Proximal point algorithms for convex optimization

Lemma 1.2 Letthe vectorsa,b € R, H € R"*" be a positive definite matrix.
if b1’ H(a —b) > 0, then we have

1oll7 < llallz — lla —bl|%-. (1.11)

The assertion follows from ||a||%; = [0+ (a —)||% > ||bl|% + ||la — b||%;.
Convex Optimization ' Now, let us consider the simple convex optimization

min{f(z) + f(z) | x € X}, (1.12)

where 6(x) and f(x) are convex but () is not necessary smooth, X is a
closed convex set.

For solving (1.12), the k-th iteration of the proximal point algorithm (abbreviated to
PPA) [31, 34] begins with a given ", offers the new iterate "1 via the recursion

2F L = Argmin{6(z) + f(z) + gHaz —2F2 |z e XY (1.13)



Since "1 is the optimal solution of (1.13), it follows from Lemma 1.1 that

0(z)—0(z" )+ (x — " THTH{VF () +r(a" —2F))} >0, Vo e X.
(1.14)
Setting x = x* in the above inequality, it follows that

($k+1—x*)TT(xk—ZCk+l) Z 9(xk+1)—0(w*)+(xk+l—:U*)TVf(:ck“).
(1.15)
Since

(2" =) V(") = (@ = 2TV (7)),

it follows that the right hand side of (1.15) is nonnegative. And consequently,

(" — )T (2P — 2T > 0. (1.16)
Let @ = ¥ — 2* and b = 2*T! — 2* and using Lemma 1.2, we obtain
JeF T — 2|2 < fla® — 2|2 — |la* — 2, (1.17)

which is the nice convergence property of Proximal Point Algorithm.
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The residue sequence {||z* — 2**1||} is also monotonically no-increasing.

Proof. | Replacing £ + 1 in (1.14) with k, we get

0(z) — 0(z") + (x — ) {V (") + r(a* — 2"} >0, Ve e x.

k+

Let z = 2" in the above inequality, it follows that

0(z" ) — 0(2®) + (" — 2"V +r@@” —2"H >0,  (1.18)

Setting x = " in (1.14), we become

0(z") — 0(z" ) + (" — " THYVF ") + (" = 2"} > 0. (119
Adding (1.18) and (1.19) and using (2~ — " THT [V f(z") — V f(«"T1)] > 0,

(" — 2" THT{(a" " = 2") — (" — T} > 0. (1.20)

k—1 k k

Settinga =" " —x " and b= x" — "L in (1.20) and using (1.11), we obtain

la® —a™ T <l —a®|* || (2" —a") — (@" —2 ) |I7. (1.21)




We write the problem (1.12) and its PPA (1.13) in VI form

The equivalent variational inequality form of the optimization problem (1.12) is

v e X, O0(x) —0(x*)+ (z —2")'Vf(z*) >0, Ve e X. (1.22a)

For solving the problem (1.12), the variational inequality form of the k-th iteration of
the PPA (see (1.14)) is:

Pl e x, O(x) -0 + (z — 2P THTVF(2F )

> (v — o) Tp(ak — 28, Vo e X,

(1.22b)

P PA reaches the solution of (1.22a) via solving a series of subproblems (1.22b).

KANEL L AERIRE, IRFLIRFT!

Using (1.22), we study PPA for VI arising from the constrained optimization
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1.4 Preliminaries of PPA for Variational Inequalities

The optimal condition of the problem (1.5) is characterized as a mixed monotone

variational inequality:

w* € Q, O(z) —0(z*) + (w—w)' F(w*) >0, YweQ. (1.23)

PPA for VI in Euclidean-norm ' For given wk and r > 0, find whktl

whktt e Q, 0(x) — (2" 4+ (w — whTH T F(whtl)

> (w — wFH)Tr(wk — whtl), Vw € Q.

(1.24)

w1 is called the proximal point of the k-th iteration for the problem (1.23).
4« w"” is the solution of (1.23) if and only if w" = w*t! L
Setting w = w™ in (1.24), we obtain

(wkH—w*)TT(wk—wkH) Z 9(:13’““)—9(:5*)—#(10’““—fw*)TF(wkH)

20
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Note that (see the structure of F'(w) in (1.6))
(,wk—l—l . w*)TF<wk—|—1) _ (wk—|—1 . w*)TF(w*),
and consequently (by using (1.23)) we obtain

(wk+1—w*)TT(wk—wk+1) > H(xk+1)—9(a:*)+(wk+1—w*)TF(w*) > 0,

and thus
(w* Tt — w*) T (wh — w1 > 0. (1.25)

k k+1

Now, by setting a = w” — w* and b = w — w™ in the inequality (1.25), it

is b1’ (a — b) > 0. Using Lemma1.2, we obtain
W —w** <l — W = flw” - Wt (1.26)

We get the nice convergence property of Proximal Point Algorithm:

The sequence {wk} generated by PPA is Fejér monotone.



PPA for monotone mixed VI in H-norm '

For given wk, find the proximal point w®*T1in H-norm which satisfies

whtt e Q, 0(z) — 0(x"1) + (w — wFTH)T F(wht!) 1.27)
> (w — wFHYTH(wF —wh ), Vw € Q, |

where H is a symmetric positive definite matrix.

Y4 Again, w” is the solution of (1.23) if and only if w* = w®+1

Convergence Property of Proximal Point Algorithm in //-norm I

Hwk+1

—wffr < [lw* —wE — w® =W (1.28)

The sequence {wk} is Fejér monotone in H -norm. In customized PPA, via
choosing a proper positive definite matrix H, the solution of the subproblem

(1.27) has a closed form. An iterative algorithm is called the contraction method, if

k41

its generated sequence {w”} satisfies  ||w* Tt — w*||%, < [[w® — w*||%;.

22



2 From PDHG to CP-PPA and Customized-PPA

We consider the min — max problem
min, max,{®(z,y) = 61 (x) —y Az — 02(y) |z € X,y € V}. (2.1)

Let (™, y™) be the solution of (2.1), then we have

{ e X, Plx,y")—P(z",y") >0, Vo e X, (2.2a)
y €Y, ®(x7,y") —P(z7,y) >0, Vye ). (2.2b)

Using the notation of ®(, ), it can be written as

¥ € X, O1(x) —01(z*) + (x —2") ' (—ATy*) >0, Ve X,
y* €Y, O2(y) —02(y*) + (y—y*)'(Az*) >0, Vye.

Furthermore, it can be written as a variational inequality in the compact form:

weQ, 0w —0u")+ (u—u)"Fu*) >0, Yueq, (2.3)

23



T T
Since F'(u) = (_ﬁxy> = (21 _181 )(f;),we have

(w — )" (F(u) — F(v)) = 0.

2.1 Original primal-dual hybrid gradient algorithm [38]

For given (z*, y*), PDHG [38] produces a pair of ("1, 4/*T1). First,

" = argmin{®(z,y") + gHaz —z"|? |z e &}, (2.4a)

and then we obtain ykJ’l via

v = argmax{@(@" L y) — Dy — "I ly €V} (240)

Ignoring the constant term in the objective function, the subproblems (2.4) are reduced to
" = argmin{0; (z) — 2" AT y" + ng — "7 |z € &), (2.5a)
y* T = argmin{0s(y) + y* Az"T! + gHy — "7 |y € V}. (2.5b)

According to Lemma 1.1, the optimality condition of (2.5a) is z* € X and

01(z)—01(z" )+ (x—2"THT{—=ATy" +r(@"T1 =2} >0, Vo € X. (26)

24



Similarly, from (2.5b) we get y* ™1 € ) and
O2(y) — 02(y" )+ (y—y* ) {Az" T s (" =)} > 0, Vy e V. (27)

Combining (2.6) and (2.7), we have

T
k1 AT kL
O(u) — 0wty + [T~ 7 Y
(u) = O(u™"") g — gt A 1

r(2F T — YL AT (1 g F
+ ( ) gfil_ ky) >0, V(z,y) €.
s(y y")

The compact form is w1 € Q,
0(vw) — 0"+ (u—u" THT{F " T+ QW T —uF)} > 0, Vu e Q, (28)

where

Q = rln AT is not symmetric
0 sln '

It does not be the PPA form (1.27), and we can not expect its convergence.

25



The following example of linear programming indicates

the original PDHG (2.4) is not necessary convergent.

Consider a pair of the primal-dual linear programming :

min ¢’z T
max b'y
(Primal) s.t. Ax =0 (Dual)
>0 s.t. Ay <e.

We take the following example

min r1 + 2%2 max Y

P) st x1+z2=1 (D) [1] [1]
s. 1. y <
L1, T2 ZO

where A =[1,1], b=1,c= [1} and the vector z = {9@1}
2 X2
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The optimal solutions of this pair of linear programming are ™ = {O] and y* = 1.
Note that its Lagrange function is
L(z,y) =c z—y"' (Az —b) (2.9)

which defined on 3?1 x . (zc*, y*) is the unique saddle point of the Lagrange function.

For the convex optimization problem  min{f(x) | Ax = b,z € X'},

its Lagrangian function is
L(z,y) = 0(z) —y" (Az —b),

which defined on X x R™™. Find the saddle point of the Lagrangian function is a special

min — max problem (2.1) whose 61 (z) = 6(z), O2(y) = —b' yand ) = N

For solving the min-max problem (2.9), by using (2.4), the iterative formula is

{x’““ = max{(z" + - (ATy" — ¢)), 0},
yk:+1 _ yk _ %<Axk+1 —b).



We use (23, 23;y°) = (0, 0; 0) as the start point. For this example, the method is not

convergent.
u? o A u® = (0,0;0)
A
u' =(0,0;1)
u? = (0,0;2)
3
ul o U U o (1,0:1) o U ( )
ut = (2,0;1)
u® = (2,0;0)
6
u’> = (1,0:0
u’ ¢ (0,0:0) u’ Y ud (1,0;0)
~ ) u’ = (0,0;1)
Fig. 4.1 The sequence generated by uk+6 _ uk’
PDHG Method withr = s = 1




* solution poit
B initial iterate
final iterate

% solution poir
B initial iterate
final iterate

75
2.00 0.0000

Xtr=s=1,2 75, 10, PDHG F EEZ U E

*
[ ]

solution point
initial iterate
final iterate

*
[ ]

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

solution point
initial iterate
final iterate

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
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2.2 Proximal Point Algorithm — CP-PPA

If we change the non-symmetric matrix () to a symmetric matrix A such that

rl, AT rl, AT
Q- ~  H-— ,
0 si,, A sl,,

then the variational inequality (2.8) will become the following desirable form:

O(u) —O(u* ) + (u— YT {F () + H(uF T — 0} >0, vu € Q.

For this purpose, we need only to change (2.7) in PDHG, namely,

O2(y) — O2(y" 1) + (y — " H T {A" T + 5" — )} >0, Vy e V.

to

02(y)—02(y" )+ (y—y" ) {AR" =M+ (" T ")} > 0, Yy € V.
(2.10)

02 (y) =02 (y" ) +(y—y" ) {AL" T+ AT = 2") +s(y" T - M)} > 0.



Thus, for given (x*, y*), producing a proximal point (21, /*1) via (2.4a)

and (2.10) can be summarized as:

il = argmin{q)(x,yk) + ng — kaQ |z e X}

YRl = argmax{CID([Qa:’“L1 — :Uk],y) — gHy — kaQ}

(2.11a)

(2.11b)

By ignoring the constant term in the objective function, getting ¥+ from (2.11a)

is equivalent to obtaining z**1 from
il = argmin{ 61 (x) + gHa: — [xk + %ATyk] HQ |z e X}

The solution of (2.11b) is given by

YRt = argmin{ﬁz(y) + gHy — [yk -+ %A(QZC]C—H — :r;k)} H2 ‘y S y}.

According to the assumption, there is no difficulty to solve (2.11a)-(2.11b).

31



In the case that 7s > || AT A||, the matrix

rl, AT
H = is positive definite.
A sl

The method (2.11) was first suggested by Chambolle and Pock [4]. A few months
later, by using the PPA interpretation, we have proved the convergence as

mentioned here [26]. In this sense, we call it CP-PPA.

Theorem 2.1 The sequence {u”* = (x*, \*)} generated by the CP-PPA (2.11)

satisfies

L 2 T O [ AR i 2 (2.12)

For the minimization problem  min{f(x) | Ax = b,z € X'},

the iterative scheme is

T = argmin{ 0(z) + gHaz — [azk + %ATyk} H2 |z e X} (2.13a)

yk—l—l _ yk L [A(ka—l—l B xk) B b}. (2.13b)
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For solving the min-max problem (2.9), by using (2.11), the iterative formula is

{a:k = max{ (z" (AT k—¢)),0},

yhtl =y —l[A(QfC"“+1 x®) — b).

S

u2 A

u® = (0,0;0)

3 1 _ .
R o’ * u = (0,0;1)
o v = (0,0:2
u® = (1,0;1)

3 __ *

u° 9(0,0:0) v =1

Fig. 4.2 The sequence generated by
C-PPA Method withr = s =1
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% solution point
initial iterate
final iterate

%  solution pt
B initial itere [ ]

final iterat

L1.75
-1.50
+1.25
+1.00 y
-0.75
-0.50

*  solution pc * solution point
B initial itere B initial iterate

final iterat final iterate
L 2.00
. r1.75
M- r1.50
L r1.25

-1 +1.00 ¥

L r0.75
+C r0.50
r0 r0.25
Lo r0.00

0.0 0.04

0.02 0.02
0.00
—0.02%2

000 0.25 g 50 ¢ 5

5 1.00 1.25
x1

Xfr=s=1,2,5 10, C-PPA J3 7 EEBUNE. SHM A, W2

1.50 1,75

34



35

Besides (2.11), (:1:’““, ykﬂ) can be produced by using the dual-primal order:

ka = argmax{cb(:vk7y) — gHy — yk‘ 2} (2.14a)

2

reX}. (2.14b)

gFl = argmin{ ®(z, (24" —y") + ng - ka

By using the notation of u, F'(u) and €2 in (2.3), we get u* ™1 € Q and
O(u) —O(u" ™)+ (u—u"THT{F () + H@W T —uf)} >0, Vu € Q,

where

Note that in the primal-dual order,

rl, AT
H = .
A sl,,

In the both cases, s > || AT A

, the matrix H is positive definite.



Remark ' We use CP-PPA to solve linearly constrained convex optimization.

If the equality constraints Az = b is changed to Ax > b, namely,

min{f(z) | Ax =b, z € X} min{f(x) | Ax > b, z € X}.

=

In this case, the Lagrange multiplier ¢ should be nonnegative. ) = X" X 3?7]:
We need only to make a slight change in the algorithms.

In the primal-dual order (2.11b), it needs to change the update dual update form

S

YRt = \F— %(A(Qa:kﬂ— ) — b) = Yyt = [yk— 1 (A(Q:Uk’ﬂ— azk) — b]]+
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2.3 Simplicity recognition

Frame of Vl is recognized by some Researcher in Image Science I

Diagonal preconditioning for first order primal-dual algorithms
in convex optimization®

Thomas Pock Antonin Chambolle
Institute for Computer Graphics and Vision CMAP & CNRS
Graz University of Technology Ecole Polytechnique
pock@icg.tugraz.at antonin.chambolle@cmap.polytechnique. fr

e T. Pock and A. Chambolle, IEEE ICCV, 1762-1769, 2011

e A. Chambolle, T. Pock, A first-order primal-dual algorithms for convex problem
with applications to imaging, J. Math. Imaging Vison, 40, 120-145, 2011.



preconditioned algorithm. In very recent work [10], it has
been shown that the iterates (2) can be written in form of a
proximal point algorithm [14], which greatly simplifies the
convergence analysis.

From the optimality conditions of the iterates (4) and the
convexity of G and F'™* it follows that for any (z,y) € X X
Y the iterates x**! and y**! satisfy

x — gt gl okl _ ok
bl ] L amrn JRY aErL. R f 4

(5)
where
P prtl B 3G(;I:;"+1) 4 KV gt
yk—k—l — aF*(yk%—l) . A’L,Ek—}—l
and : .
T —K
M= [ e o (6)

It is easy to check, that the variational inequality (5) now
takes the form of a proximal point algorithm [10, 14, 16].

The authors said
that the PPA expla-
nation greatly sim-
plifies the conver-
gence analysis

We think that on-
ly when the matrix
M in (6) is sym-
metric and positive
definite, the related
method is conver-
gent.

Otherwise, as we
have shown in the
previous example,
the method is not
necessarily conver-
gent

In the matrix M , the parameter & = 0 can not guarantee the convergence.

For 0 € (O, 1), there is not proof for the convergence, it is still an Open Problem.
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[9] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, New Jersey, 1962.

[10] B. He and X. Yuan. Convergence analysis of primal-dual
algorithms for total variation image restoration. Technical
report, Nanjing University, China, 2010.

Later, the Reference
[10] is published in
SIAM J. Imaging Sci-
ence [26].

Chambolle and Pock’s Math. Progr. Paper only uses the PPA form 6 —= 1.

Math. Program., Ser. A
DOI 10.1007/s10107-015-0957-3

@ CrossMark

FULL LENGTH PAPER

On the ergodic convergence rates of a first-order
primal-dual algorithm

Antonin Chambolle!® - Thomas Pock?3

The paper
published by
Chambolle and
Pock in Math.

Progr. uses the

VI framework
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1 Introduction

In this work we revisit a first-order primal—dual algorithm which was introduced in [ 15,
26] and its accelerated variants which were studied in [5]. We derive new estimates
for the rate of convergence. In particular, exploiting a proximal-point interpretation
due to [16], we are able to give a very elementary proof of an ergodic O(1/N) rate
of convergence (where N is the number of iterations), which also generalizes to non-

Algorithm 1: O(1/N) Non-linear primal—dual algorithm

e Input: Operator norm L := || K|, Lipschitz constant L ¢ of V f, and Bregman
distance functions Dy and D,.

e Initialization: Choose (x°, y) e X x Y, t,0 > 0

e Iterations: For each n > 0 let

"Ly = PDL o (x, y?, 26" — Xy (11)

The elegant interpretation in [ 16] shows that by writing the algorithm in this form

& The authors mentioned, the elegant explanation in [16] (our paper) shows that
by writing the algorithm in (our suggested form), it can be regarded as
Proximal Point Algorithm, - - -, A proof of convergence is easily deduced.
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15. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal—dual algorithms
for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015-1046 (2010)

16. He, B., Yuan, X.: Convergence analysis of primal—dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imaging Sci. 5(1), 119-149 (2012)

17. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas—Rachford alternating direction
method. STAM J. Numer. Anal. 50(2), 700-709 (2012)

& Reference [16] is our paper published on SIAM J. Imaging Science, 2012.
Reference [17] shows the O(1/t) convergence rate of the alternating
direction method of multipliers, it published on SIAM J. Numerical Analysis,
2012.

We are showing these quotations to illustrate:

& By using the framework of proximal point algorithm for variational inequality,
the proof of convergence can be greatly simplified. This approach is regarded
a very simple yet powerful technique for analysing the optimization methods
(S. Becker, 2011, 2019).

& Only a simple and clear point of view can be quickly adopted by scholars in
the field of application and have some impact and valuable utility.
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Proximal point form

In July 2017, one of my
colleagues from Math-
ematics Department of
Southern University of
Science and Technolo-
gy visited the UK. At
an academic confer-
ence he attended, the
first speaker mentioned
that the work is based
on the Proximal point
form proposed by us
(He and Yuan, 2012).

