
IV - 1

;;;...ààà`̀̀zzz¯̄̄KKK���©©©���ÂÂÂ   ���{{{ùùù���

IV. �5�åà`z¯K©�Â �{�Ú�µe

Û ] ) H®�ÆêÆX

Homepage: maths.nju.edu.cn/˜hebma

ô��ïÄ)ÀúO���&<ó�UÛÏÆ�

2022c7�13F



IV - 2

1 ààà`̀̀zzz©©©���ÂÂÂ   ���{{{���ÚÚÚ���µµµeee

·�o´^C©Ø�ª (VI)���{�O,r�5�å�à`z¯K8(�e¡�C

©Ø�ª:

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (1.1)

Algorithms in a unified framework

A unified Algorithmic Framework for (1.1) Ú�µedýÿ-��üÜ©|¤

[Prediction Step.] l�½�vkÑu,¦�ýÿ: w̃k ∈ Ω¦Ù÷v

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (1.2a)

Ù¥QØ�½é¡,�´QT +Q�½.

[Correction Step.] ���Ü·��ÛÉÝ
M ,deª(½#�S�:

vk+1 = vk −M(vk − ṽk). (1.2b)

QÚM©O��ýÿÝ
Ú��Ý
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Convergence Conditions

For the matrices Q and M , there is a positive definite matrix H such that

HM = Q. (1.3a)

In addition,

G = QT +Q−MTHM � 0. (1.3b)

Ù¢,��ýÿ (1.2a)¥�ýÿÝ
Q÷v

QT +Q � 0,

·�o�±�

0 ≺ G ≺ QT +Q.

,�P

D = (QT +Q)−G,
K D � 0.-

MTHM = D.

dÝ
�§|)� HM =Q,

MTHM =D.
⇔

 HM =Q,

QTM =D.
⇔

 H =QD−1QT ,

M =Q−TD.
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Ò��÷vÂñ^����Ý
M .

¢SO�¥,·�����Ý
M .

H ÚG�´^5�yÂñ^��.

�é{`,��

QT +Q � 0.

·�Ò�±Àü��½Ý
D � 0ÚG � 0,¦�

D +G = QT +Q.

�

M = Q−TD

^� (1.3)g,÷v.
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2 ýýýÿÿÿ-���������{{{���~~~fff

We consider the min−max problem

minx maxy{Φ(x, y) = θ1(x)− yTAx− θ2(y) |x ∈ X , y ∈ Y}. (2.4)

Let (x∗, y∗) be the solution of (2.4), then we have �âQ:�½Â

(x∗, y∗) ∈ X × Y, Φ(x∗, y) ≤ Φ(x∗, y∗) ≤ Φ(x, y∗), ∀ (x, y) ∈ X × Y.

þ¡�ü�Ø�ª�±�¤�d�{
x∗ ∈ X , Φ(x, y∗)− Φ(x∗, y∗) ≥ 0, ∀x ∈ X , (2.5a)

y∗ ∈ Y, Φ(x∗, y∗)− Φ(x∗, y) ≥ 0, ∀ y ∈ Y. (2.5b)

Using the notation of Φ(x, y), it can be written as ��rΦ(x, y)�/ªW?�{
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−AT y∗) ≥ 0, ∀x ∈ X , (∗)
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T ( Ax∗) ≥ 0, ∀ y ∈ Y. (�)
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Furthermore, it can be written as a variational inequality in the compact form:

u ∈ Ω, θ(u)− θ(u∗) + (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (2.6)

where éþª¥?¿�u ∈ Ω©O�u = (x, y∗)Úu = (x∗, y),Ò�� (∗)Ú (�).

u =

(
x
y

)
, θ(u) = θ1(x) + θ2(y), F (u) =

(
−AT y
Ax

)
, Ω = X × Y.

The output of Original PDHG algorithm [17] as predictor

For given (xk, yk), PDHG [17] produces a pair of (x̃k, ỹk). First,

x̃k = argmin{Φ(x, yk) +
r

2
‖x− xk‖2 |x ∈ X}, (2.7a)

and then we obtain ỹk via

ỹk = argmax{Φ(x̃k, y)− s

2
‖y − yk‖2 | y ∈ Y}. (2.7b)
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Ignoring the constant term in the objective function, the subproblems (2.7) are reduced to x̃k = argmin{θ1(x)− xTAT yk +
r

2
‖x− xk‖2 |x ∈ X}, (2.8a)

ỹk = argmin{θ2(y) + yTAx̃k +
s

2
‖y − yk‖2 | y ∈ Y}. (2.8b)

According to the basic lemma, the optimality condition of (2.8a) is x̃k ∈ X and

θ1(x)− θ1(x̃k) + (x− x̃k)T {−AT yk + r(x̃k − xk)} ≥ 0, ∀x ∈ X . (2.9)

Similarly, from (2.8b) we get ỹk ∈ Y and

θ2(y)− θ2(ỹk) + (y − ỹk)T {Ax̃k + s(ỹk − yk)} ≥ 0, ∀ y ∈ Y. (2.10)

Combining (2.9) and (2.10), we have

ũk ∈ Ω, θ(u)− θ(ũk) +

(
x− x̃k

y − ỹk

)T {(
−AT ỹk

Ax̃k

)

+

(
r(x̃k − xk)+AT (ỹk − yk)

s(ỹk − yk)

)}
≥ 0, ∀(x, y) ∈ Ω.
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The compact form is ũk ∈ Ω,

θ(u)− θ(ũk) + (u− ũk)T {F (ũk) +Q(ũk − uk)} ≥ 0, ∀u ∈ Ω, (2.11a)

where

Q =

(
rIn AT

0 sIm

)
. (2.11b)

éuù��ýÿ,·��Ä'�{ü���

uk+1 = uk −M(uk − ũk) (2.12)

��.Ù¥M�ü þn�Ý
½ü en�Ý
.Âñ5^� (1.3)

• H � 0 and HM = Q.

• G = QT +Q−MTHM � 0.

�±U�¤�d�

( i ) H � 0 and H = QM−1.

(ii) G = QT +Q−MTHM � 0.
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�. ��Ý
M�ü en�Ý
 Ù¥�K´�½�.

M =

 In 0

K Im

 K M−1 =

 In 0

−K Im

 .

é^� (i), ·�3Ú�µee��e¦Ñù�K�äN/ª.duH = QM−1�½,

Äk7L´é¡�.d

H = QM−1 =

 rIn AT

0 sIm

 In 0

−K Im

 =

 rIn −ATK AT

−sK sIm


7Lé¡,í�

−sK = A, ⇒ K = −
1

s
A.

Ïd,

M =

 In 0

− 1
s
A Im

 , H =

 rIn + 1
s
ATA AT

A sIm

 .

é?¿� r, s > 0,Ý
H´�½�.
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é^� (ii),

G = QT +Q−MTHM = QT +Q−QTM

=

(
2rIn AT

A 2sIm

)
−
(
rIn 0

A sIm

)(
In 0

− 1
s
A Im

)

=

(
2rIn AT

A 2sIm

)
−
(
rIn 0

0 sIm

)
=

(
rIn AT

A sIm

)
.

�Ý
 G�½,7Lk rs > ‖ATA‖.

æ^PDHGýÿ,ü en�Ý
��,I� rs > ‖ATA‖.

�. ��Ý
M�ü þn�Ý
 Ó�,Ù¥�K´�½�.

M =

 In K

0 Im

 K M−1 =

 In −K
0 Im

 .

é^� (i), ·�3Ú�µee��e¦Ñù�K�äN/ª.duH = QM−1�½,
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Äk7L´é¡�.d

H = QM−1 =

 rIn AT

0 sIm

 In −K
0 Im

 =

 rIn −rK +AT

0 sIm


7Lé¡,í�

rK = AT , ⇒ K =
1

r
AT .

Ïd,

M =

 In
1
r
AT

0 Im

 , H =

 rIn 0

0 sIm

 .

é?¿� r, s > 0,Ý
H´�½�.
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é^� (ii),

G = QT +Q−MTHM = QT +Q−QTM

=

(
2rIn AT

A 2sIm

)
−
(
rIn 0

A sIm

)(
In

1
r
AT

0 Im

)

=

(
2rIn AT

A 2sIm

)
−
(
rIn AT

A sIm

)

=

(
rIn 0

0 sIm − 1
r
AAT

)
.

�Ý
 G�½,7Lk rs > ‖ATA‖.

æ^PDHGýÿ,ü þn�Ý
��,I� rs > ‖ATA‖.

�,rØU�yÂñ�PDHG�{UE¤
Âñ��{,�´, rs ��vküe5.

·��8I,´rýÿ (2.8)¥�ëê rs ��{üe5.

éu (2.11)¥�Q,·�k

QT +Q =

(
2rI AT

A 2sI

)
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�� rs >
1

4
‖ATA‖,Ý
 QT +QÑ´�½�.

� (QT +Q) �½�,·��

D =
1

2
(QT +Q), ¿- MTHM = D. (2.13)

ù�ÒU�y

G = QT +Q−MTHM =
1

2
(QT +Q) � 0.

• H � 0 and HM = Q.

• G = QT +Q−MTHM � 0.
�±U�¤

( i ) HM = Q.

(ii) MTHM = D. HM =Q,

MTHM =D.
⇔

 HM =Q,

QTM =D.
⇔

 H =QD−1QT ,

M =Q−TD.
(2.14)

�é{`,� (QT +Q) � 0,�

D =

 rI 1
2
AT

1
2
A sI

 , M = Q−TD
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¤kÂñ5^�Ñ÷v.