Seeing a slide show
about our contribution,
my colleague snapped
a picture and sent it to
me.

| It shows that only sim-
; "3::_,__ ple and powerful ideas
84| can be easily spread

and accepted.
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2.4 Customized PPA - an extended version of PPA

In practical computation, instead of whtt = (ZUk—H, ka)

(2.11) and (2.14) by W" = (&*, §*). Then, similarly as (1.25), for such @", we have

, we denote the output of

(" — w*)" H(w" —w") >0,
and thus
w — w w —w ) 2w —w || g. (2.15)
k N IT (10" T k ~ k12
In the extended PPA, the new iterate is given by
k+1

w* T = w" — 4w — @), ~€(0,2). (2.16)

The method in this section is called Extended customized PPA (E-C-PPA). From (2.15) and
(2.16) follows immediately the following contraction inequality:

o =0 < ot = T @ = et -t E @)

In order to see how to take a relaxed factor v € (0, 2) in (2.16), we define

l-c—l—l(&) k

w = w” — a(w® — "), (2.18)
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as a step-size «x dependent new iterate. It is natural to consider maximizing the
a-dependent profit function

k 2 2

Ie(a) = ||lw” — w7 — [[w™ (a) —w"||FH. (2.19)

Using (8.12), we get

Ir(e) = [w' —wh —w" —w —aw® - @)%
= 2a(w" —w)THW" — ") — || w* — &"||%. (220
For any fixed solution point w™, (A1.12) tell us that ﬁk(oz) is a quadratic function of «.
Because w™ is unknown, it is impossible to get the maxmum point of 9 («). Fortunately,

using (2.15), we have
Ir(@) > 20f|w” — @[ — o [|w® — " |7 = gr(a). (2.21)

The right hand side of the last inequality is defined by g (<), which is a lower bound
function of Y1 (o) and quadratic. It is clear that gx (<) reaches its maximum at aj, = 1.

Recall that ideal is to maximize the unknown quadratic profit function V% () (see (A1.12)),

and g, () is a lower bound function of ¥ ().



8(a)

q(a)

;I I | | | >
o a*  yo* \ \ a

—  Fig. 3.3 Instruction for v € [1,2)

We take a relaxed factor v € (O, 2), and use (2.16) to produce the new iterate. From

(2.19) and (8.1.1), the contraction inequality (2.17) follows immediately.

Thus, the Chambolle-Pock method is a special algorithm of (2.16) with v = 1. In
other words, CP method is a classical customized PPA. In practical computation, we

suggest to use the extended customized PPA with v € [1.2,1.8].
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2.5 Applications in scientific computation

2.5.1 Finding the nearest correlation matrix

min{%HX |2 | diag(X) = ¢, X € "1, 2.22)
where e is a n-vector whose each element is equal 1.
The problem has the mathematical form (1.5) with || AL A| = 1.
We use y € R" as the Lagrange multiplier for the linear equality constraint.

Applied Customized PPA to the problem (2.22)

For given (X*, 4y*), produce the predictor (X **1, y**1) by using (2.14):

1. Producing y* 1! by

L, .
Z/kH = yk — g(dlag(Xk) - 6)-



2. Finding X% +1 which is the solution of the following minimization problem

1 r L . n
min{ | X —Cl+ 51X~ [X* 4 ding(2 !~y [31X € 7).
(2.23)

How to solve the subproblem (2.23) The problem (2.23) is equivalent to

1
147
The main computational load of each iteration is a SVD decomposition.

Numerical Tests ' To construct the test examples, we give the matrix C' via:

C=rand(n,n); C=(C’+C)-ones(n,n) + eye(n)

1
min{ _{| X — [rX* + diag(2y" ™ — v*) + O3] X € ST}

In this way, C'is symmetric, Cj; € (0,2),and C;; € (—1,1),fori # j.

Matlab code for Creating the test examples

clear; close all; n = 1000; tol=1le-5; r=2.0; s=1.01/r;
gamma=1.5; rand(’state’,0); C=rand(n,n); C=(C"+C)-ones(n,n) +

eye (n) ;
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Matlab code of the classical Customized PPA

%% Classical PPA for calibrating correlation matrix (1)
function PPAC(n,C,r,s,tol) $(2)
X=eye (n) ; y=zeros (n, 1) ; tic; %% The initial iterate % (3)
stopc=1; k=0; % (4)
while (stopc>tol && k<=100) %% Beginning of an Iteration % (5)
if mod(k,20)==0 fprintf ('’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)
X0=X; y0=y; k=k+1; 5 (7)
yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-vyt; %(8)

A= (X0*r + C + diag(yt*x2-y0))/(1l+r); %(9)
[V,D]=eig (A7) ; D=max (0,D); XT=(V«D)*V’; EX=X0-XT; %(10)
ex=max (max (abs (EX))); ey=max(abs (EY)); stopc=max (ex,ey); S(11)
X=XT; y=vyt; %(12)
end; % End of an Iteration $%$(13)
toc; TB = max (abs (diag(X-eye (n)))); %(14)

o\
o\°

fprintf (! k=%4d epsm=%9.3e max|X_jj - 1|/=%8.5f \n’,k,stopc, TB);

The SVD decomposition is performed by [V,D]=eig(A) in the line (10) of the above code.

The computational load of each decomposition [V,D]=eig(A) is about In’ flops.

Modifying the Classical PPA to Extended PPA, it needs only change the line (12)
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Matlab Code of the Extended Customized PPA

%% Extended PPA for calibrating correlation matrix (1)
function PPAE(n,C,r,s,tol,gamma) % (2)
X=eye (n) ; y=zeros (n,1); tic; %% The initial iterate % (3)
stopc=1; k=0; % (4)
while (stopc>tol && k<=100) %% Beginning of an Iteration % (5)
if mod(k,20)==0 fprintf(’ k=%4d epsm=%9.3e \n’,k,stopc); end; %(6)
X0=X; y0=y; k=k+1; 5 (7)
yt=y0 - (diag(X0)-ones(n,1))/s; EY=y0-vyt; %(8)

A= (X0+xr + C + diag(ytx2-y0))/(1l+r); %(9)
[V,D]=eig (A); D=max (0,D); XT=(V«D)*V’; EX=X0-XT; %(10)
ex=max (max (abs (EX))); ey=max (abs (EY) ) ; stopc=max (ex, ey) ; $(11)
X=X0-EX*gamma; y=y0-EY*gamma; 3(12)
end; % End of an Iteration % (13)
toc; TB = max (abs (diag(X-eye(n)))); $(14)

o\°
o\°

fprintf (! k=%4d epsm=%9.3e max|X_jj — 1|/=%8.5f \n’,k,stopc, TB);
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The difference of the above mentioned codes only in the line 12, the method is much

efficient by taking the relaxed factor v = 1.5.

Numerical results of (2.22)-SVD by using Mexeig

n X n Matrix Classical PPA Extended PPA
n = No. It | CPU Sec. No. It | CPU Sec.
100 30 0.12 23 0.10
200 33 0.54 25 0.40
500 38 7.99 26 6.25
800 38 37.44 28 27.04
1000 45 94.32 30 55.32
2000 62 723.40 38 482.18

The extended PPA converges faster than the classical PPA.

It. No. of Extended PPA
_ ~ 65%.
It. No. of Classical PPA




2.5.2 Application in matrix completion problem

(Problem)  min{||X|. | Xq = Mq). (2.24)

Welet Y € R™*"™ as the Lagrangian multiplier to the constraints X = M.

For given (X%, Y'*), applying (2.14) to produce (X**+1 YF+1):

1. Producing Y**1 py

1

YAt =y — —(XE — Mg). (2.25)
s

2. Finding X**! by

1
XM = argmin {J|X]. + 5[ X - [X*F + - @vgt - vl
(2.26)

Then, the new iterate is given by

Xk—l—l — Xk L ,Y(Xk . Xk+1), Yk—i—l — Yk: L V(Yk . Yk+1).
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Test examples ' The test examples is taken from

¢ J. F. Cai, E. J. Candes and Z. W. Shen, A singular value thresholding algorithm
for matrix completion, SIAM J. Optim. 20, 1956-1982, 2010.
Code for Creating the test examples of Matrix Completion

%% Creating the test examples of the matrix Completion problem (1)
clear all; clc $(2)
maxIt=100; tol = le—-4; % (3)
r=0.005; s=1.01/r; gamma=1.5; % (4)

n=200; ra = 10; oversampling = 5; %(5)
% n=1000; ra=100; oversampling = 3; %% Iteration No. 31 % (06)
% n=1000; ra=>50; oversampling = 4; $% Iteration No. 36 $(7)
% n=1000; ra=10; oversampling = 6; %% Iteration No. 78 %(8)
%% Generating the test problem 5(9)
rs = randseed; randn (" state’, rs); $(10)
M=randn (n, ra) xrandn (ra, n) ; %% The matrix will be completed %(11)
df =rax* (n*2-ra); %% The freedom of the matrix $(12)
mo=oversampling; 5(13)
m =min (moxdf, round(.99xn=*n)) ; %% No. of the known elements $(14)
Omega= randsample (n"2,m); %% Define the subset Omega %(15)
fprintf ("Matrix: n=%4d Rank (M)=%3d Oversampling=%2d \n’,n,ra,mo);%(16)
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Code: Extended Customized PPA for Matrix Completion Problem

fprintf (’ Relative error = %9.2e Rank (X)=%3d \n’,RelEr,rank (X)) ;
fprintf (’ Violation of KKT Condition = %9.2e \n’,VioKKT);

function PPAE (n,r,s,M,Omega,maxIt,tol, gamma) % Ititial Process %% (1)
X=zeros (n) ; Y=zeros (n) ; YT=zeros (n) ; $(2)
nMO=norm (M (Omega), ' fro’); eps=1; VioKKT=1l; k=0; tic; % (3)
%% Minimum nuclear norm solution by PPA method % (4)
while (eps > tol && k<= maxIt) 5(5)
if mod(k,5)== % (06)
fprintf (" It=%3d |X-M|/|M|=%9.2e VioKKT=%9.2e\n’,k,eps,VioKKT); end;%(7)
k=k+1; X0=X; YO=Y; % (8)
YT (Omega) =Y0 (Omega) — (X0 (Omega) -M (Omega) ) /s; EY=Y-YT; % (9)
A = X0 + (YT*x2-Y0)/r; [U,D,V]=svd(A,0); %$(10)
D=D-eye (n) /r; D=max (D, 0) ; XT=(U%D) *V’ ; EX=X-XT; $(11)
DXM=XT (Omega) —M (Omega) ; eps = norm(DXM, ' fro’) /nMO; %(12)
VioKKT = max ( max (max (abs (EX)))*r, max (max (abs(EY))) ); $(13)
if (eps <= tol) gamma=1; end; $(14)

X = X0 - EX*xgamma; 35(15)

Y (Omega) = YO0 (Omega) - EY (Omega) *gamma; %(16)
end; 5 (17)
fprintf (" It=%3d [|X-M|/|M|=%9.2e ViOKKT=%9.2e \n’,k,eps,VioKKT); % (18)
RelEr=norm((X-M),’ fro’) /norm(M,’ fro’); toc; %$(19)
%(20)

%(21)
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Numerical Results: using SVD in Matlab 54

Unknown n X m matrix M Computational Results
n rank(ra) m/dre m/n® | Ftiters  times(Sec)  relative error
1000 10 6 0.12 76 841.59 9.38E-5
1000 50 4 0.39 37 406.24 1.21E-4
1000 100 3 0.58 31 362.58 1.50E-4
Numerical Results: Using SVD in PROPACK
Unknown n X n matrix M Computational Results
n rank(ra) m/d.. m/n® | #iters times(Sec) relative error
1000 10 6 0.12 76 30.99 9.30E-5
1000 50 4 0.39 36 40.25 1.29E-4
1000 100 3 0.58 30 42.45 1.50E-4

& The paper by Cai et. alis the first publication in SIAM J. Opti. for matrix completion
problem. For the same accuracy, the iteration numbers are listed in the last column of the
above table (See the first 3 examples in Table 5.1 of [2], Page. 1974).

& The reader may find, for the two examples in in §2.4, the constrained matrix A is a
projection matrix and thus || A” A|| = 1, thus we take s = 1.01. However, we take

r=2anr = 1/200in §2.4.1 and §2.4.2, respectively. " is problems-dependent.
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3 From augmented Lagrangian method to ADMM

For the primal-dual methods and customized PPA in the last section, we assume that the
. r . o :
subproblem min{f(x) + §Hx —al|?|x € X'} is simple. In this this section, the

mathematical form of the sub-problems of the proposed methods is
min{6(x) + §||A:c —p|* |z € &}, (3.1)

where 8 > 0, and p is a given vector. In comparison with the subproblem in the last
section, the subproblem (38.1) is a little bit difficult. However, we still assume its solution has
a closed-form representation or it can be efficiently solved up to a high precision.

3.1 Augmented Lagrangian Method

We consider the convex optimization (1.5), namely
min{f(u) | Au =b, u € U}.

Its augmented Lagrangian function is

£(,X) = 0(u) — AT (A~ b) + 5 Au —b]]°,



56

where the additional quadratic term is the penalty for the linear constraints Au = b. The
k-th iteration of the Augmented Lagrangian Method [28, 32] begins with a given )\k,
obtain w* T = (uFT1 A1) via

ALM) uwt = arg min{ Lz (u, AF) } ueUl, (3.2a)

This is equivalent to

w1 = arg min{ L(u, \*) + gHAu —b||* | uwe U},
At = argmax{L(z" ", \) — %H)\ — X7 [ A e r™}.

where L(u, \) = 0(u) — AT (Au — b) is the usual Lagrangian function. In (3.2), u* 1!
is only a computational result of (3.2a) from given Ak, it is called the intermediate variable.
In order to start the k-th iteration of ALM, we need only to have A\* and thus we call it as
the essential variable. The optimal condition can be written as wrT € O and

O(u) — O(uFTY) + (u — uFTHT{—ATNF + BAT (AuFT! —b)} >0, Vu € U,
A = AMFDT{(AuF T —b) + Z (AT = XF)} >0, VA e R™



The above relations can be written as
T
k1 _ AT \k+1
O(u) — Oy + [~
A — \k+1 Auktl —p
1
> (A — A’f“)TE(Ak — XY v e Q. (3.3)

Setting w = w™ in (3.3) and using the notations in (1.6), we get

k+1 T /\ K k+1 k+1 * k+1 w\ T k+1
AT AT = A" > B0 ) — 0(u*) + (W —w) F(w" T}
By using the monotonicity of F' and the optimality of w™, it follows that

H(uk—i—l) . Q(U*) + (wk—i—l . w*)TF(wk:-l—l)
> Ot —0(u*) + (W —w)T F(w*) > 0.

Thus, we have
AP AT = Y > 0. (3.4)

By using Lemma 1.2, we obtain

INTFE = X2 <A = )12 = AR = AR (3.5)
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The above inequality is the key for the convergence proof of the Augmented Lagrangian
Method.

3.2 Alternating direction method of multipliers

We consider the following structured constrained convex optimization problem

min {6y (x) + 02(y) |Ax + By=b, € X, y € Y} (3.6)

where 01 (x) : R"* — R, O2(y) : R"? — R are convex functions (but not necessary
smooth), A € R™*"1, B R™ ™2 andb € N, X C R™, Y C N2 are given
closed convex sets.

Let A be the Lagrangian multiplier for the linear constraints Ax + By = bin (3.6), the
Lagrangian function of this problem is

Lz, y,\) = 61(z) + 02(y) — AT (Az + By — b),

which is defined on X' X ) x R™. Let (z*, y™, A" ) be an saddle point of the Lagrangian
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function, then (™, y*, A*) € X x Y x R™ and it satisfies

(

01(z) — 01(x) + (x — 2T (=ATA) >0, VereX
q O20y) —O2y*) + (y—y* ) (-B"A*) >0, Vye) (3.7)
\ A=) (Az* + By* —b) >0, VieR™

Note that these first order optimal conditions (3.7) can be written in a compact form such as

w* € Q, 0(u) —0(u*) + (w—w*) Fw*) >0, Yw € Q. (3.8a)
where
x — AT\
x
u = , w=|y |, Flw)= — BT\ (3.8b)
Y A Ar+ By — b
and
O(u) =01(z) +02(y) and Q=X xY x R, (3.8¢c)

Note that the mapping F’ is monotone. We use £2* to denote the solution set of the
variational inequality (3.8).
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The augmented Lagrange Function of (3.6) is
2 5 2
L8y, \)=L(,y,)) + 5 || Az + By — b|

=0, () + 62(y) — N'(Az + By — b) + §||A:c + By — b||*. (3.9)

Applying ALM (3.2) to the structured Convex Optimization problem (3.6)

For given \*, uf+1 = (zFT1 *T1)is the solution of the following problem

zh ) 01(2) + 62(y) — (\)T (Az + By — b)
b1 = Argmin 5 )
Yy ‘|‘§||A£L‘—|-By—b||

reX
yey

The new iterate' AL = \F — B(AzPT + ByFT —b). (3.11)
_Convergence' IAFFE — X2 < IR = A2 — AR = ARFL2,
Shortcoming ' The structure property is not used !

(3.10)
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To overcome the shortcoming of the ALM for the problem (3.6), we use the alternating
direction method of multipliers. The main idea is splitting the subproblem (3.10) in two parts

and only the x-part is the intermediate variable. The iteration begins with v° = (y9, \?).

Applied ADMM to the structured COP: (", \*) = (y**1, N\

k+

First, for given (yk, Ak), "1 is the solution of the following problem

E\T ko
91 pgrin{ 91— OV (A 3y =)
+ S||Ax + By" — ||

T € X} (3.12a)

Use \* and the obtained ka, yk+1 is the solution of the following problem

KT [ gkt B
5 = Argmin 02(y) B(A )kﬁlﬂf + By2 b)

(TS y} (3.12b)

A= \F — (A" + Byt —b). (3.12c)
Advantages ' The sub-problems (3.12a) and (3.12b) are separately solved one by one.




Ignoring the constant term in the objective function, the sub-problems (3.12a)

and (3.12b) is equivalent to
2" = Argmin{61 (z) + 5 ||(Az + By* —b) — A"|IPlz € X} (3.13a)
and

y" T =Agmin{b2(y) + [[(Ac" T + By — ) — A Ply € ¥} 8130)

respectively. Note that the equation (3.12c) can be written as

A=X"D{(A" + By —b) + 5 (A" = A"} >0, VA € R™. (3.130)

Notice that the sub-problems (3.13a) and (3.13b) are the type of
2" = Argmin{ 61 (z) + £ || Az —pkHQ}x c X}

and
vt = Argmin{02(y) + 5 || By — ¢"|*|y € Y},

respectively.
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Analysis ' Note that the solution of (3.12a) and (3.12b) satisfies

TP e X, Oi(z) = 01(z"T) + (z —2"THT (3.14a)
.14a
{—ATXN* + BAT (Az*T' + By* —b)} >0, Vz e X

and

y* ey, Ox(y) — (¥ + (y—yH?T

(3.14b)
{(-B" N +BB(Az" '+ Byt —b)} >0, Vy € ),

respectively. Substituting A\l (see (3.12c)) in (3.14) (eliminating ¥ in (3.14)), we get

2"t e X, 0i(z)—0:i(z") + (z — 2T (3.15a)
.1oa
{—ATN* 4+ BATB(y* —y*Th} >0, Vz € X,

and

ey, Oa(y) — (") + (= y*THT{=BTATY >0, vy e V.
(3.15b)
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The compact form of (3.15) is u* T = (z**1 4**1) € X x Y and

_ Rl Ty k+1 T
r—x —A" )\ A" B
0(u)—6(u""")+ e | (y" =" p >0,
gkt — BT AR 0
y—vy
(3.16)
for all (a:, y) e X x ). We rewrite the about variational inequality in our desirable form

T

k41 T\ k+1 T
T — T — A" A" B
O(u) — O(u ) + +8 @t =y
y — yk—|—1 _BT)\k+1 B* B
0 0 AL
+ >0, V(z,y) € X x ).