Q−T =

 rI 0

A sI

−1

=

 1
r
I 0

− 1
rs
A 1

s
I



M = Q−TD =

 1
r
I 0

− 1
rs
A 1

s
I

 rI 1
2
AT

1
2
A sI


=

 I 1
2r
AT

− 1
2s
A I − 1

2rs
AAT

 (2.15)

|^þ¡���Ý
 M xk+1 = x̃k − 1
2r
AT (yk − ỹk)

yk+1 = ỹk + 1
2s
A[(xk − x̃k) + 1

r
AT (yk − ỹk)].

ù´ê¸¦� [15] �âÚ�µeJÑ��{.O��Jké�?Ú.

r rs ü
 3
4

,k
é�?Ú.



IV - 15

3 Convergence proof in the unified framework

In this section, assuming the conditions (1.3) in the unified framework are satisfied, we

prove some convergence properties.

Theorem 1 Let {vk} be the sequence generated by a method for the problem (1.1) and

w̃k is obtained in the k-th iteration. If vk , vk+1 and w̃k satisfy the conditions in the

unified framework, then we have

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
‖vk − ṽk‖2G, ∀w ∈ Ω. (3.1)

Proof. Using Q = HM (see (1.3a)) and the relation (1.2b), the right hand side of (1.3a)

can be written as (v − ṽk)TH(vk − vk+1) and hence

θ(u)− θ(ũk) + (w− w̃k)TF (w̃k) ≥ (v− ṽk)TH(vk − vk+1), ∀w ∈ Ω. (3.2)

Applying the identity Q(vk − ṽk) = HM(vk − ṽk) = H(vk − vk+1).

(a− b)TH(c− d) =
1

2
{‖a− d‖2H − ‖a− c‖2H}+

1

2
{‖c− b‖2H − ‖d− b‖2H},
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to the right hand side of (3.2) with

a = v, b = ṽk, c = vk, and d = vk+1,

we thus obtain

2(v − ṽk)TH(vk − vk+1)

=
(
‖v − vk+1‖2H−‖v − vk‖2H

)
+(‖vk − ṽk‖2H−‖vk+1 − ṽk‖2H). (3.3)

For the last term of (3.3), using HM = Q and 2vTQv = vT (QT +Q)v, we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk)− (vk − vk+1)‖2H

(1.3a)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)−M(vk − ṽk)‖2H
= 2(vk − ṽk)THM(vk − ṽk)− (vk − ṽk)TMTHM(vk − ṽk)

= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk)
(1.3b)
= ‖vk − ṽk‖2G. (3.4)

Substituting (3.3), (3.4) in (3.2), the assertion of this theorem is proved. �
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rA. Beckë�
·�^��/ÈzÚ�0�úª,¿3c����5�
`²
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3.1 Convergence in a strictly contraction sense

Theorem 2 Let {vk} be the sequence generated by a method for the problem (1.1) and

w̃k is obtained in the k-th iteration. If vk , vk+1 and w̃k satisfy the conditions in the

unified framework, then we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (3.5)

Proof. Setting w = w∗ in (3.1), we get

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H
≥ ‖vk − ṽk‖2G + 2{θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k)}. (3.6)

By using the optimality of w∗ and the monotonicity of F (w), we have

θ(ũk)−θ(u∗)+(w̃k−w∗)TF (w̃k) ≥ θ(ũk)−θ(u∗)+(w̃k−w∗)TF (w∗) ≥ 0

and thus

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ α‖vk − ṽk‖2G. (3.7)

The assertion (3.5) follows directly. �
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½n1¥�(Ø (3.1)

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥
1

2

(
‖v − vk+1‖2H − ‖v − v

k‖2H
)

+
1

2
‖vk − ṽk‖2G, ∀w ∈ Ω.

´�ÂñÂñ�y²O��.

ÄK,·��±ÏL3 (3.2)

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TH(vk − vk+1), ∀w ∈ Ω.

¥-w = w∗,��

(vk − vk+1)TH(ṽk − v∗) ≥ 0. (3.8)

òð�ª

(a− b)TH(c− d) =
1

2

{
‖a− d‖2H − ‖b− d‖

2
H

}
−

1

2

{
‖a− c‖2H − ‖b− c‖

2
H

}
^u (3.8)��à,- a = vk, b = vk+1, c = ṽk Ú d = v∗,·���

(vk − vk+1)TH(ṽk − v∗)

=
1

2
{‖vk − v∗‖2H − ‖v

k+1 − v∗‖2H} −
1

2
{‖vk − ṽk‖2H − ‖v

k+1 − ṽk‖2H}.
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�â (3.8)Òk

‖vk − v∗‖2H − ‖v
k+1 − v∗‖2H ≥ ‖v

k − ṽk‖2H − ‖v
k+1 − ṽk‖2H . (3.9)

2rþª�màz{�e,

‖vk − ṽk‖2H − ‖v
k+1 − ṽk‖2H

= ‖vk − ṽk‖2H − ‖(v
k − ṽk)− (vk − vk+1)‖2H

(1.2b)
= ‖vk − ṽk‖2H − ‖(v

k − ṽk)−M(vk − ṽk)‖2H
= 2(vk − ṽk)THM(vk − ṽk)− (vk − ṽk)TMTHM(vk − ṽk)

= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk)

(1.3b)
= ‖vk − ṽk‖2G. (3.10)

ò (3.10)�\ (3.9)Ò��Ún�(Ø. �

3.2 Convergence rate

Convergence rate in an ergodic sense [11]

�
y²�{H{¿Âe�S�E,5,·�I�éC©Ø�ª (1.1)�)8�#��
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x.du (1.1)¥����fFTk

(w − w∗)TF (w∗) = (w − w∗)TF (w),

C©Ø�ª¯K

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω,

Ú

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w) ≥ 0, ∀w ∈ Ω,

´�d�.·�^�ö½ÂC©Ø�ª (1.1)�Cq).é�½� ε > 0,XJ w̃÷v

w̃ ∈ Ω, θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ −ε, ∀ w ∈ D(w̃), (3.11a)

Ù¥

D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}, (3.11b)

Ò��C©Ø�ª (1.1)� εCq).§�±�d/L«¤

w̃ ∈ Ω, sup
w∈D(w̃)

{
θ(ũ)− θ(u) + (w̃ − w)TF (w)

}
≤ ε. (3.12)

<�a,��´µé�½� ε > 0,²Lõ�gS�,U
���� w̃ ∈ Ω,¦� (3.12)

¤á.

ùÒ´·��?Ø�H{¿Âe�Âñ�Ç.?ØH{¿Âe�Âñ5,é (1.3b)¥�
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Ý
G,��¦§��½.

Equivalent Characterization of the Solution Set of VI

Theorem 3 Let {vk} be the sequence generated by a method for the problem (1.1) and w̃k is

obtained in the k-th iteration. Assume that vk , vk+1 and w̃k satisfy the conditions in the unified

framework and let w̃t be defined by

w̃t =
1

t+ 1

t∑
k=0

w̃k. (3.13)

Then, for any integer number t > 0, w̃t ∈ Ω and

θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤
1

2α(t+ 1)
‖v − v0‖2H , ∀w ∈ Ω. (3.14)

Convergence rate in a pointwise iteration-complexity [13]

‖vk+1 − vk+2‖H ≤ ‖vk − vk+1‖H .

Theorem 4 For the sequence generated by the prototype algorithm (1.2) where the Convergence

Condition is satisfied, we have

‖M(vk+1 − ṽk+1)‖H ≤ ‖M(vk − ṽk)‖H , ∀ k > 0. (3.15)
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4 ADMM for problems with two separable blocks

This section concern the structured convex optimization problem namely,

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}. (4.1)

The Lagrangian function and the augmented Lagrange Function of (4.1) are

L[2](x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b).

and

L[2]
β (x, y, λ) = θ1(x) + θ2(y)− λT(Ax+By− b) +

β

2
‖Ax+By− b‖2, (4.2)

respectively. Recall the model (4.1) can be explained as the VI

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω. (4.3a)

where

u =

 x

y

 , θ(u) = θ1(x) + θ2(y), w =

 x
y

λ

 , (4.3b)
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F (w) =

 −ATλ
−BTλ

Ax+By − b

 , and Ω = X × Y × <m. (4.3c)

Using the augmented Lagrange function, the recursion of the alternating direction method

of multipliers for the structured convex optimization (4.1) can be written as
xk+1 ∈ Argmin{L[2]

β (x, yk, λk) |x ∈ X},

yk+1 ∈ Argmin{L[2]
β (xk+1, y, λk) | y ∈ Y},

λk+1 = λk − β(Axk+1 +Byk+1 − b).

(4.4)

Note that the essential variable of ADMM (4.4) is v = (y, λ).

Ú�µee� ADMM. ADMM scheme (4.4) is also a special case which belongs to

the unified algorithmic framework (1.2) and the Convergence Condition is satisfied.

In order to cast the ADMM scheme (4.4) into a special case of (1.2), let us first define the

artificial vector w̃k = (x̃k, ỹk, λ̃k) by

x̃k = xk+1, ỹk = yk+1 and λ̃k = λk − β(Axk+1 +Byk − b), (4.5)
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where (xk+1, yk+1) is generated by the ADMM (4.4).

·�5¿� A. Beck 3¦�;Í First-Order Methods in convex optimization [1],�æ^


ù«=�.