Notice that (3.13c) can be written as

At e v, (A—Ak“)T{(AkanLByk“—b)+%(Ak“—)\k)} >0, VAeR™.
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Combining the last two inequalities, we have wr T € Qand

T

o phtl ( _ AT k1 AT
9(u)—0(uk+l)+ Y _yk—l—l ! _ BT )\k+1 +8 BT B(yk—ykﬂ)
A=A\ Az T - Byt — b 0
0 0 Y, \
+ | BBTB 0 i |20, YweQ. @17)
0 ir, J\AT A
p-m J

For convenience we use the notations
y >k >k % % >k >k %
v( ) and V" ={(y, A7) [(x7,y, A7) € Q7 }.
A

Then, we get the following lemma:

Lemma 3.1 Let the sequence {w" ™1 = ("1 ¢*T1 N\*T1)} € Q be generated by
(3.12). Then, we have

(Uk:—l—l o ’U*)TH(’Uk . Uk—i—l) 2 ()\k: . )\k—i—l)TB(yk . yk—l—l). (3.18)
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where

T
H = ( pB" B 10 ) (3.19)
0 Elm

Proof. First, using the notation of the matrix H, (3.17) can be rewritten as

w* T e Q, 0(u) — (") + (w — WY F(w)
z— k[ AT
+5< - ) . |B@ ="
y—y b
> (v —v"THYTH@" =", Yw e Q. (3.20)

Setting w = w™ in (3.20), we get

(’Uk+1 . ’U*)TH(’Uk o Uk:—|—1)

k41 * T T
> B 84 + —x A B( k:_ k—l—l)
- k+1 * T y y
y -y B
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By using Ax* + By* = band B(Az" T + By*Tt —b) = \F — AT (see (3.12¢)),

we have
k41 « \ T T
T —x A
5( k41 « ) ( T )B(yk _ka)
y =y B

= B{(Az""" + By"") — (4z" + By")} B(y" —y")
= ("= XHTBWR - . (3.22)

Since (w* T — w*)T F(w*t1) = (w* T — w*)? F(w*) and w* is the optimal

solution, it follows that

O(u" T —0(u*) + (W — wHTF (W) > 0.

Substituting (3.22) and the last inequality in (3.20), the assertion of this lemma follows

immediately. [

Lemma 3.2 Let the sequence {w" = (2", 4", \*)} € Q be generated by (3.12).
Then, we have
N = XN HT B — ) > 0. (3.23)



Proof. Because (3.15b) is true for the k-th iteration and the previous iteration, we have
O2(y) — 02" )+ (y =" T {-B" N} >0, vyey, (29

and
02(y) — 02(y") + (y — ") {-B"N\*} >0, Vy e, (3.25)

Setting y = yk" in (3.24) and y = ka in (3.25), respectively, and then adding the two

resulting inequalities, we get the assertion (3.23) immediately. [

Substituting (3.23) in (3.18), we get
(W — o) THO" =" >0, Vo e V. (3.26)

Using the above inequality, as from (3.4) to (3.5) in Section 3.1, we have the following

theorem, which is the key for the proof of the convergence of ADMM.

Theorem 3.1 Let the sequence {w" = (2", 4", \¥)} € Q be generated by (3.12).

Then, we have

[0 — 0" F < * = ot [H = " = MR, Vot e VR (3.27)
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How to choose the parameter (3. The efficiency of ADMM is heavily dependent on the

parameter (3 in (3.12). We discuss how to choose a suitable 3 in the practical computation.

Note that if BATB(yk — yk“) = 0, then it follows from (3.16)

T — $k+1 T _AT)\k:—}—l
0(u) —O(u" 1)+ >0, V(z,y) € X x). (3.28)
y — yk—l—l _BT)\k?+1
In this case, if additionally AP 4 By’”l — b = 0, then we have

[ O1(2) = 02 () + (2 — 2HTHT (AN

— 91 xr
y 02(y) = 024" ) + (y —y*THT (BTN
\ (A . )\k+1)T(Agjk+1 i Byk—|—1 . b)

'V

0, VeelX
0, Vye)y
0, VAeR™

'V

IV

k+1 | k41 k+1
,ATT)

and consequently (ac ;Y is a solution of the variational inequality (3.8).

In other words, ("1, y*T1 A¥*1) is not a solution of (3.8) because

Y
BATB(W" — "ty £0 andlor  Az"T' + Byt —b £ 0.
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We call
IBATB(y* — ") and  [|Az"T" + By — |

the primal-residual and the dual-residual, respectively. It seems that we should balance the
primal and the dual residuals dynamically. If

plBA" By® —y* | < [[Aa™ + By*™' —b|| witha p>1,

it means that the dual residual is too large and thus we should enlarge the parameter 3 in
the augmented Lagrangian function (3.9). Otherwise, we should reduce the parameter (3.

A simple scheme that often works well is (see, e.g., [24]):
( Buxr, i plBATB(YF —y" || < ||A*T 4 By — b;
Bev1 =1 Bi/7, it |BATB(® — oY) > pl| Azt + ByFt —b;

L Bk, otherwise.

where . > 1, 7 > 1 are parameters. Typical choices might be = 10 and 7 = 2. The
idea behind this penalty parameter update is to try to keep the primal and dual residual
norms within a factor of v of one another as they both converge to zero. This self adaptive

adjusting rule has been used by S. Boyd’s group [1] and in their Optimization Solver [12].



3.3 Linearized ADMM

The augmented Lagrangian Function of the problem (3.6) is
E[BZ]($7 y, \) = 01(x) +02(y) — N\ (Az + By —b) + gHA:ﬂ + By —b||*. (3.29)

Solving the problem (3.6) by using ADMM, the k-th iteration begins with given (yk, )\k), it

offers the new iterate ("™, A**1) via
(2" = arg min{ﬁ[g](x,yk, )\k) ‘ x € X}, (3.30a)
(ADMM) < ka = arg min{L[ﬁZ](wkH,y, )\k) ‘ Yy € y}, (3.30b)
L AT =0 — B(A" T 4+ By — ). (3.30c)

In optimization problem, the solution is invariant by changing the constant term in the

objective function. Thus, by using the augmented Lagrangian function,
k+1 : 2], k+1 k
y ot = a,rgmm{ﬁ[ﬁ](x JY, A | Yy € y}

= argmin{fa(y) —y' B"\" + gHAa:kH +By—b||* |y eV}
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Thus, by denoting qk’ —b— Aght? + %)\k, the solution of (3.12b) is given by

min{f2(y) + 5 By — " |y € V}. @31

In some practical applications, because of the structure of the matrix B, the subproblem
(3.31) is not so easy to be solved. In this case, it is necessary to use the linearized version
of the ADMM.

Notice that the Taylor expansion of the quadratic term of (3.30b), namely,
2 Aat 4 By —bl* = DB~y + (A2 4 ByF )P
p
= SIBy—y"I° + 8y —y") B (A" + By* —b)

FE A0 4 By b
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Changing the constant term in the objective function of (3.30b) accordingly, we have
k41 . 2], k+1 k
Taal :argmm{ﬁ[ﬁ](x oy, A5 } y eV}
= argmin{fa(y) —y’ B"\" + gHAka + By —b|* |y e Y}

) O2(y) —y" BTN + By" BT (Az"T! + By* —b)
= arg min 5 g yely
+51B(y —y°)|l

So-called linearized version of ADMM, we remove the unfavorable term gHB(y —y")|I?
s
in the objective function, and add the term 5 ly — y*||?.

Strictly speaking, it should be a "linearization” plus "regularization” method. It can also be
interpreted as:

5 "NIEE L5 k(12

The term §HB(y — y")||* is replaced with §||y —y- %

In other words, it is equivalent to adding the term

1
sly—=v"lIb,  (with Dp = sln, — BB B) (3.32)
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to the objective function of (3.30b), we get

| 1
y* T = argmin{LF (" y, ) + Slly — "D, [y € V)

02(y) —y" BTA* + By BT (Az" + By" — b)

= arg min s
+5ly = y"I7

yey
) S 2
:argmln{eg(y)+§‘}y—dk{‘ } yey}, (3.33)
where 1
d¥ = yF — -5 [B(Az* ' + By” —b) — \"].
By using such strategy, the sub-problems of ADMM is simplified. The linearized version of

ADMM are applied successfully in scientific computing [29, 33, 36, 37]. The following
analysis is based on the fact that the sub-problems (3.12a) and

. S k
min{0>(y) + 5 lly — d"||* |y € V}
are easy to be solved.

Linearized ADMM. For solving the problem (3.6), the k-th iteration of the linearized

ADMM begins with given v* = (y*, A*), produces the w* ™1 = ("1t ¢ T1 AF+1)
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via the following procedure:

(2" = arg min{ﬁ[g](x,yk, )\k) ‘ x € X}, (3.34a)
) 1

§ v =argmin{ LGy A + Sy =t lln, [y €YY (334b)

(AT =\ — B(A" T + ByF T —b). (3.34c)

where Dp is defined by (3.32).

First, using the optimality of the sub-problems of (3.34), we prove the following lemma as
the base of convergence.

Lemma 3.3 Let {w"} be the sequence generated by Linearized ADMM (3.34) for the
problem (3.6). Then, we have

w* e Q, 0(uw) -0 ) + (w — W THT F(w)
+ 6($ . $k+1)TAT(Byk . Byk—l—l)
> (y—y" ) Dy -y
1

7 A= XTHTOF =X vw e Q. (3.35)

_|_
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Proof. For the x-subproblem in (3.34a), by using Lemma 1.1, we have
e x, 01(z)—0,(2"h)
+ (z — ") {=A" N + AT (A" 4+ By® —b)}
>0, Vxed.

By using the multipliers update form in (3.34), A¥T1 = \F — B(Aka + ByF Tl — b),

the above inequality can be written as
"t e X, 01(x) — 01 (=)
+(z — xk+1)T{_AT)\k+1 X BATB(yk B yk:—|—1)}
>0, VxeAX. (3.36)
For the y-subproblem in (3.34b), by using Lemma 1.1, we have
v ey, Oa(y) —02(y")
+(y — yk—|—1>T{_BT)\k I ﬁBT(A:UkH 1 Byk—l—l AN

+(y—y" ™" D —¢*) >0, Yy e .
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Again, by using the update form A" ™1 = A" — g(Az* ! 4+ By**tt — 1), the above

inequality can be written as

YTt ey, Oa(y) — 02 (") + (y — yFTHT{=BT AP

> (y —y" "Y' De(y* — "}, Yy e V. (3.37)

Notice that the update form for the multipliers, \*t1 = \¥ — g(Az" 1 4 Byt —p),

can be written as \*T! € R™ and
(A—A”“)rﬂAm“4+Jﬁﬁ+l—b}+%(ﬁ*1—A@ﬂ;zO,VAGSVW (3.38)

Adding (3.36), (3.37) and (3.38), and using the notation in (3.8), we get
w* e Q, 0(u) — W ) + (w— Ww"THT F(w*
+ Bz — 2" AT (By" — By*)
> (y—y" ") Dy —y")
1

T3

A= XTHTOF = A h)) vw e Q. (3.39)
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For the term (w — w® )T F(w® 1) in the left side of (3.39), by using (1.8), we have
(w—w" ™) FW ) = (w—w* T F(w).

The assertion (3.35) is proved. [

This lemma is the base for the convergence analysis of the linearized ADMM.

The contractive property of the sequence {wk } by Linearized ADMM (3.34)

In the following we will prove, for any w™ € €2*, the sequence
{[0" =" lle + y" — v ID, )

is monotonically decreasing. For this purpose, we prove some lemmas.

Lemma 3.4 Let {w"} be the sequence generated by Linearized ADMM (3.34) for the
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problem (3.6). Then, we have

w* T e Q, 0(u) — (") + (w — WY F(w)

k41 T
r—x A
+5 - | BGE =yt
y—y B
> (v — 0" QW — "), Yw e Q, (3.40)
where (G is given by
Ds+pB'"B 0
G = 5+ 0 . (3.41)
0 1

Proof. Adding (y — "1 T BBT B(y* — y*11) to the both sides of (3.35) in Lemma
3.3, and using the notation of the matrix (&, we obtain (3.40) immediately and the lemma is

proved. [

Lemma 3.5 Let {w"} be the sequence generated by Linearized ADMM (3.34) for the



problem (3.6). Then, we have

(W =0T G = o) > A = XNFTHT B — "), v € Q. (3.42)

Proof. Setting the w € (2 in (3.40) by any w™ € 2™, we obtain

(Uk+1 o ’U*)TG('Uk o Uk+1)

+ 3 ) - B(yl‘c — ka). (3.43)
Yyt —y B

According to the optimality, a part of the terms in the right hand side of the above inequality,
O(u ) —0(u*) + (W —w) T F(w*) > 0.

Using Az* + By* = band \¥ — \F11 = B(Agz:kle + ByFTt!l — b) (see (3.34c)) to
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deal the last term in the right hand side of (3.43) , it follows that

T

6 Cl?k+1 . .CE* AT B( . - k+1>
k+1 % BT Y Y
Y Yy
= B[(Az*t" — Az™) 4+ (By*t' — By")]" B(y" — ")

)\k o )\k+1)TB(yk . yk—l—l).

VN

The lemma is proved. O

Lemma 3.6 Let {w"} be the sequence generated by Linearized ADMM (3.34) for the
problem (3.6). Then, we have

1 1 _
()\k . )\k:—i-l)TB(yk o yk:—|—1) Z _Hyk . yk—|—1||2DB . §||yk I kaQDB (344)

Proof. First, (3.37) represents

Y ey, 02(y) — (") + (y — " THT

{(=B" X' L Dyt — ¢y} >0, Vye). (345
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Setting k in (3.45) by £ — 1, we have
y" eV, O2(y) —02(y") + (y — y")"
{-B" X"+ Dp(y* —y* ")} >0, Vye. (3.46)
Setting the v in (3.45) and (3.46) by yl‘c and ka, respectively, and adding them, we get
(y" =" )BT =AY + D[y —y") — (v =y )]} > 0.
From the above inequality we get
(y" —y" ) BT AT > (6 =y ) Del(y" -y ) - (v =)

Using the Cauchy-Schwarz inequality for the right hand side term of the above inequality,

we get (3.44) and the lemma is proved. [

By using Lemma 3.5 and Lemma 3.6, we can prove the following convergence theorem.
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Theorem 3.2 Let {w"} be the sequence generated by Linearized ADMM (3.34) for the
problem (3.6). Then, we have

kE+1 2 k k—l—l
(0" — o1& + lv* — " H1D,)

<(l0* =" IG+1y" " =" Dy ) —l0" — "G, V" eQ”, (3.47)
where (G is given by (3.41).

Proof. From Lemma 3.5 and Lemma 3.6, it follows that

* ]' i i
(@) G =) 2 g =y = I T I v e

Using the above inequality, for any w™ € ™, we get

" =" = [|("T —0") + (07 ="
> ||k + —U*||2G 1 ”vk I<:—|—1||G +2(v k41 _v*)TG<UI<: _vk—|—1)
> [[o" T — 0" |G + [0 = 0" TG
+1ly" =" D = lly" " = 4" 1Dy

The assertion of the Theorem 3.2 is proved. [



Optimal linearized ADMM — Main result in 006228 I

In the subproblem of the Linearized ADMM, namely (3.34Db), in order to ensure

the convergence, it was required that
Dp =sl,, —BB'"B and s> j||B'B|. (3.48)

It is well known that the large parameter s will lead a slow convergence.

Recent Advance in :  Bingsheng He, Feng Ma, Xiaoming Yuan:

Optimally linearizing the alternating direction method of multipliers for convex
programming, Comput. Optim. Appl. 75 (2020), 361-388.

We have proved: For the matrix D) g in (3.34b) with form (3.48)
e if s > 23|/ BT B||, the method is still convergent;

e if s < 23|/ BT B||, there is divergent example.
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4 Splitting Methods in a Unified Framework

We study the algorithms using the guidance of variational inequality. Similarly as described
in (1.7), together with the Lagrangian multipliers, the optimal condition of the linearly

constrained convex optimization is resulted in a variational inequality:
w* e, Ou)—0u")+ (w—w)"Fw*)>0, YVweQ  @1)

The analysis can be fund in [17] (Sections 4 and 5 therin). In order to illustrate the unified

framework, let us restudy the augmented Lagrangian method.

4.1 Extended Augmented Lagrangian Method
For the convex optimization (1.5), namely

min{f(xz) | Az = b, x € X'}.

If we denote the output of (3.2) by @" = (&, 5\”“) then the optimal condition can be



written as W* € Q and
0(x) — 0(z") + (x—z°)T{—ATN 4 BAT (AZ" —b)} >0, Vz € X,
(A= XA)T{(AZ" —b) + £ (XN = M)} >0, VAeR™

The above relation can be written as
T

r — " — AT \F S 1
A — \F Az" —b
(4.2a)
In the classical augmented Lagrangian method, AL = X\F n practice, we can use

relaxation techniques and offer the new iterate by

A= X —a(\ =X, ae€(0,2). (4.2b)
Setting w = w™ in (4.2a), we get (A\F — )\*)T%()\k — X\¥) > 0 and thus
A" = XTOF = X% > IAF = X)) (4.3)

Similar as (2.15) in Section 2.4, by using (4.2b) and (4.3), we get

L N e N (= ) | PN
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In practical computation, we take ox & (1, 2) and (4.2) is called the extended augmented
Lagrangian method. Usually, it will accelerate the convergence significantly if we take an

enlarged a € [1.2, 1.8]. The reason is the same as the one illustrated in Section 2.4.

In order to describe the algorithm prototype, we give the following definition.

Definition (Intermediate variables and Essential Variables) '

For an iterative algorithm solving VI(Q, F, 9), if some coordinates of w are not involved in

the beginning of each iteration, then these coordinates are called intermediate variables

and those required by the iteration are called essential variables (denoted by v).
e The sub-vector w\v is called intermediate variables.
e In some Algorithms, v is a proper sub-vector of w; however, v = w is also possible.

According to the above mentioned definition, in the the augmented Lagrangian method, x

is an intermediate variable and \ is the essential variable.



4.2 Algorithms in a unified framework

A Prototype Algorithm for (4.1)
Prediction Step. With given v¥, find a vector W* €  which satisfying

0(u) — 0(7") + (w — ") F(@") > (v — )T QMW" — %), Yw € Q, (4.42)

where @ is not necessarily symmetric, but Q7 + Q is essentially positive definite.

Correction Step. Determine a nonsingular matrix M and a scalar o > 0, let

P =" —aM (" — ). (4.4b)

k k

e Usually, we do not take the output of (4.4a), v", as the new iterate. Thus, v~ is called

a predictor. The new iterate pkTl given by (4.4b) is called the corrector.

e We say a matrix (5 is essentially positive definite, when G = RT HR, H is positive
definite, and W" is a solution of (4.1) when || R(vF — §F)|| = 0.

e We use the extended ALM in Section 4.1 as an example. In (4.2a) we have v = A,

Q = %I, while in the correction step (4.2b), M = [ and o € (0, 2).

e When v* = ", it follows from (4.4a) directly that W" is a solution of (4.1). Thus, one
can use ||[v" — 0% || < € as the stopping criterion in (4.4).
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Convergence Conditions

For the matrices () and M, and the step size o determined in (4.4), the matrices
H=QM™* (4.53)

and
G=Q" +Q —aM* HM. (4.5b)
are positive definite (or H > 0 and G > 0).

e We use the extended ALM in Section 4.1 as an example. Since () = %I in the
prediction step, and M = I and « € (0, 2) in the correction step, it follows that
H=QM '=4I ad G=Q"'+Q-aM"HM = 23°1.
Therefore, the convergence conditions are satisfied.

e For G > 0, it has the O(1/t) convergence rate in a ergodic sense. If G > 0, the
sequence {v"} is F&jer monotone and converges to a v* € V* in H-norm.

e Using the unified framework, the convergence proof is very simple. In addition, it will
help us to construct more efficient splitting contraction method for convex optimization
with different structures.
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Given a positive definite matrix () in (4.4a) (QT + @ > 0), for satisfying the convergence
conditions (4.5), how to choose the matrix M and @ > 0 in the correction step (4.4b) ?