Prediction
x̃k ∈ Argmin{θ1(x)− xTATλk + β

2
‖Ax+Byk − b‖2 |x ∈ X},

ỹk =∈ Argmin{θ2(y)− yTBTλk + β
2
‖Ax̃k +By − b‖2 | y ∈ Y},

λ̃k = λk − β(Ax̃k +Byk − b).

(4.6)

According to the scheme (4.4), the defined artificial vector w̃k satisfies the following VI:
w̃k ∈ Ω,

θ1(x)− θ1(x̃k) + (x− x̃k)T {−AT λ̃k} ≥ 0, ∀ x ∈ X ,
θ2(y)− θ2(ỹk) + (y − ỹk)T {−BT λ̃k + βBTB(ỹk − yk)} ≥ 0, ∀ y ∈ Y,

(Ax̃k +Bỹk − b)−B(ỹk − yk) +
1

β
(λ̃k − λk) = 0.

This can be written in form of (1.2a) as described in the following lemma.
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rA. Beckë�
·� (4.5)¥éw̃k�½Â,�ö3c����5�
`²
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Lemma 1 For given vk , let wk+1 be generated by (4.4) and w̃k be defined by (4.5).

Then, we have

w̃k ∈ Ω, θ(u)− θ(ũk) + (w− w̃k)TF (w̃k) ≥ (v− ṽk)TQ(vk − ṽk), ∀w ∈ Ω,

where

Q =

(
βBTB 0

−B 1
β
I

)
. (4.7)

Recall the essential variable of the ADMM scheme (4.4) is (y, λ). Moreover, using the

definition of w̃k , the λk+1 updated by (4.4) can be represented as

λk+1 = λk − β(Ax̃k +Bỹk − b)

= λk −
[
−βB(yk − ỹk) + β(Ax̃k +Byk − b)]

= λk −
[
−βB(yk − ỹk) + (λk − λ̃k)

]
.

Therefore, the ADMM scheme (4.4) can be written as(
yk+1

λk+1

)
=

(
yk

λk

)
−
(

I 0

−βB I

)(
yk − ỹk

λk − λ̃k

)
. (4.8a)
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which corresponds to the step (1.2b) with

M =

(
I 0

−βB I

)
and α = 1. (4.8b)

�yÂñ5^�. Now we check that the Convergence Condition is satisfied by the

ADMM scheme (4.4). Indeed, for the matrix M in (4.8b), we have

M−1 =

(
I 0

βB I

)
.

Thus, by using (4.7) and (4.8b), we obtain �yH�½

H = QM−1 =

(
βBTB 0

−B 1
β
I

)( I 0

βB I

)
=

(
βBTB 0

0 1
β
I

)
,
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and consequently �yG���½

G = QT +Q− αMTHM = QT +Q−QTM

=

(
2βBTB −BT

−B 2
β
I

)
−
(
βBTB −BT

0 1
β
I

)(
I 0

−βB I

)

=

(
2βBTB −BT

−B 2
β
I

)
−
(

2βBTB −BT

−B 1
β
I

)
=

(
0 0

0 1
β
I

)
. (4.9)

Therefore, H is symmetric and positive definite under the assumption that B is full column

rank; and G is positive semi-definite. The Convergence Condition is satisfied; and thus the

convergence of the ADMM scheme (4.4) is guaranteed. �Ø© [11]

Â 5Ú:�¿Âe�Âñ�Ç. ·�òADMMUÚ�µe�¿)º¤ýÿ-��

�{.²L (4.6)ýÿ±�,2d

vk+1 = vk −M(vk − ṽk) (4.10)

��.þªL«

M(vk − ṽk) = vk − vk+1. (4.11)
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3 (3.15)¥·�y²


‖M(vk+1 − ṽk+1)‖H ≤ ‖M(vk − ṽk)‖H , ∀ k > 0.

�â (4.11)Ò´

‖vk+1 − vk+2‖H ≤ ‖vk − vk+1‖H , ∀ k > 0. (4.12)

d (4.12),é?¿���ê t > 0§

‖vt − vt+1‖2H ≤
1

t+ 1

t∑
k=0

‖vk − vk+1‖2H

≤
1

t+ 1

∞∑
k=0

‖vk − vk+1‖2H

(4.12)
≤

1

t+ 1
‖v0 − v∗‖2H .

<�  ^‖vt − vt+1‖2H����ÊÅOK�ë�. �Ø© [13]
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5 |||^̂̂ÚÚÚ���µµµeee���OOOnnn������©©©lll¬¬¬���ADMMaaa���{{{

n��©l¬�à`z¯K

min{θ1(x) + θ2(y) + θ3(z)|Ax+By + Cz = b, x ∈ X , y ∈ Y, z ∈ Z} (5.1)

�¦)�{.ù�¯K�.�KF¼ê´

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b).

¯K (5.1)Ó��±8(�C©Ø�ª¯K

w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (5.2a)

Ù¥ θ(u) = θ1(x) + θ2(y) + θ3(z), Ω = X × Y × Z × <m.

w =


x

y

z

λ

 , u =


x

y

z

 , F (w) =


−ATλ
−BTλ
−CTλ

Ax+By + Cz − b

 . (5.2b)
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�A�O2.�KF¼êP�(�ü��f�ÎÒk«O)

L[3]β (x, y, z, λ) =θ1(x) + θ2(y) + θ3(z)− λT (Ax+By + Cz − b)

+
β

2
‖Ax+By + Cz − b‖2. (5.3)

������ííí222���ADMM¦¦¦)))nnn¬¬¬���©©©lll¯̄̄KKKØØØ���yyyÂÂÂñññ

én��©l¬�à`z¯K,æ^��í2�¦f�O��{,1kÚS�´l�½

�vk = (yk, zk, λk)Ñu,ÏL

xk+1 ∈ arg min
{
L[3]β (x, yk, zk, λk)

∣∣ x ∈ X},
yk+1 ∈ arg min

{
L[3]β (xk+1, y, zk, λk)

∣∣ y ∈ Y},
zk+1 ∈ arg min

{
L[3]β (xk+1, yk+1, z, λk)

∣∣ z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),

(5.4)

¦�#�S�:wk+1 = (xk+1, yk+1, zk+1, λk+1).�Ý
A, B, C¥kü�´p

�����ÿ,^�{ (5.4)¦)¯K (5.1)´Âñ�,Ï�ù«n¬��©l¯K,¢S

þ��uü¬�©l�¯K,é���n¬�©l¯K,´ØU�yÂñ� [5].

3é��í2�ADMM (5.4)y²Ø
Âñ5��ÿ,·�ÒXÃén¬�©l�¯K
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JÑ�
?��{.?��{��K´¦þéADMM��UÄ,�±§�5�Ð¬5.

AO´é¯KØ\(ÃX8I¼êrà�)?Û�	^�,é²;ADMM¥I�N'À
���u"�β,E,4§�±gdÀ�.

���pppddd£££������ADMM���{{{

�pd£��ADMM�{ [8]´2012cuL�.Ó�,3nã©Ù [18]¥^Ú�µe?
nÒ�{ü.��í2�¦f�O��{ (5.4) én��f�¯KØU�yÂñ,´Ï

�§�?nk'Ø%Cþ� yÚ z-f¯KØú².æ�ÖÍ��{´ò (5.4)Jø
� (yk+1, zk+1, λk+1) �¤ýÿ:,2?1��.äN/`,k^��í2�ADMM

xk+1 ∈ argmin
{
θ1(x)− xTATλk + β

2
‖Ax+Byk + Czk − b‖2

∣∣x ∈ X},
yk+1 ∈ argmin

{
θ2(y)− yTBTλk + β

2
‖Axk+1 +By + Czk − b‖2

∣∣y ∈ Y},
zk+1 ∈ argmin

{
θ3(z)− zTCTλk + β

2
‖Axk+1 +Byk+1 + Cz − b‖2

∣∣z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).
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O�Ñ (xk+1, yk+1, zk+1, λk+1),,��I�2é (y, z)��.��úª� Byk+1

Czk+1

 :=

 Byk

Czk

− ν( I −I
0 I

)(
Byk −Byk+1

Czk − Czk+1

)
. (5.5)

Ù¥ ν ∈ (0, 1),mà� (yk+1, zk+1)´d (5.4)Jø�.�{´Øú²,I�éÖ,N�.

du�e�ÚS��I�O� (Byk+1, Czk+1, λk+1),·���ÊÅ����Ú^

�â (5.5)�>|^ê��ê¥��{¦�.��¥le�þ��L§·�r§��p

d£�.

ÜÜÜ©©©²²²111¿¿¿\\\���KKK������ADMM���{{{

XJéy, zf¯K²1,qØ���?n,Ò�§�èýkÑ\��K�
xk+1 = arg min

{
L3β(x, yk, zk, λk)

∣∣ x ∈ X}, (τ > 0�ëê)

yk+1 = arg min
{
L3β(xk+1, y, zk, λk) + τ

2
β‖B(y − yk)‖2

∣∣y ∈ Y},
zk+1 = arg min

{
L3β(xk+1, yk, z, λk) + τ

2
β‖C(z − zk)‖2

∣∣z ∈ Z},
λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b).