There are many possibilities, the principle is simplicity and efficiency. See an example:

e In order to ensure the symmetry and positivity of H = QM ~*, we take
H=QD™'Q",
where D is a symmetric investable block diagonal matrix. Because
H=QD 'Q" and H=QM ',
we only need to set M ~' = D~1Q? and thus
M = Q 1D satisfies the condition (4.5a).
Inthis case, M"HM = Q"M =Q*Q~"D = D.
e After choosing the matrix M, let
max = argmax{a | Q' +Q —aM " HM = 0},

the condition (4.5b) is satisfied for any & € (0, Atmax )-
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4.3 Customized PPA satisfies the Convergence Condition

Recall the convex optimization problem discussed in Section 2, namely,
min{f(z) | Ax =b, x € X'}.
The related variational inequality of the saddle point of the Lagrangian function is

w* €, Oz)—0z")+ (w—w) Fw*) >0, YweQ.

where
x — AT\
w = , F(w)= and =X xR,
A Ax — b
For given P = wh = (xk, )\k), let the output of the (2.11) as a predictor and denote it
as w* = (2%, \F). Then, we have

i* = argmin{0(z) — (\*)" (Az — b) + L|lz — 2"|° |z € X},
(4.6)

~

A= 2\F — LrA2z% — 2%) — b).

S
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Similar as (2.2), the output W* € Q of the iteration (4.6) satisfies

0(z) — 0(z") + (w — ") F(@") > (w — &™) Hw" — a"), Yw € Q.

o rI AT
Q_H_<A SI>.

This matrix is positive definite when rs > || A” A||. We take M = I in the correction

It is a form of (4.4a) where

(4.4b) and the new iterate is updated by
w* ! = w* — a(w® — "), a<c(0,2).
Then, we have and
H=QM '=Q>0 and G=Q"' +Q—aM" " HM = (2—a)H > 0.
The convergence conditions (4.5) are satisfied. More about customized PPA, please see

& G.Y. Gu, B.S. He and X.M. Yuan, Customized Proximal point algorithms for linearly
constrained convex minimization and saddle-point problem: a unified Approach, Comput.
Optim. Appl., 59(2014), 135-161.
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4.4 Primal-Dual relaxed PPA-based Contraction Methods

For given v* = w® = (¥, \F), denote the output of (2.4) by @* = (&*, \¥), it leads

it = arg min{60(z) — AT (Az — b) + sl — 22 |z e X} (4.7a)
and (according to equality constraints Az = b or inequality constranits Ax > b)

szx’“—l(Ai;’“—b) or ;k:w_l

S S

(AZ" — b))y (4.7b)

Similar as in (2.8), the predictor w* € Q generated by (4.7) satisfies
0(z) — 0(Z") + (w — ") F(@") > (v =) Q" — "), Vw € Q, @48
where the matrix
rl, A%
0 sin

is not symmetric. However, (4.8) can be viewed as (4.4a). In this subsection, all the

mentioned matrix () is (4.9). The example in Subsection 2.1 shows that the method is not

necessary convergent if we directly take wr Tt = ok,
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Corrector—the new iterate ' For given v” and the predictor ¥ by (4.7), we use

R = F — M(fuk — @k), (4.10)
to produce the new iterate, where

I, LAT
0o I,

M =

is a upper triangular block matrix whose diagonal part is unit matrix. Note that

rl, A" I, —1A" rl, 0

H=QM '= = = 0.
0 slm 0 I 0 sl
In addition,
G = Q+Q-MHM=Q +Q-Q'M
ri, 0

0 sl,, — %AAT



G is positive definite when s > || A A||. The convergence conditions (4.5) are satisfied.

Convergence behaviors for LP ' Same toy example as in Section 3 '

min{xy + 222 |x1 + 22 =1, 2 > 0}, (z*,y*) = (1,0;1).

w’ (0,0:0)

Original PDHG PDHG + Correction

This example shows, sometimes the correction has surprising effectiveness.
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In the correction step (4.10), the matrix M is a upper-triangular matrix. We can also use

the lower-triangular matrix
1, 0

M =

According to (4.5a), H = QM ~*, by a simple computation, we have

[ rl, A" I, O _ rl, + éATA AT
0 sln %A I, A sl
H is positive definite for any r, s > 0. In addition,
G = Q+Q-MHM=Q" +Q-Q'M
B orl, AL rl, 0 B rl, A%
B A 2slp, - 0 sim A sl

G is positive definite when rs > || A” A||. The convergence conditions (4.5) are satisfied.

For a given prediction, there are different corrections which satisfy the convergence
conditions (4.5). For example, we can take a convex combination of the above mentioned
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matrices. Namely, for 7 € [0, 1]

I, AT I,
M = (1-7) S Y
0o I, —1A
In 1—7‘AT
B _TA I

For this matrix M, we denote

Moo 7077 gy,
TSs

Clearly, 11 is positive definite. Let
rl, + = AT A AT
TII 1A sIT—*

It is easy to verify that H is positive definite for any r, s > 0 and

HM = Q.
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Now, we turn to observe the matrix GG, it leads that

G = Q+Q-M"HM=Q"+Q-Q'M
B orl, AL rl, 0 I, 1;TAT
A 2sly, A sl —A I,
B rl, T AT
TA  s(Im — ZZAAT)
B rl, TAT N 0 0
TA 775l 0 s(1-—7)[(147)Im— ZAA"]

For 7 € [0, 1], G is positive definite when rs > || A*" A||. The convergence conditions
(4.5) are satisfied. Especially, in the case T = 1/2, when s > 3 || A" 4],

rl, %AT
%A s(Ipm — 2%SAAT)

G = ~ 0.

We do not need to calculate /4 and (G, only verifying their positivity is necessary.
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5 Convergence proof in the unified framework

In this section, assuming the conditions (4.5) in the unified framework are satisfied, we

prove some convergence properties.

Theorem 5.1 Let {vk} be the sequence generated by a method for the problem (4.1) and

k41

W" is obtained in the k-th iteration. If v" , U and " satisfy the conditions in the

unified framework, then we have

a(0(u) — 0(@*) + (w — ") F(a"))

1
—(Hv — v

k+12
> . ||

84 -
7= ||lv— ’UkH%[) + §Hvk — ka||?;, Yw € Q. (5.1)

Proof. Using () = H M (see (4.5a)) and the relation (4.4b), the right hand side of (4.4a)

— v*"1) and hence

can be written as (v — 9*)" L H (v"
o{0(vw)—0(i")+(w—a") " F(@")} > (v—0")" H@w"—o* ), vw € Q. (5.2
Applying the identity

1 1
(a—b)" H(c—d) = —{lla—dllz — lla —cllzr} + 5 {lle = bllz — lld — bllz},

99



100

to the right hand side of (5.2) with

~k k k41
a=v, b=0", ¢=0", and d=0""",

we thus obtain

(’U . ?7k)TH(?}k . vk—i—l)

1 1

k412 k2 ko ~kp2 k+1  ~Kk2
= S (v =v" a—llo = o™ ) + 5 (" = 8" [a—llv™™ = 57[|7).(6.3)
For the last term of (5.3), we have
[ = "7 — [[o" " — "%
ko ~kp2 k ~k k k+1\)2
= " =g = |(v" =07) = (0" =" )|k
(4.4b) ko ~kp2 k ~k ko ~ky(2
= |v" =0 [y = [[(v" =07) —aM (" = 07)[/H

= 220" —")"THM®OW" — ") — (0" = ") MTHM(v* — o)
= a0 —="TQT +Q — aMTHM)W" — ")
= alo” — 572, (5.4)

Substituting (5.3), (5.4) in (5.2), the assertion of this theorem is proved. [



5.1 Convergence in a strictly contraction sense

Theorem 5.2 Let {v"} be the sequence generated by a method for the problem (4.1) and

k+1

W" is obtained in the k-th iteration. If v" , U and " satisfy the conditions in the

unified framework, then we have

[0F T — o™ || < 0" — o™ ||% — alof = %5, Wt e V. (55)

Proof. Setting w = w™ in (5.1), we get
k+1 * (12
— v ||u

> af|v” — || 4+ 22{0(@") — 0(u*) + (@" — w*) F(@")}. (5.6)

k * 12
[v" = o™ |7 — v

By using the optimality of w™ and the monotonicity of F'(w), we have

0(a") — 0(u*) + (0" —w*)T F(@") > 0(@") — 0(u*) + (@" —w*) F(w*) >0

and thus

S vl [ e P v |4 (5.7)

lv® —v* |7 = llv
The assertion (5.5) follows directly. [

For the convergence in a strictly contraction, the matrix (G should be positive definite.

101



5.2 Convergence rate in an ergodic sense

Equivalent Characterization of the Solution Set of VI '

For the convergence rate analysis, we need another characterization of the solution set of

VI (4.1). It can be described the following theorem and the proof can be found in [9]
(Theorem 2.3.5) or [25] (Theorem 2.1).

Theorem 5.3 The solution set of VI(Q, F. 9) Is convex and it can be characterized as

O = ({weQ: (6(u) —0(@) + (w—d)" F(w) >0}.  (58)

weEN
Proof. Indeed, if w € {2, we have

0(u) — () + (w —w)" F(w) >0, Yw € Q.
By using the monotonicity of /' on €2, this implies that

0(u) — () + (w — W) F(w) >0, Yw € Q.

Thus, W belongs to the right-hand set in (5.8). Conversely, suppose 1w belongs to the latter
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set of (5.8). Let w € (2 be arbitrary. The vector
w=oaw+ (1 —a)w
belongs to €2 for all &« € (0, 1). Thus we have
0(w) — () + (0w — w)" F(w) > 0. (5.9)

Because 6(-) is convex, we have
O(a) <af(u) + (1 -a)f(u) = (1-a)d(u)—-0(u)=0(u)—0(u)
Substituting it in (5.9) and using w — W = (1 — a)(w — W), we get
(O(w) — 0(@) + (w — )" Foaw + (1 —a)w) >0
forall € (0, 1). Letting o — 1, it yields
(0(u) — 6(@) + (w — @) F(w) > 0.

Thus w € €2*. Now, we turn to prove the convexity of £2™. For each fixed but arbitrary
w € (2, the set

{weQ: 0@)+w Flw) <0u)+w' Flw)}
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and its equivalent expression

{we: (O(u)—0(w) + (w—w)" F(w) >0}

is convex. Since the intersection of any number of convex sets is convex, it follows that the
solution set of VI(§2, F’, 0) is convex. O

In Theorem 5.3, we have proved the equivalence of
weQ, Ou)—0(a)+ (w—w) F(w) >0, Ywe Q,

and
weQ, Ou)—0(a)+ (w—o) F(w) >0, Ywe Q.

We use the late one to define the approximate solution of VI (4.1). Namely, for given

e > 0,w € (Qis called an e-approximate solution of VI(£2, F, 0), if it satisfies
weQ, Ou)—0(a)+ (w—0) Flw)>—e, Ywe D(w),

where
Diay = {w € Q| |Jw — || < 1}.



We need to show that for given € > 0, after t iterations, it can offer a w € VV, such that

weW and sup {60(a)—0(u)+ (W — w)TF(w)} <. (5.10)

’UJE'D(,J))

Theorem 5.1 is also the base for the convergence rate proof. Using the monotonicity of F’,

we have
(w — &) F(w) > (w— ") F(a").

Substituting it in (5.1), we obtain

. 1 1
0(u)—0(a")+(w — ") F(w)+ v —v"| > —llv—v""|F, Yw € Q.
(5.11)

Note that the above assertion is hold for G > O.

Theorem 5.4 Let {v"} be the sequence generated by a method for the problem (4.1) and

k+1

W" is obtained in the k-th iteration. Assume that v™ , U and w" satisfy the conditions

in the unified framework and let W be defined by

t
- 1 ke

Wt — ———
t+1k:0

(5.12)
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Then, for any integer numbert > 0, w: € €2 and

~ ~ T 1
0(a:) — O(u) + (0r —w)” F(w) < 20t + 1)

v —°||3, Ywe Q. (5.13)

Proof. First, it holds that " € Q for all k > 0. Together with the convexity of X and ),
(5.12) implies that w: € 2. Summing the inequality (5.11) over k = 0,1, ...,¢, we
obtain

t

(t+1)0(u)— >~ 0(a")+ ((t+1)w—z w’“)

k=0

T

Use the notation of w;, it can be written as

t

1 ~k ~ T 1 02
—— > 0 —6 — F(w) < - \ Q.
g Do) ) (= ) ) < gl e
(5.14)
Since 6(u) is convex and
t
. 1 oy
U = —— » U,

1
F(w)—l—%Hv—vOH%{ >0, Yw € Q.
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we have that

1 k
O(u) < —— O(u”).
(i) < = > 0(@")
k=0
Substituting it in (5.14), the assertion of this theorem follows directly. U

Recall (5.10). The conclusion (5.13) thus indicates obviously that the method is able to

generate an approximate solution (i.e., W) with the accuracy O(1/t) after ¢ iterations.

That is, in the case G > 0, the convergence rate O(1/t) of the method is established.

e For the unified framework and the convergence proof, the reader can consult:

B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive Peaceman-
Rachford splitting method for convex programming, SIAM Journal on
Optimization 24(2014), 1011-1040.

e B.S. He and X. M. Yuan, On the O(1/n) convergence rate of the alternating
direction method, SIAM J. Numerical Analysis 50(2012), 700-709.
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5.3 Convergence rate in pointwise iteration-complexity

In this subsection, we show that if the matrix G defined in (4.5b) is positive definite, a
worst-case O(1/t) convergence rate in a nonergodic sense can also be established for
the prototype algorithm (4.4). Note in general a nonergodic convergence rate is stronger

than the ergodic convergence rate.

We first need to prove the following lemma.

Lemma 5.1 For the sequence generated by the prototype algorithm (4.4) where the

Convergence Condition is satisfied, we have
(Uk o 6k)TMTHM{<Uk . ?7k) o (Uk—l—l o 6k+1)}

1 Kk ~k k1 ~kt1y (2
> %H(U ") = (" =" )ier+q)- (5.15)

Proof. First, set w = w* 1 in (4.4a), we have

0(a"th) — 0(a") + (@" T =T F@") > (" — M) T Q" — 5F). (5.16)
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Note that (4.4a) is also true for £ := k + 1 and thus we have
0(uw)—0(@" T Hw—a"THTF@" ) > (v=3"THTQ " =t ), vw € Q.
Set w = " in the above inequality, we obtain

e(ﬂlk) . e(ﬂlk—l—l) + (wk o ’J}k+1) F(wk—l—l) 2 (@k . @vk'—l—l)TQ(vk'—l—l . @vk'—l—l).
(5.17)
Combining (5.16) and (5.17) and using the monotonicity of F', we get

(0" — " THTQ{(v" — ") — (" =" > 0. (5.18)
Adding the term
{(W" =3") = " ="} Q{(W" = 7%) — (" ="}

to the both sides of (5.18), and using v* Qv = 2v" (Q" + Q)v, we obtain

(0" ="t Q{ (v —t*) = (" =5 T} > —H(’U F— ") = (0" =" [[for o)

Substituting (v* — v* ™) = aM (v — ©¥) in the left-hand side of the last inequality
and using Q = H M, we obtain (5.15) and the lemma is proved. O
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Now, we are ready to prove (5.19), the key inequality in this section.

Theorem 5.5 For the sequence generated by the prototype algorithm (4.4) where the

Convergence Condition is satisfied, we have

M@ =" g < [|IM@" = 5")|u, VE>O0. (5.19)

Proof. Setting a = M (v — %) and b = M (v**! — 5T1) in the identity
lallzr — [1bll7 = 2a" H(a = b) — [la — bz,
we obtain

1M (0" — )5 — 1M (™ =)k
= 20 =T MTHM[(W" — ") — Tt — ")

—[IM[(0" = 5") = (" = )]l



Inserting (5.15) into the first term of the right-hand side of the last equality, we obtain
1M (" = ")|[E — M =315

1
> |0F - ) - -5

— ||M
- 2y — 1M

1
e A Bt | )

where the last inequality is because of the positive definiteness of the matrix
(Q1 + Q) — aMT HM > 0. The assertion (5.19) follows immediately. O

Note that it follows from G = 0 and Theorem 5.2 there is a constant ¢cg > 0 such that
05T — o™ |3 < ||[v" — o™ || — col| M (V" — 3")||F, Wo* e V. (5.20)

Now, with (5.20) and (5.19), we can establish the worst-case O(1/t) convergence rate in

a nonergodic sense for the prototype algorithm (4.4).

Theorem 5.6 Let {vk} and {'J)k} be the sequences generated by the prototype
algorithm (4.4) under the Convergence Condition. For any integert > 0, we have

[0° —v*||3. (5.21)

1M =N < e

’l~)k) . (vk—|—1 . 6k—|—1)
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Proof. First, it follows from (5.20) that

o

> ol M@" =) < o° —v*||E, Yore V™. (5.22)
k=0

According to Theorem 5.5, the sequence {||M (v" — ©%)||7;} is monotonically

non-increasing. Therefore, we have

(t+ DM -3 HH<ZHM iz (5.23)

The assertion (5.21) follows from (5.22) and (5.23) immediately. [

Letd := inf{|[v” — v*||g | v* € V*}. Then, for any given ¢ > 0, Theorem 5.6 shows
that it needs at most |d?/coe | iterations to ensure that || M (v* — 3%)||3; < €. Recall
that v” is a solution of VI(2, F, 6) if || M (v* — ©%)||3; = 0 (see (4.4a) and due to

QQ = HM). A worst-case O(1/t) convergence rate in pointwise iteration-complexity is
thus established for the prototype algorithm (4.4).

Notice that, for a differentiable unconstrained convex optimization min f (), it holds that

f(@) = f(a") = V") (@ —2") + Oz — 2"||*) = O(l|lz — «"||").
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6 ADMM for problems with two separable blocks

This section concern the structured convex optimization problem (3.6) in Section 3.2,
namely,
min{0;(z) + 02(y) | Ax + By=0b, x € X,y € V}.

The augmented Lagrange Function of (3.6) is
2] _ T 5 2
Lo (z,y,A) = 01(z) +02(y) — A" (Az + By —b) + §||A£U + By — b||*, (6.1)

where 8 > 0 is a penalty coefficient. Using the augmented Lagrange function, the

augmented Lagrangian method (3.10)-(3.11) for solving the problem (3.6) can be written as

(@ ") = argmin{LE(z,y, A\*) |z € X,y € Y},

(6.2)
)\k:—l—l — )\k: . B<A$k+1 i Byk:—|—1 . b)

The recursion of the alternating direction method of multipliers (3.12) for the structured
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convex optimization (3.6) can be written as

f

gt = Argmin{[,[g](a:,yk, MYz e XY,
{ ¥ = Agmin{ L (=", y, AF) [y € VY, (6.3)
)\k—l—l — )\k . B(Axk—i—l i Byk—i—l . b)

\

Thus, ADMM can be viewed as a relaxed Augmented Lagrangian Method. The main
advantage of ADMM is that one can solve the x and y-subproblem separately. Note that
the essential variable of ADMM (6.3) is v = (y, A).

Since 1997, we focus our attention to ADMM, see [23]. Later, in 2002, we have
ADMM paper published in Mathematical Programming [18].

& B. S. He and H. Yang, Some convergence properties of a method of multipliers for
linearly constrained monotone variational inequalities, Operations Research Letters
23(1998), 151-161.

& B. S. He, L. Z. Liao, D. Han, and H. Yang, A new inexact alternating directions method

for monontone variational inequalities, Mathematical Programming 92(2002), 103—118.
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6.1 Classical ADMM in the Unified Framework

This subsection shows that the ADMM scheme (6.3) is also a special case of the prototype
algorithm (4.4) and the Convergence Condition is satisfied. Recall the model (3.6) can be
explained as the VI (4.1) with the specification given in (3.8b).