(5.6)
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xk+1 ∈ arg min
{
θ1(x)− xTATλk + β

2
‖Ax+Byk + Czk − b‖2

∣∣ x ∈ X},
yk+1 ∈ arg min

{
θ2(y)− yTBTλk + β

2
‖Axk+1 +By + Czk − b‖2

+ τ
2
β‖B(y − yk)‖2

∣∣∣∣y ∈ Y
}
,

zk+1 ∈ arg min

{
θ3(z)− zTCTλk + β

2
‖Axk+1 +Byk + Cz − b‖2

+ τ
2
β‖C(z − zk)‖2

∣∣∣∣z ∈ Z
}
,

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),

e- λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b) ,ù��{Ò´

xk+1 = argmin{θ1(x)− xTATλk + β
2
‖Ax+Byk + Czk − b‖2|x ∈ X},

λk+
1
2 = λk − β(Axk+1 +Byk + Czk − b)

yk+1 =argmin{θ2(y)− yTBTλk+
1
2 + µβ

2
‖B(y − yk)‖2 | y ∈ Y},

zk+1 =argmin{θ3(z)− zTCTλk+
1
2 + µβ

2
‖C(z − zk)‖2 | z ∈ Z},

λk+1 = λk − β(Axk+1 +Byk+1 + Czk+1 − b),

(5.7)

Ù¥ µ = τ + 1. Osher�K|3Ø© [6]¥�â·� [9]¥�µ > 2�
µ = 2.01.

µ�Âñú. [9]¥�Ñµ > 2. [14]¥y²µ > 1.5=�,�éµ < 1.5kØÂñ�~f.
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A Convex Model for Nonnegative Matrix
Factorization and Dimensionality
Reduction on Physical Space

Ernie Esser, Michael Möller, Stanley Osher, Guillermo Sapiro, Senior Member, IEEE, and Jack Xin

Abstract—A collaborative convex framework for factoring a
data matrix into a nonnegative product , with a sparse
coefficient matrix , is proposed. We restrict the columns of the
dictionary matrix to coincide with certain columns of the data
matrix , thereby guaranteeing a physically meaningful dictio-
nary and dimensionality reduction. We use regularization
to select the dictionary from the data and show that this leads to
an exact convex relaxation of in the case of distinct noise-free
data. We also show how to relax the restriction-to- constraint
by initializing an alternating minimization approach with the
solution of the convex model, obtaining a dictionary close to but
not necessarily in . We focus on applications of the proposed
framework to hyperspectral endmember and abundance identifi-
cation and also show an application to blind source separation of
nuclear magnetic resonance data.

Index Terms—Blind source separation (BSS), dictionary
learning, dimensionality reduction, hyperspectral endmember de-
tection, nonnegative matrix factorization (NMF), subset selection.

I. INTRODUCTION

D IMENSIONALITY reduction has been widely studied in
the signal processing and computational learning com-

munities. One of the major drawbacks of virtually all popular
approaches for dimensionality reduction is the lack of phys-
ical meaning in the reduced dimension space. This significantly
reduces the applicability of such methods. In this paper, we
present a framework for dimensionality reduction, based on ma-
trix factorization and sparsity theory, that uses the data itself
(or small variations from it) for the low-dimensional representa-
tion, thereby guaranteeing physical fidelity. We propose a new
convex method to factor a nonnegative data matrix into a
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product , for which is nonnegative and sparse and the
columns of coincide with columns from the data matrix .
The organization of this paper is as follows. In the remainder

of the introduction, we further explain the problem, summarize
our approach, and discuss applications and related work. In
Section II, we present our proposed convex model for end-
member (dictionary) computation that uses regularization
to select as endmembers a sparse subset of columns of , such
that sparse nonnegative linear combinations of them are capable
of representing all other columns. Section III shows that, in the
case of distinct noise-free data, regularization is an exact
relaxation of the ideal row-0 norm (number of nonzero rows) and
furthermore proves the stability of our method in the noisy case.
Section IV presents numerical results for both synthetic and real
hyperspectral data. In Section V, we present an extension of our
convex endmember detection model that is better able to handle
outliers in the data. We discuss its numerical optimization, com-
pare its performance to the basic model, and also demonstrate
its application to a blind source separation (BSS) problem based
on nuclear magnetic resonance (NMR) spectroscopy data.

A. Summary of the Problem and Geometric Interpretation

The underlying general problem of representing
with 0 is known as nonnegative matrix factorization
(NMF). Variational models for solving NMF problems are typi-
cally nonconvex and are solved by estimating and alternat-
ingly. Although variants of alternating minimization methods
for NMF often produce good results in practice, they are not
guaranteed to converge to a global minimum.
The problem can be greatly simplified by assuming a partial

orthogonality condition on matrix as is done in [1] and [2].
More precisely, the assumption is that, for each row of , there
exists some column such that 0 and for .
Under this assumption, NMF has a simple geometric interpreta-
tion. Not only should the columns of appear in the data up
to scaling but the remaining data should be expressible as non-
negative linear combinations of these columns. Therefore, the
problem of finding is to find columns in , preferably as few
as possible, that span a cone containing the rest of the data .
Fig. 1 illustrates the geometry in three dimensions.
The problem we actually want to solve is more difficult than

NMF in a couple respects. One reason is the need to deal with
noisy data. While NMF by itself is a difficult problem already,
the identification of the vectors becomes even more difficult if
the data contain noise and we need to find a low-dimensional
cone that contains most of the data (see the lower right image in
Fig. 1). Notice that in the noisy case, finding vectors such that all
data are contained in the cone they span would lead to a drastic

1057-7149/$31.00 © 2012 IEEE
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Fig. 4. Spectral signatures of endmembers extracted by different methods. (Top row) Results of our method and the alternating minimization approach. (Bottom
row) Endmembers found by N-findr, QR, and VCA.