In order to cast the ADMM scheme (6.3) into a special case of (4.4), let us first define the
artificial vector 0" = (2%, ", \¥) by

F = a:’““, gk = yk“ and A =)\F— B(Aka + Byk —b), (6.9
where (ZUk—H, ka) is generated by the ADMM (6.3).

According to the scheme (6.3), the defined artificial vector W" satisfies the following VI:

[ 01(z) — 61(F") + (. — )T (=ATI*) > 0, Ve,
{ 02(y) = 02(5") + (y — ") (-B" X + BBTB(§" —¢*)) >0, Vye),
\ (AZ* + By* —b) — B(7* — ") + (1/8)(A\" — AF) = 0.

This can be written in form of (4.4a) as described in the following lemma.

Lemma 6.1 For given V¥ , let w* ! pe generated by (6.3) and W" be defined by (6.4).



Then, we have

" € Q, 0(u) — 0(@") + (w— ") TF (@) > (v—)T QMW" — %), vw € Q,
where
BB*B 0
Q = ) . (6.5)
—B BI

Recall the essential variable of the ADMM scheme (6.3) is (1, \). Moreover, using the
definition of fu?k, the A* 11 updated by (6.3) can be represented as

A = NP - B(AZ" 4+ BT —b)
= X' = [-B8B(" - §") + B(AZ" + By" —b)]
= N —[-8B@" —3") + (A" = X9)].
Therefore, the ADMM scheme (6.3) can be written as

k+1 k I 0 k_ ~k
Y . — gy . (6.6a)
A\Ftl AP —BB I AP \F
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which corresponds to the step (4.4b) with

I 0
M = and a=1. (6.6b)
—pB 1

Now we check that the Convergence Condition is satisfied by the ADMM scheme (6.3).
Indeed, for the matrix M in (6.6b), we have

e I 0
BB I
Thus, by using (6.5) and (6.6b), we obtain
BB 0 I 0 BB 0
H=QM ' = b — b ,
-B 31 BB I 0 %I



and consequently

G = Q"+Q—-aM'HM = Q"+Q-Q"M
B 26B'B —B? sB*B —Bt I 0
a _B 2] o0 11 8B I
_ 26B'B —B? B 26B'B —-B? _ [0 0 7
_B %] —B %I 0 %I

Therefore, H is symmetric and positive definite under the assumption that B is full column
rank; and (5 is positive semi-definite. The Convergence Condition is satisfied; and thus the

convergence of the ADMM scheme (6.3) is guaranteed.

Note that Theorem 5.4 is true for G > 0. Thus the classical ADMM (6.3) has O(1/t)

convergence rate in the ergodic sense.

Since o« = 1, according to (5.5) and the form of & in (6.7), we have

[o"*" = ol < Jo® = ol = 5T = AT vt eVt e
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Lemma 6.2 For given vk, let w* ! pe generated by (6.3) and W" be defined by (6.4).
Then, we have
ko Yk 2 ko k1
e IE N = A 72 (6.9)

Proof. According to (6.3) and (6.4), the optimal condition of the y-subproblem is
7" €Y, 02(y)—=02(3")+(y—5") {-B \"+BB B(§"~y")} > 0, Vy € V.

Because
M=M= BB —y") and g7 =y,

it can be written as

bey, 0a(y) =02y )+ (y—y THT{-B"N'} >0, Yy € V. (6.10)
The above inequality is hold also for the last iteration, /. e., we have

y" €Y, 02(y) —02(y") + (y—y") {-B A} >0, Vyey. (611
Setting y = yk in (6.10) and y = ykJrl in (6.11), and then adding them, we get

A = A"HT B -y > 0. (6.12)
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Using \¥ — XF = (\F — Mt 4 BB(y* —y**1) and the inequality (6.12), we obtain
ko k(2 k k+1 k k+1y 2
AT = X7 = SO\ = ATT) + BBy —y )|
> AT = AT 4 BBy -y I
ko kel
= |[v" = i ||H
The assertion of this lemma is proved. O

Substituting (6.9) in (6.8), we get the following nice property of the classical ADMM.

L A [ e AR A ("I A =p

which is the same as (3.27) in Section 3.2.

Uk:—l—1||2

Notice that the sequence { ||v" 77 } generated by the classical ADMM is

monotone non-increasing [27]. In fact, in Theorem 5.5, we have proved that (see (5.19))
IM@©* =) g < IM@" =" )la, VE>1 (6.13)
Because (see the correction formula (6.6))

v — o = MWF - ),



it follows from (6.13) that
lo" =" IE < 0" ="

On the other hand, the inequality (3.27) tell us that

o

ko kit
Dot =0 T <l ="
k=0

Thus, we have

e

IA

k
§ [0* — "
t+1

1
k—l—l 0 * 12
< t+1§ju 1 < ——o® —o7|I%.

H’Ut — v

Therefore, ADMM (6.3) has O(1/t) convergence rate in pointwise iteration-complexity.
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6.2 ADMM in Sense of Customized PPA [3]

If we change the performance order of y and A of the classical ADMM (6.3), it becomes

’

gt = Argmin{ﬁ[ﬁz](a:,yk, MYz e &},

/\\

ML — \F — B(Az" T + By* —b), (6.14)

|y = Agmin{ LG (2", 4, AT |y € ).

In this way we can get a positive semidefinite matrix () in (4.4a). We define

~ 1 ~k k+1 Nk k+1
it =gt =T A = 2

=X s Y (6.15)
where ("1 4%t A\¥+1)is the output of (9.3) and thus it can be rewritten as
(P = Argmin{ﬁ[g](x, y*, ) |z € XY,
¢ A =\F — B(Az* 4+ By —b), (6.16)
L 7 = Argmin{ﬁg](ik,y, MYy e V)
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Because \¥ = N\l = \F — B(A:%k + By* — b), the optimal condition of the
ax-subproblem of (6.16) is

01(z) — 01(2") + (x — )" (A" XY >0, Ve e x. (6.17)
Notice that

L@, y, AF) = 01(F") + 02(y) — ()T (42" + By —b) + 5[ Az" + By — b|?,

ignoring the constant term in the y optimization subproblem of (6.16), it turns to
7" = Argmin{02(y) — (\")" By + 5||AZ" + By — b||* |y € I},
and consequently, the optimal condition is §* € Y,

O2(y) — 02(5") + (y — §°) " [-B"N* + BB A" + Bj* — b)] > 0, Vy € V.
For the term [ - | in the last inequality, using B(AZ* + By® — b) = —(A\* — X*), we
have

—B"\F + 8B Az" + B§" —b)
= —B'\'+BB'B(I" —y") + BB(AZ" + By" - b)
_ _BT L BBTB(:&IC B yk) B BT(S\k: B )\k).



Finally, the optimal condition of the y-subproblem can be written as yjk € )Y and

02(y)—02(5")+(y—7")" -B'A"+BB'B(§" —y")—B(A"=A")] >0, vy € V.
(6.18)

From the A update form in (6.16) we have
(AZ" + Bg* —b) — B(3" —¢")+ (1/8)(\* = X*) = 0. (6.19)

Combining (6.17), (6.18) and (6.19), and using the notations of (3.8), we get following

lemma.

Lemma 6.3 For given vk, let w" be generated by (6.16). Then, we have
" € Q, 0(u) — 0(@") + (w— ") TF@") > (v—)T QMW" — %), vw € Q,
where

Q= . (6.20)

Because () is symmetric and positive semidefinite, according to (4.4), we can take

M=1I «a€(0,2) andthus H =Q.

124



125

In this way, we get the new iterate by

The generated sequence {vk} has the convergence property

0" =" < 0" =0T — a2 = @)l -5

Ensure the matrix H to be positive definite ' If we add an additional proximal term

22||B(y — y*)||? to the y-subproblem of (6.16) with any small § > 0, it becomes

2

T Argmin{[,[g](x, y* ) e X,
q Ne=)\F— B(Az* + By* —b), (6.21)
| 7 = Argmin{ LE/(Z*,y, \*) + LBy — v")II” |y € V}.

In the ADMM based customized PPA (6.16), the y-subproblem can be written as

§° = Argmin{02(y) + 2||By — p"||* |y € Y}, (6.22)

where
—b+ L >\ — AF",
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If we add an additional term %’B |1B(y — y™)||? (with any small § > 0) to the objective

function of the y-subproblem, we will get §* via
7" = Argmin{6:(y) + 5[|1By — p"|I* + LBy —y")II* |y € V}.
By a manipulation, the solution point of the above subproblem is obtained via
g = Argmin{02(y) + 522 || By — ¢"|” |y € ¥}, (6.23)

where
k k k
¢" = 75" +By").
In this way, the matrix () in (6.20) will turn to
(1+6sB*B —-B*
—B oy -
Take H = (), forany d > 0, H is positive definite when B is a full rank matrix. In other

words, instead of (6.22), using (6.23) to get yjk, it will ensure the positivity of H

theoretically. However, in practical computation, it works still well by using 6 = O.



ADMM in sense of customized PPA

1. Produce a predictor w* via (6.21) with given vk = (yk, )\"“),

2. Update the new iterate by v*™1 = v — a(vF — %), a = 1.5 € (0, 2).
Theorem 6.1 The sequence {vk } generated by the ADMM in Sense of PPA sat-
isfies

k+1 2 k 2 k _ ~kj2
[ = o[l < " = vl — a2 = )07 = 07|l Yot e VT

where
(1+6)8B*B —-B*T
—B

FHL — oF — a(v* — 9%), the contraction

Since the correction formula is v

inequality can be written as

2 — o
[ — o2 < o — o2 — E Dk — b2, vt e VR,
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Notice that the sequence {||v* — v*T1||%,} generated by the ADMM in sense of
PPA is also monotone non-increasing. Again, because (see (5.19))

IM (0" — %) || g < | M@ = Y|y, VE> 1. (6.24)
it follows from (6.24) and the correction formula that
[o* —o" T < T —of |

Thus, we have

ot — o < Hlan Tl

< lv” = o7l

Therefore, ADMM (in Sense of Customized PPA) has O(1/t) convergence rate

in pointwise iteration-complexity.
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6.3 Symmetric ADMM [19]

In the problem (3.6) in Section 3.2, x and y are a pair of fair variables. It is nature to
consider a symmetric method: Update the Lagrangian Multiplier after solving each x and

Yy-subproblem. .

We take i € (0, 1) (usually ;& = 0.9), the method is described as

(2T = Argmin{ﬁ[g](:p,yk, Nz e XY, (6.25a)
At = \k nB(Az" + By —b), (6.25b)
(S-ADMM) 5 k41 2]/, . k+1 k+1
y = Argmin{ L5 (z7,y, N 2) |y € YV, (6.25¢)
L AT 8(AR T 1+ By — b). (6.25d)

This method is called Alternating direction method of multipliers with symmetric

multipliers updating, or Symmetric Alternating Direction Method of Multipliers.

The convergence of the proposed method is established via the unified framework.



For establishing the main result, we introduce an artificial vector nk by

j’k xk’—l—l
7k — gk p— yk+1 . (626)
A Ao — B(Ax* T + ByF —b)

where ("1, 1) is generated by the ADMM (6.25). First, by using (6.26), we interpret

(6.25a)-(6.25c) as a prediction which only involves the variables w” and W".

According to (6.26), by using \* = \F — B(Az*T + By® —b), the optimal
condition of the x-subproblem (6.25a) is

01(z) — 01 (") + (x — )T (=ATN) >0, Ve ex. (6.27)
Notice that the objective function of the y-subproblem (6.25c) is
2]/~ k k41
L (E* y, N 2)
1 - ~
= 01(&") + 62(y) — (\""2)" (AZ" + By — b) + 5[|AZ" + By — b||”.
Ignoring the constant term in the y-subproblem, it turns to

1 -
gk = Argmin{02(y) — ()\k+2 )TBy + gHA:ck + By — bH2 |y € V}.

130



131

Consequently, according to Lemma 1.1, we have

7° €Y, Oa(y) — 02(7")
+Hy — )T {~BTAM 2 4 BBT(AF*F + BFF —b)} >0, vy e .
Using \* = A% — B(Az"*! + By —b), we get
N2 = A p(F = 3F) = 3P (1= ) (W — 3B,
and
B(AZ" + By® —b) = (N = \F).
Thus,
BTNz 4 8BT(AZ* + B — b)
= BT+ (1 - (N = )]+ BB B - ")
+BBT (AZ" + By* —b)
— BTN~ (1 - wBTOF = 3+ 8BTB(§" — o)
_I_BT()\k B j\k:)
= —B"X'+8B"B(j" —¢*) — uBT (A" = \").



Finally, the optimal condition of the y-subproblem can be written as g’“ € ), and

02(y) — 02(3") + (y—§°)" {-B"\* + 8BB' B(5" — ¢")
—uBY (A =21 >0, VYye). (6.28)

~

According to the definition of " in (6.26), \* = \* — B(Az"T + By* —b), we
have
(AZ* + Bj* —b) — B(g* — ") + (1/B8)(\* = X\*) = 0. (6.29)

Combining (6.27), (6.28) and (6.29), and using the notations of (3.8), we get following

lemma.

Lemma 6.4 For given fuk, let w™ ™t be generated by (6.25) and W" be defined by (6.26).
Then, we have

" € Q, 0(u)—0(@")+ (w—a"TF(@") > (v-5")T Q0" —5%), vw e Q,

where

Q= . (6.30)
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We have finished to interpret (6.25a)-(6.25¢) as a prediction. By a manipulation, the new

iterate \* 1 in (6.25d) can be represented as

N = D = u(W = N0 = u[-BB" - §°) + B(Az"T + By® — b)]
= N — [—uBB" —§*) +2u(\" = ). (6.31)
Thus, together with ka = gk , the correction step can be represented as
P AF —uBB  2uln, PLESDY.

This can be rewritten into a compact form:
P = oF — MW" — ), (6.32a)

with

1 0
M = . (6.32D)

—pBB  2pulm

These relationships greatly simplify our analysis and presentation.



In order to use the unified framework, we only need to verify the positiveness of H and G.

For the matrix M given by (6.32b), we have

For H = QM ', it follows that

b <BBTB —MBT>< I 0 ) B (( ~ 1)BBTB —;BT>
o 1 1 1 o 1 1 '
_B LI 1B L1, -1B L

Thus

g1 vBBY 0 2-wI —-I\(vBB 0
2\ 0 11 -1 irJ\ o i1)

Notice that

Therefore, H is positive definite for any i1 € (0, 1) when B is a full column rank matrix.
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It remains to check the positiveness of G = Q1 + Q — M HM. Note that

I —uBBt BB —uB”
MTHM = MTQ: pp b H

(1+wpBB"B —2uB"
—2uB =

Using (6.30) and the above equation, we have

—B

o
P o V) \—1 ar)\ 0 A

T T BBTB —BT
G=(Q +Q) —M HM=(1—M)< >

Thus
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Because the matrix

1 —1
—1 2
is positive definite, for any u € (O, 1), (5 is essentially positive definite (positive definite

when B is a full column rank matrix). The convergence conditions (4.5) are satisfied.

Take p = 0.9, it will accelerate the convergence much. For the numerical experiments of

this method, it is refereed to consult [19].

The symmetric ADMM is a special version of the unified framework (4.4) - (4.5) whose

o =1,
1—1sBTB —LpT BB —BT
H = ( 2‘1)6 12 and G = (1—p) P ,
1B 5.5 Im B 2Im

Both the matrices H and G are positive definite for iz € (0, 1). According to Theorem
5.2, we have

[ =0 < o =0 (7 — (0" = 30l Vot e V.



7 Splitting Methods for p-block Problems

We consider the linearly constrained convex optimization with p separable operators

min{i Gz(xz) ‘ iAzxz =b, x; € XZ} (7.1)
1=1

=1

lts Lagrange function is

p p
L(p) (5131, ey Tp, )\) = Z (9@(561) — )\T(Z A;x; — b), (7.2)
i=1 i=1
which defined on Q := [}_, & x R™. The related VI(£2, F), ) has the form

VI(Q,F,0) w*eQ, 0(z)—0(z")+ (w—w") F(w") >0, Yw € Q, (7.3a)

() (o

T
Lp i=1 —Ap A

\A) \Zf:ﬂéliﬂji_b}

(7.3b)
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LV @1, e, A) = L@y, .2, A) + §||2521Aixi B2 (7.4

is the augmented Lagrangian function.

Direct Extension of ADMM ' Start with given (25, ..., xF AF),

y

xlf+1 = argmin{ﬁ[g](ail,xg,wg,. . ,x];,Ak) ‘ I € Xl},
xlg—l—l = argmin{ﬁ[ﬁp](xlf_'_l,xg,xg, « o ,xfj,)\k) ‘ T2 € XQ};
$ xf“ = argmin{ﬁg](a:]fﬂ, e ,xffll,xi,ﬂffﬂy ce 7$I;a>\k) } Ti € Xi}a
x’;"'l = argmin{ﬁ[;] (QUIf—H, e ,a:,,’i;r_ll,acp,)\k) ‘ Tp € Xp},
k+1 _ \k k+1
\ A = A —5( f:lAixi _b)‘

(7.5)

There is counter example [6], it is not necessary convergent for the problem with m > 3.



7.1 ADMM with Gaussian Back Substitution [20]

Let (a1, htt . ,a:’zﬁ“, A1) be the output of (7.5). By denoting
K k41l
fEi:$¢+, 1=1,...,p (7.6)

the x;-subproblems of (7.5) can be written as

( j’f — argmin{[,[p] (1, xlﬁ,xlg,...,x’;,)\k) ’ T1 € Xl};
iy = argmln{ﬁ xl,xg,a}é,... x’;,)\k) ‘ To € Xg};
; ;
7t = argmin{ £ (2, s ok, 2 ) | @€ )
| i = argmin{[,gj] (F5, .. 35 xp, AF) ) | zp € X}

(7.7)
Additionally, we define

p
AP =2 — B(A13) + Zijé? —b). (7.8)
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Using the notation of the augmented Lagrangian function (see (7.4)), the optimal condition
of the x1-subproblem of (7.7) can be written as

T, € X1, 91(331) 01(331)—{—(331—531)T{ AT)\k—i—BAT(Al 1—I—ZA b)} > 0.

According to the definition of 2P (see (7.8)), it follows from the last inequality
i€ Xy, O1(x1) — 01(2F) + (z1 — )T {-AT N} >0, Va1 € Ay (7.9)
Fort = 2, ..., m, the optimal condition of the x;-subproblem of (7.7) is
ke X, 0i(x;) —0;(3F) + (z; — 2k T{—ATAk
+BAT [Avah + 370, Ak + 370, Ajah —b]} >0, Vo, € A

Consequently, by using the definition of M\F we have :%7; € X; and

0;(x;) — 0;(35) + (z; — F)T{—ATNF +BA,LT[Z A; (&Y — 2]} >0, (@10
=2

for all x; € AX;. In addition, (7.8) can be written as

p p
Ajih —b) =Y A& — b Fiar oA =0 (7.11)
J J J B
j=1 =2
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Combining (7.9), (7.10) and (7.11) together and using the notations in (7.3), we obtain

Lemma 7.1 Let " be generated by (7.7)-(7.8) from the given vector v®. Then, we have
w" € Q and

0(z) — 0(2") + (w — ") F(@®) > (v = )T Q" — %), Yw € Q, 7.12)

where

(5145142 0 0 \
BA3 A2 BA3 A3
Q= 1 2 AT

BAT A, BAT As s BATA, 0

\ — A A, —A, l[m)



142

After having (7.12), we have finished the prediction step (4.4a). The rest task is to
complete the correction step (4.4b), finding a matrix M and a constant o > 0, which
satisfy the convergence conditions (4.5). In the following we give some examples.

The first choice of Matrix M ' In the first choice, we take

M=Q 'D, (7.14)

where
1

[):dmmﬁAgAmﬂAgA&.”,ﬁAgAmzﬂy

By using the notation of ), we have
Q"+Q=D+P'P

where
P = (\/BAs,\/BAs,...,\/BA,, \/%I). (7.15)

For the matrix H , according to the definition (4.5a), we have

H:QM—l :QD—lQT
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and thus H is symmetric and positive definite. Because
MY"HM =Q*'' M = D,
it follows that
G=Q"+Q—-aM"HM =(1—a)D+ P"P.

Forany a € (0,1), G is positive definite.

How to implement the correction step ?

Because M = QT D and the correction is v* ! = v* — aQ T D(vF — o%), we
have
QT (vt — ") = aD(@" —v"). (7.16)
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According to the matrix P in (7.15), we define

/\/BAQ 0 0 \
0 Vv BAs
diag(P) =
. VBA, 0
\ 0 0 ﬁ]m)

In addition, we denote
/ I, 0 . e 0 \
Im, Im,

L = ; |- (7.17)
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Using these definitions, we have
Q = [diag(P)]" L[diag(P)], D = [diag(P)]" [diag(P)].
According to (7.16), we need only to solve
L" [diag(P)] (v**" — v*) = a[diag(P)] (5" — v"). (7.18)
In order to start the next iteration, we only need [diag(P)]v***, which is easy to be
obtained by a Gaussian substitution form (7.18). This kind of method is proposed in [20].

e B. S. He, M. Tao and X.M. Yuan, Alternating direction method with
Gaussian back substitution for separable convex programming, SIAM
Journal on Optimization 22(2012), 313-340.

Using the uniform framework, the convergence proof is much simple !

The second choice of Matrix )/ ' For the second choice, we decompose () in form




Thus, in comparison with the matrix () in (7.13), we have

(ATA; 0 0 )
AT A, AT A3

Qo =
\AT A, AT 43 o AT A,

and

A= (Ag, As, ..., A).

In addition, we denote
, T T T
Do = diag(A3 Az, A3 A3z, ..., A, Ap).
Thus, by using the notation of Dy, we have

Qi +Qo=Do+ A'A
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and
B(Do + AT A) —A"
—A 27

We take the matrix M in the correction step (4.4b) by a v-dependent matrix

Q' +Q=

—T 1 y—1AT
VQ Do 0 _ =D 0
M, = 0 (thus M, " = v=0 Qfo ) (7.19)
—BA I 1BADG'QE 1
and set « = 1. In other words, the new iterate v s given by
Pt = oF — M, (0" — ). (7.20)

Now, we check if the convergence conditions (4.5) are satisfied. First,

H = QM;'= FQo O vDo'Qy 0
-A 31 1BAD'Qy 1
18QoDy Qs 0

0 I

1
B



is symmetric and positive definite and the condition (4.5a) is satisfied. Because

MTHM, = QTM, = pQy —A vQy Do 0
e 0 ir _BA I
B B(I/Do + ATA) — AT
~A 1
it follows that
G = Q'+Q-M'HM,
B B(Do+ ATA) —AT vBDo + BAT A —AT
—A a1 —A 51
1—v)8Dy O
= ( V)B ¥ . . (7.21)
0 21

Forany v € (O, 1) (resp. v = 1), (G is positive definite (resp. positive semi-definite).
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We call this method Alternating direction method with Gaussian back substitution, because

e The predictor W" is obtained via (7.7)-(7.8), in an alternating direction manner;
e In the correction step (7.20),
ot =0 — M, (F — 5F).
Since (see (7.19))

o Do 0
M, = Vo™ Do and A= (A2,A3,...,4,),

—BA I
it follows from (7.8) that
A=\ = (3P A;E] —b).

The x-part of the new iterate v* 11 is obtained by

( azk+1—:132 \ ( 5:]2“—:1:]2“ \
Qo . = vDg . : (7.22)

ktl k/ K~k_ k}
K:Ep :Ep ij ij
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° QOT is an upper-triangular matrix, it can be viewed as a Gaussian back substitution.

In practice, to begin the k-th iteration, we need to have (Azx%, Aszh, ..., Apzk, \F)
(see (7.4) and (7.7)). Thus, in order to begin the next iteration, we need only to get
(Agzh ™ Agzbth . Apzptt AF+1) from (7.22). Because
( k—H—:cQ\ (A’.QT 0 0\(] I I\/Ag(xk—i_l—:%)\
Lkt . : k41
or T3 —m3 | o AT 0 I - I |lAs(z3™ —2zk)
L ) . : L :
k k41
\:B—H \O 0 Ag)\() 0 I)\Ap(:cp"" —:r;g))
and
/5;’26_33126\ (A2T 0O --- 0 \(A2(§:2—x2)\
ik — gk g Z As(zh — k)
x x T _ 3\+L3 3
| BT 0 A . |
. : " g 0 :
~k k .
\#p—=f) N0 o 0 Al )\ 4,k -ak))
we can get (Aszs ™ Aszi Tt ... A,xEt!) which satisfies (7.22) via solving the
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following system equations:

(I I .- I\ /Ag( hd —33’5)\ (A2(53]§ —33]5)\
0

I .. ITllA xk+1—azk As(zk — 2k
3(3 3) _ 3( 3. 3) . (7.23)

\0 0 1)\ AEET —ah))  \A@k-ab))

Indeed, (Agzi™, Aszb™h ... A zEth) from (7.23) satisfies the systems of equations

(7.22). The solution of (7.23) can be obtained via the following update form:

(At ([ Asah (1 -1 \(A2 £ 26))
7

k+1 k . .
Aszht A} SN As(ah -

\A,2it ) \aah)  \ 1) \4,(ak - i%))



ADMM with Gaussian back substitution
1. Produce a predictor " via (7.7)-(7.8) with given v* = (x’f, . ,:1:];, )\k),

2. Update the new iterate by oF Tt = oF — M, (vk’ — 17"“) (see (7.20))

Theorem 7.1 The sequence {vk } generated by the ADMM (with Gaussian back substi-
tution) satisfies

[0 — 0|7 < W° =0t E = 0t = B0E, Yot e VT,

where
1 D7oF 0 1—1v)8Dy O
O L R

Implementation of the above method for three block problems I

Let us see how to implement the methods for the problem with three separable operators

min{6i(z)+02(y)+03(2)|Ac+By+Cz=b, x € X,y €Y,z € Z}. (7.24)
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Notice that its Lagrange function is
LY (z,y,2,X) = 61(z) + 02(y) + 03(2) — A" (Az + By + Cz — b),
which defined on 2 := X X Y X Z x R™. The variational inequality VI(£2, F', 0) is:

w* € Q, 0(u)—0u*)+ (w—w)" Flw") >0, YweQ

where
(o) w ()
w=| Y u=| oy |, F)= o ,
\)\) ~ \Aaz—l—By—l—C’z—b)

O(u) = 61(x) +02(y) +03(2), Q=X xYxZxR™.

The related augmented Lagrangian function is defined by

E[g](m, y,z,A) = L9 (2, y, 2, \) + gHAa: + By + Cz — b||°. (7.25)



Note that the essential variable is v = (y, 2, A), and the prediction (7.7)-(7.8) becomes

~

i

~k
Y

~

Z

—argmm{ﬁ[] (z,y", 2", \F)

TARTIPAIO U

~k ~k
:C,y,z )

= arg min {E[ ]

= arg min {[,[g]

For this special case, the matrix () in (7.13) has the form

Q

BBTB 0 0
=| pC*B pgctc 0o
1

:UEX},
y €V},
zEZ},
LN =)\ — 84" + By" + C2F — ).

(7.26a)
(7.26b)
(7.26¢)

(7.26d)

(7.27)

We take the second choice of the matrix M (see (7.19)) in the correction step, namely,

vQy "Dy 0
—BA I

M, =
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BB 0 . T T
Qo = , and Do =diag(B" B,C" C),

ct'B CtcC

we obtain
~ I —(BYB)"'BfC
Qo Do = ,
0 I

and thus

vl —v(B'"B)"'B'C 0
M, = 0 vl 0o |- (7.28)
—0BB —BC I
The correction is updated by
R = F — ]\4,/(717’C — 17k). (7.29)
For the dual variable

M=\ — [-8B(y" — §") — BC(z" = 2") + (A" = X")].
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Using the definition of 5\’“ we have
—BB(y" —§") — BO(2" — ") + (\* = A") = B(Az" + Bj" + Cz" —b),

the correction step (7.29) can be written as

ByFt! By* vl —vl O B(yk _ yk+1)
CFtl =1 Cz* |- 0 vl 0 C’(zk — zkH) : (7.30)
)\k—{—l )\k 0 0 7 )\k . )\k—l—l

where the (y"T*, 2F 1 N1

of ADMM (7.5) for the problem with three separate operators (7.24). The details of (7.30) is

in the right hand side is the output of the direct extension

ByFtt (1 — v)By"* + vBy* ™ + vC (2" — 2 )
CFtt | = (1 —v)C2* +vCZFH . (7.31)
)\k—l—l )\k—l—l

Recall, for v = 1, the matrix (- in (7.21) is positive semi-definite and the related method

has O(1/t) convergence rate in an ergodic sense.
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7.2 ADMM + Prox-Parallel Splitting ALM

The following splitting method does not need correction. lts k-th iteration begins

with given v* = (xg, e ,x’;, )\k'), and obtain v**! via the following procedure:
[ k+1 :
Tt :argmln{ﬁ[g](xl,xlg,x’g,...,x’;,)\k) ’ 1 EXl},

for 1=2,...,p, do:

Pl k+1 Kk k k k \k
{LB (:El ,332...,,CUZ_l,ZCZ,Qf,L_i_l,...,.CCp,)\)}

| A (i — af)|I?

9
k+1 __ :
x, = = arg min

x; EXi

Y

AL = AR — B(Y P At —b).

\
(7.32)

e The x5 ... T)-subproblems are solved in a parallel manner.

e To ensure the convergence, in the z;-subproblem,? = 2, ..., p, an

extra proximal term % | A;(xz; — 2%)]|? is necessary.
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An equivalent recursion of (7.32) ' © =7+ 1and T is given in (7.32).

y

it = argmin{ﬁ[p](xl,xlg,xlg,...,:L'k,)\k) ’ x1 € Xl},
Nets — 2k — 5( k+1 Z b),
for 1=2,...,p, do:
\ P ; N (7.33)
;) — 5 T
/;4—1 — arg min Z( ’L) ( ) 1L 2 € XS
12| Ai s — )|

AL = NF — B(5°F_ | Attt —b).

\
The method (7.33) is proposed in IMA Numerical Analysis [21]:

e B. He, M. Tao and X. Yuan, A splitting method for separable convex
programming. IMA J. Numerical Analysis, 31(2015), 394-426.
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Equivalence of (7.32) and (7.33)

It needs only to check the optimization conditions of their x;-subproblems for
1 = 2, ..., m. Note that the optimal condition of the x;-subproblem of (7.32) is

e" e Ay () — 0 (2T + (2 — x§+1)T{—A;FAk+
HBAT [(Arat 4D, Ajal = b) + Ai(af ! — 2b)]
+7BATA; (21— 2! } > 0.
forall x; € X;. By using
NoFe = \F - (AT + S0P Ajak — b); (7.34)

it can be written as

€ X Oulan) — @) 4 (o - kT AT N

1

+5ATA( k+1__ k) TBATA( k+1__ :Ck)} > 0.

1



and consequently

ei e Xy, 0;(x) — 0; (2T + (2 — $§+1)T{—A?Ak+%

1

+(1+7)BATA; (xf T = 2F)} >0, V x; € X;.(7.35)

Setting 1 = 1 4 7, (7.35) just is the optimal condition of the x;-subproblem of
(7.33). Notice that the

5t = argmin{#; (z1) + %\\Alazl + (zp: A;xt —b) — %)\’“ |z € X1}
i=2
Fori=2,...,m,
r; T = argmin{0; (z;) + %HAi(wi —z7) — M%)\H% 1? | @i € X}
We use (7.33) to analyze the convergence conditions. By denoting

:th —zF i=1,....p and e = )\k+%7 (7.36)

1
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the optimal condition of the x;-subproblems of (7.33) can be written as
(

O1(z1) — 01(3%) + (z1 — )T (=ATAF) > 0, Yy € Xy

N Oi(x) — 0;(25) + (25 — ;Ef)T(—A,L-TS\k + uBAT A (z2F — a:k)) > 0,

1

\V/ZCZEXZ, 1=2,...,p.

\

N 1
Since \* = \**+32_ we have

p p
(S At —b) =37 Ay — ) + %(X‘f =0, (738

Combining (7.37) and (7.38) together and using the notations in (7.3), we obtain
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Lemma 7.2 Letw*T! pe generated by (7.33) from the given vector v and wF
be defined by (7.36). Then, we have w* € ) and

0(z) — 0(2") + (w — )T F (@) > (v — )T Q0* — %), Vw e Q,

(7.39)
where
(uBATA, O " 0 0 )
0
0 e 0 uBALTA, 0
\ A e ~Ap1 Ay 5l

This is a prediction as described in (4.4a). Here, the matrix () is not symmetric.
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Since \¥ = \F — B(A1 5 + Z?:z Aj:c"; —b) and ZF = 2" we have

AL = A (3 Ayt —b)
= A [-BT A (ah — Eh) + (AF - AR (7.41)

J

Thus, letting
(1 0 0 0 )
0
M = 5 0 o |- @42
0 0 I 0
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the v*T1 obtained by (7.33) can be written as

vk—l—l _ vk . M(vk . ,Dk)

Now, we check if the convergence conditions (4.5) is satisfied.

For analysis convenience, we denote
Dy = diag(Aj A2, A3 As, ..., AL A) (7.43a)

and

A= (As,As,..., A). (7.43b)

Thus the matrix () in (7.40) and M in (7.42) can be written in compact form,
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and

1 0
M =
—BA I
respectively. By a simple manipulation, it shows that
D 0 I 0 D 0
H — QM_l _ ,UB 0 _ /’L/B 0
-A 5l BA T 0 51

is positive definite.

For the matrix () defined in (7.40) and M defined in (7.42), we have

uBfDy —AT I 0

Q"M =
0 %I —BA I

8Dy + fAT A —A
—A 51
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Consequently, we have

G = Q"+Q-M"HM = Q" +Q-Q'M
28Dy —A" pDg + AT A —AT
ol —a oz ) A g
uBDg — BATA 0 Gy O
- 0 51 "~ 0 I
Notice that

G-0 < Go=ulDy—pLATA=O.

Thus, we need only to check the positivity of G. Since
Dy = diag(AgAg, A;{Ag, e ,AZAP),

and

.A: (AQ,Ag,...,Ap),



by a manipulation, we obtain
Go = uBDy—BA"A
[(n—1)AF A,

o —AT A,
\ —ATA,
(A%
AL

— AT 4,

(b —1)A3 As

AT

BGo(1)

—A;
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where G () is an (m — 1) x (m — 1) blocks matrix

((n—1)I —I e D)
Go(p) = - =D
: 3 T
\ I - -1 (p-DIJ
(I \ (1 1

I 1

Y I W

I\

.

It is clear that &, is positive definite if and only if x> p — 1.

(p—1)x(—1)
blocks

Since 7 = 11 — 1, the method (7.32) is convergent when 7 > p — 2.
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ADMM + Prox-Parallel Splitting ALM
e Produce a predictor w* ™1 via (7.33) with given v* = (25, ... ,:r;g, AP,
where it > p — 1.

Theorem 7.2 The sequence {v" } generated by the ADMM (+Prox-Parallel Split-
ting ALM) satisfies

[0 — o 15 < 0" =015 — " = 3¥|IE, Yot e V7,
where

D Dy — T 0
- pBDy 0 o pBDy — BAHA

0 %I 0

DO — diag(AgAg,AgAg, ce ,AZ;AP), A= (AQ,AQ,, “. ,Ap).

Implementation of the method for three block problems I



For the problem with three separable operators

min{f;(x) + 02(y) + 03(2)|Ax+ By+Cz=b, € X,y )Y,z € Z},

we have
£[53] (z,y,2,\) = 01(x)+0:(y) + 03(2) — N (Ax + By + Cz — b)
+§||Aa: + By +Cz — b))%

For given v* = (y*, 2*, A¥), by using the method proposed in this subsection,
the new iterate vF 11 = (yFT1, 2F 1 \F+1) s obtained via (7 > 1) :

(gt = Argmin{ﬁg’] (z,y", 25, \F) |2 € XY,
gl = Argmin{ L3 (2%, y, 28, M) + 22| B(y — y¥)|12 |y € V',
P = Argmin{ L) (251, yF, 2, AF) + 2| C(2 — 2M) || 2 € 2},

| A =N — B(AxR T 4 ByF Tt 4 CZF T — ),
(7.44)
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An equivalent recursion of (7.44) is

(

\

ghtl = Argmin{EE] (z,y*, 28 NF) |z € X},
Aotz = 2\ — B(AzF T + Byk + C2F —b)
Y =Argmin{0(y) — (\**2)TBy + 2| B(y — y*)|1? |y € Y},
2L = Argmin{0s(2) — (A T2)TC2 + L2 || O (2 — 29) |12 | 2 € 2},

ML = Ak — B(Axk+L 4 Byt 4 O — b)),
(7.45)

where . = 7 4+ 1 > 2. Implementation of (7.45) is via

/

Pl = Argmin{6, (z) + §||A$ + [By* + CzF — b — %)\k]HQ |z e X},
Aets = \F — B(Axkt! 4+ Byk + C2F —b)

y ! =Argmin{0a(y) + 47| By — [By* + 5 A% |y € V),

2P = Argmin{03(z) + %HC’Z — [C2F + u—lﬁ)\’“%]HQ |z € Z},

ML = Ak B(Axk+L 4 Byt 4 O ).
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This method is accepted by Osher’s research group'

e E. Esser, M. Mdller, S. Osher, G. Sapiro and J. Xin, A convex model for
non-negative matrix factorization and dimensionality reduction on physical
space, |IEEE Trans. Imag. Process., 21(7), 3239-3252, 2012.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 7, JULY 2012 3239

A Convex Model for Nonnegative Matrix
Factorization and Dimensionality
Reduction on Physical Space

Ernie Esser, Michael Moller, Stanley Osher, Guillermo Sapiro, Senior Member, IEEE, and Jack Xin

TZO,VIJ‘HEIgj,eEE C Z m]aX(TZaJ> + <RwUCw7 T>

suchthat YT — X, = V — X,diag(e). (15)
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Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable 72

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters ¢ > 0 and i > 2, shown in the

tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
1+, which for this application must be greater than two according
to [34]. We set 1 equal to 2.01. There are also model parame-

[33] E. Candes, X. L1, Y. Ma, and J. Wright, “Robust principal component
analysis,” 2009 [Online]. Available: http://arxiv.org/PS cache/arxiv/
pdf/0912/0912.3599v1.pdf

[34] B. He, M. Tao, and X. Yuan, “A splitting method for separate
convex programming with linking linear constraints,” Tech.
Rep., 2011 [Online]. Available: http://www.optimization-on-
line.org/DB_FILE/2010/06/ 2665.pdf




What is the optimal regular factor —Main result in 006235 I

Recent Advance in: Bingsheng He, Xiaoming Yuan: On the Optimal Proximal

Parameter of an ADMM-like Splitting Method for Separable Convex Programming
http://www.optimization-online.org/DB_HTML/2017/ 10/6235.htm|

Our new assertion: Solving the problem (7.24).

The parameter 7 in (7.44)

e if 7 > (.95, the method is still convergent;

e if 7 < 0.5, there is divergent example.
Equivalently the parameter (1 in (7.45) :

e if 1 > 1.5, the method is still convergent;

e if 11 < 1.9, there is divergent example.

For convex optimization prob-
lem (7.24) with three separable
objective functions, the param-
eters in the equivalent methods
(7.44) and (7.45) :

e 0.5is the threshold factor of
the parameter 7 in (7.44) |

e 1.5is the threshold factor of
the parameter (v in (7.45) !
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8 Self-adaptive gradient descent method for
convex optimization

This section is relatively independent of other sections. Let f : *"* — ¥ be a
differentiable function, 2 C R" be a closed convex set ({2 = R" is the possible
simplest case). Assume that the projection on {2 is easy to be carried out. For

example, 2 = R", R, or Qisa “box

We study the gradient descent method for convex optimization problem

min {f(z) | x € Q}. (8.1)

The solution set of (8.1) is denoted by (2* and assumed to be non-empty.