Fig. 5. Region of possible values for .

restrict each column to lie in a hockey-puck-shaped disk .
Decompose , where is the orthogonal pro-
jection of onto the line spanned by and is the radial

component of perpendicular to . Then, given ,

we restrict and . The or-
thogonal projection onto this set is straightforward to compute
since it is a box constraint in cylindrical coordinates. This con-
straint set for is shown in Fig. 5 in the case when .
We also allow for a few columns of the data to be outliers.

These are columns of that we do not expect to be well repre-
sented as a small error plus a sparse nonnegative linear com-
bination of other data but that we also do not want to con-
sider as endmembers. Given some , this sparse error
is modeled as with restricted to the convex set

and . Since is the non-
negative region of a weighted ball, the orthogonal projection
onto can be computed with complexity. Here,
since the weights sum to one by definition, can be roughly
interpreted as the fraction of data we expect to be outliers. For
nonoutlier data , we want , and for outlier data, we
want . In the latter outlier case, regularization on matrix

should encourage the corresponding column to be close to
zero; hence, is encouraged to be small rather than close
to one.
Keeping the regularization, the nonnegativity constraint,

and theweighted penalty from (6), the overall extendedmodel
is given by

such that (15)

The structure of this model is similar to the robust principal
component analysis model proposed in [33] although it has a
different noise model and uses regularization instead of the
nuclear norm.

B. Numerical Optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant of
ADMM that allows the functional to be split into more than
two parts. The method proposed by He et al. in [34] is appro-
priate for this application. Again, introduce a new variable
and constraint . In addition, let and be Lagrange
multipliers for constraints and

, respectively. Then, the augmented Lagrangian
is given by
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Fig. 6. Results of the extended model applied to the RGB image. (Top left) RGB image we apply the blind unmixing algorithm to. (Top middle) 3-D plot of
the data points in the image in their corresponding color (in online version). (Black dots) Endmembers detected without allowing outliers and without
encouraging particular sparsity on the coefficients . (Top right) With allowing some outliers the method removed an endmember in the one of the outside
clusters, but included the middle cluster due to the encouraged sparsity. (Bottom left) Endmember coefficients for the parameter choice , , where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. (Bottom middle) Increasing the allowed outliers the red cluster
endmember is removed (in online version). Increasing the outliers even further leads to decreasing the number of endmembers to four.

where and are indicator functions for the and
constraints.

Using the ADMM-like method in [34], a saddle point of the
augmented Lagrangian can be found by iteratively solving the
subproblems with parameters 0 and 2, shown in the
equations at the bottom of this page.
Each of these subproblems can be efficiently solved. There

are closed formulas for the and updates, and the
and updates both involve orthogonal projections that

can be efficiently computed.

C. Effect of Extended Model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Although low dimen-
sionality makes this significantly different from hyperspectral

data, it is possible to view a scatter plot of the colors and how
modifying the model parameters affects the selection of end-
members. The NMR data in Section V-E is 4-D; hence, low-di-
mensional data is not inherently unreasonable.
For the following RGB experiments, we use the same param-

eters as described in Section II-E and use the same -means with
farthest first initialization strategy to reduce the size of initial
matrix . We do not however perform the alternating minimiza-
tion refinement step. Due to the different algorithm used to solve
the extended model, there is an additional numerical parameter
, which for this application must be greater than two according
to [34]. We set equal to 2.01. There are also model parame-
ters and for modeling the noise and outliers. To model the
small-scale noise , we set , where is fixed at .07
and is the maximum distance from data in cluster to the
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Recent Advance in : Bingsheng He, Xiaoming Yuan: On the Optimal Proximal

Parameter of an ADMM-like Splitting Method for Separable Convex Programming

http://www.optimization-online.org/DB HTML/2017/ 10/6235.html [14].

Our new assertion: In (5.6)

• if τ > 0.5, the method is still convergent;

• if τ < 0.5, there is divergent example.

Equivalently in (5.7) :

• if µ > 1.5, the method is still convergent;

• if µ < 1.5, there is divergent example.

For convex optimization prob-
lem (5.1) with three separable
objective functions, the param-
eters in the equivalent methods
(5.6) and (5.7) :

• 0.5 is the threshold factor of
the parameter τ in (5.6) !

• 1.5 is the threshold factor of
the parameter µ in (5.7) !
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