According to the analysis in Sect. 1.1, the problem (8.1) is equivalent to finding a
x* € (), such that

VIIQ, V) z*€Q, (z—25)'Vfx*)>0, VzeQ. (82
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For the discussion in this section, we need some basic concepts of projection. Let
x* be a solution of VI(£2, V f), for any given 8 > 0, we have

" = Polz™ — BV f(a™)].

- TN

" = BV f(z7)
Vf(z*)  z*|Polz* — BV f(z*)]

Fig. 2.1 z" is a solution of VI(2, V f) (8.1) & x™ = Polz™ — BV f(x™)]

For given ¥ and 3 > 0, we denote

¥ = Polz® - BV f(a")], (8.3)
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which is projection of a given vector [2¥ — BV f(2*)] on . In other words,

it = argmin{%Ha: b = BV )| 2 € QY.

One of the important property of the projection mapping is

(z — Po(2))" (2 — Pa(2)) <0, Vz € R",Vx € Q. (8.4)

4 . )

x — Pa(z)

Pa(z)

() z — Pa(z)
\ /

Fig. 2.2 Geometric interpretation of the inequality (8.4)

o 2




Since * € ), according to the definition of the variational inequality formulation
(see (8.2)), for any 5 > 0, we have

(FH)y (&% — 2" BV f(z*) > 0. (8.5)

We call (8.5) the first fundamental inequality.

Notice that Z* is the projection of % — SV f(z*) on Q and z* € .

Setv = ¥ — BV f(2*) and u = * in the projection inequality (8.4), since
Pqo(v) = T*, we have

(F12) (3" — 2" {[a" — pVf(a")] - 2"} > 0. (8.6)

We call (8.6) the second fundamental inequality.
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8.1 Motivation from Projection and Contraction Method

The projection and contraction (P-C) method is an iterative predict-correct (P-C)
method. We say a method is a contractive, if the distance of the iterates {x"*} to

the solution set is strictly monotone decreasing.

For given xk, the projection and contraction method offers its predictor ik by

i* = Pola® — BV f(2")].

Let H € R™*™ be a symmetric semi-definite matrix. Although the initial purpose
of constructing projection and contraction methods [13, 14, 15] are not for solving

convex quadratic programming
1
min{§xTH:U +clz|z e}, (8.7)

we still illustrate our idea with problem (8.7). For the problem (8.7), the
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corresponding linear variational inequality is
e Q, (x -z B(Hx*+¢) >0, Vo e (8.8)
For given ¥, the predictor Z* is given by

ih = Polz® — B(Hz® + ¢)]. (8.9)

8.1.1 Projection and contraction for convex QP

For the linear variational inequality (8.8), the fundamental inequalities (FI1) (8.5)
and (FI2) (8.6) are reduced to

[ (&F — ") TB(Ha* +¢) >0, (FI1)
\ and
| (@ — )T ([2F = B(Hz" + ¢)] — 2%) >0, (FI2)

respectively.
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Adding (FI1) and (FI2), we get
{(@" —a") — (a" ="} {(a" - 7*) = BH(a" —2")} > 0.

Since H is positive semi-definite, from the above inequality, we obtain

(2% — 2T (I + BH)(zF — #*) > ||z — *||2, Va* € Q.

The last inequality can be interpreted as

1 . ) _ \
(VG le =2 i) e (@F = 35)) = [l = 27, ¥a* € .

In other words, — (¥ — Z¥) is a descent direction of

- 1 2 k
the unknown distance function 3 ||z — ([ 5 at .
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By letting
G =1+ BH, (8.10)

we get

(% — )T G2 — %) > ||z — 3F||?, Va* € Q. (8.11)

The projection and contraction methods requires the sequence

{||=* — 2*||%} to be strictly monotone decreasing. We let
— a(z® — ), (8.12)

be the new iterate depends the step-size «r, and consider the function

I(a) = [z — 2"||& — [la(a) — 2"||¢ (8.13)

Using (8.11), it follows that

Ia) = |l2" — 2" - ll2* — 2" — a(a® — 2")|¢

> 2aflz® - 2"|° - o®lla" - 2¥|I2. (8.14)
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In other words, we get a quadratic function
¢(a) = 2a|z* — 3F||% — o?||z* — ~k||%; (8.15)

which is a low bound of (). The function ¢(«) reaches its maximum at

C flek -z |
In practical computation, we use
Rl = 2F — yag(a® — &), v €(0,2) (8.17)

to produce the new iterate 21 (corrector). The sequence {z*} satisfies

L A R P (e

= |la" —a*|§ — (2 = y)aglla® 2%, ©.18)

where G = [ 4+ SH.




Note that G = (I + SH) andthe “optimal step-size” (see (8.16)) is

" |l=* — 2|

(xF —R)T(I + BH)(xF — TF)

9(a)

q(a)

é| | ] ] |
>
© a*  yo* \ \ a

Fig. 2.3 The meaning of the relaxed factor vy € [1, 2)
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The convergence speed is dependent on the parameter (3 ! I

Self adaptive gradient descent method for convex QP (8.7).

For a given :ck, for the chosen parameter (3, the predictor is given by
it = Pola® — B(Hz" + ¢)].
Additionally, if the condition
(¥ — 2T (BH) (2" — &%) <v|z* = 3", ve(0,1)  (8.20)

is satisfied, then according to (8.19), we have

1 >1
5

oy >

— 1+v




Self adaptive gradient descent method for convex QP (8.7).
Then, we can in (8.17) dynamically choose
e = 1/az, thus 1<y <1l4+v<2. (8.21)
In this case, fyka}; = 1, the corrector formula (8.17), namely,
k+1 k k ~k)

" =2 —ypag (2 — T

becomes

it = 3k = Polz* — B(Hz® + ¢)]. (8.22)

The contraction inequality (8.18)

ka+1 k

— 2|ty gy — (2 — )l — 2
$k+lH2.

— 2" (gp,m) < Nl

<|lo® = 2" gy — A= v)ll2" -

The last inequality follows from 1 — v < 2 — v (see (8.21), vx < 1 + v).
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We get a simple projected gradient method, the only condition is

(¥ = 2T (BH) (2" — &%) <v|2* —2"|?, ve(0,1). (8.29)

8.1.2 Comparison with the Steepest descent method
How good is the self adaptive gradient descent method discussed in §8.1.17
When (2 = R", the problem (8.7) becomes a unconstrained convex quadratic
programming
(1T T
min{sx” Hx + ¢ x}. (8.24)

If we use the steepest descent method to solve (8.24), in k-th step, the iterative

formula is
= ot —afP(Ha* + o),
HazF + c||?
where the step-size ~ a?? = | +cf

- (Hx* +c)TH(Hx* +¢)’
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If we use the self adaptive gradient descent method discussed in §8.1.1 to solve
(8.24), in k-th step, the iterative formula is

xk—l—l _ xk . Bk(ka —|—C)

where
|Ha" + ¢ SD

Br <v-

(Hx* + ¢)TH(HxF + ¢) B

In comparison with the steepest descent method, we have

M4 the same search direction,

X4 reduced step-size.

What is the different numerical behaviour ? '
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Preliminary numerical tests for the problem (8.24)

The Hessian Matrix In the test example, the Hessian matrix is the Hilbert matrix.

1
H ={h;;}, hij:z’+j—1’ i=1,---,n j=1,---,n.

n from 100 to 500.

We set
t* = (1,1,...,)1 € R™ and c¢=—Hz".

Different start points:

Stop criteriOn:
||Hill‘k + CH/HH:UO +¢|| < 1077,

The reduced step size:

B=rap?.



Table 1. Iteration number with different r (r = 1 is the SD method) Start point z° = 0

n= 0.1 0.3 0.5 0.7 0.8 0.9 | 0.95 0.99 1.00 1.20
100 2863 | 1346 853 | 627 | 582 | 437 565 | 1201 13169 22695
200 3283 | 1398 923 | 804 | 541 669 898 | 1178 14655 21083
300 3497 | 1323 856 | 739 | 720 | 568 619 | 1545 17467 24027
500 3642 | 1351 1023 | 773 | 667 | 578 836 | 2024 17757 22750
Start with 0 = 0. Stop with ¥ In average: ||z* — z*||/||z° — =*|| = 3.0e — 3.

Table 2. lteration number with different r (r = 1 is the SD method) Start point 20 =c¢
n= 0.1 0.3 0.5 0.7 0.8 0.9 | 095 | 0.99 1.00 1.2

100 2129 | 1034 | 544 | 424 | 302 | 438 568 919 5527 9667

200 1880 808 | 568 | 482 | 372 | 339 446 713 6625 11023

300 1852 | 1002 | 741 531 610 | 452 450 917 6631 10235

500 2059 939 | 568 | 573 | 379 | 547 558 874 7739 11269

Start with 0 = c. Stop with 2*. In average: ||2* — *||/||2° — z*|| = 1.8e — 3.

Table 3. lteration number with different r (r = 1 is the SD method) Start point 20 = —¢

n= 0.1 0.3 0.5 0.7 0.8 09 | 095 0.99 1.00 1.2
100 2545 | 1221 666 | 591 498 | 482 638 | 1581 14442 20380
200 2826 990 | 874 | 470 | 526 | 455 578 841 15222 18892
300 2891 1299 | 918 | 738 | 549 | 571 608 | 2552 18762 21208
500 3158 | 1769 | 909 | 678 | 506 | 512 678 | 1240 17512 19790

Start with 0 = —c. Stop with £¥. In average: ||z* — z*||/||z® — z*|| = 3.8e — 3.




With the same direction and the reduced step-size, the method is
10~-30 times faster than the Steepest descent method !

r € (0.4,0.95) is the suitable reduced factor !

What is the findings ? By setting

1
f(x) = §$TH£C +cl

in (8.7), the iterative formula of the self adaptive gradient descent method (8.22)
becomes

xk—l—l _ PQ[CCk . 5]{;Vf($k)],

and the strategy for choosing S, (8.20) is (v € [0.4,0.95])

(2 — PO B[V f (%) — V("] < v |jaF — 2R 2
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8.2 Projected Gradient Descent (PDG) method for nonlinear
convex optimization

The findings on projection and contraction method for solving the quadratic
programming also contribute to solving the following differentiable convex
optimization problem.

Let {2 be a convex closed set in R™. The problem concerted in this subsection
is to find * € (2, such that

(z —2*) g(x*) >0, Ve, (8.25)

where g(x) is a mapping from R™ into itself. We assume that g(x) is the gradi-

ent of a certain convex function, say f(x), however, f(x) is not provided. Only

for given x, () is observable (sometimes with costly expenses).
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In other words, (8.25) is equivalent to the following convex optimization problem
min {f(x) | z € Q}. (8.26)

We call (8.26) an oracle convex optimization problem, because only the gradient

information g(a:) can be used for solving (8.26). For x* € ()*, we assume
f(x*) > —o0.

In addition, we also assume that g() is Lipschitz continuous, i.e., there exists a
constant L > 0 such that

lg(z) — 9| < L||lx —yl||, Vz,yecR" (8.27)

We require that g(x) is Lipschitz continuous while it does not need to know the
value of L in (8.27).

193



The methods presented in this section do not involve the value of f (), but they

can guarantee that f(xk) is strict monotonically decreasing, hence they belong

to the descending methods.

8.2.1 Steepest descent method for convex programming

Single step projected gradient method.

Step k. (k > 0) Set
ot = Py [xk — 5kg(:vk)], (8.28a)

where the step size ;. satisfies the following condition:

(&% —aF T (g(ak) — g(aF ) < —|lab — M2 (@280

~ Bk

Note that the condition (8.28b) automatically holds when 5, < v/ L, where L is

194



the Lipschitz modulus of g(x). The reason is

(2% — "N B (g(2*) — g(a 1))
< b =2 BRL|2” — 2T < vl — 2R TR

8.2.2 Global convergence of the proposed method

In the following, we show an important lemma by using the basic properties of the
projection and convex function.

Lemma 8.1 For given zz;k, let x* 1 pe generated by (8.28a). If the step-size (3.
satisfies (8.28b), then we have

(z — 2" THT g(2%) > B%;(x — RO (gh — R v € Q,  (8.29)

and

> (x — 2" THT(2F — 28 — vz — 252, v € Q.(8.30)
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k+1

Proof. Note that 21! is the projection of [2¥ — Brg(x"*)] on £ (see (8.28a)),

according to the projection’s property (8.4), we have
(z — 2" ™HT{[2* — Brg(z™)] — 2T} <0, VzeQ.
|t follows that
(z — 2" ™ BLg(z®) > (x — 2"THT (2% — 2T, Vo e, (8.31)

and the first assertion (8.29) is proved. Using the convexity of f , we have

f(x) > f(a®) + (x —2*) " g(a®), (8.32)
and
f®) > fE) 4+ (@8 — 2" g(a )
_ f($k+1) 4 (Zlik . CEk—I_l)Tg(iEk)
—(ZL'k LU]H_l)T(g(ZCk) . g(xk—l—l))
> fa) + (2F - T g(ab) — et — 2FY (e.3)
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The last “ > ” is due to (8.28b). From (8.32) and (8.33), we get
f(x

> f(a®) + (xz — ") g(2")
—{ (@) + (@ =T gk + b — 22

k—l—l)

|
pag
3

Bk
1%
= (z—a")Tg(a") - @le’“ b (8.34)
Substituting (8.29) in (8.34), we obtain
1

14
(:C L ajk—H)T(SCk L :Bk—H) 7 kE xk+1H27

r) — ZIZ‘k+1 X
fle) = f(a77) 2 &Cll

Bk
and the second assertion of this lemma is proved. [
The following theorem shows that the projected gradient method (8.28) is a

descent method whose objective function value { f (x*)} is monotonically

decreasing.
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Theorem 8.1 Let {xk} be the sequence generated by the single step projected
gradient method (8.28). Then, we have

fla®H) < flab) — L= 2k — a2, (8.35)

and

Proof. Setting x = ¥ in (8.30) in Lemma 8.1, we obtain the assertion (8.35)
immediately. Next, setting £ = x* in (8.30), we have

Br(f(a") = f(z"*1))

Z (:13* L xk—l—l) (ZEk . ZCk—H) . Vka . xk+1H27



and thus
(xk _ m*)T(ajk _ xk—|—1)
> (L=v)llz® — a2 + Be(f (") — f (7).
Using the above inequality, we get
R &
(xk ) — (xk _ xk—l—l)HZ

ZEk . x*HQ o 2<£Bk . gj*)T<gjk . ij_H) + ||£Ck . ZCk—HHQ

< la® =2 =201 = v) 2" - 2P
=28 (f(&") = f(a")) + [la® — 22
= [lz* —2"|* = (1 - 2v)[|2" — 2T
=2B(f(2") = f(z)).
This completes the proof of the assertion (8.36). [l

Directly from (8.36), it follows the following corollary:
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Corollary 8.1 Let {x"} be the sequence generated by the single step projected
gradient method (8.28). If we setv < =, then ||z* 1 — o*||? < ||z% — 2|

for any x* € Q2*. The generated sequence {x"} is in a compact set.

2

8.2.3 Convergence rate of the proposed method

Below we show that the iteration-complexity of the single projected gradient
method is O(1/k). For the convenience, we assume [ = S.

Theorem 8.2 Let {x*} be generated by the single step projected gradien-
t method (8.28). Then, we have

2kB(f(z") — f(z*))

k—1
< |2 — 2*||2 — Z(@ — o) 4 20(1 — y)) |2t — 2112, (8.37)
[=0
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Proof. First, it follows from (8.36) that, for any ™ € 2* and all [ > 0, we have

28(f(2") = f(="")) = [l =™~ [l — 2™ P+ (1-20) |l =%

Summing the above inequality over [ = 0, ...,k — 1, we obtain
k—1
26(kf(z") = 3 f+h))
[=0

'V

k—1
¥ — 2|2 = J|la® — 2*|]” + > (1 - 2v)||2’ — 2" (8.38)
[=0

It follows from (8.35) that
261(f(x) = f(z"*1)) > 20(1 = v)||la’ — "2,
which can be rewritten as

26(1f(a') — (1 + 1) @) + f@) = 20(1 —v) 2! — 212
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Summing the above inequality over [ = 0, ..., k — 1, it follows that

zﬁ§j@f — (D) + f) > 23%1 v)lla! =,

which simplifies to

k—1

26(—kf(xk)+z l+1) Z2l1—1/\|x A2 (8.39)

[=0

Adding (8.38) and (8.39), we get

2kB(f(x*) — f(a"))

k—1
> e =2t Y (- 2w) + 21— w) )2 - 27,
[=0

which implies (8.37) and the theorem is proved. [l

From (8.37) follows directly the following theorem.



Theorem 8.3 Let {x"} be generated by the single step projected gradien-
t method. Ifv < =, then we have

0 x*HQ

2kB8

|

f(@®) — f(z*) < (8.40)

and thus the iteration-complexity of this method is O(1/k).

What is about for any € (0.5, 1) ? For such v, we define
p(v) = argmin{l |l > Ois ainteger, (1 —2v) 4+ 2[(1 — v) > 0}. (8.41)
Forany v € (0.5, 1), p(v) is finite number. For example,we have

v="| 09 | 08 | o7 | (0507
p(l/):‘ 4 ‘ 2 ‘ 1 ‘ 1

Since the term Z;@g ((1 —2v) 4+ 2(1 — 1/)) |zt — 2! 1|2 is positive, it

203



follows from Theorem 8.2 (see(8.37)) that

p(v)—1

2WB(f(2*)~ (@) < a2 [P D ((1-2w)+2(1-v)) 2!~ |2

[=0

The last inequality implies that limy,_, oo (f(2*) — f(2*)) = 0 and the
iteration-complexity of this method is O(1/k) forany v € (0, 1).

Theorem 8.4 Let {x"} be generated by the single step projected gradien-
t method, then we have

0 * |2
Ky o <||:v —x*||*+ D
f(x®) — f(z") < T , (8.42)
where
p(v)—1
D=- > (1-2v)+21—-v)a’ -
=0

and p(v) is a finite integer defined in (8.41).
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Self-adaptive projected gradient descent method

Self-adaptive projected gradient descent method.
SetBy=1,u=0.5v=0.9,2° € Qand k = 0. Provide g(z").
Fork = 0,1, ..., if the stopping criterium is not satisfied, do
Step 1. % = Polz* — Brg(z")],
re = Billg(x®) — g(@")||/[|2" — 2.
while 7, > v
61@ = Bk b S 0.8/7%,
7% = Polz" — Brg(«")],
e = Brllg(z®) — g(@)||/ll2* — 2.
end(while)
ghtl = 7k
g(z") = g(").
If 7. <pu then f[p:= O *1.5, end(if)

Step2. Bryi1 =pPr and k=£k+1, gotoStep1.
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Remark 8.1 Instead of the condition (8.28b), here we have
Brllg(z") — g(z* 1| < vlja® — 2.

Remark 8.2 Ifr;, < v, we direct take x¥11 = &, and g(z* 1) = g(z*) for
the next iteration. We call the method Self-adaptive single step projected gradient
method because it needs only once evaluation of the gradient g(mk) in each
iteration when adjusting the parameter 3}, is not necessary.

Remark 8.3 Ifr; > v, we adjust the parameter By, by B, := Bx * 0.8 /7.
According to our limited numerical experiments, using the reduced 0y, the
condition r;. < v is satisfied.

Remark 8.4 Too small step size (3. will leads to slow convergence. Ifry < L,
we will enlarge the trial step size (3 for the by B, := B, * 1.5.



9 Conclusions and Remarks

9.1 ADMM vs AMA

The mathematical form of the linearly constrained convex optimization problem

min{f(u) | Au = b, u € U}. (9.1)

The penalty function method (PFM) for solving the problem (9.1)

T =Argmin{0(u) + Z& || Au — b]|*|u e U
2

Augmented Lagrangian Method (ALM) for solving the problem (9.1)

A\ is given

T = Argmin{6(u) — AT (Au —b) + 2| Au — bHQ{x c X},

ARHL = \F _ B(Auk+! — b).
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Our objective is to solve the following separable convex optimization problem

min {01(x) +0s(y) | Ax + By=5b, x € X, y € Y} (9.2)

Applied the penalty function method for solving Problem (9.2)

(", y"’+1):Argmin{01(a:) + 02 (y) + %HAJB + By — bHQ{:L’ cX,ye Y}

Applied ALM to solve the problem (9.2) The k-th iteration begins with A\

re X
ye)y

o+ 01(x) + 02(y) — (\")" (Az + By — b)

(" = Argmin
+4||Az + By — b||?

Y

)\k—|—1 — )\k _ 5(A£Ck+1 T Byk—l—l _ b)
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Two kinds of different methods. The difficulties of their subproblems are equal.
It is well known: ALM is much efficient than the penalty function method.

See J. Nocedal and S. J. Wright: Numerical Optimization

The common disadvantage of both methods when they applied to solve (9.2):
Y The methods do not use the separable structure of the problem (9.2).
Either ALM or the penalty function methods, their subproblem involves the both

variables x and y. Sometimes we have no way to solve such subproblems.

Relaxed versions: Relax one of the variables as the known vector '

e Relaxed penalty function method (PFM) for the problem (9.2)
— Alternating Minimization Algorithm (AMA).

e Relaxed augmented Lagrangian method (ALM) for the problem (9.2)
— Alternating Direction Method of Multipliers (ADMM).
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Applying Alternating Minimization Algorithm (AMA) for the problem (9.2)

The k-th iteration begins with given yk,

gt =Argmin{ 01 (z) + 5| Az + By* — bHQ‘:C c X},

Yt =Argmin{02(y) + || A" + By — b|?|y € V1.

Applying Alternating Direction Method of Multipliers (ADMM) for (9.2)

The k-th iteration begins with given (y*, A\¥),
2t = Argmin{01 () — (\*)" Az + §||A:U + By"* — bl|? |z e X},

y* = Argmin{02(y) — (\*)" By + £|| Azt + By — b||? |y € Y},
)\k—{—l — )\k . 5(Axk+1 i Byk—l—l . b)

ALM is better than PFM = Their relaxed versions ADMM is better than AMA '
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9.2 Developments of ADMM for two-block problems

1. ADMM in sense of PPA ' The k-th iteration begins with given (y*, \¥)

[ gt = Argmin{ L7 z,y" NP |z e XY,
B

¢ ML = NP B(AxFTL o+ Byf —b), (9.3a)
$ Uy = Argmin{ L@y A [y € D),

(

k+1 . kE _ k _ ,k+1

! 7 = v ooy, (Extended) (9.3b)

! )\k:—{—l — )\kz_,y()\k_)\k—i—l).

The formula (9.3a) is obtained by changing the order of y and A\ in the classical
ADMM. The notation “ := " in (9.3b) means that the ("1, \*T1) in the right
hand side of (9.3b) is the output of (9.3a). v € [1, 2) is the extended factor.

e X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point algorithms revisit

on the alternating direction method of multipliers, Science China Math, 56
(2013), 2179-2186.
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2. Symmetric ADMM I

The primal variables x and y are essentially equal, so it is recommended to adopt
the symmetrical alternating direction method of multipliers.

Symmetric Alternating Direction Method of Multipliers
The k-th iteration begins with given (y*, \¥),

[ gkl = Argmin{[,[ﬁp] (z, 9%, \%) |2 € &Y,
Atz — \k /Lﬁ(AiUk+1 4 By’“ —b),

yF = Argmin{ L2 (25, y, N HE) |y € V),

A+l — \kets uB(Axk+1 4 Byk+1 _ b),

\

wehre p € (0, 1) (usually 4 = 0.9).

e B.S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive Peaceman-
Rachford splitting method for convex programming, SIAM Journal on
Optimization, 24 (2014), 1011-1040.
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9.3 Multi-block separable convex optimization

We take the three-block separable convex optimization problem as an example
min{6; (x) + 02(y) + 03(2)|Ax+ By+Cz=b, x € X,y € Y,z € Z}. (9.5)
Its augmented Lagrangian function is

L3(x,y,2,\) = 01(x)+0s (y)—|—93(z)—)\T(A:U—I—By—I—Cz—b)—Fg | Az+By+Cz—b||°.

(Rl = argmin{ﬁ%(as,yk,zk,)\k) ‘.CUEX},

{ y:i = argmin {£3(z" "1, y, 2" \) | y € VY, (9.6)
z — argmin {[ﬁ%(a)kﬂ,ykﬂ,z, ) ‘ z € Z},

| AT = NP = B(ART 4 Byt 4 O —b).

The above formula is the direct extension of ADMM for the three-block separable convex

optimization problem (9.5). Unfortunately, it is not necessarily convergent [6].

e C.H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM
for multi-block convex minimization problems is not necessarily convergent,
Mathematical Programming, 155 (2016) 57-79.



Direct extension of ADMM. The main example in our Math. Prog. Paper [6]:
min{6f;(x) +02(y) +03(2)|Ar+ By+Cz=b, x € X,y € Y,z € Z}

where 01(z) = 63(y) = 03(2) =0, X =Y =Z=R, b=0¢c R

1 1 Applied the direct extension of ADMM

B (9.6) to this example, the method is not

A B.Cl=11 1 2. convergent. However, this exmple have
2 2 only theoretical meaning.

It is worth to consider a class of three-block problem whose constrained matrix
A, B,C|=1]A,B,I] one of the submatrix is identity.

It is convergent when the direct extension of ADMM is applied to solve such more
practical problems ? It is a challenging open problem !

Neither convergence nor counterexamples have been provided ! !
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It is valuable to study a class of the following problems :

e Applying ADMM to the problem

min{6;(x) + 62(y)|Az + By =b, x € X,y € Y} is convergent.

e Change the equality to inequality, the considered problem becomes
min{6(x) + 02(y)|Az + By < b, x € X,y € V}.
e Reconvert it to a equality constrained special three-block problem:

min{6;(x) + 02(y) + 0| Az + By +2=0b, x € X,y € Y,z > 0}

e Peoples have tried to solve the above problems with direct extended ADMM,

but so far neither convergence nor counterexamples have been proved.

Based on the above recognition, we propose some modified algorithms for the
three operator problem. Our method does not add any conditions to the problem!
No restrictions on Operate only on the method itself !
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ADMM Like-Method |: Partial parallel Splitting ALM with reduced step-size '

Begin with (yy*, 2%, \¥), after solving the z-subproblem, we solve the ¥ and
z-subproblems in parallel.

(Rt = arg min {E%(x,yk,zk,)\k) ’ x € X},

e = argmin {£3(z"F2,y, 25, AF) |y € VY,

ke — arg min {E%(aszr%,yk,z,)\k){z C Z},

AFFE = AP — B(AzP T2 + ByFtr 4 0P tE —b).

\

The output (¥ 2, 2¥*t2 \FT2) is a predictor, the new iterate is given by

yk:—|—1 yk yk . yk—|—%
Sk+1 — Sk — Sk ks , ae(0,2— \/5)
)\k—{—l )\k: )\k: o )\k—{—%

e B. S. He, Parallel splitting augmented Lagrangian methods for monotone
structured variational inequalities, COA 42(2009), 195-212.

It is too free to deal with problems, thus, reducing the step length is necessary ! '




ADMM Like-Method Il: ADMM with Gaussian back substitution '

Taking the output of (9.6) as the predict point. We need only to correct the
(y, z)-parts by

yk—l—l - yk . I —(BTB)_lBTC yk L yk—l—l
P B WV 0 I AR

where o € (0, 1). Because we just need to provide ( By**1, CzF+1 A\F+1) for
the next iteration,

Byk—i—l - Byk . I —7 B(yk . yk—l—l) 0.8
or it AR WerL 0 I C(zF =21 ) |

e B. S. He, M. Tao and X.M. Yuan, Alternating direction method with Gaussian
back substitution for separable convex programming, SIAM Journal on
Optimization 22 (2012), 313-340.

There is priority or unfairness in (9.6) for the essential primal variables y and z
(resp. By and C'z). Thus, it is necessary to make up some adjustment !
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ADMM Like-Method lll: ADMM--Prox-Parallel Splitting ALM '

After solving the x-subproblem, we solve the y and z-subproblems in parallel.
Since we don’t want to do post-processing (correction), adding a regular term to
both of the y and z-subproblems in advance is necessary

(

zF+! = arg min {E%(x,yk,zk,)\k) ‘ x e X},

yF 1t = argmin {£3 (11, y, 25, NF) + ZB||B(y — v")I1P |y € Y},
M = argmin { L3 (a1 Y7, 2, M) + ZB(|C (2 — 27)|?|z € 2},
AL = Ak — B(AZF T + Byt tl + 2R — ). (t>1)

\

e B. He, M. Tao and X. Yuan, A splitting method for separable convex
programming. [IMA J. Numerical Analysis, 31 (2015), 394-426.

If you are too free and don’t correct, adding the regular terms is necessary !
This can be explained as: people should not forget what they promised yesterday!




RIBEM AR, & R HETE (ALM) LTSRS
&, ARt EMERA AN EIE.

SN BEE TR O eIER, & hi&EA Hfk &
(ALM) 050 R #7734, #5523 Bk T e F 32 & 5 a5 (ADMM) #0
BN ZE (AMA),

ANTE L BEB X ADMM 1858 K1ty

ADMM A2 ENIREEKR. B7 10 FHR WA E ZN MR E
il 1533 ADMM K5 EZ NS, T F £ ITADMM 5%
H—eHMEMNBOEFMER—E EEZNIELER, FBINERE.
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FiEE, XKMTEBETE y AMETE ARF, #MEIIREFEES
7 PPA & X THJ ADMM (Science in China, Mathematics, 2013);

FENFRIBTE x My, FAAREMNBTE A, SREEIXTRE
i) ADMM (SIAM Optimization, 2014).

XLEFR, B LREER, HERIEARE.

IBie £, FATUERR T ADMM EiB[AE X T (SIAM Numerical Anal-
ysis, 2012) f = %)= X T (Numer. Mathematik, 2015) B O(1/t)
B SSOR R . JERRER AN & .

ADMM T3z, ANTBARBEIE=ANEFRIEIRHE .
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BATEAREUERR "Bz A" WHRIEHE, e 7T —LL4aiE
ZNEFEIBEAIADMM 275 7%
(Computational Optimization and Applications, 2009).
(SIAM Optimization, 2012; IMA Numerical Analysis, 2015).

XEFENEEY RN EEX O @ MER FH! 3T 8 ASIRF,
RAXTHENFEAR!

ERFMNELE “EEFEHETBADMM 5350 = NE F 0] 8 S RIE
W B94F(Math. Progr., 2016),35ER:

LRTiIR By —LLoREg, FER ERWHRY, HH| 2SR,
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The analysis is guided by variational inequality.

The most methods mentioned fall in a unified prediction-correction framework,

in which the convergence analysis is quite simple.
All the discussed methods are closed related to Proximal Point Algorithms.

All the discussed ADMM-like splitting methods are rooted from Augmented
Lagrangian Method.

A through reading will acquaint you with the ADMM, while a more carefully
reading may make you familiar with the tricks on constructing splitting
methods according to the problem you met.

The discussed first order splitting contraction methods are only appropriate

for some structured convex optimization in some practical applications.



X4 VI is a powerful tool to analyze the splitting contraction algorithm of convex
optimization It is very simple to prove the convergence in the framework of varia-
tional inequality.

»X4 This picture shows that we can use a small space on the blackboard The origin
and development of the alternating direction method of multipliers and the proof
of convergence are all clear
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B BFZEX A=RAHFNEN. AERAKRSH
RN AR, BHATLUEXR RS % —. @&, fib

AABEER; %— BEABENZER,

L BEKERESE— 2R TEREAENERERE X

RAUEARMTALLE, — N FRREEZE Mizx2
HaRLENZEE, iLAHKRB S HRIERA G,

N AEXEMH, RN EMU T EMFTHARIFEER X
L R SITRVIESE, AR X, EAEZXERI P —EIHEHNFE X
I RERMRETSRNSEREARIN S, SRR, AXTRIFHITE X
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Appendix: From PC Methods for VI to SC Methods for Convex Optimization '

A1. Projection and contraction method for monotone variational inequality

Let {2 C R" be a nonempty closed convex set, F' : " — R be a mapping. Consider
the following variational inequality:

weQ, (u—u") Fu*) >0, Yueq. (A1.1)
We say a variational inequality is monotone, when

(u—v)" (F(u) = F(v)) > 0.
For solving the problem (A1.1), the k-th iteration of the projection and contraction begins
with a given uk, produces a predictor a® via the projection
i = Polu® — BrF(u"))
= argmin{3|lu— [W* — B F(W)]|]? |u e Q}. (A1.2)
In the projection (A1.2), the chosen parameter 3. satisfies

Bl F(u") = F(@")| < vllu® —a"|l, ve(0,1). (A1.3)



Because @° = argmin{ 1 |lu — [u* — B F (u®)]||* |u € Q}, according to Lemma
1.1, we have
i eQ, (u—a")"{i" - [u* - BF(W)]} >0, Yueq. (A1.4)

(A1.5)

Adding the term (u — @*) T d(u”, @*) to the both sides of (A1.4), we get the 7i* based

prediction formula

Prediction:

@ e Q, (u—a")" BF(@") > (u—a") TdW®, "), vu e Q. (A1.6)

(@" —u*) TdW”, @") > Bre(@” —u*) T F(@"). (A1.7)

(@" —u*) " F(u*). Since
0. Thus, the right hand side of

(A1.7) is nonnegative. Consequently, we have
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According to the expression of d(uk, ’&k) (A1.5) and the assumption (A1.3), by using the

Cauchy-Schwarz inequality, we get
(W — @) TdW”, @") > (1 — )| — " (A1.9)

Therefore, the right hand side of the inequality (A1.8) is positive. This means, for any
positive definite matrix H € R™*™, H~'d(u”",@") is an ascent direction of the

. . 1 * || 2 k :
unknown distance function 3 ||u — u”||7 atu”. By using

Coirrection us™ = uf — aH (W, @), (A1.10)

we get a new iterate which is more closed to the solution set in H-norm, where d(u", @)

is given by (A1.5). Consider the «-dependent profit

On() = [|u® — u*||F — ||ultt — 3. (A1.11)
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According to (A1.10) and (A1.8), we get

Ie(a) = |u* —u |5 — lu” - — aH T d(u", @)
= 20’ —u)Td@Wr, @) — 2| H (W, 7)) %
(A1.8)
> 2a(u” — @) TdWF, @) — ?| H (", 7)) %
= qu(a). (A1.12)

The last inequality tells us that gx (<) is a low bound of ¥ ().

Usually, we consider the projection and contraction method in the Euclidean-norm. In this
case, H = I and g(«) reaches its maximum at

ko ~k\T 30,k ~k
« u —a”) du”,u
oy, = argmax{qx ()} = ( ||d(u’1 ﬂk()||2 ) (A1.13)

From the assumption (A1.3), we get 2(u® — @) T d(u”, @") — ||d(u", @*)||* > 0 and
thus a, > <.

lu® = * = [T =" > g(ar)

(A1.9)
= ap(u” —a") Td@®, 7" > LA - )l - )P

232



In this way, we get the following key-inequality for convergence proof of the PC method:

u ! < ot =P = 30—t = @i

X4 In PC methods, the directions in the left and right hand sides of (A1.6)
BeF(@") and  d(u”,a")  arecalled a pair of twin directions.

It is very interesting that two different correction methods with twin directions and same

step length have the common contraction inequality for convergence.

In practical computation, we use correction formula

(PC-Method I) uht' = u* — vafd(u®, a") (A1.15)
or
(PC Method Il) 7 = Po[u” — vag Br F (@) (A1.16)

to offer the new iterate "', where v € (1.5, 1.8) C (0, 2), i} is given by(A1.13).

X The detailed proof can be found in the series of Lecture 3 on my Homepage "4
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A2, Splitting-contraction (SC) methods for linearly constrained convex optimization

The linearly constrained separable convex optimization problems, as illustrated in Section

1.2, can be translated to the following variational inequality

w*eQ, Ou)—0u")+ (w—w") Fw*)>0, YweQ  (A21)

In (A2.1), the function 6(w) is convex and the mapping F'(w) is also monotone, specially,
(w—0) " (F(w) — F(w)) = 0.

For solving such variational inequality (A2.1), we have a unified framework of the

prediction-correction methods.

Prediction. For given vF (v involves some (or total) elements of the vector w), produce

a w"* € Q which satisfies

0(u) — 0(a") + (w— ) TF(@") > (v—3") T Q" — %), Yw € Q, (A2.2)

where @ is not necessarily symmetric, but @ ' + Q is essentially positive definite.
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The inequality (A2.2) is similar as (A1.6). Set w = w™ in (A2.2), we get
(" — o) T QMW" — ") > 0(a") — () + (0" —w*) " F(@").  (A2.3)
Because (0" — w*) T {F(@") — F(w*)} = 0, we have
0(a") — 0(u*) + (@° —w*) T F(0") = 0(@") — 0(u*) + (@" — w*) T F(w™).
Since W* € Q, it follows from (A2.1) that
0(@") — 0(u*) + (" —w*) T F(w*) >0,

Thus, the right hand side of (A2.3) is nonnegative. Consequently, we get

The inequality (A2.4) is similar as (A1.8). Since QT + () is essential positive definite, the

right hand side of (A2.4) is positive (otherwise, w¥isa solution).

Thus, for any positive definite matrix H, H ' Q(v* — ©*) is an ascent direction of the

. . 2 .
unknown distance function ||v — v*||3; at v". By using

VP =0 —aH Q0" — o), (A2.5)

235



we get a new iterate which is more closed to V* in H-norm, where Q(v"® — @*) is given
in the right hand side of (A2.2). Let

M=H'Q, (A2.6)

the correction formula becomes

Correction vi'!' =" —aM (" — o). (A2.7)

Consider the a-dependent profit
Ik(a) = [[o* —v"||F — [|0" T — o3 (A2.8)
Thus, we have
Ie(@) = (" =0 = ot =0T —aM (0" =" %
= 220" =0") Q" = ") —a® MW" — )|k
2a(v" = 0") " Q" =) — oM (v" ="

=: qr(a) (A2.9)
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Now, gx (<) is a low bound of 9 () and it reaches its maximum at

(’Uk . 6k)TQ(’()k . @k>

a, = argmax{g () } = | M (vF — §F)||2
H

Moreover, if the matrices satisfy
G=Q"+Q-M"HM » 0,
it is easy to see that
Q(Uk: _ 6k)TQ(vk _ ,5k;)

= (" -"TQT + Q)" — ")
> |IM@" —3")||F.

Together with (A2.10), we have a, > % Consequently, it follows that

| [ [ [
> qlar) = ap(v" =) Q" — ")

Lk kg2
> Sl = llgrig):

(A2.10)

(A2.11)

(A2.12)

(A2.13)
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In other words, if the assumption (A2.11) is satisfied, we can take the unit step size a« = 1

in (4.4b). In other words, the correction formula becomes
P = oF — M(WF — ).
It follows from (A2.9) that ¢(1) = |[v* — ©%||%. Thus, the generated sequence {v"*}

has the contraction property

L [V [ [V Al P

which is the key-inequality for convergence analysis of the proposed methods.

From the projection and contraction method for monotone variational inequality, to the

splitting-contraction methods for linearly constrained convex optimization, it obeys

Y4 one main line, a common model. 4
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— Stefan Banach, 1892—-1945
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Thank you very much for reading !



